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Abstract

The volume of protein structure data has grown rapidly over the past 30 years, leav-
ing a wake of facts that still require explanation. We endeavored to answer a few
open questions on the structure-function relationship of intriguing mechanochemical
protein systems. To this end this thesis work contains five studies that offer novel
insights into molecular biomechanical systems that may guide future basic research
or applications development.

The first study concerns the biophysics of cadherin-mediated cell sorting observed
in developing solid tissue. We investigated the evolutionary dynamics of the cadherin
superfamily of cell-cell adhesion proteins to infer a structural basis for their paradox-
ical mixture of pairwise binding specificity and promiscuity. Our analysis predicts
a small set of specificity-determining residues located within the protomer-protomer
binding interface. The putative specificity-determinants form a design space with
potential for engineering novel cell-cell adhesive interactions.

The second study addresses the open question of how to automatically identify re-
gions within a protein that engage in allosteric communication. To identify allostery
we developed and tested two computational tools that operate on protein confor-
mational dynamics data. These tools are useful for generating testable hypotheses
about proteins with multiple functional sites for the design of non-competitive protein
inhibitors.

The third study asks, "What is the consequence of allosteric cooperation between
the tandem binding sites in a class of proteins that bundle filamentous actin (F-
actin)?" Through simulation we demonstrate that cooperative F-actin bundling tends
to strengthen bundles by driving the formation of cross-links between neighboring
filaments while depleting F-actin binding sites that are occupied but not cross-linked.
We hence propose that allostery may be a natural feature of ABPs with tandem
F-actin binding sites if nature indeed selects for sturdy F-actin bundles.

The final two studies examine the impact of two structural perturbations to F-
actin on its mechanics. Using structure-based computer modeling we develop a simple
explanation for the mechanism by which the structure of actin's polymorphic subdo-
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main 2 mediates 4-fold changes in F-actin's flexibility. We further demonstrate that
two calponin homology domains stabilize F-actin by binding in a configuration that
tends to relax the stress concentration at actin-actin interfaces.

Thesis Supervisor: Mark Bathe
Title: Samuel A. Goldblith Assistant Professor of Applied Biology

Thesis Supervisor: Roger D. Kamm
Title: Singapore Research Professor of Biological and Mechanical Engineering
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Chapter 1

Motivation

As of this writing, a decade has passed since the initial publications of the human

genome [101, 175]. The Human Genome Project required 13 years and almost $3

billion [2]. The massive time and financial cost incurred to complete the project,

in part, reflects the value of resolving the structure of biomolecules for the purpose

solving problems in biology.

A key challenge for solving biological problems is interpreting the structural data

that is published and deposited in databases. As J. Onuchic said of biology a year

after the human genome publications, "[Biology] is faced with a lot of facts that need

explanation." (quoted in [96]). Although new data is typically released along with

a scientific publication containing some analysis and interpretation, the amount of

time, money and effort required to obtain structural data demands that we extract

as much information as possible from the data. Indeed, without thorough interpreta-

tion of biomolecules, structural biology would be little more than "high-tech stamp

collecting" [96].

The technologies that resolve biomolecular structures seem much more efficient at

creating data then humans are at interpreting it. Databases of structural information

like the RCSB Protein Databank [3], UniProtKB/TrEMBL protein sequences [5], and

the Electron Microscopy Database [1] have had their number of entries increase expo-

nentially over the past 40, 30, and 10 years, respectively. Meanwhile, the number of

new drugs that the United States Food and Drug Administration (FDA) has approved
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has increased linearly since 1940 when the FDA was created [4]. The implication is

not that every new molecule sequenced or solved by crystallography need be a drug

target for humans, but that a drug represents a rigorous benchmark of understanding

a biological target. By the standards of the FDA, our deep understanding of biology

is increasing only linearly, and thus lagging drastically behind the rate at which we

acquire data.

So what is to be done to make use of the data stored in data banks? Computer

modeling is a promising approach for obtaining novel insight from biomolecular data.

In this thesis we apply a variety of computational techniques to either derive or test

hypotheses on the function of proteins and protein assemblies. Out key findings are

the following:

Key findings

" The cadherin-cadherin dimer interface is enriched with putative specificity de-

termining residues.

" There still exists an unmet need for unsupervised methods and benchmarks for

detecting allostery in proteins from conformation dynamics.

" Cooperative binding of actin binding proteins to bundled F-actin promotes

cross-linking over other modes of F-actin decoration.

* The structure of actin subdomain 2 mediates F-actin flexibility.

" Fimbrin and alpha-actinin relax strain energy at protomer-protomer interfaces

in F-actin.

Thesis outline

This thesis offers five contributions in the field of molecular biophysics. In Chapter 2

we develop a structural basis for cadherin-mediated cell sorting from the primary

structure of the cadherin superfamily. In the process of studying cadherins, we gener-

ated questions about the conformational dynamics of proteins in general that we did

16



not know how to solve using an unbiased approach. In Chapter 3 we therefore char-

acterized methods for identify allosteric coupling in proteins. After studying methods

for detecting allosteric coupling in proteins, we proceed to address the consequences of

allosteric coupling on mechanical organelles comprised of filamentous actin (F-actin)

and bundling proteins (Chap. 4). From the structure of F-actin bundles we next

discuss the mechanics of F-actin itself. In Chapter 5 we address the implications of

recently identified F-actin polymorphisms by computationally deforming the differ-

ent F-actin forms and characterizing their apparent flexibilities. Next, in Chapter 6,

we investigate the mechanism by which actin binding proteins redistribute F-actin's

strain energy upon binding. Lastly, we provide an outlook for future work in compu-

tational molecular biophysics (Chap. 7).
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Chapter 2

Evolutionary dynamics of the

cadherin superfamily

Abstract

Cadherins are a superfamily of cell-cell adhesion proteins that mediate cell sorting

in animal tissue. Theory suggests that the sorting of cells expressing different cad-

herin paralogs is a manifestation of modest (i.e. 1 kcal/mol) differences in the bind-

ing affinities of homophilic and heterophilic dimers, with homophilic interactions the

more favorable. Currently there exists no structural basis to explain the small bind-

ing affinity differences between homophilic and heterophilic dimers. To uncover the

principles underlying binding specificity we characterized the amino acids sequences

of the cadherin superfamily by identifying sequence positions in the putative binding

domain that are conserved or variable, distinguish the metazoan paralogs, or are con-

strained by natural selection to evolve concertedly. This chapter details the inference

of the important sequence positions using tools from information theory. We identi-

fied sets of conserved residues comprising the core of the binding domain, residues on

the binding interface with a statistically significant specificity signal, and small and

sparse network of coevolving residues suggestive of allosteric coupling. The results of

the analysis provide an experimentally testable model to further develop the theory

of cadherin-mediated cell sorting.
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2.1 Introduction

The genomic advances required for the evolution of multicellular lifeforms from prim-

itive unicellular ancestors are not fully understood. Presumably the required genetic

machinery included genes that regulate differentiation, cell-cell communication, and

cell adhesion [144]. Differentiation and cell-cell adhesion are linked, in a sense, be-

cause multicellular organisms are comprised of tissues with a tightly regulated spatial

distribution of distinct cell types. This chapter concerns the mechanism by which

different cell types establish and maintain order in tissue.

Seminal work by Steinberg demonstrated that the ordered arrangement of cells in

tissue is based in part on the tendency of cells with the same phenotype to prefer-

entially adhere to one another instead of adhering to cells with a distinct phenotype

[159, 158, 160]. Based on his experimental observations, Steinberg formulated what

he called the differential adhesion hypothesis. The hypothesis states that the ordered

arrangement of cells in tissue is due to surface tension, and that the surface tension is

a consequence of differences in adhesion between the different cell types in the tissue.

The cell surface molecule or molecules responsible for differential adhesion were not

known at the time of Steinberg's first publications on the subject, and it was not

until some 20 years after his initial observations that a superfamily of genes called

cadherins were proposed as responsible for cell sorting in tissue [163, 123, 122].

Cadherin-mediated cell aggregation and sorting is well documented in the liter-

ature, both by in vitro [163, 123, 122, 150, 151, 82, 20, 89, 162, 176] and in vivo

[123, 131, 140] assays. A common in vitro assays entails cloning a cadherin gene into

an animal cell type that displays a low endogenous level of surface cadherins (e.g. L-

fibroblasts, or Chinese hamster ovary (CHO) cells), suspending the cells in media, and

then agitating the suspension for a few hours to promote mixing. After a few hours of

mixing the sample is removed from its container and examined with a microscope to

score the degree of cell aggregation. Cells expressing cadherins tend to aggregate in

the presence of calcium, hence the name, but do not aggregate appreciably without

calcium.
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A variation on the in vitro mixing experiment described above is used to mea-

sure the degree two expressed cadherin genes can make cells adhere homophilicly or

heterophilicly, i.e. the assay measures differential adhesion. Cells expressing different

cadherin genes are labeled with different colored dyes so that the type of cadherin

expressed in each cell population can be distinguished visually. After mixing the

two cell populations as described before, a microscope is used to visualize the ag-

gregates. Figure 2-1 shows the results of cadherin-mediated aggregation and sorting

by three genes, cdhl (E-cadherin), cdh2 (N-cadherin), and cdh6 (Cadherin-6b) [91].

Homophilic adhesion (Fig. 2-1 A-C) induces complete mixing while heterophilic adhe-

N-cadherin E-cadherin Cadherin-6b
N-cadherin E-Cadherin Cadherin-6b

A B

E-cadherin E-cadherin N-cadherin
N-cadherin ICadherin-6bl Cadherin-6b

Figure 2-1: Cadherins mediate cell sorting in vitro. An in vitro cell aggregation assay
from [91] demonstrates cadherin-mediated cell aggregation and sorting. Two CHO
cell lines expressing genetically identical cadherin genes-N-cadherin, E-cadherin, or
cadherin-6b-form interspersed mixtures (A-C). A mixture of cells expressing closely-
related paralogous Type I cadherins form homotypic aggregates that adhere to each
other (D). A mixture that is equal parts cells expressing a Type I cadherin and cells
expressing a Type II cadherin form non-contacting homotypic aggregates (E-F)

sion induces either incomplete mixing (Fig. 2-1 D) or complete segregation (Fig. 2-1

21



E-F).

Sorting assays are also conducted in vivo. In an in vivo assay cadherin-expressing

or control cells are injected into a heterogeneous tissue inside an animal. The injected

cells tend to partition to the part of the tissue containing cells expressing the same or

a functionally similar cadherin [123]. An alternative in vivo model used by [140, 131]

involved localized ectopic expression of cadherin genes in an animal model. The cells

expressing the additional cadherin genes fail to segregate, thereby lending further

support to a mechanism of cell sorting controlled by cadherin expression.

Before high-throughput genome sequencing rapidly increased the rate and appar-

ent ease of new gene discovery, almost all of the newly discovered cadherin genes of

the 1980s and 1990s were carefully tested by a cell adhesion or cell sorting assay.

Table 2.1 summarizes the results of cadherin-mediated cell sorting assays reported in

the literature. Importantly, the data show that cadherins favor homophilic adhesions

in general and heterophilic adhesions in just a few cases. Moreover, the cadherin pairs

with greatest sequence similarity tend to mix while those with less sequence similarity

tend to segregate.

With recent advances in genome sequencing, hundreds of cadherin genes have been

discovered through comparative genomics. All cadherins found in modern metazoa

are the descendants of a pre-metazoan gene family-perhaps resembling the cad-

herins found in the choanoflagellate M. brevicollis [6]-and consequently share struc-

tural and functional characteristics. The best studied cadherins, which we focus

our attention on here, are from the so-called Cadherin Major Branch (CMB), and

in particular the C-1 subbranch [79]. CMB cadherins comprise four or more extra-

cellular (EC) domains separated by conserved calcium-binding regions, typically a

single-pass transmembrane domain, and a cytoplasmic domain that can interact with

catenins [79]. Some cadherins also contain an amino-terminal pro-domain, although

the adhesive form of the molecule that is expressed on the cell surface has had the

pro-domain enzymatically removed, thus enabling adhesion via EC homodimerization

[129, 69, 68]. Although the number of EC domains varies between cadherin paralogs,

their sequences and tertiary structures are conserved [137]. The prominent conserva-
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1 2 1 2 0 0 0 0 0 0 0 0 0 2 0 0
2 1 2 2 0 0
3 2 2 0 0
4 0 2 0 2
5 0
6 0 0 2 1 0 2 1 0 0 0 1 2
7 0 1 2 0 1 0 0 1 2
8 0 0 0 2 0 0 2 0 0
9 0 2 1 0 2 2 0 0 1
10 0 1 0 0 2 2 0 0 0
11 0 0 0 2 0 0 2 0 0
12 0 0 1 0 0 0 0 2 1
13 2
15 0 0 0 2 0
16
17 2 0 2
18 0 1 2 0 1 0 0 1 0 2
19
20 0 0 2 2
22 2
24 2
26

Table 2.1: Summary of known cadherin interactions assembled from the literature.
All interactions were measured by a cell sorting assay except for the interactions
between cdhl or cdh5 and cdh17, which was measured by atomic force microscopy.
The degree of cell sorting was scored on a scale from 0 to 2. A score of 0 means the cells
segregated into non-contacting aggregates (Fig. 2-1 E-F) or bound non-specifically by
AFM. A score of 1 means the cells formed contacting homotypic aggregates (Fig. 2-1
C). A score of 2 means the cells intermixed (Fig. 2-1 A-B) or bound specifically by
AFM. The data was curated from [150, 151, 131, 82, 20, 89, 162, 176, 18]

23
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tion of the EC domains has led to an apparent paradox: If the EC domains engage in

cadherin-cadherin interactions and are structurally very similar, how can the binding

interactions be sufficiently specific to give rise to differential adhesion at a cellular

level?

A theoretical analysis by Chen et al. provides insight into how even subtle dif-

ferences in cadherin structures can manifest as cell-level differential adhesion that

is capable of driving cell sorting [31]. At equilibrium, the expected concentration

of cadherin dimers of type i and j, Cij, at a junction between two cells follows the

Boltzmann distribution,

AG

C = CtCje-RT (2.1)

where Ci and Cj are the concentrations of monomers on the respective cell surfaces

(10,000-200,000 monomers/cell [45, 53]), AG < 0 is the free energy change of cadherin

binding, and RT is the thermal energy scale. Assuming the free energy change for

a homophilic cadherin bond is about -4 kcal/mol [68, 117] and that a heterophilic

bond is slightly less favorable at -3 kcal/mol, according to Eqn. 2.1, there ought to

be ~ 5 homophilic bounds for each heterophilic bond. Homophilic bonds therefore

significantly outnumber heterophilic bonds, and consequently homophilic adhesion

would be the dominant cell-cell interaction. Under such conditions different cell types

aggregate according to Steinberg's differential adhesion hypothesis (Fig. 2-1E-F). If,

on the other hand, the homophilic binding affinity was -11 kcal/mol while heterophilic

binding affinity was -10 kcal/mol, the number of homophilic and heterophilic dimers

per junction would each be ~ 1000. In this case of ubiquitous strong adhesion, neither

homophilic nor heterophilic interactions could dominate and therefore the different

cell types would intermix (Fig. 2-1 A-C). Because cadherins bind by a weak strand-

swapping interaction (Fig. 2-2) with a AG of just a few kcal/mol [69, 68, 117, 91],

Chen et al. theorized that subtle differences in cadherin structures, and the associated

small differences between homophilic and heterophilic binding affinities, can cause cell

sorting.
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(a) (b)

NN

EC5 A* AG
W2

EC4

EC3

EC2

EC1

EC2

EC3

EC4

EC5

D E B A* Hn A G F C

Figure 2-2: Structural models of a cadherin adhesive dimer [137]. Trans dimer inter-
action of five amino terminal EC domains [22] (a). Details of the A* strand-swapping
interaction wherein the tryptophan at the second sequence position docks into the
hydrophobic pocket of its cadherin binding partner (b). Schematic representation of
the cadherin "Greek-key" secondary structure with labels of the #-strands (c).
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Past studies attempted to identify the biophysical determinants of cadherin-mediated

cell sorting based on the bulk measurements of cells. Niessen and Gumbiner mea-

sured the shear force required to detach cadherin-expressing cells from substrates

coated with purified cadherins [121]. Although their measurements detected no adhe-

sion specificity, the cadherins they tested could nevertheless mediate cell sorting when

expressed in cells. The authors did not provide an alternative mechanism to explain

their results. We suspect that their assay's inability to precisely control for cadherin

expression levels and also the use of cadherins with high sequence similarity may

have resulted in no discernible binding specificity in the adhesion experiments and

expression-level-dominated cell sorting in the sorting experiments. In fact, expres-

sion level has been shown to mediate cell sorting. Duguay and Steinberg varied the

cadherin expression level in cell lines and measured sorting ability. They concluded

that the number of cadherins expressed on the cell surface, Ci and C in Eqn. 2.1,

as well as the dimerization affinity, AG, together control cell sorting [45]. Foty and

Steinberg went on to show that the surface tension of a cellular aggregate, modeled

as a drop of liquid, is a linear function of cadherin expression level [53]. Therefore the

hypothesis that binding affinity contributes to cell sorting is still defensible despite

the paper by Niessen and Gumbiner claiming otherwise.

Single molecules biophysics is a natural approach for quantifying the strength of

cadhern-mediated adhesion without the confounding effects from varying cell surface

expression levels. Panorchan et al. measured the rupture force of cadherin homod-

imers formed between cells using a molecular force probe and found that cdhl (E-

cadherin) bonds are about two to four times stronger than cdh2 (N-cadherin) bonds at

two different loading rates [130]. The authors did not measure hetero-dimer rupture

forces. Prakasam et al. used surface force measurements to compare homophilic and

heterophilic cadherin adhesion [138]. Although their instrument could resolve differ-

ences in bond energies, there was not a significant difference between homophilic and

heterophilic bond energies even though the cadherins expressed in cells mediated cell

sorting. Like Niessen's work, the sorting they observed may have been confounded

by surface expression levels.
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A study by Katsamba et al. was the first to verify experimentally Chen et al.'s

molecular explanation for cell sorting [91]. Their protocol utilized surface plasmon

resonance to precisely quantify the dissociation constant of cdhl (E-cadherin), cdh2

(N-cadherin) and cdh6 homo- and heterodimers. They found the bond strength could

be ordered qualitatively as cdh6:cdh6>>cdh2:cdh2>cdhl:cdh2>cdhl:cdhl, and that

cdh6 does not bind specifically to either cdhl or cdh2. The results of their sorting

assay (Fig. 2-1) supported the theory presented in Chen et al. [31] and Steinberg's

differential adhesion hypothesis [159, 158, 160]. In showing that the theory of dif-

ferential adhesion is supported experimentally, Katsamba et al.'s work permits more

focused questioning. In particular, their work begs the question as to what features of

the cadherin binding interface determine the specificity of homophilic and heterophilic

interactions.

A few studies attempted to identify the parts of cadherins that are responsible

for the subtle differences between homophilic and heterophilic binding that drive cell-

sorting observed in vitro. Both Nose et al. [122] and Patel et al. [131] confirmed by

domain swapping and a cell sorting assay that the amino-terminal EC domain, EC1,

contains the specificity determining binding site. Nose et al. investigated further

by attempting to make cdhl (E-cadherin) mutants that bind specifically to cdh3 (P-

cadherin) using site directed mutagenesis. Their mixing experiments on nine distinct

mutants found one dual mutation, S78G-S83E to cdhl, that only marginally enhanced

the mixing of cdhl and cdh3 expressing cells [122]-the other eight cdhl mutants

were still specific only for cdhl. Beyond the two studies mentioned so far, to our

knowledge, there has not been any attempted mutagenesis studies aimed at identifying

a molecular basis for the differences in homophilic and heterophilic binding. The

focused set of testable mutations we provide in this work may motivate further studies

into this important matter.

In a series of studies we ask three questions about the structure of cadherins

to gain some physical insight into the structure-specificity relationship. We base our

analysis on the evolutionary record represented in the genomes of a broad phylogenetic

sample of metazoan cadherin sequences. First we asked which residues are conserved
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and which are variable. Next, we identify coevolution between sequence positions

to infer important phyisochemical residue-residue interactions. Finally, we ask which

sequence positions distinguish the largest cadherin clades from one another, assuming

the predicted sequence positions correspond to specificity-determining residues.

2.2 Methods

Data acquisition and preparation

Cadherin amino acid sequences were collected from the Ensembl databank, which is

suitable because it contains a comprehensive set of metazoan protein sequences [51].

For each species in the Ensemble databank we acquired the amino acid sequence of

every protein with PFAM's extracellular-cadherin (EC) domain identifier, PF00028

[49]. To reduce the dataset to sequences from the Cadherin Major Branch (CMB)

[79] we performed a local BLASTp search [8] using the Ensembl sequences as the

database and a small set of annotated cadherin sequences from mouse (M. muscu-

lus) and human (H. sapiens) as the queries. The cadherin genes in the reference set

were cdhl, cdh2, cdh3, cdh4, cdh5, cdh6, cdh7, cdh8, cdh9, cdh1O, cdhll, cdhl2,

cdhl3, cdh15, cdh16, cdhl7, cdhl8, cdh19, cdh20, cdh22, cdh24, and cdh26. The

set of cadherin genes includes all cadherin from the CMB except for desmocollins

and desmogleins. We excluded desmocollins and desmogleins for lack of experimen-

tal evidence demonstrating that they function in cell sorting. The BLASTp search

identified unannotated Ensembl sequences that were orthologous to the genes in the

annotated reference set. Ensemble sequences that did not match any of the reference

sequences were removed from the data set. Our procedure resulted in 460 cadherin

sequences from the CMB.

We chose to focus our analyses on the putative extracellular cadherin binding

(EC) domain. All of the cadherins in the CMB have five EC domains except for

the 7-domain (7D) family, cdh16 and cd17, which have seven EC domains. Based

on the position of a conserved tryptophan residue Hulpiau et al. proposed that the

7D cadherin EC3 domain, (numbering from the amino-terminal EC domain) is the
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ancestor of ECI found in the 5-domain cadherins, and that ECI and EC2 in the 7D

family were the result of domain duplication [79]. We therefore assumed that EC3 is

the binding domain of the 7D cadherins, while EC1 is the binding domains of all of

the other cadherins.

We generated 22 multiple sequence alignments (MSA), one for each of the 22 cad-

herin genes identified by the BLASTp search described above. From the alignments

we isolated the extracellular-cadherin binding domain (ECB) by visually searching

for the conserved tryptophan at sequence position 2 (isoleucine in cdh13) and the

first calcium binding site motif DXXDX. We excised the ECB from all the sequences

alignments, pooled the fragments, and the re-aligned all of the ECB domains. All

of the sequence alignments were computed with the MAFFT-G-INI-i algorithm [90]

which is suitable for sequences with conserved starts and ends.

Sequence conservation analysis

We used Shannon entropy to quantify the variation of sequence positions in the ECB

domain. In equation A. 1 x is one of the twenty natural amino acids or a gap intro-

duced by the sequence alignment algorithm and p(xi) is the observed frequency of

amino acid xi in column i of the multiple sequence alignment. We denote this entropy

with H21 because it utilizes a 21-letter amino acid alphabet. We also calculated a

7- and 8-letter entropy from physiochemical amino acid alphabets reviewed in [173].

The 7-letter alphabet is AVLIMC, FWYH, STNQ, KR, DE, GP, and a gap character.

The 8-letter alphabet is LIVMFYWA, DENQ, KRH, ST, P, C, G, and a gap char-

acter. The physiochemical amino acids alphabets served as a qualitative measure of

robustness for our information-theoretic calculations.

Inference of coevolution between sequence positions

Our starting dataset was the ECB sequence alignment used for sequence conservation

analysis. Coevolution analysis requires sequence diversity, so we removed redundant

sequences from the alignment using the EMBOSS program skipredundant with a

pairwise sequence identity threshold of 62%. The final sequence alignment comprised
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154 sequences with a median sequence identity of 33% and no two sequences with

greater than 62% identity.

We employed an approach for inferring coevolution described originally by Atch-

ley [11], with further modifications described by Buslje et al. [28]. We estimate the

covariance of sequence positions i and j using mutual information (Eqn. A.2). Con-

servation due to phylogeny biases the coevolution signal, so we followed the suggestion

of [28] and disregarded columns where H(Xj) < 0.3 log(Q), where Q is the size of the

amino acid alphabet. When constructing the contingency table for columns i and j,
Nij, we disregarded sequences with a gap in either column. For some column pairs

this exclusion condition lead to too few sequences to estimate the mutual information

accurately according to a heuristic criteria for predicting contacting residues from co-

evolution [111]. We therefore required at least 125 sequences per contingency table,

otherwise we defined the mutual information of the column pair as zero.

From the contingency table, Nij, with >j, Ni = N, we estimated the mutual

information from the pairwise frequencies, fij, with pseudocounts to account for un-

observed amino acids [28].

p(xj, Xj) f (Xi, xj )
1 A+ j

AQ+N Q

p(xi) f(xi)
Q

- p(Xj' Xj)

i=1

Note that the two limiting case behave as expected

lim f (xi, xj) = N
A-4O N

lim f (Xi, Xz) = 1
A-4oo Q

The frequency definition was used in [178] and [28], and the later found that A/Q =

0.05 is optimal for a 20-letter alphabet that excludes gaps. The mutual information
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between columns i and j according to Eqn. A.2, with frequency replacing probability,

is

I= f (i ) log f(X x)
xiGX x 3CX 3  x(xlof()

To correct for bias introduced by phylogeny we apply the average product correc-

tion (APC) [461, defined for column pairs as

_E~ Iiy) (Ei" Iij)
APCij = M j=

where M is the number of columns in the sequence alignment. The phylogeny-

corrected mutual information is then I = I - APCij.

To asses the statistical significance of I j we generate 100 randomly shuffled se-

quence alignments and defined a Z-score for I in the standard way

Zij =

- )

where PI and o (I)) are the mean and standard deviation, respectively, of P)

computed from shuffled alignments.

Paralog specificity analysis

We generated a phylogenetic tree from the original ECB MSA with the computer

program PHYLIP [47]. We added an outgroup to the ECB MSA by aligning the

complete amino acid sequence of BS-cadherin from the uchordate B. schlosseri [105]

using MAFFT-L-INS-i [90]. An outgroup serves as a monophyletic reference sequence

to compare against all of the other sequences in the alignment. We next gener-

ated 100 bootstrap samples of the sequence alignment from which we generated 100

corresponding distance matrices using the JTT matrix [86]. The distance matrices

were inputs for the Neighbor-joining (NJ) clustering algorithm which produced 100

31



phylogenetic trees. From the resulting 100 NJ trees we computed a majority-rule

consensus tree and reassigned branch length via maximum likelihood, again with the

JTT substitution matrix.

From the phylogenetic tree we identified the first five clades following the diver-

gence of pre-metazoan and metazoan cadherins. A clade defines a point in genetic

history at which an ancestral gene duplicated and its offspring diverged. At the first

clade the CMB splits into two gene groups, and at the second clade one of the branches

splits again to make three cadherin gene groups, and so on. In our analysis we con-

sider just the first five clades, meaning we conducted one analysis of specificity with

the sequences divided into two, three, four, five, or six cadherin subtypes. For each

analysis we computed the mutual information between the subtypes the sequences

belong to (xi in Eqn. A.2) and the amino acid character in a particular column (yi in

Eqn. A.2).

The mutual information of the columns of the sequence alignment is not useful

without a comparison to an expected value. We computed an expected mutual infor-

mation using Protocol I described in [118]. Briefly, we first shuffled the order of amino

acids in the columns of the sequence alignment 5000 times, each time computing a

randomized mutual information, jih, to generate a distribution of mutual informa-

tion, p(Ilh). From the distribution of the shuffled mutual information we estimated

an expected mutual information, Iep = a'li + #. We obtained the constants a and

# by linear regression of I versus I k. From the linear equation we computed the

mean and standard deviation of the expected mutual information,

(IeXP) = a (Ih) +/#

o-(IxP) = ao-(Ih)

Statistical significance is assigned by computing a Z-score and its corresponding p-

value

I -(Iixp)
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1 Zi2
P(Z7;>zj) = 1- e-2dz

Because we assessed the statistical significance of each column in the sequence align-

ment as though the columns are independent, we applied the Bonferonni correction

for multiple hypothesis testing to reduce the number of potential false positives. The

Bonferroni correction involves dividing the p-value required for statistical significance

by the number of statistical tests performed. Here we divided by the number of

columns in the alignment.

2.3 Results and discussion

The analysis in this chapter assumes that the ECB structure is conserved, and there-

fore specificity depends primarily on sequence variation and not structure variation.

An example protein family with specificity encoded primarily by sequence is the

bZIP coiled-coils [52]. Unfortunately, as of this writing the number of solved ECB

structures is much less than the number of amino acid sequences [79], so we must

estimate structural conservation indirectly. The absence of extended gaped regions

in the sequence alignment (Fig. 2-3), with exception of loops opposite the putative

strand-swap interface, supports the assumption that the ECB structure is conserved.

Moreover, a structure-based superposition of 22 EC domains showed that the 3D

structure is conserved, with a root mean square displacement less than 5 A. Perhaps

as more ECB crystal structures are solved and reported, we may relax our assumption

by directly incorporating geometry into our sequence analysis.

Sequence conservation

Although the 20 amino acids can be partitioned into a number of physiochemical

subgroups for the purpose of calculating information theoretic quantities [173], the

choice of amino acid alphabet does not affect the computed structure of the ECB

sequence dataset. We compared three different alphabets and found that the sequence

conservation profile are qualitatively similar (Fig. 2-4). Therefore for the remainder
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Figure 2-3: Consensus protein sequence alignment of the ECB domains. Highlighted
columns indicate conserved sequence positions. Each cadherin sequence identified
with an Arabic number is the majority rule consensus of all of the orthologs in the
complete MSA. Uchordate cadherins include BS-cadherin from B. schlosseri and cdhI
and cdhII from C. intestinialis. Columns corresponding to positions with established
functions include 3 and 39, which participate in strand swapping, and 13, 72-74, and
108-112, which coordinate Ca 2 +. The coordinates of the beta-strands (see Fig. 2-2
for label convention) of H. sapiens cdh1 and M. musculus cdh1 1 are shown below the
alignment.

of this chapter we highlight the results computed with the 21-letter alphabet.

The jaggedness of the raw sequence conservation profile, as well as the fact that

the ECB is entirely beta-strands, suggests that nature preferentially conserves residue

exposed to one particular environment. We partitioned ECB residues into buried or

exposed subtypes and found that the buried residues are preferentially conserved over

solvent-exposed residues (Fig. 2-5). We hypothesize that the buried and conserved

residues are either part of the hydrophobic core of the protein, and therefore required

for proper folding, or are part of the hydrophobic binding pocket involved in strand-

swapping.

To interpret sequence conservation using the ECB structure, we mapped the se-

quence positions from the alignment onto two reference proteins for which there are

quality structural models in the Protein Databank (Fig. 2-6). For our purpose we

define the variable (red) or conserved (blue) positions as those with Shannon en-

tropy at least one standard deviation above or below the mean entropy, respectively.

Conserved residues reside in the hydrophobic core, binding pocket, or coordinate
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Figure 2-4: ECB sequence conservation profile. The entropy profiles are based on
7 (a), 8 (b), or 21 (c) letter alphabets, listed as titles of the panels. Both raw and
smoothed profiles are shown, with the smoothed profile the result of a 7-wide Bartlett
window function. The coordinates of beta-strands are indicated.
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Figure 2-5: Buried residues are more conserved than solvent-exposed residues.
Residues were classified as buried if their solvent accessible surface area in PDB
ID 2072 or 2A4E was less than 20% of the area within a G-X-G tripeptide, otherwise
the residue was defined as solvent-exposed. The buried residues are more conserved
than the exposed residues according to all 3 amino acid alphabets (A-C). *p < 10-;
* *<p 10-10,

a H.sap Cdhi b M.mus Cdh11

2

W2

Ca2+ binding

Figure 2-6: Spatial distribution of conserved and variable residues in ECB. The Type
I cadherin is H. sapiens cdhl (H.sap Cdh1, PDB ID 2072) and the Type II cadherin
is M. musculus cdh11 (M.mus Cdh11, PDB ID 2A4E).
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Ca2+. We conjecture that the conserved residues in the hydrophobic core contribute

to the domain's stability and are necessary for proper folding, while the those in the

binding pocket form favorable interactions with the conserved tryptophan involved in

strand-swapping. Because both the hydrophobic pocket and tryptophan are common

to most ECB domains, we may attribute the promiscuous binding observed experi-

mentally (Tab. 2.1) to this conserved binding interaction.

Interestingly, residues that participate in the strand-swapping interaction are not

necessarily conserved. Type 1/11 cadherins dimers form a salt bridge between E89/E87

and the N-terminus, yet that sequence position is not conserved (Tab. 2.2). The

sequence positions corresponding to M. musculus cdh11 residues Y13, V19, and L20

are also variable yet they contribute to the Type II binding interface, while the

corresponding sequence positions in H. sapiens cdhl do not participate in strand-

swapping. The variable positions that participate in strand-swapping may confer

Variable sequence positions Conserved sequence positions

Hsap cdhl Mmus cdh11 H2 1  Hsap cdhl Mmus cdh11 H 2 1

E13 Y13t 0.681 W2t W2t 0.070
K14 T14 0.660 E11*B E11*B 0.000
K19 V19t 0.673 Y36f Y37t 0.072
N20 L20t 0.693 G40 G41 0.137
K28 128 0.786 F5 1B F58B 0.035
K30 S30 0.642 153B 15 0 B 0.160
K33 N34 0.671 G55B G55 0.005
T45 T46 0.683 L63B L63 0.144
152 V49 0.704 E64* D64 0.005

E56 K53 0.802 R65B R65* 0.020
T75 T72 0.822 E66* E66 0.010
F77 M74 0.645 A72 A69 0.005
H79 Q76 0.669 T73 Q70 0.005
G85 N83 0.844 L76B L73B 0.155
V88 L86 0.640 S78Bt A75Bt 0.143

E89t E87t 0.664 N102* N100* 0.014
Q101* I99* 0.643 N104* N102* 0.024

Table 2.2: Conserved and variable ECB domain sequence positions. * Residues that
participate in strand-swapping interactions. § Residue positions that participate in
Type II but not Type I cadherin protomer-protomer interface. t Residues in the ECB
domain that that bind to calcium ions. B Buried residues, i.e. less than 20% their
G-X-G surface area exposed.
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specificity to cadherin binding interactions.

Inference of coevolution

A small sparse network of ECB residue pairs demonstrate coevolution. The distri-

bution of z-scores contains a gap where 1000 < Z < 1400 (Fig. 2-7). After the gap

the histogram contains eight residues pairs listed in Table 2.3 that are the most likely

candidates for coevolving residue pairs.

a b

U)U

-- 0 2500 4000

H.sap cdh1

M.mus cdh11

P-sheets

mmL

0 2000 4000 0 2000 4000
z-score z-score

Figure 2-7: ECB contains eight putative coevolving residues pairs. A heatmap of
z-scores shows the location of statistically significant coevolving pairs as a function
of sequence position (a). The distribution of z-scores has a long and sparse tail (b).
Eight residue pairs have z-scores in the long tail, i.e. z > 1000 (b inset).

The set of candidate coevolving residues are enriched with residues that participate

in strand-swapping in either Type I homodimers or Type II homodimers or both

(Tab. 2.3). We hypothesize that nature permitted coordinated evolution to maintain

the sorting ability of the cadherin gene family.
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K19 G15 tV19 G15 3792 0.644
F17 G15 D17 G15 2767 0.639
*124 14 *L24 fW4 2458 0.545
G15 E13 G15 tY13 2349 0.644
A87 153 P85 150 1929 0.433
G42 G40 G43 G41 1678 0.448
S83 *V3 D81 *V3 1666 0.615
P65 tP5 T62 N5 1430 0.626

Table 2.3: Eight coevolving sequence position pairs with the greatest z-scores.
* Residues involved in Type I and Type II cadherin strand-swapping. t Residues
involved in Type I cadherin strand-swapping. I Residues involved in Type II strand
swapping.

For further insight into the possible function of the coevolving residues, we mapped

sequence positions to the structural models described before (Fig. 2-8). Type I cad-

herins comprise five coevolving intramolecular contacts. The same sequence position

pairs in Type II cadherins are either non-contacts, intermolecular contacts, or also

intramolecular contacts. The lone intermolecular contact that is specific to Type II

cadherins, L24-W4, may contribute to binding specificity.

Paralog specificity analyis

The topology of the phylogenetic tree we computed details the order in which cadherin

genes diverged from a common ancestor (Fig. 2-9). From a common ancestor cadherin,

the first gene duplication event generated the 7D family (clade I), named so because

cdh16 and cdh17 have seven EC domains rather than five. Type I and II cadherins

diverge at the next duplication event (clade II). The following three duplication events

diversify the Type I cadherin subfamily by creating cdh13, cdh15, and cdh26 (clade

III-V, respectively). At each clade we asked which sequence positions distinguish the

cadherin subtypes from each other.

Paralog specificity analysis identified a set of putative specificity determining se-

quence positions of the five clades we analyzed (Fig. 2-10). The specificity determi-

nants are concentrated near #-strands A, B, G, and at the loop between strands C

and D. The specificity profiles differ little among the analyzed clades. For brevity
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Figure 2-8: Location of coevolving residues pairs in Type I (a, c) and Type II (b,
d) ECB models. The blue lines represent intramolecular contacts. The red lines
represent interm'olecular contacts found in the strand swapping model. The dashed
gray lines are coevolving pairs that are not in contact.
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Figure 2-9: Phylogenetic tree of metazoan ECB. The first clade (green triangle) marks
the duplication event that lead to the 7D genes diverging from the other cadherins in
the major branch. At the second clade (yellow square) genes similar to Type I or II
cadherins diverged. At the next divergences point (orange pentagram) cdh13 splits
from other Type I cadherins, followed by cdh15 splitting from the remaining Type I
cadherins (magenta hexagon). Finally, the cdh26 and Type II cadherins diverge (blue
heptagon).
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Figure 2-10: Specificity scores of the five clades. The paralog specificity is shown as
a function of sequence positions. Statistically significant specificity determinants are
marked with red stars.
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we focus on the specificity of clade V, but report a summary of the other clades in

Appendix A.

Every statistically significant specificity determinant has a well-established func-

tion in binding (Tab. 2.4). Every residues except for N12/E12, which coordinates

Ca2+, participates in either Type I or Type II strand-swapping. The specificity of

Hsap cdhl Mmus cdh11 I p-value
Dlf Git 5x10-9
14 W4t 4x 10-"
P5t N5 8 x 10-7
17 F7% 7x10-9
N12 E12* 3x10 1 4

V22 G22t 1x 10-8
12 4t L24* 6x10-1 5

M92t S90t 2x 10-1 3

194 F92t 1x10- 1 1

Table 2.4: Predicted specificity-determining residues corresponding to clade V.
Residues with established functions include those that participate in Type I cad-
herin strand-swapping, t, Type II cadherin strand-swapping, t, or residues that that
coordinate Ca 2 +, *.

the calcium-coordinating residue is intriguing, as calcium is thought to stabilize the

putative transition state of the strand-swapping reaction [157]. We therefore propose

that binding kinetics may also be specific among the cadherin subtypes.

To validate our predicted specificity determinants we mapped the mutual informa-

tion Z-scores onto the cadherin structural models from before. The binding interfaces

of both Type I and Type II cadherin dimers are enriched with putative specificity

determining residues (Fig.2-11). The putative sequence positions therefore define a

space with which one can, in principle, engineer novel cadherin specificity via muta-

genesis.

2.4 Concluding remarks

Based on our results, we propose a few strategies for engineering cadherin specificity

for engineering biology. The conserved residues lining the hydrophobic pocket into
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Figure 2-11: Specificity-determining residues are located on the ECB-ECB strand-
swap interface. Sequence positions corresponding to p < 10-5 are shown as sticks.

which the conserved tryptophan docks may confer promiscuity. Therefore mutating

either W2 or Y36 (Type I indexing) or both may produce an orthogonal cadherin sys-

tem that does not interact with native cadherins. Coevolution analysis suggests that

the W4-L24 interaction that is specific to Type II cadherins may confer specificity.

Mutating one or bother residues may modulate the specificity of Type II cadherins,

which is a large subfamily of cadherins with known promiscuity (Tab. 2.1). Finally,

the binding site residues predicted to confer specificity provide a extensive space of

residues that can be mutated either experimentally or computationally as part of a

screen for novel cadherin sequences with programmed specificity or promiscuity. The

number of novel cadherin designs appears extensive.
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Chapter 3

Inferring allosteric coupling in

proteins from conformational

dynamics

Abstract

Allostery is the dynamical coupling of functional sites within biological molecules.

How to robustly identifying networks of amino acids comprising an allosteric network

is an important question in protein science. Popular approaches include molecu-

lar dynamics, graph-theoretic analysis of protein crystal structures, and amino acid

coevolution analysis. This chapter details two methods for identifying correlated net-

works from protein conformational dynamics. One method is based on clustering and

the other is based on a community detection algorithm. We apply the approaches

to canonical allosteric proteins and cadherins and find that the approaches produce

putative correlated networks with distinct topologies. The clustering approach identi-

fies networks that are spatially disconnected while the community detection approach

produces networks that are spatially compact. With some basic insight in hand, we

propose scaling the two methods for a database-wide study of proteins dynamics.

Further, understanding of allosteric coupling may help inform the design of proteins

and protein inhibitors for applied biology.
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3.1 Introduction

In Chapter 2 we inferred physiochemical interactions of the residues in proteins based

on the covariation of amino acid sequence positions that are guided by evolutionary

forces. Because our input data was only amino acid sequences, we merely assumed the

inferred coupling between amino acids reflected the actual conformational dynamics

coupling in the molecule. The lack of actual 3D dynamical data to inform the results of

coevolution analysis drove us to ask questions about the actual dynamics of cadherins

and other proteins of interest. Specifically, we asked which residues in the protein

comprise a correlated network.

The objective of this study was to develop unsupervised tools capable of identi-

fying a correlated network of amino acids in proteins from conformational dynamics.

To our knowledge this problem has not been formally addressed in the literature, al-

though there are some well-cited attempts. For example, del Sol et al. applied graph

theoretic principles to protein structure models to identify residues that are impor-

tant for efficient allosteric communication between known functional sites [39]. Other

work has attempted to define networks of residues that mediate signaling. Statistical

coupling analysis (SCA) infers an allosteric network by identifying covarying amino

acid sequence positions [109, 161]. Finally, in other work del Sol et al. applied graph

theory and modularity maximization [143] to isolate putative networks of allosteri-

cally coupled residues from protein crystal structures [1561. Importantly, none of the

methods described so far incorporated dynamical information in the predictions of

correlated networks. Our analysis therefore differs because we construct our putative

correlated networks from dynamical data derived from a molecular mechanics model.

This chapter describes two approaches for identifying putative correlated networks

in proteins. We first present a mathematical definition of a correlated network then

describe the two methods of identifying the network with a computer and conforma-

tional dynamics data. Next, we apply the approach to a few canonical examples of

allosteric proteins. We conclude by highlighting the relevant topological differences

of the networks computed by the two approaches.
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3.2 Methods

Normal mode analysis

We derive our predictions of allostery from the conformational dynamics of protein

structural models. Correlations in amino acid fluctuations are typically derived from

either molecular dynamics (MD) simulations or normal mode analysis (NMA). In this

work we use NMA for several reasons. First, with NMA we can verify the convergence

of the atomic fluctuations by inspecting the computed eigenvalues and extrapolating

their spectra to estimate the truncation error due to the linear approximation of

the energy landscape. In contrast, MD simulations must be analyzed statistically to

estimate the convergence of any quantity of interest, including atomic fluctuations.

The statistical nature of MD also means several independent simulations are required

to evaluate the convergence of a quantity, whereas NMA requires only one calculation.

Normal mode analysis is a linearized analysis of Newton's equation of motion near

a stationary point on the energy landscape. The general form of Newton's second law

for a system of points is

Mi = -VrU (r)

where M is the mass matrix, r is position vector of the points, and U is the potential

energy of the system. If we assume the energy of the system is near a minima we

can approximate the energy gradient (i.e. force) by a Taylor series expansion -Vr _

-Ku, where K is the so-called stiffness matrix and u = Ar is the displacement vector.

The assumption that the system is near equilibrium leads to a linear representation

of Netwon's second law

Mn + Ku = 0 (3.1)

The equation of motion admits a harmonic solution of the form

u(t) = x cos (Wt + 6) (3.2)
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where x is the fluctuation vector, w is the vibrational frequency, and J is an arbitrary

phase lag. Substituting Eqn. 3.2 into Eqn. 3.1, one arrives at a generalized eigenvalue

problem

(M2 - K) x = 0

which admits 3N - 6 nontrivial solutions that describes the position of the particles

as a function of time. In practice, one can covert the generalized eigenvalue problem

to a standard eigenvalue problem by mass-normalizing the displacement vectors

(I02 - k) y = 0 (3.3)

where I is the identity matrix and y = M 1/ 2 x. The eigenvectors {x1, ... X3N} are

mass-orthonormal, i.e. x7M xj = yfxj = 6o. The set of eigenvectors and eigenval-

ues comprise the dynamical data required to describe conformational dynamics of a

protein.

We performed normal mode analysis on proteins with the molecular mechanics

computer program CHARMM [25]. We minimized the energy of the structure with

successive rounds of Steepest descent and Adaptive-basis Newton-Raphson energy

minimization with harmonic restraints on the a-carbons to prevent the structure

from deviating significantly from the experimentally determined crystal structure.

The stiffness of a restraints were defined on a per atom basis, with the initial re-

straint stiffnesses inversely proportional to the temperature factor. After each round

of minimization the stiffnesses of the restraints were reduced by 10% until to total

energy from the harmonic restraints was less that 0.1 kcal/mol. Prior to comput-

ing the eigenvalues and eigenvectors we ran one more minimization to ensure that

the root mean square energy gradient was less than 1 x 10- kcal/mol. To solve the

eigenvalue problem describing the minimized structure we used the coarse-grained

rotation-translation block (RTB) normal mode method [164, 106]. RTB assumes that

the residues are rigid bodies with three rotational and three translational degrees of

freedom. This approximation prohibits access to the highest frequency modes, how-
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ever the low frequency modes are of interest since they determine most of the global

motion. Importantly, although becoming less so with advances in computer technol-

ogy, the RTB approximation drastically reduces the computational requirement for

solving the eigenvalue problem. Instead of solving a O(3N) 2 eigenvalue problem the

computer solves a O(6R)2 eigenvalue problem, where N is the number of atoms in the

protein and R is the number of residues. From the energy minimized configuration

we computed M = 6+ 3nion + n, normal modes using CHARMM, where nion, is the

number of ions in the system and nc. is the number of a-carbon atoms. The first term

accounts for the rigid-body rotation and translation modes. The second accounts for

the ions which, in the RTB model, do not have the rotational degrees of freedom.

The last term ensures that, regardless of the size of the system, the frequencies will

cover long and short timescale motions.

Quantification of correlated motion

From the solution to Eqn. 3.3 we obtain the equilibrium fluctuations of the atoms,

xi(t), or, in terms of normal mode indices, Xik. From the fluctuations we computed

correlations between the a-carbon atoms of the proteins. The typical correlation

metric is the Pearson correlation coefficient.

rp [xi, xj] = (Xj) (3.4)
(x2) (x.)

where the angled brackets denote thermal average [26].

3N

(xi) =kB Xik

k=7 Wk

A significant limitation of the Pearson correlation coefficient is that it only cap-

tures colinear correlated motions (App. B). To avoid this limitation we use the gener-

alized correlation coefficient [102], which is based on the mutual information between
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the a-carbon fluctuations of a-carbons i and j

[xi, x ] [xi] + H[xj] - H[xi, xj] (3.5)

ri [xi,x 3 ] = 1/-exp (- I [xi, x] (3.6)

Assuming that the fluctuations follow a Gaussian distribution, i.e. that the energy

landscape is locally harmonic, the joint distribution of xi and xj is

P (xi, xj) = -2rE1/ exp - E1X (3.7)

In this limiting case the entropy is analytic [7].

d
HGaussian [Xi] = - [1 + In 27r + In IE] (3.8)

2

When the joint distribution is a Gaussian we denote the generalized correlation coef-

ficient rLMI-

Computing the generalized mutual information between two atoms requires the

joint and marginal covariance matrices. The covariance between atoms i and j, Eg,

is 6-by-6 block matrix

E = " E (3.9)

where Eij is the 3-by-3 covariance matrix corresponding to atoms i and j. We estimate

the covariance matrix from the fluctuation vectors Xik derived from normal mode

analysis [26].

ExxT) / ((x2) (xj))/2
3N T

~ k~Tik jkkB7T W2
k=7 k
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where Wk is the frequency of mode k in radians per time.

The correlation between a-carbons i and j quantifies the degree their fluctuations

are coupled. The objective of the next section is to identify networks containing atoms

that are more correlated with themselves than with atoms outside the network. We

refer to such networks as either clusters, communities, or modules. In the next two

sections we describe procedures that automatically identify modules from pairwise

correlation metrics.

From the dynamical correlations we derive networks of correlated residues. Two

approaches are mentioned in the literature for identifying networks of correlated amino

acids in proteins, the clustering approach and the community detection approach.

The clustering approach was applied to sequence data in work from R. Ranganathan's

laboratory [109, 161]. In contrast to the clustering approach, the community detection

approach uses modularity maximization to directly compute an optimal partition of

the data. An example of applying the community detection approach is del Sol et al.'s

work [156]. In the following section we will describe the application of the clustering

approach and then the community detection approach to dynamical data computed

via normal mode analysis.

Identifying correlated networks by clustering

The clustering approach compiles residues from a protein into a network by running

a clustering algorithm on an a-carbon correlation matrix. In general a clustering

algorithm outputs one or more ways to partition data points based on a distance

metric that quantifies how different the objects are from each other. For our purposes,

we cluster using a distance metric based on mutual information, dij = 1-rLMI [Xi X ,

which is zero for atoms that are perfectly correlated and unity for atoms that are

uncorrelated.

Countless algorithms operate on a distance metric and output a clustering solu-

tion. To identify correlated dynamical networks in proteins we apply agglomerative

(bottom-up) clustering and K-means (dispersion minimizing) clustering. Agglomera-

tive clustering algorithms includes single-link, complete-link, average-link (UPGMA),
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or weighted-link (WUPGMA). Of course, different algorithms produce different re-

sults. Single-link and complete-link are essentially opposites, while UPGMA and

WUPGMA represent a compromise between the single and complete linkage extremes.

Single-link performs poorly because it violates the compactness expectation of a clus-

tering solution, meaning clusters from single-linkage analysis will contain observations

that are far apart according to the distance metric. Conversely, complete-link tends

to violate the closeness expectation, meaning members of a cluster can be more sim-

ilar to members of another cluster than to members of their own. Mathematically,

the mean distance between two clusters partitioned by single or complete link goes to

0 or infinity, respectively, as the number of samples N -+ oc [67]. Average-link and

WUPGMA represent a compromise between single- and complete-link. Depending on

the distribution of pairwise distances, average-link or weighted clustering may more

closely resemble either single or complete-linkage results. Lastly, k-means clustering

attempts to minimize the distance between the center of a cluster and all of the points

that belong to the cluster. K-means tends to generate clusters with members roughly

equidistant from their center.

All of the clustering algorithms we implement require a user-specified parameter

that sets the number of clusters. Ideally one chooses the parameter to optimize one

or more functions that quantify the quality of the clustering solution. To distinguish

the quality of the clustering solutions an objective function is evaluated, thereby

permitting selection of the best solution from those that are available. Handl et

al. review many internal validation metrics useful for determine the appropriate

number of clusters [66]. We optimize two opposing internal validation measures: the

intracluster variance and the connectivity (Fig. 3-1).

The intracluster variance is a measure of how far the data within a cluster are

from the cluster's centroid. Mathematically, the intracluster variance of a partition

of a dataset, V(P), is defined

V (P) =(Xi - (x/P)2 (3.10)
PkEP iPk
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ab

Figure 3-1: Example datasets that are compact (a) or connected (b). Adapted from
[66]

where xi is the coordinate vector of data point i. (We discuss the mathematics of

converting a correlation matrix into coordinates later in the chapter.) The intracluster

variance is positive and should be minimized.

The connectivity of a clustering solution is a measure of overlap between separate

clusters. The connectivity of a partition of a dataset Conn(P) is defined

N L

Conn (P) = W ,nn(j) (3.11)
i=1 j=1

where

if Pk :i E Pk A nnigg, E Pk

0 otherwise

In words, the connectivity is a penalty that accumulates whenever Lth nearest neigh-

bors do not belong to the same cluster. The connectivity is positive should be mini-

mized.

The variance metric requires that the data points to be clustered have coordinates

from which the distance to the centroid can be computed. However, the correlations

we use to perform the clustering are a direct measure of distance, dij = 1-rLMI[Xi, X,

and so the variance as given in Eqn. 3.10 can not be computed directly. We therefore

borrow an operation from spectral clustering to convert distances into coordinates

[43]. From the correlations matrix [C]ij = rLMI [Xi, Xj] we compute the normalized
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Laplacian matrix, L = I - D-1 C, where I is the identity matrix and D is a diagonal

matrix containing the sum of the rows (or columns) of the correlation matrix C,

i.e. [D]ij = (Ek Cik)6 i. The eigenvectors of L constitute a basis set that serves as

coordinates of the sample points in Rk. For every clustering solution P we compute

the variance V(P) from the first k = 3 eigenvectors of L and identify solutions that

minimizes both the variance and connectivity. Note that in all of the cases we studied

the first three eigenvalues accounted for more than 95% of the total eigenspectrum.

As validation for our implementation Fig. B-1 demonstrates the use of internal

cluster validation metrics on Golub's cancer cell transcription profiles [66]. As the

number of clusters increases, the variance decreases while the connectivity increases.

The 3rd data point corresponds to a partition of the data into three clusters, which

matches the number of cancer types in the data set.

In general one cannot decrease the variance without increasing the connectivity.

This poses the problem of how to choose the appropriate number of clusters. To

deal with this problem we identify a set of solutions that are Pareto optimal in the

variance-connectivity space. A partition P* is Pareto optimal if there is not another

partition P such that V(P) V(P*) and C(P) < C(P*), and either V(P) < V(P*),

C(P) < C(P*), or both. In our analysis we identify all clustering solutions that are

Pareto optimal.

The clustering approach we described is not designed to give a good solution in

general. Rather, it is a means of choosing the best solution from the set of solutions

that are available. If all of the clustering solutions are poor, the Pareto optimal

solution will be poor. An alternative approach for identifying allosteric coupling was

therefore sought.

Identifying correlated networks by community detection

Community detection algorithms directly optimizes an intuitive description of a cor-

related network. Informally, a community is a collection of objects with dense intra-

community connections and sparse intercommunity. Similarly, we define a network of

correlated residues in a protein as a-carbons with strongly correlated motion that is
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distinct from other parts of the protein. One represents a community by a weighted

and undirected graph, where the members of the communities are called nodes, the

connections between members are edges, and the community to which a member be-

longs is a node label. For our purposes the nodes are the a-carbons in a protein and

the edges are the pairwise correlations between the atomic fluctuations, rLMI [Xi, X, .

We apply a community detection algorithm to a graphical representation of a protein's

motion, thereby assigning the a-carbons in the protein to correlated networks.

Mathematically, one identifies communities by minimizing an energy function

H ({o-}) = - E Ji6 (o-i, o-) (3.12)

isij

where Jij is energy associated with assigning nodes i and j to the same community, oi

is the community label of node i, and 6(x, y) is unity when x = y and otherwise 0. In

modularity maximization Jj = wij -- y (w)jj, where wij is the affinity of node i for node

j, (w)j is the affinity under an appropriate null model, and -y is a free parameter. The

configurational model is a common null model for community detection [120, 143].

S(Ei w)(E wj)

The configuration model has the same form as the average-product correction used

to remove the effect of phylogeny in coevolution analysis (Chap. 2). A clever cluster-

ing algorithm dubbed Superparametric Clustering (SPC) [21] uses the same form of

Hamiltonian as Eqn. 3.12, except the authors define the interaction energy as

J = Ji = exp Xi- XI12

J.- i =<Z 2u2  )
where Z is a normalization constant and o- is a length scale. Note that null model

in SPC is (wjj) = 0, meaning nodes are not expected to have connections outside of

their communities.

Most published work on community detection has focused on identifying com-
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munities in prototypical networks, such as the Internet, World Wide Web, social

networking websites, journal citations, protein-protein interactions, or synthetic net-

works [99]. Such networks are canonically large, sparse, sometimes directed, and often

scale free [14]. In contrast, the networks obtained from fluctuations of a-carbons in

proteins are small, dense, undirected and weighted. To our knowledge, relatively little

work focuses on dense weighted networks, with the exception of Heimo et al. who

used a Potts model of community detection to identify structure in a stock market

dataset [70].

We applied Heimo et al.'s weighted network modularity optimization formulation

to protein dynamics data. For every protein we generate a graph where the nodes are

a-carbons and the weighted edges are the rLMI between pairs of a-carbons. To reduce

the computational burden we make the network sparse by searching for communities

in the graph's Maximum Spanning Tree (MST).

To minimize the Hamiltonian we use a greed stochastic search algorithm that

follows from the description in [143]. Briefly, we loop through the nodes in the graph

in random sequential order. For each node we identify the neighbor node from a

different community (if any) that decreases the Hamiltonian the most, and then move

the node to the new community. If we define the affinity matrix wij = rLMI [Xi, X3],

then the update of the Hamiltonian for the move of node 1 from community # to

community a is

AH wO (#, o-) - (s4 - si)

where s, is sum of the edge weights incident upon node 1, SO is the sum of s, for

all nodes in community #, and S is the sum of all the edge weights in the graph.

If AH > 0 for a test node the algorithm leaves the node in its current community,

otherwise it moves the node to the new community. After looping through all of the
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nodes, the algorithm then loops through all of the communities and computes the

greatest energy decrease that would result from merging two communities. If the

largest decrease is positive we do not merge the communities. We repeat looping

through the nodes and then communities until we can no longer decrease the energy

of the Hamiltonian. Although efficient, this procedure is not guaranteed to find a

global minimum. We therefore run the procedure three times and report the lowest

energy community. To examine correlated networks at different resolutions we vary

the resolution-controlling parameter -y > 0 and map the resultant community onto

the 3D protein structures.

We validated our implementation of the community detection algorithm using a

simple dense weighted graph from the original authors [70]. The graph comprises Nb

blocks each with Nc nodes. All of the nodes are connected by weighted edges. The

edge weight between nodes within a block is wi = 1 while the edge weight between

nodes in different blocks is Wb = 0.1. By varying the resolution parameter, -y, different

community structures emerge. For this network we find one community when -y = 0.3

and four communities when -y = 1.5, (Fig. B-2). Our results agree with the reported

results [70].

3.3 Results and discussion

The algorithms just described can be applied to any protein, but before attempting

to learn something new, it is valuable to test the approaches on a few well-studied

example proteins. We therefore implemented both approaches to characterize the

conformational dynamics of two proteins that show evidence for allosteric coupling,

fascin and rhodopsin, with results for hemoglobin and #-trypsin provided in the Ap-

pendix B). We also applied the approaches to cadherin dimers to gain further insight

into the structure-function relationship we studied in Chapter 2.
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Fascin

Fascin is a 55 kDa globular protein that bundles filamentous actin (F-actin) [180].

The structure of H. sapiens fascin-1 comprises four beta-trefoil domains, F1-F4, that

constitute two lobes, F1-F2 and F3-F4 [148]. The C-terminal half of fascin contains

as least one F-actin binding site [126], while another F-actin binding site is thought

to exist near the N-terminal half [126, 148]. Conformation dynamics suggests that

the subdomains F1 and F3, although not in contact, are allosterically coupled [148].

We applied both the clustering and community detection approaches to fascin confor-

mational dynamics computed from the crystal structure (PDB ID 1DFC) as a means

of validating our algorithms and comparing the two approaches.

Fascin's dynamical correlation map has a block diagonal structure (Fig. 3-2A),

showing that the residues within subdomains are more tightly coupled to each other

than to residues in different subdomains. Although the correlation map shows cou-

pling between subdomains F1 and F3, it is not clear from the map alone what the

strength of the coupling is. Hierarchical clustering by average linkage and WPGMA

clustering produce Pareto optimal clustering solutions (Fig. 3-2B) that elucidate the

structure and strength of the allosteric coupling. Mapping the clustering solutions

onto the protein structural model using colors to distinguish the different communi-

ties reveals F1 and F3 are allosterically coupled (Fig. 3-2C), which agrees with the

published results [148] and thereby validates our implementation.

Community detection reveals correlated networks that are distinct from the clus-

tering method solutions in several ways (Fig. 3-3). First, hierarchical clustering pro-

duces one solution for a specified number of clusters while community detection can

identify multiple solutions with the same number of clusters. In this way community

detection provides richer insight into the structure of correlated protein motion. Sec-

ond, the networks derived from clustering do not correspond to the networks derived

from community detection. For example, the Pareto optimal solution assembled by

average-link clustering consistently places subdomains F1-F3 within the same cluster

(not shown). Community detection, in contrast, finds a 2-cluster partition with F1
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3 clusters WPGMA 4 clusters ave. link 5 clusters ave. link

Figure 3-2: Validation of cluster analysis procedure on the protein fascin. The up-
per triangle of the pairwise correlation plot equals rLMI and lower triangle is the
magnitude of the Pearson correlation coefficient |rpl. The Pareto optimal cluster-
ing procedure identifies allosteric coupling between subdomains F1 and F3. In the
structure regions with the same color belong to the same cluster.
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and F2 (i.e. lobe 1) in a community and F3 and F4 (lobe 2) in another commu-

nity. Also unlike clustering, community detection resolves a 4-cluster solution with

F1 and F3 in separate domains, whereas the Pareto optimal 4-cluster solution from

the clustering approach puts F1 and F3 in the same cluster.
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Figure 3-3: Correlated dynamical networks in fascin computed by community detec-
tion. The largest cluster size (black circles) and number of cluster (red squares) are
plotted at resolution ranging from 0.01 to 0.1. The structures depict which commu-
nities the a-carbons belong to. At y = 0.02 subdomains F1 and F2 are in the green
network while F3 and F4 are in the blue network. At y = 0.08 the subdomains are
their own networks.

Bovine rhodopsin

G-protein coupled receptors (GPCRs) are a large gene family of transmembrane sig-

naling proteins. Upon stimulation GPCRs transmit signals across a membrane by

switching between quiescent and signaling states. Rhodopsin (PDB ID 1HZX) sig-

nals via a conformational change that converts a photon into a biochemical signal in

rod cells of the retina. The conformational change that rhodopsin and other GPCRs

undergo to transmits signals is of interest for both developing therapeutics and un-

derstanding the five senses.

Clustering analysis reveals a membrane-spanning correlated a-carbon network
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(Fig. 3-4). Helix VIII, which run parallel to the cytoplasmic side of the cell membrane

and orthogonal to the central helix bundle, correlates with the extracellular portions

of helices I and II. The placement of the disconnected helix fragments within the same

cluster exists in several solutions, suggesting the long-range coupling contributes sig-

nificantly to the global motion of the protein. To our knowledge, this clustering

solution provides the first evidence of long-range allosteric coupling between the in-

side and outside of cells through GPCRs.

3 clusters ave. link 3 clusters WPGMA 4 clusters WPGMA

Figure 3-4: Pareto-optimal dynamics-based allosteric network in Bovine rhodopsin.
The a-carbon fluctuation correlation matrix is shown in (a). Clustering solutions
were plotted on a space representing cluster separation and compactness (b). Three
solutions on the Pareto front (c).

Our greedy search algorithm converges to two stable solutions at resolutions be-

tween -y = 0.01 and 7 = 0.05 (Fig. 3-5a) that are inconsistent with the clustering

solutions. Unlike the clustering solutions, none of the a-helices partition into more

than one network (Fig. 3-5b-c), suggesting that the fluctuations of the atoms within

an a-helix are highly correlated. The clustering solution also suggests that cytoplas-

mic helix VIII is coupled to the extracellular portion by long-range communication
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with helices I and II (Fig. 3-4c), while community detection identifies cytoplasmic-

extracellular coupling via coordination of helix VIII with helices V, VI, and VII (blue

and brown in Fig. 3-5c).

The rhodopsin example demonstrates that community detection generates sets of

solutions that hierarchical clustering can not, i.e. solutions that are not hierarchical.

At low resolution helix V is coupled with helices VI-VIII (Fig.3-5b), while at a higher

resolution V is coupled with helices III and IV (Fig.3-5c). There is no agglomera-

tive operation that can generate the low resolution solution from the high resolution

solution, therefore the communities are not hierarchical.
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Figure 3-5: Correlated dynamical networks in Bovine rhodopsin inferred by commu-
nity detection. The number of communities increases with the resolution parameter
7 (a). The circled points in (a) correspond to the community structure shown in (b,
c).

Interestingly, the putative coupling mechanisms we identify have not been reported

in the literature, at least not to our knowledge. Signal transduction in rhodopsin is

thought to occur through the coordinated relaxation of the helix triad comprising

helices III, VI, and VII, and is triggered by a perturbation to residue 296 in helix VII

[38]. In other GPCRs, the N-terminal loop covers the helix bundle like a lid, and may

modulate the quiescent-signaling transition in some GPCR classes. For instance, mu-

tations in the N-terminus of opioid receptors enhance spontaneous signaling activity

[38], and that signaling terminates at the transducin binding site on the C-terminus

[170]. We therefore hypothesize that either the N-terminus communicates with the

C-terminus via long-range coupling (Fig. 3-4) or via coordinated movements of he-
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lices V, VI, and VII (Fig.3-5). Testing this hypothesis would require site-directed

mutagenesis experiments, and may only apply to a fraction of the -600 GPCRs.

Cadherin strand-swap dirners

In Chapter 2 we inferred a set of coevolving amino acid pairs in the cadherin ECB

domain. About half of the residue pairs we identified were curiously not in contact,

suggesting that the coevolving pairs may be allosterically coupled. Here we applied

the tools developed in this chapter to gain insight into the conformation dynamics

and potential allosteric coupling in cadherin strand-swap dimers.

Figure 3-6 shows 3-cluster Pareto optimal solutions for Type I and II cadherin

strand-swap dimers. Average-link hierarchical clustering generated the Pareto front,

so just those results are shown. The Type I cadherin dimer optimally partitions into

three clusters wherein the two Ca 2  binding sites are in separate clusters and the

EC1 and EC2 domains belong to the same cluster. In contrast to the Type I cadherin

clustering solution, the Type II cadherin dimer clustering solution demonstrates cou-

pling between the calcium binding domains and the amino-terminal portion of ECI.

The analysis suggests that the amino-terminal portion of ECI is more tightly coupled

to the calcium binding regions in Type II strand-swap dimers than in Type I strand-

swap dimers. The differences in coupling between Type I and II dimers may manifest

as differences in rates of calcium-induced activation and binding of the Type I and

Type II EC domains [157].

We applied the community detection approach to Type I and Type II cadherin

strand-swap dimer conformational dynamics and identified two stable solutions and a

transition solution within the resolution range 0.01 < y K 0.09 (Fig. 3-7a and e). The

lowest resolution solution identified two correlated networks; one network corresponds

to each cadherin protomer (Fig. 3-7b and f). Three correlated networks were identified

at the intermediate resolution (Fig. 3-7c and g). One of the intermediate resolution

networks is a combination of the EC1 domains from the two protomers, while the

other two are the EC2 domains from the two protomers. At the highest resolution

each EC domain is a network and the calcium binding domains are shared between
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Type I Type II_

Figure 3-6: Pareto-optimal dynamics-based allosteric network in cadherin strand-
swap dimers. Two- (top row) and three-cluster (bottom row) solutions are shown for
Type I cadherin H. sapiens cdh1 (PDB ID 2072) and M. musculus cdh11 (PDB ID
2A4E). The color coding in red, green, or magenta represents membership in predicted
correlated networks.

EC1 and EC2 of the protomer to which they belong (Fig. 3-7d and h).

The networks computed by community detection at all resolutions, y, are spatially

compact, i.e. the networks comprise protomers, interacting EC1 domains, or domains

within protomers. This result indicates three points about cadherin strand-swap

dimers: coupling within a protomer is greater than between protomers; coupling

between binding site residues in EC1 is greater than between binding site residues in

the rest of EC1 or any part of EC2; and that coupling within EC domains is greater

than coupling between EC domains.

Interestingly, the calcium binding EC1-EC2 linker domain clustered with EC2

at all resolutions and in both cadherin models. Experiments show that the calcium

binding region between EC1 and EC2 destabilizes an EC2 fragment, but that the

EC2 domain with the linker is partially rescued with the addition of calcium [139].

That the linker region affects the stability of EC2 supports our prediction that EC2

is dynamically coupled to the linker.

The stable Type I and Type II cadherin networks solved by the community de-

tection algorithm are topologically similar at all resolution levels. On one hand, the

similarity is reassuring given that the molecules are structurally similar and our cor-

relations come from low-energy global motion predicted by normal mode analysis. On

the other hand, the similarity also suggests the community detection approach may

not be sensitive enough to distinguish different types of allosteric communication in
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Figure 3-7: Correlated dynamical networks in cadherin strand-swap dimers detected
by community detection. Three stable solutions occur in the range 0.01 < -y K 0.09
(a, e): communities of 2 (b, f), 3 (c, g) or 4 (d, h) are shown on structures of cadherin
strand-swap dimers. The color coding in yellow, blue, brown, or mauve represents
membership in predicted correlated networks.
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similar molecules. One could formally characterize the sensitivity by comparing the

networks of paralogs, orthologs, mutants, or conformers, and perhaps optimize the

algorithm or data collection procedure to improve the sensitivity.

3.4 Concluding remarks

For all of the proteins we examined for correlated networks, the Pareto optimal clus-

tering solutions do not resemble the solutions generated by community detection.

While clustering produces spatially-disconnected correlated clusters, community de-

tection produces spatially compact clusters. It is therefore reasonable to ask which

method is superior. The clustering approach attempts to find the most compact clus-

ters from a set of precomputed solutions. The algorithms that produce the clustering

solutions optimize different characteristics of the data structure that depend on the

dissimilarity measure, and no single approach is guaranteed to find a solution that

minimizes both objective functions V(P) and Conn(P). In contrast, the community

detection approach has a well-defined and intuitive objective function to optimize.

Moreover, the clustering approach can only generate a finite and discrete set of solu-

tions, while the community detection approach has the power to generate a solution

spectrum. We therefore recommend the community detection algorithm as the more

principled method for detecting correlated networks. A quantitative comparison is

necessary to fully justify one approach over the other.

We foresee several applications of protein correlated network detection. One ap-

plication is the rational design of enzyme inhibitors. By predicting sites on an enzyme

that are dynamically coupled to the active site one can, in principle, design molecules

that allosterically inhibit ligand binding, catalysis, or both. A second application

is in the novel design of biological macromolecules. The community detection ap-

proach suggests that proteins can be partitioned into modules of dynamically corre-

lated atoms, a notion explored previously for protein crystal structures [156]. The

modules may serve as building blocks for engineering novel chimeric proteins with

designed function. The final proposed application is for the basic understanding of
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protein dynamics. With a database of structures, such as the Protein Databank,

the conformation dynamics can be computed via normal mode analysis or molecular

dynamics and subsequently interpreted with the clustering or community detections

approaches. Conveniently, conformational dynamics databases already exist for both

proteins [116] and protein complexes [92], so implementing a large-scale survey only

requires porting data from the databases into a format compatible with clustering or

community detection computer programs.
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Chapter 4

Consequences of allosteric coupling

between tandem binding domains

in F-actin bundling proteins

Abstract

Eukaryotic cells construct mechanical organelles from ordered bundles of F-actin

and an assortment of actin bundling proteins (ABPs). A complete understanding

of the structure and behavior of bundles requires physical insight into the ABPs that

cross-link bundled F-actin. Our current understanding of ABPs includes the hypoth-

esis that the tandem F-actin binding sites bind to F-actin cooperatively. Unfortu-

nately, the means of testing for cooperativity in a protein are still somewhat primitive

(Chap. 3). We therefore ask what are the consequences of allosteric coupling on the

structure of F-actin bundles, a quality that can be observed and quantified experimen-

tally. Using a mathematical model of ABPs binding to transversely ordered F-actin,

we study the dependence of the bundle's structure on strength of cooperative cross-

linking. Our analysis shows that coopertivity provides competitive advantage that

favors cross-links occupying F-actin binding sites instead of ABPs that bind without

cross-linking. We interpret our result with a new hypothesis that nature ought to

select for cooperativity in ABPs, and therefore that cooperativity is a general feature
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of ABPs.

4.1 Introduction

Filamentous actin (F-actin) is a biological polymer capable of forming a variety of

complex structures in cells, from tangled networks to ordered bundles. F-actin bun-

dles in particular serve as the building-blocks for a variety of organelles, including

but not limited to filopodia, microvilli, the contractile ring in dividing cells, stress

fibers, and structures inside neurosensory cells that detect pressure waves, gravity,

or other mechanical stimuli (Reviewed in [42]). F-actin bundles also constitute an

integral part of the contractile machinery in smooth and striated muscle. Because

of the ubiquitous nature of F-actin bundles in biology and physiology, the physics

underlying regulation of bundle structure is of considerable interest.

Many ligands can drive F-actin bundle formation, including cations and basic

peptides [165], "inert" molecules like poly-ethylene-glycol (PEG) [78], and so-called

actin bundling proteins (ABPs, reviewed in [15]). At sufficiently high F-actin con-

centrations entropy can drive bundling as well (reviewed in [71]). The bundling

agents mediates the structure and mechanics of both F-actin and the composite bun-

dle [23, 10, 9, 152, 153, 17, 35, 36]. Of particular interest here are the ABPs that

generate transverse hexagonal F-actin bundles (Fig. 4-1). How the conformational

dynamics of the bundling protein might influence the structure of the F-actin bundle

is an open question we attempt to address.

Structural data and conformational dynamics analysis provide evidence that actin

bundling proteins exhibit allosteric coupling between their tandem actin binding do-

mains. One example is the protein fascin, studied in Chap. 3. Fascin contains two

lobes. The C-terminal lobe has a known F-actin binding site while the N-terminal

lobe has a putative F-actin binding site [126]. Conformational dynamics analysis

identified intriguing coupling between the subdomains containing the binding site,

suggesting that binding to F-actin may be cooperative [148]. Fimbrin/plastin is

another ABP with tandem F-actin binding domains. The evidence for cooperative
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Figure 4-1: Actin bundling proteins organizes F-actin into transverse hexagonal
bundles. Balsa wood model of a hexagonal F-actin bundle with ABP cross-bridges
(a). Schematic of ABP connectivity (b). Schematic of five F-actins cross-linked by
ABPs (c). Single F-actin from (c) with ABPs attached at cross-linking positions (d).
Figure adapted from [42].

binding by fimbrin is the polymorhpic nature of the calponin homology domain 2

CH2 [95], which contains one of the F-actin binding sites. What affect, if any, coop-

erative cross-linking has the the structure of F-actin bundles is an open question. By

understanding the consequences of cooperative cross-linking, we may design experi-

ments that test whether binding to F-actin is cooperative or not for any given ABP,

including fascin and fimbrin.

The new contribution of this chapter is attention to the consequences of coop-

erative cross-linking on the structure of the bundle. Although a number of studies

have examined cooperative adsorption of proteins to F-actin [74, 75, 155], or F-actin

bundles [152, 153] the nature of the cooperativity differed from the present study:

the previous work modeled cooperativity between binding sites on F-actin, while this

study addresses cooperativity between ABP binding sites.

This chapter describes the predictions of a simple mathematical model that incor-

porates the physics of allosteric communication between the F-actin binding domains

in an F-actin bundling protein. We formulated two versions of the model, one more

parsimonious than the other, and compared their predictions. Using both models we
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examined the effect of cooperative cross-linking on the F-actin bundle's structure.

We conclude with application of the model for identifying allostery in ABPs F-actin

pelleting assays.

4.2 Methods

We utilize a simple model of adsorption to a 1-dimensional lattice to represent ABPs

binding to parallel F-actins (Fig. 4-2). The lattice consists N rows each containing

a pair of adjacent F-actin binding sites. In this simple formulation, we incorporate

neither cooperation among F-actin binding sites nor deformation of F-actin do to

cross-linking. We therefore need not consider the transverse spacing of the binding

site, which so happens to be irregular [42]. The rows of the lattice can occupy any of

five states. The energies of the states are

Eu = 0

EL = e-p

ER = E -

EB = 2 - 2p

Ec = 2e - P + o-

where every term is normalized to thermal energy. A row is in its reference state EU

when occupied by solvent. If one of the two adjacent F-actin binding sites is occupied

by the 'left' domain of an ABP, the energy, EL, is the sum of an enthalpic term E and

an entropic penalty p from removing the ABP from solution and immobilizing it on F-

actin. We assume the binding sites for the 'right' domain of the ABP contributes the

same energy when occupied, ER, and therefore the singly-occupied state is degenerate.

The assumption that the actin binding domains exhibit the same affinity for F-actin is

not strictly correct. For example the apparent dissociation constants of fimbrin's actin

binding domains 1 and 2 are 0.34 ± 0.04 and 2.6 ± 0.3 pM, respectively [104]. A more

general model could trivially incorporate distinct binding affinities. The third state,
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with energy EB, is a doubly-occupied state. In the doubly-occupied state both of the

F-actin binding sites in a row are occupied by a domain of two different proteins. We

do not know if the doubly-bound state is ever realized in vitro or in vivo, so we define

a 4-state model without the doubly-bound state and a 5-state model with it in an

effort to understand the consequences of the different assumptions. The final state is

the cross-link state, where one ABP binds both of the adjacent F-actin sites in a row

to form a cross-link. In the cross-linked state both binding sites are occupied, which

contributes an enthalpic term, 2e, and an entropic penalty, p. An additional term, a-,

accounts for potential allosteric communication between ABP domains, manifest in

this model as cooperative cross-linking.

a b
b E=O

a c U

EL

ER

or E =2c-2yEB

b E =28+0-1
,0 - 0 0

Figure 4-2: Schematic of a mathematical model representing parallel actin fila-

ments with adjacent binding sites for ABPs. Geometry of transverse F-factin bundles

adapted from [177] (a). The lattice is represented as N rows of adjacent F-actin bind-

ing sites (b). The cells on the left correspond to one F-actin while those on the right

correspond to the adjacent F-actin. An F-actin bundling protein with two binding

domains is represented as two pill-shapes, where each binding domain is labeled a

different color and designated with and L for left and R for right binding domain,
respectively. The left domain binds on the left of side of the array while the right

domain binds to the right side of the array. The N rows in the lattice can exist in

one of five states, enumerated from top to bottom: unoccupied, bound by the left

ABP domain, bound by the right ABP domain, bound by two different ABP, each
contributing a domain, or cross-linked. The corresponding energies of each a state

are shown to the right of the cartoon.
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We are interested in two quantities that characterize the structure of the F-actin

bundle: the number of F-actin binding rows that are blocked from acquiring a cross-

link, 6, and the fraction of sites that are cross-linked, p. A blocked row has energy

EL, ER, or ER (Fig. 4-2) and cannot acquire a cross-link. The cross-link density is

of interest from a biophysical perspective because cross-links function as glue that

holds the filaments together and bare load [17, 36]. A row cannot both be blocked

and cross-linked, therefore the cross-linking state must compete for rows to bind with

all of the other states. Because of the physical importance of the cross-link density,

we characterize the structure of the lattice by reporting the blocked row density, 6,

and the cross-link density, p, as a function of ABP bulk concentration.

We solved the model analytically and validated it numerically using Markov Chain

Monte Carlo integration with the Python module pymc. Although more complicated

models that include nearest-neighbor cooperativity between F-actin binding sites in

the N rows can also be solved analytically using the transfer matrix method [41,

24, 98, 135, 166, 167, 169, 168], we still chose to implement a numerical solution to

simplify the task of extending the model to include long-range coupling between the

F-actin binding sites. Such a complicated model has not been implemented as of yet.

4.3 Results and discussion

Analytic solution

When the rows of the lattice are independent of each other, the model admits a

particularly simple solution that we explore here. The partition function for a row of

the lattice is a summation of Boltzmann weight functions.

q4 = 1+ 2e-e+ + e-2e-a+±

q5 = 1+ 2e-+L + e- 2e-±~ + e-e+2
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where q4 and q5 correspond to the 4- and 5-state models, respectively. Since the

row partition functions are independent the composite partition function is simply

Q8 = q N, s = 4, 5. The fraction of blocked rows, OS, or cross-linked rows, Ps, is

2e4 ~

p4

05

P5

1 + 2e-6-I-A +

+ 2e-6+p + e-2-+p + e- 2 c+2 g

p+ 2e-c±p + e- 2E-a-I, + e- 2 +2pL

By expressing the (dimensionless) ABP chemical potential as a function bulk con-

centration, y = po + In (C/Co), we can express the structure of the F-actin binding

sites as a function of the concentration of cross-linker in the surrounding environment

relative to a reference concentration, Co.

Comparison 4-state and 5-state titration curves

The key difference between the 4-state and 5-state model is that the 5-state model

permits the doubly-bound state wherein two ABPs bind to adjacent F-actin binding

sites at the same row of the bundle. The ABP titration curve demonstrates the

consequence of permitting the doubly-bound state on the fraction of cross-linked

F-actin sites (Fig. 4-3). At low effective fugacity, z = et -+ 0, the blocked and cross-

linked fractions both tend toward zero. As the bulk concentration of ABP increase

(p -+ oo), the 4-state and 5-state cross-link fractions, p4 and p5, respectively, diverge.

The cross-link density in the 4-state model asymptotes to non-zero value

lim P4poo 2 + e-c-"
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while in the 5-state model the cross-link density vanishes

lim p5 = 0
p-+oo

and the fraction of blocked sites approaches unity

lim 65 = 1
p-00

-- blocked 4
x-linked 4

blocked 5
x-linked 5

UC

0~

100
fugacity, eflA

102

Figure 4-3: Titration curves demonstrating the difference between the 4-state and 5-
state models. The fraction of blocked (solid lines) or cross-linked rows (dashed lines)
are plotted against the effective fugacity, z = e' using both the 4-state (black lines)
and 5-state (red lines) models. The lines are analytic while the errorbars are from
simulation.

The behaviors of the 4- and 5- state models at high ABP concentrations diverge,

so it is worthwhile considering the physical interpretations wherein one or the other

model might match experimental data. Consider the characteristic spacing between

adjacent F-actin sites in a row of the bundle, d. If the effective radius of a hypothetical

ABP is r, then the ratio J = 4r/d determines whether the 4- or 5-state model is more
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appropriate. If 6 ~ 1, then no more than one ABP could fit snuggly into the space

between adjacent F-actin binding sites. This scenario represents the 4-state model.

In contrast, if 6 << 1, two ABPs could simultaneously bind adjacent F-actins, a

scenario represented by the 5-state model. The radii of gyrations of fascin (PDB ID

IDFC), fimbrin (PDB ID 1PXY), and alpha-actinin (PDB ID 1SJJ) are 2.5, 2.4, and

11 nm, respectively. The observed spacing between filaments in a hexagonal bundle is

d ~ 13 nm [42], and the radius of gyration of F-actin is R ~ 2.37 nm [124]. Therefore

d ~ 8.3 nm, which to just wide enough to fit a ABP like fascin or fimbrin. The

effective length of alpha-actinin in bundles was measured to be about 35 nm [115],

which is less than twice its radius of gyration. An alpha-actinin bundle could contain

the doubly-bound state if the adjacent proteins avoid each other. Therefore both the

4- or 5-state models are appropriate depending on the effective size and flexibility of

the ABP.

Adsorption of an ABP with allosteric binding sites

Allosteric coupling between ABP binding sites provides a means of increasing the

maximal cross-link density (Fig. 4-4). In both the 4-state and 5-state models allosteric

coupling decreases the fraction of blocked sites (Fig. 4-4a, c) while increasing the

fraction of cross-links (Fig. 4-4b, d). Thus, allosteric coupling between ABP domains

is one of nature's options for optimizing the cross-link density in F-actin bundles.

4.4 Concluding remarks

We developed a simple model for binding of ABPs to transverse F-actin bundles.

Although our objective was to understand the consequence of allostery in ABPs on

the structure of bundles, the model is general and can be used for other questions. One

extension could incorporate the effects of intrafilament cooperativity among F-actin

binding sites. Recent work by Galkin et al., for example, proposes G-actins coordinate

their states over a 17 protomer length scale [60]. As second extension one could include

the ABP-induced F-actin deformations [152, 153] to create a rich mechanochemical
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Figure 4-4: Allosteric coupling between tandem ABP binding sites drives cross-
linking. The lines are analytic while the errorbars are from simulation. In all cases
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model of F-actin bundles. Lastly, one could use the model to interpret experimental

data. So-called pelleting assays are a means of measuring the bundling proclivity

of ABPs. The assay has been performed for several bundling proteins, including

annexin [81], epsin [30], fascin [180], alpha-actinin [115], fimbrin [64], and villin [84].

Interpreting pelleting assay data with our simple model may assist in the formulation

and testing of hypotheses about the structure and stability of bundles. It is important

to note, however, the technical issues with the assay, such as its inability to detecting

whether or not an ABP is in any of the states from our model. What the assay

actually determines is the total amount of ABP per actin. For that metric, one must

compute the concentration of ABP in the bundle,

C 5 _ 2e E +p --2e -o±+p _ -

=1 + 2e-Ebtz + e-
2

cEo±I

C5- 2e-'+f + C-2 E-a+/I + 2e-2 c±2II

C I + 2e-+tt + e_2 E-o±+A + e- 2 E±2

which one can then normalize to the actin concentration. To test for ABP cooperativ-

ity one could make two defective ABPs, one with each F-actin binding site inhibited,

and measure the titration curves relative to the wild-type ABP. One could then use

the c4 and c5 to interpret the curves.
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Chapter 5

Mediation of F-actin mechanics by

actin subdomain 2

Abstract

Filamentous actin (F-actin) is a ubiquitous eukaryotic macromolecule that serves a

range of important biological functions, including cell migration, division, adhesion

and force sensing. Due to its centrality in cellular biomechanics, the mechanical

properties of F-actin are of great interest per se and for constructing models of large

biomechanical structures, like the networks and bundles found in organelles. Although

numerous studies have developed useful mechanical models of F-actin, recent struc-

tural data now demonstrate that F-actin adopts an ensemble of states, each which

we hypothesize exhibits unique mechanical characteristics. To address the mechan-

ical consequences of the varied structural states we implemented a structure-based

computer model to characterize the stiffnesses of the models. We find that our mod-

eling predictions agrees well with the available experimental evidence. In addition we

demonstrate that F-actin's mechanical behavior in general deviates significantly from

standard assumption required by so-called "wire" F-actin models, by demonstrating

significant coupling between stretching, twisting, and bending. We also show that

mechanical properties of F-actin are sensitive to the structure of actin subdomain

2. Finally, we described an intuitive model for how the structure of S2 can mediate
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the flexibility of F-actin. Overall, this work provides novel quantitative information

on the ensemble of F-actin flexibilities that can be further transferred to large scale

models for faithful simulation of F-actin within organelle or cellular contexts.

5.1 Introduction

Filamentous actin (F-actin) serves important biomechanical functions in a variety

of cellular processes including migration, division, adhesion, and mechanosensation

[136, 42]. As a force-bearing and -generating component of the cytoskeleton, the

mechanical behavior of F-actin has received considerable attention [136, 50]. Experi-

mental [83, 97, 108, 62, 182, 172, 146] and computational [19, 16, 37, 33, 133] studies

provide detailed characterizations of the mechanics of the actin filament, which is typ-

ically coarse-grain modeled as a homogeneous and isotropic rod with a characteristic

stretching, bending, and twisting stiffness, and more recently twist-bend coupling

stiffness [37]. Such models of F-actin mechanics are interesting in and of themselves,

but also permit the construction of larger scale mechanical models, such as F-actin

networks [94, 61] and bundles [16, 36, 72], which are important for understanding

processes occurring and organelle or cellular levels.

Numerous studies have demonstrated that F-actin's mechanical properties depend

on the varied structural states that it samples, with preferences for particular states

mediated by interactions with a diverse set of actin-binding proteins, small peptides,

cations, and nucleotides. For example, while the peptide phalloidin, smooth and

skeletal muscle tropomyosin, and the unphosphorylated actin-binding fragment of

caldesmon, H32K, all increase the bending stiffness of F-actin [83, 62, 65], cofilin

markedly decreases both its bending [113] and torsional stiffness [141]. In addition

to proteins and peptides, cations, proteolysis, and chemical cross-linking of actin

protomers also mediate filament flexibility [83, 127, 128, 134] by altering the 3D

structure (reviewed in [73, 125]).

The atomic-level structure of the bare filament was recently re-examined in detail

by several independent research groups [76, 124, 60, 54] . The newer F-actin models
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consistently demonstrate alignment of the major domains of G-actin that enclose

the nucleotide binding cleft, while in the first F-actin model [77] the major domains

are twisted as in numerous G-actin crystal structures (reviewed in [125] ). Unique

to Galkin et al.'s work is evidence that actin protomers within the filament adopt

an ensemble of structural states. Five canonical structures, denoted modes 1-5, each

comprise a synchronized and contiguous blocks of about 17 actin protomers in F-actin.

Of G-actin's four subdomains, S1-S4 [87], S2 and its constituent DNase I binding

loop (D-loop) principally differentiate the five modes by adopting distinct structural

states in each mode. As noted by the authors, the structural polymorphisms of S2 are

interesting from a mechanical perspective in light of direct evidence demonstrating

that the structure of S2 in F-actin mediates filament flexibility [127]. To the best

our knowledge, this experimental observation has not been reconciled with the five

canonical modes.

The principal structural difference observed in G-actin that distinguish filament

modes 1-5 lies in subdomain S2 (residues 33-69) (Fig. 5-1a). In modes 1-3 the D-loop

(residues 38-52) adopts an ordered structure; a loop, helix, or a helix rotated 18'

away from the axis of the filament (5-1b). The Oda and Fujii model D-loops adopt

the extended state observed in mode 1, while the recent Holmes model D-loop is a

helix like in mode 2 and 3 . In contrast to the modern F-actin models and modes 1-3,

the D-loop is disordered in mode 4, while the entirety of S2 is disordered in mode 5

(Fig. 5-1c). Aside from S2, the rest of the actin protomer is structurally conserved,

with a root mean squared displacement between S1, S3 and S4 less than 2.26 A for

all protomer pairs (Tab. 5.1). Moreover, the helical symmetry, described by the axial

rise and rotation per monomer, differs by less than 0.01' and 0.1A between modes,

respectively, demonstrating that the quaternary structure of the five F-actin modes

is also conserved.

Structure-based modeling provides a useful tool to test the hypothesis that the

conformational state of the S2 sub-domain of G-actin mediates mechanical flexibility

of the filament, as well as to examine in detail the structural origin of the observed

changes therein. While previous coarse-grained and molecular dynamics simulations
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Figure 5-1: F-actin subdomain 2 and the DNase I binding loop is polymorphic. Sub-
domain 2 of F-actin is polymorphic. (a) A structure-based superposition of 5 G-actin
modes shows that S2 is polymorphic (colored segments) while Si, S3 and S4 are struc-
turally conserved (mean squared displacement, M.S.D. i 2.3A. Subdomains 1, 3, and
4 are colored gray, and S2 is colored purple, cyan, red, green, and yellow in modes
1-5, respectively. (b) Cartoon representations of the structure of S2 (residues 33-69),
including the DNase I binding loop (residues 38-52). (c) In modes 1-4 the DNase I
binding loop is a loop, helix, shifted helix, or disordered (dashed line); in mode 5 S2 is
disordered and thus absent from the reconstruction. Secondary structure assignments
are from the computer program DSSP [88] and rendering was done in PyMOL [40].

Mode
2
3
4
5

1
1.47
1.57
1.38
2.26

2

1.81
1.48
2.00

3

1.79
1.99

4

2.17

Table 5.1: Subdomain 1, 3, 4 are structurally conserved across the five F-actin modes.
Root mean square displacement between aligned optimal pairwise alignments of sub-
domains 1, 3, and 4, measured in A.
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confirm the experimental observation that F-actin flexibility does depend on the struc-

ture of the D-loop [19, 33, 133] this work focuses on the precise relationship between

geometry and mechanics. For example, while a local reduction in filament mass along

the backbone of the filament may locally lead to an increase in flexibility, it is un-

clear how this local change affects the overall mechanics of the filament on larger

length-scales. Toward this end we constructed structure-based computational models

of Galkin et al.'s five F-actin modes and subjected them to simple deformation or

free vibration to quantitatively investigate the geometric role of S2 on the mechanical

properties of F-actin.

5.2 Methods

Construction of molecular models

V. Galkin kindly provided the atomic G-actin models of F-actin modes 1-5 from

[60] as well as the helical symmetry operations required to construct filaments. The

symmetry operations expressed as an axial rise, z, and axial twist, 6, per monomer

(z, 6) follow: mode 1 (166.640, 27.53A); modes 2-4 (166.600, 27.60A); and mode 5

(166.670, 27.60A). We constructed left-handed 52-monomer filaments with computer

program CHARMM [25, 27] version c35bl.

Key modeling assumptions

A common approach for modeling disordered peptide segments that is applicable

here is to insert the peptide sequence, in this case the D-loop or S2 (Fig. 5-1c),

into the filament model and use energy minimization or Monte Carlo simulation to

generate one or more candidate conformations. Each conformation of the disordered

segment then represents one of many possible structural states in the model. Here we

adopted a parsimonious approach by assuming that the disordered segments of the

filament, with their associated diffuse electron density, do not bear mechanical load

when deformed. To implement this assumption we simple exclude the disordered

segments from the structure when constructing the model. This approximation is
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equivalent to the assumption that mechanical stiffness of the filament is dominated by

enthalpic contributions that require specific atomic-level interactions in well-defined

conformational states, as opposed to entropic contributions locally induced by changes

in the set of accessible chain conformational states.

The Finite Element representation of our filament models assumes the filaments

behave as a homogeneous, isotropic, linear elastic solids with a constant Young's mod-

ulus, E, Poisson ratio, v , and mass density, p. Although simplistic, this continuum

representation of protein mechanics has been shown remarkably adept at predicting

global motion of proteins [16]. We assigned all of the models the same material prop-

erties to compare purely geometrical differences between the modes 1-5. Specifically,

we chose E = 450 MPa to obtain a mode 1 constrained bending stiffness of 7.3x 104

pN.nm reported for rhodamine-phalloidin labeled F-actin [62]. Choosing other mea-

surements for tuning gave similar estimates: with KE from [97] E = 511 MPa while

tuning with rT from [182] E = 355 MPa. We assigned a constant mass density

p = 1.3 g/cm 3 from calculating the volume of the finite element meshes and the mass

of the atomic models. The ratio c = (E/p)1/2 is the wave speed in a material, which

along with the characteristic length of the model determines its vibration frequencies

and persistence length, L,. With E and p so chosen we obtained a reasonable mode

1 persistence length estimate of 9.7pm.

Mesh generation

To mathematically define the shape of the models we created triangular surface

meshes from the atomic filaments model using GAMEr, a component of Finite Ele-

ment Toolkit (FETK) version 1.3 [183] with default parameters. GAMEr constructs

a surface by defining a level set of a Gaussian kernel density function, thus approxi-

mating the electron density of a protein. This approach differs from molecular surface

mesh generation, such as MSMS [145] which approximate the shape of the protein

exposed to a solvent environment. Both meshing strategies give volumes correspond-

ing to the correct mass density for proteins, but GAMEr meshes are better quality.

The surface meshes generated with GAMEr were minimally filtered using MeshLab
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version 1.3 [34] to remove non-manifold facets, intersecting facets, and to patch holes.

Tetrahedral volumetric meshes were subsequently generated by constrained Delaunay

tetrahedralization implemented in TetGen version 1.4.3 [154] with flag "-ql.333Fi"

and additional inserted vertices at the coordinates of all of the heavy atoms.

Mechanical characterization

We subjected the filament models to simple deformations shown in Fig. 5-3b: exten-

sion, bending, and torsion. Dirichlet boundary conditions are defined as follows. At

the atomic center of mass of G-actin number 1 and 52 we defined so-called master

nodes, one for each end. All of the nodes within a 1 A thick z-slice of the master

node were assigned slave node a status. The slaves nodes were rigidly linked to the

master node such that their distance and orientation was maintained when the mas-

ter nodes was displaced or rotated about an axis. With these constraints we applied

the following displacements to the master nodes to generate constrained extension,

bending, and torsion:

uz (0)= -1/2; uz (L) = 1/2; other degrees of freedom fixed (5.1)

Or (0) = -1/2; Or (L) = 1/2; other degrees of freedom fixed (5.2)

#2 (0) = -1/2; #z (L) = 1/2; other degrees of freedom fixed (5.3)

(5.4)

The reaction force, F2, moment, Mr , and torque, Tz, at the master nodes equal the

stiffness of the filament per unit length,

Fz KE hEB KET UZ

M = KBE KBB KBT Or (5.5)

Lz JTE KTB KTT ILz

Each of the three boundary conditions in Eqn. 5.4 generates a column in the matrix of

Eqn. 5.5. Finally, because of the finite length and helicity of the filaments the bending
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stiffness appears anisotropic. We therefore report an averaged bending stiffness by

varying the orientation bending plane over a range 0 < # < 7r (Fig. 5-3a).

Finite element calculations were performed using the commercially available com-

puter program ADINA version 8.7 (ADINA R&D, Inc., Watertown, MA). Static and

normal mode calculations were conducted using eight 2.5 GHz CPUS with a total of

32 or 64 GB and RAM, respectively. Unconstrained normal modes were computed

using the Subspace Iteration Method [147].

5.3 Results and discussion

Simulation of thermal fluctuations

The persistence length scale, Lp , provides a gross measure of the stiffness of a polymer

that is readily comparable with experimental measurements of thermal fluctuations.

Physically, L, is defined as the length-scale over which tangent-tangent correlations

decay along the contour length of the filament, 1 [100]. For bending-dominated fluc-

tuations of a worm-like chain in three dimensions, L, is related simply to the bend-

ing stiffness via LpkBT = KB where kB is Boltzmann's constant and T is tempera-

ture. In reality thermal fluctuations engage a complex mixture of bending, twisting,

and stretching deformations. To capture such complex motion we performed uncon-

strained normal mode analysis (see methods) to obtain the shape and frequency of

the free vibrations (Fig. 5-2a) The vibration frequency of the lowest non-degenerate

harmonic bending mode, wi, is related to the persistence length of an equivalent

homogeneous elastic rod by

L= (kn24 (5.6)LP kBT01 56

where m is the mass of the filament and #1i = 4.730 [112]. The persistence lengths

of modes 1-4 are similar (8.8 i 1.lpm) while of mode 5 is 23 ± 3% of the mean

L, of modes 1-4 (Fig. 5-2b). The apparent 23% reduction in the persistence length

corresponding to a disordered S2 agrees with work by Orlova et al., who identified a
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25% reduction in persistence length when S2 is disordered [127].
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Figure 5-2: F-actin's free vibration flexibility is sensitive to the structure of S2. (a)
Frequency distribution of the first eight normal modes. The first harmonic (normal
modes 1 and 2) and second harmonic (modes 3 and 4) are degenerate bending modes.
(b) The persistence length derived from the first normal mode frequency. Mode 5 is
on average 23 ± 13% as stiff as modes the average of modes 1-4.

Computation of F-actin flexibility

By applying the appropriate boundary conditions we uncover the contributions of the

stretching, KE, bending, KB , and twisting, KT, flexibility to the gross flexibility of

F-actin (Fig. 5-3a). The five F-actin modes demonstrate variable stiffness in each of

these three principal deformation modes (Fig. 5-3b). Mode 5 is the most flexible in

all deformations. Averaging the flexibilities of mode 1-4 to serve as a stiff reference

filament, mode 5 is then 53±4%, 29±4%, or 34i7% as stiff in extension, bending, and

torsion, respectively. The increased flexibilities of mode 5 falls well outside the error

range observed in the controlled experiments [97],[62],[182] (Fig. 5-3b). Moreover,

the differences are larger than observed between independent studies observed in the

literature. For example, Lui et al. [108] and Kojima et al. [97] measured a comparable

KE, with the former 79 ± 15% of the later. Similarly, Yasuda et al. [182] and Tsuda

et al. [172] both measured the torsional stiffness of F-actin and the ratio of Tsuda

to Ysuda was 94 ± 29%. The computed ranges are comparable to variation observed
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when F-actin is exposed to different ligands. Bathing F-actin with different ions can

cut the bending stiffness to 32% of the larger stiffness [127] and the torsional stiffness

to 33 ± 19% [182]. The fact that our purely structural model is sufficient to capture

such dramatic differences underscores the importance of geometry in determining the

stiffness of F-actin.
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Figure 5-3: (a) Schematic of the deformations applied to F-actin: extension parallel
to the long axis (z-direction); bending orthogonal to the radial axis (r-direction); and
torsion parallel to the long axis (z-direction). In practice we vary bending axis over
the azimuthal angle 0 < # < 7r radians to obtain an average bending stiffness that
approximates the isotropic bending stiffness of a much longer filament. In bending
and torsion the ends are free to rotate but may not translate in r- or z-direction. (b)
Experimental and computed flexibilities. The three principal stiffnesses are exten-
sional, KE, flexural, KB, and torsional, KT. Experimental results reported are from
[97], [62], and [182], with error bars reflecting the experimentally reported standard
errors. The error bars on the computed bending stiffnesses are standard deviations
from the 20 azimuthally-distributed bending directions 0 < # < 7r.
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Coupling between deformation modes

Mode s W x0 pNnm KETX104 pN nm Kt x104 pN nm 2

1 6.19 0.54 0.99
2 6.23 0.64 1.18
3 6.27 1.12 2.02
4 5.38 1.33 0.61
5 3.23 0.29 0.50

Table 5.2: F-actin demonstrates significant and varied stretch-bend, stretch-twist and
twist-bend coupling. t Because the bending stiffness is anisotropic at 140 nm length
scale (Fig. 5-3 b), we apply extension or torsion to measure well-defined stretch-bend
or twist-bend coupling, respectively.

In addition to the principal rigidities so far characterized, the boundary conditions

applied in Fig. 5-3b also generates forces and moments in proportion to extension-

bending, KEB, extension-torsion, KET , and bending-torsion, KBT, mechanical coupling

coefficients (Tab. 5.2). As also shown by De La Cruz et al. [37], the coupling terms

can be as large respect as the principal stiffnesses. Here we see, for example, that rT

and 1 BT are both about 2 pN nm 2 in the mode 3 model, demonstrating that when

F-actin adopts the mode 3 state it tends to untwist when bent more so than in any

other mode. Moreover, the coupling terms vary significantly between models.

Geometric interpretation

Although our results so far were computed from continuum models of the filaments,

the geometry of the continuum model is defined by atomic resolution structures. We

therefore argue for an atomic interpretation of the mediation of F-actin mechanics by

S2. Figure 5-4 depicts what we hypothesize is the geometrical determinant of F-actin

flexibility, namely, the extent of ordered contacts between adjacent actin protomers

in F-actin. Note that the longitudinal contact surface, defined as interface between

protomers n and n + 2, decreases monotonically with mode number (Fig. 5-4a-b)

similar to the extensional and bending stiffnesses and persistence length (Fig. 5-3 b,

Fig. 5-2b). The correlation between KE, r1 B , or L, and the buried longitudinal surface

area, SES,, 2 , is large (0.91, 0.93 and 0.93, respectively) while the correlation with
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the torsional stiffness KT is less (0.79) (Tab. 5.3), indicating that the longitudinal

contact area is more predictive of the extensional and bending stiffnesses and the

persistence length than the torsional stiffness. This relationship is rather intuitive

given that the stress in both extension and bending is directed along the axis of the

filament, and therefore longitudinal contacts bear the brunt of the axial load and

consequently mediate the resistance of the filament to axial forces. In contrast to

the longitudinal contacts, the extent of the lateral contacts in F-actin (Fig.5-4c-d),

defined as interface between protomers n and n + 1, is not monotonic with mode

number, but rather mirrors the behavior of the torsional stiffnesses (Fig. 5-3b). The

correlation between KT and the lateral contact buried surface area, SESn+1 , is 0.88,

while the correlation between KE, KB, or Lp and SESn+1 is much lower, 0.60, 0.54,

and 0.58, respectively (Tab. 5.3). The dependence of torsional stiffness on lateral

contact interface follows since the lateral contact interface is positioned to support a

circumferential shear stress in torsion.

KE KB KT I ET KBE KBT ILp

SESn+2  0.91 0.93 0.79 0.66 0.91 0.68 0.93
SESn+1 0.60 0.54 0.88 -0.28 0.52 -0.26 0.58

Table 5.3: Linear dependence of mechanical measures on geometrical measures. The

Pearson correlation quantifies the linear dependence between geometrical properties,

the longitudinal, SESn+2 , and lateral, SESn+1 , buried surfaces areas A2 and mea-

sured mechanical properties, cj3 and Lp.

5.4 Concluding remarks

The key contribution of this work is toward developing high-order models of F-actin

bundles and networks. Based on the frequency of the five modes observed experimen-

tally [60] and the mechanical characteristics of the modes (this work), detailed models

are possible. Moreover, using or general framework one can incorporate the affects

of actin binding protein decoration on the mechanics of actin filaments, bundles, and

networks (Chap. 6).
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Figure 5-4: Actin S2 polymorphisms mediate the lateral and longitudinal interface.
(a) Longitudinal contacts between protomers n and n + 2. Actin subdomains are
color coded: S1 (blue), S2 (red), S3 (green), and S4 (yellow). Interprotomer contacts,
defined as residue pairs with heavy atoms at most 5 A, are rendered as Van der Waals
spheres. (b) Buried surface area of each subdomain in the longitudinal contact. (c)
Lateral contacts between protomers n and n + 1. (d) Buried surface area of each
subdomain in the lateral contact.
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Chapter 6

Mediation of F-actin stability by

actin binding proteins

Abstract

Filamentous actin (F-actin) binds with a host of proteins that regulates its mechan-

ics. Whereas some actin binding proteins (ABPs) increase F-actin's flexibility and

decrease its stability, others do the exact opposite. Structural studies of decorated

F-actin lead to the conjecture that the calponin-homology domains of alpha-actin

and fimbrin stabilize F-actin by stapling together adjacent actins within the same

protofilament. To test this hypothesis we used structure-based computer modeling

of bare and decorated F-actin to measure the flexibility and stress concentration in

the filaments when subjected to loads. We find that both ABPs increase the gross

stiffness while relaxing the strain at actin-actin interfaces. These results are consis-

tent with experimental observations and provide additional unique insight into the

mediation of F-actin mechanics and stability by ABPs.

6.1 Introduction

Globular (G-actin) and filamentous actin (F-actin) interact with over 160 actin bind-

ing proteins (ABPs) to form a complex system that serves a broad range of functions
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important for regulating the structure of the cytoskeleton [44]. Bundling and cross-

linking ABPs [179] organize F-actin into structures that are required for a variety

of cellular processes, including muscle contraction [142], cytokenesis [132], intracel-

lular transport [110], and cell migration [136]. A thorough understanding of such

cellular processes that includes quantitative mathematical modeling requires a de-

tailed understanding of the mechanical properties of the bare and decorated F-actin

[61, 72, 94, 36, 16].

The mechanical properties of both bare and decorated of F-actin are well stud-

ied. Innovative experimental techniques provide estimates of F-actin flexibilities in

simple deformations like extension, kE, [97, 108], torsion, rNT, [172, 182], or freely

fluctuating in a bending dominated motion, r
1 B, [172, 182, 83]. In addition, F-actin's

helical geometry engages coupled deformation modes such as twisting coupled with

bending [16, 19, 37] . Importantly, F-actin's mechanical properties are not fixed but

vary in response to seemingly subtle structural changes, particularly in the DNase I

binding loop (D-loop) in subdomain 2 (S2) [127, 33, 133] and the various actin ligands

which can modulate the flexibility of F-actin over several fold [172, 65, 146, 73]. In

fact, a variety of binding factors mediate the flexibility of F-actin (reviewed in [73]),

including divalent cations [127], peptides like phalloidin, and ABPs. While some

ABPs that decorate F-actin make the filament more flexibile, others make it stiffer.

For example, cofilin increases both the flexural [113] and torsional [141] flexibility by

shifting the D-loop and hydrophobic plug away from the C-terminus [146]. In con-

trast, unphosphorylated caldesemon fragment H32K as well as smooth and skeletal

muscle tropomyosin/troponin increase the bending rigidity 1.5-2 fold [172, 65] . How

any given ABP mediates the flexibility of F-actin remains an open question.

A second question closely related to F-actin flexibility concerns the stability of F-

actin when decorated with ABPs. Like their effects on flexibility, ABPs demonstrate

opposing effects on filament stability. For example cofilin promotes disassembly [103]

while alpha-actinin [29, 104], fimbrin [104, 32], and coronin [56] inhibit disassembly.

Based on electron microscopy data Galkin et al. [57] propose that fimbrin's actin-

binding domain 2 (ABD2) stabilizes F-actin by stapling adjacent protomers within
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the same protofilament, thereby forming a bridge that stabilizes a "crack" between

actin subunits and prevents it from growing until the filament severs. The calponin-

homology domain of alpha-actinin CH3 [59] and coronin-1A bind similarly [56], sug-

gesting that the bridging mechanism might be conserved. Determining whether or not

the bridging-stabilization hypothesis is correct requires a structure-based mechanical

model, which to our knowledge has not been implemented for this purpose.

This paper presents a description of how calponin homology domains from the

ABPs fimbrin and alpha-actinin decorate F-actin to mediate it flexibility and sta-

bility. Using structure-based computer modeling we first show that ABP decoration

decreases the flexibility of the F-actin in extension, bending, and torsion. We next

demonstrate the validity of the bridging-stability hypothesis using the suggestion

from [119] that proposes regions in a protein with elevated strain energy are the most

susceptible to unfolding and fracture. We show that the strain energy at protomer-

protomer interfaces within F-actin are stabilized by ABP decoration.

6.2 Methods

Additional details are provided in Chapter 5.

Molecular models

We constructed four molecular models: F-actin decorated with fimbrin/L-plastin

actin binding domain ABD2, which comprises calponin-homology domains CHI and

CH2 [59]; F-actin decorated with alpha-actin CHI [57]; and the two undecorated

models derived from the aforementioned structures by deleting the ABPs. We con-

structed the models with 52 G-actin subunits by applying helical symmetry operations

51 times to a seed subunit. The rise and twist operations are 166.5'/27.3A (fim-

brin) and 167.20/26.6A (alpha-actinin). The final lengths of the filaments are both

~140 nm. We attempted this protocol with a model of coronin-decorated F-actin [56]

but hand to abandon it because the strands in undecorated model are disconnected.
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Finite element analysis

The distribution of strain energy density (SED) throughout the filament provides a

3D map of the parts of the filament that are bearing load. The SED, W(x), is scalar

function of position, x, and is defined as dW = odE, where u(x) is the stress tensor

and E(x) is the strain tensor [55]. From the displacement field we computed the

strain, stress, and SED, which we then normalized to the work done on the filament.

Normalization permits a direct comparison of the spatial distribution of the strain

energy density within the filament with and without ABP decoration. Physically, F-

actin regions with reduced SED when decorated are stabilized by ABP while regions

with increased SED are destabilized [119].

6.3 Results and discussion

ABPs decoration decreases F-actin's flexibility

Applying a unit extension, u., rotation, 0 ,, or twist, #, to the ends of the four fila-

ment models (Fig. 6-1 a) generates reaction forces and moments proportional to the

extensional, KE, bending, r, B , and torsional, 1
,T, flexibilities. All three principal stiff-

nesses increase with ABP decoration (Fig. 6-1 b). The ABPs increase the extensional

and torsional stiffness by about the same amount (28% alpha-actin vs 26% fimbrin).

In contrast, fimbrin increases the bending stiffness nearly twice as much as alpha-

actinin (63% fimbrin vs 34% alpha-actinin). The ABPs make the largest impact on

torsion, where alpha-actin and fimbrin increase IT 96% and 81%, respectively.

In addition to the principal stiffnesses, application of the boundary conditions

shown in Figure 6-1a provide the coupling between deformation modes (Tab. 6.1).

The undecorated filaments coupling coefficients are significant in comparison to the

principal stiffnesses. Like the principal stiffnesses, decoration increases the coupling

stiffnesses. Fimbrin increases the extension-torsion, KET, and bending-torsion, KBT,

stiffnesses 264% and 205%, respectively, while alpha-actin increases the same coupling

coefficients 176% and 148%, respectively. Both ABPs increase extension-bending

98



a
Tension

A

Bending

Torsion

-z ~140

b

u z
0T4

-400

0r
z

CL

nm,

Figure 6-1: ABPs decrease the flexibility of F-actin. (a) Schematic of the deformations
applied to the F-actin models: extension parallel to the long axis, u,; bending parallel
to the radial axis, 0,; and torsion parallel to the long axis, #,. (b) Comparison of
decorated and undecorated filament stiffnesses with experimental reference values rE

[97], rIB [62], KT[182]. The solid bars correspond to the decorated filament while the
hashed bars correspond to bare F-actin in the decorated conformation. The error
bars on the computed bending flexibilities are standard deviations of the distribution
of 'B derived by varying the bending axis r over polar angle 0 < # < r radians.
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coupling, rIEB, only modestly, about 25%. To our knowledge, these data are the first

complete characterization of the mechanical properties of F-actin and its sensitivity

to calponin-homology domain decoration.

Model BEt x 104 pN nm rET x104 pN nm ,iTiX 104 pN nm 2

alpha-actinin 8.90 1.79 3.33
A alpha-actinin 7.01 0.65 1.34

fimbrin 7.66 1.30 2.18
Afimbrin 6.16 0.36 0.71

Table 6.1: Coupling between deformation modes in F-actin with and without (A)
ABP decoration.

ABPs redistribute F-actin strain energy density

ABP decoration differentially affects SED in and around the actin subdomains, Si-

S4. We computed the mean SED difference between the decorated and undecorated

filaments by averaging W per a-carbon over protomers in the 52-protomer filament.

While the SED of subdomain Si increases with ABP decoration (alpha-actinin or fim-

brin), the SED of subdomain S2-S4 decreases (Fig. 6-2). The observation is invariant

to the both ABP decorating F-actin and mode of deformation. The correspondence

between SED difference and the four actin subdomain indicates that the strain energy

redistribution is function of the 3D structure of F-actin and the mechanism of CH

domain binding.

The SED change due to ABP decoration relaxes the strain energy at the actin-actin

interfaces while increasing the strain energy at the actin-ABP interfaces (Fig. 6-3).

Here we define the interfaces between subunits as the heavy atoms within 5 A of

another subunit. Atoms in regions within the top 95% or bottom 5% of the SED

range cluster at the actin-ABP or actin-actin interfaces, respectively. Because this

observation is independent of the ABP and mode of deformation, we hypothesize

the observed strain redistribution is a general mechanism of CH domain decoration,

which is consistent with the conserved stapling mechanism of alpha-actinin, fimbrin,

and coronin, which all stabilize F-actin [32, 104, 29, 56].
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Figure 6-2: Actin binding proteins destabilizes actin subdomain 1 while stabilizing
subdomains 2, 3, and 4. Each plot shows the change in strain energy density per unit
work due to ABP decoration as a function of actin sequence position. Destabilized
regions are shown in red while stabilized regions are shown in blue. The location of
actin subdomains Si, S2, S3, and S4 [87], is shown for reference.
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Figure 6-3: Actin binding proteins stabilize the actin-actin interface at the expense
of the actin-ABP interface. Irrespective of the ABP (alpha-actinin: left column or
fimbrin: right column) and deformation mode (extension: top row; bending middle
row; or torsion: bottom row), the SED per unit work is less at the actin-actin interface
(blue heatmap) than at the actin-ABP interface (yellow heatmap). In each panel, four
neighboring actins are shown relative to a central G-actin in surface representation
The ABP (alpha-actinin or fimbrin) is colored gray and rendered as a cartoon.
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A simple model explains how ABPs increase F-actin's stiffness and stability (Fig.6-

4). The space between adjacent actins within the same strand function like cracks in

a beam. When an ABP binds to F-actin it staples together the adjacent protomers,

thereby bridging the crack. Once bridged the tip of the crack supports less load

when deformed, which makes the crack less likely to propagate and cause fracture.

Moreover, because a crack makes the filament locally thinner and consequently more

compliant, bridging the crack with an ABP necessarily increases the stiffness of the

filaments in all deformation modes. This model is consistent with observations re-

ported here and with experimental evidence showing both alpha-actinin [29, 104] and

fimbrin [104, 32] stabilize F-actin.

by

C

Figure 6-4: Crack-bridging by actin binding proteins. The ABP staples adjacent actin
within the same strand. The staple relaxes stress at the crack, thereby increasing the
stiffness of the filament and increasing its stability.
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6.4 Concluding remarks

We characterized the affect of ABP decoration on the flexibility and stability of F-

actin under simple deformations. We find that the ABPs alpha-actinin and fimbrin

increase the stiffness of F-actin by redistributing the load-bearing responsibilities from

the actin-actin interface to the actin-ABP interface. Further insight into F-actin

mechanics may be gained by similar computational experiments as those presented

here, but using other decorated [56, 107, 114] or bare [58, 174, 13] filament models. We

anticipate that a systems-level understanding of how the over 160 ABPs mediate the

flexibility and stability of F-actin may enable precise descriptive models of cytoskeletal

mechanics.
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Chapter 7

Perspective

In this work we investigated topics loosely grouped under the umbrella of molecu-

lar biomechanics of proteins and protein assemblies: the source of cadherin binding

specificity (Chap. 2); unsupervised methods for detecting allostery from protein con-

formational dynamics (Chap. 3); the consequence of allostery on the structure of

transverse F-actin bundles (Chap. 4); and the role of geometry in controlling the

mechanical behavior of F-actin (Chap. 5 and 6). By way of summary we recapitulate

our key findings.

Key findings

" The cadherin-cadherin dimer interface is enriched with putative specificity de-

termining residues.

" There still exists an unmet need for unsupervised methods and benchmarks for

detecting allostery in proteins from conformation dynamics.

* Cooperative binding of actin binding proteins to bundled F-actin promotes

cross-linking over other modes of F-actin decoration.

* The structure of actin subdomain 2 mediates F-actin flexibility.

" Fimbrin and alpha-actinin relax strain energy at protomer-protomer interfaces

in F-actin.
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Outlook

We next mention a few points discussed casually with colleagues over the past few

years. Through these discussion it is clear that many of us share a goal of solving

problems in biology but there are many different views on the strategies for making

progress. Below I outline a few thoughts on harnessing the vast amounts of structural

data for solving problems in biology.

Biomechanics at the nanometer length scale

Biomechanics spans many length scales, from the molecular mechanics of protein

to the movements joints and limbs. A key area going forward is an understanding

of the biomechanics and function of large molecular complexes [93]. Before we can

really understand large complexes, we must decide the level of abstraction that is

permissible. In other words, we must decide how detailed a model needs to be for it

to be useful. For example, physics permits the construction of very high resolution

cryo-electron microscopy maps, although technology currently lags behind [63]. Is

atomic resolution necessary for modeling large molecular complexes, or does such

detail make the model more complicated that necessary? Hopefully time will tell.

Choosing the appropriate computational tool

A second need in computational biology is a means of disseminating computational

strategies that helps people choose the most appropriate method of those that are

available. It is now seems very easy to run many different computer analyses on

the same data set (see Chap. 3). As the number of tools increases, an individual's

capacity to take in new information does not, mostly due time constraints. Biologist

are then left with a dilemma of choosing which approach to take. In my work the

one chosen is often the easiest to use, but in some cases its simply the most popular

choice (i.e. best brand). Going forward, computational and wetlab biologists need

a principled way to choose between different strategies for any given problem worth

solving. To my knowledge such guidelines do not exist.
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Integration

A still unmet challenge in computational biology is how to quantitatively integrate

diverse forms of data to construct models. An example of a system where one needs to

integrate diverse forms of data is at the interface of molecular evolution and molecular

dynamics. A new view of protein evolution claims that highly dynamic proteins are

promiscuous, and the inherent promiscuity favors evolvability [171]. Right now there

seems to be no principled framework for weaving together quantitative data sets like

those presented in Chapters 2 and 3. Quantitative integration of diverse datasets may

provide ample opportunity for exercising creativity for solving problems in biology.
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Appendix A

Supporting materials for Chapter 2

Theoretical background

Our analysis of homologous cadherin protein sequences relies heavily on tools from

information theory, originally developed by Shannon while employed at Bell Labs

[149], and reviewed extensively in [85]. We use a small but useful fraction of Shannon's

treatise, namely, entropy and mutual information.

The entropy of a discrete random variable X with n outcomes {Xi, ... , Xn is

n

H(X) =- p(Xi) log p(Xi) (A.1)
i=1

where p(xi) is the probability mass function of the outcome xi. A random variable

with only one outcome has an entropy equal to zero. In contrast, a random variable

with n outcomes that all occur with equal probability pi = 1/n has a maximal entropy,

H = log(n). It is sometimes convenient to scale the entropy of random variable to

unity, which requires only dividing Eqn. A. 1 by log(n), or alternatively using n as the

base of the logarithm. Note that a outcome with zero probability is permissible since

lim plogp = 0
p 0+

Also note that although the limiting value is zero, small values for p still contribute

to entropy because the function f(p) = p log p grows quickly.
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The co-variation of two random variables X and Y can be quantified by a metric

called the mutual information

n m

I(XY) = p(zyj) log (A.2)
i=1 j=1 P(Xj)p(yj)

where p(xi, yj) is the joint distribution of X and Y. We typically require that

p(Y) = p(xi,Y)
i=1

although that assumption is unnecessary [48]. Mutual information is minimized when

the random variables X and Y are independent. When independent, p(Xi, y3 ) =

p(xi)p(yj) and the logarithm in Eqn. A.2 is always zero. Mutual information may

also be written in terms of joint, marginal, and conditional entropies

I(X, Y) = H(X) + H(Y) - H(XIY)

= H(X)- H(X|Y)

= H(Y) - H(YIX)

It then follows that MI(X, Y) < min{H(X), H(Y)} [111].

Often one does not know either the marginal or joint distribution that is of interest.

Instead, one has a table of co-occurrences Nij from which to infer the distribution. The

frequentist approach to estimating probability distributions is to use the frequency

of a realization Ni/ Ei Ni as an approximation for p(xi). Approximating probability

with frequency converges as the amount of data increases, but the amount of data

necessary for convergence is not typically known a priori. In general, a Bayesian

approach to estimating probability distribution is more principled. In this case one

can apply Bayes' rule to estimate the joint probability from the data

[p(xi, yj)Jnxy] =P [nxy lp(xi, yj)] P [p(xi, yj)]
P(nxzy)
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Estimating the posterior distribution can be computationally intensive, so for this

work we compiled a data set that is much large than the empirically determined

bound of 125 sequences [111], and use the simple frequentist approach.

Paralog specificity analysis

Hsap cdhl MImus cdh11 p-value

DIt G1 3x 10-7
14 W4* 2x 10-8
V22 G22t 8x 10-8
I24t L24t 1x10- 16

G40 G41 1x10-11

G42 G43 4x10-1 4

A43 A44 1x10-11

V50 147 3x10-8
T57 S54 4 x 10-6
E89f E87t 1x10-7

Table A. 1: Predicted specificity-determining residues corresponding to clade I.
Residues with established functions include those that participate in Type I cad-
herin strand-swapping, t, Type II cadherin strand-swapping, t, or residues that that
coordinate Ca2+, *.

Hsap cdhl Mmus cdh11 p-value

14 W4t 4x 10-8
17 F7* 2x 10 1

N12 E12* 4x 10- 18

V22 G221 1 x10-7

124t L24t 7x 10-13
M92f S90t 2x10-6
194 F92t 6x 10- 1 3

Table A.2: Predicted specificity-determining residues corresponding to clade II.
Residues with established functions include those that participate in Type I cad-
herin strand-swapping, t, Type II cadherin strand-swapping, t, or residues that that
coordinate Ca2+, *.
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DIt G1t 2 x 10-6
14 W4t 1 x 10-9
P5t N5 2x10-6
17 F7% 6 x10 0

N12 E12* 3x10- 1 6

L21 V21 2x10-7
V22 G22t 4x10-n
I24t L24t 7 x 10-20

M92t S90t 1 x 10-8
194 F92t 7x10 1 4

Table A.3: Predicted specificity-determining residues corresponding to clade III.
Residues with established functions include those that participate in Type I cad-
herin strand-swapping, t, Type II cadherin strand-swapping, t, or residues that that
coordinate Ca2+, *.

Hsap cdhl Mmus cdh1 l p-value

Dit GIT 5 x10-7

14 W4t 2x10-8
17 F7t 3x10- 8

N12 E12* 4x10-1 5

L21 V21 1 x10-6

V22 G22t 2x10-9
I24t L24t 6x10- 17

L60 157 5x10-6
M92t S90t 3x10- 10

194 F92t 6x10 1 3

Table A.4: Predicted specificity-determining residues corresponding to clade IV.
Residues with established functions include those that participate in Type I cad-
herin strand-swapping, t, Type II cadherin strand-swapping, t, or residues that that
coordinate Ca 2+,
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Appendix B

Supporting materials for Chapter 3

Relation between the Pearson and generalized correlation coefficient

The generalized correlation is a generalization of the Pearson correlation. In the case

of a block covariance matrix

rPId

rPId

Id

where Id is a d-dimension identity matrix, the linearized mutual information, LMI,

relates to the Pearson correlation coefficient, rp, via

LMI = 2In (1 - r2)

Thus, rp is equivalent to rLMI when the fluctuations are colinear.

Benchmarks for algorithms intended to detect allostery
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Figure B-1: Test of internal clustering validation metrics on Leukemia data. The
consensus number of clusters is three, as demonstrated by a "knee" at the third data
point. The data and analysis protocol is from [66].

a bw=1.0

Wb = 0.1

1 community, y = 0.3 4 communities, y = 1.5

Figure B-2: .
Validation of community detection computer program on a test case from [70]. The
network is a dense graph with four communities. The edge weight between nodes
within the same community is wi = 1 while the edge weight between nodes from
different communities is wb = 0.1. When the resolution parameter is -Y = 0.3 the
algorithm detects one large community. The algorithm detects four communities
when y = 1.5.
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Predicted allosteric networks in Hemoglobin

a

cr
C

(a

500

400

300

200

100

C

2 clusters complete link 3 clusters average link

Figure B-3: Pareto-optimal dynamics-based allosteric network in hemoglobin. The
first pareto optimal solution splits the a and # chains (c). The next optimal solution
in the hierarchy, three clusters, splits the interface between the a and # chains into
a separate cluster

b c

E
C

resolution, -y

Figure B-4: Correlated dynamical networks in Hemoglobin inferred by community
detection. The lowest resolution mapping divides the a1 #2 half. The lowest resolution
mapping divides the a 102 half from the a2#1 half (b). At a higher resolution each
chain is its own community.
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Predicted allosteric networks in #-trypsin

Cr
a)

0

E

V1 99
G21 1

2 clusters WPGMA 3 clusters WPGMA 4 clusters WPGMA

Figure B-5: Pareto-optimal dynamics-based allosteric network in #-trypsin. The
different between the 2 and 3 clusters solutions is a small connectivity penalty due
V199 and G211 forming a distinct cluster.
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Figure B-6: Correlated dynamical networks in #-trypsin+inhibitor inferred by com-
munity detection. At the lowest resolution #-trypsin divides into two communities,
one which includes the inhibitor (B). At higher resolutions the structure splits with
the inhibitor forming its own community (C), followed by further partitioning of
#-trypsin at the highest resolution tested (D).
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Appendix C

Supporting materials for Chapter 5

Molecular mechanics benchmarks

We compared our continuum model against a molecular mechanics (MM) approach

via Normal Mode Analysis (NMA). NMA is a natural choice for comparing mod-

els because the approach is designed to capture the fundamental global motion of a

structured from Newton's Second law. We computed equilibrium thermal fluctua-

tions using FEM and MM and compared the results. Note that our approach is not

equivalent to validating our model against experiments, and we do not claim the MM

approach is representative of experimental thermal fluctuations observed via spec-

troscopy or X-ray crystallography. Our validation only tests whether or not the FEM

framework captures the same physics as the broadly accepted MM approach.

An open question asks how well does the FEM match other methods, and when

does the FEM approach fail to capture atomistic detail. Bathe has shown FEM

performs as well or better ENM, RTB, and all atom models for predicting the fluctu-

ation of a-carbon via normal mode analysis (NMA) of globular proteins [16]. Here we

extend Bathe's analysis to multi-domain proteins. We do limit the scope of our anal-

ysis to systems where our molecules can be simulated by both FEM and a atomistic

methods that are more computationally expensive. To that end we compare the FEM

approach to RTB for the case of a F-actin dimer. We choose this system because it is

computationally feasible to solve it with RTB and its close relation to the models we
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build in Chap. 5. Moreover, the dimer includes an interface, which we hypothesized

contains important atomistic details that a continuum model could fail to capture.

We follow a common approach for evaluating new molecular models by comparing

the residue thermal fluctuation predicted from NMA [164, 12, 16]. We start with the

thermal fluctuation tensor of an atom number i, Cj = (xix[), where the averages

are computed in the standard way from normal mode-based fluctuation vectors, Xik,

detailed in [26].

k=3N Tp
XikXik(xixTI} = kBT Xi ik2

k=7 Wk

From the fluctuation tensor we compute the root means square fluctuation (RMSF)

of the atom from the trace, V/tr (C). Physically, the RMSF is a scalar representation

of the range of motion on an atom in the molecule.

'g1

Figure C-1: The anisotropy of fluctuating atoms described by an analogy to an
ellipsoid (inspired by [181]). The three radii of the ellipsoid represent the magnitude
of the principal fluctuations, ol > o2 > o-3 . The principal fluctuations determine
the anisotropy scalar, A1 . The three axes of the ellipsoid correspond to the principal
directions of the fluctuations. The angle between principal directions of two atoms
defines the fluctuation misdirection.

In addition to magnitude of the fluctuations, we are also interested in any potential

bias in the directionality, which we refer to as the anisotropy. To quantify anisotropy
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we first remove the dependence of our arbitrarily chosen coordinates system on C by

diagonalizing it to obtain three principal fluctuations {o , o o2}. From the principal

fluctuations we compute a measure of anisotropy of the fluctuations from [80].

2

A1 U1 -1
1/2 (o- +oU2)

The quantity A1 equals 0 for an atom that fluctuates in the first principal direction

as much as the other two on average. Larger values of A1 correspond to atoms that

fluctuate predominantly in the first principal direction Finally, to characterize the

ability of FEM to capture the direction of the anisotropy fluctuations predicted by

the RTB approach we defined the anisotropy misdirection as the angle between the

RTB and FEM principal fluctuation directions, 01.

We generated the FEM model of the F-actin dimer from the Oda structural model

[124] (PDB ID 2ZWH). The molecular surface was computed using PyMOL's surf

routine [40] and the tetrahedral mesh was derived from the computer program TetGen

[154]. We solved for 200 normal modes using the commercial FEM software ADINA.

The same atomic coordinates were then used to compute the RTB solution. First we

minimized the crystal structure using successive rounds of minimization with decreas-

ing harmonic restraints on the heavy atoms until the unrestrained energy gradient was

less that 1 x 10-4 kcal/mol/A. Next we computed 200 non-degenerate normal modes

using the molecular mechanics program CHARMM [25, 27] for comparison with the

FEM solution.

C.O.1 Validation of finite element framework

Figure C-2 shows that the FEM approach can match RTB in terms of thermal fluc-

tuations. The RMSF of the a-carbons from the two approaches overlap in general

(Fig. C-2A). Moreover, the RMSF correlates both within the protomers and at the in-

terface between protomers (Fig. C-2B). The deviation between FEM and RTB among

a-carbons with greatest RMSF shows up as spread in the scatter above 3 A.
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The anisotropy of the thermal fluctuations A1 is also captured by the FEM proce-

dure (Fig.C-2C-D). The FEM approach underestimates the most anisotropic fluctua-

tions (Fig.C-2C), but the FEM and RTB approaches still correlate positively (Fig.C-

2D), although not as much as the RMSF. Similarly the FEM approach capture the

RTB-predicted anisotropy direction (Fig.C-2E-F).

-- RTB S1 - FEM S1 - RTB S2 - FEM S2 . S1 S2 .1

1 .5 --. -. ...- ---. .. .. -. ..-. ..-- -1 - - - - - - .5 -

0.0 ____ _ 0%. 0.5 1.0 1.5 2.0

44 RTB RMSF, J

0.5 031

. !0
0 .3 - . - - -. - - - .

.0 1 2 3000 10.120304 0 5 .0

RTB nis. g,

0 .63 0 -- --- ... ---. .-----.. -----.. . -.-. . ----. . ------ ..- - ..- -- ..-- - ..-.- ..-.- .-- ...- --- ...- - ------ -0 .0 4

residue index aniso. an., 61

Figure C-2: Correspondence between computationally predicted thermal fluctuations
from the continuum (FEM) or atomistic (RTB) models of the Oda et al. F-actin dimer
model. The root mean squared fluctuations as a function of sequence from the FEM
model (dots) predict the RTB results (solid line) (a). The subdomain numbering is
shown schematically below the abscissa. The Pearson correlation coefficient is equal to
0.96, 0.95, and 0.91 for the subset F-actin dimer residues belonging to subunit 1 (blue),
subunit 2 (yellow), or at the interface (red), respectively (b). The A 1 anisotropy of
the fluctuations also positively correlate (c-d) with a Pearson correlation coefficients
equal to 0.78, 0.76, and 0.64 for subunit 1, subunit 2, and the interface, respectively.
The fluctuations predicted by FEM or RTB are typically parallel (e), with 90% of
the Ca principal directions at least 340 from parallel (f)

Although we found good agreement between the FEM and R{TB models when

tested on an F-actin dimer, we had no data to show the agreement would be as

good or better with larger molecules studied in this project. We therefore tested

the hypothesis that the correspondence between FEM and RTB improves with the
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size of the molecule. To this end we created models of the Oda filament comprising

1, 3, or 12 actin subunits. We chose the 200 modes for computing the monomer

fluctuations and computed the contribution of the 200th mode to the fluctuations

to be about 0.01 A. Larger molecules required fewer modes for the fluctuation series

to converge to the same tolerance. The agreement of the RTB and FEM anisotropy

metrics improve with the size of the molecule (Fig.C-3).

p =1 0.68 ' 1.0
slope =0 .74± 0.00 T

e 0.8

V

1.0
12-mer p ='0.89

0.8- slope = 1 .10 ± 0.00C
0.6- -
0.4
0.2

0.%.0 0.2 0.4 0.6 0.8 1.
RTB aniso. mag., A1

0,
Ca
0.

.0
C

0

'4-

0 30 40 50 60 70 80
aniso. aln., 61

Figure C-3: The continuum approximation to the molecular mechanics model con-
verges with increasing size of the simulated macromolecule. The correlation between
FEM and RTB anisotropy magnitudes A1 increases with molecular size (a). Shown
are scatter plots of a-carbon fluctuation anisotropy A1 computed by RTB (abscissa) or
FEM (ordinated). The color of the dots reflect the density of data points at the coordi-
nate. The correlation from monomer to trimer to dodecamer increase from 0.68 to 0.77
to 0.89. The scatter is fit with a linear function AfEM(A TB) = slope x A TB+N(0, -)
where we assume the slope is random variable from a normal distribution and N is
unbiased Gaussian noise with o- ~'(a = # = 1). The direction of the FEM principal
fluctuations tend to align with the RTB principal fluctuation direction with increas-
ing molecular size too (b). The fraction of a-carbons that are severely misaligned
decreases from monomer to dimer to dodecamer.

We hypothesized that FEM works as well as RTB at predicting anisotropy because

anisotropy is predominantly a simple function of geometry. To test this we asked

whether the location of the atoms in the molecule is predictive of the magnitude
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of the fluctuation anisotropy. By plotting fluctuation anisotropy A1 versus distance

from the center of geometry we identified a piecewise linear function with a positive

slope (Fig. C-4), indicating the location of residues in the protein is predictive of

anisotropy.

RTB fluctuations

0.01 I I
0.0 0.5 1.0 1.5

Ca distance from center of

b FEM fluctuations

2.0 0.0 0.5 1.0 1.5 2.0
geometry / radius of gyration

Figure C-4: The anisotropy magnitude of a-carbon fluctuations is weakly dependent
on the distance from the center of geometry of the molecule. The scatter plots show
that RTB (a) or FEM (b) fluctuation anisotropy increases with normalized (arbitrar-
ily) distance from center of geometry. The color of the dots represent the density of
data points at the coordinate. The data are from NMA of an Oda model monomer.

Geometry of F-actin models

Structure PDB ID Shift A Twist (degrees)
Mode 1 N/A 27.53 166.64
Mode 2 N/A 27.60 166.6
Mode 3 N/A 27.60 166.6
Mode 4 N/A 27.60 166.6
Mode 5 N/A 27.60 166.67
a-actinin 3LUE 26.6 167.2
Fimbrin 3BYH 27.30 166.5
Oda 2ZWH 27.59 166.4
Fujii 3MFP 27.6 166.7

Table C.1: Geometric properties of F-actin models.
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