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Abstract

This thesis presents a new model for predicting delays in the National Airspace System
(NAS). The proposed model uses Random Forest (RF) algorithms, considering both tem-
poral and network delay states as explanatory variables. In addition to local delay variables
that describe the arrival or departure delay states of the most influential airports and origin-
destination (OD) pairs in the network, we propose new network delay variables that depict
the global delay state of the entire NAS at the time of prediction. The local delay variables
are identified by using a new methodology based on RF algorithms, and the importance
levels of explanatory variables are used to select the most relevant variables. The high-
level network delay variables are determined by using the k-means algorithm to cluster the
delay state of different elements of the NAS.

The thesis analyzes both the classification and regression performance of the proposed
prediction models, which are trained and validated on 2007 and 2008 ASPM data. The
predictive capabilities of the models are evaluated on the 100 most delayed OD pairs in the
NAS. The results show that given a 2-hour prediction horizon, the average test error across
these 100 OD pairs is 19% when classifying delays as above or below 60 min. The study
of the 100 most delayed OD pairs allows us to evaluate and compare prediction models
for different OD pairs, and to identify models with similar characteristics. The effect of
changes in the classification threshold and prediction horizon on model performance are
also studied.
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Chapter 1

Introduction

Flight delays in the US result in significant costs to airlines, passengers and society. In

2011, 20% percent of the flights were delayed more than 15 minutes [1]. Different studies

have estimated the total cost of delays in the US [2, 3]. In 2007, the cost of domestic delays

in the US economy was estimated to be $31.2 billion [2]. Such high delay costs show the

need for better delay management mechanisms, and motivates the analysis and prediction

of air traffic delays.

The large number of shared resources in the air traffic network, together with aircraft,

crew and passenger interdependencies makes air traffic network effects an important field

of study [4, 5]. Network effects are becoming more significant for two main reasons.

Firstly, airlines attempt to increase aircraft utilization in order to increase their revenues,

and thereby reduce the time buffers between arrivals and departures in their schedules. As

a result, arrival delays become more likely to be propagated to subsequent departure flights

[4]. Secondly, as demand approaches to capacity levels, the ability of the network to absorb

disruptions decreases, making the system susceptible to large-scale delays. A study of

network effects can help us understand factors that mitigate or amplify delay propagation,

and to identify the elements of the network that have the most impact on the entire system.

The goal of this thesis is to study the potential of delay interdependencies in the Na-

tional Aviation System (NAS) network in the development of delay prediction models. In

particular, we are interested in predicting the departure delays of a particular OD pair by

considering the current and/or past delay states of the different network elements. Similarly,

19



we hypothesize that the delay state of different network elements at a certain time would be

a good indicator of how NAS delays will evolve in the short term. We do, however, expect

that our prediction models will have difficulties in capturing non-congestion related delays

which only affect a few elements in the network (for example, delays related to mechanical

issues which only affect a small subset of flights). It is important to note that our goal is

not to predict individual flight delays, but instead to estimate future network-related delays

on specific routes. We evaluate the prediction performance of this model over actual delay

data, which includes all sources of delay.

Different delay prediction models have been proposed in the research community [5-

10]. In [5] the authors study the propagation of delays in Europe, with the goal of identify-

ing the main delay sources. In [6] a model for estimating flight departure delay distributions

is developed, and the estimated delay information is used in an strategic departure delay

prediction model. A different approach is presented in [7], the paper focuses on down-

stream delays caused by aircraft, cockpit and cabin crew. Other prediction models measure

the impact of weather on delays, and they integrate weather information in delay prediction

models [8-9]. In [10] a Bayesian network approach is proposed. The authors are able to

capture interactions among airports by using a system-level Bayesian network. In contrast

to these prior efforts, our models explicitly investigate the role of the network delay state

in predicting delays.

We consider three different types of variables in our delay prediction models. First,

we have temporal variables, which only depend on the time for which the prediction is

being made (for example, the time of day or day of week), and not the delay state of the

network. Second, we have local delay state variables, which indicate the delay level of

specific elements of the network (for example the delay at a particular airport or on a given

route). Finally, we have high-level delay state variables which depict the state of a group

of elements, and are obtained by clustering local delay state variables.

A big challenge is the identification of the relevant delay state variables for each of

the prediction models. We need to determine which routes, or airports delay states have a

greater influence on the prediction model of interest. A new methodology to obtain these

relevant variables is introduced in this thesis, using the explanatory variables' importance

20



in a classification model to identify the relevant network elements.

The analysis of the different prediction models presented in this thesis will help us

better understand delay interactions among the different elements of the NAS network, and

evaluate how much of the future delay on a particular route can be explained by looking at

the current network delay state. We evaluate two types of prediction models: classification

models, where the output is a binary prediction that indicates whether the delay level is

higher or lower than a predefined threshold, and regression models, where the continuous

output directly estimates the delay along a route of interest.

1.1 Thesis organization

The rest of this thesis is organized as follows: Chapter 2 describes the data set used in this

research and the preprocessing performed on it. Chapter 3 presents a high level analysis of

NAS delays. The goal of this chapter is to identify the main delay patterns in the NAS. The

results obtained in this chapter are used to generate categorical explanatory variables that

describe the global delay state of the NAS. These variables are then included in the delay

prediction models developed later in the thesis. In Chapter 4, the prediction performance

of all the explanatory variables considered in this thesis is evaluated. Chapter 5 presents a

comparative study of different regression and classification prediction models, and an ex-

haustive analysis of selected prediction models on the JFK-ORD route. Chapter 6 evaluates

the performance of the prediction model chosen in Chapter 5 on the 100 OD pairs with the

highest average delays in the NAS. The goal of this chapter is to validate the prediction

model on different OD pairs, and to identify OD pairs with similar characteristics in terms

of their prediction models' structures. Finally, conclusions and next steps of this research

are discussed in Chapter 7.
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Chapter 2

Dataset Overview and Preprocessing

In this chapter we describe the data set of study, and the filtering and aggregation performed

on the data to enable the analyses presented in this thesis.

The results presented in this thesis were obtained using data from the FAA's Aviation

System Performance Metrics (ASPM) database. The ASPM database integrates data from

different sources: Enhanced Traffic Management System (ETMS), Aeronautical Radio,

Inc. (ARINC), Official Airline Guide (OAG) and Airline Service Quality Performance

(ASQP). ASPM provides detailed data for individual flights by phase of flight, along with

airport weather data, runway configuration, and arrival and departure rates. Two years of

ASPM data were used in our analysis, from January 2007 to December 2008. We processed

the following ASPM fields for each flight:

" DepILOCID: Departure Location Identifier.

" Arr-LOCID: Arrival Location Identifier.

" SchInSec: Scheduled Gate-In Time.

" ActInSec: Actual Gate-In Time.

" SchOffSec: Scheduled Wheels-off Time.

* ActOffSec: Actual Wheels-off Time.

" FAACARRIER: Flight Carrier Code.
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* TAILNO: Aircraft Tail Number.

These ASPM fields correspond to individual flight data; this data was then aggragated

to obtain a more robust delay picture. The rest of this chapter describes the processing

performed on the raw ASPM data.

2.1 Simplified network

The two years of ASPM data led to 2,029 airports, 31,905 origin destination pairs ("links"),

and 22,795,187 flights. Our analysis aims at finding network effects, and correlations

among OD pairs. We are therefore mainly interested in links with high traffic volume,

which can have a significant impact on the rest of the network. Figure 2-1 depicts the his-

togram of the number of daily flights (on average) for each of the OD pairs. We can see

that the majority of the links have fewer than one flight a day. Those links do not have

enough traffic to impact the rest of the network significantly. For this reason, only OD

pairs with 10 or more flights per day are included in the analysis in this thesis. Figure 2-2

shows the empirical cdf of the data from Figure 2-1, and we see that the 98th percentile of

the links daily traffic distribution corresponds to about 10 flights/days. After the network

simplification, the data set contains 532 links and 112 airports.
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Figure 2-1: Histogram of the number of daily Figure 2-2: Empirical cdf of the number of
flights on different OD pairs. daily flights on different OD pairs.

Figure 2-3 and Figure 2-4 show the OD pairs in the network before and after the net-

work simplification; each link is represented with a blue arrow going from the OD central
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Figure 2-3: All links in the 2007-2008 ASPM data.

Figure 2-4: Simplified NAS network showing links with at least 10 flights a day. The light
green icons denote airports in the original dataset that are not included in the simplified
network.

point to the destination airport. We notice that the 532 selected links are fairly spread out,

which will allow us to have a good picture of the state of the entire NAS. Table 2.1 presents

a few metrics associated with the 20 airports with the highest number of arrival and depar-

ture links in the simplified network. The delay state of airports at the top of this list will

potentially have a large influence on the overall NAS delay state due to their connectiv-

ity. ORD and ATL have the largest number of links, 90 and 82 respectively. None of the

New York City area airports (LGA, EWR, JFK) is individually in the top five of this list,

but if we add them together they have 74 links and they would be in third position. The

last column of the table shows the connectivity within these 20 airports. This connectivity

information indicates the potential impact of congestion in one of these airports on other

high-traffic airports. ORD, ATL and DFW are the three airports with the highest level of
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network connectivity: 18, 15, 14 respectively. We note that these are also the airline hubs

of United airlines, Delta Airlines and American Airlines, respectively.

Table 2.1: Airports with the most links in the simplified network.
Airport Id Number of departure Number of arrival Connectivity among

links links top 20
ORD
ATL
LAX
PHX
DEN
LAS
DFW
PHL
IAH
LGA
MCO
JFK
BOS
SEA
DTW
SFO

EWR
CTL
MSP
OAK

46
41
23
23
21
20
19
16
14
14
13
12
12
12
11
11
11
10
10
10

44
41
26
23
20
20
20
15
14
14
13
13
12
12
11
11
10
11
10
10

18
15
11
12
11
10
14
8
8
7
9
5
7
8
8
8
8
6
7
4

2.2 Individual flight delay data aggregation

The next step after identifying the simplified network is to aggregate individual flight delay

data. We are interested not in predicting individual flight delays, but instead the delay levels

of different airports and OD pairs in the network. We define the delay state of an airport or

OD pair at time t as an estimate of the delay that a hypothetical flight using that resource at

that time will experience. For example, if the BOS-MCO departure delay state is 30 min at

3 pm, it means that the estimated departure delay for a BOS-MCO flight taking off at 3pm

is 30 min.

We use a moving median filter to obtain the delay states of airports and OD pairs. The
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delay state of any NAS element at time t refers to the median delay of all the flights that fall

within a window of size W centered at time t. This low pass filter mitigates high frequency

changes by calculating the median of the data points.

We chose a 1-hour step size for the moving window, which leads to 17,519 observations

for the 2007-2008 data set. From time step to time step, independent of the window size,

one new hour of traffic will be included in the window. We assume that the NAS delay

state changes from hour to hour, allowing us to capture meaningful samples with a 1-hour

time step. Figure 2-5 shows the histogram of the inter-flight separation times (between

consecutive flights in the same link) in the simplified network. Sixty minutes corresponds

to the 55th percentile of the distribution; 55% of the inter-flight separation times are under

60 min. More than half of the flights are separated less than 60 minutes, which supports

the idea that the delay state of the links typically changes from hour to hour.

x 10

10

8

4

2

0
0 100 200 300 400 500 600 700

inter-flight separation times in the simplified network(min)

Figure 2-5: Histogram of the inter-flight separation times in the simplified network.

With respect to the window size, a narrow window will provide us with more infor-

mation about how delay propagates in the NAS than a wide window. For example, with a

2-hour window we would need two consecutive observations to see how East Coast delays

propagate to the West Coast, but with a 4-hour window we may only need one observation

to see the effect on West Cost delays. At the same time, a wider time-window is more

robust against outliers since information from more flights is accounted for when calculat-

ing the median delay. In the reminder of the thesis we focus on a 2-hour window, which

shows good performance and also captures the average behavior without eliminating the

NAS delay dynamics. We will also study the effect of changes on the window size on the
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results in Chapter 6.

An inherent problem of the proposed methodology is that we are estimating the delay

state at time t (delay of an hypothetical flight using the network resource at time t) from

the recorded delay data of flights falling in the corresponding time window. This raises

the issue of how we might estimate the delay state value when there are no flights in the

time window due to a lack of traffic. We could assume that the delay state is zero, but this

will not always be true, especially when the delay state before and after that time period

shows a high level of delay. We mitigate this problem by linearly interpolating the output

of the moving median filter during periods with no flights in the time window, unless the

period without flights lasted more than 6 hours, or the "end of day" (4 am) was included

in the period without flights. In this manner, we did not interpolate between periods that

were too separated in time, or between the end of a day and the beginning of the next one.

Figure 2-6 shows the results of the interpolation methodology for a few days of data. In

the circled area in Figure 2-6, we see that the original data was showing a delay increasing

trend; however, due the lack of traffic the delay value was not always defined. On the other

hand, the interpolation method fills the gaps in the data, giving us an smoother and more

consistent delay curve.
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Figure 2-6: JFK-ORD departure delay state with and without interpolation.

After performing the described network simplification and data aggregation, the 2007-

2008 data set leads to a network with 532 links and 112 airports, and 17,519 delay data

points. There is on data point for each hour, and 2 hours of delay information is used to

obtain each data point value.
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Chapter 3

High Level Analysis of NAS Delays

In this chapter, the delay patterns of the entire NAS are studied. Our goal is to identify

the typical delay states of the NAS. We believe that due to inter-dependencies among the

different elements in the NAS and repetitive traffic patterns, we will be able to find a set of

representative global NAS delay states.

To better understand the NAS temporal behavior, we will analyze the typical NAS states

evolution with time; and will be able to answer questions like: When does delay typically

spike, or drop? Which states occur more often? Which high delay states last longer? etc.

We will also examine the composition of each of the typical NAS delay states; for example,

we will identify airports and OD pairs exhibiting significant high delays, or interesting

delay patterns.

In addition to spatial aggregation, we also explore temporal aggregation. In this chapter

we obtain the typical NAS type of days by aggregating the NAS delay states for the entire

day.

An important application of the typical NAS state identified is their use as explanatory

variables in the delay prediction models that we propose later in the thesis. The global delay

situation of the NAS has an important impact on the delay situation of specific OD pairs.

We will see that the relevance of the categorical variables derived form the NAS states will

depend on the characteristics of the OD pair for which we evaluate the prediction model.
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3.1 NAS delay states

Our goal in this section is to identify the typical delay "snapshots" of the NAS. We cluster

17,519 NAS departure delay states (2007-2008 observations) into a few typical NAS delay

states. The NAS delay state at time t is defined by the departure delay state of each link in

the simplified network at time t. The typical NAS delay states are obtained by clustering

the NAS delay states into N groups using the k-means clustering algorithm. The output

of the clustering algorithm represents the closest typical state to each of the observations,

where the "typical states" are given by the centroids of each of the clusters.

3.1.1 Clustering algorithm

The k-means algorithm partitions n observations into k clusters which minimize the sum of

distances within each cluster. The following objective function is minimized:

k n

j=1 i=1

where xi are the observations and the ci centroids of each of the clusters. The MATLAB

function kmeanso, available in the statistics toolbox, was used the solve the clustering

problem.

3.1.2 Number of clusters

In this section, we study the effect of the number of clusters on the performance of the

clustering algorithm, and the characteristics of the clusters. We then evaluate the value of

adding more clusters by looking at the total point-to-centroid Euclidian distance reduction,

as well as the physical implications of the clusters.

Figure 3-1 depicts the sum of the distances from each of the clusters' centroid to each

of the observations belonging to that cluster for different numbers of clusters (x-axis): This

metric is called the intra-cluster distance. Each point contains information associated with

one cluster for a certain number of clusters. The color of the dots depicts the number

of elements that belong to each of the clusters. We can observe that there is always a
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significant number of elements belonging to one of the clusters, brown or orange dots.

These clusters are associated with low traffic periods. Due to the low delay values during

overnight periods a large number of observations fall into this low delay cluster. In Figure

3-2 we can see the sum of the intra-cluster distances for different number of clusters. The

total intra-cluster distance gradually decrease as the number of cluster increases. It is worth

noting that for more than 4 clusters the slope of the curve reduces significantly, and from 4

to 10 clusters the curve nearly follows a straight line.
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Figure 3-1: Intra-cluster distances vs. num- Figure 3-2: Total intra-cluster distance vs.
ber of clusters. number of clusters.

With the purpose of better understanding the data presented in Figure 3-1 and Figure

3-2 we present Table 3.1. This table contains information about the clusters obtained for

different number of clusters, that is: the number of observations belonging to each of the

clusters, the average link delay of the clusters' centroid, and a qualitative description of the

clusters. As we mentioned previously, there is always a low delay cluster. As the number of

clusters increases, the average delay of the low delay cluster decreases; observations with

a medium delay level are now associated with other clusters. For 2 clusters, observations

where the Chicago (CHI) and New York City (NYC) area are congested belong to the same

cluster; however, for 3 clusters, the Chicago-New York cluster splits into two clusters, one

with high NYC delays and another one with high CHI delays. For 4 clusters, there is a

cluster where CHI is highly congested, another one where NYC is highly congested, the

other two clusters show a low and a medium generalized NAS delay, respectively (none of

the airports shows up as a congestion center). For more than 4 clusters, the slope of the
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total intra-cluster distance (see Figure 3-2) does not decrease significantly. However, the

results for 5 and 6 clusters are important from our perspective, since ATL appears as a new

delay center for 6 clusters. Such a clustering allows us to identify when either NYC, CHI

or ATL delays are the main source of delay in the NAS. Between 6 and 10 clusters, the new

additional clusters exhibit the same three main sources of delay.

Table 3.1: NAS delay state clustering. Delay definitions: High (90 min), Medium-high (60
min), Medium (20 min), Low (5 min).

Number of Number of Avg. centroid Qualitative Description
clusters elements link delay (min.)

2 3,571 30.5 CHI and NYC medium high delay
13,948 9.7 NAS low delay

3 13,894 9.7 NAS low delay
1,616 29.6 CHI high delay
2,009 30.7 NYC high, ATL medium delay

4 9,426 6.6 NAS low delay
1,219 31.9 CHI high delay
5,681 17.7 NAS medium delay
1,193 35.1 NYC high, ATL medium high delay

5 762 38.8 NYC high, ATL medium high
2,241 23.7 NYC medium high delay
6,180 13.6 NAS medium delay
7,099 5.3 NAS low delay
1,237 31.6 CHI high delay

6 5,915 15.2 NAS medium delay
1,505 24.4 NAS medium high delay
1,192 31.2 CHI high delay
8,029 5.8 NAS low delay
480 42.2 NYC high, ATL, CHI medium delay
398 32.9 ALT high delay

In the rest of this chapter and thesis, the analysis of the NAS typical states for the 2007-

2008 data is based on clustering the NAS states into six groups. Six clusters are chosen for

two reasons: First, the total intra-cluster distance does not decrease much for more than 6

clusters (as seen in Figure 3-2), and second, six appears to be qualitatively reasonable since

all the main delay centers (NYC, CHI, ATL) are represented in the centroids of clusters.
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3.1.3 Six classes of NAS delay states

In this section we analyze the six most typical delay pictures of the NAS, which are ob-

tained by aggregating the NAS delay states into six groups. Figure 3-3 shows each of the

clusters' centroid delay values. The clusters can be characterized as follows:

* Cluster 1: Medium delay levels in the entire NAS, with an average link delay of 15.2

minutes, and standard deviation of 4.3 minutes.

* Cluster 2: Medium high NYC delays, with an average NAS link delay of 24.4 min-

utes, and standard deviation of 14.7 minutes.

" Cluster 3: High CHI delays, with an average NAS link delay of 31.2 minutes and

standard deviation of 23.8 minutes.

" Cluster 4: Low delay levels in the entire NAS, with an average link delay of 5.8

minute, and standard deviation of 3.7 minutes.

" Cluster 5: High NYC delays and medium ATL and CHI delays, with an average

NAS link delay of 42.2 minutes and standard deviation of 31.5 minutes.

" Cluster 6: High AL delays, with an average NAS link delay of 32.9 minutes and

standard deviation of 25 minutes.

One way to get a sense of how well a cluster' centroid is reflecting observations belong-

ing to that cluster is to look at the location of the observations around the centroid. We have

a good cluster if most of the observations are located close to the centroid and the number

of observations decreases as we increase the distance from the cluster centroid. However,

if the observations are uniformly distributed around the centroid the cluster may need to be

split in two clusters, since observations are not gathered around the centroid. Figure 3-4

shows the histogram of the observation-to-centroid distances for each of the clusters. The

six figures show that the observations are clusteres around the centroids.
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Figure 3-3: Centroids of NAS delay states for six clusters.
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3.1.4 Analysis of the high-delay clusters

The high delay states introduced previously (clusters 2, 3, 5, and 6) are analyzed in more

detail in this section. Our purpose is to determine which airports and links show the highest

delays. To do so, we look at the delays associated with the clusters' centroids. It is impor-

tant to remember that we are analyzing the simplified network with only links that average

more than 10 flights a day.

Table 3.2 shows the airports with the highest average departure delay for each of the

high delay clusters. Only airports with a significant amount of traffic were considered, as

described in Table 2.1. In cluster 2, the NYC airports (JFK, LGA and EWR) are the most

congested, along with Philadelphia airport (PHL). In cluster 5, which is the high delay clus-

ter for NYC area airports, we have the same set of airports we had in cluster 2 with delay

values that are nearly twice as high. Cluster 3 is the high CHI delay cluster. The difference

between ORD delays and the delay of other airports is significant: the average departure

delay for arrivals decreases from 88 minutes (ORD) to 41 minutes (EWR). Finally, in clus-

ter 4 ATL has the highest delay levels and there is a significant difference between ATL

delays and those at the second most delayed airport, CLT.

These results show that there is a strong correlation among EWR, JFK, LGA and PHI

delays (cluster 5). The reason is likely the close spatial location of these four airports, and

the resulting correlation in weather.

Next, we look at the clusters centroids' delays at the OD pair level. Table 3.3 shows

the ten links with the highest delays for each of the high delay clusters. In cluster 2, NYC

congested medium, it is remarkable that nine out of the ten OD pairs contain EWR airport.

The remaining OD pair is BOS-JFK. This is consistent with the values we saw in Table

3.2 in which EWR had the highest delay, followed by JFK. It is also worth noting that

only two out of the ten OD pairs are departures from the NYC airports. In cluster 5 (NYC

congested), the results change. In this case, seven of the OD pairs are either departing

or arriving at JFK, and only three of them contain EWR. In cluster 5, we do not see the

NYC arrival delay dominance we saw in cluster 2, since only six out of ten OD pairs arrive

to NYC airports. It is remarkable that the most delayed OD pairs in cluster 5 have the
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Table 3.2: Airports with the highest average link delay in the high delay clusters.
Cluster 2 (NYC congested, medium) Cluster 3 (Chicago congested)

Airport Avg link dep. Avg link dep. Airport Avg link dep. Avg link dep.
ID delay(min.) delay(min.) ID delay(min.) delay(min.)

Departures Arrivals Departures Arrivals
EWR 55 66 ORD 76 88
JFK 50 52 EWR 39 41
PHL 47 46 DTW 38 35
LGA 45 52 PHL 36 35
BOS 43 44 DFW 35 29
CLT 32 32 LGA 32 34

MCO 31 31 CLT 32 30.5
DTW 31 27 JFK 28 34

Cluster 5 (NYC congested) Cluster 6 (ATL congested)
Airport Avg link dep. Avg link dep. Airport Avg link dep. Avg link dep.

ID delay(min.) delay(min.) ID delay(min.) delay(min.)

Departures Arrivals Departures Arrivals
EWR 103 104 ATL 87 84
PHL 102 92 CLT 44 41
JFK 98 109 PHL 39 39
LGA 97 97 EWR 38 40
BOS 82 85 DFW 35 30
MCO 62 60 MCO 33 34
CLT 57 62 ORD 33 33
DTW 50 49 DTW 32 29

highest delays among all clusters. With respect to the CHI congested cluster, cluster 3,

it is interesting that all the links in the table have ORD as destination. Flights going into

ORD have higher delays than flights departing from ORD, as we saw in Table 3.2 (76 min

average delay for departures, and 88 min average delay for arrivals). Since it is possible that

airlines are aware of ORD's high congestion and tend to schedule tight turnaround times.

Finally, in cluster 6 (ATL congested) seven out of the ten OD pairs are arrivals to ATL, the

rest are departures from ATL, and the delay level is similar to ORD OD pairs' delay levels.

An important point to highlight is that for any of the clusters, the top 10 most delayed links

always contain as origin or destination, the NYC airports (EWR, JFK LGA), ATL or ORD.

We also find that ATL and ORD delays are significantly higher that the second-most

delayed airport in their respective clusters. We did not see this behavior in the NYC con-

gested clusters. We would like to answer the following question: Do ORD and ATL delays

have a lower impact on delay in the rest of the NAS than NYC delays? Scatter plots of

2007-2008 observations are shown in Figure 3-5 to Figure 3-10. In Figure 3-5, we have the
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Table 3.3: Links with the highest delay in the high delay clusters
Cluster 2 (NYC congested, medium) Cluster 3 (Chicago congested)
Origin Destination Dep. delay Origin Destination Dep. delay

(min.) (mn.)
LAD EWR 87 STL ORD 119
CLT EWR 78 IND ORD 115
ORD EWR 78 CLE ORD 112
BOS JFK 77 EWR ORD 111
BOS EWR 76 SDF ORD 110
EWR IAD 75 MSN ORD 108
DTW EWR 74 CID ORD 108
CYYZ EWR 71 JFK ORD 107
EWR CTL 70 MEM ORD 104
MCO EWR 69 BNA ORD 103

Cluster 5 (NYC congested) Cluster 6 (ATL congested)
Origin Destination Dep. delay Origin Destination Dep. delay

(min.) (min.)
BUF JFK 154 RIC ATL 111
BOS JFK 149 DFW ATL 107
JFK BOS 143 HOU ATL 103

MCO JFK 140 IND ATL 100
EWR CLT 132 IAD ATL 100
EWR ATL 131 DCA ATL 100
ATL EWR 130 ATL RIC 100
ORD JFK 130 BWI ATL 98
JFK ORD 130 ATL CLT 98
FLL JFK 129 ATL RSW 98

average ORD link delay versus the average link delay on the rest of the network; the color

of the dots depicts the average delay at EWR, LGA and JFK. Figure 3-7 shows a similar

plot for ATL. We present two 2D histograms for the same x-y information (Figures 3-6

and 3-8), and the NYC scatter plot (dots are not color coded in this plot) and 2D histogram

(Figures 3-9 and 3-10, respectively). By comparing the ORD and NYC 2D histograms, we

see a higher concentration of data points at the bottom right and upper left side of the ORD

figure, and also a lower concentration of points at the upper right side in this same figure.

This suggests that ORD delays are less correlated with the network delays than NYC de-

lays. The ORD color coded scatter plot (Figure 3-5) also shows that NYC delays gradually

increase as the network delay increases. Finally, the ATL plots look similar to the ORD

plots, but with a significantly lower number of high delay data points. There is a significant

number of data points at which network delays are high and ATL delays are not, and data

at which network delays are low and ATL delays are high.
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3.1.5 Temporal analysis of NAS delay states

In this section, we study the temporal evolution of global NAS delays. The goal is to get

a sense of when, and how often the typical NAS delay state we analyzed earlier occur. To

accomplish this, we look at the observations associated with each of the six typical NAS

states and the time of day those observations occured.

Figure 3-11 depicts the average NAS delays (one hour window) for January 2007. This

figure shows the average link delay for each observation, and the average link delay of

the centroid of the cluster that each observation belongs to. The average centroid delay

takes one of six different values, one for each cluster: 5.8, 15.2, 24.4, 31.2, 32.9 and 42.2

minutes. Figure 3-11 shows that on some days, the average network link delay goes above

the average centroid delay of the 3 highest NAS delay states (ORD, ATL or NYC highly

congested); by increasing the number of clusters we could decrease the differences between

the red and blue curve.

For the two years of data studied the three highest delay states were reached on 342 out

of 730 days; if we also add cluster 2 (NYC medium high delay) we have that those four

states were reached on 506 out 730 days (69% of the days).
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Figure 3-11: NAS average departure delay (January 2007)

Table 3.4 and Figure 3-12 present the analysis of the NAS state occurrences by day and

time-of-day, respectively. The data shows that the states with the lowest average delays are

the most common; state 4 (NAS low delay) is the most common at night time and state 1
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(NAS medium delay) during the day. As we could expect, Figure 3-12 shows that the slope

of state 4 curve is higher at the end of the day (rising edge) than at the beginning of the day;

at night time there is a point at which the number of departures drops and delays also drop,

but when the day begins delays increase progressively. State 2 (NYC congested medium)

and state 3 (ORD congested) counts start increasing at the same time of day, around 11am

eastern time. However, states 5 and 6 (NYC and ATL high delay clusters) do not start

occurring until 5pm. One factor leading to the late start of the NYC high delay state is that

state 2 (NYC congested medium) is a transition state; delays in NYC area start increasing

and the system reaches state 2, they continue increasing until state 5 is reached. In the

Chicago case, when delays in ORD are significant the system transition directly to state 3

(ORD congested), there is no intermediate ORD state. Finally, at the end of the day, all the

high delay states counts decrease past midnight.

Table 3.4: NAS states statistics.
NAS States Percentage of days Avg. active time,

each state occurs if active (hours)
State 1 100% 8.2
State 2 50% 4.1
State 3 29% 5.8
State 4 100% 11
State 5 16% 4.1
State 6 12% 4.6
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Figure 3-12: State occurrences by time of day (2007-2008 data).

Figure 3-13 shows the monthly occurrences of each of the NAS states. In this figure
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we note that Chicago high delay state (state 3) takes place more often in the winter months,

and that NYC and ATL high delay states (state 5, and 6) are more frequent in the summer

months. Figure 3-13 also suggests that September, October, and November are the months

in which less high delay states take place, and in which the low delay state (state 4) is more

frequent.

1000 1 i I I i I i Ii State1000

S800 -State2
State3

0 State4
o 600- StateState5

C 40State65400 -
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Figure 3-13: Monthly occurrences of NAS state.

3.2 NAS type-of-day

In addition to clustering the NAS delay state at time t, we cluster entire days of time series

data. The idea is to identify a set of typical NAS type of days according to the daily

delay of all the links in the simplified network. Each of the data points we cluster has

584x 24=14,016 variables (Number of OD pairs x 24 hours, we have one observation per

hour due to the 1-hour step size of the moving median filter).

Figure 3-15 shows the total within cluster distance for different numbers of type-of-day

clusters, and Figure 3-14 the within-cluster distance for each of the clusters. These results

were obtained using the k-means algorithm.

We followed the same methodology presented in the previous section to choose the

number of NAS state clusters (based on distance reduction and qualitative description of

the centroids), and we chose six clusters again. Instead of a video to visualize the clusters'

centroids, we present Table 3.5 which describes the main source of delay at the highest

delay point of the day for different numbers of type-of-day clusters. The average daily

delay and the number of observations belonging to each cluster are also included. The

42



10 500

8-
8 400

6 300 7.5 -
C CU

en0 Cl)

4  * 200 -

E7
0 z

2 100

.. :suul6.5-
0 2 4 6 8 10 5 10 15 20

Number of clusters Number of clusters

Figure 3-14: Intra-cluster distances vs. num- Figure 3-15: Total intra-cluster distance vs.
ber of clusters. number of clusters.

main delay sources are the same we saw in the NAS state clusters: ORD, ATL, and NYC.

Five clusters would allow us to identify the main delay sources in the NAS; however, we

choose 6 clusters because the distance reduction from 5 to 6 clusters is significant.

3.2.1 Temporal analysis of NAS type-of-day

In this section, we study the monthly frequency of each of the six types of day identified in

the previous section. Similar to the analysis of the NAS states, our goal is to identify any

significant seasonal patterns.

Figures 3-16 shows the monthly occurrences of the different types of days. We see that

Day 1 (high NYC delays, and significant ORD and ATL delays) is more common in the

summer months, while Day 6 (high NYC delays, but not high ORD or ATL delays) is seen

year-round, with higher frequency in the summer months. We also see that the Chicago

high delay day (Day 2) is more frequent in the winter, while the Atlanta high delay day

(Day 4) is more frequent in the summer.

It is interesting that the NAS state monthly occurrences, and the type of day monthly

occurrences show very similar results, likely because the same delay sources define them.

For example, if we have an ATL high delay day, most of the high delay NAS states of that

day will be ATL high delay states. It is unlikely that we will have many other high delay

states in a day classified as on ATL high delay type-of-day; we could see some other high

delay states, for example, the ORD high delay state, in the transitions from high to low
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Table 3.5: NAS type of day clustering. Delay
(60 min), Medium (20 min), Low (5 min).

definitions: High (90 min), Medium-high

Figure 3-16: Monthly occurrences of NAS type-of-day.

delay states, or vice versa.
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Number of Number of Avg. centroid Qualitative Description
clusters elements link delay (min.)

2 521 11.9 NYC medium delay
208 23.1 CHI and NYC medium high delay

3 107 22.3 CI high, NYC medium high delay
508 11.8 NYC medium delay
114 22.9 NYC high, ATL, ORD medium high delay

4 104 22.1 CI high, NYC medium high delay
104 21.6 NYC high, ATL, ORD medium delay
494 11.7 NYC medium delay
27 25.4 ATL high, NYC, ORD medium high delay

5 61 25 NYC high, ATL, ORD medium high delay
31 21 ATL high, NYC, ORD medium high delay
97 22 CHI high, NYC medium high delay
397 11 NAS low delay
141 17 NYC high, ATL, ORD medium delay

6 31 29 NYC high+, ATL, ORD high delay
94 22 CHI high, NYC medium high delay
207 15 NYC, ORD medium delay
29 21 ATL high, NYC, ORD medium high delay
282 9 NAS low delay
86 19 NYC high, ATL, ORD medium delay



Chapter 4

Analysis of Explanatory Variables

The goal of this chapter is to identify those variables that can play an important role in

predicting the level of delay of a certain link in the air traffic network. We will predict the

departure or arrival delay state of a link at time t+T, using temporal variables (e.g. time-of-

day, day-of-week or season), the local delay state variables value at time t (which depict the

most relevant airports' and links' delay states) and the high level delay state variables value

at time t (these are the categorical variables obtained in Chapter 3 through clustering). The

final goal will be to estimate a measure of the departure or arrival delay state of a link a few

hours into the future.

The analysis of the different variables presented in this chapter will focus one specific

link. The selected link for this analysis is JFK-ORD, which had the highest delay values in

the NAS in the 2007-2008 period. It also connects two main delay centers, New York City

and Chicago.

The rest of the thesis focuses on predicting departure delays. A similar analysis can be

done for arrival delays.

4.1 Description of explanatory variables

In this section, we evaluate the effect of changes in different categorical and continuous

variables on the JFK-ORD departure delay state. Our goal is to determine whether or not

to include the explanatory variables proposed below in our delay prediction models. We
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will do so by analyzing the effect of changes on those variables in the departure delay state

that we are interested in predicting. The analyzed variables can be divided into two groups:

1. Temporal explanatory variables: Time-of-day, day-of-week, season.

2. Network delay state explanatory variables:

" Local delay state variables: Influential airports delay state, influential OD pairs

delay state.

" High level delay state variables: NAS delay state, NAS type-of-day, previous

day's type-of-day.

In the categorical variables analysis presented below, we the ANOVA test, and the mul-

tiple comparisons test as the tools to evaluate the dependence of the departure delay with

the different categories of the proposed set of variables [12]. The ANOVA test provides

a statistical test of whether or not the means of several groups are all equal, and therefore

generalizes the t-test to more than two groups. Multiple comparisons allows us to evaluate

differences among the different categories, which the ANOVA test does not show since

it looks at all the groups as a whole (as long as the means of two categories different,

the ANOVA test will state that the means of the different categories are different). We

used a non-parametric ANOVA test (Kruskal-Wallis test) due to the skewness of the delay

distribution, which does not satisfy the normality assumption required by the parametric

ANOVA test. The delay distribution is skewed to the left because we have more low de-

lay points than high delay points in our data set. As a consequence of the non-parametric

ANOVA test, all the multiple comparisons tests presented here are based on ranks, and they

were calculated using the Tukey-Kramer criterion, and a 95% confidence interval. 5,000

data points where randomly sampled with replacement from the two years of data (17,519

observations) to performing the statistical analysis presented in the following sections. A

different approach was followed in the identification and analysis of the continuous vari-

ables, where we used a Random Forest (RF) based methodology to identify the relevant

delay variables. More details are presented in Section 4.1.6.
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The significance of the explanatory variables presented in this research depends on the

specific output of the prediction model we consider (regression vs classification). In the

analysis presented in the following chapters, we evaluate two types of prediction models:

classification models, where the output is a binary prediction that indicates whether the

delay level is higher or lower than a predefined threshold, and regression models, where

the continuous output directly estimates the delay along a link of interest. We assume that

if an explanatory variable has an effect on the continuous delay output, it will also have an

effect on the binary variable; for this reason, we only consider the continuous delay output

in this chapter. The results presented in this chapter were obtained for a 2-hour prediction

window, but some interesting results for a 4-hour window are also included.

4.1.1 Time-of-day explanatory variable

In this section, we study how the JFK-ORD departure delay state varies over the course of

the day. The time-of-day is a continuous variable; however, we are going to treat it as a

categorical variable by defining 24 time periods, one for each hour of the day. The Kruskal-

Wallis test table is presented in Figure 4-1, and shows a 0 p-value. The p-value gives the

probability of obtaining a more extreme value of the test statistic, assuming that the null

hypothesis is true. The null hypothesis is rejected when the p-value is smaller than the sig-

nificance level a, which is often 0.05 or 0.01. A low p-value means that the null hypothesis

is very unlikely to be true for our data set. The ANOVA test null-hypothesis is that all

categories have equal means. Consequently, a zero p-value means that the null-hypothesis

is rejected, an there is a difference between the mean JFK-ORD departure delay for the

different time-of-day categories. Figure 4-2 shows the multiple comparisons intervals. We

see that as the day progresses delays increase, and around 3am delays start decreasing. It is

important to remember that our data depicts the departure delay of flights departing at time

t; consequently, flights departing at 3am from New York are very likely to be highly de-

layed. At some points of the day, there is no a significant difference in consecutive hours'

delays (e.g. 15h to 16h). We could aggregate some of these categories, resulting in the

same information but fewer categories, which would decrease our prediction models' com-
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plexity. However, we keep 24 categories in order to keep the maximum level of detail in the

time-of-day information. For our prediction models, it is going to be very hard to predict

delays when they start increasing, or when they start decreasing. The time-of-day variable

plays a very important role here, by determining when delays typically start increasing or

decreasing. Secondly, we want to develop a prediction model with a common structure

that can be used in different links. The time-of-day variable effect on the departure delay

can change from link to link. We would need to analyze each of the links in the network

individually if we aggregate the time-of-day variable categories.

Kruskal-Walle ANOVA Table
Source SS df its Ch:-sq Prob>Chi-sq

Groups 1.94311e+10 =3 8.4483e+08 2331.5 0
Error 6.3902:6+10 9976 6.40S59e+06
Total 8.33333*+10 9999

Figure 4-1: Time-of-day ANOVA table for JFK-ORD departure delays.
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Figure 4-2: Time-of-day multiple comparisons test for JFK-ORD departure delays.

Finally, if we take a look at the width of the confidence intervals in Figure 4-2 we see

that they are wider at the end of the day, when delays decrease. This happens because, at

that time, there is typically no congestion, but sometimes flights are still propagating large

delays from the previous day.

4.1.2 Day-of-week explanatory variable

We start by evaluating 7 categories, one for each day of the week. The question to answer

is: Do JFK-ORD departure delays differ by day of the week? In Figure 4-3, we show
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the K-W ANOVA test p-value, which is very close to zero, and Figure 4-4 (category 1 is

Sunday, category 2 Monday, and so on) also shows that delays change for different days of

the week, since a good number of the multiple comparisons intervals do not overlap. Friday

(category 6) has the highest delay, and Tuesday, Wednesday and Saturday the lowest delay

(categories 3, 4 and 7).

Kruskal-Wallis ANOVA Table
source SS df HS Chi-sq Prob>Chi-sq

Groups 6.39306+08 6 l.0651+09 76.71 1.70637e-14
Error 8.:694.t10 9993 8.:7519et06
Total 8.33333.+10 9999

Figure 4-3: Day-of-week ANOVA table for JFK-ORD departure delays (7 categories).

We can increase the significance of the different values of the day-of-week variable

by aggregating the seven days of the week in 3 groups: the low delay category (Tuesday,

Wednesday and Saturday), the medium delay category (Sunday, Monday, and Thursday),

and the high delay category (Friday). Figure 4-5 shows the multiple comparisons plot for

these three groups, which none of the groups overlap. The problem here is that the day of

the week affects different OD pairs differently, and we want to define a set of categories

that make sense for all the OD pairs, and do not lead to information loss. Figure 4-6 shows

the system-wide multiple comparisons plot (all OD pairs' departure delay treated as one

single OD pair) for 7 categories of day-of-week variable. We see that the aggregation we

proposed for the JFK-ORD link does not make much sense here. For these reason, we

choose seven categories for our day-of-week variable.

4.1.3 Season explanatory variable

For the last of the temporal variables, the season, we perform a similar analysis. A low

p-value (see Figure 4-7), and multiple comparisons intervals that do not overlap (see Fig-

ure 4-8) show that JFK-ORD departure delays change for different months of the year.

Figure 4-9 shows the system-wide (all OD pairs treated as a single OD pair) departure de-

lay dependence with the month of the year. Both the JFK-ORD multiple comparisons plot

and the system-wide plot depict a very similar delay dependence with the month of the
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Figure 4-4: Day-of-week multiple comparisons test for JFK-ORD departure delays (7 cat-
egories).
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Figure 4-5: Day-of-week multiple compar-
isons test for JFK-ORD departure delays (3
categories).

Figure 4-6: Network aggregated day-of-week
multiple comparisons test for JFK-ORD de-
parture delays (7 categories).

Kruskal-Walls ANOVA Table
Source SS df fS Chi-sq Prob>Chi-sq

Groups 1.27441e+09 11 1.1s9SSe+08 157.9 3.61123*-=B
Irror 7.94294e+10 9998 7.95248e+06
Total 8.07038e+10 9999

Figure 4-7: Season ANOVA table for JFK-ORD departure delays (12 categories).

year. It makes sense to aggregate the month of the year into three categories. September,

October, and November show up as the low delay months (recall that this is in line with

the results of the analysis of the type-of-day and NAS state monthly occurrences, where

we identified these three months as the low delay months). January to May can be aggre-

gated as the medium delay months, and December, and the summer months (June, July,

and August) can be aggregated as the high delay months. Convective weather and high
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Figure 4-8: Season multiple comparisons
test for JFK-ORD departure delays (12 cat-
egories).

Figure 4-9: Network aggregated season mul-
tiple comparisons test for JFK-ORD depar-
ture delays (12 categories).

demand levels are the main causes for the high delay months. Finally, Figure 4-10 shows

the multiple comparisons plot for the three defined categories for the JFK-ORD OD pair.

The three categories lead to significantly different levels of delay.
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Figure 4-10: Season multiple comparisons test for JFK-ORD departure delays (3 cate-
gories).

4.1.4 NAS delay state explananatory variable

In the previous chapter, we identified the most typical delay NAS delay states using the

k-means clustering algorithm. The categorical variable presented in this section depicts the

NAS typical state that the system is closest to at time t. We evaluate the dependence of the

future delay of a certain OD pair on the global delay state of the NAS.

The analysis presented here was performed for 6 clusters. In Figure 4-11, we see that
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the ANOVA test p-value is 0, omplying that the means of the JFK-ORD departure delay

for different values of the NAS state categorical variable are not equal, and in Figure 4-12

we see the associated multiple comparisons intervals. It is reasonable that State 4 leads to

the lowest delay interval, since it is the low NAS delay state. The next highest JFK-ORD

delays are for State 1, which is the medium NAS delay state. The ATL high delay state (6)

comes next: The JFK-ORD delay levels are not too high for this state. The next state is

the NYC medium-high delay one (State 2), and finally we have the Chicago and NYC high

delay states (3 and 5).

Kruskal-Wallis ANOVA Table
Source SS df HS Chi-sq Prob>Chi-sq

Groups 2.56i11+10 S 5-1423*+09 3074.23 0
Irror S.77121e+10 9994 8.77468e+06
Total B.33333*+10 9999

Figure 4-11: NAS state ANOVA table for JFK-ORD departure delays.
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Figure 4-12: NAS State multiple compar- Figure 4-13: NAS State multiple compar-
isons test for JFK-ORD departure delays. isons test for ATL-MCO departure delays.

While some of the NAS delay state categories could be merged in this case, we do not

want to make model simplifications that could worsen the model performance on other OD

pairs. For example, Figure 4-13 shows the multiple comparisons intervals for the ATL-

MCO link. We note that the ATL high delay state is now the highest delay state. We

also note that the two low delay states continue being the same. It is also important to

highlight that the NYC medium delay state, which has an average network link delay of

24.4 minutes (State 2), leads to higher delays in the ATL-MCO link than the Chicago high
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delay state (State 3), which has an average network link delay of 34.2 minutes. in other

words, NYC area congestion seems to be more correlated with ATL-MCO delays than

Chicago congestion. This fact is consistent with our solution in section 3.1.4: the network

delay is more correlated with NYC delays than Chicago delays.

Finally, we see how a change in the prediction horizon from 2-hour to 4-hour affects

the dependence of the JFK-ORD departure delay on the NAS state categorical variable.

Figure 4-14 depicts the JFK-ORD departure delay multiple comparisons plot for a 4 hour

time horizon. Comparing Figure 4-14 and Figure 4-12, we see that the overlap and interval

width of the three high delay states increases with the prediction horizon. The increase in

the interval width indicates more uncertainty in the JFK-ORD delay; it is harder to predict

delays 4 hours into the future than 2 hours into the future. There is also a significant

separation between the high delay states and State 1 (NAS medium delay state). These

results show that on increasing the time horizon, the NAS state categorical variable loses

significance, leading to a decrease in predictive power. In Chapter 5, we evaluate the effect

of changes in the prediction horizon on the performance of the prediction model (with all

explanatory variables included).
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n4-
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Figure 4-14: NAS state multiple comparisons test for JFK-ORD departure delays with a 4h

prediction horizon.

4.1.5 NAS delay type-of-day explanatory variable

We hypothesized that the type of NAS day (as identified in Section 3.2)would have an

impact on the future delay level of any given OD pair. For six clusters, we have the results
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shown in Figure 4-15, and Figure 4-16. We have a very low p-value and differences among

the JFK-ORD departure delays for the different categories of the explanatory variable. The

NAS low delay day (day type 5) has the lowest delay, followed by the medium delay day

(day type 3), then we have the ATL high delay day, which does not have a big impact on

the JFK-ORD departure delay, and finally the two type of days in which Chicago or NYC

delays are very high, leading to the highest JFK-ORD departure delays in the multiple

comparisons plot. These two types-of-day could be merged because the almost perfectly

overlap. However, for other links, for example STL-ORD (see Figure 4-17), both types-of-

day are important since they lead to different delay levels.

Kruskal-Wallis ANOVA Table
Source SS df KS Chi-sq Prob>Chi-sq

Groups 1.20679*+10 5 :.41357e+09 1448 S.46978*-311
Irror 7.12654e+10 9994 7.130O:e+06
Total 8.33333e+10 9999

Figure 4-15: Type-of-day ANOVA table for JFK-ORD departure delays.
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Figure 4-16: Type-of-day multiple compar- Figure 4-17: Type-of-day multiple compar-
isons test for JFK-ORD departure delays. isons test for STL-ORD departure delays.

We note that one needs the entire days' delay information to determine the type of a

given day. In practice, if we make a delay prediction at 2 pm, we only have the delay

information from the beginning of the day to 2 pm. Although the type of day should be

estimated with the information available at the time the prediction is made, we assume that

we know the type of day with certainty before the day is over. While evaluating the pre-

diction capabilities of the type-of-day variable, we do not include the errors in estimating

it.
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NAS delays for the previous day are known with certainty, and can help predict delays

later in the day. The NAS does not immediately recover from high delay situations, such

as, a day with strong convective weather or a large number of canceled flights. Passengers

will be accommodated in flights over the next few days, leading to higher traffic levels and

subsequent delays. Scheduled aircraft routings are also affected by canceled flights, causing

additional delays. Figure 4-18 shows the previous days' type-of-day multiple comparisons

plot for the JFK-ORD departure delay. As we expected, if the previous day suffers high

delays (days type 1 and 2) delays tend to be higher on the next day than if the previous day's

delays were low (day type 5). Both variables, the NAS delay type-of-day and previous day

type-of-day, are included and evaluated in the prediction models presented in the following

chapters.
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Figure 4-18: Previous day type-of-day multiple comparisons test for JFK-ORD departure
delays.

4.1.6 Influential airports explanatory variables

The influential airports for a given delay prediction problem are those airports whose arrival

or departure delay states play an important role in predicting the delay of the OD pair of

interest. In this section, we want to identify the airports in the network that can help predict

the ORD-JFK departure delay. It seem evident that the ORD departure delay, and the

JFK arrival delay will play an important role here; however, could any other airports delay

variable help us make a better prediction?

In the reduced network, we have 103 different airports. These are airports at which at
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least one of the OD pairs operates 10 flights a day on average. We extent the set of possible

influential airports to the 400 airports with the most traffic; in order to sure that we do not

omit any significant airports. We analyze departure and arrival delays separately, resulting

in 800 variables in our problem. For the specific OD pair that we analyze in this chapter

(JFK-ORD), we identify which of those 800 variables play the most important role in pre-

dicting the departure delay 2 hours into the future. The variable selection method presented

in this thesis is based on the variables' importance level obtained from running a regression

Random Forest (RF) algorithm. The RF provides a good measure of the importance of

each of the variables in the model, and works well if the the number the variables is large

compare to the number of samples. More details can be found in [13]

With the purpose of increasing the robustness of the variables importance, and to avoid

very high computational times, we follow the following methodology to identify the set of

airports of interest:

1. Sampling, with replacement, of 3000 training data points from the 2007-2008 data

set, and fitting of a RF with 15 trees.

2. Selection of the 100 most important variables using the RF information obtained in

the previous step.

3. Detailed analysis of the 100 most important variables: sampling of 10 different train-

ing data sets with 3000 samples (w.r.) each, and fitting of a RF with 100 trees to each

of those training data sets. The final variable importance values will be the average

of the values obtained from the 10 RFs.

The training sets were not randomly sampled from the 2007-2008 data; instead we used

over-sampling. Over-sampling is the "deliberate selection of individuals of a rare type in

order to obtain reasonably precise estimates of the properties of this type. In a population

which includes such a rare type, a random sample of the entire population might result

in very few (or none) of these individuals being selected" [14]. Over-sampling allows us

to have a balanced data set, and to therefore avoid having more low delay data points in

our training sets. This is especially important in a classification problem: If we want to
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classify future delays as high (e.g., over 60 min) or low (under 60 min), we want half of the

points in our training and test sets to present delays of over (or under) 60 min. We will use

over-sampling in the rest of the thesis in both training and test sets.

The results of the proposed algorithm for the JFK-ORD departure delay link are shown

in Table 4.1. This table shows the 10 airports with the highest importance level. As we

were expecting the JFK departure delay and ORD arrival delay variables have high impor-

tance levels, 96.9 and 85.3 respectively. However, the DCA arrival variable has the highest

importance value. There are two possible reasons for DCA departure delay variable high

importance in Table 4.1. The first reason is the airport location: DCA is located slightly

south of the line that connects JFK and ORD airports. Weather events that take place in

between JFK and ORD, which will have a big impact on the JFK-ORD route departure

delays, will also heavily affect DCA airport delays. On the other hand, we have the route

structure of the airports as another important element. DCA is a more short haul, East Coast

flight oriented airport than JFK or ORD. This fact has an important effect in the selection

of the most relevant delay variables, since DCA average delay depicts the local delay state

well, and consequently the JFK-ORD delay state. DCA does not have flights connecting to

the West Coast, or international flights. However, if we look at JFK routes we see flights

going to LAS, LAX, SFO, and even to EGLL (London Heathrow). This argument also

explains why IAD, which is located next to DCA, is not in the top 10 airports. IAD is, as

JFK and ORD, a more long haul and international-oriented airport than DCA.

Table 4.1: Influential airports for JFK-ORD departure delay prediction.
Airport Delay Type Variable Importance

DCA Departure 100
JFK Departure 96.9
ORD Arrival 85.3
ORD Departure 82.8
LGA Departure 58.9
BOS Departure 58.9
PHL Departure 58.2
EWR Departure 57.7
JFK Departure 56.3

DCA Arrival 46.1

Figure 4-19 shows a geographical representation of the JFK-ORD variables importance.
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All the variables with at least an importance level of 15 are included, this leads to 24

variables. The outer circles depict the departure delay variables' importance, and the inner

circles the arrival delay variables' importance. This figure shows that the airports location

is an important factor driving the airport delay variables importance level; most influential

airports are located either in the NYC or Chicago areas Figure 4-20 shows the same type

of plot, but for the LGA-FLL route. We see that in this case the LGA area delays are

dominant, and none of the airports delay variables in the FLL area are relevant. LGA-FLL

departure delays are driven by the delay situation in NYC area.

100 100

80 80

60 60

40/1\ 40

Figure 4-19: JFK-ORD influential airports Figure 4-20: LGA-FLL influential airports
importance geographical representation. The importance geographical representation. The
outer circles depict the departure delay vari- outer circles depict the departure delay vari-
ables importance, and the inner circles the ar- ables importance, and the inner circles the ar-
rival delay variables importance. rival delay variables importance.

4.1.7 Influential OD pairs explanatory variables

In this section, our goal is to identify the OD pairs whose arrival/departure delays can have

an important role in a delay prediction model. We use the same methodology presented

in the previous section, but instead of airport delay variables we use OD pairs delay vari-

ables. We include all the links in the reduced network in our analysis. This leads to 1,064

variables, half of them are arrival delay variables and the other half departure variables.

After running the RF algorithm for the JFK-ORD link with all the links in the reduced

network as explanatory variables, we identified the 10 most important links presented in

Table4.2. The first thing to notice is that most of the selected variables are departure delay

58



variables. Most flight delays are absorbed on the ground, for this reason departure and ar-

rival delays do not differ much in general. Consequently, the arrival delay of a certain OD

pair at time t is close to the departure delay of that OD pair at time t-(flight time). This is

why departure delays are typically more valuable information than the arrival delays. How-

ever, in some circumstances arrival delays may have a high predictive power; for example,

due to connectivity issues, an aircraft that just arrived could be the one departing in a few

hours. The need to add more past delay information can also make arrival delays important.

In Table4.2, the LGA-ORD arrival delay variable adds more information to the LGA-ORD

departure delay variable, which is the third most important variable with a 65.3 importance

level. With respect to BUF-JFK arrival delay, over 2007-2008, 302 aircraft flying from

JFK to ORD flew into JFK from BUF, possibly explaining the BUF-JFK arrival delay im-

portance (see JFK-ORD aircraft rotation details in Table4.3). The BUF delays are also a

good indicator of the weather affecting flights in the area, or airspace congestion issues.

Going back to Table4.2, the three most important variables are all associated with NYC

airports departure delay of flights going to ORD. The next two variables depict departure

delays of flights going from ORD to NYC (JFK and LGA). PHL and BOS departure delays

to ORD are also included in Table4.2: their locations makes them good indicators of the

delay situation affecting JFK-ORD flights, and 296 aircraft flying from JFK to ORD flew

into JFK from BOS in the two year period. Finally, we want to highlight the presence of

the JFK-FLL departure delay in Table4.2. Fifty of the aircraft traveling from JFK to ORD

came from FLL in 2007 and 2008, but this does not seem an strong argument to justify the

presence of the JFK-FLL variable in Table4.2. Furthermore, the departure delay of flights

leaving from JFK to FLL at time t would affect JFK-ORD departures around 6 hours later

due to connectivity issues, and we have a 2 hour prediction horizon. Network effects seems

the strongest reason why the JFK-FLL departure delay is the eight most significant OD

pair in the network. All the other variables denote airports in the north east of the United

States; however, as we saw in the case of the NAS state centroids, a high delay situation in

a southern location (e.g. ATL) will typically affect the delay values in the north east due to

network effects.

With respect to the number of OD delay variables to include in our models, we consider
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Table 4.2: Influential OD pairs for JFK-ORD departure delay prediction.
Origin Destination Delay Type Variable Importance

JFK ORD Departure 100
EWR ORD Departure 90.9
LGA ORD Departure 65.3
ORD JFK Departure 44
ORD LGA Departure 24.3
BOS ORD Departure 17
PHL ORD Departure 16.9
JFK FLL Departure 11.9
BUF JFK Arrival 11.4
LGA ORD Arrival 11

the top 10 variables, as we previously did for the airport variables. The average importance

level for the 10th most important influential OD delay variable for the 100 most delayed

OD pairs, which we will analyze in detail in Chapter 6 is only 16.5. More than 10 variables

would not add much to our prediction models. As we mentioned previously, it is important

to define a fixed number of variables because we want to compare different links' prediction

models and changing number of variables would make the comparisons much less clear.

Table 4.3: JFK-ORD 2007-2008 aircraft rotations.
Previous Departure Airport Number of aircraft

ORD 2,736
BUF 302
BOS 296
PWM 290
PIT 265

AUS 252
DCA 216
SYR 203
CLT 199
RDU 193

4.1.8 Other explanatory variables

In this section, we describe some additional explanatory variables that could be added to

our delay prediction models, but which we do not include in the analysis presented in this

thesis.
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We have considered the most current delay state of airports and OD pairs, this is the

delay state at the time the prediction is made. However, could the addition of past informa-

tion improve or models? We could have variables depicting what happened (for example) 4

hours in the past. The NAS type-of-day is our only variable that goes back to the beginning

of the day or even the previous day, but we do not look at specific OD pairs , airports or

at NAS state information more than 2 hours in the past (size of the window of the moving

median filter).

With the purpose of obtaining the NAS state variable, we clustered the delay state of the

entire NAS, but we could instead cluster a certain area. For example, we could cluster the

states of influential links identified. It may be possible to simplify our model by replacing

a set of influential links delay variables with a categorical variable that models the most

typical delay states of that set of links.
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Chapter 5

Delay Prediction Models

In this chapter we test different classification- and regression-based delay prediction mod-

els. Our goal is to find the best prediction models, which we will used extensively in the

remainder of this thesis. As we did in the previous chapter while analyzing the explanatory

variables, we use the JFK-ORD departure link to evaluate the delay prediction models. The

last part of this chapter studies the selected JFK-ORD departure delay prediction model in

detail, through analysis of the errors variables importance, classification thresholds, and

prediction horizons.

5.1 Training and test data sets

We first derive the training, and the test data sets needed to fit and test the performance

of the different models we present in this chapter. We sampled 10 training sets (3,000

points each) and 10 test sets (1,000 points each) from the 2007-2008 data set. We fit and

tested the prediction models for each of the 10 training and test set pairs. This allowed

us to obtain a measure of the error variability and a good estimate of the test error. This

methodology, called random sub-sampling or also Monte Carlo cross-validation (MCCV),

consists on randomly partition the data into subsets, whose sizes are defined by the user.

For each split, the model is fit to the training data, and the predictive accuracy is calculated

using the corresponding split test data. The results are then averaged over the splits [15].

Random sub-sampling has been shown to be asymptotically consistent,resulting in more
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conservative predictions of the test data compared with cross-validation. The random-sub-

sampling method gives a good estimate of the performance over external validation data

[16].

The training and test sets created from the 2007-2008 data using over-sampling. Over-

sampling is the deliberate selection of individuals of a rare type in order to obtain reason-

ably precise estimates of the properties of this type. In a population which includes a rare

type, a random sample of the entire population might result in very few (or none) of these

individuals being selected [14]. Over-sampling allows us to have a balanced data set, and

to therefore avoid having more low delay data points in our training and test sets. This is

especially important in the classification problem: If we want to classify future delays as

high (e.g., over 60 min) or low (under 60 min), we want half of the points in our training

and test sets to present delays of over (or under) 60 min. We used over-sampling in the

regression problem as well, because it allowed us to compare classification and regression

results, and evaluate the regression models over a rich data set (we do not want a large

majority of data points in the data set to be low delay data points).

By applying over-sampling directly to the 2007-2008 data set, we still run into data

issues. Due to the highly skewed delay distribution (see Figure 5-1), most of the low delay

points (e.g., under 60 min delay) will have zero delay and belong to night time periods. To

avoid this problem we eliminate from our data set all those data points where the output

delay is zero. Figure 5-2 shows the histogram of the points eliminated for the JFK-ORD

departure delay variable. We see that the vast majority correspond to night time periods.

There is another important reason why delete these data points from our data set: As we

described in Chapter 2 of this thesis, we work with delay state estimates, and interpolate

delay information when there are no flights in the filtering window at a given time step. In

doing so, we discovered that a significant number of delay prediction errors correspond to

situations in which the estimated delay state variable value was zero, since there were no

flights in the time window, but the explanatory variables depicted a high delay situation. In

these situations, we correctly predict a high delay values, but the observed delay state value

is zero. By deleting the zero delay data points, we avoid obtaining prediction performance

values distorted by this data preprocessing issue. The histogram of the JFK-ORD departure
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delays for the 10 test data sets we use in our classification analysis (60 min threshold) is

presented in Figure 5-3. This histogram presents a reasonable number of points for the

different delay values, which will allow us to evaluate the performance of our prediction

models.
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Figure 5-1: Histogram of the departure delay of all links in the simplified network.
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Figure 5-2: JFK-ORD zero departure delay
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Figure 5-3: Histogram of the JFK-ORD de-
parture delay 10 test sets data .

5.2 Collinearity analysis

Before starting the evaluation of the different JFK-ORD departure delay prediction mod-

els, we perform a collinearity analysis based on linear regression Variance Inflation Factor

(VIF) values (categorical variables are treated as 0-1 variables). The VIF for the jth vari-

able is calculated as follows:
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VIF= -R 2  (5.1)
1 -R

where R is the coefficient of determination for the regression of the jth explanatory vari-

able on the remaining p - 1 explanatory variables. A large VIF value indicates that there is

redundant information in the explanatory variables. Most authors consider values above 10

as high values, while others say 5. From the 61 explanatory variables in our model, after

including the 0-1 dummy variables, five of the binary variables showed VIF values over 5.

All these high values were associated with the NAS type of day and NAS previous type

of day variables. These highest five VIF values are: 5.6, 6.2, 6.9, 8.2, and 9.3. In order

to understand which variables lead to these VIF values, we eliminated different variables

from the "rest of the variables set" (p - 1 explanatory variables) in the VIF calculation and

studied the effect on the resultant VIF values. We found out that for the NAS type-of-day

variable and the NAS delay state variable, the airports and links delay state variables, and

the NAS previous type-of-day were the variables leading to the highest VIF value of 9.3.

By eliminating these 3 sets of variables from the NAS type-of-day, and NAS previous type-

of-day VIF calculation, the largest VIF decreased to 5.5. Earlier in this thesis, Chapter 4,

we saw that there is correlation between the NAS delay states and the NAS type-of-day,

and that some NAS states only take place on certain types of days. There is also some

correlation between the NAS type-of-day and the previous type-of-day, especially for high

delay days when delay disruptions can last several days. Finally, the delay levels of differ-

ent airports or links are correlated with the type-of-day, since the type-of-day information

is obtained from clustering the link delays for the entire network and day. Overall, the VIF

values obtained from including all the explanatory variables are not very high, and conse-

quently we do not eliminate any of the variables. We instead use variable selection methods

specific to each classification/regression model to eliminate variables if needed.
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5.3 Classification models

In this section we evaluate the performance of different classification models in predicting

the JFK-ORD departure delay. We consider a binary output, which indicates whether the

output delay level is high or low. All the results presented below were obtained for a 60-

min classification threshold and a 2-hour prediction window. Later in this chapter, the

effect of changes in the classification threshold and prediction horizon on the performance

of prediction models will be studied.

5.3.1 Classification based on logistic regression

Logistic regression is a generalized linear regression, which uses the logistic function as the

link function. The following equation shows the structure of a typical logistic regression:

1
f(x) = _ o+11x1+#2x2+...+Ixk) (5.2)

Logistic regression can not handle categorical variables directly, they need to be con-

verted to binary variables. For this reason we have 61 variables instead of the original

26 variables; 41 binary variables, and 20 continuous variables. For each categorical vari-

able we have the (number of categories minus one) binary variables (one category is the

reference category).

The first step in fitting a logistic model was to identify influential data points. We first

fit a logistic regression model with 3000 training observations, and then looked at Pear-

son residuals, deviance residuals, and leverage values. We eliminate all data points that

satisfyed the conditions: |Pearson residuall > 2 or |deviance residual| > 2 or leverage >

2 * mean(leverage). For this specific 3,000 point training data set, we identified 419 influ-

ential data points, on 14% of the data set. The next step was to fit a logistic model with the

remaining 2,581 data points. The final misclassification error rate for the test data (1,000

points) was 22.9%. With respect to the variables' relevance in the logistic model, we saw

than only 25 of the 61 variables had p-values under 0.05. Figure 5-4 shows the histogram

of the p-values.
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Figure 5-4: Histogram of the logistic regression model explanatory variables p-values.

These high p-values suggest that some of the variables are not needed in the logistic

model. It therefore made sense to run a feature selection algorithm to eliminate the vari-

ables that do not play an important role in the logistic model. We used sequential forward

selection and the logistic model deviance as the objective function to minimize termination

tolerance: chi2inv(.95, 1). Table 5.1 shows the order in which the variables were added,

and their deviance values. Of the 61 initial variables only 25 were finally selected. Of the 6

original categorical variables, 3 were included in the model: time-of-day, NAS delay state,

and NAS type-of-day. On the other hand, of the 20 delay states variables, 3 airport and 7

link variables were selected. The maximum p-value for this new model was 0.04: all the

variables were significant at a 95% confidence level.

Table 5.1: Sequential Forward Selection results.
Iteration Variable Added Deviance

1-10 10 time-of-day categories: 4, 6, 8, 15, 16, 17, 18, 19, 21, 22 4,159-2,975
(eastern time)

11-12 NAS delay state: low, NYC high delay state 2,955-2,937
13-15 NAS type of day: NYC ORD medium delay, ATL high, NYC 2,922-2,895

ORD medium high delay, NAS low delay.
16-18 Airports delay state: EWR departure delay, JFK departure de- 2,886-2,859

lay, ORD arrival delay
19-25 Link delay states: BOS-ORD dep. delay, EWR-ORD dep. de- 2,851-2,818

lay, JFK-FLL dep. delay, JFK-ORD dep. delay, LGA-ORD
dep. delay, ORD-JFK dep. delay, PHL-ORD dep. delay

The test error value for this reduced model was 22.6%, only slightly lower than the

68



value obtained for the model with all 61 explanatory variables. However, the lower number

of variables makes this model easier to work with. Figure 5-5 shows the Receiver Operating

Characteristic (ROC) curve, which shows how the TPR and the FPR varies as we change

the decision threshold. The area under the ROC curve (AUC) is the probability that the

classifier will rank a randomly chosen positive instance higher than a randomly chosen

negative one [17]. The AUC value is useful to compare different classifiers. For the logistic

regression classifier, the AUC was 0.85.

ROC for classification logistic regression. AUC=0.85
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Figure 5-5: Logistic regression classification model ROC curve.

Finally, we obtained the logistic regression average test error and standard deviation,

from 10 training, and test sets (MCCV). The values are: 23% test error, Ipp standard

deviation. Later in this chapter, we use these values to compare the logistic regression

model with other classification models.

5.3.2 Single classification tree

In this section, we study the performance of a single classification tree. Classification trees

partition the input space into rectangles, and then fit a simple model in those rectangles.

The steps are: Split the space into two regions by choosing an input variable and split point

in order to achieve the best (LS) fit, and repeat this process again until a stopping condition

is satisfied. The GINI index was used to grow the trees presented in this section; however,

deviance was also tested with similar results.

A large tree will likely overfit, while a small tree will not capture enough detail. We
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would like to find the smallest tree that performs well, and to achieve this, we prune the tree

using the misclassification rate as the performance criterion. Figure 5-6 shows the MCCV

(±) error rate for different pruning levels (the higher the pruning level, the fewer nodes

the tree has). We can see that for pruning levels around 15 to 30 the curve is almost flat,

but for lower pruning levels the error rate increases (due to overfitting). For high pruning

levels, the error also increases since we have trees with a very small number of nodes,

which do not capture enough information from the training data. The minimum test error

is 24.1%, and its standard deviation is 1.6pp. This implies that the logistic regression error

rate calculated previously (23%) is lower than the single classification tree error rate. The

classification tree AUC value is 0.79, which is also worse than that of logistic regression

(0.85).

0.5

0.45-

0 0.4-
0

0.35-

0

U~ 0.3-

0.25

0.2
0 10 20 30 40

Prune Level

Figure 5-6: Single tree test error for different prune levels.

5.3.3 Ensemble of classification trees

The main idea behind ensemble classification methods is to aggregate predictions made by

multiple classifiers in order to make a final prediction. In this section, we study three differ-

ent ensemble methods: bagging, boosting and RF methods [13]. All three methodologies

aggregate predictions from classification trees.

Bagging consists of sampling the training data set with replacement, and building a

classifier (a tree in our case) for each bootstrap sample. Each tree is different and could

provide a different prediction. The majority output is usually selected as the ensemble
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classifier output. By contrast, boosting combines the output of many weak" classifiers to

produce a more powerful classifier. Each model (tree) is assigned a weight based on its

performance on the training data. The final ensemble classifier output is the weighted sum

of each individual classifier outputs. For each classifier, boosting follows an iterative proce-

dure to adaptively change the distribution of training data by focusing more on previously

misclassified records. Initially, all the training observations have the same weights, and af-

ter each iterations the weights of the misclassified observations are increased. Finally, RF

is similar to bagging; however, the number of variables searched at each split is a random

subset of the total variables set. RF works well for a large number of variables, and even

when the number of variables is higher than the number of data points.

Before reviewing the results for each of the three ensemble methods, we describe a few

specific configuration details. For boosting, we applied the AdaBoostM1 method, and a

weak classifier where no fewer than 10% of the training data points could fall in a terminal

node. For bagging and RF, we selected the minimum number of observations per tree leaf

to be 1. In the RF model, the size of the random subset of variables searched at each split

was chosen to be the square root of the total number of variables.

Figure 5-7 depicts the performance of the three methods for different numbers of trees

on an specific training and test set for boosting, and the out-of-the-bag error for bagging

and RF. We see that RF and bagging outperform boosting, but that RF is only slightly better

than boosting. The minimum classification error (20.7%) was obtained for a RF with 91

trees. The MCCV test error value for the RF with 100 trees is 21.2% with a 1pp standard

deviation, for bagging is slightly higher 22.1% with a 0.8pp standard deviation. The RF

test error numbers are the best found so far, since the MCCV error was 23% for the logistic

regression model, and 24.1% for the single classification tree model. Figure 5-8 shows the

ROC curves for the RF, logistic regression and single tree models. We see here that the RF

model performs better than the others, since it has the highest AUC value (AUC=0.87).

Based on these results, we chose the RF model as the best classification model, and

the one used in the rest of this thesis. With the goal of having robust estimates of variable

importance provided by the RF algorithm, we select 100 as the number of trees in the RF

prediction models. As done in the logistic regression model, we could have eliminated
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Figure 5-7: Ensemble methods performance for different number of trees.
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Figure 5-8: RF, logistic reg., and single tree ROC curve.

some variables from the RF model without significantly affecting prediction performance.

However, RFs can handle a large number of variables, even if they do not provide much

information or on the correlation among them. Having all the previously identified explana-

tory variables in this model will allow us to characterize different links by the importance

of their explanatory variables, without having to carry an independent variable selection

process for each link.

Finally, we calculate the test error value without over-sampling: data points are ran-

domly sampled from the entire data set. The mean MCCV test error is 18.4% with a

lpp standard deviation. As expected, the MCCV mean test errors are lower without over-

sampling since there are more easy-to-predict low delay data points.
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5.4 Regression models

In this section, we study the prediction performance of different regression models for the

JFK-ORD link. The output of the prediction model is continuous, and represents the pre-

dicted delay level in minutes. The results shown here were obtained for a 2-hour prediction

horizon, using over-sampling (60 minute threshold) to generate the data sets. The mean

and median absolute errors are used to evaluate the regression models performance.

5.4.1 Linear regression

In linear regression, a linear function is used to define the relationship between the explana-

tory variables and the output variable. As in the case of logistic regression, categorical

variables are first converted into binary variables, resulting in 61 variables. Before fitting

a linear model, we perform a diagnostic analysis and eliminate from the training set all

data points with the following characteristics: Studentized residuals larger than 3, lever-

age values greater than 3p/n (p is the number of variables, n the number of points in the

training data set), dffits values greater than 3 , and dfbetas greater than . We calculate

the MCCV test errors for a linear model with all the variables, and a reduced linear model

with only 20 variables. This reduced model is obtained with the same forward feature

selection procedure used in logistic regression, with the R-squared value as the objective

function that is maximized (termination tolerance 0.001). Table 5.2 presents the MCCV

performance numbers for both models, showing that the reduced model outperforms the

complete model to a small extent.

Table 5.2: Linear Regression models performance
LR Model Median error Median error Mean error Mean error

(min) std (min) (min) std (min)
20 variables 23.7 0.9 34.2 0.9
All variables 23.8 1 35.2 1
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5.4.2 Single regression tree

The main difference between regression trees and classification trees is that terminal nodes

have specific delay values associated instead of binary values. As was done for the clas-

sification trees, the GINI index was used as the splitting criterion to grow the regression

trees. Figure 5-9 shows the MCCV mean and median test error and standard deviations

for different pruning levels. The minimum average median test error is 26.2 min (std=1.4

min), this value is reached for a pruning level of 436, and the minimum mean error is 38.5

min (std=1.4min), reached for the pruning level of 507. Consequently, the linear regression

model presented in the previous section performs better than this single regression tree.
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Figure 5-9: Mean and median test error for different pruning levels (±o).

5.4.3 Ensemble of regression trees

In this section, we evaluate the same three ensemble methods that we evaluated in the

Section 5.3.3 for classification. We use the same parameters that were previously used for

bagging and RF methods, and in boosting we use the LSBoost method (the AdaBoostM 1

method is only for classification).

In Figure 5-10, we see the mean and median absolute errors for specific training and test

sets, and different number of trees. Boosting performs significantly worse than the other

two methods, and there is no significant difference between bagging and RF. With respect

to the number of trees, we see that for more than 30 trees, the error curves are almost flat;

the extra trees do not improve the prediction model performance. However, it is interesting
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to have more than 30 trees in our model to obtain a more robust estimate of the importance

of the different variables.
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Figure 5-10: Ensemble methods median and mean test error for different pruning levels.

The RF model MCCV median and mean test errors are 24.6 and 33.6 min, and for

the bagging model, 24.8 and 34.6 min respectively. These values are slightly higher than

those obtained from the linear regression model. However, we choose RF as the best model

because of the relative variable importance values that it provides. As we will see in the rest

of this chapter and in Chapter 6 the explanatory variables' importance values are key in our

analysis, and RF provides good estimates because it randomly selects subsets of variables,

and does not only focus on the best variables to generate the tree splits (as bagging does).

Finally, as we did in the classification problem, we calculate the test error numbers

without over-sampling. The MCCV median error is 19.8 min, and the mean error is 28.7

min. These test error numbers are lower than those obtained with over-sampling because

we randomly sample the training and test data sets, and therefore, there are more a larger

number of easy-to-predict low delay data points in the data sets.

5.5 Detailed analysis of random forest model

The RF model was selected from among the delay prediction models studied. In this sec-

tion, we perform a detailed analysis of: the importance of the different explanatory vari-

ables in the RF model, the data points for which the model does not work well (and the
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reasons why), and the effect of the classification threshold and prediction horizon on model

performance.

5.5.1 Importance of explanatory variables

Our goal in this section is to identify the most relevant explanatory variables in the JFK-

ORD departure delay prediction model, and to find similarities and differences between the

explanatory variables importance in the classification and regression problems.

The explanatory variables' importances were obtained as the average of the RF vari-

ables' importance for each of the 10 training data sets. Table 5.3 shows the results for

classification and regression (using a 2h prediction horizon, and 60 min over-sampling

threshold). We first analyze the importance values of the classification variables. Time-

of-day is the second most relevant variable, only the JFK-ORD departure delay exceeds

its importance. None of the airport delay variables manifested as relevant prediction vari-

ables; ORD departure delay has the highest importance value (36.4). With respect to the

links' delay variables, the JFK-ORD departure delay has the highest importance of all vari-

ables (100). The next two most important links are also departures from NYC to ORD:

EWR-ORD and LGA-ORD. The results of the regression problem present some interest-

ing differences. The time-of-day is less relevant with only a 59.9 importance level. This

indicates that the time-of-day is a very good prediction variable when we are only inter-

ested in knowing whether delays are high or low (the classification problem); however,

if we are looking for more detail (the regression problem) the time-of-day is not a good

prediction variable. The NAS delay state variables is significantly more important in re-

gression (89.4) than classification (44.4). A possible reason for this behavior is that when

we are in a NAS delay state in which either JFK or ORD delays are high, the JFK-ORD

departure delay will likely be within a certain high-delay interval; let us say between 50

and 70 minutes. This can be valuable information if we are trying to estimate the exact

value of the delay (regression), but if we want to decide if the delay level is above or below

60 minutes (classification), this information is less relevant. Airport delay variables are

even less important in regression than in classification. Finally, we see that the same three
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links are the most important links in regression, but the gap between the most important

link (JFK-ORD) importance level and the second most important link is higher. This fact,

together with the lower airport importance levels indicates that for JFK-ORD delay predic-

tion, the delay states of the defined airport and link influence areas are more important in

classification than in regression.

Table 5.3: Classification and Regression variables importance for the JFK-ORD departure
delay prediction model

Explanatory Variables Variables Classification Variables Regression
Importance Importance

Time-of-day 89.8 59.9
Day-of-week 7.3 3.1
Season 3.6 1.2
NAS delay state 44.4 89.4
NAS type-of-day 38.1 22.8
NAS prev. type-of-day 21.9 11.4
BOS departure delay 29.6 13.4
DCA departure delay 31.6 17.1
EWR departure delay 28.4 12.8
JFK departure delay 33.3 20.7
LGA departure delay 29.1 14.1
ORD departure delay 36.4 15.6
PHL departure delay 24.4 12.3
DCA arrival delay 25.2 13
JFK arrival delay 30.1 18.5
ORD arrival delay 34.7 12.9
BOS-ORD dep. delay 36.1 19
EWR-ORD dep. delay 79.4 62.3
JFK-FLL dep. delay 29.2 16.7
JFK-ORD dep. delay 100 100
LGA-ORD dep. delay 59.8 52.2
ORD-JFK dep. delay 58.5 40.6
ORD-LGA dep. delay 31.7 21.9
PHL-ORD dep. delay 36.6 22.8
BUF-JFK arr. delay 20.7 15.7
LGA-ORD arr. delay 23.8 13.3
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5.5.2 Analysis of errors

In this section, we conduct an exhaustive error analysis for the RF classification model;

some notes about the regression model will are included. The goal is to identify situations

where our model does not perform well, and explain why. The analysis of the errors can

help us identify ways to improve the prediction models' performance.

We first consider datapoints misclassified by the JFK-ORD prediction model misclas-

sified data points for a 60 minute classification threshold and a 2 hour prediction window.

The misclassified points are those obtained from the 10 test data sets. Figure 5-11 shows

the future JFK-ORD departure delay for the misclassified data: our model classified all

points over 60 min as low delay points (negative class), and vice versa. We can see that

there is a high concentration of data points around 60 min; this means that when the future

delay value gets closer to 60 min it is harder to classify that data as high or low delay data.

It is also noticeable that between 10 and 50 minutes, we have an approximately constant

number of misclassified points. Low delay points are easier to classify, but we have a larger

number of low delay points in the test sets, and this increases the number of misclassified

low delay data points. Figure 5-12 shows the normalized version of Figure 5-11. As we

expected, the misclassification error rate is maximum for 60 minutes delay, and as we move

away from this point, the error rate decreases. For high delay values we do not have many

points (see Figure 5-3). As a results, the results are not reliable and we can go from a 0%

misclassification rate to 65%.

Next, we analyze dependence of the misclassification rate on time of day (Figure 5-13).

When the day starts the error rate is low, (slightly over 10%), it increases around 9am to

17%, and it stays at this level for most of the day (9am 10pm). It is importance to notice

that the model achieves an steady error rate for different JFK-ORD delay levels, since delay

increases as the day progresses (see Figure 4-2). However, at the end of the day the error

rate increases significantly. The reason is the lack of data depicting the delay states of the

different elements in the system. The error rate rises for predictions after midnight, because

at that time there is not enough flight data to have a reliable delay state value of the different

links and airports our model depends on. We also consider the variations of the FN and FP
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rates with the time of day. In Figure 5-14, we can clearly see that FNs are dominant at the

beginning of the the day, and as the day progresses, FPs become dominant. The reason

for this behavior is two fold: On the one hand, our model relies on the network state, and

consequently it is hard to detect when delays rise or drop significantly; on the other hand,

we have the effect of the time-of-day variable. Early in the day, delays tend to be low. If

there is no indicator of a future high delay situation at the time, we will likely predict low

delay, even though delays could be high (a storm could hit the airspace in 2 hours) leading

to a high FN rate. The reverse situation takes place late in the day. If the network delay is

high, we likely to predict high delay; however, there is a point when delays could drop due

to the lower traffic volume late in the day. This leads to a high FP rate. The second factor

we depicted was the time of day variable. This is a very relevant variable in our model

with an 89% importance level. Typically, delays are low in the morning and high at the end

of the day. The time of day variable will push delay predictions down early in the day (

leading to FNs), and it will push them up late in the day (leading to FPs).

A different view of the error rate and FP/FN rates is presented in Figure 5-15, where the

error rate for different values of the NAS delay state at the time of prediction is presented.

The higher error rate is reached for the medium delay level (State 1). This NAS state

is typically a transition state to a higher or lower delay situation, and as we mentioned

previously, there may not be enough evidence in the network of the delay rise or drop at
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the prediction time. It is worth noting the high error rate of the ATL high delay state (State

6) compared to the other high delay states (States 2, 3 or 5). The reason can be that in this

case, the main delay source is not JFK or ORD, leading to a more unpredictable situation.

On the other hand, when we are at a high NAS delay state FPs dominate over FNs; it is

difficult to know when the high delay situation is going to end. For the low delay state

(State 4), FNs are clearly dominant; it is difficult to detect when delays go from low to

high when there are not enough signs of the change in the delay situation at the time of

prediction. We also studied the misclassification error rate for different months of the year,

but we did not see any remarkable differences.
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Figure 5-15: Misclassification error by NAS state.

Next, a detailed study of two misclassified data points is presented. Table 5.4 shows the

two data points' explanatory variables' values. For the first of the data points, we predicted
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low delay (under 60 minutes), and the future departure delay was 306 minutes. The RF

values for this data point, which indicate the prediction probability of belonging to each

of the classes, were 85.8 (for the low delay class), and 14.2 (for the high delay class).

The three most important variables value were (see Table 5.4): 23.6 min for the JFK-ORD

departure delay, 0 min for the EWR-ORD departure delay, and 11 am for the time-of-day

(typically high delays take place later in the day). The cause for the 306 minute delay could

have been a mechanical issue, or any other local circumstance that does not have an effect in

the delay state of the network, and consequently our model does not capture. It could also

be the beginning of a high network delay period; however, that day was not classified as a

high delay day. It is important to notice that the proposed model is a network-based model.

The delay prediction is based on the delay state of the different network elements at time

t. Misclassified data points points show situations in which either local or individual flight

issues take place without having an effect on other elements of the network, or situations

where there are not enough signs of the network delay increase or decrease at the time of

prediction.

For the second misclassified data point, we have the opposite situation: We predicted

the JFK-ORD departure delay to be high (over 60 min) and the actual delay was only 6 min.

In this case, there are many signs of a high delay situation in the explanatory variables (see

Table 5.4); for example, we are in the Chicago high delay NAS state, and the JFK-ORD

delay is 204 min. We made this delay prediction at 10pm (Eastern Time), meaning that

we were predicting midnight delays. At midnight, the demand level drops, which causes

congestion to also drop. Aircraft accumulate large delays during the day, and these high

delays can be carried until the end of the day. Nevertheless, aircraft that were not affected

by those delays or had enough turnaround time buffer to absorb previously accumulated

delay could depart on time when congestion drops. Once again, this is a difficult situation

for our model, since it depends on the delay state of the network. The only variable that

can help in this type of situation is the time-of-day, because it pushes delays down late at

night, when delays typically decrease.

The different findings presented above for the classification model are applicable to

the regression model. As an example, in Figure 5-16 we have the median prediction error
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versus the time of day, and we can see that the error varies with time-of-day the same way

that the misclassification error did (Figure 5-13)

5.5.3 Effect of classification threshold

The classification threshold value affects our prediction models performance. In this sec-

tion, we evaluate the impact of changes in the classification threshold on the test error, and

the effect on the importance of the different variables in the model.

The comparative analysis was performed for 45, 60 and 90 min classification thresholds

and a 2 hour prediction horizon. With respect to the test errors, we obtained the follow-

ing results: 23.13% (std=1.5) for the 45 min threshold, 21.2% (std=l%) for the 60 min

threshold, and 19.39% (std= 1.1%) for the 90 min threshold. The test error decreases as the

classification threshold increases, since there are clearer indications of whether the future

delay will exceed 90 min, than whether it would exceed 45 min.

With respect to the variables' importance value, the time-of-day variable importance

decreases as the classification threshold increases (see Table 5.5). The time-of-day vari-

able has difficulties explaining high delay values which do not take place often: For high

threshold values, we need high delay signs from different elements of the network. An-

other variable with a higher importance value for the lowest classification threshold is the

NAS type-of-day. The JFK-ORD departure delay distributions for the different type-of-day

clusters are less centered around 45 minutes than around 60 or 90 minutes, allowing to bet-
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ter distinguish between delays over and under the threshold. The higher importance of the

ORD departure delay for the 45 min threshold is also worth noting. Finally, the OD pairs

delay variables show that as the threshold increases, the third most important variable's

importance (LGA-ORD departure delay) decreases significantly, being JFK-ORD depar-

ture delay, and EWR-ORD departure delay the only two variables with an importance level

over 50 for the 90 min threshold. This means that the correlation between the LGA-ORD

departure delay variable and the future JFK-ORD departure delay decreases as the level

of delay of JFK-ORD departures increases, and the EWR-ORD departure delay variable

keeps a similar degree of correlation for different levels of delay.

5.5.4 Effect of prediction horizon

In this section, we study changes in the length of the prediction horizon. As done earlier,

we evaluate the prediction model's performance, and the most significant changes in the

explanatory variables' importances.

Table 5.6 depicts classification and regression prediction performance for four different

prediction horizons: 2, 4, 6, and 24 hours. We see that the model performance does not

decrease much as we increase the prediction horizon length: from 2 to 6h the classification

error only increases 3.9pp.

Tables 5.7 and 5.8 show the most interesting changes identified in the explanatory vari-

ables importance value. The time-of-day variable for both classification, and regression

plays a more important role as the prediction horizon increases. The delay state of the dif-

ferent elements in the network decrease prediction power as we increase the time horizon;

however, the time-of-day variable is not affected by the time horizon leading to a higher

importance value for the time-of-day variable. It is important to notice the high importance

value of the NAS type-of-day categorical variable for a 4 and 6 hour prediction horizon.

For a 24 hour prediction horizon the type-of-day variables importance drops, since in this

case it is associated with the previous day, and not the day in which we are making the

prediction. Finally, as a representative example of the reduction of the links delay variables

importance as we increase the time horizon, we have the JFK-ORD departure delay. We

83



see that this variable goes from being the most important one for a 2h horizon to have an

importance level less than 30 for a 24h horizon, for both classification and regression.
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Table 5.4: Sample 1 and Sample 2 explanatory variables value
Explanatory Variables Variables Sample 1 (min) Sample 2 (min)

Importance
Time-of-day
Day-of-week
Season
NAS delay state
NAS type-of-day

NAS prev. type-of-day

BOS departure delay
DCA departure delay
EWR departure delay
JFK departure delay
LGA departure delay
ORD departure delay
PHL departure delay
DCA arrival delay
JFK arrival delay
ORD arrival delay
BOS-ORD dep. delay
EWR-ORD dep. delay
JFK-FLL dep. delay
JFK-ORD dep. delay
LGA-ORD dep. delay
ORD-JFK dep. delay
ORD-LGA dep. delay
PHL-ORD dep. delay
BUF-JFK arr. delay
LGA-ORD arr. delay

11 am eastern time
Tuesday

Medium delay
NAS medium delay
NYC, ORD medium

delay
NYC, ORD medium

delay
8.3
7.1
7.3
14.2
18.8
13.7
7

5.5
7.9
7.5
4.5
0

18.8
23.6
20.1
23.3
21.7
1.3
0
0

10pm eastern time
Sunday

Medium delay
Chicago high delay

Chicago high
delay

Atlanta high delay

25
Ill
95.3
41

73.5
101.4
58

33.3
42.9
113.5
148

133.7
28.9

204.3
119.3
77.9
70.7
161.3

0
134.6

89.8
7.3
3.6

44.4
38.1

21.9

29.6
31.6
28.4
33.3
29.1
36.4
24.4
25.2
30.1
34.7
36.1
79.4
29.2
100
59.8
58.5
31.7
36.6
20.7
23.8
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Table 5.5: Explanatory variables' importances for JFK-ORD for different classification
thresholds

Explanatory Variables Variables Imp. Variables Imp. Variables Imp.
(th=45min) (th=60min) (th=90min)

Time-of-day 100 89.8 61.7
Day-of-week 8 7.3 5.1
Season 4.3 3.6 2.5
NAS delay state 21.6 44.4 21.8
NAS type-of-day 64.5 38.1 45.9
NAS prev. type-of-day 26 21.9 17.2
BOS departure delay 32.2 29.6 19.3
DCA departure delay 32.7 31.6 18.4
EWR departure delay 36.5 28.4 20.4
JFK departure delay 48.9 33.3 36.9
LGA departure delay 31 29.1 19.7
ORD departure delay 60.8 36.4 32.3
PHL departure delay 31.9 24.4 19.7
DCA arrival delay 33.6 25.1 19.8
JFK arrival delay 36.8 30.1 26.2
ORD arrival delay 42.9 34.7 41.9
BOS-ORD dep. delay 43.5 36.1 22.4
EWR-ORD dep. delay 89.3 79.4 87.5
JFK-FLL dep. delay 34.5 29.2 17.3
JFK-ORD dep. delay 95.7 100 100
LGA-ORD dep. delay 70.3 59.8 49.8
ORD-JFK dep. delay 66.4 58.5 49.8
ORD-LGA dep. delay 30.1 31.7 20.6
PHL-ORD dep. delay 42.4 36.6 44.4
BUF-JFK arr. delay 23.3 20.7 19.5
LGA-ORD arr. delay 20.9 23.8 18.1

Table 5.6: Prediction horizon analysis.
Prediction Class. test Class. test Reg. median Reg. median

horizon (h) error (%) error std (pp) error (min) error std (min)
2 21.2 1 24.49 0.7
4 23.06 1.2 27.45 0.8
6 25.12 1.5. 29.52 0.93

24 32.23 1.4 32.8 1.59
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Table 5.7: Effect of prediction horizon on explanatory variables importance for classifica-
tion.

Table 5.8: Effect of prediction horizon on
Variables Horizon (2h)

Time-of-day 61.3
NAS type of day 20.7

JFK-ORD dep. delay 100

explanatory variables importance for regression.
Horizon (4h) Horizon (6h) Horizon (24h)

100 100 100
73.8 75.8 13.2
36.5 15.8 18.2
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Chapter 6

Analysis of the 100 Most-Delay OD Pairs

In this chapter, we analyze the performance of the RF prediction model presented in the

previous chapter for the 100 most delayed OD pairs in the 2007-2008 data set. We selected

the 100 OD pairs with the highest delay in order to avoid a shortage of high delay data

points. Figure 6-1 depicts the 100 OD pairs considered in the analysis.

Figure 6-1: 100 most-delayed OD pairs.

The goal of this chapter is to study prediction models for the different OD pairs and to

identify sets with similar characteristics (e.g., similar prediction performance, or explana-

tory variables' importance). In the analysis presented hereafter, we evaluate the potential

of the different explanatory variables included in the prediction model. In the JFK-ORD

prediction model which we discussed in the previous chapter, some of the variables were

found not to be relevant, but they help us here to better understand the characteristics of

different links. For example, the NAS delay state variable may be the most significant pre-

diction variable for a particular link, and one of the least significant variables for another
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one; in this scenario, we could conclude that delays on the first link have a high correlation

with the global NAS delay state.

Another important objective of this chapter is to validate the delay prediction model

on different OD pairs. The results presented in the previous chapter were obtained for the

JFK-ORD OD pair, and we do not know if these results are specific for this link or they can

be generalized to any OD pair in the network. As we described in the explanatory variable

selection process (Section 4.1), our goal is to develop a prediction model that can be used

for any link in the network.

The majority of the results presented in this chapter were obtained with a 2h prediction

horizon, and a 60 minute classification threshold. Some interesting results for different

time horizon lengths and classification thresholds are also presented. Both classification,

and regression models are studied in this chapter, with a greater focus on the classification

models.

6.1 Performance of delay prediction models

In this section, we study the performance of the classification and regression departure

delay prediction models for the 100 selected links: A 2 hour prediction window and a 60

minute classification threshold are assumed.

6.1.1 Classification performance

Figure 6-2 shows the test error histogram for the 100 most delayed OD pairs. The test error

ranges from 11.3% to 28.8%, with an average value of 19.1%. The link with the lowest test

error is EWR-ATL (11.3%), and the one with the highest is LAS-SFO (28.8%). Delays for

flights arriving or departing from SFO are difficult to predict: The average test error rate

for links that have SFO as either the origin or the destination is 23.3%. We find that 90% of

the analyzed links have a test error standard deviation that is less than under 1.7 percentage

points. The empirical cdf of the test error standard deviations of all the links is presented

in Figure 6-3.
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Figure 6-2: Classification test error histogram Figure 6-3: Empirical cdf of the standard de-
for the 100 most-delayed OD pairs. viation of the classification test error for the

100 most-delayed OD pairs.

If we break down the test error into false positive and false negative error rates (FPR

and FNR, respectively) we find that the FNR is clearly dominant. For the 100 most delayed

links, the average FNR is 23.62%, while the average FPR is 14.6%. Additionally the FNR

rate is higher than the FPR for all OD pairs. In other words, the classifier is more likely

to miss a high delay link than it is likely to predict high delay when actual delay on the

OD pair is low. This behavior is because our prediction model considers the delay states

of the different elements in the network, and therefore does not accurately capture local

delay causes (such as mechanical issues). If delays in the relevant network elements are

high, we will likely have a high delay situation in two hours later in our link of interest;

however, if the network delay is low, we could still have a high delay in two hours later

due to a local issue that affects only a certain flight. Figure 6-4 shows the FPR and FNR

versus the test error for all the studied OD pairs. We note that the separation among the

FP points and FN points increases as the test error increases. For the lowest test error OD

pair, FNR/FPR ratio is 1.3, while for the highest test error FNR/FPR= 1.9, showing that the

FNR dominance increases with the test error. In the OD pair with the highest test error

(LAS-SFO), the prediction model misclassifies high delay points almost twice as often as

the low delay points.

Table 6.1 summarizes the most significant correlation results between the test error val-

ues and the explanatory variables importance. The three temporal variables show a clear
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positive correlation with the test error, specially the day-of-week and season variables.

These results show that the temporal variables tend to have high importance when delays

are hard to predict from the delay state of the different links or airports, and the best option

then is to make a prediction based on historical data. The high correlation of the test error

with the previous type-of-day variable (0.7) is worth noting. This means that when delays

are hard to predict, the information on the previous day becomes more important. Figure

6-5 depicts the correlation of the test error with the type-of-day importance (0.43). Finally,

neither the airports' or the OD pairs' explanatory variables showed a strong correlation

with the test error. However, it is interesting to look at the signs of the correlation coef-

ficients. The airports' importance is positively correlated with the test error, and the OD

pairs importance is negatively correlated. This means that having a high airport importance

is typically a sign of poor prediction performance, perhaps because it suggests that none of

the OD pairs are good predictors.

6.1.2 Regression performance

Next, we study the regression problem, and compare its performance with the results ob-

tained for classification. We use the same data set used in Section 6.1.1.

Figure 6-6 shows the histogram of the median test error for the 100 links studied. The

median error values range from 15.6 min (EWR-ATL) to 36.4 min (LAX-HNL), and the

average median test error is 20.9 min. As we can see in Figure 6-7 the standard deviation
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Table 6.1: Correlation between the test error and explanatory variables importance.
Explanatory Variable Correlation with classification

test error
Time-of-day 0.43
Day-of-week 0.74

Season 0.71
Previous type-of-day 0.7

Airports delay 0.33
(max. importance)

OD pairs delay -0.16
(max. importance)

of these error values is low, and the 90th percentile of the distribution is 1.17 min. The

gap between the highest median error value (LAX-HNL) and the second highest (SFO-

JFK)in Figure6-6 is worth noting. Since neither of these links had the highest test error

in classification, we can ask the question, do links with high classification test error also

have high regression test error? To answer this question, we plot classification error versus

regression error (Figure 6-8). Although there is a strong positive correlation (0.78), some

specific links perform significantly differently in the classification and regression problems.

The highlighted data point in Figure 6-8 corresponds to the CLT-LGA departure delay

prediction model. The classification test error for this link is 22.6%, which is high and in the

87th percentile of the classification error distribution, but the regression median test error is

only 20.2 minutes, which is in the 40th percentile of the regression error distribution. This

shows that a good performance in the regression problem does not necessarily mean good

performance in the classification problem, and vice versa. The problems are different: in

the classification problem we need information to allow us differentiate between high and

low delay (relative to a given threshold), but in the regression problem we need information

to predict the value of the future delay. For a specific link, it may be easier to predict

whether or not the future delay will be over 60 min. than to predict its exact delay value.
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Figure 6-8: Classification vs. regression test error.

6.2 Clustering of delay prediction models

The delay prediction models that we have proposed include a large number of variables.

Some of them are not relevant for certain OD pairs, but are relevant for others. The im-

portance values given by the Random Forest algorithm will allow us to characterize the

different OD pairs according to the importance of the different explanatory variables. Our

goal in this section is to aggregate the 100 most delayed OD pairs into clusters, whose

members share prediction models with similar characteristics.

The first step is to define a set of clustering variables, that reflect the most significant

characteristics of the prediction models. We would like to cluster the prediction models

according to their performance (test error), and the importance of the different explanatory
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variables. We choose as the clustering variables' the test error and the following variables

importance values: time-of-day, day-of-week, season, NAS delay state, type-of-day, pre-

vious type-of-day, departure's airport departure delay, arrival airport's arrival delay, OD

pair's departure delay, OD pair's arrival delay, the three airports with the highest impor-

tance value in the influence area, and the three links with the highest importance value in

the influence area.

Once the clustering variables are defined we need to choose the number of clusters.

As we did previously, we look at the k-means total within cluster distances for different

number of clusters. Figure 6-9 shows the value of the total within-cluster distances. We

can see that the total distance drops significantly until five clusters, after which the curve is

flatter. For this reason, we choose five as the number of clusters.

X10

5-

3-

2-

1-

00 10 20 30 40
Number of clusters

Figure 6-9: Total within cluster distance for different number of clusters.

Table 6.2 shows the values of the clustering variables for each of the 5 clusters' cen-

troids, and Figure 6-10 depicts the OD pairs belonging to each cluster. Cluster 1 is char-

acterized by a low test error (18.6%), high departure airport departure delay importance

(98.4), low arrival airport arrival delay importance (0.9), and low importance for all the

links' delay state variables (highest value 56.3). The links belonging to Cluster 1 have a

large, highly congestion airport as the origin (JFK, EWR, LGA, ORD, PHL), and a smaller

and/or less congested airport as the destination (see Figure 6-10). Cluster 2 has the highest

test error value (20.6%), and highest time-of-day importance (100). The links belonging

to this cluster are those whose delay is harder to predict, because none of the airports or

links delay state variables are good predictors. Consequently, the time-of-day plays the
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most important role in the model. We can see that in Cluster 2, both the highest airport

importance (44.4) and highest link importance (62.7) are close to their lowest values for

all clusters. In Cluster 3, both the departure airport departure delay and the prediction OD

pair departure delay have high importance values (79.7 and 82.3 respectively). In Figure

6-10 shows that as in Cluster 1, Cluster 3 links also have one of the major airports as the

departure airport. The difference is that in Cluster 1, the departure delay of the prediction

link was not relevant, while in Cluster 3, both the departure airport departure delay and pre-

diction link's departure delay play important roles. Cluster 4 is the smallest of the clusters

with only seven elements, and it is characterized by the highest arrival airport arrival delay

importance (87.4), and a high prediction link departure delay importance (86.8). Five of

the 7 links are LGA arrivals, and the remaining two are ORD arrivals (see Figure 6-10).

Finally, Cluster 5, the cluster with the largest number of data points, is characterized by a

high importance value for the prediction link's departure delay (95.5), and also high impor-

tance of the two most important links' delay state variables (100 and 71.6, respectively),

but low airport variables' importance values (highest importance: 38). OD pairs belonging

to this cluster arrive at one of the large and heavily-congested airports (ORD, JFK,EWR,

LGA, ATL, PHL) (Figure 6-10).

In summary, there is one cluster (Cluster 2) where neither the airport or link delay

state variables play an important role; consequently, the time-of-day variable is the most

significant variable and the classification error is high. There are two clusters for links that

originate at one of the highly congested airports (Clusters 1, and 3). In one of these clusters,

only the departure airport departure delay plays an important role (Cluster 1), while for the

other one, both the departure airport's departure delay, and the prediction link's departure

delay are important (Cluster 3). Finally, we have two clusters (Clusters 5 and 5) whose

member links are destined for large, highly congested airport. In one of them (Cluster

4), the arrival airport's arrival delay and the prediction link's departure delay are the main

variables, and in the other (Cluster 5), only the prediction link departure delay plays an

important role.

We also investigate whether the location of a link has an impact on the clustering. If we

look closely at Figure 6-10 we see that only links in the Eastern US belong to Clusters 4
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Table 6.2: Clusters' centroid variables values for five clusters.
Clustering Variable Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

(24 elements) (16 elements) (21 elements) (7 elements) (32 elements)
Test error 18.6 20.6 19 19.9 18.6
Time-of-day 72.8 100 81.2 74.7 71.1
Day-of-week 5.6 6 6.3 7.2 6.2
Season 2.8 3 3.2 3.7 3.1
NAS state 17.2 19.9 25 10 18.3
NAS type-of-day 21.8 22.1 25.9 33.5 37.4
NAS prev. type-of-day 16.7 16.9 19.1 21.9 17.9
Dep. airport's dep. 94.8 30.4 79.7 18.6 17.7
delay
Arr. airport's arr. 0.9 14.4 4.3 87.4 28.1
delay
Pred. OD pair's dep. 41.3 53.3 82.3 86.8 95.5
delay
Pred. OD pair's arr. 0 4.2 8.7 16.5 16.1
delay
Highest airport's 98.4 44.4 85.3 87.4 38
importance
2nd highest airport's 67.6 33.9 56.5 72.2 32.3
importance
3 rd Highest airport's 32.5 29.9 39.4 37.2 26.6
importance
Highest OD pair's 56.3 62.7 95.3 86.8 100
importance
2 "d Highest OD pair's 46.4 42.8 63.5 67.3 71.6
importance
3 rd Highest OD pair's 41 36.5 48.2 53.2 55.1
importance
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Figure 6-10: Clusters 1-5 OD pairs geographical location.

and 5. Arrivals to major delay centers which are not located in Eastern US typically belong

to Cluster 2, where none of the airports' or links' delay state variables were found to be

significant. On the other hand, if we compare Clusters 1 and 3 (departures from high delay

centers), we see that links having ORD as origin belong to Cluster 1 when their destination

is on one of the coasts, and those links with ORD as origin and destined for the South West

belong to Cluster 3.

Finally, we applied the same clustering algorithms to the regression problem as well.

The results for five clusters and the same clustering variables were almost identical, and the

qualitative description of the centroids were very similar.
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6.3 Identification of the most influential OD pairs

In this section, we try to identify which OD pairs' delay states play the most important

role in predicting delays on the 100 most delayed OD pairs. To answer this question, we

calculate the total importance value of each of the links' variables, which are obtained by

summing the importance values of individual links' explanatory variables (both departure

and arrival delay variables), over the 100 OD pairs. Table 6.3 shows the results of the

analysis. The OD pairs at the top of Table 6.3 are those that better reflect the delay state

of a certain area of the network, and consequently their associated delay variables play an

important role in many of the links' delay prediction models. For example, the STL-ORD

delay variable importance is over 70 for five different departure delay prediction models:

STL-ORD, MEM-ORD, IND-ORD, SDF-ORD, and CLT-ORD.

Table 6.3: Most important links in the 100 most delayed OD pairs' prediction models
Origin Destination Total Importance
EWR ORD 1713
STL ORD 1553

MCO EWR 1455
ATL EWR 1363
ORD EWR 1289
ORD LGA 1218
LGA ORD 1169
FLL EWR 972
JFK BOS 703
IAH ORD 700

We now select three of the most influential links in Table 6.3, and take a closer look

at the links for which they play an important prediction role. In Figures 6-11, 6-12 and

6-13, we see the links for which EWR-ORD, STL-ORD and FLL-EWR delay explanatory

variables play an important prediction role. The colors of the links on the maps indicate the

importance level with which each of the three selected links appears in the delay prediction

models for the links that the arrows connect. The first aspect we want to highlight are

the differences in the locations of the links for which these three links play an important

role. For the EWR-ORD link, Figure 6-11 shows that the origins and destinations are not

limited to a specific area of the US. This suggests that the EWR-ORD delay level is a good
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reflection of the global network delay state, since the level of delay of this link plays an

important role in predicting the future delay of links with very different locations. Figures

6-12 and 6-13 show that the locations of the links for which STL-ORD and FLL-EWR

delay variables play important prediction roles. We find that these links are more localized,

suggesting that FLL-EWR and STL-ORD are good descriptors of the local delay situation.
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Figure 6-11: EWR-ORD explanatory vari-
able importance for the 100 most-delayed OD
pairs.

Figure 6-13: FLL-EWR explanatory variable importance
pairs.
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Figure 6-12: STL-ORD explanatory vari-
able importance for the 100 most-delayed OD
pairs.
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It is reasonable to find that the most influential links play an important predictive role in

other proximate links' prediction models, since factors such as convective weather would

affect them in similar ways. However, in some cases we have links' delay variables playing

important roles for links that are not in their vicinity, but with a common departure or

arrival airport. For example, the EWR-ORD departure delay state has a 72.4 importance

value in the ORD-SEA departure delay prediction model. One possible explanation for this

type of behavior is the aircraft routing, which can create dependencies between different

links' delays. In Figure 6-14, we have the aircraft rotation information for aircraft flying
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from ORD to SEA. The arrows in the map depict where aircraft departing from ORD

for SEA, flew into ORD from (2007-2008 data). Most of the aircraft arrived from SEA,

(1,720). However, there are a significant number of aircraft coming from the East Coast;

for example, 531 from LGA and 382 from BOS. The EWR-ORD delay state is a good

indicator of the delay that these aircraft flying from the East Coast to ORD suffer. Aircraft

rotations and link locations can help us understand why some links delay state variables

play an important role in other links' prediction models. there are, however, instances with

no obvious explanation for the appearance of a certain link delay state as a good prediction

variable. There are network effects and correlations that the RF output help us to identify,

but are difficult to explain. For example, the FLL-EWR delay plays an important role in

the DTW-EWR delay prediction model, with an importance level of 81.9. The two links

are not in the same geographic area, and the aircraft rotations information does not show

strong aircraft connectivity between FLL and DTW: 4,379 of the aircraft flying from DTW

to EWR came from EWR, and only a few aircraft came from the FLL area (Figure 6-15).

We interpret the high importance value of the FLL-EWR delay variable in the DTW-EWR

departure delay prediction model as a sign of the ability of the FLL-EWR delay variable

to reflect high delay situations in the South East of the US, which are likely to affect the

North East area (including DTW-EWR) two hours in the future.
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Figure 6-14: Number of flights on link pre- Figure 6-15: Number of flights on link
ceding ORD-SEA in aircraft rotations (2007- preceding DTW-EWR in aircraft rotations
2008 data). (2007-2008 data).
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6.4 Comparison of the OD pairs with the best and worst

prediction performance

Previously, we saw that there are significant differences between the prediction models'

performance for different OD pairs. For example, the classification test error (2h horizon,

60 min threshold) of the EWR-ATL departure delay prediction model is 11.3% (the lowest

test error we obtained), while that of the LAS-SFO link test error is 28.8% (the highest test

error). The median test errors for regression are also significantly different for these two

links, 15.6 min, and 24.3 min respectively. The goal of this section is to compare these two

models, and understand what makes the prediction performance so different. We focus on

the role of the most significant prediction variables (importance level over 50).

The time-of-day explanatory variable is the most important variable for both OD pairs.

The difference in the models' performance can be explained using Figures 6-16 and 6-17.

They show the EWR-ATL and LAS-SFO departure delay means and one standard devia-

tion confidence intervals versus the time-of-day for the data points in the test set. We see

that the EWR-ATL confidence intervals overlap less with the 60 minute threshold line than

the LAS-SFO intervals. The more the overlap and lower the distance from the intervals'

center to the 60 min threshold, the worse the prediction performance, because the differ-

ence between the likelihood of being above and below the decision threshold at a certain

time decreases (we move towards a random guess). The LAS-SFO confidence intervals in

Figure 6-17 are wider than the EWR-ATL intervals. This indicates lower correlation be-

tween the departure delay and the time-of-day variable, and an increased overlap with the

threshold line.

both models had only one more variable with a significant importance level. This was

the ATL-EWR departure delay variable for the EWR-ATL model (importance 87.3), and

the LAS-SFO departure delay variable for the LAS-SFO model (importance 71.9). We

calculated the correlation between the output variable (future delay) and the value of this

variable, and the results were 0.67 for the EWR-ATL model, and 0.43 for the LAS-SFO

model. Figure 6-18 and 6-19 show two 2D histograms, illustrating that the ATL-EWR

variable is a better predictor of the future delay since it presents a higher correlation with
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Figure 6-17: LAS-SFO mean delay by time-
of-day (±a).

0

250

-6 200

cu 150
0~

L100

50LL10

50 100 150 200 250
Current LAS-SFO departure delay

20

15

10

5

0

Figure 6-18: 2D histogram of EWR-ATL
future departure delay versus current EWR-
ATL departure delay.

Figure 6-19: 2D histogram of LAS-SFO fu-
ture departure delay versus current LAS-SFO
departure delay.

The high variability of the departure delay for specific values of the time-of-day vari-

able, and the lack of correlation between any of the airports' or links' delay state variables

and the output variable (future delay) lead to the poor performance of the LAS-SFO pre-

diction model. We believe that aircraft rotations are an important factor behind the low

correlation values, since 63% of the aircraft flying from EWR to ATL flew previously from

ATL to EWR, but only 14% of the aircraft flying from LAS-SFO flew previously from SFO

to LAS (SFO the most frequent previous departure airport). There is no a strong correla-

tion between the prediction models' performance and the percentage of flights arriving at

the departure airport from the most frequent previous origin (termed the aircraft connec-

tivity aggregation level). Figure 6-20 shows the test error versus the aircraft connectivity
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aggregation level for the 100 most-delays links. For example, we consider the ORD-LGA

model. We see that the ORD-LGA test error and aircraft connectivity aggregation levels

are both low. In the ORD-LGA prediction model, the ORD-LGA departure delay variable

is the most important variable, while none of the others play an important role. The aircraft

connectivity aggregation level in the ORD-LGA model is similar to that of LAS-SFO, but

the prediction performance is low for LAS-SFO prediction. The low aircraft connectivity

aggregation level does no appear to affect the prediction power of the ORD-LGA departure

variable. This could be a consequence of the high impact of the ORD-related factors depar-

ture delays, and the long turnaround times of flights departing from ORD, which prevents

delays from propagating.
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Figure 6-20: Test error versus aircraft connectivity aggregation level for the 100 most-
delayed OD pairs.

6.5 Network aggregated error analysis

In this section, we treat the 100 most delayed links as one unique link. The test data for

the 100 links is considered as a single test set. This leads to a l00x(l0xl,000)=1,000,000

data points in the aggregated test set (10 test sets of 1,000 points each for each link). The

goal is to identify general trends in the prediction models, to better understand the behavior

of the models' prediction errors. This analysis would also enable us to compare individual

link errors with the general trends. The results presented below were obtained for a clas-

sification problem with 60 min threshold and 2 hour horizon. We focus on the analysis of

variations of the test error as a function of different variables.
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Figure 6-21 shows the test error as a function of the future departure delay value. We see

that the error is maximum around the classification threshold, when the error becomes close

to 0.5 (random guess). The error rate decreases faster when we move from the maximum to

the left, than when we move to the right; for example for 60-40=20min we have a 12% error,

and for 60+40=100min we have 20% error. It is worth noting that the error rate increases

for high values of the future delay (300min). Previously in the JFK-ORD prediction model,

we attributed this effect to the lack of data points; however, Figure 6-21 once again suggests

that the error rate increases for high delay values. This behavior shows that the delays of

the different elements in the network have difficulties in explaining extremely high delays.

The reason is likely these very high delays are associated with flights that had some kind

of mechanical issue, or that were rescheduled later in the day due to a high delay situation,

and by the time they departed, network delays were no longer high.
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Figure 6-21: Test error versus future departure delay (network aggregated).

Figures 6-22 and 6-23 show the variation of the test error with the time of day, and the

FPR/FNR ratio information respectively. Very early in the day (Eastern Time) the test error

is low, being 5.7% at 4am. It and it increases steadily until 1pm, when a 23% error rate

is reached. After 1pm the error rate decreases, but at 11pm it increases again. This leads

to two local maxima in the test error versus time of day plot. Figure 6-22 also depicts the

average delay for all the links in the simplified network versus time of day, and we can

see that the two test error maximums take place when the average delay on the network

is around 15 minutes. This is a transition value located in between the highest and lowest

delay values. The error rate maximums occur when delays are harder to predict for our
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model, which is either when delays start increasing, and there is no clear sign of high delay

in the network (the first maximum), or when delays start decreasing and there are still

signs of high delay in the network (second maximum). There is also a clear trend in the

FPR/FNR values versus the time of day, namely, as the day progresses the ratio increases.

The FPR/FPR ratio is highly correlated with the average delay curve in Figures 6-22, and

the correlation coefficient between these two quantities is 0.86.
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Figure 6-22: Network aggregated misclassi- Figure 6-23: Network aggregated FPR/FNR
fication rate versus time of day versus time of day

The JFK-ORD test error versus time of day plot that we saw in the previous chapter

(Figure 5-13) was a similar to the one presented here. However, the second maximum in

Figure 5-13 was clearly dominant over the first one, suggesting that it is specially difficult

to determine when delays start decreasing in the JFK-ORD link.

Figure 6-24 shows the average test error values for different months of the year showing

their effect on the prediction. The minimum test error is reached in October (17.4%), and

the maximum in February (21.3%). Higher test errors tend to occur in the summer and

winter months.

6.6 Effect of changes in the classification threshold

This section considers the impact of changes in the classification threshold on the perfor-

mance of the prediction models. We test three classification thresholds: 45, 60, and 90 min.

The prediction time horizon is maintained at 2 hours.
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Figure 6-24: Network aggregated test error versus month of the year.

For the 100 most delayed links and the 45 min threshold, we obtain a mean test error of

21.2%, for the 60 minute threshold, the misclassification test error is 19.1%, and for the 90

minute threshold, 16.38%. The test error decreases as the classification threshold increases,

since there are clearer indications of whether the future delay will exceed 90 min, than thee

are for whether it will exceed 45 min.

Next, we look in detail at the values of the test error for the 100 most-delayed links.

Figure 6-25 depicts the test error values for the three thresholds and the 100 links. The

links are ordered according to their test error for a 60 min threshold. This plot shows that

not all links have the same error reduction when the classification threshold is increased,

and that this reduction is not correlated with the value of the test error. Figure 6-26 depicts

the histogram of the test error increase when moving from a 90 min. threshold to a 45 min

threshold. For most links the error increases by 5 percentage points(pp); but the increase

ranges from as low as 2 pp to 8 pp. Table 6.4 shows the test error details for the three

links with the largest and smallest error increase when moving from a 90 min. threshold

to a 45 min threshold. The PHL-MCO link presents the largest error increase (8.7pp), and

MIA-ORD the smallest error increase (2. 1pp).

The importance of the explanatory variables is also affected by changes in the classi-

fication threshold. The major change takes place on the time-of-day explanatory variable.

The average value of the time-of-day variable's importance for the 45 min threshold is

86.8, for the 60 min threshold is 78.5, and for the 90 min threshold is 67.7. The larger the

threshold, the lower the importance value of this variable. As we mentioned in the previous
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Table 6.4: Test error changes with classification threshold.
OD pair Test error (th=90min) Test error (th=45min) Error Increase

PHL-MCO 12.8% 21.5% 8.7
PHL-RDU 14.9% 23% 8.4
PHL-CTL 21.1% 29% 7.9
JFK-SFO 16.9% 19.2% 2.3

ORD-EWR 16.1% 18.4% 2.3
MIA-ORD 21.9% 24% 2.1

chapter, the time-of-day variable has difficulties explaining high delay values, which do not

occur very often. However, for medium or low delay values which are exceeded quite often

at a certain time of day, the time-of-day variable has a high predictive power. We did not

identify any significant changes in the importance values of other explanatory variables.

6.7 Effect of changes in the prediction horizon

One would expect that the length of the prediction horizon would affect prediction perfor-

mance. We measure the impact of the prediction horizon length on the classification and

regression problems. We analyze four different time horizons: 2, 4, 6 and 24 hours. The

classification threshold is maintained at 60 min.

The average classification test errors for the 100 most-delayed links at different time

horizons are the following: 19.1% (2h), 21.4% (4h), 22.6% (6h), and 27.2% (24h). The
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average test error increase from 2 to 6 hours is only 3.5 percentage points. If we calculate

the average test error for a model in which the only explanatory variable is the time-of-day,

we obtain an average test error of 30%. The difference between this test error and the 24-

hour horizon model test error is mostly due to the predictive value of the previous day's

delay information. Figure 6-27 shows the test error values for the 100 links arranged in

increasing order according of the 2h horizon test error. There appears to be no correlation

between the 2-hour horizon test error and the error increase as we increase the prediction

horizon length.
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Figure 6-27: Classification prediction horizon analysis.

Table 6.5 summarizes the most interesting changes in the explanatory variables' impor-

tance with the time horizon. We can see that the time-of-day increases in importance with

the time horizon. This is a consequence of the loss of prediction power of the airport, and

link delay state variables as the time horizon increases. The NAS type-of-day's importance

increases with the time horizon; however, for the 24 hour horizon this value drops, since

we assume that we know the current type-of-day with certainty before the day is finished.

This assumption makes the NAS type-of-day's importance higher as the prediction time

horizon increases. On the other hand, for a 24 hour horizon the role of the type-of-day

variable changes, it now depicts the previous day, and not the current day. For this reason

the importance value decreases significantly for the 24 prediction horizon.

Finally, we present the results of the regression problem. The average median test error

for the 100 links and the different time horizons are the following: 20 min (2h), 23 min

(4h), 24.3 min (6h), and 27.4 min (24h). In other words, the average median test error
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Table 6.5: Effect of changes in the prediction horizon on the
importance value (100 most-delayed OD airs).

explanatory variables average

increase from 2 to 6 hours is only 4.3 minutes, and only 7.4 min as the prediction horizon

increases from 2 to 24 hours. Figure 6-28 presents the median test error for all links and

prediction horizons studied, as we presented in Figure 6-27 for classification. With respect

to the regression variables' importance, the same trends identified in Table 6.5 apply to the

regression problem.
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Figure 6-28: Regression prediction horizon analysis.

6.8 Departure delay prediction for scheduled flights

So far in this thesis, we predicted the departure delay of flights that actually take off at a time

t + T, being T the prediction horizon length. In this section, we evaluate the performance

of our model in predicting the departure delay of flights scheduled to depart at time t + T

instead of flights actually departing at time t + T.

With respect to the JFK-ORD departure delay model which we developed in Chapter

5, the classification test error for scheduled times a 2h-horizon, and a 60min classification

threshold is 24.76%. The corresponding test error for actual departure times is 21.2%. The
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Explanatory Variable 2h horizon 4h horizon 6h horizon 24h horizon
Time of day 78.5 95.9 98.1 100
NAS type of day 28.5 52.6 60.8 17.4
Top 3 airports avg. importance 49.3 44 35.9 37.2
Top 3 links avg. importance 62.6 56 38.6 24.7



prediction error for a 2h-horizon with scheduled times is close to the 6h-horizon error for

actual times, namely, 25.12%. Looking at the median regression error, we see that the

2h-horizon performance for scheduled time is also comparable to the 6h-horizon error for

actual departure times (29.5).

For the 100 most-delayed links, we see a similar test performance decrease on average.

For example, for actual times the classification test error increases by 3.5pp between a 2h

and a 6h-horizon, and by 4.5pp between actual and scheduled departure times for a fixed

2h-horizon. However, as we can see in Figure 6-29, different links behave differently. This

figure shows the classification performance loss when the prediction horizon increases from

2 to 6 hours for actual times versus the performance loss of scheduled times against actual

departure times for a fixed 2h-horizon. We see that not all links are located near the 45

degree line. For example, for the JFK-LAX link (denoted by a red dot in the figure), the

change in the time horizon increases the test error by 7.9pp, and the change from actual to

schedule times (for a fixed 2h horizon) only increases the test error by 1.4pp.

a 0.12

0.1 0

00

0 00.08 e 0o
00-~ c0 0

o0.06 0

0 0 0
C 0 & 0000 0

a) 0 0 00
E0.02 -

0

< 0
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Scheduled and actual times error difference for a 2h horizon

Figure 6-29: Comparison of the impact on the classification test error of changing the
prediction time horizon from 2 to 6 hours versus using actual or scheduled departure times
for a fixed 2h-horizon.

We have seen that using scheduled departure times instead of actual times increases the

prediction error. By using scheduled times, we are predicting the delay of flights departing

later which is similar to increasing the time horizon: The scheduled departure time plus

the associated delay is the actual departure time. If we compare the importance values of

the explanatory variables for scheduled and actual times for a fixed 2h-horizon, we once
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again see that using scheduled times is similar to increasing the time horizon. For example,

the time of day variable average importance value is 78.5 for actual times, and 88.5 for

scheduled times. As we saw previously in Section 6.7, an increase of the time horizon

translates to an increase in the importance of the time of day variable.
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Chapter 7

Conclusions & Next Steps

This thesis presented a new network-based air traffic delay prediction model that incorpo-

rated both temporal and network delay states as explanatory variables. The first step was

to identify a simplified network which only contained links with significant traffic (more

than 10 flights per day on average). ORD and ATL appeared as the airports with the most

high-traffic links in the simplified network, with 90 and 82 links respectively. With the

purpose of obtaining a good estimate of the delay state of each of the links and airports in

the network, individual flight data were aggregated using a moving median filter with a 2h

window and a lh time step.

The prediction models presented in this thesis included temporal variables (time of day,

day of week, season) and network delay state variables. We differentiated between two

different types of network variables, namely, local delay state and high-level network delay

state variables. The local delay state variables or influential airports and links were obtained

using a RF based algorithm. These variables allowed us to identify several interesting in-

teractions. For example, DCA departure delay showed up as the airport delay variable with

the highest prediction power in the JFK-ORD departure delay prediction model. The high-

level delay variables were obtained through clustering of the delay values of the simplified

network links. The resultant NAS delay state clusters depicted ORD, NYC (EWR, JFK and

LGA) and ATL airports as the main delay sources in the NAS. The NYC high delay cluster

presented the highest average link delay among all clusters: 42.2 minutes. The main delay

sources that showed up in the type-of-day clusters were the same as the ones that were
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identified in the NAS delay state analysis. Both the NAS state and the type-of-day variable

temporal analysis showed that ORD high delay state takes place more often in the winter

months, and that the NYC and ATL high delay states are more frequent in the summer

months. We also saw that September, October, and November are the months when high

delay states occurs less frequently, and when the low delay state is more frequent.

In this thesis we predicted departure delays. We are interested in comparing different

links prediction performance, and this is hard to do for arrival delays due to the dependence

of the prediction horizon with the length of the link. For example, if we want to predict the

arrival delay of a flight two hours before departure time, the length of the prediction time

horizon will be 2 hours plus the travel time, and the travel time depends on the link length.

Of prediction models evaluated in this thesis, the RF algorithm showed the best perfor-

mance, and was selected in our study. We tested the RF classification and regression delay

prediction model on the 100 most-delayed OD pairs in the NAS. The goal was to study

the performance of prediction models for different OD pairs, and to identify sets with sim-

ilar characteristics (for example, similar prediction performance or explanatory variables

importance). The results obtained showed an average test error of 19% when classifying

delays as above or below 60 min, at a 2-hour prediction horizon, and a 20.9 min median

test error for regression. The analysis also found that the dependence of individual link

delays on the network state varied from link to link. The 100 most-delayed OD pairs were

clustered in 5 groups of links sharing similar explanatory variables' importance value and

performance. This allowed us to identify some interesting correlations, for example, that

an increase of the time-of-day variable's importance is associated with an decrease of the

prediction performance. We also identified the OD pairs that had the most influence on the

100 most-delayed OD pairs EWR-ORD was found to be the most important link, followed

closely by STL-ORD.

The results presented in this thesis quantified the effects of the classification threshold

and the prediction horizon on the predictive performance of the models. Both the classifi-

cation and regression models were found to be quite robust to increases in the prediction

horizon: The median regression test error (averaged across the 100 most-delayed OD pairs)

only increased from 20 min to 27.4 min when the prediction horizon increased from 2 hours
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to 24 hours, and the classification test error increased from 19.1% to 27.2% for the same

change in the prediction horizon. For a fixed 2h prediction horizon for the 100 most-

delayed links and a 45 min classification a mean test error of 21.2% was obtained. For a

60 min threshold, the misclassification test error was 19.1%, and for a 90 min threshold,

16.4%.

The NAS delay state variables proposed in this paper enabled the development of the

promising network-based delay prediction models. These variables could potentially be

used in the development of a network delay prediction and analysis tool. For example,

we could use the previous day's type-of-day information to help us predict the current

day's NAS delays. Other next steps in this research include studying the effect of changes

in the moving median filter parameters. We could test different window sizes and step

sizes, and evaluate the impact of those changes on the prediction models' performance.

New explanatory variables could also be added to the prediction models. By following

a strategy similar to the one we used to obtain the NAS delay state categorical variable,

we could introduce a new categorical variable depicting the delay state, not of the entire

network, but of a certain area in the vicinity of the link of interest. This variable would

allow us to eliminate local delay state variables from the prediction models while possibly

achieving the same performance.
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