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Abstract 

 

Inorganic graphene-like materials such as molybdenum disulfide (MoS2), tungsten 

sulfide (WS2), and boron nitride (BN) are known to have electronic properties. When 

exfoliated into layers and casted onto carbon nanofilms, they can become potentially 

cheap and efficient electronic materials for magnetic sensing and energy storage devices. 

The goal of this experiment is to use a general liquid-phase method to exfoliate and 

optimize a number of parameters that can yield the highest concentration of layered 

quantities of MoS2, WS2, and BN. The key parameters optmized were material 

concentration, surfactant concentration, sonication method and duration, and centrifuge 

speed. Therefore, different concentrations of the three materials were mixed with 

different concentrations of the surfactant, sodium cholate hydrate (C24H39NaO5 · xH2O), 

to make suspensions. These suspensions were then sonicated and centrifuged at different 

durations and speeds, respectively. Absorption was measured for all of the suspensions 

using ultraviolet-visible spectrometer to determine what parameters yielded the highest 

concentration of the three materials since a high UV absorption generally equated to a 

high yield of the layered materials. The final optimal parameters that yielded the highest 

concentration of each material were: 3 mg/ml material concentration, 3 mg/ml surfactant 

concentration, 30-minute continuous tip sonication method, and 1-hr 500 RPM 

centrifugation.  Droplets of these optimal suspensions were then casted onto carbon 

nanofilms, and transmission electron microscopy (TEM) was performed on the films to 

confirm the layered, flaked characteristics and the hexagonal structures of MoS2, WS2, 

and BN.  
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1.  Introduction 
 

1.1  Graphene and its fabrication challenges 
 

Graphene, with one-atom-thick planar sheets of sp
2
-bonded carbon in hexagonal 

structure, has a densely packed two-dimensional (2D) honeycomb lattice and dark shiny 

appearance, as shown in Figure 1.
[1]

 Because of its unique layer-form structure, it has 

been known to have attractive electronic properties such as high electrical conductivity 

with little resistance or heat generation. The layered form and array structure of 

graphenes make them ideal materials for high speed transistors or integrated circuits that 

consume less energy than conventional silicon electronics.
[1] 

 

Successful dispersion of graphene into layers enables the use of low-cost 

suspension processing techniques to fabricate various potentially useful graphene-like 

materials, which have superior physical and material properties. Due to their symmetry, 

low weight to surface ratio, and high porosity, nanofilms coated with thin layers of 

inorganic graphene-like materials have potential applications from ultralight anti-

corrosive materials to electron field emitters.
[2]

 In addition, the semiconducting properties 

make the inorganic nanofilms potential materials for further miniaturization of 

optoelectronic materials. Finally, the hexagonal structure of graphene-like materials make 

them possible applications in non-linear optics and solar technology because these 

conducting nanofilms can detect self-inductance and resistance quickly and efficiently. 

For example, applications range from the sharp tips in scanning spectroscopy probes to 

other magnetic, electronic detecting devices. 
[3]
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Figure 1. Honey-comb lattice structure and dark shiny appearance of graphene.
[1]

 

Yet the challenge lies in the production of thin graphene layers because the 

process of separating graphene into separate, defined layers can be difficult.
[3]

 

Traditionally graphene sheets are made by micromechanical cleavage, epitaxial growth, 

and bottom-up organic synthesis.
[3]

 These processes all follow the similar procedure of 

peeling layers graphite crystals. In all of these synthesis routes, keeping the graphene 

sheets individually separated is the most important and challenging part. Bulk graphene 

sheets, if left unprotected, will spontaneously agglomerate and even restack to form 

graphite. Also, the yield is very low, which makes the production process an expensive 

one.  

1.2  Graphene sheets through liquid exfoliation 
 

 It was not until 2004 that physicists at the University of Manchester and the 

Institute for Microelectronics Technology were able to first isolate individual graphene 

planes using adhesive tape to obtain flakes that exhibited unique electronic properties.
[4]

 

The discovery has led to a great interest in the science community to study large-scale 

production graphene sheets.  
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  Now, the most common method discovered to produce layers of graphene is 

through chemical, or liquid exfoliation, of graphene oxide whereby graphite oxide is 

dispersed with surfactants in water suspensions to break up graphite oxide into particle 

aggregates to produce layers of 2D crystals of graphene oxide.
[4]

 Subsequent de-

oxygenation through chemical reduction can transform the insulating graphene oxide to 

conductive graphene. Many researchers focus on graphite oxide instead of graphite 

because the former is hydrophilic and has a larger interlayer distance. Thus, it was easier 

to exfoliate graphite oxide than graphite.
[4]

 However, this technique has one significant 

disadvantage.  The oxidation process introduces structural defects in the graphene sheets 

as evidenced by Raman spectroscopy.
[4]

 

 A breakthrough method has been developed, in which graphite is directly 

exfoliated by dispersing it into certain surfactant suspensions.
[6]

 In general, exfoliation 

can only occur when the net energetic cost is very small. So the underlying phenomenon 

depends on the fact that certain surfactant suspensions have surface energy that matches 

so well with graphene that exfoliation occurs naturally when dispersed together. Such 

method is non-oxidative, so no defects are introduced on the final graphene sheets. TEM 

analysis shows that the vacuum filtered flakes of the dispersed suspensions on nanofilms 

are in monolayers and have few defects.
[5]

 

1.3  Inorganic graphene-like materials (MoS2, WS2, BN) 
 

While graphene is the most studied monolayer material, layered inorganic 

graphene-like materials, such as molybdenum disulfide (MoS2), tungsten sulfide (WS2), 
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and boron nitride (BN) have also shown be proven to display similar material properties 

as graphene and can be used for electronic sensing and energy storage applications.  

1.3.1 Molybdenum disulfide (MoS2) and tungsten disulfide (WS2) 

MoS2 and WS2 are both black inorganic layered material with structure 

similar to that of graphene. They are related because both can be classified as 

transition metal dichalcogenides (TMDs) with the chemical formula of MX2. 

TMDs generally consist of hexagonal layers of metal atoms, M, sandwiched 

between two layers of chalcogen atoms, X.
 [1]

  While the bonding of the tri-layers 

is covalent, adjacent sheets are bonded via Van der Waals interactions to form a 

3D crystal. There are currently 40 different types of combination of TMDs with 

different chalcogen atoms. Depending on the co-ordination and oxidation state of 

the metal atoms, TMDs can be metallic, semi-metallic or semiconducting. MoS2 

and WS2 are semiconductors with superconductivity and charge wave effects that 

make them versatile for useful electronic materials. Figure 2 shows the stacked 

three-layer hexagonal structure of MoS2 with a layer of molybdenum (Mo) 

inserted in between every two layers of sulfur (S). WS2 has very similar structure, 

with tungsten(W) replacing Mo. 
[1]

 

 

 

 

 

 

Figure 2. Stacked three-layer hexagonal structure of MoS2. 
[1]
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1.3.2 Boron Nitride (BN) 

Boron nitride is a white-colored crystal that has the same structure as 

graphite except for the substitution of the carbon atoms by boron and nitrogen 

atoms. Like MoS2 and WS2, it also has a hexagonal structure displace in layers as 

shown below in Figure 3.  

 

 

 

 

 

 

 

 

 

Figure 3. Stacked three-layer hexagonal structure of BN.
[1]

  

 

 Because of excellent thermal and chemical stability, boron nitride ceramics 

are traditionally used as parts of high-temperature equipment. Unlike MoS2 and 

WS2, both of which are semiconductors, BN is an electrical insulator with a wide 

bandgap of ~5.5 eV. 
[5]

 

1.4  Making  MoS2, WS2, and BN sheets through liquid exfoliation 

 

All three materials (MoS2, WS2, BN) in layered form exhibit useful electronic 

properties. Yet, they have not been widely produced because of the difficulty in 

exfoliating them into mono or few-layer flakes in large quantities.
[4]
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Just as graphite, liquid exfoliation has been introduced as the optimal method to 

exfoliate the three materials into mono- or few-layers.
[4]

 The method can produce layered 

flakes for large production. Similar to the process of exfoliating graphite, MoS2, WS2, 

BN powders are dispersed with a compatible surfactant that has matching surface energy 

with the material so that exfoliation occurs naturally.
[6]

 In recent studies, the liquid 

exfoliation procedure has been performed on MoS2, WS2, and BN. Transmission electron 

microscopy (TEM) analysis also confirmed that both mono and few-layered flakes were 

formed.  

1.5  Methodology and theory of experiment 

In this experiment, the production of layering MoS2, WS2, and BN is not studied 

because the method for doing so has already been developed. Instead, the project focuses 

on optimizing each step of the liquid exfoliation process.  

1.5.1  Key parameters 

 

The four key parameters tested are 1) material concentration, 2) surfactant 

concentration, 3) sonification method and duration, and 4) centrifuge speed. By 

varying and testing these four key parameters, the goal is to ultimately decide 1) 

the optimal concentration of each of the three materials, 2) the optimal 

concentration of the surfactant, 3) the optimal method of sonication, and the 4) 

optimal centrifuge speed to yield the highest concentration of each material.  

 1.5.2 Assessment methods 
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To measure the concentration of each material, UV-visible 

spectrophotometry (UV-Vis NIR) is used. Molecules in suspension absorb 

ultraviolet or visible light. The absorption of a suspension increases as attenuation 

of the beam increases. Thus, absorption, A, is directly proportional to the path 

length, L, and the concentration, C, of the absorbing species, as formalized in 

Beer's Law in Equation 1 

           Equation (1) 

where   is the absorbtivity. The absorption is measured for all suspensions in the 

wavelength range between 400 and 1200 nm.  

To examine if the exfoliation process affected the structure of each material 

and that exfoliated suspensions contained layers, transmission electron microscopy 

(TEM) was used to confirm the results. TEM images were recorded to ascertain 

the hexagonal structure of the materials and whether the exfoliated suspensions of 

each material contained layered flakes.   

2.  Experimental Procedures  

 
2.1  Chemicals and equipment  

 
 The WS2 and MoS2 <2, 99% powders were purchased from Adrich Chemistry. 

BN powder < 2, 99% was purchased from Saint-Gobain Ceramics. Surfactant sodium 

cholate hydrate (C24H39NaO5 · xH2O) powder was purchased from Sigma Ultra. The UV-
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Vis/NIR spectrometer used was a Cary 5000 model purchased from Varian Inc.  The 

centrifuge used was the Microfuge model purchased from Sigma Centrifuges. The 

sonication bath used was an industrial bath, model U1250, purchased from Ultrawave 

Ultrasonic. The sonication tip processor used was the UP100H Ultrasonic Processor 

model purchased from Hielscher Ultrasound Techgnology. Lastly, the TEM used was a 

JEOL 2100 instrument.  

2.2  General methods  

Stock surfactant, sodium cholate hydrate, solutions of different concentrations of 

1mg/ml, 3 mg/ml, and 5 mg/ml were prepared with distilled water and stirred overnight 

by magnetic stirrer. Material (WS2 MoS2, BN) suspensions of different concentrations of 

0.1 mg/ml, 1 mg/ml, 3 mg/ml, and 5 mg/ml were prepared with distilled water. Different 

concentrations of the surfactant solutions and material suspensions were then mixed and 

filled into 10 mL cylindrical vials. These vial suspensions were then dispersed using 

sonication bath method for 1 hour or sonication tip method for periods of 2 minutes, 30 

pulsed minutes, and 30 minutes. After sonication, the vial suspensions were then 

centrifuged for 60 minutes with different speeds of 500, 1500, 3000, and 5000 RPM.  

After centrifugation, the supernatant or top 5 ml of clear liquid of each suspension was 

decanted into a new cuvette in order to prepare for UV-Vis/NIR spectrometer.  

Absorptions were measured and later plotted and analyzed to discover which parameters 

yielded the highest absorption. To relate absorption to concentration, the absortivity α 

was found. At last, a few millimeters of the optimal material suspensions with the highest 

concentration were dispersed on meshed circular carbon nanotube films (400-mesh). 
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TEM was performed on the films to confirm the layered, flaked characteristics of the 

exfoliated materials.  

2.3  Optimization steps  

With this general experimental setup in place, the optimization steps carried out 

were as follows. These steps were carried out chronologically in order to waste the least 

amount of time in optimizing absorption, or concentration, of the suspensions.  

  2.3.1  Step 1: Sonication method  

Surfactant concentration, material concentration, and centrifuge speed were 

held constant at first. The sonication method (either bath or tip) was changed to 

see which sonication method was better in dispersing the suspensions. The method 

that optimized absorption for each material suspension was chosen and used for 

later suspensions.  

2.3.2 Step 2: Sonication duration  

Again, surfactant concentration, material concentration, and centrifuge 

speed were held constant. This time, the duration of the sonication method was 

changed to see how it affected absorption. The duration that optimized the 

absorption for each material suspension was chosen and used for later suspensions.  

2.3.3 Step 3: Surfactant concentration  

For this step, the sonication method and duration were fixed. The material 

concentration and the centrifuge speed were held constant, but the surfactant 
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concentration was changed. The surfactant concentration level that optimized 

absorption for each material suspension was chosen and used for later suspensions.  

2.3.4 Step 4: Material concentration  

For this step, the soniccation method and duration were fixed. The 

surfactant concentration and centrifuge speed was held constant, but the material 

concentration was changed. The material concentration level that optimized 

absorption for each material suspension was chosen and used for later suspensions. 

2.3.5 Step 5: Centrifuge speed 

Lastly, all parameters except for the centrifuge speed were fixed. The 

centrifuge speed was changed. The centrifuge speed that optimized absorption was 

chosen. All parameters were tested and optimized. TEM was performed on carbon 

nanofilms, which were dispersed with optimal suspensions, to confirm results.  

 3. Results & Discussion 

3.1  Results and discussion of the optimization process 

 
3.1.1 .1 Step 1: Optimizing the sonication method  

 

MoS2, WS2, and BN powders of 1mg/ml concentration were mixed with the 

surfactant of 1mg/ml concentration to make 10 mL suspensions. Then, these 

suspensions were sonicated either by tip or bath method for 30 minutes. Lastly, 

they were centrifuged for 60 minutes with a fixed RPM of 500. Absorption was 

measured using UV-Vis/NIR spectrometer, and figures 4a-4d show the 

suspensions and the absorption curves for all three materials. 
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 Figure 4a. Suspensions after sonication by tip or bath method for 30 

minutes.  

Figure 4a shows that the sonication tip method yielded a more homogenous 

and darker suspension for all of the three materials, while the sonication bath 

method left the suspensions unchanged. Figures 4b-4d quantify this qualitative 

observation with sonication tip method yielding a higher absorption curve.   

 
Figure 4b. Absorption for MoS2 comparing sonicationation by tip and bath 

dispersion methods for 30 minutes.  
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Figure 4c. Absorption for WS2 comparing sonication by tip and bath 

dispersion methods for 30 minutes.  

 
Figure 4d. Absorption for BN comparing sonication by tip and bath 

dispersion methods for 30 minutes.  

 

For all three materials, it was evident that the sonication tip method yielded 

higher absorptions for 400 to 1200 nm wavelengths. After step-1 optimization, the 

sonication dispersion bath method was eliminated. For the remaining steps, the 

sonication tip dispersion method was used.  
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3.1.2 Step 2: Optimizing the duration of sonication tip dispersion 

method  

 

MoS2, WS2, and BN of 1mg/ml concentration were mixed with the 

surfactant of 1mg/ml concentration to make 10 mL suspensions. These 

suspensions were then sonicated by tip only, but for three different durations: 2 

minute continuous, 30 minute pulsed, and 30 minute continuous. Lastly, they were 

centrifuged for 60 minutes with a fixed RPM of 500. Absorption was measured 

using UV-Vis/NIR spectrometer, and figures 5a-5d show the suspensions and the 

absorption curves for all three materials.  

 

 

 

 

 

2 min continuous tip   30 min pulsed tip      30 min continuous tip 

Figure 5a. Suspensions after sonication by tip method for different 

durations.  

 

From figure 5a, the 30 minute continuous sonication tip method yielded the 

darkest suspension, translating to the highest absorption.  

WS2 BN MoS2 
WS2 BN MoS2 

MoS2 BN WS2 
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Figure 5b. Absorption for MoS2 after sonication by tip method for different 

durations. 

 

 

Figure 5c. Absorption for WS2 after sonication by tip method for different 

durations. 
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Figure 5d. Absorption for BN after sonication by tip method for different 

durations. 
 

For all three materials, it was evident that the sonication tip method for 30 

minutes yielded the highest absorption for 400 to 1200 nm wavelengths. After step 

2 optimization, the 2-minute continuous and 30-minute pulsed durations were 

eliminated. For the remaining steps, the sonication tip method for 30 continuous 

minutes was used.  

3.1.3 Step 3: Optimizing surfactant concentration  
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three different concentrations of 1 mg/ml, 3 mg/ml, and 5 mg/ml to make 10 mL 

suspensions. Then, these suspensions were sonicated by tip for 30 continuous 

minutes. Lastly, they were centrifuged for 60 minutes with a fixed RPM of 500. 

Absorption was measured using UV-Vis/NIR spectrometer, and figures 6a-6d 
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1 mg/ml     3 mg/ml   5 mg/ml 

Figure 6a. Suspensions with a fixed material concentration (1gm/ml) and 

different surfactant concentrations (1 mg/ml, 3 mg/ml, and 5 mg/ml).  

 

Figure 6a shows that suspensions of 3 mg/ml and 5 mg/ml surfactant 

concentrations were darker and more homogenous. Figures 6b-6d would reveal the 

corresponding absorption curves.  

 

Figure 6b. Absorption for MoS2 (1mg/ml) with different concentration of 

surfactant. 
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Figure 6c. Absorption for WS2 (1mg/ml) with different concentration of 

surfactant. 

 

Figure 6d. Absorption for BN (1mg/ml) with different concentration of 

surfactant. 
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3 optimization, surfactant concentrations of 1 mg/ml and 5 mg/ml were eliminated. 

For the remaining optimization, a surfactant concentration of 3 mg/ml was used.  

3.1.4 Step 4: Optimizing material concentration  

With the surfactant concentration of 3 mg/ml fixed, the concentrations of 

MoS2, WS2, and BN were varied (0.1 mg/ml, 1 mg/ml, 3 mg/ml, and 5 mg/ml) to 

make 10 mL suspensions. These suspensions were then sonicated by tip for 30 

continuous minutes. Lastly, they were centrifuged for 60 minutes with a fixed 

RPM of 500. Absorption was measured using UV-Vis/NIR spectrometer, and 

figures 7a-7d show the suspensions and the absorption curves for all three 

materials.  

 

 

 

 

 

  

 

 

0.1mg/ml      1 mg/ml 

 

MoS2 BN WS2 MoS2 BN WS2 
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3 mg/ml      5 mg/ml 

Figure 7a. Samples with fixed surfactant (3gm/ml) and different 

concentration of material(0.1 mg/ml, 1 mg/ml, 3 mg/ml, and 5 mg/ml). 

 

Figure 7a reveals that the 3 mg/ml suspensions were the darkest and the 

most homogenous. Figures 7b-7d confirm that 3 mg/ml material yielded the 

highest absorption. It is noted that the 5 mg/ml suspensions exceeded the optimal 

molar ratio of surfactant to material; thus, the suspensions appear as if they were 

not mixed at all.  

MoS2 BN WS2 

MoS2 BN WS2 
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Figure 7b. Absorption for different concentrations of MoS2 with fixed 

surfactant (3mg/ml).  

 

 

Figure 7c. Absorption for different concentrations of WS2 with fixed 

surfactant (3mg/ml). 
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Figure 7d. Absorption for different concentrations of BN with fixed 

surfactant (3mg/ml). 
 

On average, materials with a concentration of 3 mg/ml yielded the highest 

absorption for 400 to 1200 nm wavelengths, although the 1 mg/ml absorption 

curve was higher than 3 mg/ml absorption curve for BN. After step-4 optimization, 

material concentrations of 0.1 mg/ml, 1 mg/ml, and 5 mg/ml were eliminated. For 
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centrifuged for 60 minutes with different speeds: 500 RPM, 1500 RPM, 3000 

RPM, and 5000 RPM. Absorption was measured using UV-Vis/NIR spectrometer, 

and figures 8a-8d show the suspensions and the absorption curves for all three 

materials.  
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Figure 8a. Suspensions centrifuged at different speeds (in RPM).  
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From figure 8a, a centrifugal speed of 500 RPM yielded the most 

homogenous and darkest suspensions. It could be hypothesized that a lower speed 

gave the samples more time and the right mixing environment for the surfactant 

and material to interact and form homogenous suspensions. Figures 8b-d confirm 

that a centrifuge speed of 500 RPM would yielded the highest absorption curve.  

 

Figure 8b. Absorption for MoS2 after being centrifuged at different speeds 

(in RPM).  
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Figure 8c. Absorption for WS2 after being centrifuged at different speeds 

(in RPM).  

 

 

Figure 8d. Absorption for BN after being centrifuged at different speeds 

(in RPM).  
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For all three materials, it was evident that a RPM speed of 500 for 60 

minutes yielded the highest absorption for 400 to 1200 nm wavelengths. Other 

speeds of 1500, 3000, and 5000 RPM were eliminated.  

3.1.6 Final optimized parameters in yielding the highest absorption 

The optimized parameters that yielded the highest absorption were: 30-

minute continuous sonication tip method, 3 mg/ml surfactant concentration, 3 

mg/ml material concentration, and 500 RPM centrifuge speed.   

3.1.7 Finding absorptivity, α, with absorption 

In all of the trials, absorption was used as the relative measure of 

concentration for the suspensions after the supernatant liquid was removed 

following centrifugation. In order to deduce the exact concentration of each 

material after centrifugation, the absorptivity α must be found since concentration 

and absorption are related in Equation 2 through the Beer-Lambert’s Law.   

           Equation (2) 

A was the absorption chosen at 640 nm. C was found by measuring the 

mass before and after sonication, centrifugation, and vacuum drying of each 

material over the initial 10 ml, 0.1 mg/ml suspensions. L = 100 mm, which was the 

path length of the cuvette exposed to UV-Vis/NIR spectrometer. Table 1 

summarizes the data used to deduce the absorptivity α for each material.  
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Table 1. Parameters measured for deducing the relationship between absorption 

and material concentration for each material.  

 

Material WS2 MoS2 BN 

Mass before  (mg) 128.17 127.92 128.06 

Mass after (mg) 128.76 129.64 129.04 

Mass difference (mg)  0.59 1.72 0.98 

Volume (ml) 178.79 175.51 175.01 

Concentration (mg/ml) .0033 .0098 .0056 

Absorption  at 640 nm 0.048 0.24 0.11 

Absorptivity  α 

(mL/mg meter) 

1482 2434 1952 

 
 

3.1.8 Optimal concentration  

With a definite absorptivity α for each material, the final optimal 

concentration of each material, with an known absorption, could be calculated.  

Table 2 shows the tabulated final, optimal concentration for each material after 

decanting the supernatant from the suspensions following centrifugation. For all 

three materials, absorption values were taken at a wavelength of 800 nm from the 

highest absorption curves that had the optimal parameters of 30 minute continuous 

sonication tip method, 3 mg/ml surfactant, 3 mg/ml material, and 500 RPM 

centrifuge speed.  
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Table 2. Final optimal concentration of each material after the supernatant was 

removed from the suspensions.  

Material WS2 MoS2 BN 

Absorption at  

800 nm 

0.46 0.91 0.26 

Absorptivity  α 

(mL/mg meter) 

1482 2434 1952 

Concentration 

(mg/ml) 

.031 .0098 .0056 

 

 

3.2 TEM results confirming layered flakes with hexagonal structures   

After the optimal suspensions with the highest absorption were found for all three 

materials, droplets of each suspension were casted onto circular meshed carbon films.  

TEM was performed on these films to 1) confirm that the exfoliation process was 

successful and 2) prove that these exfoliated inorganic materials had the layered, flaked, 

and symmetrically hexagonal characteristics needed to become potential materials for 

electronic applications.  

TEM images in figure 9a show that MoS2 had been successfully exfoliated. With 

overlapping fringes in stacked form, the exfoliated MoS2 appeared in layers.  
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Figure 9a. TEM images showing the layered and flaked characteristics of 

exfoliated MoS2 .  

Figure 9b shows the diffraction pattern of exfoliated MoS2. The symmetric, 

orderly pattern resembles the basal hexagonal plane structure of graphene-like inorganic 

materials. This confirms that the exfoliation process did not change the structure of MoS2.    

 

 

 

 

 

Figure 9b. Diffraction pattern reveals the hexagonal structure of exfoliated MoS2.  

Similarly, TEM images in figure 10a show that WS2 had also been successfully 

exfoliated. With many more overlapping fringes stacked together, the exfoliated WS2 

were certainly in layers.   
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Figures 10a. TEM images showing the layered and flaked characteristics of 

exfoliated WS2 .   

Figure 10b shows the diffraction pattern of exfoliated WS2. Similar to the MoS2 , 

the symmetric, orderly pattern resembles the basal hexagonal plane structure of graphene-

like inorganic materials. This also confirms that the exfoliation process did not change 

the structure of WS2.    

 

Figure 10b. Diffraction pattern reveals the hexagonal structure of exfoliated WS2. 

Finally, similar to those of MoS2 and WS2, TEM images in figure 11a show that 

BN2 had been successfully exfoliated. With obvious overlapping fringes stacked together, 

the exfoliated BN also appeared in layered form.  
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Figures 11a. TEM images showing the layered and flaked characteristics of 

exfoliated BN.    

Figure 11b shows the diffraction pattern of exfoliated BN. The noticeable 

hexagonal pattern confirms that the exfoliation process did not change the structure of 

BN.   

 

 

 

 

 

Figure 11b. Diffraction pattern reveals the hexagonal structure of exfoliated BN. 

 TEM analysis revealed that all of the three exfoliated materials were in layers and 

that their diffraction patterns resembled the hexagonal basis plane structure. The 
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symetric, layered, and flaked characteristics needed to develop inorganic nanofilm 

materials for potential electronic applications were indeed satisfied.   

4. Conclusion  

 

A carefully optimized method was developed to exfoliate inorganic graphene-like 

materials, such as molybdenum disulfide (MoS2), tungsten sulfide (WS2), and boron 

nitride (BN). When these three materials are successfully exfoliated into layers with 

hexagonal symmetric plane structures and casted onto carbon nanofilms, they can 

become potentially applicable electronic materials in sensing and energy storage devices.  

The current study used a liquid-phase method to exfoliate the three inorganic 

materials (MoS2, WS2, and BN). The method entails mixing different concentrations of 

each material with different concentrations of the surfactant sodium cholate hydrate 

(C24H39NaO5 · xH2O). to make suspensions samples. The suspensions are then dispersed 

through sonication and centrifuged. An optimization of the method was achieved 

sequentially to discover the optimal parameters (sonication method and duration, 

surfactant concentration, material concentration, and centrifuge speed) needed to generate 

suspensions with the highest concentration of each material. Through the Beer-Lambert’s 

law, absorption is proportionally related to concentration in which a high absorption 

equated with a high concentration. Thus, the absorptions of all of the suspensions were 

measured by a UV-visible spectrometer, and the results were compared and analyzed to 

find out the optimal parameters.  

 



40 

 

The optimal parameters that led to the highest absorption, or concentration, for 

each of the three materials were: 3 mg/ml material concentration, 3 mg/ml surfactant 

concentration, 30-minute continuous tip sonication, and 1-hr 500 RPM centrifugation. 

Suspensions with the highest absorption were then casted onto carbon nanofilms.  TEM 

was performed on these optimal suspensions to confirm the layered and hexagonal 

structure of each exfoliated material.   

Optimizing the exfoliation process of inorganic materials is very important in the 

development of electronic and magnetic materials. These thin, layered, and hexagonal-

structured graphene-like inorganic materials on nanofilms could be used as potentially 

cheap and efficient sensing and energy storage devices.   

5. Future Study & Limitations 
 

There were limitations in this study. First, every parameter was only varied in a 

certain range. Future studies could expand the range of the parameter and see if other 

combinations yielded higher concentration of exfoliated materials. Such approach would 

be able to include more precise results and better error analysis. Also, in this study, only 

the optimization and exfoliation processes were carefully done and analyzed. In future 

studies, more experiments could be done on actually testing the electronic properties of 

these three materials to confirm that they would be good electronic materials. Lastly, the 

process of liquid-phase exfoliation could be done on more inorganic graphene-like 

materials.  
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