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Abstract

As autonomous technologies continue to progress, teams of multiple unmanned aerial
vehicles will play an increasingly important role in civilian and military applications.
A multi-UAV system relies on communications to operate. Failure to communicate
remotely sensed mission data to the base may render the system ineffective, and the
inability to exchange command and control messages can lead to system failures.
This thesis presents a unique method to control communications through distributed
mission planning to engage under-utilized UAVs to serve as communication relays and
to ensure that the network supports mission tasks. The distributed algorithm uses
task assignment information, including task location and proposed execution time, to
predict the network topology and plan support using relays. By explicitly coupling
task assignment and relay creation processes the team is able to optimize the use of
agents to address the needs of dynamic complex missions.

The framework is designed to consider realistic network communication dynam-
ics including path loss, stochastic fading, and information routing. The planning
strategy is shown to ensure agents support both data-rate and interconnectivity bit-
error-rate requirements during task execution. In addition, a method is provided for
UAVs to estimate the network performance during times of uncertainty, adjust their
plans to acceptable levels of risk, and adapt the planning behavior to changes in the
communication environment. The system performance is verified through multiple
experiments conducted in simulation.

Finally, the work developed is implemented in outdoor flight testing with a team of
up to four UAVs to demonstrate real-time capability and robustness to imperfections
in the environment. The results validate the proposed framework, but highlight
some of the challenges these systems face when operating in outdoor uncontrolled
environments.

Thesis Supervisor: Jonathan P. How
Title: Richard C. Maclaurin Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Overview

Unmanned Air Vehicles (UAVs) have become central to a new era of aviation by pro-

viding game changing capabilities in recent wars, and showing tremendous promise in

numerous civilian applications including surveying, first response, and transportation,

to name a few. Current operational UAVs are typically remotely piloted by humans

with basic autonomy similar to modern manned aircraft autopilots. For instance, an

MQ-1 Predator on an Intelligence, Surveillance, and Reconnaissance (ISR) mission

is actively controlled by a pilot and payload operator from a remote ground control

station. RQ-11 Ravens used as small tactical assets are controlled either manually

or through user specified waypoints to accomplish a mission. Despite the success of

these systems, recent progress in unmanned vehicle (UV) control and autonomy is

challenging the current concept of remote piloting by allowing teams of multiple un-

manned agents to autonomously collaborate and improve system performance under

the supervision of fewer human operators [1-3].

The "real-world" situations which will utilize teams of unmanned systems will

involve executing complex missions where the number, status, and types of tasks,

as well as the environment vary dynamically. As with all management disciplines,

the multi-UV system must continuously assess its capabilities and properly allocate

resources to overcome changes and maximize performance. A fleet of multiple UAVs
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may be heterogeneous, where different systems have different capabilities in sensor

configurations or flight performance. The objective of dynamic mission planning is

to ensure that tasks are performed effectively by the right UAV, at the right place,
at the right time.

A significant challenge in this process involves maintaining proper communica-

tions to execute the mission. Controlling the network is often just as important as

controlling the vehicles themselves as inadequate communications can significantly

degrade team performance. There are several general architectures to deploy multi-

ple UAVs as a team. UAVs may be connected only to a central node, such as a human

operated control station, which receives information, computes a plan of action, and

sends instructions specific to each vehicle (centralized control). Alternatively, UAVs

inay be connected directly to each other, exchange information, and each formulate

their own plan without a designated leader (decentralized control) [4, 5]. Hybrid

centralized and decentralized solutions also exist, and UAVs may also cooperate with

other manned and unmanned space, air, ground, and sea agents over the network in

a joint effort [6-8]. In all cases, team coordination requires agents to exchange state

information, observations of the world, and control decisions such as task allocation

or motion planning. Furthermore, if the UAVs are being used to gather information,

as is often the case, the collected data may need to be communicated to a designated

point for analysis, possibly in real-time [9].
Because UAVs are highly mobile vehicles, information is most commonly ex-

changed across the network using wireless communication. Signals containing en-

coded messages travel between transmitting and receiving radio modules over wire-

less channels. The quality of the channel is fundamentally based on the strength of

the signal at the receiver compared to noise and interference in the environment, or

Signal to Noise Ratio (SNR) [10]. The quality of the link drives the probability that

information transmitted will successfully be received, and affects the rate at which

information can be exchanged over that channel.

Since multi-UAV team operations are still fairly new in concept, methods to con-

trol communications in these systems are actively evolving. The network itself can be
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controlled through its topology, which describes the set of interconnections between

nodes, and how strong those connections are. There is a large design trade-space in

communication systems engineering (coding, modulation, multi-access, antenna de-

sign, etc.) which can significantly impact the performance of the network [11] and

is beyond the scope of this thesis. Since wireless channels generally degrade with in-

creasing distance and obstacles in the line of sight, the most relevant control method

to multi-vehicle systems involves properly positioning agents to support the network.

Common ways to do this include planning the motion of agents subject to communi-

cation requirements [12-28] or deploying agents designated as mobile communication

relays [29-40]. The method described in this thesis differs from previous studies by

controlling the network through task allocation. The team cooperates through task

allocation to (1) ensure tasks undertaken are supported by the network, and (2) dy-

namically assign under-utilized agents to serve as communication relays. By explicitly

coupling the task assignment and relay planning processes, the team is able to better

optimize the use of agent resources to address current mission needs. This leads to im-

proved performance and added flexibility in real-time dynamic mission scenarios. The

proposed framework considers the uncertainties associated with wireless channels and

the dynamics of information routing protocols which affect network performance. In

addition, other relevant elements of multi-UAV cooperative control are also explored.

These include human supervisory control, design of a system robust to uncertainties

and failures, and general outdoor flight test operations with multi-UAV systems.

1.2 Motivation, Objectives, and Gaps

The primary objective in this thesis is to develop a multi-UAV dynamic mission plan-

ning framework which ensures communication requirements are supported during task

execution. The goals are illustrated through a motivating scenario representative of

envisioned multi-UAV operations (Fig. 1-1). The scenario consists of a complex mis-

sion where time-sensitive survey tasks dynamically appear during execution. Each

task requires a UAV to travel to the task location, and transmit remotely sensed data

15
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Figure 1-1: Cooperative aerial surveying mission with a multi-UAV team

in real-time to a base station for analysis. Every task completed provides mission re-

ward, which varies based on the importance of that task, how timely it was addressed,

and whether the communication network supported its data transmission to the base.

Traveling to the task however, incurs cost which counts against reward gained. The

objective is to properly coordinate a team of UAVs to achieve high mission perfor-

mance by maximizing reward and minimizing cost. UAVs can either execute mission

tasks or alternatively serve as communication relays to support the network.

The system is controlled in a distributed architecture, where each agent makes its

own decisions regarding task assignment. This architecture has several benefits for a

multi-agent system. First, it reduces the need to communicate an excessive amount of

state information to a ground control station for centralized control. Second, it miti-

gates latency effects by enabling agents to leverage their immediate local situational

awareness in planning the task assignment.

The objectives of this thesis are to design a system that addresses the motivating

mission scenario which:

1. Includes a distributed dynamic resource allocation planner which operates in

real-time (as opposed to preprocessed or offline) to effectively task agents during

the mission.

16



2. Ensures that the communication network supports data-rate requirements needed

to send remotely sensed information at each task to the base.

3. Ensures that the network supports inter-UAV message exchanges to allow UAVs

and the base to effectively coordinate plans.

4. Accounts for uncertainty in network performance and can adapt to changes in

the communication environment.

Recently, there has been considerable interest in methods to control network com-

munications for a team of mobile agents. Two types of problems are commonly stud-

ied. The first consists of controlling a multi-agent system to achieve a defined primary

mission objective while staying connected. Such objectives can include maximizing

area coverage, tracking a target, rendezvous in space, or formation and flocking con-

trol [13, 22, 23, 41]. Network performance depends on the quality of wireless links, the

number of interconnected agents, and the ability to route information. These factors

are affected by the network topology which can be controlled by properly positioning

agents. As such, the problem now becomes controlling team members to achieve the

mission objective while simultaneously maintaining a state of connectivity dictated

by system requirements. These requirements vary from maintaining connectivity with

a specific number of neighbors, to establishing routes with sufficient throughput to

send data to a base station. Different motion control strategies have been used which

include using potential fields [13] to attract vehicles to each other, reactive control to

stop agents from continuing into disconnected states [18, 24], or even adaptive control

by changing the motion planning behavior of agents based on sensed communication

measurements [28].

The second type of problem consists of controlling a set of agents designated as

communication relays to support an underlying network. Here, the explicit primary

mission objective is to support connectivity either by maximizing network perfor-

mance, or minimizing the use of relay resources. Such problems include controlling

a chain of relays between two mobile end nodes [32], or optimal relay deployment to

support a larger, typically fixed network [40]. Solutions to these problems commonly

17



use similar motion control strategies as described above, or turn to graph theoretic

and network optimization methods to solve a relay deployment plan. These formula-

tions are described in greater detail in Section 2.3.

One of the objectives in this thesis is to build on network communication control

strategies proposed in these studies, and include them in a framework which enables

distributed execution of complex missions in dynamic environments. Previous work

in the literature typically show these methods in simple or static mission scenarios

which do not evolve over the course of execution. Furthermore, agent roles are gen-

erally predefined and fixed during the mission. Several studies have investigated task

allocation for communication control, but the methods presented had centralized ar-

chitectures [42] and treated network requirements as a constraint to task allocation

rather than assigning agents cooperatively to achieve better results [18]. In addition,

many studies in the literature assume simplistic communication requirements and

deterministic environments which break down in real world operations. As such, the

framework in this thesis attempts to simultaneously satisfy several different commu-

nication requirements while considering realistic and uncertain networking dynamics.

Finally, there is a significant gap in this research field between work performed in

simulation or controlled lab environments and real-world operations. To address this,

the framework developed in this thesis are implemented in outdoor flight test exper-

iments with a team of three UAVs to show real-time operation in an uncontrolled

environment.

1.3 Challenges

1.3.1 Network Control Challenges

There are numerous and often competing challenges in controlling network commu-

nications in a multi-UAV system. The design must properly balance ensuring com-

munication requirements are met without over-constraining system operation. The

control of network communications follows the same feedback control principles used
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for many other types of systems. Network topology measurements are used as state

feedback. A model of the network dynamics is then used to select control inputs for

packet transmission and information routing. Modeling and accurately predicting the

performance of wireless channels is a significant challenge in this process. In general,

links degrade with increasing inter-node distance due to path loss. Signal shadowing

occurs due to obstacles in the environment such as buildings, mountains, or even the

platform vehicle itself. Furthermore, multipath replicas of the signal reflecting and

scattering off these obstacles constructively or destructively interfere with each other

at the receiver. Path loss, shadowing, and multipath fading effects are very detri-

mental and difficult to predict in congested operating environments [10, 43, 44]. For-

tunately, large and medium scale UAVs often operate in open skies, which mitigates

many of the detrimental effects. However, actively studied concepts of mini/micro-

UAV teams deployed below the tree line, inside buildings, or in urban settings will be

significantly affected by these dynamics [45]. Similarly, noise and interference from

other emitting sources in the environment can be difficult to predict and can change

both in time and by location [46]. In some contested environments, another source

may actively seek to interfere or "jam" communications to degrade the system per-

formance as a counter-measure [1]. For similar reasons, measurements of the signal

strength, while accurate, may also fluctuate significantly at time-scales of only tens

or hundredths of a second. The uncertainties in the model and the rapid variation in

the measurements pose a significant challenge in the network feedback control loop,

and lead to limited performance guarantees of the system [10].

Given the ability to control the network topology, the problem of efficiently rout-

ing information between nodes is a challenge in itself [10]. Different types of data have

different communication requirements, but in general the typical objective is to route

data to its destination with minimal delay, over links with sufficient data-rate capac-

ity and with minimal number of packets dropped due to error. A wireless network

typically operates on one or more communication channels in a specific range of the

electromagnetic spectrum. As such, nodes transmitting on the same or neighboring

channels interfere with each other, which generates a design trade [47] best illustrated
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through a simple example. Assume that a UAV needs to transmit time sensitive data

to a distant base. One option is to increase its transmitter power enough to send the

data directly to the base. However, this higher transmit power now interferes more

with other UAVs also trying to communicate. Furthermore, the long link may be

strong enough to reach the base under nominal conditions, but may not be robust to

channel fading. Another option then is for the UAV to transmit over a more robust

link and at a lower power to another less distant UAV, which can then relay the mes-

sage, possibly through additional hops, to the base. This reduces interference from

that UAV, but may cause delays in end-to-end delivery of the data, and cost overhead

in the network to establish the multi-hop route. The challenge of selecting the best

route and power settings is further exacerbated as the number of agents increases, as

wireless link qualities continuously fluctuate under fading, and because the network

topology is dynamic as agents move around to execute the mission [10]. This is es-

pecially relevant for multi-UAV systems, which can involve vehicles traveling rapidly

over large distances.

Multi-agent networks of all types face the communication control challenges de-

scribed above. The degree to which these challenges affect the system changes based

on the domain of operation. For instance, Unmanned Ground Vehicles (UGVs) typ-

ically operate in environments with obstacles to line-of-sight, resulting in channel

fading, but they have the ability to stop when a suitable location to transmit is en-

countered [48]. Autonomous Underwater Vehicles (AUVs) have limited underwater

communication capabilities, and may only be able to exchange coordinated control

information once every few hours upon surfacing [3]. Unattended Ground Sensors

(UGS) forming a fixed Wireless Sensor Network (WSN) may be less susceptible to

dynamic changes in topology, but need to be power conscious when transmitting

because their battery lifetime is limited [36]. There are a number of challenges es-

pecially relevant for UAVs. First, the size, weight, and power (SWaP) of the UAV

radio device can be limited by design constraints of the vehicle and compete with

requirements imposed by other on-board systems. SWaP constraints may also limit

on-board computing capability which can limit the complexity of the algorithm used
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to control communications. Next, unless a vertical flight aircraft is used, the antenna

position and orientation, which affects channel quality [49], is subject to vehicle dy-

namics. Finally, interestingly some light weight materials commonly used for UAVs,

such as carbon fiber, have conductive properties which shield radio signals and can

cause loss of link [50].

1.3.2 Decentralized Planning Challenges

The goal of the mission planning algorithm in this framework is to allocate the

right UAV to execute the right task at the right time. Because there are multiple

UAVs, multiple tasks, and many different orders in which to execute them, the inter-

dependencies result in a large number of possible assignments. This combinatorial

problem of finding the "optimal" assignment quickly becomes difficult to solve com-

putationally in a reasonable amount of time. The problem is further aggravated when

considering communication requirements. Each configuration of agents results in a

different network topology which may require different relay support configurations

to provide extended range or relieve bottlenecks. This creates inter-task coupling

and coupling with assigning agents to support the network. In addition to these

complications, the mission and environment vary dynamically, and it is therefore

paramount that the planner quickly compute an effective task assignment to adapt

to these changes.

Whether a decentralized algorithm is planning task assignment, vehicle motion, or

even information routing, the goal is for the decentralized agents to quickly converge

to a common solution to execute a coordinated plan. Even with proper system design

and implementation, the communication network will still have limitations which can

significantly degrade performance in convergence. Command delays, however short,

may cause a formation of UAVs to perform inefficiently or churn (effectively become

unstable), which can have disastrous effects such as vehicle collisions [51]. Delayed

and dropped messages sent to planning agents, whether centralized or decentralized,

can cause inconsistencies in situational awareness, and, as a result, flawed planning

[52]. Similarly, message delays in decentralized planning may prevent agents from
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reaching consensus on a plan [53]. These limitations motivate the need for robust

algorithms which converge as quickly as possible.

1.4 Thesis Contributions

This thesis presents five notable contributions to the multi-UAV cooperative control

body of knowledge:

1. A detailed survey of recent studies in network communication control in multi-

unmanned vehicle systems is included to provide a broad overview of different

techniques developed. The survey categorizes the different types of problems

under investigation and provides the relevant network communication technical

background needed to get acquainted with this relatively new field of study.

2. A framework is presented to enable multi-UAV teams to cooperatively meet

several communication constraints simultaneously including data-rate and mes-

saging bit-error-rate. This further includes methods to dynamically estimate

uncertain networking environments and adapt planning strategies to changes in

real-time. This portion of the work includes multiple Monte Carlo simulations

to characterize the cooperative behavior of the system.

3. A Linear Program (LP) formulated using network optimization theory is pre-

sented to compute optimal information routing in a wireless network given re-

alistic channel constraints. This routing algorithm, while unrealistic in its as-

sumptions, is useful to provide relevant upper-bound performance measures for

these types of studies without losing generality due to intricacies of individual

routing protocols.

4. In an effort to show real world relevance, a significant focus of this thesis in-

volves flight testing the algorithms developed. The distributed dynamic mission

planning framework to control network communications is implemented with a

team of three UAVs. The results of this unique system operating outdoors are

presented.
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5. A related research effort was conducted which involved implementing a decen-

tralized heterogeneous multi-UAV system operated under human supervisory

control. Four heterogeneous UAVs were controlled at the mission level by a sin-

gle human operator to execute a complex operationally relevant mission. The

lessons learned from this unique outdoor flight test campaign are included in

this thesis [54].

1.5 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 includes technical

background in wireless communications relevant to this thesis and provides a com-

prehensive survey of recently developed network communication control techniques

for multi-unmanned vehicle systems. Chapter 3 describes principles of decentralized

dynamic mission planning as well as algorithms developed in previous work which laid

the foundation for the framework presented in this thesis. Chapter 4 then describes

the developed framework and algorithms which enable agents to perform task allo-

cation considering realistic networking dynamics and allow them to adaptively plan

in uncertain communication environments. This chapter also includes the results

of several Monte Carlo simulation experiments used to characterize the system per-

formance. Chapter 5 presents the implementation, execution, and results of several

outdoor flight tests in which multi-UAV teams cooperatively plan using the devel-

oped algorithms. Finally Chapter 6 describes a complex heterogeneous decentralized

multi-UAV system under human supervision which was developed and flight-tested

outdoors. The lessons learned from these tests reinforce findings in the previous

chapters and are relevant to the overall multi-UAV cooperative control community.
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Chapter 2

Network Communication in

Multi-Unmanned Vehicle Systems

2.1 Network Communication Background

This section presents fundamental principles in wireless network communications that

are relevant to multi-UAV systems and serve as the foundation for communication

control elements built upon in Chapter 4.

2.1.1 System and Network Architectures

The design and control of the communication network depends on the system ar-

chitecture and data transfer requirements. For instance, traditional cellular phone

networks form a hub and spoke model between a fixed base station and mobile users

in its area. Telephone voice data requires minimal delay to be effective, but does

not need high data-rates and has some error tolerance. Conversely, data networks

for Internet downloads require high and bursty (sporadic) data-rates and dynamic

bandwidth allocation between a gateway, routers, and end users. These networks can

tolerate some delays, but should be relatively error free [11].

A multi-UAV system network typically needs to support two types of data. The

first type consists of command and control messages including state information
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(telemetry), observations of the world (e.g. estimated target location), and control

data (e.g. waypoints or task allocation). These messages have low bandwidth re-

quirements, but must be exchanged with minimal delay and error for effective team

coordination. Second, information gathered from sensors such as video, still images,

atmospheric samples, and other types of remote sensing data may also need to be

transmitted to designated processing, exploitation, and dissemination (PED) centers

[55]. Again, communication requirements depend on the data type, but live-video, for

instance, requires minimal delay, high data-rates, and has some fault tolerance [11].

Both data types are simultaneously considered in the multi-UAV control framework

proposed in this thesis (see Chapter 4).

A multi-UAV system architecture built on centralized control, where vehicles re-

main within transmission range of the command and control node, can operate using a

hub and spoke network model, similar to a cellular system (see Fig. 2-1(a)). Some im-

plementations can even extend command and control range by using a low data-rate

satellite communication system [8]. However, many of the applications envisioned

for multi-UAV teams require greater topology flexibility, with inter-node information

exchanges and relaying (see Fig. 2-1(b)). This architecture closely follows concepts

of ad-hoc networks which have received significant interest in many disciplines [43],
and is the architecture modeled in this thesis.

2.1.2 Wireless Channels

In wireless networks, data is exchanged over communication channels by sending

information encoded and modulated from a transmitter, over the air using a signal,

to a receiver which demodulates and decodes to process the data. The strength of

the received signal power compared to surrounding noise, or Signal to Noise Ratio

(SNR), -y, is a critical parameter in assessing the quality of the link. This value is
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Figure 2-1: Centralized and decentralized network architectures for multi-UV systems

commonly modeled as:

SNR:
gP

NOW

gK=dK

(2.1)

(2.2)

where P is the transmission power, N is the power spectral density of the environment

noise (assuming Additive White Gaussian Noise), and W is the bandwidth of the

signal. The channel gain g is generally modeled as Eq. (2.2) in its most simple form,

in which K is a gain based on equipment characteristics, d is the Euclidean distance

between the transmitter and receiver, and a is the path loss exponent which equals

2 in free space, and up to 6 in environments congested with obstacles [10, 43]. This

relationship represents the path loss dynamics experienced in wireless channels, in

which 'y decreases with increasing distance.

The next effect to consider is shadowing of the signal due to obstacles in the

line-of-sight. A practical way to model shadowing in uncertain environments is to

vary -y according to a lognormal distribution with variance a2 which depends on the

density of obstacles in the environment [10]. A convenient method to express this is
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to convert the channel gain in Eq. (2.2) into decibels (9dB), where shadowing now

becomes a Gaussian distributed random variable centered on the path loss gain:

9dB = KdB - l0'log ) 1(0, d B) -)

The distribution has been shown to be spatially correlated to Xc, the typical size of

obstacles in the area [10]. The spatial covariance A(x) in the distribution between

two points separated by distance x can be expressed as

A(x) = o- -x/Xc (2.4)

This expression can be used to predict the amount of time a moving vehicle may

undergo deep shadowing fades, or determine how to reposition the vehicle to exit a

shadowed area [28, 44].

Multipath fading, which occurs because of constructive and destructive interfer-

ence from scatterings and reflections of the signal by the obstacles, can be modeled

using a non-stationary random process centered on channel gain g subject to path loss

and shadowing in Eq. (2.3). Models using Rayleigh, Rician, or Nakagami distribu-

tions with a tunable fading parameter were demonstrated to follow trends in empirical

measurements of this dynamic [10, 44]. Multipath fading values can be added to the

9dB expression in Eq. (2.3), and then used to predict the overall SNR using Eq. (2.1).

This dynamic can vary significantly over small distances and is often modeled with-

out spatial correlation for simplicity [44]. Because shadowing and fading are additive

random variables in dB which are both present in channel measurements, this thesis

combines both properties into a single random variable without spatial correlation as

expressed in Eq. (2.3).

Many field experiments have studied the dynamics of link performance in greater

detail. Research in [46] used data collected from aerial links to measure an additional

temporal correlation factor in the above dynamics. A study in [49] observed that

link qualities vary depending on the relative orientations between the transmitter

and receiver, even when using omni-directional radio modules. Multiple antenna
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configurations were similarly used in [56, 57] to improve the overall reception for the

vehicle through diversity.

The relationships in Eq. ((2.1)-(2.4)) model the dynamics of a single wireless

channel. In a multi-user network, multiple agents simultaneously communicating on

the same or neighboring channels may interfere with each other. In this case, SNR is

often rewritten as the Signal to Interference and Noise Ratio (SINR) represented by

7ij for the channel from node i to j [58],

SINR: -. = 9ij Pi (2-5)
(NOW)i + j E(m,n)#(ij) 9mjPmn

Here, the interference caused by other nodes m transmitting to n adds to the noise at

receiver j in the denominator. While some of these effects can be mitigated through

signal code processing (k), a common method of deconfliction is to divide channel

usage by time (TDMA) where p = 1 [58].

The SNR in Eq. (2.1) or SINR in Eq. (2.5) are fundamental indicators of wireless

link performance and can be used to predict operationally relevant data transmission

metrics. First, the theoretical data-rate capacity u of the channel in bits/sec or bps

can be evaluated using Shannon's Equation:

u= Wij log 2 (1 + 7yj) (2.6)

While this value is an upper-bound, and actual data transmissions are often set to

significantly lower rates due to fading [10], it is a useful indicator in applications where

information throughput must be considered. Since remotely sensed data, such as live

video streaming require high data-rates (see Sect. 2.1.1), this metric is employed in

the framework presented in Chapter 4 to plan network support to route data to the

base as described in the motivating scenario.

Another important performance metric is the bit-error-rate (BER), or the prob-

ability an information bit will be dropped, which can require packet retransmissions

and inefficient data flow. BER decreases with increasing 7y, and the relationship
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depends on the specific modulation scheme, and can also be increased by reducing

transmission data rate. Equation (2.7) represents a general relationship for BER

where Q(z) is the probability that a zero mean normally distributed variable X with

variance 1 exceeds z [10]. Because command and control messages have low data-rate

requirements, but require high transmission precision, BER is adopted in this thesis

as a metric to plan inter-agent communication requirements.

BERij = Q (V27) (2.7)

where

Q(z) = p(X > z) = le2/2d

Many of the communication network control methods discussed in this chapter have

for objective to optimize or meet some threshold values for capacity or BER. The

models listed in this section highlight the challenges associated with predicting and

controlling wireless channel performance due to dynamic uncertainties in fading and

coupling with other agents using the network.

2.1.3 Network Topology and Consensus

Another relevant challenge, especially in ad-hoc networks, involves optimizing the net-

work topology by determining which nodes need to form interconnections to achieve

the desired connectivity for information flow. The network topology can be repre-

sented as a graph g = (V, E) with a set of n nodes V and edges . C V x V indicating

connectivity between nodes. The graph can be represented using an adjacency ma-

trix, A, with n x n elements aij, where aij = 1 if i can communicate with j, and

aij = 0 otherwise. Each row of the adjacency matrix can be read directly to identify

the set of neighbors for every agent. In some formulations aij = w, where w E [0, 1],

depending on the quality of the link and topology properties. The neighborhood of

agent i, Ni = {j E V : ai$ z 0}, is defined as the set of agents that agent i can com-

municate with directly [59]. For instance, in the network shown in Fig. 2-1 (b), the

neighborhood of UAV4 is N 4 = {2, 3, 5}. Theoretical formulations have established

30



bounds on how many agents each node should be connected to for the network to

become asymptotically disconnected or connected [47]. For this reason, many multi-

vehicle systems control the network so that each agent remains connected to a specific

number of neighbors [13, 23, 24, 37, 38, 41].

Analyzing the network topology provides useful insights into how information

propagates throughout the network and how the team of agents reaches consensus

on quantities of interest such as plans, parameters and situational awareness. The

stability and convergence properties of most consensus algorithms can be predicted

by analyzing the spectral properties of the network graph Laplacian, L, for a given

network structure [59]. The Laplacian is another related matrix representation of the

network topology, and is formulated as

L = D - A (2.8)

using the adjacency matrix A and the degree matrix, D = diag(di,..., d), with

elements di = EjEN, aij, representing the out-going connections of each agent (sum

over its neighbors). The maximum degree of the graph, A = maxi di, is useful in

determining spectral properties of the network Laplacian. In particular, all of the

eigenvalues of the Laplacian C in the complex plane are bounded by a closed disk of

radius A centered at A + Oj. Assuming the graph is undirected, where aij = aji, the

Laplacian L is symmetric, and therefore its eigenvalues lie on the real line within the

set [0, 2A]. These can be ordered sequentially as

0 = Ai < A2 < -. < An 2A. (2.9)

The first (smallest) eigenvalue of L is always zero (A = 0), since every row sum is

jli = 0, and is known as the trivial eigenvalue. The second eigenvalue, A2, is known

as the algebraic connectivity or Fiedler value of the graph, and is always positive for

strongly connected graphs where a single or multi-hop path exists from any agent

to every other agent. The algebraic connectivity A2 determines the speed of conver-

gence for most consensus algorithms, and, as such, many multi-vehicle applications
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attempt to maximize this value by controlling the network topology [13, 17, 32, 36]

(see Sect. 2.3.1 and 2.3.2). The last eigenvalue, A, is related to stability guarantees

for reaching an equilibrium in time-delayed networks, providing associated bounds on

the maximum allowable delays [59].

It must be noted that graph theoretic methods are simplifications of multi-UAV

network representations, since connectivity is often assumed to be binary and links are

considered active if agents are within a threshold distance of each other [43]. These

methods usually do not consider realistic wireless channel dynamics as described in the

previous subsection, or some of the complexities in information routing discussed next.

Nevertheless, they do provide helpful mathematical interpretations of the potential

performance of the network, and are useful in guiding the system design to achieve

configurations more suitable for information exchange [17].

2.1.4 Information Routing

Since envisioned multi-UAV team applications require similar flexibility to ad-hoc

wireless network architectures, network routing becomes a significant challenge that

must be considered in controlling the system. Given the wireless channel properties

and network topology, information must be routed along links with sufficient capaci-

ties, and arrive at its destination with minimum error (BER) and delay, as dictated

by data requirements. Routing is an active area of research in the wireless networking

community [60]. If the network involves multiple channels on different frequencies, as

is often the case, the problem extends to finding the optimal route and channel allo-

cation [61]. Strategies range from decentralized, highly adaptable methods, to more

centralized optimized schemes [10]. Understanding how a particular network system

routes information is necessary to adequately control communications in a team of

UAVs, as it may affect where agents are positioned to provide a suitable topology.

Several industry standards (802.11s, 802.15, 802.16) drive the design and operation

of mesh networking modules commonly used in ad-hoc networks [61, 62]. These

standards rely on decentralized routing mechanisms. A commonly used protocol is

Ad-hoc On-Demand Distance Vector (AODV) [63]. In AODV, a node which needs
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1. Initial request to send broadcast 2. Route discovery through rebroadcast 3. Shortest route retraced in unicast
(each agent stores shortest route originator)

Destination 0Destinatio

Sender Sender Sender

Figure 2-2: Ad-hoc On-Demand Distance Vector (AODV) routing protocol

to transmit broadcasts a "request to send" message which identifies the destination

node. Neighbors receive the message, compute a cost metric (discussed later), and

rebroadcast the message. The process continues, where cost is computed at every

hop, until the destination is reached. Each node stores its lowest cost originator.

Once a designated amount of time has elapsed, the destination node sends a unicast

response to its lowest cost originator, which similarly relays the response to backtrack

the lowest cost route. This process is illustrated in Fig. 2-2.

Other similar routing techniques include Dynamic Source Routing (DSR) [64],

Optimized Link State Routing (OLSR) [65], and B.A.T.M.A.N [66]. Different met-

rics are implemented depending on the objectives, which include lowest-hop count,

Expected Transmission Count (ETX in Eq. (2.10) [67, 68]), and Airtime metric (CAej

in Eq. (2.11) [69]). Here, Ppkt is the packet loss ratio (based on BER), 0 is overhead, Bt

is the test-frame length, and f is the information flow data-rate (based on capacity).

1
ETXij = (2.10)

1 - pkt

CAi = 0 + 1 (2.11)
f 1 -pkt

The protocols listed above are implemented in practice, for instance on Zigbee mod-

ules common in robotics research [70], because of their rapid response to changes in

wireless channel performance and topology. A significant drawback to them, how-

ever, is that information from different nodes is routed mostly independently of other

nodes, and tends to use the same high performance routes. This can lead to conges-

tion in high data-rate applications, and unfairness in node usage [67]. Researchers
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have proposed different network optimization schemes to address this, which invoke

conservation of information flow at each node and link utilization constraints. For

instance, authors in [71] optimize routing fairness by considering interference between

nodes and using electrical flow analysis. Similarly, convex optimization methods have

optimized routing through simultaneous link scheduling and transmitter power allo-

cation [72, 73]. While these schemes produce better routing solutions, they mostly

consider static networks, and would require frequent recomputation in a dynamic

environment to adapt to realistic changes in the topology [10].
The framework proposed in this thesis explores the use of two protocols. First,

AODV is used to model real-world implemented routing dynamics to show feasibility

of the proposed framework. Second, an optimized routing protocol (with fixed power

transmission) formulated as a Linear Program (LP) is used to provide performance

bounds of the general framework. This is to show performance bounds of the system

which can be easily adapted to use better protocols than AODV as they are developed

(see Sect. 4.3).

2.2 Why Communications Matter in a Team

This section highlights some of the operational problems which can arise in a multi-

vehicle system to stress the need for proper network control. For multi-UAV teams

to cooperatively execute a set of objectives, the communication network must ex-

change command and control messages, and when necessary, remotely sensed data.

The inability to communicate sensed data, such as live video, to the designated pro-

cessing centers may render the multi-UAV system ineffective for its mission [74]. Less

intuitively, failure to properly exchange command and control messages can lead to

dangerous system failures or unintended consequences. This is particularly true in

decentralized systems, where these messages enable vehicle control and team deci-

sion making. Inadequate team control can lead to formation instability where one or

multiple agents increasingly diverge from the desired behavior, and risk colliding or

separating from the team. Poor decision making may prevent the team from reaching
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consensus on a plan and remain idle without accomplishing anything, or worse, take

action on an undesirable plan leading to unwanted consequences.

2.2.1 Communications for Motion Control

The feedback control process uses sensed feedback information with a model of the

system dynamics to select a control input. If feedback information is delayed or

corrupted due to communication degradations, control decisions may be flawed. For

instance, in military MQ-1 Predator procedures, a pilot remotely controls the UAV

manually using live forward looking video on the nose of the aircraft as reference.

Delays in video feedback and control commands from link latencies have resulted

in pilot-induced-oscillations (PIO), an instability from poor feedback control which

resulted in numerous aircraft mishaps [75]. The same phenomenon can occur in

autonomously controlled cooperative teams of UAVs.

In general, Network Controlled Systems (NCS) require a proper balance of control

and feedback update rates: too slow can prevent the system from being controlled suf-

ficiently well, but too fast can excite system dynamics resulting in instabilities [51].

The stability of the system also depends on control implementation and feedback

filtering techniques, as described in detail in [76]. In "leader-follower" formations,

each vehicle selects control inputs based on the dynamics of the vehicle(s) directly

preceding it. Tracking errors can propagate down the formation, and under certain

conditions exceed control authority, leading to instability, even with no delay in in-

formation sharing [77]. In "string" formations, vehicles are slotted a separate cycle

time to communicate to neighbors which propagates an information delay down the

chain. If the objective is to base control inputs on the leader's dynamics, even in-

finitely small delay propagations can lead to string instabilities [78]. The formation

can, however, be stabilized given greater communication delays if the vehicles delay

their control response, and all apply inputs in near unison.

Similarly, in [51, 79] the effects of network delays on formation stability of a team

of decentralized UAVs is explored in indoor flight-testing. Vehicles can communicate

only with their neighbors, and are also slotted to broadcast knowledge of vehicle states
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at different times. The authors show that formation stability depends on the struc-

tures of the communication graph g, the formation control graph implementation,

communication cycle time, and control gains.

Communication delays can also be problematic in multi-UAV path planning for

collision avoidance. In Chapter 6, decentralized vehicles continuously replan the next

steps of their receding horizon paths (not in formation). UAVs deconflict by not

planning crossing paths to go around each other. Short network delays and rapidly

changing dynamics cause the vehicles to sometimes plan using outdated information.

On occasion, two UAVs approaching each other head-on may alternate in replan-

ning deconflicting routes left or right multiple times. This phenomenon, known as

"churning", is similar to the common awkward situation where two people mutually

block each other in a hallway or sidewalk, and causes delays, hazards, and system

performance degradation.

2.2.2 Communications for Decision Making

In order for multiple UAVs to cooperate in a mission, the team as a whole must

plan and make decisions collectively. Therefore the objective in cooperative deci-

sion making is for the networked team to reach an agreement on the tasks, plans,

and actions required to execute the mission. Different strategies exist to achieve

conflict-free plans, which require information exchange through the network. The

dynamics and uncertainties of the communication network have several implications

on decision making strategies: (1) bandwidth limitations can restrict the content and

frequency of planning messages, (2) even small network delays can cause agents to

plan asynchronously making consensus difficult to achieve, and (3) network dropouts

may prevent agents from participating in team decision making which can impact

plan execution.

Because network bandwidth is a limited resource, cooperative decision making

methods need to limit the content of planning messages, efficiently select which pieces

of information need to be shared with which members, and overall reach consensus

with as few messages as possible to mitigate delays and conflicts. If the system op-
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erates under centralized control, every UAV needs to communicate every required

bit of situational awareness information to a central leader (e.g. the base station).

This strategy minimizes the number of messages required to reach consensus, but

may require large amounts of low level planning data to be communicated to the

base, and can cause the system to be slow to react in a rapidly changing environment

due to network delays. To overcome this, decentralized planning strategies provide

individual agents with greater decision making capability, where information can be

shared more selectively, and agents can locally decide on courses of action based

on their own situational awareness, thus improving reaction time. Now, however,

consensus on plans must be explicitly reached by exchanging messages over the net-

work. A common distributed strategy, referred to as implicit coordination, consists of

agents independently solving the entire centralized planning problem for all agents,

and carrying out actions assigned to them. This requires agents to reach consensus

on individual situational awareness and planning objectives prior to planning [80-82],
which may require large exchanges of data across the network, especially if inconsis-

tencies exist [83]. Another popular planning method involves using distributed auction

algorithms, where agents individually plan for themselves and consensus is reached

through an auction mechanism [84-86].

Another challenging effect in distributed planning algorithms is their reliance on

synchronous message passing in order to guarantee convergence. This is difficult to

enforce in dynamic environments where the number of tasks or agents in the network

may be changing and the network is subjected to the uncertainties and dynamics

described in Sect. 2.1.2. When messages are asynchronous, time-delays are not usually

constant and messages may be received out of order, which impacts typical consensus

algorithms since old information may be processed as new, thus hindering consensus.

Robustness to these effects requires new consensus protocols or plan deconfliction

rules that can recognize and process out-of-order messages [53].
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2.3 Communication Network Control Methods

Two types of problems are commonly studied in the context of multi-unmanned

vehicle network communication control. The first consists of controlling a multi-agent

system to achieve a defined primary mission objective, and constraining agent motion

in order to maintain communication requirements. The second consists of controlling

a set of agents designated as communication relays to support an underlying network.

Here, their primary objective is to explicitly support the network. Both types of

problems are explored in this section, and are then compared to the method proposed

in this thesis which uses task assignment to control communications.

2.3.1 Control of Communications Through Motion Planning

A common method to control network communications in a team of multiple UAVs

is to plan the motion of the vehicles in such a way that the resulting topology sup-

ports the exchange of data required by the system. The general problem consists of

controlling a set of N team members to achieve the mission objective, and maintain

the required state of connectivity. For mathematical simplification, vehicles are of-

ten considered to be point nodes with first order dynamics, -i(t) = u(t), where u(t)

is the control input at time t, and xi(t) is the position of agent i. Some formula-

tions go further and extend control to second order dynamics as in Eq. (2.12) [13
where v is velocity, whereas others include greater detail in modeling actual vehicle

kinematics [34]

ii (t) = vi(t) and 6i (t) = u(t). (2.12)

Network communication requirements vary from maintaining connectivity with a spe-

cific number of neighbors, to establishing routes with sufficient throughput to send

data to a base station. One of the earliest studies where motion control was employed

to maintain connectivity consisted of a team of distributed robots with the task of

meeting at an undefined point (rendezvous problem). The strategy involved each

robot independently moving a step amount toward the geometric center of the area

outlined by its perceived neighbors [12]. This process was repeated iteratively until

38



robots converged on a central location. Since then, methods have expanded to in-

clude graph theoretic techniques, continuous control through potential fields, reactive

control strategies, and adaptive techniques based on learning from the environment.

Many of the efforts described here were focused on ground robotic systems, but are

relevant to aerial applications as well.

Sect. 2.1.3 introduced the network graph g and the algebraic connectivity metric

A2 , the second eigenvalue of the graph Laplacian L. Several studies have formulated

1 by assigning weights w E [0, 1] to each inter-agent link based on relative distance,

with bounds wij = 1 if di < do where the link is strong, and wij = 0 if dij > dmax

where the signal is considered too weak to connect [13]. Connectivity objectives

in multi-agent control problems often consist of meeting some threshold A2 or even

maximizing its value. Initially, discrete methods were proposed to maximize A2 using

iterative control inputs for each agent using greedy algorithms in both centralized [14]

and decentralized frameworks [15]. These ensure that the team drives to connected

configurations throughout the mission. Continuous control methods to maximize A2

using properties of 1 were then formulated in [16] using potential fields in a central-

ized framework. Potential fields, which are commonly used in multi-vehicle control

applications, are virtual energy fields that lead to attractive or repelling control inputs

formulated as:

u2 (t) = -kVii - ] Vi~i (2.13)

1 1
oi = + (2.14)

Flx| 2  dmax -||i

One benefit of this formulation is that it allows multiple, sometimes competing, con-

trol objectives to be considered. Here Oij is designed according to the desired connec-

tivity dynamics between i and j, as illustrated by the simple function in Eq. (2.14)

which keeps the nodes within communication range and prevents them from collid-

ing [17]. 5 can be any other steering function, used for example for obstacle avoid-

ance or target tracking [18]. A decentralized version of this framework was proposed

in [19] using a power iteration algorithm for each agent to compute its local A2 using
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information from its neighbors, and then estimate the global A2 to generate poten-

tial fields. Potential fields have also been used to control multi-vehicle systems for

other connectivity requirements, using both graph theoretic formulations and consid-

ering realistic channel dynamics and measurements. For instance [20] and [21] used

bounded forces to minimize distance with connected neighbors for a team to ren-

dezvous or assemble in a formation. One study considered Rician fading in wireless

links to control multiple robots to track a target and maintain connectivity with the

base [22]. A primal-dual optimization algorithm was used to control agents through a

deployment objective while subjected to stochastic fading effects [87]. Finally, in [41]

potential fields controlled a team of eight UAVs to form a moving aerial communica-

tion network. Forces were created based on the deployment objective of maximizing

area coverage over a moving point and multiple connectivity requirements: maintain

connection with a designated number of neighbors with prescribed SNR values over

fading links.

Instead of controlling motion for connectivity continuously, another strategy is to

allow agents to navigate freely according to mission objectives and take action only

when connectivity is threatened. One method involves each robot iteratively planning

how far it can travel at every step before losing connectivity with a required minimum

number of neighbors [23]. Other studies were motivated by the difficulty of predicting

wireless link performance with enough accuracy to make control decisions in a realistic

environment. In these cases, each robot travels according to deployment objectives,

using potential fields or random motion until the measured signal strength with a set

number k of neighbors drops below a designated threshold. At this point, the robot

is commanded to halt [24] or even backtrack toward its nearest neighbor [18], and

can only resume deployment objectives if communications requirements are again

met. In these strategies, the required number of neighbors k is part of the design

trade. A higher value increases network robustness to unpredicted disconnects, but

constrains the configuration of agents to be tighter and therefore covers less surface

area [24]. When warranted, the team may benefit from two agents disconnecting to

add flexibility to the formation (so long as the graph ! does not disconnect). For
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such cases, the study in [88] employs a market based algorithm for agents to come

to consensus on which link to remove to meet formation objectives. In this process,

robots place bids on the link most at risk with bid value based on their number

of neighbors. The bids are propagated through the network, and the highest bid

link is allowed to be deleted. The framework only allows one link to be deleted at

a time to ensure the graph stays connected, and the approach introduces methods

to handle asynchronous planning issues (see Sect. 2.2.2). Finally, certain scenarios

involve agents taking on tasks beyond the reach of communications, where the only

option is to temporarily disconnect the network. The authors in [25] therefore define

an implicit coordination approach which is used to find optimal agent paths to execute

the mission, but reach a point of full connectivity at some specific time interval.

Many recent robotic efforts have turned to adaptive and learning techniques to

adjust their behavior and overcome unpredicted changes in the environment [3]. Pre-

dicting actual wireless channel performance in dynamic environments is difficult. As

such, several approaches have used measurements in the field to adapt the motion

planning strategy. One basic approach is to take measurements of the environment

a priori and construct a "radio-map" used to plan constraints on relative node posi-

tions to stay connected [18]. However, it may not be practical to perform this type

of pre-mission survey as access to the location may be denied, and the environment

may change over time due to different obstacles or other emitting devices. For this

reason, several studies propose probabilistic methods based on the spatial correlation

of channel fading to select locations to transmit. For instance, in [26] a single mobile

agent tracks a moving target and must send collected data to a fixed base. Current

measures of the SNR are used with link dynamics previously described to adaptively

schedule stops where the channel is predicted to be strong to transmit information

rather than waste energy transmitting during fades. Bounds on the dynamics are de-

rived to ensure system stability and prevent the agent from falling behind the target.

In a similar scenario, a single agent must repeatedly visit multiple areas and send

information to the base. Here the planner sequentially solves for the optimal visit

path using a Mixed-Integer Linear Program (MILP), and budgets the power needed
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to transmit given the environment and path using a nonlinear program [27] for energy

conservation. Finally in [28], a team of multiple UAVs learn link dynamics online to

plan motion cooperatively and track a target. The measured SNR is used to learn

the communication environment and adapt the planning behavior. Estimation of the

communication environment inspired by this last method is implemented in this the-

sis and used to adapt task allocation planning behaviors to changing communication

environments.

Motion planning to control network communications is a relatively new research

topic in robotics, and as such there have only been a few implementations of these

principles using actual vehicles. Most of the studies described previously in this

section were conducted in simulation. However, the study in [18] involves an outdoor

experiment with four UGVs relaying sensed information back to the base (similar to

the motivating scenario in this thesis). The control strategy involves both potential

fields and reactive control to prevent disconnects, and the study overall highlights

that signal strengths and throughputs vary significantly during the mission due to

fading and multi-user interference.

2.3.2 Control of Communications Using Mobile Relays

Due to of their rapid and flexible deployment capabilities, persistence, ability to fly

above obstacles, and relative low cost, UAVs have generated significant interest to

serve as communication relays. Relays can be used to extend the range of a network,

add capacity for increased throughput, and increase the robustness of the system to

failure. Large scale military UAVs are already delivering wide area communication

connectivity to ground troops in mountainous areas [89], and similar smaller tactical

concepts have been proposed for disaster area recovery [90], wild land fire fighting [91],
and to connect scattered wireless sensors and mobile ad-hoc networks [29]. Many of

the communication control methods described in the previous section apply to relay

deployment and control, but in this case the underlying network to be supported

may not be controllable and can be dynamic. Control objectives typically involve

deploying relay agents to optimized locations to support data exchange requirements
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at the lowest resource cost possible. Two classes of problems are provided in this

section. First, methods are investigated to optimize the control of a chain of relays

linking two mobile end nodes. Second, the problem of optimal relay deployment

to support a larger, typically fixed network, is considered. In all cases, controlling

the communication network involves considering the dynamics of wireless links, the

topology, and information routing.

Several applications have called for a chain of relay nodes to extend communi-

cations through multiple hops from one end of the chain to the other. In this case,

once the chain forms, the relationship between pairs of nodes remains constant (same

two neighbors), and information routing is known since it simply follows the nodes

in the chain by default. A common application of this concept involves maintain-

ing communications between a moving agent and its base station. This problem has

been examined in complex obstructed environments where the objective is to opti-

mally navigate and position N relays to establish multi-hop line-of-sight with the

base. Optimal deployment paths can be generated in a centralized framework using a

Mixed-Integer Linear Program [30] or a Gauss pseudospectral solver initialized using

a Rapidly-Exploring Random Tree (RRT) solution [31]. A suboptimal decentralized

receding horizon planner can also be used to provide faster real-time control to repeat-

edly "redeploy" relays as the mission progresses [31]. In a similar problem, a chain

of UGV relays must connect a mobile node to a base and optimize their formation

to minimize the end-to-end bit-error-rate (BER) (see Eq. (2.7)). Here, wireless links

are subjected to path loss, shadowing, and multipath fading [32, 33]. The resulting

optimization can be written as:

N

max j(x) Z ln(1 - BERi_,,i) (2.15)
i=2

which is reformulated as a set of decentralized potential fields used for vehicle control

as in Eq. (2.14). In [32], the formulation does not assume deterministic link dynamics,

since actual channel qualities can vary significantly with predicted models. It instead

employs a probabilistic framework with least squares regression to estimate the value

43



of the path loss exponent a in Eq. (2.2) and shadowing variance and correlation

from Eq. (2.4) from several SNR measurements. These estimates are constantly

updated to plan motion in order to optimize the chain BER. Since multipath fading

is assumed to be spatially uncorrelated and varies quickly over small distances, once

the relay reaches its destination it "jitters" around its position to further reduce

the quantity BERi-,i. With a slight modification to the problem formulation, the

objective is changed to provide a chain configuration which meets a threshold end-to-

end BER but minimizes relay energy costs. This allows motion cost and transmission

costs (through variable power transmission) to be traded-off in the optimization, with

tunable weights associated with each to favor one over the other [32].

The authors in [34, 35] tackle the problem of forming a chain of relays using ac-

tual fixed wing UAVs flying over a mountainous terrain. In this study the objective

is to maximize the end-to-end capacity u of the chain found from Eq. (2.6), or in

other words maximize the minimum link capacity in the chain. Two complicating

but realistic factors in this work include: (1) fixed wing aircraft have velocity limits

0 < Vmin < V < Vmax and must loiter in orbits also constrained by q4max bank angle,

and (2) the authors chose to control the chain based on SNR signal strength mea-

surements only instead of relying on models considered too inaccurate for a dynamic

environment. An extremal seeking algorithm is implemented to hone each UAV on

the heading which maximizes -y with its neighbors and a Lyapunov Guidance Vector

Field (LGVF) [34] drives the UAVs to an orbital pattern about a center point. Flight

test results demonstrate the ability to control an aircraft to climb the SNR gradient

and improve capacity using signal strength measurements only. However, RF fluctu-

ations encountered are detrimental to the chaining algorithm and at times cause the

measured -y to actually increase while flying away from a neighbor.

In other types of applications, UAVs (or other mobile agents) serving as relays can

be deployed to provide general connectivity support to an existing network consisting

of many nodes. The problem here is to determine how best to deploy each relay,

and which nodes they should form links with to satisfy the data requirements of the

network. Objectives include maximizing the performance of the supported network,
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or minimizing the number of relays deployed to meet communication thresholds.

These problems are often examined in the context of UAVs relaying information from

poorly connected ground nodes, or for wireless sensor network (WSN) nodes with

connectivity and energy limitations sending data to a base station.

Network graph theoretic processes described in Sect. 2.1.3 have also been explored

in these problems. One example consists of maximizing the lifetime of a fixed WSN

collecting data which depletes its battery over time as the energy is used to trans-

mit information [36]. Here K relays are available to be deployed and redeployed to

support the network. The graph Laplacian C in Eq. (2.8) is composed of weights

wi in its adjacency matrix A based on the transmitter power needed to maintain

a threshold BER across the link. This formulation assumes all starting nodes have

equal battery life, and therefore the algebraic connectivity of the graph A2 can be

used as a metric of remaining network life. A centralized Semi-Definite-Programming

(SDP) algorithm optimizes the placement of the K relays to maximize A2 over the

network. It discretizes the area into cells, finds the best combination of placements

for the K relays at the center of these cells, and then rediscretizes selected cells to

refine relay placement over several iterations.

In a similar problem, WSN nodes compute their k-redundancy in a distributed

framework using neighbor discovery messages [37]. The k ed is the number of links

that need to be removed to disconnect any two neighbors of i, and is a measure of

the importance of that node in global connectivity. Here if any ked falls below some

threshold because of a change in topology, the network requests a relay which is posi-

tioned using several different optimization schemes to meet connectivity requirements.

Finally, the study in [38] discusses how the deployment strategy changes for one UAV

relay to support an ad-hoc network according to different connectivity objectives.

Optimization methods are presented to maximize (1) global and (2) worst case con-

nectivity based on properties of the Minimum Spanning Tree (MST) graph [92], or

(3) minimize network bisection probability and (4) maximize the Fiedler value using

graph Laplacian C. Each objective results in a different UAV relay deployment plan.

In the previous three examples, the deployed relays essentially became nodes in
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the supported ad-hoc network, thus changing the topology and information routing

options. However, another strategy is to assume that relays are similar to gateways,

and have a separate strong communication network to connect to other relays and

the rest of the world. These can then be used as a communication backbone to sup-

port a disconnected ad-hoc network (as illustrated with the "UAV Comm. Relay" in

Fig. 1-1). The network then takes on a form more consistent with a cellular network

architecture, where relays serve as mobile base stations and connect to nodes in their

area of responsibility. This is how current military large-scale UAV communication

relays operate [89]. Mobile Backbone Network (MBN) optimization seeks to simulta-

neously position and assign K MBN relays over a network in order to: (1) maximize

the minimum throughput in the network [39], (2) maximize the aggregate network

throughput [39], (3) maximize the number of nodes meeting a threshold through-

put [40], and (4) optimize relay deployment and node positioning (if those nodes

can be controlled) for objective (3) [40]. In objectives (3) and (4), the optimization

is solved using a Mixed-Integer Linear Program (MILP) for a network optimization

formulation [92]. Similar to other previous studies, the optimal solver scales poorly

with increasing number of nodes and relays, and a suboptimal greedy solution based

on solving the Max-Flow problem [92] is provided in parallel for fast and provably

good solutions.

2.3.3 Controlling Communications Through Task Allocation

A similar, yet distinct method to control network communications in a team of UAVs

is through task allocation, and is the method proposed in this thesis. In this problem,

the system consists of a multi-agent team with a set of objectives and similar to mo-

tion planning problems discussed in Sect. 2.3.1, connectivity is an implicitly derived

requirement. Past frameworks have considered communication constraints in task al-

location to mitigate the risk of network disconnects [18]. As demonstrated in [93] and

shown in Chapter 5, this type of strategy remains conservative, and performance can

be increased if agents coordinate explicitly to support communication requirements.

Authors in [42] discuss a task allocation based network control mechanism. A
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centralized task allocation planner initializes by dividing the team of robots into sub-

set clusters. Each cluster is assigned a common task to accomplish. Then, motion

planning potential fields similar to Eq. (2.14) are used to attract the cluster to the

goal, to the base, and to maintain connectivity within the cluster while accomplishing

the task. If the cluster cannot achieve the goal and stay connected, it is merged with

a neighboring cluster to expand the multi-hop capability. Part of this work is demon-

strated in a field experiment with a team of UGVs, and results (while successful)

again highlight the difficulty in predicting link quality due to rapid variations and

uncertainty in the dynamics.

The framework proposed in this thesis is novel compared to these techniques be-

cause it dynamically assigns individual agents to serve as communication relays in

optimized locations using distributed control. By explicitly coupling the task assign-

ment and relay planning processes, the team is able to better optimize the use of agent

resources to address current mission needs. This leads to improved performance and

added flexibility in real-time dynamic mission scenarios. Section 3.3 and Chapter 4

address this in greater detail.

2.4 Summary

This thesis chapter presented a broad survey of research studies investigating net-

work communication constraints and control in a team of multiple unmanned vehi-

cles. Technical background was provided in network architecture, wireless channel

modeling, topology theory, and information routing mechanisms which form the ba-

sis of most of the work in this field. The consequences of degraded communications

in a multi-agent system were highlighted through examples covering systems with

ineffective return of remotely sensed data, complications in path planning and for-

mation control, and challenges in cooperative mission planning. Several strategies to

control mobile agents in order to support communications were investigated in this

chapter, including motion planning and optimal deployment of a pre-designated set

of mobile communication relays. The framework developed in this thesis is unique
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from these studies, as it dynamically optimizes task assignment, agents roles, and

network support through relays. The communication models employed in it used are

realistic, and founded on the principles listed at the beginning of this chapter.
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Chapter 3

Distributed Dynamic Planning

Algorithm

3.1 Task Allocation Planning Strategies

The vision to employ teams of robotic agents, such as UAVs or UGVs, autonomously

in complex missions [1]. These operations require different agents in the team to have

different roles and responsibilities during execution, much like modern day sports

teams. Ensuring proper spatial and temporal coordination between them is critical.

Assigning tasks to agents involves solving a complex combinatorial decision prob-

lem [94], with constraints that may take several forms including [5, 52, 95]:

e Mission tasks may be in different locations

e Tasks can require agents to have specific capabilities (such as a specific sensor)

which only certain agents in the heterogeneous team possess

e Tasks may require coordination between several agents

The task allocation problem involves planning the resource allocation in a team of

Na unmanned systems, to accomplish a set of Nt tasks. The objective of the planner

is to maximize reward for the mission by assigning the right asset, to the right task,

at the right time subject to mission constraints. The task allocation in this work can
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be formulated as the following optimization problem:

Na Nt

argmax cij(pi(xi'ri (3.1)

Nt

s. t. zxij Li, Vi E I
j=1

Na

ZXi<1, Vj E
i=1

xi E {0,1}, rij E {R+ U 0}, V(i,j) E I X

where xi= 1 if agent i is assigned to task j, and xi A {xi,..., XiNt} is a vector

of assignments for agent i, whose jth element is xij. The index sets for the agents

and tasks are defined as I A {1,...,Na} and j A {1,..., N} respectively. The

variable-length vector pi A {pii,. - I } represents the path for agent i, an ordered

sequence of tasks with elements pi, E J for n = {1, ... , pIl}, representing the order

in which the tasks will be executed. The vector of times, ri A {Ti, ... , TiIi 1 }, denotes

the times at which agent i proposes to execute each task. The length of the path is

denoted by |pi| and may be no longer than Li, a maximum allowable task limit for

each agent. The objective of the task assignment problem in Eq. (3.1) is to maximize

the sum of the reward values for each agent i. In this formulation, the score cij

that agent i obtains by performing task j is defined as a function of the value of the

task, the cost of execution (e.g. fuel consumed), and the time re at which the agent

executes the task compared to the optimal task execution time [96].

The numerous possible combinations of agent to task assignments and the inher-

ent inter-dependencies in score from executing tasks in different orders makes the

task assignment problem very difficult to solve for Li > 1 (NP-hard). A variety of

optimization algorithms and frameworks have been developed to solve this problem

for a team of unmanned vehicles [97]. Centralized planners solving a Constraint Sat-

isfaction Problem (CSP) or using Dynamic Programming can provide the optimal

task assignment solution, but usually do so in an unreasonable amount of time given

the dynamic nature of these complex missions [98]. Approximate solvers are avail-
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able for this purpose and can be quite fast. For instance, in [99], a process algebra

framework is used to model interactions between tasks and UAV agents to optimize

task allocation by using an efficient state-space search algorithm. Authors in [100]

employ evolutionary optimization and the Genetic Algorithm to rapidly steer a search

of possible assignments to a good solution for large teams of UAVs involved in ISR

operations. The problem formulation can also be relaxed and then solved using a

Mixed-Integer-Linear-Programming approach to find an optimized task allocation.

This type of strategy was used in [101] to generate assignments for heterogeneous

UAVs to track multiple ground targets collaboratively. While these centralized plan-

ners generate good solutions, they require a central node to have full situational

awareness of all agents in the team.

Instead, distributed frameworks can be implemented, where each agent makes

planning decisions based on its local situational awareness. The distributed task

planning architecture has several benefits for a multi-agent system. First, it reduces

the need to communicate an excessive amount of state information to a ground con-

trol station for centralized control. Second, it mitigates latency effects by enabling

agents to leverage their immediate local situational awareness in planning the task as-

signment. The challenge is finding effective task allocation solutions, and also making

sure the distributed team is on the same page with respect to the plan. One method

to do this involves an initial centralized space partitioning to then allow agents to

make decentralized decisions in their areas of responsibility [102]. Another way is

to use implicit coordination where agents reach consensus on the global situational

awareness of the team, and then each solve the same problem using the central-

ized techniques listed above [80-82]. Unfortunately, as mentioned in Sect. 2.2.2,

this strategy can involve significant communication overhead costs which is not ideal

given the problem statement for this work. As such, popular methods to solve the

task assignment problem have turned to decentralized auction algorithms which pro-

vide efficient but also sub-optimal solutions. This thesis employs one such algorithm

named the Consensus-Based Bundle Algorithm (CBBA) which is described in the

next section [5, 103]. Other methods that have received significant recent interest are

51



Figure 3-1: Consensus Based Bundle Algorithm

solutions based on Markov Decision Processes (MDP) which describe the environment

in terms of states S, actions A, probability of state transition 'P, reward function R,

and time steps T [98]. The objective in MDPs is to find the policy that maximizes

reward for each state at each time given the possible state-action pairs. MDPs can

be reformulated in a decentralized architecture, or Decentralized MDPs (Dec-MDP)

to solve task assignment problems in multi-agent systems [98].

3.2 Consensus Based Bundle Algorithm

As described in the previous section, the inter-dependencies in number of possible

assignments make Eq. (3.1) combinatorial and very difficult to solve if planning for

more than 1 task for each agent. This thesis therefore turns to the Consensus-Based

Bundle Algorithm (CBBA), a decentralized market based task allocation protocol

that provides provably good solutions for heterogeneous decentralized multi-task as-

signment functions. Each CBBA iteration is composed of two phases illustrated in

Fig. 3-1. First, in the bundle building phase each agent greedily bids on an ordered

bundle of tasks based on its capabilities and its location with respect to the task.

Second, in the consensus phase, agent bid information is shared, and conflicts in task

assignment are identified and resolved. The algorithm iterates until it converges on

a conflict-free plan [5].

During the first phase of the algorithm, agents place bids described by si =

(i, j, cij), where i, j, and cij respectively represent the agent index, the task index,
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and the proposed score. Each agent i adds its top bids to a bundle bi = {si,, . . ., sij},

where the length of bi represents the planning horizon established for i. In the bundle

construction process, each agent compares its ability to do a task with its local bid

space A = {Sij, ... SiN N which contains i's understanding of the current winning

bids for each task from the previous CBBA iteration. It computes this ability cij

using an internal score function. In this thesis, the score function consists of the task

value discounted for every unit of time past its encoded optimal starting time, minus

cost incurred for travel to the task. Each task has a time window of validity, and

bids for execution outside that window are not allowed. Each agent then compares

its ordered scores with Ai, selects the first score which out-bids a current winner as

its next bid, and adds this bid sij to the end of its bundle [5].

One important requirement for the algorithm to converge is that bids need to

satisfy Diminishing Marginal Gains (DMG). The DMG condition essentially means

that no bid can be made that would increase the score cij for a task. In other words

agents cannot place subsequently higher bids on tasks as a result of their other bids.

As such, the bid value of each new bid actually posted in the bundle is limited to the

minimum score from previously posted bids [104]. The DMG condition stems from a

well studied property in greedy algorithms called submodularity, and if adhered to,

ensures CBBA will converge to a conflict-free solution where each task is assigned to

only one agent.

Each agent then substitutes their new bids in bid-space Aj. Once agents are

done building their bundles, they each share their A with the team synchronously,

and pass new information from other agents in a decision table that consolidates

new bids and resolves conflicts (see [5] for more details). The algorithm iterates

until consensus is reached twice on an unchanged set of proposed assignments, which

indicates convergence. At this point the task assignment terminates, and agents carry

out tasks in their bundle as planned.

The CBBA algorithm runs in polynomial time, and has demonstrated good scal-

ability with increasing numbers of agents and tasks. It has been demonstrated in

numerous applications with teams of heterogeneous unmanned systems, has been ex-
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tended to account for asynchronous messaging, and has been modified using hierarchal

team structures to control large numbers of UAVs [5, 105-108].

3.3 CBBA with Relays

3.3.1 Motivation for the Algorithm

A complicating factor not considered in the CBBA algorithm is that some operational

domains require that the team satisfy system communication requirements during

mission execution. As described in Sect. 2.2, a multi-unmanned vehicle system relies

on communications to operate. The inability to communicate sensor data to a base

station in real time (e.g. live video) may render the multi-agent system ineffective [74].
Failure to properly exchange command and control messages can lead to potentially

dangerous system failures. Poor communication may also prevent the team from

reaching agreement on a plan, thus remaining idle, or sometimes worse, taking action

on an incomplete plan leading to unwanted consequences [52, 109]. UAVs in a team

must therefore be able to communicate to the base and to each other.

The motivating scenario for this thesis in Sect. 1.2, illustrates the need to con-

sider communications in the task assignment. Vehicles are tasked to select locations

to stream live video back to the base. For simplicity, it is assumed (in this section

only) that vehicles have a fixed communication radius, and cannot successfully trans-

mit data if disconnected from the base. The left box in Fig. 3-2 shows the initial

environment in an example of this scenario with 5 UAVs, a base station, and 5 possi-

ble tasks with associated values. Then Box A in Fig. 3-2 shows the possible outcome

of a task assignment using CBBA. Because of the scoring function described in 3.2,
agents greedily bid and get assigned high value tasks. In this case, these are farther

from the base station, and the assignment results in a disconnected network. Here

UAVs 3 and 4 are disconnected, cannot stream data back to the base, and therefore

receive no reward for their tasks despite incurring the fuel costs to execute them.

To prevent these unwanted disconnects, communication constraints can be explic-
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Initial Environment A - Baseline CBBA B - CBBA with Network C - CBBA with Comm. Relays
Prediction only

Figure 3-2: Different task allocation strategies for network support

itly considered in the planning process. Task allocation information, such as task

locations and planned execution times, can be leveraged by the agents to predict the

network topology at execution and identify communication constraint violations. For

example, in Box B of Fig. 3-2 agents predict the network topology for the proposed

assignment and drop tasks that cause disconnects (UAV 3 drops its task, and UAV

4 out-bids 5 in a nearby task). This approach guarantees network connectivity, but

is conservative because agents tend to only accomplish tasks in the local vicinity. In

this case UAVs 3 and 5 are unused. An improved solution is to use some agents

as communication relays, where data can be transmitted back to the base station

through designated neighboring agents. This requires explicit cooperation between

agents to determine where and when relay tasks are required, which agents should

execute these relay tasks, and which agents can execute the main mission tasks. Fig-

ure 3-2 Box C illustrates this cooperative scenario, where agents predict the network,

detect the potential disconnects, create relay tasks to fix them, and propose these

relay tasks to the rest of the team. Here, UAV 2 changes its assignment to service a

relay task proposed by UAV 3. This results in a team capability to accomplish higher

value tasks, increasing the overall mission score [96].

Designing a framework to enable this type of task assignment mission planning

is non-trivial. As agents travel around the operating area, links are created and de-

stroyed. Predicting the topology over time can be computationally intensive since the

network is dynamic. Planning solutions which meet communication constraints are

55

30 30

20

10 10

Agents 30 30 30 30 30 30
Disconnected ! 0

Relay , j
20 20 20

10 10 10 1 10

0



highly inter-dependent because task assignments, relay task creations, and network

connectivity predictions are closely coupled spatially and temporally. Even small

perturbations in the agent assignments can alter the network topology and lead to

constraint violations. The CBBA with Communication Relays algorithm, first intro-

duced in [93], was built around the CBBA task assignment routing to specifically

address communication constraints. This framework differs from previous commu-

nication control methods for multi-agent systems described in Sect. 2.3 by simul-

taneously optimizing relay and task assignments, instead of preallocating agents to

specific roles and then solving decoupled task assignment and network connectivity

planning problems. By explicitly coupling the task allocation with relay creation, the

team is better able to optimize the use of agent resources given the current mission

needs, leading to improved performance and added flexibility in real-time dynamic

mission scenarios. The framework described in this section was developed in previous

work [93, 96], but is introduced here in detail because it serves as the foundation for

Chapters 4 and 5.

3.3.2 Algorithm Mechanics

The purpose of the CBBA with Relays algorithm is to efficiently allocate agents to

tasks while ensuring that the network remains connected to a predefined base station

during task execution. The algorithm achieves connectivity by leveraging the task

allocation capabilities of CBBA with an outer loop that enforces these connectivity

constraints. CBBA solves the allocation problem by creating assignments A of agent-

task pairs over the set of initial tasks 7i available to agent i for bidding. However, the

resulting assignment may lead to a vehicle configuration which causes the network

topology to disconnect. For this reason, agents perform a network prediction. Using

the vector of predicted times each assigned task will be executed obtained by CBBA,

along with the known position of each task, agents are able to predict the location

of other active agents at the start of each task. As such, agents can predict whether

starting a new task will cause a disconnect, and therefore plan how to stay connected.

Two strategies are available to prevent network disconnect: (1) simply drop tasks
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(a) CBBA with Network Prediction (b) CBBA with Relays

Figure 3-3: CBBA with Communication Relays Algorithm Flow [93]

which cause network disconnects (named CBBA with Network Prediction - Box B in

Fig. 3-2), or (2) request communication relays to support disconnected tasks (CBBA

with Relays - Box C in Fig. 3-2). In both cases the disconnected assignment is

identified, and with CBBA with Relays new relay tasks 7 are created. The next

CBBA iteration is then initiated with these considerations, and again creates a new

task assignment which may also lead to a disconnect. Several mechanisms described

later in this section are put in place to ensure that over multiple iterations, this

planning algorithm converges to a conflict free plan fully supported by the network.

Figure 3-3 (a) and (b) respectively represent the planning loop for the conservative

CBBA with Network Prediction and cooperative CBBA with Relays.

Network predictions are performed for the predicted start times of each task in

agent bundles. The agent owning the task for which the network is predicted is

responsible for this calculation. If the CBBA with Relays planning strategy is used,

that agent determines where and when relays must be created to support that network

configuration. For each relay task r created, the algorithm tracks which tasks depend
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on it, as well as the dependency of this relay on other created relays. If in the

following CBBA iteration a relay task is not assigned, the network will likely not

be supported for tasks and other relays dependent on it. In this case, the current

winning agent i may remove the task in violation from its assignment. The decision

to drop a task is performed stochastically, which breaks the symmetry in a set of

conflicting assignments. This mitigates stalemate scenarios such as when two agents

each bid and win disconnecting tasks, propose relays which do not get assigned, then

both drop their tasks and immediately re-bid on each other's tasks leading to the

same disconnected scenario. If a task is dropped it is then removed from the subset

of tasks Ji that agent i can bid on in future CBBA iterations. Dropped relays are

simply deleted. This prevents endless cycles from occurring where the same agents

bid on the same tasks leading to the same disconnects. Another key feature of this

algorithm involves properly incentivizing relay tasks so that agents elect to bid on

them in the next CBBA iteration. To accomplish this, relays are assigned a virtual

value which depends on the predicted reward from accomplishing its dependent tasks.

This is discussed more in detail in Sect. 4.2.2 and 4.6.2.

The full CBBA with Relays algorithm is presented in Algorithms 1 and 2 [96].

Components of the algorithm include:

e Winning-Agent(j) to return the current winning agent for task j.

o Dependent-Relays(j) to track dependencies for each task j on the listed relay

indexes to be connected.

o Dependent-Tasks(r) returns the indexes of all tasks that rely on relay task r

being serviced.

o Keep-Task(j, A) is the stochastic decision function to drop a task if it causes a

disconnect as described above.

o Place- Relays(j, J, A) creates relay tasks required to connect a disconnected task

j to the base station. The function is responsible for specifying appropriate
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Algorithm 1 CBBA-RELAYS(E, J) [96]

1: Ji = J, Vi E I; R = 0
2: j= {l,..., JNaIR
3: while -, converged do
4: A +- CBBA(j) (See [5] for details)
5: for (rER) & (rVA)do
6: (J', A') +- PRUNE-TASK-SPACE(r, J, A)
7: end for

8: Jdisconnected +- Predict-Disconnects( ', A')
9: for j E Jdisconnected do

10: 3" +- Place-Relays(j, 3', A')
11: end for

12: if (j" J) & (A' = A) then
13: converged +- true

14: end if
15: j +-lj; A <-- A'
16: end while

17: return A

locations, values, and time-windows for these relay tasks (further discussion is

provided below and in Sect. 4.2.2).

e Predict-Disconnects(7, A) is the function used by agents to predict the network

at the predicted start time of each of their tasks in assignment A. It returns

the set of disconnected tasks.

The Place-Relays algorithm is responsible for creating relay tasks with locations

and time-windows that ensure connectivity for the main task they are designed to

connect. This process depends on the communication environment and on networking

models used to describe information flow (see Sect 2.1.2). The original development of

this algorithm, described here, considers a simple disc communication model. Com-

munication links are supported as long as inter-node distances are within a known

radius RCOMM. The global network can therefore be described by its set of subnet-

works with interconnected agents. The Place-Relays algorithm therefore creates the

necessary number of relays to bridge the gap between the closest agent in a discon-

nected subnetwork sm to one in the base subnetwork so. If the number of needed

relays exceeds the number of available agents, the disconnected task is labeled as

infeasible and subsequently dropped. Chapter 4 revisits this algorithm in greater
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Algorithm 2 PRUNE-TASK-SPACE(r, J, A) [96
1: J+- J\{r}
2: for j E Dependent-Tasks(r) do
3: for r' E Dependent-Relays(j) do
4: Dependent-Tasks(r') +- Dependent-Tasks(r') \ {j}
5: if Dependent-Tasks(r') 0 then
6: j \ {r'}
7: A +-A\ {r'} if r' E A
8: end if
9: end for

10: Dependent-Relays(j) +- 0
11: keep 4- Keep-Task(j, A)
12: if -,keep then
13: A - A\{j}
14: Jwinning-Agent(j) -- Jwinning -Agent(j) \ {j}
15: end if
16: end for
17: return (J', A')

detail to consider more realistic communication dynamics which involve path loss,

uncertainty in fading, data-rate and bit-error-rate constraints, as well as information

routing.

3.3.3 Algorithm Performance

The CBBA with Relays algorithm presented in this section is guaranteed to converge,

runs in real-time, and ensures a strongly connected network while tasks are being ex-

ecuted. Initial experiments were conducted in prior work to compare the performance

of the three different planning strategies discussed in this section: (1) baseline CBBA

with no network consideration, (2) the conservative CBBA with Network Prediction,

and (3) the cooperative CBBA with Relays [93]. These were conducted both using

Monte Carlo simulations, as well as hardware experiment involving six UGVs at the

MIT Aerospace Control Lab indoor autonomous vehicle test environment [110]. Re-

sults show that the baseline CBBA causes significant network disconnects leading to

poor performance. CBBA with Network Prediction improves the mission performance

by preventing network disconnects, but is very conservative in the tasks it schedules

and achieves only marginally higher performance. CBBA with Relays outperforms
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the other algorithms by allowing cooperative task execution, achieving a higher score

throughout the mission and ensuring connectivity during task execution. This comes

at cost of increased runtime per planning cycle than the other two planning algo-

rithms. Nevertheless, experiments described in Chapter 5 show the algorithm retains

real-time performance in outdoor flight testing with a team of multiple UAVs.

3.4 Summary

This chapter introduced methods of task allocation used to coordinate efforts of a

team of UAVs in a complex mission. The problem of assigning tasks to agents is

combinatorial and difficult to solve for real-time applications. The Consensus Based

Bundle Algorithm (CBBA) was introduced as a sequential greedy method to effec-

tively assign tasks in a decentralized architecture. While CBBA is guaranteed to

converge on a conflict-free plan, where each task is assigned to at most one agent, it

does not consider network communication constraints inherent to multi-vehicle sys-

tems. Therefore the CBBA with Communication Relays algorithm was developed to

enable agents to predict the network topology at task execution using information

encoded in the CBBA task assignment. The algorithm uses this prediction to iden-

tify network disconnects and plan for underutilized agents to support the network as

communication relays. This cooperative strategy allows the team to achieve higher

mission performance and guaranteed connectivity with a base station. This work

laid the foundation for the next two chapters of this thesis, but considered simplified

communication models which will break down in real world applications. The next

chapter in this thesis, therefore, builds onto this framework to enable teams of UAVs

to cooperatively execute complex missions and maintain network connectivity given

realistic wireless communication dynamics, uncertainties, and information routing

protocols. Chapter 5 then demonstrates the implementation of these algorithms in

outdoor flight test experiments with a team of three UAVs.
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Chapter 4

Improving Network Support

4.1 Motivation for Improvements

The CBBA with Relays algorithm introduced in Sect. 3.3 laid the foundation for

network communication control using task allocation in a multi-agent team. It was

shown that through cooperative planning, agents can be dynamically assigned to

take on mission tasks or support network requirements to improve global mission

performance. This is fundamentally different from other multi-vehicle network control

methods described in Sect. 2.3.2 where roles are typically pre-designated. CBBA

with Relays dynamically optimizes the use of agents which adds flexibility in complex

mission executions. In this chapter, the framework is improved to include realistic

networking dynamics beyond the simplified and deterministic connectivity objective

considered thus far.

Multi-UAV systems may have different communication requirements based on de-

sign and application. For instance, UAVs are commonly used in surveillance missions,

and deployed to collect and stream live imagery back to an analysis center. Live video

data requires high data-rate, but is tolerant to some faults in transmission [11]. This

imposes an end-to-end wireless channel capacity requirement from the UAV collect-

ing data, through other routing agents, to the base, at the time of task execution.

If multiple UAVs are simultaneously sending data, channel capacities must account

for the total data flow routed through each link. Figure 4-1 illustrates four UAVs
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Figure 4-1: Motivation to improve CBBA with Relays

executing tasks which are connected to the base through multiple hops, a satisfac-

tory condition for the work in Sect. 3.3. While each link can support a single UAV

streaming video, UAV 1 must support additional data routing for UAVs 2 and 3, and

becomes overloaded which creates a data bottleneck. This prevents data from getting

to the base. In this situation, network support is not just based' on connectivity, but

also on link capacities and data routing.

The communication network also supports the exchange of command and control

messages. In a centralized control system, each agent communicates back and forth

only with the planning agent (typically the base). However in a distributed system,

as the one in this thesis, messages are exchanged between all agents in the network.

Messages can include bidding information to run CBBA, motion planning, or task

data needed by other agents for cooperative execution. These exchanges require

lower data rates, but are intolerant to errors [11]. This imposes an end-to-end bit-

error-rate (BER) threshold requirement, or the probability of transmission error (see

Sect. 2.1.2), between all agents in the network. Errors in transmission, if recognized,

require retransmission which creates delays and degrades performance. Since each

link has an associated BER, end-to-end BER propagates from hop to hop. In Fig. 4-

1, all UAVs are appropriately connected to the base, but the end-to-end BER between

UAV 4 and UAV 2 is insufficient to properly coordinate plans. This can significantly

degrade the team's ability to execute the mission [52].

Finally, wireless communications are subjected to dynamics which can vary the

performance of each link. Path loss attenuates wireless links with increasing distance.
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Furthermore stochastic shadowing and multipath fading can significantly impact the

quality of the received signal. As such, the system faces continuously changing net-

work performance. Finally, the rate of attenuation and amount of fading from the

environment may be unknown to the system, and can change over time. These dy-

namics affect the capacity and BER in wireless chanhiels, and must be accounted for

during the planning stages to support the network requirements.

This chapter introduces modifications to the planning framework described in

Sect. 3.3 to address the following communication performance considerations: (1)

data-rate, (2) data routing, (3) inter-agent BER, and (4) uncertainty.

4.2 System Overview

4.2.1 Wireless Channel Model

Section 2.1.2 provided technical background to network communications. In this

work, the network topology is controlled purely through positioning agents, as is often

the case in multi-agent communication studies (see Sect. 2.3). A fundamental factor

in wireless channel performance is the Signal to Noise Ratio (SNR), which generally

decreases as the distance increases, and varies stochastically due to shadowing and

multipath fading. Equations (2.1) and (2.3) are combined to provide the model for

SNR (-) in dB used in this thesis

P d ) .VO , 41_YdB = 10 log (NoW)+ KdB - 10lOg -- -1 (0,doB) (4.1)

This work assumes that the radio modules transmit at a data-rate approaching Shan-

non Capacity, described by Eq. (2.6) as a function of -y. Even though this value is an

upper-bound, and actual data transmissions are often set to lower rates due to fading

[10], it serves as a good general indicator of data-rate performance in bps. Similarly,

this study assumes BER = Q(V2y) where Q is the Q-function defined in Eq. (2.7).

While BER varies using different modulation schemes and data-rates, the relation

used here is general and accurately represents performance trends.
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Table 4.1: Communication Model Parameters

Parameter Symbol Value
Transmission Power P 500 m W
Channel Bandwidth W 1 MHz
Path Loss Exponent a 2.5
Reference Distance do 5 m
Noise Power Density No 10-10 W/Hz
Fading Variance c'dB 2 dB
Equipment Gain KdB 0 dB

Parameters listed in Table 4.1, which are representative (but not specific) of small

video transmission modules used in UAV applications, are substituted into the above

relationships for -y, channel capacity u, and BER to form the model. These parameters

can be changed freely without impacting the approach of this work. The resulting

wireless performance trends for SNR, capacity, and BER are plotted in Figure 4-2. In

these plots, the blue line represents the deterministic trend without stochastic effects

from channel fading (UdB= 0), whereas the red dots show values sampled over the

normal distribution according to UdB = 2. These performance trends relate back to

cooperative mission planning with network support as follows:

" Both types of communication requirements, data-rate and BER, depend on the

channel SNR which is a measurable value using modern radio equipment.

" In order to increase the capacity of a channel, the SNR must increase, and

therefore agents must be positioned closer to one another.

" Similarly to decrease BER, SNR must increase and inter-agent distance must

decrease.

The models listed above are then used along with known agent positions to com-

pute the network topology of inter-agent channel capacities and BER. Since radio

modules require a threshold minimum SNR to recognize a link, wireless channels be-

tween agents with weak links (below 7yhresh) are excluded from the communication

graph 9. The topology is subsequently used to predict how information is routed
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Figure 4-2: Wireless channel performance model

through the network, as will be discussed in Sections 4.3 and 4.4. This model for

wireless communications assumes the following:

" There are two different communication systems on each agent, one to handle

sensor data (video link) and one for command and control (C2 link). This

implementation is common on modern UAV systems [8], and allows separate

optimized routing for both types of messages. For simplicity in this work, both

communication systems share the same parameters and numerical values but

are routed differently.

" Communication devices can transmit and receive data at the same time. This is

commonly achieved by incorporating multiple interfaces to the physical layer [61].
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* Wireless channel frequencies are efficiently assigned. In reality, channel assign-

ment is a difficult real-time decentralized optimization problem in itself and can

have significant implications on the performance of the network. This topic is

receiving significant attention in the wireless ad-hoc network research commu-

nity [61], and is considered beyond the scope of this thesis.

" There are no delays in transmissions, and the multiple nodes do not interfere

with each other. It is recognized that both phenomena can impact network

performance, but like channel assignment, their mitigation is beyond the scope

of this thesis.

4.2.2 General Approach

Several modifications to the original CBBA with Relays implementation (see Sec-

tion 3.3) were required to consider realistic network communication requirements.

This section describes the improved general planning approach proposed given any

communication requirement considered in this thesis. This approach is described in

Algorithm 3 and illustrated in Fig. 4-3. Recall that the overall objective of the frame-

work is to maximize mission score by enabling agents to generate high reward at low

cost while meeting communication requirements.

A description of each block in the figure follows:

" Block 1: The algorithm begins with the CBBA task assignment over all tasks

and relays created in the previous iteration.

" Block 2: Relays which are unassigned or now irrelevant are removed and their

dependencies dropped stochastically as described in Section 3.3.2. Each relay

tracks the set of assignments used in the topology prediction at the time of

its creation. If any of those assignments have changed, say if another agent

out-bids one of the tasks to execute it early, the relay becomes irrelevant and

is deleted (lines 8-13).

* Block 3: For each assigned task j, agent i assigned to it predicts the network
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Figure 4-3: Improved general approach to CBBA with Relays

topology g using: (1) CBBA information containing the set of committed tasks

and their start times, and (2) that agent's current belief of the communication

environment parameters Ci (line 18). A method to estimate these parameters

in uncertain environments is provided in Section 4.5.

* Block 4: The set of tasks which create network requirement violations, or dis-

connects, are identified in JAisconnected (line 19). All other tasks in this network

prediction g are therefore connected and allowed to be executed without relays

assigned to them. This step varies depending on which type of communication

requirement is used for planning. If connectivity is the only planning require-

ment, as was the case in the original implementation, Jisconnected includes all
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Algorithm 3 IMPROVED CBBA-RELAYS(T, 3, Jactive)

1: Ji = 3, ViE I; =; {1,..., JNa, Z}

2: while , converged do
3: A +- CBBA(j) (See [5] for details)
4: for (r E R) do
5: if (r _ A) then
6: (j', A') <- PRUNE-TASK-SPACE(r, J, A)
7: else
8: for (a E Ar') do
9: if (a V A) then

10: Jwinning-Agent(a) +- Jwinning-Agent(a) \ {j}
11: (j', A') +- PRUNE-TASK-SPACE(r, 5, A)
12: end if
13: end for
14: end if
15: end for
16: for (j E A') do
17: C & CAssigned Agent (j)
18: 9 <- Predict-Topology(J', A', C)
19: Sdisconnected 4- FIND-DISCONNECTS(Jactive, 9)
20: (j",Jinfeasible) +- PLACE-RELAYS(J',Jdisconnected,9,C)

21: for (jinf E Sinfeasible) do
22: keep -- Keep-Task(jinf, A)
23: if -,keep then
24: A +- A \ {j}
25: Jwinning-Agent (j7i) -winning-Agent(jinf) \ {Jinf}
26: end if
27: end for
28: end for
29: if (7" = j) & (A' = A) then
30: converged +- true
31: end if
32: j +- J"

33: A +- A'
34: end while
35: return A

tasks not in the base subnetwork. The processes adopted for data-rate and BER

are discussed in Sections 4.3 and 4.4.

e Block 5: Given the network 9 and its disconnected tasks Jdisconnected, relays

are sequentially created in a greedy value optimization scheme as described in

Algorithm 4 below.

70



Algorithm 3 converges when the same set of assignments, supported by the network,

are proposed as in the previous iteration, and no new relay tasks are created.

The objective in Algorithm 4 is to create relays conducive to high reward achiev-

able assignments in the next CBBA iteration. This does not necessarily mean re-

connecting all tasks using the minimum number of relays. This is a key distinction

from many other relay deployment optimization studies (see Section 2.3.2). Reward

is maximized by performing high value tasks on time while incurring minimal cost.

Relay tasks alone do not generate any reward since their agents are not generating

mission data; however, they do incur costs. As such, it is only beneficial to execute

relay tasks if the sum of the reward they enable through reconnected tasks is greater

than the sum of (1) the cost they incur, (2) the reward opportunity passed up by their

agents, and (3) the reward opportunity available to reconnected agents by executing

connected tasks instead.

In some cases, it is more beneficial to allow a task to be disconnected than try to

reconnect it, as illustrated in Fig. 4-4. Box A shows the same result from the baseline

CBBA with Relays algorithm originally shown in Fig. 3-2, which leads to overloaded

links. Box B shows how the network can be fixed using the minimum number of

relays. To execute these tasks, all relays must be assigned, which exceeds how many

agents are available. However, if any one relay does not get assigned, the network

becomes either disconnected or overloaded, and reward is lost.

A potentially better solution, shown in Fig. 4-4 Box C, is to determine up front

that one of the two tasks at the top (with value 30) should be dropped to better

allocate the relay resource. However, to make this determination in a general way

is a complex combinatorial problem with several challenges. It involves finding the

optimal combination of up to Na tasks and relays to assign, where Na is the number of

available agents and Nt is number of tasks at that assignment time. This first requires

solving for the optimal relay placements for each combination of task assignment, or

(N) X (NJ x ... (' ) combinations. Then, the best assignment must be selected

by considering the location of available agents with respect to each combination to

determine the best value. Finally, the task assignments are inter-dependent, and
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A - Connectivity Solution B - Min Relay # Solution C - Optimal (for 5 agents) D - Greedy Relay Creation

Figure 4-4: Relay placement to satisfy data-rate requirements for a team of 5 agents

the agent positions as well as the mission environment are dynamic, and therefore

the solution may require frequent recomputation (see Section 3.1). The computation

becomes quickly intractable and is impractical for dynamic replanning.

Instead, Algorithm 4 provides an efficient solution by sequentially choosing the

next best task j in Jdisconnected to reconnect using relays. For each j, it computes

optimized relay locations to satisfy communication requirements (line 10). For in-

stance, if connectivity is the only requirement, it finds the closest node between the

subnetwork of the disconnected task and the base subnetwork, and solves for the

number of relays N, and their equally spaced positions. Here, N, = | and

dmin is the distance between subnetworks. Relays are then temporarily added to the

network graph g and the FIND-DISCONNECTS function from Algorithm 3 then de-

termines which additional tasks from JAisconnected are now reconnected. The value of

the created relays is then determined using

Jdepend(r)

Vr =K, N'( j) (4.2)
j r(j

where Jepend(r) indicates the set of tasks j dependent on relay r, cj is the predicted

reward for j from CBBA, Nr'(j) is the number of other relays j depends on, and K,

is a constant multiplicative scaling factor.

For all disconnected tasks, the algorithm finds the highest value task to reconnect

and permanently adds that task with other reconnected tasks Jconnected, and its relays
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R', to the network graph g. This process is repeated until all tasks are reconnected or

designated infeasible. The algorithm is illustrated in Fig. 4-4 Box D, where the index

on the relays represent the order in which they were created. If a task requires more

relays than the maximum possible number of available agents, or N-1, it is marked as

infeasible. If in Fig. 4-4 Box D only 4 agents were available, R3 would not be created

and its dependent task with value 30 would be labeled infeasible. This eliminates

task assignment options which are bound to fail but may cause additional CBBA

iterations. Relays created in this process are then awarded a virtual value determined

by Eq. (4.2) recomputed after all relays have been created. This incentivizes agents to

bid on relay tasks during the CBBA task assignment. The choice of K, has an impact

on the cooperative behavior of the team, as will be shown in Section 4.6.2. Back to

Fig. 4-4 Box D, all relays get created, but R3 has a significantly lower incentive value

than RI and R2 since it only connects one task which depends on all 3 relays.

The improved CBBA with Relays algorithm presented in this section also guar-

antees convergence and offers real-time performance as demonstrated in Chapter 5.

This framework can be easily adapted to support several different communication

requirements and information routing protocols simultaneously, a capability shared

only by a few of the studies listed in Sect. 2.3.

4.2.3 System Framework

A full system framework was developed with this algorithm to conduct multi-UAV

missions both in simulation and flight test. The system consists of multiple modules

operating in the MATLAB environment, many modified from previous efforts [93].

The components and information flow are illustrated in Fig. 4-5. The following is a

description of each component:

e Simulator Mission Manager: This module runs the mission, primarily by cre-

ating and managing tasks. These are created at uniformly distributed random

locations, times, and windows of validity within the constraints of the environ-

ment. The value of each task is scaled linearly as a function of its distance from
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Algorithm 4 P LACE- RELAYS (J',idisconnectedgC)

1: R = 0
2: infeasible = 0
3: Jactive (j d 9) i(j Jsconnected)

4: while ,done do
5: Vmax= 0

6: newRelay = false
7: for (j E tdisconnected) do
8: Jdisc' - Jdisconnected \ j
9: Jconnect +- j

10: (tinfeasibleR',Q') +- FIx-DISCONNECT(9,j,,Jinfeasible,Jactive ,C)
11: Jactive +- Jactive + V + j
12: tdisc" +- FIND-DISCONNECTS(J',Jactive'19/1 C)
13: Jconnect +- iconnect + {(j C Jdisc')&(j' J disc")}
14: (R',Jconnect) +- Find-Dependencies(9')
15: v +- Compute-Value(R', iconnect)
16: if (V > Vmax) then

17: Vmax V

18: R max' +- R'
19: 9 max + 9'
20: iconnect-max +- iconnect

21: newRelay = true

22: end if
23: end for
24: if newRelay then
25: j' +-- I' + {R+max', Jconnect-max}

26: Jactive +- Jactive + {Rmax', iconnect-max}

27: Jdisconnected - Jdisconnected \{Jconnect-max}
28: Jinfeasible = 0
29: Q +- 9'
30: else
31: done = true

32: end if
33: end while
34: return (J',Jdisconnected)

the base. Specifically, a task located exactly at the base has zero value, whereas

a task at the furthest Euclidean distance from the base in the environment has

a value of 100. The purpose for this setting is to incentivize agents to exe-

cute difficult tasks from the perspective of network connectivity. It also relates

well to real-world remote sensing objectives which often consist in surveying

out-of-reach areas. Tasks further away offer more reward, but require agents

to cooperate to execute them successfully. The Mission Manager also tracks
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Figure 4-5: System framework block diagram

system performance metrics used for evaluation in experiments presented in

Section 4.6 and Chapter 5.

e Agents: This module is separated into distributed submodules for each agent.

Each submodule simulates its agent state, estimates the communication envi-

ronment parameters using measurements from the network (see Sect. 4.5), and

computes motion control inputs for the agent to execute its tasks or maintain

connectivity with other agents (see Sect. 4.4). It also determines when the agent

is ready to start its task.

" Distributed Planner: This module runs the task assignment routine using the

distributed CBBA with Relays algorithm described in this section.

* Simulator Network Manager: This module generates wireless communication

channels using the models described in Section 4.2.1 and manages routing of

information according to protocols presented in the next two sections. The
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separation of the planning module and the network manager module is key.

The planner uses the model of the communication environment estimated by the

planning agent to formulate a task assignment plan. It does not however actively

control network routing during actual task execution, and the network could

therefore behave differently than planned. This is important for two reasons:

(1) wireless channels may vary significantly over short time-scales so the ability

to adapt to these unplanned changes through routing is important [10], and

more importantly (2) the multi-vehicle system may not have dynamic control

of information routing and is therefore at the mercy of the protocol behavior.

4.3 Supporting Data-Rate Requirements

In order to transmit live sensor data back to the base, the multi-UAV network must

ensure information routes have sufficient end-to-end channel capacity at the time of

execution. The algorithmic approach introduced in Section 4.2.2 is used as a foun-

dation for the planning strategy and is tailored based on the data-rate requirement

and information routing protocol. Many protocols exist, along with many variations,

each with strengths and weaknesses [61-68]. As such, this section includes two dif-

ferent representative routing strategies: (1) the model of a protocol representative of

shortest path routing schemes commonly used in decentralized wireless networks, and

(2) a protocol providing the optimal routing solution based on the network topology,

formulated assuming centralized global real-time knowledge of the network. The pur-

pose is to show the commonality in the planning strategies and provide performance

bounds of the system as future, better protocols become available.

4.3.1 Realistic Routing

A model for the Ad-hoc On-Demand Distance Vector (AODV) [63] protocol (see

Sect 2.1.4) is implemented to represent real-world networking dynamics. AODV em-

ploys local information at every node to dynamically compute the shortest transmis-

sion route according to an established metric. This protocol can rapidly adapt to
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changes in topology, but also tends to converge to commonly used shortest routes in

multi-user scenarios leading to data bottlenecks [67]. The metric employed in this

thesis is a representation of the airtime metric popular for these applications and

described by Eq. (2.11) [69]. To keep the model simple, general, and representative,

its parameters are set to: 0 = 0, Bt = 1, Ppkt = 0, and f = u the wireless channel

data-rate capacity. As such, the airtime cost metric CA for transmitting between

any two nodes i and j is simply C. To transmit information from node i

to k, the protocol finds the path which minimizes E CAL, over any number of hops.

This identifies routes with high data-rates, but also simultaneously minimizes the

number of hops to reach its destination, which is a desirable behavior especially in

high-bandwidth transfers such as live video [10].

The protocol is used in planning to predict how information will be routed from

each active agent to the base. Route discovery is performed in simulation using the

well known Dijkstra's shortest path algorithm [92]. The predicted network graph

g at the time of task execution (see Algorithm 3, line 18) is used as input with

active agents as vertices, and existing wireless links as edges with respective cost 1.
Dijkstra's algorithm is fast, and therefore ideal to compute the shortest airtime path

for all agents to the base. Then, because each task executed requires data to flow to

the base at a certain rate ftask, the flows can be summed over each generated path

to determine the channel capacity requirement between each node as:

Ureqi fki + ftaski (4.3)
k

Predicted data-rate violations are identified when Uregqi > ui3 . This information is

then used by the planner to decide: (1) which tasks are allowed to be executed given

the present configuration (Box 4 in Fig. 4-3), and (2) how best to create relays to

support disconnected tasks (Box 5 in Fig. 4-3).

To choose which tasks are allowed or disconnected given an unsupported graph is

more complicated than when considering connectivity alone. Nodes (task locations)

may be connected in the base subnetwork, but contribute to data-rate violations as in
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Fig. 4-1. Since the mission objective is to maximize team reward, a selection process is

required to find the combination of proposed tasks which provides the highest reward

without violating data-rate requirements. To avoid an exhaustive search over the set

of all tasks and to reduce the number of network recomputations when discarding

tasks, Algorithm 5 leverages the Minimum Spanning Tree (MST) network graph

structure produced by AODV routing. The tree is rooted at the base and each node

sends its data to a single other node as shown in Fig. 4-4. The algorithm therefore

greedily prunes lowest value leaves (or end node tasks) that are up-link of edges with

data-rate violations (Algorithm 5, line 9). If all end-nodes are connected tasks being

executed (in Jactive) which were carried over from a previous planning cycle, the

algorithm prunes the furthest (number of hops) and lowest value task up-link of a

violation not in Jactive. In this case, routing must be recomputed with the remaining

graph. This process repeats until all remaining tasks are supported by the network.

Once the set of disconnected tasks is identified, the planning framework uses

Algorithm 4 to reconnect them with relays. Line 10 in the algorithm uses the known

required link capacity Ureqi3 to satisfy flow requirements on the lowest cost route,

along with Equations (2.6) and (4.1) to solve for the maximum inter-node distance

dmax to meet the requirement. The number of required relays and equally spaced

positions is computed (N, = |d 1). Once relays are created, information routing,

which may now have changed for other nodes, is recomputed to identify possible new

link violations. This process repeats until all tasks in the configuration are connected

or designated infeasible.

Because one of the objectives of AODV is to minimize the number of hops, relays

placed too close to one another to support a high data-rate requirement may actually

skip over each other on a lower cost route. Since information is now transmitted over

greater distances than intended, data-rate requirements may once again be unsup-

ported. This occurs specifically when the total cost of 2 hops each over a shorter
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Algorithm 5 FIND-DISCONNECTs-DATARATE-AODV(actve, g)

1: Jdisconnected - j1 V 9
sub-base

2: 9' +- g \ 3disconnected
3: (Ureq, P) = RoUTE-DATA(9',AODV)
4: Jm 4- arg (ureqm,n > Um,n)
5: while , (Jm = 0) do
6: m = arg max (P,base) , jVJm
7: while Ureqm, I > um,n do

8: Jcandidate +- Find-Children(m, P, Jactive)
9: jdel = Select-Node-to-Delete(Jcandidate)

10: Jdisconnected -- disconnected - Jdel
11: 9' +- 9' \ {jdel}

12: (Ureq, P) = RoUTE-DATA(g',AODV)
13: end while
14: Jm +- arg (ureqm,n > Um,n)
15: end while
16: return (Jdisconnected)

distance is greater than a single hop over longer distance:

1 1 1

Uij Ujk Uik
or

KP ( KP d)

2W log 2  1 2dW1 I dij (4.4)NoW - NoW

Solving for dRmin = dij above provides the minimum distance between relays below

which they skip each other. Given this model, relays are never placed closer than

dRmin to one another. If this does not satisfy data-rate requirements, then the algo-

rithm attempts to reroute information by connecting the disconnected task directly

to the base using relays. If that fails, the task is designated infeasible in this network

configuration.

4.3.2 Optimized Routing

In the previous subsection, a popular routing protocol was embedded in a planner to

identify network violations and create relays to meet data-rate requirements. How-

ever, AODV and similar protocols have certain limitations [67], and new protocols
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providing better performance are the subject of constant investigation [71-73]. In

order to provide a performance bound of the planning framework independent of the

intricacies of specific routing protocols, a mechanism simulating optimal data rout-

ing is proposed. This simulated protocol assumes perfect real-time knowledge of the

global network topology, and precise flow control node to node. These centralized as-

sumptions may be difficult to implement in the real-world, but are useful to represent

the upper-bound performance of routing protocols given this communication model.

There are two main distinctions between the optimal routing protocol and the AODV

model previously discussed:

" In the optimal protocol a transmitting node can split its data flow to go out to

multiple other nodes, rather than sending all its data to a single other node as

in AODV. This is subject to a total transmission constraint described later in

this section.

* The optimal protocol simultaneously optimizes transmission requirements of all

active nodes to distribute information flow through available links. In AODV,

each node routes its information on its best path independently from other

nodes, leading to possible bottlenecks.

The routing mechanism is formulated as a Linear Program (LP) solving a network

flow optimization problem inspired by methods in [92]. The LP in Eq. (4.5) solves

the minimum cost flow f from all task nodes to the base node along available edges

(links), subject to communication constraints. A slack variable E is added to the cost

function to allow the network to overload some of its link capacities as needed to

reach a solution to the problem. In the formulation, E cj is the percent overload of

an agent, and can be used to identify data-rate bottlenecks in the network. The main

cost function c can vary based on the application. In this study this cost function is

simply set to cij = 1 to again incentivize reducing the number of hops from a node to

the base [71]. The cost function for c, k is designed to deter links from overloadinguj

unnecessarily by setting M to a large value, but incentivize fewer stronger links to be

overloaded if needed.
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The first LP constraint (Eq. (4.6)) describes the conservation of flow principle

true for all closed networks: the sum of flows into a node i, or Z, fhi + fLaski, equals

the sum of the flows out EZ fij [92]. Relay tasks do not generate flow of their own

and as such ftas,,,Iay = 0. The base station is treated as a sink for all incoming flows

Ei fLaski. The next constraint, (Eq. (4.7)), is the fundamental reason why the simpler

Max Flow problem formulation [92] common in network optimizations cannot be used

for this type of wireless network. Every node has a total transmission constraint. If

it transmits at full available data-rate to a single other node, it is fully utilizing its

resources to do so. In order to split its flow out, it must reduce its transmission rate

to the first node to award channel utilization resources to others. This is described

through the total link utilization ratio constraint Eu < 1 [71] and incorporates the

slack variable E to allow that agent to overload if needed. Finally Eq. (4.8) and (4.9)

constrain flows and overloads to be positive and bounded by capacity, with C as a

constant to tune the maximum percent overload allowed on each link.

arg min c if + M Ie ) (4.5)

ftaski if i is an active task

s.t. f - fii = 0 if i is a relay (4.6)

- E fLaski if i is the base

- 1 (4.7)

0 < fz < Cug (4.8)

0 ej < C (4.9)

The LP formulated above is executed using a MATLAB solver. While the problem

size allows a solution to be computed in real-time, the runtime is significantly slower

than route computation using Dijkstra's algorithm. As such, the intent to reduce

the number of routing computations during planning also holds when using this pro-

tocol. To select tasks that are disconnected, the planner runs Algorithm 6 which
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Algorithm 6 FIND-DISCONNECTS-OPTIMALROUTING(Jactive, 9
1 Jdisconnected + sub-base

2: 9' +- 9 \ Sdisconnected

3: (Ureq, P) = ROUTE-DATA(9',LP)

4: Smr +- arg (ureqm,n > um,n)
5: while , (Sn = 0) do
6: Scandidate +- Find-Children(Sm, P, Jactive)
7: jdel = Select-Node-to-Delete(Jeandidate)

8: Sdisconnected +- Sdisconnected + Jdel
9: g' +- 9' \ {jdel}

10: (Ureq, P) = ROUTE-DATA(!',LP)

11: Sm +- arg (ureqm,n > Um,n)
12: end while
13: return (Sdisconnected)

is a slight modification to the version presented in the previous subsection. First,

for planning purposes only, a spanning tree is created using the largest flow out of

each node. This helps identify nodes which contribute most to overloaded links by

summing slack values e along their path to the base. A greedy process again is used

to sequentially prune nodes until the network is supported, starting with end nodes.

Unlike in Algorithm 5, the network routing must be recomputed after each node is

removed because flow is distributed across the network. To minimize the number of

recomputations, the next node to delete is not selected simply based on lowest value,

but also by considering a weighting factor of its total slack contribution, or overload.

The remainder of the process is identical to the AODV routing protocol.

Once disconnected tasks are identified, relays are created using the process as pre-

sented in the previous subsection with some notable differences. First, since network

routing here does not consist of a spanning tree, the search space for optimal relay

placement is reduced by connecting disconnected tasks directly to the base. This

generally requires more relays at each placement, but also reconnects more tasks per

step since data is efficiently routed in a convex task space. Second, relay and task

dependencies cannot be determined explicitly based on routing paths since all links

are inter-dependent. As such, relays and tasks added at every step in the algorithm

are dependent on relays created in previous steps.
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4.3.3 Implementation into Framework

The two routing protocols described in this section were both implemented in the

simulation network manager described in Section 4.2.3. At every simulation time

step, the module uses agent locations to compute the network topology, the resulting

network routing, and to determine whether tasks being executed are supported and

thus generate reward. Even though the same models are used in planning as in

mission execution, actual routing performance may vary during execution for several

reasons:

* Stochastic fading during execution cannot be deterministically predicted.

* Communication model parameters may be unknown to the agents, vary over

time, and differ from agents' estimates during planning.

* The network prediction in planning only accounts for agents committed to doing

tasks. Agents traveling or temporarily idle can cause unplanned deviations in

network routing during execution. If using a protocol like AODV, this can

temporarily overload paths even in a deterministic environment. However, as

will be shown in the simulation results, the LP formulation guarantees network

support since it eliminates this effect by balancing network load.

Despite these limited guarantees, simulation results at the end of this chapter, as well

as flight test results in the next chapter, show good performance of these planning

strategies.

4.4 Supporting Error-Rate Requirements

In addition to satisfying data-rate requirements, the multi-UAV network must also

ensure that agents can adequately exchange command and control messages. The

Bit-Error-Rate (BER) is used as a performance metric for this requirement, and is

modeled as in Section 4.2.1 for every link in the network graph. As data travels

over multiple hops to its destination, each hop has a probability of error. Since
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Pei Pe2 Pe3 PeN

Pe(end-to-end) = 1 - ((1 Pei) (1 - Pe2)' (1 - Pe2) .'(1 - PeN))

Figure 4-6: Probability of messaging error hop to hop

agents at each hop act as regenerators, and fully decode, interpret (to use the data

themselves), recode, and resend messages to the next hop, the end-to-end probability

of error increases at every hop as modeled in Fig. 4-6 [11]. This section describes

how the task allocation network control strategy can be tailored to ensure inter-agent

BER requirements are met for agents executing tasks. In addition, a reactive motion

control strategy is provided to maintain agents not active during these task executions

below the BER threshold for degraded communications with all other agents.

4.4.1 Inter-Agent Routing

The planning strategy to ensure BER requirements are met during task execution

follows the same general approach described in Section 4.2.2. However, there are

two important differences when planning for the BER compared to the data-rate

requirement. First, the BER constraint is active between all agents and not just

between every agent and the base station. Second, command and control messages

are assumed to have negligible bandwidth requirements, so there is no constraint on

how many agents can share a same routing path for these messages. Therefore, nodes

can route messages independently of one another without risk of bottleneck.

Routing for these messages is also assumed to be independent of routing sensor

data back to the base. However, the same AODV routing protocol can be used with

a different metric to provide the set of optimal minimum BER routes Pbe, between

agents. Since error probabilities are multiplicative over multiple hops, the additive

cost of each hop is set to Cbe, = - ln(1 - BERj) [32, 33]. Dijkstra's Algorithm is used

again to generate the minimum cost routes between all agents. BER violations occur

if any pair of agents i and j have BERj > BERthresh which is the threshold maximum
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Algorithm 7 FIND-DISCONNECTs-BER(Jactive, g)
1: 9' +-
2: (BER, Pber) ROUTE-DATA(9',BER)
3: Jdisconnected +- arg (BERj,base > BERthresh) , V{ j E 9') & (j J iactive)}

4: 9' - 9' \ Jdisconnected

5: (P) = ROUTE-DATA(',DATA-RATE PROTOCOL)

6: Jend-node +- Find-Tree-End-Nodes(9')

7: Jber-violate +- arg (BERm,n) V Jactive, (in, n) Vj E g'
8: icandidate 4- (Jend-node n Jber-violate)

9: while (Jcandidate # 0) do
10: jdel = Select-Node-to-Delete(Jcandidate)
11: Jdisconnected 4- Jdisconnected - jdel
12: 9' +- 9' \ {jdel}
13: Jend-node +- Jend -node \ {jei }
14: (BER, Pber) = ROUTE-DATA(9',BER)
15: Jber-violate +- arg (BERm,n) V Jactive, (m, n) Vj E 9'
16: Jcandidate +- (Jend-node n JBER-Viol)

17: end while

18: Jcandidate 4- Jber-violate

19: while (Jcandidate # 0) do
20: jdel = Select-Node-to-Delete(Jcandidate)
21: idisconnected - tdisconnected + jdel
22: ' +- 9' \ {Jjdei}
23: (BER, Pber) = ROUTE-DATA(9',BER)
24: Jcandidate +- arg (BERm,n) V Jactive, (n, n) Vj E 9'
25: end while
26: return (Jdisconnected)

allowable error rate for the system to be effective. Once BER violations are identified,

the framework runs Algorithm 7 to greedily prune disconnected tasks. First, all tasks

which violate BER with the base are pruned (line 3). Next, the algorithm considers

the data-rate routing Minimum Spanning Tree, and prunes its low value end-nodes

with BER violations in an effort to avoid changes in satisfactory data-routing (lines

5-17). Finally, if violations are still present, the algorithm greedily selects low value

nodes to remove (lines 18-25).

Disconnected tasks are then then greedily repaired using the general approach of

Algorithm 4. In line 10, the process sequentially adds relays along the computed

shortest BER path between the two neighboring nodes with weakest link until the

threshold is met. The algorithm terminates when all node pairs meet threshold or

are labeled as infeasible.
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Although this algorithm can operate alone to ensure active agents satisfy BER

requirements, the intent in this chapter is to run it in addition with the data-rate plan-

ning protocol from the previous section. The same general approach is used to jointly

satisfy both requirements. The algorithm first iterates between identifying nodes vi-

olating data-rate requirements, and then BER requirements, until it converges on a

graph supporting both. Next, the algorithm greedily creates relays positioned based

on the type of violation (starting by repairing data-rate) using the same sequential

process.

4.4.2 Reactive Motion Control

The planning framework described in the previous subsection guarantees that agents

that are busy executing tasks or relays meet interconnectivity BER requirements.

This ensures agents performing cooperative tasks, such as target tracking or perime-

ter monitoring, can effectively communicate with each other and the base during ex-

ecution. However, this process does not ensure other agents not busy executing tasks

at the time of network prediction are connected. It is necessary, however, to have

the entire fleet properly interconnected during the task allocation planning process.

Poor inter-communications during the CBBA algorithm can significantly degrade the

outcome of the plan [52, 53].

In order to drive these other agents, which are either idle or traveling to their

next task, to an interconnected state, a decentralized reactive motion control policy

is proposed. Its objectives are to minimize additional fuel costs incurred from extra

travel, but also ensure that agents can satisfy their proposed plans. This second point

is key and is discussed later. Each agent i uses its current knowledge of other agent

locations and communication environment parameters to locally estimate the network

topology and BER values with other agents. The communication environment may

include uncertainty which is then treated as described in Sect. 4.5. Next, the agent

determines if it is at risk of violating BER with any other agent m if BERim > BERpian,

where BERpian is a tunable planning threshold less than BERthresh. As such, the goal is

to maintain BERim < BERpian < BERthresh with all other agents and prevent unaccept-
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able messaging error-rates. It then plans to reconnect with the agent most at risk

of being disconnected with, above this threshold, through the estimated minimum

BER route. It computes its minimum distance dming. to the next agent j in the route

needed for BERim = BERpla and starts traveling to meet that requirement. If that dis-

tance dmingj is less than a safety threshold for collision avoidance, it skips on toward

the next agent k in the BER route. This can occur if j is currently busy executing a

task and cannot move itself to maintain connectivity with other traveling agents. As

agents move about the environment, dminej is dynamically updated to steer i.

Each agent executes this policy until it needs to break off to travel to the next

task to ensure it starts on-time as planned. This is critical because each task is part

of network predictions used to ensure communications are supported. This prediction

is invalidated if the task is not executed as proposed. Because of this constraint, and

because agents do not account for locations relative to each other in continuous time

during planning, it is not possible to guarantee all agents will be interconnected at

all times using this framework. However, results in Section 4.6.3 and 5.4.2 show good

performance of this strategy both in simulation and outdoor flight tests. This type

of decentralized reactive motion control policy could be implemented with periodic

connectivity constraints as done in [25] to ensure agents are connected at known times

of task allocation replanning.

4.5 Planning with Uncertainty

Shadowing and multipath fading lead to uncertainty in wireless channel performance

as illustrated by the samples in Fig. 4-2. In addition, the environment in which the

communication system operates can be dynamic in obstacles, noise, and interference

from other sources, and further vary network performance. This uncertainty must be

considered in planning to ensure mission execution is robust to degradations in the

environment.

The fundamental parameter in wireless channel capacity and BER performance

is the Signal to Noise Ratio (SNR). SNRdB is commonly modeled with normally
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distributed shadowing and fading distortions (see Section 2.1.2). In this thesis, these

values are generalized into value Yf dB sampled from A(0, O'dB 2 ). If the fading distri-

bution variance is known, conservatism can be added to the planning process to drive

the system performance to a desirable confidence level. This type of risk adjustment

is often employed to add robustness in planning for multi-agent systems [98]. The

SNR used to predict the network, identify disconnected tasks, create relays, and plan

connectivity motion can be degraded by a certain amount to ensure a confidence level

of its minimum performance. In Eq. (4.10) Km is used as a multiplier of o-dB to tune

the confidence level. Km = 0 is the center of the normal distribution, and as such

offers 50% confidence that yij > _plan, whereas Km = 1 offers 84% confidence.

^yplandB = 10 log ( + KdB - 10' log (+) - (Km'dB ) (4.10)
(NoW) do

The impact of varying Km on system performance is explored in a Monte Carlo

simulation in the next section, and used in outdoor flight testing with a team of

UAVs to plan in uncertain communication environments in the next chapter.

A common problem encountered in field operations involves predicting the per-

formance of wireless communications [18, 35, 42]. Often the attenuation, fading,

and interference levels are initially unknown, and can vary spatially and temporally

during mission execution [46]. Previous efforts have attempted to sample the com-

munication environment a priori to construct a radio-map indicating areas of high

network performance. However, these were then undercut by changes in performance

during actual mission execution [18]. Therefore, this thesis turns to a dynamic real-

time communication model estimation method for the multi-UAV system to initially

learn the communication environment, sense changes during execution, and adapt its

planning strategy accordingly.

The Least-Squares sample estimation method described below was obtained from

[32] and adapted for this application. It assumes that over the course of mission

execution, agents collect and share SNR samples with each other. These measure-

ments are then used to estimate the global environment communication parameters
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for planning purposes. The SNR sample 'Y, can be rewritten as Eq. (4.11), where 4 is

defined in Eq. (4.12), and Yf, dB is the stochastic contribution to SNR due to fading

in that sample.

-YsdB '10a log -Yfs dB (4.11)

= 10 log( ) + KB (4.12)
NoW

It is reasonably assumed that each agent knows the transmission power P, bandwidth

W, and equipment gain KdB used in the sample. However, environment parameters

such as the path loss exponent a, fading variance OdB 2 , and noise power density No

are unknown, may vary, and need to be estimated. A set of k samples y, accessed by

an agent can be stacked into F, as in Eq. (4.13) where Gq, 0, and Ff are defined in

Eq. (4.14).

F = GqO + Ff (4.13)

1 -10 log (d2) 
dB

Gq 1 1() , F -f '/f2dB (4.14)

1 1 logdB

Estimation of the communication parameters a, O'dB, and No is then performed using

the LS regression procedure in Eq. (4.15) [32]:

= (G Gq) 1 GqF (4.15)

FGq k - (GqGq)1G) F

6-dB -F~yG&dBk GqFGq

A weighted moving average filter is then applied to the estimated values to smooth out

measurement disturbances and allow estimated values to vary over time with changes

in the environment. As implemented, each agent performs this estimation over a
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different set of measurements in a fully decentralized setting, and may have different

parameter estimates from other agents. These estimates are then used in the following

stages of planning: network topology prediction (Fig. 4-3 Block 3), identification of

disconnected tasks (Block 4), relay placement (Block 5), and reactive motion control

planning to maintain inter-agent BER. Fig. 4-7 shows the estimation profile of the

three initially unknown communication parameters over the course of a 600s mission

with six UAVs. Parameters are initially set to those listed in Table 4.1, and then

each increased by 10% halfway through the scenario. Estimates for 0Z (Fig. 4-7(a))

and No (Fig. 4-7(b)) are used to estimate expected SNR performance. Figure 4-7(c)

is a profile of the estimated versus actual 7YdB at a distance of 100m. Agents are able

to detect 90% of the change in expected _YdB performance in an average too% = 37.8s

(on a Is estimation cycle) and track the new value with e = 7.4% mean error. For

gdB, which is used to plan conservatively, tgo% = 15.2s and e = 1.5%. The ability to

detect and adapt to these changes improves system performance as will be shown in

Section 4.6.5.

4.6 Performance Evaluation

4.6.1 Experiment Overview

Several Monte Carlo simulation experiments were conducted to evaluate system per-

formance and observe trends in cooperative behaviors using the proposed framework.

Experiments consisted of 30 scenario trials per data point using the mission param-

eters listed in Table 4.2 and the communication model parameters from Table 4.1

(with variations as listed). The same 30 scenarios were used across each data point

for direct comparison. In all experiments, reward was only generated when data-rate

requirements to the base were supported at each time step. In other words, if a spe-

cific task was only supported 50% of the time during its execution, it received 50%

of its reward. The following four experiments were conducted:
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Varying the level of incentive for relay tasks in the CBBA task assignment

algorithm

* Comparing different communication planning strategies: (1) considering con-

nectivity only, (2) planning for data-rate using the AODV routing protocol, (3)

planning for data-rate using optimal routing, and (4) planning simultaneously

for BER and data-rate

e Varying the level of planning conservatism given uncertain communication en-
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Table 4.2: General Simulation Mission Parameters

Parameter
Trials per Scenario
Mission length
Replan Rate
Task Creation Cycle
New Tasks per Cycle
Environment Size
Communication Radius RcoMM
Task Data-Rate ftas k

Threshold BER (BERthresh)

UAV Cruise Velocity
UAV Fuel Cost

Value
30

600s
60s
60s
20

350 x 400 x 50m
30% Environment Max Distance

mean capacity at RcoMM
mean BER at RcOMM

8m/s
0.1/rm

* Evaluating the benefits of estimation for adaptive planning in variable commu-

nication environments

4.6.2 Varying Relays Incentive

This Monte Carlo simulation evaluates the impact of varying the level of incentive

K, for relays. This value is a multiplier on the virtual task value listed for each relay

used in the agents' reward function during the CBBA bidding process (see Eq. (4.2)).

In this experiment, K, is varied from 0 for no incentive, up to 4. This experiment

assumes a deterministic communication environment with no fading (UdB = 0) and

each trial is executed with a team of six UAVs planning for data-rate only, using the

realistic AODV routing protocol.

Figure 4-8 (a) shows the total mission score distribution for each setting (+'s

represent 25% and 75% percentile values) and show that K, = 1 offers the best

planning performance. The reason can be seen in Fig. 4-8 (b), where the solid blue line

represents the number of tasks executed, and the dashed red line shows the average

task value. If no incentive is provided for the relay tasks, agents resort to executing

lower value tasks near the base, similar to the conservative planning strategy discussed

in Sect. 3.3, but executing more of them since they are not occupied by relaying. As
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Figure 4-8: Varying the level of incentive for relay tasks

incentive increases, agents can perform higher value tasks using relays, and despite

performing fewer tasks, generate higher total reward. This trend peaks and plateaus

at K, = 1. With even more incentive, agents continue to perform even higher value

tasks, but now perform less of them which eventually results in lower scores. The peak

in task value occurs at K, 2 after-which an interesting phenomenon in cooperative

behavior occurs.

When relays become highly over-incentivized (K. > 2), agents become overly in-

terested in these tasks and always favor them in the bidding process over regular

tasks. Agents then drop what ever task they had planned whenever a relay becomes

available, which often invalidates earlier network predictions that over multiple it-

erations eventually created those relays. These relays then become irrelevant and

are deleted, freeing up the agent. Because mechanisms are built into the algorithm

to ensure these types of cycles eventually converge to a solution (see Section 3.3.2

and 4.2.2) agents tend to rule out plans with relays. As such, the task assignment

trend reverses, and agents tend to perform more tasks which are less valuable as relay

incentive is hyper-inflated. The performance however is significantly lower than with

K,=1. This interesting behavior indicates that a proper balance must be struck for

distributed agents to cooperate, since forcing the cooperation by over-incentivizing

can have negative consequences.
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4.6.3 Comparing Planning Strategies

These experiments compare the different planning strategies discussed in this chap-

ter. Agents plan the mission considering (1) connectivity requirements only as was

performed in the original CBBA with Relays framework, (2) data-rate requirements

using real-world AODV routing protocol, (3) data-rate using optimal data routing,

and (4) both BER and data-rate requirements while using the motion planning strat-

egy to stay interconnected. To compare the planning effectiveness in supporting the

network, these experiments assume a deterministic communication environment with

no fading (UdB = 0). This assumption is removed in the subsequent experiments

discussed in Sect. 4.6.4 and sec:mccomest. The number of UAVs in the team in these

experiments is varied from 2 to 10.

Figure 4-9 shows the average total mission score using the different strategies. All

strategies exhibit similar performance for small counts of agents. However as the team

size grows, teams considering connectivity only, and not more accurate networking

dynamics, quickly overload the network with their plans. As can be seen in Fig. 4-10

(a), agents planning for connectivity only without stricter requirements attempt more

and higher value tasks. However Fig. 4-10 (b) shows these plans are too ambitious and

often not supported by the network (as low as 38.6% average supportability for teams

of 10 UAVs) which results in significant mission performance degradations compared

to other strategies considering data-rate.

The same three figures also show the impact of information routing on perfor-

mance. When information is routed optimally (in black) the team can make more

effective task assignments attempting slightly higher value and greater numbers of

tasks using the same overhead investment in relays. Real-world networking proto-

cols such as AODV lead to data-rate bottlenecks that limit the total throughput of

information, and in this case result in decreased mission performance. Most impor-

tantly, Fig. 4-10 (b) reveals a fundamental limitation of this overall communication

control framework. Since network prediction is performed at discrete task execution

times, as opposed to continuous time, the network is vulnerable to changes in rout-

94



1000 - -... -
0

CO)

0

.. -. -...... - .. -

5MT 3 4 5 6 7 8 9 10

Number of Mobile Agents

Figure 4-9: Mission performance for different connectivity planning strategies

" ConneiMty #Tasks Executed
_ - Data-Rate AODV

70 - - Data-Rate Optimal - -0
BER/Data-Rate

-Avg Task Value 0.8
60

0 4 -....-.---
W 0,

30 aODV~04
"- Data-Rat Optimal

BERIData-Rate

2 3 4 5 6 87 8 9 10
Number of Mobile Agents Number of Mobile Agents

(a) Tasks attempted and average value (b) Data-rate support success rate

Figure 4-10: Task assignment supportability for different planning strategies

ing caused by agents not active during this prediction (such as agents traveling to

tasks). When information is routed optimally, using centralized assumptions, plans

generated are guaranteed to be supported by the network because routing can be

balanced to account for these additional nodes (100% for optimal routing). However,

when using real-world routing protocols, the additional inactive agents unaccounted

for in the prediction may significantly change data routing, and create unanticipated
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bottlenecks even in a deterministic world. While network supportability and plans

are still good, with 98.4% average network support in the worst case, perfect perfor-

mance guarantees are not possible with this framework and real-world protocols such

as AODV.

Next, the experiment shows the performance of the system maintaining inter-agent

connectivity. Figure 4-11 (a) shows that teams not considering inter-agent BER re-

quirements spend significant amounts of time disconnected from one another during

the mission. However as the team grows, and the environment becomes more densely

populated with agents, this problem tends to decrease. On the other hand, if BER

is considered as a requirement in addition to connectivity or data-rate alone, and

inactive or traveling agents plan their motion properly, the team can maintain good

inter-connectivity performance (98.2% in the worst case for small teams, and 99.95%

with larger teams). Again, the framework cannot provide performance guarantees

since agents formulate task assignments without considering continuous time motion

based on other agents. A periodic connectivity strategy similar to that proposed in

[25] could be implemented to ensure the team is fully connected at the time of re-

planning. However, the framework does guarantee inter-connectivity of active agents

performing cooperative tasks. Figures 4-9 and 4-10 (a) also show that the added

inter-connectivity requirement further constrains the team to perform generally less

valuable tasks which results in lower mission scores.

Finally, Fig. 4-11 (b) shows the number of CBBA with Relays planning iterations

across the different planning strategies. Although planning iteration counts vary

greatly depending on the replan, the trends suggest that the algorithm converges

faster when information routing is not considered. Furthermore, as the number of

agents increases, the number of required iterations also increases. When using the

AODV protocol for data-rate consideration only, it takes an average 47 iterations of

the process described by Fig. 4-3 to converge on a solution given 10 agents and > 20

tasks.
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4.6.4 Varying Level of Planning Conservatism

In this next experiment, the level of planning conservatism is varied in a stochastically

fading communication environment (JdB -) Km from Eq. (4.10) varies across

each trial to provide between 50% and 99% confidence that predicted communication

links will support data-rate requirements. Each trial is executed with a team of six

UAVs, planning for data-rate only, using the realistic AODV routing protocol. Here,

agents are aware of communication parameters and therefore do not need to perform

estimation.

Results in Fig. 4-12 (c) show that even in a stochastic environment, the system

can achieve high network reliability by increasing its level of conservatism, or reducing

risk. This comes at a cost of performing fewer and lower value tasks closer to the base

which results in decreased mission score. As the level of conservatism is relaxed, agents

attempt more and higher value tasks and achieve higher scores despite more frequent

data-rate violations. This trend peaks at 80% conservatism, below which agents

become too careless in planning, and over strain the network with lofty goals resulting

in lower data-rate supportability and lower mission scores. It is further observed

when comparing these results with the previous experiment that adding uncertainty

in the communication environment significantly decreases system performance (here

a minimum 43.6% decrease in mission score for a team of six UAVs).
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4.6.5 Estimating the Communication Environment

The last Monte Carlo simulation evaluates the ability of agents to estimate unknown

and possibly changing communication parameters and adapt the planning strategy

accordingly (see Sect. 4.5). Two sets of trials are presented: (1) the communication

environment improves half way through the mission (a, UdB, No decrease 10%), and

(2) the communication environment instead degrades (a, adB, No increase 10%). The

missions are initiated using the baseline communication parameters listed in Table

4.1 with fading variance rdB = 2. Each trial is executed with a team of six UAVs

unaware of the communication parameters, planning for data-rate only using the

realistic AODV routing protocol.
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Figure 4-13 shows an averaged mission execution profile with three settings: (1)

agents have perfect up-to-date knowledge of the communication parameters (black

line), (2) agents estimate parameters (blue line), and (3) agents have perfect knowl-

edge of initial parameters but are unaware of the change (red line). The wavy shape

of the reward profile is a result of the 60s replan cycle, where after each replan agents

tend to travel to a new set of tasks leading to a temporary decrease in score. Results

clearly show the ability of team to estimate changes in the environment and adapt

the planning strategy to improve performance. In Fig. 4-13(a) the communication

environment improves at 300s allowing agents to achieve more tasks of higher reward.

Teams which do not adapt to this setting (red) maintain the original strategy and

marginally improve the rate of reward gain because of more successful communication

rates. On the other hand, teams equipped with perfect knowledge (black) adapt their

planning to be more ambitious which generates increased reward. Teams estimating

these parameters (blue) closely follow the trends obtained with perfect knowledge with

a short lag due to planning cycle, and clearly outperform teams which do not adapt.

Similarly in Fig. 4-13 (b) the communication environment degrades at 300s. Teams

which do not adapt degrade in performance because of increased network violations,

whereas teams with perfect knowledge propose more conservative plans and are able

to keep generating reward. Once again, the teams estimating these parameters are

able to closely follow the perfect knowledge case with a short lag, and outperform

teams which do not adapt.

4.7 Summary

This chapter presented methods to improve the CBBA with Relays algorithm by

considering realistic wireless communication dynamics and requirements. The orig-

inal framework introduced in the previous chapter only accounted for connectivity

between agents assuming a deterministic fixed communication radius. Here realis-

tic models for channel data-rate capacity and probability of messaging error (BER)

were introduced into the framework as real-world communication requirements. The
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data-rate requirement and protocol used to route information add an additional layer

of coupling between tasks in this already combinatorial task assignment problem. A

method to efficiently determine which tasks to prune from the network, and how

to greedily create relays for support was presented and tailored to different routing

algorithms. In addition, a method to jointly satisfy data-rate requirements as well

as agent BER inter-connectivity requirements was enabled with a small change to

the general planning strategy. Finally to overcome uncertainty in communication

performance, which is a common problem in multi-robot operations, an estimation

process of the wireless environment was incorporated. This allows teams to adapt

to changes and plan according to a desired level of conservatism. Four Monte Carlo

simulation experiments were conducted using this updated framework, and showed

(1) improved performance over the baseline framework from Chapter 3, (2) the abil-

ity to satisfy realistic communication requirements, and (3) effective estimation and

adaptive behavior in a changing communication environment.
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Chapter 5

Flight Test Experiments

5.1 Overview

This chapter presents a set of outdoor flight test experiments showing dynamic mission

planning for communication control of a multi-UAV team using CBBA with Relays.

The objective is to show operational proof of concept of the work developed. Previous

work has included an experiment using the CBBA with Relays algorithm conducted

for a team of unmanned ground vehicles in the controlled setting of the MIT Real-

time indoor Autonomous Vehicle test ENvironment (RAVEN) [93]. There are several

challenges and ultimately benefits to implementing a distributed multi-agent system

in an outdoor uncontrolled environment:

" Real-time operation: multi-agent distributed task allocation is a complex combi-

natorial problem. In outdoor flight testing, UAVs rely on real-time algorithmic

execution to operate effectively and safely, and cannot tolerate to simply wait

for the planning framework to reach a solution as it would in simulation.

" Imperfect environment: In simulation, vehicles behave according to modeled

dynamics which usually match those predicted by the planner. Outdoors, vehi-

cle dynamics may be different, are subjected to the environmental effects (wind,

gusts, etc...), and exhibit non-linear behaviors unaccounted for in the algorithm.

In addition, state estimates reported back to the planner include inaccuracies,
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delays, or may arrive less frequently. These imperfections can have surprising

effects on the system as discussed in the results of this chapter.

e System degradations: Systems operating outdoors are subject to uncertainties

and degradations. Communication degradations between UAV's and the base

station can significantly hinder the system from behaving as intended.

These factors must be considered in the design of an algorithm, and just as impor-

tantly must then be tested in an operationally relevant environment.

A number of outdoor multiple unmanned vehicle flight tests have been previously

executed, which examined target tracking and air-ground robot coordination [111,

112], movement of a heavy load [113], formation flight [114], forest fire monitor-

ing [115], and coordinated surveillance of a road [116] or a large ground surface

area [117]. Past experiments have even shown dynamic distributed task assignment

frameworks using market based algorithms similar in scope to the CBBA algorithm

discussed in Sect. 3.2 [118]. On the other hand, very few of the multi-agent network

communication control studies presented in Sect. 2.3 have performed field implemen-

tations of their work. In fact, authors in [34, 35] discuss the only known experiment

where multiple UAVs are autonomously controlled outdoors specifically to meet coop-

erative communication objectives. The work presented in this chapter is therefore the

only known implementation of a team of UAVs controlling network communication

through distributed task assignment.

Two sets of flight experiments are presented in this chapter. First, the original

CBBA with Relays framework was implemented and evaluated against the baseline

CBBA algorithm which does not consider connectivity, and the conservative CBBA

with Network Prediction strategy discussed in 3.3 (Experiment 1). Second, the im-

proved framework presented in Chapter 4 was flight tested to compare planning strate-

gies with more complex communication dynamics (Experiment 2.1) and evaluate the

ability to estimate the communication environment and adapt to changes (Experi-

ment 2.2). This chapter focuses on the implementation, test execution, and lessons

learned.
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5.2 Experimental Setup

This section describes the field test implementation of the multi-UAV architecture.

Flight testing was conducted at a military base to take advantage of the site's re-

stricted airspace. Operations took place in a large open remote area secure from the

public.

5.2.1 System Architecture

The flight test architecture in this experiment interfaces three key components as

seen in Fig. 5-1. The CBBA with Relays MATLAB framework shown in Fig. 4-3

serves as the center of the multi-vehicle system and is adapted to interface with other

components. This module operates on its own computer and manages the mission

scenario, executes the multi-UAV distributed planning algorithm, provides high level

UAV motion requests, and in Experiment 2 simulates the communication environment

against which the algorithm is evaluated. Simulated vehicles are replaced with a

submodule to read-in vehicle states and send command requests to assigned tasks

or for inter-connectivity motion control. A visualization interface leveraged from the

previous indoor test [93] is incorporated into the framework and modified to provide

operator feedback on the performance of the system (Fig. 5-2).

The MATLAB module is interfaced via a network hub with two other components

of the system operating on a separate computer: (1) the UAV high level autopilot

module, and (2) another operator station known as the Safety Monitoring Inter-

face (SMI). Both are discussed in the following subsections. Messages are exchanged

between modules using Lightweight Communications and Marshalling (LCM), a re-

cently developed protocol based on UDP multicast [119]. LCM replaces traditional

point-to-point UDP messaging by instead offering network communication channels.

Software modules on the multicomputer network can subscribe to these channels, and

post messages of specified format to send information, or listen on the channel and

capture messages as they come in. This protocol as implemented mitigates the need

to rebroadcast failed message exchanges, and allows multiple modules to simultane-
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Figure 5-1: CBBA with Relays flight test architecture

ously access posted information. In this case, two sets of channels are created to pass

UAV state information and send out waypoint command requests.

5.2.2 Quadrotor Unmanned Aircraft

The UAVs used in this experiment consist of three Ascending Technologies Pelican

Quadrotors shown in Fig. 5-3(a). Each vehicle weighs 2.5 lbs and electrically powers

four rotors using a 5000 mAh LiPo battery for flight endurances of up to 18 minutes.

These aircraft are ideal for this type of research because of their ability to hover, to

accurately track waypoints even in windy situations, their simple mechanical design,

low footprint, and their relative ease of operation. Each quadrotor is capable of GPS

waypoint navigation while communicating with the Ground Control Station (GCS)

using a Digi-Mesh XBee 2.4 GHz radio module. These aircraft nominally travel at

speeds of 5 - 8m/s and are set to achieve 2.5m waypoint accuracy. A C++ module

developed for this experiment runs on the second computer of the architecture to

interface with the vehicle in flight. This high level autopilot module requests state

information from the vehicle using manufacturer libraries, converts and posts the

information on LCM, and formats command requests from the planner into waypoints

sent to the vehicle. A separate instance of this module runs for each quadrotor in
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operation. Despite their ability to operate autonomously, each vehicle is actively

monitored by a safety pilot responsible for takeoff, transition to autonomous flight,

and landing. Once the mission is initiated however, the UAVs are in full autonomous

control, and safety pilots only intervene to avoid hazardous situations.

5.2.3 Safety

The Safety Monitoring Interface (SMI) was developed by Aurora Flight Sciences

specifically for another flight test campaign described in Chapter 6. The purpose of

the SMI is to allow an additional safety operator to monitor the health and status of

the UAVs during the experiment, as shown in Fig. 5-3(b). The interface displays a

moving map of the vehicles and information such as battery voltage, speed, altitude,

GPS, and communication link strength which is color coded to quickly highlight

hazardous states. The SMI operator can radio information to the safety pilots for

situational awareness or manual takeover. In addition, the SMI has the ability to

105

100 20 330 400 Si (s00

Time (s)



(a) Ascending Technologies Quadrotor

Figure 5-3: Flight test systems

disconnect a vehicle from the mission to prevent a vehicle from receiving unwanted

waypoints. This functionality is discussed further in Chapter 6.

5.3 Experiment 1 - Original CBBA with Relays

The first series of outdoor experiments implemented the original CBBA with Relays

framework in flight test. More information about the algorithms in this section is

provided in Section 3.3.

5.3.1 Test Scenario

In the first test, the mission scenario consisted of gathering information in the envi-

ronment using a team of three Pelican quadrotors. The communication radius RcoMM

of the UAVs was set to 30% of the flight arena size, which was 300 x 200 x 50m. To

account for potential positional inaccuracies of the quadrotors (nominally > 2.5m) a

5m buffer was imposed on RcoMM for planning only. This generated slightly more

conservative plans, but added robustness in the outdoor environment. In the sce-

nario, an area of greater information interest was designated at distances greater

than RCOMM from the base station, and occupied half of the flight arena (designated

as High Priority Area in Fig. 5-4). Information gathering tasks were then randomly
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Figure 5-4: Flight testing the CBBA with Relays framework

created with uniform distribution across the flight arena. Each task consisted of a

location, altitude, and time window of validity for a UAV to fly to and take an ob-

servation. Tasks inside the area of greater interest were set to yield between 7.5 and

10 times more reward than tasks outside that area, based on the distance from the

base. This incentivized execution of these tasks even though they required a relay to

stay connected.

Three 10 minute missions where executed each using different planning strategies:

(1) baseline CBBA with no consideration for network connectivity, (2) the conserva-

tive CBBA with Network Prediction which drops tasks leading to disconnects, and (3)

CBBA with Relays which cooperatively plans to maintain connectivity using relays.

In each set of flights safety pilots performed a manual takeoff and climb to altitude.

Then the UAVs were handed off to the autonomous distributed planning framework

and sent on task executions. Finally the UAVs were recovered by the safety pilots

after the mission for landing.
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5.3.2 Results Flight Experiment 1

Each mission was first performed in software simulation, and then executed in outdoor

flight test. Figure 5-5 shows the results of the experiment. The mission score plot

is a profile of the cumulative reward as the mission progresses. The reward varies

as tasks are executed and fuel is consumed traveling to the task locations. Stronger

connectivity is achieved using the two strategies which account for this communication

constraint. CBBA with Relays has the highest performance when comparing mission

scores since agents cooperate to accomplish valuable tasks in the search area and relay

the information to the GCS. The baseline CBBA strategy has the lowest performance

since agents consume energy to travel to tasks for which they receive no reward.

The plots also indicate that the simulation results follow the same trends as the

hardware results. This demonstrates that the algorithm is capable of operating dur-

ing the mission execution and can overcome elements of communication drop outs

and erroneous state estimates from the vehicles flying outdoors. Two effects were

observed in the field which had not been captured in simulation. First, each replan

in this implementation took significant time (up to 20 seconds in some instances).

In simulation however, time stops during replans and therefore the vehicle positions

remain the same as the plan converges. During flight tests, vehicles continued to

navigate during the planning phase, and could therefore reach a configuration intro-

ducing flaws into the plan by the time it converged. Second, the actual velocities

of the vehicles differed from what was predicted in planning which would result in

arrival times different than predicted in planning. In one such instance, a UAV actu-

ally reached a task ahead of the predicted time and therefore started it early. Once

finished, it moved on early to the next task, allowing another task dependent on it

at the predicted time to disconnect with the CBBA with Relays algorithm. The les-

son learned from this event resulted in a fix in the algorithm which forces agents to

wait until the predicted time to start their tasks in order to maintain the planning

schedule. Overall six successful sorties involving three quadrotors where executed to

successfully integrate and collect data in this experiment.
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Figure 5-5: Flight test results of CBBA with Relays algorithm

5.4 Experiment 2 - Updated CBBA with Relays

The second series of outdoor experiments implemented the updated CBBA with Re-

lays framework in flight test. More information about the algorithms in this section

is provided in Chapter 4.

5.4.1 Test Scenario

The second test was executed in an arena of the same size, and also consisted of an

information gathering mission with three quadrotors. This test did not designate an

area of interest, and instead tasks linearly increased in value based on distance, from 0

at the base station, up to 100 at the furthest distance. The same RCOMM was used to

define the information data-rate required to support tasks ftask, as well as threshold

bit-error-rate BERthresh, similar to the Monte-Carlo simulations setup in Sect. 4.6.

Again, a 5m buffer on RCOMM was accounted for in link capacity, BER, and routing

predictions in planning for robustness to inaccuracies in the outdoor environment.

Following lessons learned from the first flight test, the fix was implemented to force

agents to wait until predicted time to start a task, and the MATLAB code was

optimized to generate plans in 1 to 4s.

Four 10 minute missions where executed. The first three, in Experiment 2.1, com-
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pared different planning strategies considering different communication requirements:

(1) connectivity only as done in the original CBBA with Relays algorithm, (2) data-

rate with the modeled AODV information routing protocol, and (3) both inter-agent

BER and data-rate with AODV simultaneously. During these three missions, the

communication environment was deterministic and did not include stochastic chan-

nel fading. The Linear Program optimal routing protocol proposed in Sect. 4.3.2 to

evaluate performance upper-bounds was slightly too slow to safely operate in real-

time flight test. For the fourth flight test, in Experiment 2.2, stochastic fading was

introduced. Agents were unaware of communication parameters and had to perform

real time estimation during the mission to plan effectively. For this test alone, RCOMM

(which does not include fading) was set to 50% of the flight arena, and agents planned

at an 84% level of conservatism.

5.4.2 Results Flight Experiment 2.1

Results in Figs. 5-6 and 5-7 compare the planning strategies for the first three flights.

All three strategies are also compared to their respective performance predicted in

simulation. Results first show that the two strategies planning to meet data-rate

requirements outperform the original CBBA with Relays algorithm which results

in frequent link capacity overloads and missed reward. In addition, the green line

in Fig. 5-7(b) indicates that the framework successfully maintains interconnectivity

between nodes through relay placement and using motion control, as opposed to the

two other strategies.

Results not plotted here also indicate that all three planning strategies achieved

100% connectivity throughout mission execution as a result of lessons learned from

the first flight test. Interestingly though, results in Fig. 5-7(a) reveal three instances

of overloaded capacity using the two strategies which specifically plan for this re-

quirement (each step up in the graph represents a separate event). These were not

predicted in simulation, and were the result of the opposite phenomenon from the

first flight test. In all three instances, an agent traveled slower than predicted due to

head wind and arrived at its task late. In each case the task was still in its window of
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validity and agents started late anyways. Shortly after, other agents start other tasks

which had not considered the late task still being active during network prediction

in planning. This led to the three unpredicted overloads which were directly respon-

sible for reducing the mission score in data-rate and joint BER/data-rate planning

strategies compared to their simulated runs. Different solutions are proposed to fix

this issue, but need further evaluation: (1) the planner could use more conservative

velocities in planning, (2) network predictions could include time window buffers to

account for possible task delays, and (3) agents could be forced to stop executing

or not execute a task and stay put in the event of a late arrival. Overall though,

the results show the algorithm generally works well and as intended, and improves

the performance of the multi-UAV team subject to more realistic communication

requirements.

Finally, the results in Fig. 5-6 show that the mission considering connectivity only

(blue) actually outperformed in mission score the value predicted in simulation, de-

spite running the same scenario. The difference stems again from model inaccuracies

in the simulator compared to real-world dynamics. Because quadrotors were actually

in different locations in flight than in simulation at any given time, agents proposed a

slightly different set of bids in the task allocation, which sent them on different paths,

and then changed the outcome of the mission (here for the better). This behavior

calls for repeated trials for such experiments, which unfortunately was not possible

here due to limited resources.

5.4.3 Results Flight Experiment 2.2

Results in Figs. 5-8 and 5-9 show the system performance during the mission and

compares it to predictions in simulation. In Fig. 5-8(a) there is a noticeable mission

score performance difference between simulation and flight test. The reason for the

difference can be attributed again to differences in predicted versus actual arrival

times at the tasks. In this experiment agents experienced significant delays due to

wind, and arrived late to six of the tasks during the mission. On two occasions, the

delays were enough to make the task invalid and therefore force assigned agents to
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Figure 5-6: Outdoor flight test mission performance comparison using three different
planning strategies

skip on to the next item on their list. As such, UAVs incurred cost for a plan they

could not realize in time. In fact in one of these instances, a second UAV served

as relay for the delayed and skipped task which incurred travel costs for two UAVs

without the expected high reward. Clearly this indicates the planning velocity of

4m/s was too high for these conditions and should be reduced. It also reveals small

changes in weather conditions, even over the course of one day, can have a significant

performance impact if the system is operating near its capability limits.

On the other hand Figs. 5-8(b) and Fig. 5-9 indicate that the UAVs were suc-

cessfully able to estimate the communication parameters throughout the mission and

adapt plans accordingly. Here the number of network overloads follows the same

trends as in simulation, and the estimates adjust rapidly to the sudden 10% param-

eter degradation in the environment at 320s in the mission. The time to detect 90%

of the change (too) and mean tracking error (s) of new values o-dB and ~YdB (per-
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Figure 5-7: Outdoor flight network control performance comparison using three dif-
ferent planning strategies

Table 5.1: Communication Estimation Performance in Flight Test

Parameter 'ydB t 90 % TYdB e 0 dB t 90 % 0dB E

Simulation 61s 4.8% 11.8s 0.8%
Flight Test (t < 550s) 52.3s 6.5% 19.1s 1.0%
Flight Test (t ;> 550s) N/A 49.0% N/A 8.1%

formance predicted for 100m estimated on a Is cycle) are listed in Table 5.1. A

significant erroneous deviation in estimates can be seen in Fig. 5-9 during flight test

at 550s. Here 2 UAVs became positioned very close to one another due to randomly

generated and assigned tasks. This small distance created a singularity in the SNR

samples generated by the small team which led to the degraded estimate. In future

implementations these values can be identified and filtered out prior to the estima-

tion. Despite these challenges, the results from Experiment 2.2 show the team was

successfully able to estimate and plan adaptively in real-time flight test, and therefore

shows initial proof of concept for this method. Experiment 2 overall consisted of six

total missions with three UAVs, two for implementation, and four for execution.
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Figure 5-8: Uncertainty and adaptive planning in flight test

5.5 Summary

This chapter presented outdoor flight tests to perform real-time dynamic task allo-

cation while planning to control network communications for a team of UAVs. The

objectives of the flight test were to show concept feasibility through (1) real-time

operation and (2) robustness to uncertainties and imperfections of an uncontrolled

outdoor environment. The CBBA with Relays frameworks was adapted to interface

with three Pelican quadrotors as well as a flight test safety monitoring interface. In a

first set of experiments the original CBBA with Relays algorithm from Sect. 3.3 was

flight tested and showed similar performance trends to those predicted in simulation.

It also validated in flight that cooperative planning with relays out performed other

non-cooperative strategies. A network disconnect was observed however using the

algorithm, and was due to agents traveling faster in flight than predicted. This lesson

learned was incorporated as a fix in the improved CBBA with Relays framework and

tested in a second set of flight experiments. With it, agents outperformed the original

algorithm by planning considering realistic network dynamics to meet data-rate and

BER interconnectivity requirements. The ability to perform real-time estimation of

a simulated communication environment and use that information for adaptive task

allocation planning was also successfully validated in flight.
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Figure 5-9: Estimation of simulated communication environment in flight test

During the second set of tests the opposite phenomenon from the first set was

observed and agents this time traveled slower than predicted. This led to three un-

predicted instances of network capacity overloads, two tasks being canceled due to

delays, and resulted in lower mission performance than predicted in simulation. Over-

all results from these flight tests and the discrepancies identified, motivate the need

for further field testing to validate planning algorithms. In addition, they highlight

the importance of including robust planning strategies [107] to understand and mit-

igate the risk of unachievable plans. The next validation step required for this work

is to incorporate actual networking modules onto the vehicles and execute planning

based on their measurements.
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Chapter 6

Decentralized Multi-UAV Control

Under Human Supervision

6.1 Motivation and Overview

This thesis chapter includes work which was presented as a co-authored research

paper [54, 120, 121]. Andrew Clare, Olivier Toupet, Jonathan P. How, and Mary

L. Cummings are acknowledged for their contributions to this paper as well as the

technical work described in this chapter.

Here focus shifts to provide the results of a multi-UAV flight test campaign with

a control framework and mission scenario relevant to the work in previous chapters.

Even though effective network communications control is paramount for a multi-

vehicle system to operate properly, a number of other challenges must also be ad-

dressed in order to field such a system. These include dynamic resource allocation

of a possibly heterogeneous UAV team as discussed the Chapter 3. Next, path plan-

ning is needed not only to route vehicles to their assigned tasks, but also maintain

safe separation from ground obstacles and other moving vehicles. Effective human

supervision is critical to make high-level execution decisions to ensure the mission is

carried out as intended. Finally, this concert of elements must be robust to opera-

tional uncertainties which include hardware failures, degraded communications, and
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imperfect sensor measurements, in order to ensure objectives are properly and safely

met.

This chapter presents the outdoor flight test implementation and results of a

multi-UAV system supervised by a human operator and designed to address the above

considerations. The system was tested in an operationally relevant scenario based on

recent military interest in implementing Cargo UAVs in theater [122]. The mission

consisted of the team surveying an area, identifying, tracking, and neutralizing hostile

ground targets, then safely routing a Cargo UAV to and from its designated resupply

point. Three quadrotors and one fixed-wing UAV were flown during the test. Real-

time task allocation was performed in a decentralized framework using the Consensus

Based Bundle Algorithm (CBBA) (see Sect. 3.2). Decentralized path planning was

then conducted through receding horizon planning and a hierarchical approach for

collision avoidance. A multi-vehicle control human interface was designed to allow

an operator to control the mission execution by designating tasks and approving

plans generated by the autonomous planner. Tools were incorporated in the overall

framework to enable the system to overcome failures and operational degradations,

and ensure the mission could still be carried out with degraded capability. A total of

14 outdoor multi-UAV missions were conducted using this system, and demonstrated

that the framework overall performs well in its intended implementation. The results

and lessons learned from adapting this multi-year laboratory research effort in an

operational field experiment are relevant to the overall cooperative control research

community and further support the need for effect network communication control in

multi-UAV systems.

6.2 Background Information

6.2.1 Related Research

To enable a human operator to control multiple UAVs, a significant level of team

autonomy is required to alleviate the workload of flying and navigating an aircraft.
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Numerous methods have been explored to allow autonomous multi-unmanned system

collaboration. Section 3.1 presented different techniques developed to allocate differ-

ent mission tasks to a team of agents in either centralized or decentralized control.

Many of these studies also included methods of path planning, which is often coupled

with the task assignment. While these frameworks and many others in literature

provide various methods for UAVs to cooperate, most of these approaches rely on an

autonomous scheduler with little to no human input for the task assignment.

The user community however recognizes the importance of maintaining human

control in operating unmanned systems [123, 124]. As such, the study of human su-

pervisory control has also received significant attention in recent years. For instance,

Ref. [125] explores how changing the level of system autonomy affects the performance

of a human operator controlling multiple UAVs. Furthermore, while it is recognized

that these operations require the computational capability of optimization algorithms

to coordinate unmanned system teams, a number of studies have shown that humans

collaborating with algorithms can achieve higher performance than the algorithms

alone [126, 127]. Lessons learned from previous work was therefore used to design the

human-computer interface to most effectively balance the roles of the human operator

and the automation [128].

Several outdoor flight tests have been previously executed with fully autonomous

algorithms to coordinate UAVs. These are listed in Sect. 5.1 and include the ex-

periments in the previous chapter. Others have designed systems where the human

operator can guide the team of heterogeneous unmanned vehicles with the assistance

of a centralized planning system [129, 130] and a distributed planner [118]. This work

presents novel contributions in three areas. First, the system demonstrates the ability

to conduct an outdoor cargo resupply mission, including surveillance of the landing

site and autonomously selecting a clear path to the target considering potentially

hostile targets that were detected on the ground. Second, the system in this work

utilizes a decentralized control architecture that can conduct dynamic re-tasking in

real-time in order to plan for a variety of tasks including surveillance, target track-

ing, simulated target engagement, and cargo resupply. Third, the system enables
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the human operator supervising the team of vehicles to guide the system at a high

level, without requiring manual vehicle control but while maintaining the operator's

situational awareness of the mission. The operator collaborates with the planning

algorithm to generate effective schedules for the vehicles, monitors the health of the

vehicles, creates and prioritizes tasks, and identifies objects in imagery captured by

the vehicles.

6.2.2 Cargo UAV Application Scenario

The Department of Defense has recently been involved in rapid fielding efforts to im-

plement Cargo UAV technology in theater. The intent is to provide "time-sensitive"

logistical support to troops in forward locations and mitigate the need for ground

convoys which are subject to the hazards of ambushes and improvised explosive de-

vices [122]. The DoD announced the first operational use of a Cargo UAV to resupply

a forward combat outpost in Afghanistan in January 2012 [131]. In order to provide

operational context to the research, the scenario created for this experiment consisted

of supporting a Cargo UAV resupply mission using the multi-UAV framework.

The objective in the scenario is to provide aerial reconnaissance, enemy suppres-

sion, and safe routing support for the Cargo UAV (CUAV). The multi-UAV team

consists of four heterogeneous agents. First, one Weaponized UAV (WUAV) serves

as a surrogate for a Medium Altitude Long Endurance UAV with ISR and strike

capabilities such as the MQ-9 Reaper. Second, two Sensor UAVs (SUAVs) are sur-

rogate small tactical UAVs which provide low altitude high resolution imagery for

target classification and precision targeting. Finally the fourth agent is the CUAV

which has no defensive capability and is only used to resupply designated areas. To

accomplish the mission, the WUAV must first scout the area around a resupply point

to locate possible ground targets (scout task). Search tasks are then created to send

SUAVs to image located targets for classification. Hostile targets must be suppressed

and require the WUAV to collaborate with a SUAV to obtain coincident precision

targeting data during a simulated strike (destroy task). A battle damage assessment

task is then carried out by a SUAV to confirm the kill. Targets with unknown intent
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need to be tracked by SUAVs, and friendly targets can be dismissed. Once the area

is safe, the CUAV needs to be routed on the shortest safe path away from potentially

hostile targets to complete its resupply.

This task based scenario is very similar to the one originally introduced in Sect.

1.2. The difference however are: (1) the tasks here are more specific in type and are

only compatible with certain UAVs, (2) the tasks are not encoded as time sensitive and

remain valid unless the human operator cancels them, and (3) the scenario assumes

perfect communications and therefore does not create relay tasks.

6.3 Flight Test Architecture

6.3.1 High Level View

A key objective of the framework is to adequately balance the roles of the human

operator and the automation controlling the multi-UAV fleet in order to achieve the

best mission performance. In general, computer automated planners are capable of

rapidly handling complex computations to optimize task allocation far better than

humans. However, the algorithms they rely on are unable to process variables which

were not identified in the design process unlike a human [132]. Furthermore, certain

functions of the system, such as launching a weapon, may only be authorized by a

human operator due to socio-technical reasons.

The multi-UAV human-supervised system consists of multiple integrated modules,

each responsible for a certain aspect of the system function as shown in Fig. 6-1.

The human operator supervises the system from the Ground Control Station (GCS)

through the Human Interface (HI). Here the operator monitors the progress of the

UAV assets, defines and prioritizes missions tasks (search, track, etc...), and classifies

targets based on UAV sensor observations. A centralized task planner is embedded

in the HI to propose different optimized plans to the human for review. The operator

can either modify inputs and request a new plan, or approve the proposed one, which

distributes the approved tasks to the UAVs. Agents then perform a decentralized
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Figure 6-1: High-level architecture of decentralized multi-UAV system with human
supervision

task allocation routine to optimize real-time execution of the approved plan in the

dynamically changing environment. The decentralized task planning architecture

retains the benefits for a multi-agent system discussed in Sect. 3.1. Once they reach

consensus on a plan, each UAV plans its trajectory to accomplish the tasks and avoid

obstacles and other UAVs. The trajectory is formulated as a set of waypoints, which

are communicated to the vehicle autopilot for low-level control. Observations and

data generated by the decentralized UAVs are sent to the GCS and displayed in the

HI. This framework was developed jointly between the MIT Aerospace Controls Lab,

the MIT Human and Automation Lab, and Aurora Flight Sciences.

6.3.2 Planning

The Onboard Planning Module (OPM) for each UAV (see Fig. 6-1) is responsible for

both task allocation and path planning. Decentralized task allocation planning is per-

formed using the Consensus Based Bundle Algorithm (CBBA) previously discussed

in Sect. 3.2. The scores for the tasks used in the algorithm are based on human op-
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erator inputs of task prioritization ("high", "medium", or "low"). In addition, since

the routine is executed in a fleet of heterogeneous UAVs with different capabilities,

the different types of tasks in the mission scenario (see Sect. 6.2.2) are appropriately

encoded so that only compatible UAVs may place bids on them. Once the algorithm

converges on a set of assignments, vehicles turn to their decentralized path planners

to compute their flight paths.

Two different algorithms enable the UAVs to autonomously plan their routes

in the environment. One algorithm is used to find the path that maximizes the

probability of discovering a target when searching a given area (used for search and

scout tasks). This algorithm is based on a decomposition of the environment into

cells and a breadth-first tree search technique [92] over a limited, receding planning

horizon, as illustrated in Fig. 6-2. The cells are used to represent, in finite dimension,

the probability distribution of the target's estimated location and the obstacles in the

environment (both static, e.g. trees, and dynamic, e.g. other UAVs). The probability

distribution and location of the moving obstacles are updated periodically as new

information is collected during the mission, prompting a dynamic replan of the vehicle

trajectories. In order for the vehicles to coordinate their paths and ensure collision

avoidance in a tractable manner, a simple hierarchy scheme was implemented: each

UAV plans its path around the trajectories of the UAVs of higher priority.

The other algorithm is used to find the shortest path from the current location of

the vehicle to its desired destination and is used to bring the UAVs to their recharge

stations, resupply location, targets to be tracked, etc, in minimal time. This algorithm

relies on the same decomposition of the environment and the well-known Dijkstra's

algorithm [92]. The same hierarchical approach is used to ensure collision avoidance

among the UAVs.

6.3.3 Human Supervisory Control

Operator overload is mitigated by controlling the multi-UAV team at a goal-based

level instead of at the level of individual vehicles. While the autonomous planners

provide rapid solutions through complex computations, human management of the
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Figure 6-2: Receding-horizon path-planning based on a grid decomposition of the
environment.

UAVs is paramount as autonomous algorithms do not always generate accurate so-

lutions in the presence of unknown variables [132]. This is particularly important

for a field implementation, as will be discussed in the lessons learned section, since

the UAVs are subject to increased levels of uncertainties and system failures. Fur-

thermore it is typically infeasible to obtain an "optimal" plan in a rapidly changing

environment through a hard-coded objective function, in which case a human can

help by guiding the automation to improve performance [128].

The HI in this framework enables the operator to supervise the progress of the

mission, maintain situational awareness, and interact with the planning algorithm

to improve overall mission performance [133]. The interface features a moving map

showing the location of the vehicles, detected targets, tasks, and the environment

(Fig. 6-3 (a)). The operator guides the planning process by creating and prioritiz-

ing tasks directly on the map. During execution, pop-ups prompt operator input

for target classification, approval to launch a weapon, and battle damage assessment
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Figure 6-3: Human Interface

confirmation, which further guides the autonomous planner. The Schedule Compar-

ison Tool (SCT) (Fig. 6-3 (b)) embedded in the HI runs a centralized version of the

CBBA algorithm to allow the operator to rapidly assess the performance of different

plans based on different task priorities. The plan approved in the SCT does not al-

locate associated tasks to the UAVs, but instead distributes those tasks to the UAV

team to execute decentralized planning. In other words the centralized planner used

by the operator predicts what the task assignment will be, but the actual decentral-

ized assignment for those tasks may be different. This element of the design is key

since the operator is focused on supervising the mission at a high level, and is less

concerned with lower-level actions such as task hand-offs, refueling, etc. The decen-

tralized planner enables the UAVs to rapidly adapt to the dynamic environment using

local situational awareness to optimize execution of the operator's intent.

6.4 Flight Test Implementation

This section describes the field test implementation of the multi-UAV architecture.

Flights were conducted at the same site as tests described in Chapter 5 (see Fig. 6-4).

The area of operation was limited to 400m x 400m x 50m.
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Figure 6-4: Team of four UAVs

6.4.1 Systems

Figure 6-5 illustrates the architecture implemented for flight testing. The heart of

operations was the Ground Control Station (GCS) located inside the MIT command

center van. The GCS housed every component of the system except for the UAVs and

targets used in the scenario. Small research grade UAVs were used for this test. The

twin tilt-rotor, fixed wing, Aurora Flight Sciences Skate UAV was used as an unarmed

surrogate platform for the Weaponized UAV in the mission scenario (top left of Fig. 6-

5). The Skate takes off vertically, weighs 2.5 lbs, is electrically powered, and has a 60

minute endurance. It is a equipped with a Digi-Mesh XBee Pro digital wireless module

for command and control. The same Pelican quadrotors introduced in Sect. 5.2 were

used as platforms for the Cargo UAV and Sensor UAVs in the mission scenario. Each

Pelican was slightly modified to be equipped with a downward looking electro-optical

640x480 NTSC video camera and a 5.8 GHz analog transmitter for live full-motion-

video (see Fig. 5-3 (a)). Due to the small size of the UAV's, "onboard" computing for

task allocation and trajectory planning was actually performed on the ground. Each

UAV was assigned a dedicated computer located in the GCS to perform onboard

functions. These separate computers maintained the intended distributed framework
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Figure 6-5: Flight test system architecture

and are a notable difference in implementation than the more simple single computer

framework described in Sect. 5.2. Waypoints computed as part of the trajectory were

then communicated to the vehicles autopilots while in flight.

The Safety Monitoring Interface (SMI), also discussed in Sect. 5.2, was imple-

mented into the framework. Messages were passed between the HI, SCT, SMI, and

UAV planning modules using the same LCM protocol.

The targets during the test consisted of Pioneer 3 Unmanned Ground Vehicles

(UGV), a manned car, and fixed position objects. Targets were equipped with a large

colored platform for the operator to perform visual recognition and classification using

the UAV video sensor (Fig. 6-6). The system assumes targets are autonomously de-

tected by the UAVs if they enter the sensor field-of-view (FOV). Since that capability

was beyond the scope of this research, it was simulated by equipping the targets with

GPS and XBee modules to communicate their position to the GCS (locations were

not shown on the HI). A sensor module computed the sensor footprints by projecting

the FOV using aircraft attitude obtained from telemetry. It then identified instances

where sensor footprints overlapped a target location to trigger a detection.
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(b) Target classification in HI

Figure 6-6: Targets used for during field test

6.4.2 Health Monitoring and Management

As discussed in the previous chapter, outdoor flight testing adds many elements of

uncertainty and complexity in operation which may not be recognized in a controlled

laboratory environment. Outdoors, UAVs travel faster and farther, and are influenced

by wind, gusts, and degraded wireless communications which the autonomy was not

programmed to consider. State estimations provided by GPS and IMU measurements

are less reliable and can be delayed or reported less frequently, which affects the task

and trajectory planners. The system is overall more prone to failure. This uncertainty

and its impact on the planning system is, of course, one of the main reasons for testing

outdoors. Thus the design philosophy adopted was to develop tools to enable the

system to maintain mission effectiveness despite degraded capability.

A high level health monitoring system was embedded in the HI to alert the op-

erator of UAV health issues, such as degraded communications or GPS tracking.

Additional feedback was provided by observing the vehicle behaviors on the map. On

occasion, vehicles failed to track waypoints or certain conditions caused the planning

algorithms to rapidly alternate (or "churn") between plans, as will be discussed later.
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If a UAV was found to be degraded or its behavior was affecting mission performance,

the HI operator could issue a "pause" or "disable" command. The pause command

holds the UAV at its current position and temporarily removes it from the task al-

location routine so that other agents can accomplish its tasks. This could then be

reversed if the degraded health improved. The disable command performs a similar

function, but instead permanently removes a clearly inoperable UAV so that it can

be replaced by a spare during the mission.

The Safety Monitoring Interface (Fig. 5-3) was implemented separately from the

HI to avoid overwhelming the operator with both supervising the mission and mon-

itoring low-level health information for each vehicle. This interface allowed an ad-

ditional test safety monitor to coordinate low level critical health information with

the four UAV safety pilots. As will be discussed later, the health monitoring tools

on both the HI and SMI played a critical role in field testing this system. While this

implementation used a second human operator for the SMI, this process could also

be automated [134].

6.4.3 Typical Mission Execution

Flight tests were executed according to the cargo UAV mission scenario described

in Sect. 6.2.2. UAVs started on the ground and as tasks input by the HI operator

got assigned to them, the SMI operator would instruct the safety pilots to manually

takeoff, climb to altitude, and turn the vehicles over to the planning system. Missions

began with a desired cargo UAV resupply point and the HI operator designating a

scouting area around it for the WUAV to locate potential targets. As the WUAV

scouted and its sensor footprint overlapped targets, detections were triggered and

displayed on the map (Fig. 6-3 (a)). The operator could then create local search

tasks around the detections for a SUAV to take a closer look. If the SUAV detected a

target during the search, it sent an image to the operator for classification ("hostile",

"unknown", "friendly") and prioritization (Fig. 6-6). For hostile targets, a destroy

task was created which led the WUAV and a SUAV to coordinate through the task

and path planning algorithms to engage. Once the WUAV was in position to release
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its weapon (simulated in this test), it sought operator approval to fire. Then a battle

damage assessment task was automatically created and assigned to a SUAV to send

another picture of the target for the operator to confirm the kill. Targets classified

as "unknown" created persistent tracking tasks, and "friendly" targets required no

further action. Once the operator determined the area to be safe for the CUAV,

a resupply task was created, and the trajectory planning algorithm generated the

shortest path to the objective while treating unknown and hostile targets as dynamic

obstacles to avoid. If refueling was required during the mission, as was often the case

with the quadrotors, the vehicle automatically flew back to its starting location where

the safety pilot regained control, landed manually, swapped the battery, and returned

the UAV to the mission.

6.5 Flight Test Results

A thorough sequential build-up approach was used to ramp up the multi-vehicle

experiment. It consisted of a series of simulations in the lab, numerous single vehicle

integration flights, and discrete event flight test scenarios of increasing complexity and

number of UAVs. Once operational, a total of 14 missions were conducted with three

or four UAVs being controlled collaboratively by the HI operator and the automation.

This resulted in a total of 16 hours of logged small UAV flight, and 83 aircraft sorties.

Data collected from modules in the framework was logged for post process analysis.

This section describes some of the challenges encountered while operating outdoors,

the measured system performance, and overall lessons learned from this exercise.

6.5.1 Challenges and System Robustness

A key objective of the design was to enable the system to overcome some of the fail-

ures inherent to complexities of outdoor flight testing, and to show that the system

could complete the mission even with degraded capability. Different types of system

degradations were indeed observed in the field. First, UAVs occasionally failed to

track waypoints or altitude due to errors in the autopilot, and required a safety pilot
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Table 6.1: Summary of Failures during Trials

Type of Failures Pauses Disables
Altitude Tracking 3 0
Waypoint Tracking 2 4
Communications 1 2
Algorithmic Churning 3 0
Hardware 1 1
Total 10 7

to temporarily take over. Second, communications were often degraded due wireless

channel dynamics described in Sect. 2.1.2, and resulted in delayed or denied messag-

ing between vehicles and the GCS. Third, algorithmic churning was observed in task

allocation and trajectory planning, as will be discussed later, and led to degraded

team performance. Fourth, two occasions of hardware failures were observed when

quadrotor motors ceased in flight. Despite these complications, 13 of the 14 missions

attempted were successfully completed which can be attributed to the implementation

of health monitoring and management tools discussed previously. The one unsuccess-

ful mission was due to a software error in the framework, which was subsequently

corrected. Table 6.1 lists the types and numbers of failures which occurred during

the 14 trials and the steps taken for each occurrence.

Several occasions of "churning" were witnessed during flight testing. Churning

occurs when the automated planner rapidly switches back and forth between two

or more plans. This can significantly degrade the team performance as agents will

not commit to carrying out their plans. In flight testing, imperfect state estimate,

inaccurate waypoint tracking, and non-linear behaviors contributed to churning in the

planning of both task allocation and flight trajectories. For instance, the task planner

initially assumed a linear discharge of vehicle batteries to predict if there was sufficient

charge to take on a task or if the UAV should instead recharge. In reality, discharge

was nonlinear as voltage would suddenly drop, plateau, and even rise because of

vehicle maneuvers and gust stabilization. Several instances were therefore observed

where agents would take on a task, then release it to another agent to go refuel,
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and then get re-assigned to it and so forth (see Fig. 6-7). On one occurrence, this

-type of churning repeated for over three minutes where the UAVs involved did not

accomplish anything. Initially the human operator had to override the autonomy by

"pausing" one of the problematic vehicles. Later a fix was implemented by ignoring

the battery discharge rate and detecting a set threshold voltage value below which

agents would be forced to go refuel once and for all. This simple solution fixed the

churning problem and resulted in higher system performance. More accurate energy

consumption models may provide a more elegant solution to better consider refueling

requirements in task allocation.

Churning was also observed in decentralized trajectory planning mostly due to

imperfect waypoint tracking, weather elements, inaccurate state prediction, and de-

layed positional reporting due to degraded communications. Vehicles would some-

times plan a path around one another one way, then transition into a state where

another deconflict-ed path was more optimal, and therefore plan to go around each

other another way (see Fig. 6-8). This process could repeat itself several times causing

delays in the vehicles reaching their destinations, frustration for the human operator,

and occasionally changes in the task assignment. In general, trajectory plan churning

was always resolved by the autonomy and did not interfere as much with mission

execution as the task allocation churning phenomenon. Several solutions exist to re-

solve this type of issue, such as deconfliction limited to altitude only, slower replan

rates, filtered replanning [135], and tighter integration of the path and task planning,

but further work is required to validate and integrate these techniques. These events

highlight the importance of network communications in the operation of a multi-UAV

system.

6.5.2 System Performance

Several metrics were used to analyze the performance of the system. Missions varied

from one another and the system evolved from lessons learned over the course of

the 14 trials executed. For this reason, the performance is compared across three
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Figure 6-7: Churning in task allocation due to nonlinear voltage discharge

+ 2 Seconds

Figure 6-8: Churning in trajectory planning due to competing deconfliction paths

representative missions to illustrate certain points instead of providing an average

across all trials.

" Mission 1 was conducted early in the field campaign with three quadrotors

actually flying and the WUAV operating in simulation, and therefore had less

complexity than trials with four actual UAVs. During this trial one quadrotor

was briefly paused due to inaccurate altitude tracking.

" Mission 2 involved all four UAVs, but suffered from several complications such

as task allocation churning and three instances of waypoint tracking failures

which resulted in a SUAV being disabled.

* Mission 3 also involved all four UAVs, but had the fix implemented to prevent

task allocation churning, and only suffered from a quick UAV pause due to

inaccurate altitude tracking.
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The first metric analyzed was the task assignment time, or time to assign a task

to an agent after it was created. This includes time for the operator to request and

approve a plan, time for the decentralized task allocation routine to converge on a

plan, and time for an agent to become available to take on the task. Task assignment

time ranged from 3 to 350s with a median time of 12s. The planning algorithm

in general converged within one second, so increased assignment time was mostly

due to the operator not requesting (or forgetting to request) a plan, or agents being

unavailable. Similarly, the task response time, or time to start a task after it has

been created, was also evaluated. Task response includes time for task assignment,

path planning, and actual travel. These times ranged from 15 to 411s with a median

of 58s. Finally, the tracking persistence, which is the percent of time a track task

was being fulfilled by a SUAV compared to the total amount of time that task was

in existence, was another metric used to assess performance. Mission 1 had 65%

tracking persistence, where as Mission 2 had 55% and Mission 3 was 85%. In all cases

Mission 2 showed decreased performance that can be attributed to task allocation

churning which created drastic operational inefficiencies, and because eventually one

of the SUAVs was disabled due to failures, leaving only one remaining SUAV to

take on all tasks. In Mission 2 the degraded system took nearly five times longer to

assign task and 58% longer to start executing them compared to the system operating

nominally in Mission 3. Track and destroy tasks were found to be the most sensitive

to these issues. The difference in performance between Mission 2 and 3 is mostly

due to "outdoor factors" which would not necessarily be observed in simulation or a

laboratory setting.

In order to measure the cognitive workload of the Human Interface operator during

the missions, a utilization metric was calculated as the ratio of the total operator

"busy time" to the total mission time. For utilization, operators were considered

"busy" when performing one or more of the following tasks: creating or editing tasks,

identifying and designating targets, approving weapons launches, conducting battle

damage assessment, interacting via the chat box, replanning in the SCT, or using the

health monitoring panel. Across the 14 missions, operators had an average utilization

134



140 ISO

120 160

140

100 - 120

8 Mission I a Mission I

60 P 80

Fo60
t p ir ss sion . Missioo t

40 40
20 L2

Scout Se rch I tak Destroy Rewuppy M Fan Scout Satch Trac k Destroy Resupply lan

Task Typc ia& Type

(a) Mean task assignment times (b) Mean task response times

Figure 6-9: Time performance metrics compared across 3 missions

of 22.6% with a minimum of 16.8% and a maximum of 3 1.6%. Representative Missions

1-3 all had utilizations between 19% and 20%. Essentially, about one-fifth of the HI

operator's time was spent actively engaged with the interface, while the other four-

fifths were spent monitoring the progress of the mission. Mission 2 however stood out

from the other two in a few ways. First, peak utilization was determined by calculating

the utilization per minute throughout the mission and taking the maximum value.

Figure 6-10 shows the peak utilization during Mission 2 was 76% while the other two

missions were 47% and 45% respectively. In addition, the operator chose to use the

"~what-if" capability in the SCT to modify the schedules generated by the planner 3

times during Mission 2, while the operator did not use the "what-if" capability in

either of the other two missions if interest. These results show that the HI operator

was indeed working harder during Mission 2. This may be because the operator had to

deal with vehicle navigation problems and task allocation churning. It should be noted

that despite this increased workload, the mission was still successfully completed and

the operator's workload rarely surpassed 70%, which is generally considered to be

an acceptable, but near the upper bound limit, level of utilization for safe human

supervisory control [136-139].
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6.5.3 Lessons Learned

A key objective of this effort was to study the implications of adapting a laboratory

developed decentralized multi-UAV system [110, 140] with human supervision for

outdoor field operations. Some of the following lessons learned through this exercise

are applicable to the overall multi-unmanned system cooperative control community.

1) The implementation generally worked well - The implementation of this

system generally worked well in executing the mission. It repeatedly performed proper

task allocation, planned proper trajectories, and provided adequate information to the

human operator to maintain situational awareness and accomplish mission objectives.

In addition, the framework was able to overcome many failures and uncertainties

encountered in the field environment to allow the system to successfully accomplish

the mission. The ability to "pause" or "disable" a degraded vehicle was a key enabler,

since any one of the 17 failures observed which prompted these commands would

have resulted in a mission abort otherwise. This also demonstrated that the CBBA

algorithm was able to handle a dynamically changing number of active agents, as

UAVs were removed or re-added to the team.

2) Health monitoring and management is critical but as implemented cre-

ated significant operator workload - Health monitoring and management was

critical to the field test success but required significant operator attention in its current

implementation. Most of the failures observed were unpredictable and uncontrollable,

but were able to be diagnosed and handled in real-time to keep the system moving
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forward. The workload created by monitoring the health and status of the UAVs was

so high that it needed to be taken on by a second human, the safety monitor, to allow

the primary human operator to supervise the actual mission. Several items can be

mitigated in future work by using UAVs capable of more robust altitude and waypoint

tracking. Health monitoring, however, is a very significant problem for single operator

control of multiple UAVs, and even with highly automated vehicles may drive work-

load to unacceptably high levels. More highly automated health monitoring, error

detection, and self-repairs are necessary before a single operator can feasibly control

multiple UAVs in such a complex environment.

3) Inaccurate state estimates, modeled dynamics, and degraded network

communications resulted in "churning" - Inaccurate and unpredictable UAV

states revealed churning behaviors in task allocation and path planning. These be-

haviors had not be observed in previous simulations [120] or controlled indoor lab-

oratory tests [141]. Task allocation churning was the result of an over simplified

battery discharge model, and led to significant performance degradations in mission

execution. Path planning churning occurred because of inaccurate waypoint track-

ing, the environment, inaccurate UAV state estimates, and delayed feedback due to

network communication degradations. While these churning issues have been investi-

gated previously [135, 142], it is clear that further research is required. Even though

the factors causing these issues could have been simulated, identifying such factors

and reproducing them with sufficient accuracy is difficult in simulations. This alone

provides strong justification to perform further outdoor flight testing.

4) Human judgment was necessary and beneficial to operate the system -

Despite the tremendous recent advances in autonomy, human judgment is still nec-

essary and beneficial to operate the system. The human operator was essential for

dealing with the "fog of war". Target position reports from the high altitude vehicle

were often inaccurate, camera imagery from lower altitude Sensor UAVs were some-

times noisy or did not reveal the target, and reported vehicle positions were sometimes

noticeably erroneous. The operator merged all of the information from these sources
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to make decisions about mission executions and to help guide the autonomy. The

human operator was active in dealing with a number of real-world subjective factors

that are difficult for the algorithm to take into account. Human judgment played

a critical role in assessing how "well" a vehicle was behaving and determining if it

needed to be paused or disabled in the system. In addition, the human made the

determination when it was "safe enough" to send the Cargo UAV to resupply based

on situational awareness of the missing area.

5) The autonomy and human worked mostly well together - The system

framework appeared to effectively balance roles, where the operator would create

and prioritize tasks, and the autonomy would then compute the best way to execute

them. However, on occasion the algorithm chose a task assignment that seemed

counter-intuitive. The operator would then often times attempt to modify the plan

using the Schedule Comparison Tool (SCT) to achieve a more intuitive plan. Better

feedback from the algorithm could help the operator understand why the planner

made the assignment a certain way. In addition, the system was implemented in this

experiment to plan conservative schedules consisting of only one task in the planning

horizon. This was done because some of the tasks such as target tracking and scouting

had uncertain time lengths associated with them. This however required the operator

to request a new plan after each UAV completed each task, which increased the

workload. It also created some frustration when a vehicle would complete a very short

task and then go idle unless the operator requested a new plan. While it is possible

that this choice of implementation was the correct one for such dynamic missions

with unbounded task lengths, future work should investigate methods to increase the

planning horizon so that it is more consistent with operator expectations.

6.6 Summary

This thesis chapter presented the implementation, results, and lessons learned from

outdoor flight testing of a decentralized multi-UAV system with human supervision.

The framework was designed to balance the roles of the autonomy and human operator
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to maximize mission performance. The human operator provided high-level mission

intent by designating tasks, approving plans generated by the autonomy, classify-

ing targets using UAV sensor feeds, and approving weapon launches. Autonomous

planners associated with each UAV used the Consensus-Based Bundle Algorithm to

perform real-time decentralized task allocation and then trajectory planning to effi-

ciently and safely accomplish tasks. High level health monitoring and management

tools were embedded in the Human Interface to allow the operator to identify and

overcome issues by temporarily or permanently removing problematic UAVs from the

mission. The system was implemented for outdoor flight testing with a team of four

small heterogeneous UAVs conducting an operationally relevant mission supporting

a Cargo UAV resupply.

Results support that the implemented framework worked as intended during flight

testing, and 13 of the 14 missions attempted were successfully completed. As expected

the implementation of the system outdoors was challenged by uncertainties and sys-

tem degradations common in field testing, such as degraded network communications.

Health management tools were a significant contributor to success of the effort, but

created too much workload for the single mission human supervisor. The outdoor im-

plementation revealed instances of algorithmic churning in task allocation and path

planning due to delayed communications and unpredicted vehicle states, and caused

performance deterioration until a fix was implemented. The balance of roles between

the human and the automation in the design was found to be adequate, and human

judgment was shown to be helpful in resolving subjective factors during the mission.

This chapter provides description of the system level challenges needed to operate

multiple UAVs as a coordinated team, beyond effectively controlling network com-

munications. Some of the challenges experienced in the field due to lossy network

communications, which led to algorithmic churning and degraded vehicle operations,

directly support the need for network communication control algorithms similar to

those presented in Chapters 2-5. Furthermore lessons learned in the exercise justify

the need to conduct field testing to validate laboratory assumptions, and identify areas

of future research needed to further operational multi-vehicle collaborative control.
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Chapter 7

Conclusion and Recommendations

7.1 Conclusions

As unmanned systems technology progresses, teams of multiple unmanned air ve-

hicles will play an increasingly important role in a broader range of applications.

The framework in this thesis enables such teams to cooperatively execute complex

scenarios using dynamic mission planning to support communication requirements.

A comprehensive survey of current communication control strategies for multi-agent

networks was presented in Chapter 2. This relatively new field of study commonly

investigates two types of problems: (1) constraining the motion of agents on a deploy-

ment objective to maintain interconnectivity [12-28], and (2) optimal deployment and

control of agents pre-designed as communication relays to support a network [29-401.

Chapter 3 presented the CBBA with Relays algorithm, a unique method to control

the network through distributed task allocation which ensures tasks undertaken are

supported by the network and underutilized agents support the team as communica-

tion relays. The distributed algorithm uses information embedded in the Consensus

Based Bundle Algorithm (CBBA) task assignment, such as task location and time of

execution, to predict the network topology and plan support through the creation of

relays. By explicitly coupling the task assignment and relay planning processes, the

team is better able to optimize the use of agent resources to address current needs of

a dynamic complex mission.
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The CBBA with Relays framework was initially built using simplified and deter-

ministic communication assumptions which resulted in data bottlenecks and unac-

ceptable messaging error rates. Therefore, the development presented in Chapter 4

improved this approach to consider realistic wireless networking dynamics, including

path loss, stochastic fading, and information routing in an uncertain environment.

This improved framework enables the multi-UAV network to support data-rate re-

quirements to send remotely sensed data back to a base station, and to maintain re-

quired inter-agent messaging bit-error-rates for cooperative task execution. Since the

framework only plans network support for agents busy executing tasks, a decentralized

reactive motion control policy was included to drive other agents to interconnected

states. Finally, the system enables UAVs to perform decentralized estimation of wire-

less channel performance in uncertain environments, adjust their planning strategy

to account for risk of network violations, and adapt their behavior to changes in the

environment.

Four experiments were conducted in simulation to characterize the performance

of the system. The first illustrated the need for proper balance in incentivizing re-

lay tasks to achieve higher team performance through cooperation, where too low or

too high of an incentive value resulted in lower mission scores. The second showed

team performance improves when planning to meet data-rate requirements and re-

sults in more conservative task assignments than when considering connectivity alone.

Planning to meet data-rate achieved 98.4% network supportability using real-world

routing protocols and 100% with optimal routing, as opposed to only 38.6% with the

original framework. Because the algorithm only predicts the network based on agents

busy executing tasks, other errant agents can unpredictably alter the planned data

routing. As such, this framework can only guarantee network support using a rout-

ing protocol which perfectly balances data-flow and avoids unplanned bottlenecks.

This experiment also showed high performance in meeting interconnectivity BER re-

quirements (> 98.3%) using relay planning and reactive motion control. However,

the framework cannot guarantee 100% continuous time BER support since planning

takes place for discrete times only. The third experiment characterized risk mitiga-
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tion strategies given stochastic channel fading, and demonstrated a balance in risk is

needed, where behaviors too conservative or too careless resulted in decreased mission

performance. Finally, the fourth experiment validated the ability to improve team

performance by estimating uncertain communication environments and adapting the

planning strategy to changes.

To show operational feasibility, this work was implemented in outdoor flight test-

ing with a team of three small UAVs as presented in Chapter 5. Experiments were

conducted to show (1) the improvement in team performance when using the coop-

erative CBBA with Relays algorithm over non-cooperative strategies, (2) the ability

to further improve performance by considering data-rate and interconnectivity BER

network requirements, and (3) validation of the communication estimation process

and adaptive planning behavior. Six multi-UAV test scenarios were executed. Per-

formance parameters followed trends predicted in simulation, which demonstrates

the real-time performance of the algorithm as well as some robustness to the un-

controlled environment (e.g., inaccurate and delayed state estimates, environmental

effects). Each test scenario revealed the need to better consider uncertainty in the

task execution schedule. On multiple instances, vehicles arrived and started tasks ei-

ther early or late, which changed the topology from its prediction and led to network

violations. An algorithmic fix was implemented to eliminate some of these issues,

however this warrants future work as described below. Despite these events, the re-

sults from flight testing and experiments conducted in simulation indicate that the

overall approach presented (1) is operationally feasible, (2) improves performance of

a multi-UAV team in a complex mission through cooperation, (3) enables network

supportability by considering realistic networking dynamics and uncertainty, and (4)

meets the intended objectives laid out in this thesis.

In addition to these experiments, another outdoor flight test campaign with a

team of four heterogeneous UAVs performing decentralized planning under human

supervision was described in Chapter 6. The flight tests demonstrated good perfor-

mance of the framework in balancing the roles between the autonomous UAVs and the

human operator, and demonstrated the ability to use the same baseline CBBA task
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allocation algorithm in an operationally relevant scenario. In addition to validating

this framework, two important lessons learned were: (1) the importance of mitigat-

ing impacts of sub-system degradations on team performance, and (2) the need to

improve health management methods of the system to provide acceptable workloads

for a single operator.

7.2 Future Work

Based on the experience acquired during this research, the following future work is

recommended.

First, the CBBA with Relays algorithm and its modifications to consider realistic

networking dynamics needs to be implemented using real versus simulated networking

devices as a next step. Several other studies in this field [18, 35, 42], as well as

empirical observations in flight testing, indicate that wireless networks tend to behave

differently and more erratically than planned. Even though the framework developed

in this thesis specifically aims to overcome these issues, validation is needed on an

actual network.

Second, the framework developed and flight tested appears to be sensitive to task

execution timing inaccuracies. As explained in Chapter 5, differences between planned

and actual flight velocities changed the execution schedule which led to unpredicted

network violations. Since this phenomenon is generally unavoidable, it needs to be

captured in the planning process. Several recommendations were provided, such as

planning for more conservative speeds, including a time-window buffer in network pre-

dictions, or forcing agents to stick to their plans or abandon their tasks. Clearly, this

issue needs to be further investigated under the broader context of robust planning

strategies as discussed in [107].

Third, vehicle health often degraded in flight testing due to degraded communi-

cations, inaccurate waypoint tracking, or even hardware failures. All flight tests in

this work maintained safe operations because an additional operator was strictly ded-

icated to monitoring system health, and could communicate mitigation procedures
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to safety pilots to take over manually. If teams of UAVs are going to achieve the

utility envisioned for commercial and military applications, there is a critical need to

improve health monitoring and management. Future work needs to further explore

autonomous health management mechanisms and ensure those are robust to system

failures and uncertainties themselves.

Fourth, many of the lessons learned in flight test were useful in highlighting flaws

in the assumptions and designs of the work which would not necessarily have been

identified in simulation. These experiments revealed how quickly system degradations

and variations in state can impact the performance of planning algorithms, and helped

modify their design to become operationally feasible. There is a general need to

increase the amount of field testing conducted in this type of research to fully validate

assumptions and enable these technologies to transition to the operational world.
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