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We consider cumulant moments (cumulants) of the thrust distribution using predictions of the full

spectrum for thrust including Oð�3
sÞ fixed order results, resummation of singular N3LL logarithmic

contributions, and a class of leading power corrections in a renormalon-free scheme. From a global fit to

the first thrust moment we extract the strong coupling and the leading power correction matrix element

�1. We obtain �sðmZÞ ¼ 0:1140� ð0:0004Þexp � ð0:0013Þhadr � ð0:0007Þpert, where the 1-� uncertainties

are experimental, from hadronization (related to �1) and perturbative, respectively, and �1 ¼ 0:377�
ð0:044Þexp � ð0:039Þpert GeV. The nth thrust cumulants for n � 2 are completely insensitive to �1, and

therefore a good instrument for extracting information on higher order power corrections, �0
n=Q

n, from

moment data. We find ð ~�0
2Þ1=2 ¼ 0:74� ð0:11Þexp � ð0:09Þpert GeV.

DOI: 10.1103/PhysRevD.86.094002 PACS numbers: 12.38.�t, 12.38.Cy, 13.66.Jn

I. INTRODUCTION

The process eþe� ! jets plays an important role in
precise determinations of �sðmZÞ, as well as for probing
the nonperturbative dynamics of hadronization in jet
production. A wealth of high precision data with percent
level uncertainties is available for jet production in eþe�
collisions at the Z pole, Q ¼ mZ, and with somewhat
larger uncertainties at both lower and higher energies Q.
For a review of classic work on �sðmZÞ determinations
using event shapes and other jet observables, the reader
is referred to Ref. [1]. Accurate predictions for event
shapes are now available which include Oð�3

sÞ correc-
tions [2–5], a next-to-next-to-next-to-leading-log (N3LL)
resummation of large logarithms [6,7], and a high
precision method developed for simultaneously incor-
porating field theory matrix elements for the power
corrections [8].

The majority of fits for �sðmZÞ from event shapes e
make use of cross section distributions d�=de, in a region
where nonperturbative effects enter as power corrections in
1=Q and the theoretical description is the most accurate. In
our recent analysis [8] for the event-shape variable thrust
� ¼ 1� T [9],

T ¼ maxt̂

P
i jt̂ � ~pijP
i j ~pij ; (1)

we obtained a precise determination of �sðmZÞ. Our
theoretical description is based on soft-collinear effec-
tive theory [10–14], and has several advanced features,
such as

(1) Matrix elements and nonsingular terms at order �3
s

using results from Ref. [2]. Nonlogarithmic terms in
the hard function are included at order �3

s as well.

(2) Resummation of the singular logarithmic terms to
all orders in �s up to N3LL order.

(3) Profile functions (�-dependent scales �J, �S, R,
�ns) that correctly treat the peak region and account
for the multijet boundary condition to ensure that
predictions converge properly into the known fixed
order result in the multijet endpoint region. They
allow an accurate theoretical description over the
entire range � 2 ½0; 0:5�.

(4) Description of nonperturbative effects with field
theory and a fit to a single nonperturbative matrix
element of Wilson lines�1 in the tail region [where
power corrections are described by an operator
product expansion (OPE)].

(5) Definition of �1 in a more stable Rgap scheme

[15,16] rather than in MS. This ensures �1 and
the perturbative cross section are free of Oð�QCDÞ
renormalon ambiguities. An renormalization
group equation (RGE) is used to sum large loga-
rithms in the perturbative renormalon subtractions
[17,18]. The fit gives �1 with an accuracy
of 16%.

(6) QED final state corrections at Oð�Þ and next-
to-next-to-leading logarithm (NNLL) (counting
���2

s); bottommass corrections are included using
a factorization theorem with log resummation;
Oð�2

sÞ axial-singlet terms arising from the large
top-bottom mass splitting are included as well.

A two-parameter global fit in the tail of the thrust
distribution gives [8] �sðmZÞ ¼ 0:1135� ð0:0002Þexp �
ð0:0005Þhadr � ð0:0009Þpert as well as �1 ¼ 0:323�
ð0:009Þexp � ð0:013Þ�2

� ð0:020Þ�sðmZÞ � ð0:045Þpert GeV
where �1 � �1ðR�; ��Þ is defined in the Rgap scheme
at the scales R� ¼ �� ¼ 2 GeV. For �s the three
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uncertainties are the experimental uncertainty, hadroniza-
tion uncertainty coming mainly from the determination of
�1, and the perturbative theoretical uncertainty. This
result for �s is one of the most precise in the literature.
It is also one of the lowest, being 3:9� away from the
2009 world average [19] and 4:0� from the 2011 world
average [20]. For a detailed discussion of �sðmZÞ deter-
minations, see Ref. [21]. The small value of �sðmZÞ is
directly connected to the nonnegligible correction from
�1 [8], whose fit value is of natural size �1 ��QCD.

Given the discrepancy, further tests of the theoretical
predictions for event shapes are warranted. In this paper,
we will do so using experimental moments involving the
thrust variable.

The property of the N3LLþOð�3
sÞ predictions for

d�=d� in Ref. [8] that we will exploit is that they are valid
in both the dijet and tail regions, where singular and large
logarithmic terms in need of resummation arise, and in the
multijet region, where fixed order results without log re-
summation should be used. That is, they are valid for all
values of � (an improvement over earlier results at this
order). Important ingredients are: the inclusion of the non-
singular terms, important away from the peak region; the
use of profile functions that turn off resummation in the far-
tail region; and the inclusion of a soft function, which is
necessary to describe the peak in the dijet region, where
nonperturbative effects are Oð1Þ.

We will use the full � range results to analyze moments
Mn of the thrust distribution in eþe� ! jets,

Mn ¼ 1

�

Z �max¼1=2

0
d��n

d�

d�
: (2)

Unlike for tail fits, the entire physical � range contrib-
utes, providing sensitivity to a different region of the
spectrum. Experimental results are available for many
values of Q, and the analysis of systematic uncertainties
is to a large extent independent from that for the binned
distributions. Thus the outcome for a fit of data for the
first moment M1 to �sðmZÞ and �1 serves as an impor-
tant cross check of the results obtained in Ref. [8]. The
Mn moments are also not sensitive to large logarithms,
and hence provide a nontrivial check on whether the
N3LLþOð�3

sÞ full spectrum results, which contain a
summation of logarithms of � with a substantial numeri-
cal effect for small � values, can reproduce this property.
We explore this issue both for central values and for
theory uncertainty estimates.

The second purpose of this work is to discuss the
structure of higher order power corrections in thrust mo-
ments. We find that cumulant moments M0

n (cumulants)
are very useful, since they allow for a cleaner separation
of the subleading nonperturbative matrix elements com-
pared to the Mn moments of Eq. (2). Cumulants include
the variance M0

2 and skewness M0
3, and we will consider

the first five:

M0
1 ¼ M1;

M0
2 ¼ M2 �M2

1;

M0
3 ¼ M3 � 3M2M1 þ 2M3

1;

M0
4 ¼ M4 � 4M3M1 � 3M2

2 þ 12M2M
2
1 � 6M4

1;

M0
5 ¼ M5 � 5M4M1 � 10M3M2 þ 20M3M

2
1

þ 30M2
2M1 � 60M3

1M2 þ 24M5
1:

(3)

In the leading order thrust factorization theorem the
power correction matrix elements for the moments Mn

are called �m while for the cumulants M0
n they are called

�0
m. [The �0

m are also related to the �m by Eq. (3) with
Mn ! �n]. In particular, the invariance of the cumulants
to shifts in � implies that the M0

n�2 moments are com-
pletely insensitive to the leading thrust power correction
parameter �1, and hence can provide nontrivial infor-
mation on the higher order power corrections which enter
as �0

n=Q
n and as 1=Q2 power corrections from terms

beyond the leading factorization theorem. In contrast,
for each Mn�2 there is a term ��s�1=Q that for larger
Qs dominates over the �m=Q

m terms.1

A. Review of experiments and earlier literature

Dedicated experimental analyses of thrust moments
have been reported by various experiments: JADE [22]
measured the first moment at Q ¼ 35, 44 GeV, and in
Ref. [23] reported measurements of the first five moments
at Q ¼ 14, 22, 34.6, 35, 38.3, 43.8 GeV; OPAL [24]
measured the first five moments at Q ¼ 91, 133, 177,
197 GeV, and there is an additional measurement of the
first moment at Q ¼ 161 GeV [25]; ALEPH [26] mea-
sured the first moment at Q ¼ 91:2, 133, 161, 172, 183,
189, 196, 200, 206 GeV; DELPHI [27] has measurements
of the first moment at Q ¼ 45:2, 66, 76.3 GeV, measure-
ments of the first three moments at Q ¼ 183, 189, 192,
196, 200, 202,205, 207 GeV [28], and at Q ¼ 91:2, 133,
161, 172, 183 GeV [29]; L3 [30] measured the first two
moments at Q ¼ 91:2 GeV and other center of mass en-
ergies which are superseded by the ones in Ref. [31] at
Q ¼ 41:4, 55.3, 65.4, 75.7, 82.3, 85.1, 130.1, 136.1, 161.3,
172.3, 182.8, 188.6, 194.4, 200.2, 206.2 GeV; TASSO
measured the first moment at Q ¼ 14, 22, 35, 44 GeV
[32]; and AMY measured the first moment at Q ¼
55:2 GeV [33]. Finally, the variance and skewness have
been explicitly measured by DELPHI [29] at Q ¼ 133,
161, 172, 183 GeV; and OPAL [25] at Q ¼ 161 GeV. All
of the experimental moments will be used in our fits,
with the exception of the results in Ref. [23] and data

1The cumulants begin to differ for n � 4 from the so-called
central moments, hð��M1Þni. Both cumulants and central mo-
ments are shift independent, but the cumulants are slightly
preferred because they are only sensitive to a single moment
of the leading order soft function in the thrust factorization
theorem.
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with Q � 22 GeV where our treatment of b-quark mass
effects may not suffice.

In principle the JADE results in Ref. [23] supersede the
earlier analysis of this data reported in Ref. [22]. In the
more recent analysis the contribution of primary b �b events
has been subtracted using Monte Carlo generators.2 Since
the theoretical precision of these generators is significantly
worse than ourN3LLþOð�3

sÞ treatment of massless quark
effects and ourNNLLþOð�sÞ treatment ofmb-dependent
corrections, it is not clear how our code should be modified
consistently to account for these subtractions. Comparing
the old versus new JADE data at Q ¼ 44 GeV one finds
M1 ¼ 0:0860� 0:0014 versus M1 ¼ 0:0807� 0:0016.
This corresponds to a 3:4� change assuming 100% corre-
lated uncertainties (or a 2:6� change with uncorrelated
uncertainties). In our analysis we find that the older JADE
data provides more consistent results when employed in a
combined fit with data from the other experiments (related
to smaller �2 values). For this reason our default data set
incorporates only the older JADE moment data. We will
report on the change that would be induced by using the
new JADE data if we simply ignore the fact that the b �b
events were removed.

Event-shape moments have also been extensively
studied in the theoretical literature. The Oð�3

sÞ QCD cor-
rections for event-shape moments have been calculated in
Refs. [34,35]. The leading �=Q power correction to the
first moment of event-shape distributions were first studied
in Refs. [36–39] often with the study of renormalons (see
Ref. [40], and Ref. [41] for a review). Reference [42] made
a renormalon analysis of the second moment of the thrust
distribution, finding that the leading renormalon contribu-
tion is not 1=Q2 but rather 1=Q3. Hadronization effects
have also been frequently considered in the framework of
the dispersive model for the strong coupling [36,43,44].3 In
this approach, an IR cutoff �I is introduced and the strong
coupling constant below the scale �I is replaced by an
effective coupling �eff such that perturbative infrared ef-
fects coming from scales below �I are subtracted. In the
dispersive model the term �I�0 is the analog of the QCD
matrix element �1 that is derived from the OPE. Since in
the dispersive model there is only one nonperturbative
parameter, it does not contain analogs of the independent
nonperturbative QCD matrix elements �n�2 of the opera-
tor product expansion. Thus measurements of�0

n�2 can be
used as a test for additional nonperturbative physics that go
beyond this framework.

The dispersive model has been used in Refs. [24,46,47]
together with Oð�2

sÞ fixed order results to analyze event-
shape moments, fitting simultaneously to �sðmZÞ and �0.
Recently these analyses have been extended to Oð�3

sÞ in

Ref. [48], based on code for nf ¼ 5massless quark flavors,

using data from Refs. [23,24] and fitting to the first five
moments for several event-shape variables. Our numerical
analysis only considers thrust moments, but with a global
data set from all available experiments. A detailed com-
parison with Ref. [48] will be made at appropriate points in
the paper. Theoretically our analysis goes beyond their
work by using a formalism that has no large logarithms
in the renormalon subtraction, includes the analog of the
‘‘Milan factor’’ [44,49] in our framework at Oð�3

sÞ (one
higher order than Ref. [48]), and incorporates higher order
power corrections beyond the leading shift from �1. We
also test the effect of including resummation.

B. Outline

This article is organized as follows: We start out by
defining moments and cumulants of distributions, and their
respective generating functions in Sec. II, where we also
discuss the leading and subleading power corrections of
thrust moments in an OPE framework. In Sec. III, we
present and discuss our main results for �sðmZÞ from fits
to the first thrust moment M1. In Sec. VI, we analyze
higher moments Mn�2. Section VII contains an analysis
of subleading power corrections from fits to cumulants
M0

n�2 obtained from the moment data. Our conclusions
are presented in Sec. VIII.

II. FORMALISM

A. Various moments of a distribution

The moments of a probability distribution function pðkÞ
are given by

Mn ¼ hkni ¼
Z

dkpðkÞkn: (4)

The characteristic function is the generator of these mo-
ments and is defined as the Fourier transform

~pðyÞ ¼ he�ikyi ¼
Z

dkpðkÞe�iky ¼ X1
n¼0

ð�iyÞn
n!

Mn; (5)

with M0 ¼ 1. The logarithm of ~pðyÞ generates the cumu-
lants (or connected moments) M0

n of the distribution

ln~pðyÞ ¼ X1
n¼1

ð�iyÞn
n!

M0
n; (6)

and is called the cumulant generating function. For n � 2
the cumulants have the property of being invariant under
shifts of the distribution. Replacing pðkÞ ! pðk� k0Þ
takes ~pðyÞ ! e�iyk0 ~pðyÞ, which shifts M0

1 ! M0
1 þ k0

while leaving all M0
n�2 unchanged. Writing

2We thank C. Pahl for clarifying precisely how this was done.
3Another approach to hadronization corrections to moments of

event shapes distributions based on renormalons is that of Gardi
and Grunberg [45].
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X1
N¼0

ð�iyÞN
N!

MN ¼ exp

�X1
j¼1

ð�iyÞj
j!

M0
j

�

¼ Y1
j¼1

X1
R¼0

ð�iyÞjR
R!

�M0
j

j!

�
R
; (7)

one can derive an all-n relation between moments and
cumulants of a distribution,

MN ¼ N!
XpðNÞ

i¼1

YN
j¼1

ðM0
jÞ�ij

�ij!ðj!Þ�ij
: (8)

Here the �ij are nonnegative integers which determine a

partition of the integer N through
P

N
j¼1 j�ij ¼ N, and

pðNÞ is the number of unique partitions of N. [A partition
of N is a set of integers which sum to N. Here �ij is the

number of times the value j appears as a part in the ith
partition, and corresponds to R in Eq. (7)]. As an example
we quote the relation for N ¼ 4 which has five partitions,
pð4Þ ¼ 5, giving

M4 ¼ M0
4 þ 4M0

3M
0
1 þ 3M02

2 þ 6M0
2M

02
1 þM04

1 : (9)

In the fourth partition, i ¼ 4, we have �41 ¼ 2, �42 ¼ 1,
and �43 ¼ �44 ¼ 0, and the factorials give the prefactor of
6. Equation (8) gives the moments Mi in terms of the
cumulants M0

i, and these relations can be inverted to yield
the formulas quoted for the cumulants in Eq. (3).M0

2 � 0 is
the well-known variance of the distribution. Higher order
cumulants can be positive or negative. The skewness of the
distribution M0

3 provides a measure of its asymmetry, and

we expectM0
3 > 0 for thrust with its long tail to the right of

the peak. The kurtosis M0
4 provides a measure of the

‘‘peakedness’’ of the distribution, where M0
4 > 0 for a

sharper peak than a Gaussian.4

The shift independence of the cumulantsM0
n make them

an ideal basis for studying event shape moments. In par-
ticular, since the leading Oð�QCD=QÞ power correction

acts similar to a shift to the event shape distribution
[36,43,50–52], we can anticipate that M0

n�2 will be more
sensitive to higher order power corrections. We will quan-
tify this statement in the next section by using factorization
for the thrust distribution to derive factorization formulas
for the thrust cumulants in the form of an operator product
expansion.

B. Thrust moments

We will first make use of the leading order factorization
theorem, d�=d� ¼ R

dpðd�̂=d�Þð�� p=QÞF�ðpÞ, which

is valid for all �. It separates perturbative d�̂=d� and non-
perturbative F�ðpÞ contributions to all orders in �s and
�QCD=ðQ�Þ, but is only valid at leading order in �QCD=Q.

For this factorization theorem we follow Ref. [8] (except
that here we denote the nonperturbative soft function by
F�).

5 We will then extend our analysis to parametrize
corrections to all orders in �QCD=Q.

Taking moments of the leading order d�=d� gives6

Mn ¼
Z �m

0
d��n

Z Q�

0
dp

1

�̂

d�̂

d�

�
�� p

Q

�
F�ðpÞ

¼
Z 1

0
d�dp�

�
�m � �� p

Q

��
�þ p

Q

�
n 1

�̂

d�̂

d�
ð�ÞF�ðpÞ

¼
�Xn
‘¼0

n

‘

 !�
2

Q

�
n�‘

M̂‘�n�‘

�
� EðAÞ

n � EðBÞ
n ; (10)

where �̂ is the perturbative total hadronic cross section
and all hatted quantities are perturbative. In the last line of
Eq. (10) we used �ð�m � �� p=QÞ ¼ �ð�m � �Þ	
½1� �ðp=Q� �mÞ � �ð�m � p=QÞ�ðp=Qþ �� �mÞ� to
obtain the three terms. In Eq. (10) the term in square
brackets is our desired result containing the perturbative

M̂n and nonperturbative �n moments

M̂n ¼
Z �m

0
d��n

1

�

d�̂

d�
ð�Þ; M̂0 ¼ 1;

�n ¼
Z 1

0
dp

�
p

2

�
n
F�ðpÞ; �0 ¼ 1:

(11)

The small ‘‘error’’ terms in Eq. (10) are given by

EðAÞ
n ¼ Xn

‘¼0

n
‘

� ��
2

Q

�
n�‘

M̂‘

Z 1

Q�m

dp

�
p

2

�
n�‘

F�ðpÞ;

EðBÞ
n ¼

Z �m

0
d�
Z Q�m

Qð�m��Þ
dp

�
�þ p

Q

�
n 1

�̂

d�̂

d�
ð�ÞF�ðpÞ:

(12)

For the contribution EðAÞ
n the p integral is smaller than

10�30 for any Q for the first five moments, and hence

EðAÞ
n ’ 0. This occurs because F�ðpÞ falls off exponentially

for p * 2�1 � 2�QCD [15,55], and hence values p �
Q�m ¼ Q=2 are already far out on the exponential tail.

The EðBÞ
n term gives a small contribution because the

integral is suppressed by either F� or d�̂=d�: near the
endpoint �� �m � 2�QCD=Q the p integration is not re-

stricted and F�ðpÞ � 1, but d�̂=d� is highly suppressed.
For smaller � the p integration is restricted and the ex-
ponential tail of F�ðpÞ suppresses the contribution. We
have checked numerically that at Q ¼ 91:2 GeV [Q ¼
35 GeV], for the first moment the relative contribution of

4The cumulants of a Gaussian are all zero for n > 2, and the
cumulants of a delta function are all zero for n > 1.

5Earlier discussions of shape functions for thrust can be found
in Refs. [53,54].

6This manipulation is valid when the renormalization scales of
the jet and soft function which implement resummation are�i ¼
�ið�� p=QÞ, rather than the more standard �ið�Þ used in
Ref. [8]. Both choices are perturbatively valid, and we have
checked that the difference is 0.4% forM1, rising to 0.8% forM5,
and hence is always well within the perturbative uncertainty.
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EðBÞ
1 compared to the term in square brackets in Eq. (10) is

Oð10�7Þ½Oð10�6Þ�, while for the fifth moment EðBÞ
5 it is

Oð10�6Þ½Oð10�4Þ�. This suppression does not rely on the

model used for F�ðpÞ. Thus EðBÞ
n can also be safely

neglected.
Within the theoretical precision we conclude that the

leading factorization theorem for the distribution yields an
operator product expansion that separates perturbative and
nonperturbative corrections in the moments

Mn ¼
Xn
‘¼0

n
‘

� ��
2

Q

�
n�‘

M̂‘�n�‘: (13)

For Mn the terms that numerically dominate are M̂n and

M̂n�1�1=Q. However for the cumulants M0
n there are

cancellations, and Eq. (13) does not suffice due to our
neglect so far of ð�QCD=QÞj suppressed terms in the facto-

rization expression for the thrust distribution.
To rectify this we parametrize the ð�QCD=QÞj power

corrections by a series of power-suppressed nonpertur-

bative soft functions, �j�1F�;jðp=�Þ ��j�1
QCD. Here

��1F�;0ðp=�Þ ¼ F�ðpÞ is the leading soft function from

Eq. (10). We introduced the parameter � ¼ 400 MeV�
�QCD to track the dimension of these subleading soft

functions. This parametrization is motivated by the fact
that subleading factorization results can in principle be
derived with soft-collinear effective theory [56], and at
each order in the power expansion will yield new soft
function matrix elements.

Both the factorization analysis and calculation of cumu-
lants is simpler in Fourier space, so we let

�ðyÞ �
Z

d�e�iy� d�

d�
ð�Þ;

F�;jðz�Þ �
Z dp

�
e�izpF�;j

�
p

�

�
;

(14)

and likewise for the leading power partonic cross section
d�̂=d�ð�Þ ! �̂0ðyÞ. The factorization-based formula for
thrust is then

1

�
�ðyÞ ¼ 1

�̂

X1
j¼0

�
�

Q

�
j
�̂jðyÞF�;j

�
y�

Q

�
; (15)

where �̂j>0ðyÞ accounts for perturbative corrections in the

ð�QCD=QÞj power correction. The j ¼ 0 term is equivalent

to the result used in Eq. (10), F�ðpÞ ¼ �F�;0ðp=�Þ, and
the normalization condition for the leading nonperturba-
tive soft function is F�;0ðz ¼ 0Þ ¼ 1. The terms in Eq. (15)

beyond j ¼ 0 are schematic since in reality they may
involve convolutions in more variables in the nonperturba-
tive soft functions (as observed in the subleading b ! s�
factorization theorem results [56–61]). Nevertheless the
scaling is correct, and Eq. (15) will suffice for our analysis
where we only seek to classify how various power correc-
tions could enter higher moments or cumulants.

The identities �ðy ¼ 0Þ=� ¼ 1 and �̂0ðy ¼ 0Þ=�̂ ¼ 1
together with Eq. (15) imply

F�;jðy ¼ 0Þ ¼ 0; for j � 1: (16)

Using the Fourier-space cross section the moments are

Mn ¼ in
dn

dyn

�
1

�
�ðyÞ

�
y¼0

¼ in
dn

dyn

�
1

�̂

X1
j¼0

�̂jðyÞ
�
�

Q

�
j
F�;j

�
y�

Q

��
y¼0

¼ X1
j¼0

�
1

Q

�
j Xn
‘¼0

n
‘

� �
M̂n�‘;j

�
2

Q

�
‘
�‘;j; (17)

which extends the OPE in Eq. (13) to parametrize the
ð�QCD=QÞj power corrections. Here the perturbative and

nonperturbative moments are defined as

M̂n;j ¼ in
dn

dyn

�
1

�̂
�̂jðyÞ

�
y¼0

;

�n;j ¼ in

2n
dn

dzn
½�jF�;jðz�Þ�z¼0;

(18)

where M̂n;j is a dimensionless series in �sð�Þ and

�n;j ��nþj
QCD. In order for M̂n;j to exist it is crucial that

our �̂jðyÞ and its derivatives do not contain lnðyÞ depen-
dence in the y ! 0 limit at any order in �s. In � space the
perturbative coefficients have support over a finite range,
� 2 ½0; 1=2�, and

�̂ jðyÞ ¼
Z 1=2

0
d�e�i�y�̂jð�Þ: (19)

Therefore the existence of
R1=2
0 d��̂jð�Þ implies a well-

defined Taylor series in y under the integrand in Eq. (19),

and hence the existence of M̂n;j. This integral is the total

perturbative cross section for j ¼ 0. From Eq. (16) we have

�0;j>0 ¼ 0, and furthermore �n;0 ¼ �n and M̂n;0 ¼ M̂n.

For the first moment, Eq. (17) yields

M1 ¼ M̂1 þ 2�1

Q
þX1

j¼0

M̂0;1þj

2�1;1þj

Q2þj
; (20)

where the first two terms are determined by the leading
order factorization theorem, while the last term identifies
the scaling of contributions from ð�QCD=QÞ2þj power

corrections. Two properties of Eq. (20) will be relevant
for our analysis: first, there is no perturbative Wilson
coefficient for the leading 2�1=Q power correction; and
second, terms from beyond the leading factorization theo-
rem only enter at Oð�2

QCD=Q
2Þ and beyond. For higher

order moments, n � 2, we have
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Mn ¼ M̂n þ 2n�1

Q
M̂n�1 þ nðn� 1Þ�2

Q2
M̂n�2

þ 2n�1;1

Q2
M̂n�1;1 þO

�
1

Q3

�
: (21)

Next we derive an analogous expression for the nth
order cumulants for n � 2, which are generated from
Fourier space by

M0
n ¼ in

dn

dyn

�
ln
�ðyÞ
�

�
y¼0

: (22)

Equation (15) can be conveniently written as the product of
three terms

1

�
�ðyÞ ¼ 1

�̂
�̂0ðyÞ 	 F�;0

�
y�

Q

�

	
�
1þX1

j¼1

��jðyÞ
�
�

Q

�
j
�F�;j

�
y�

Q

��
; (23)

where bars indicate the ratios

�� jðyÞ ¼
�̂jðyÞ
�̂0ðyÞ ;

�F�;jðxÞ ¼
F�;jðxÞ
F�;0ðxÞ : (24)

From Eq. (16) we have �F�;jðx ¼ 0Þ ¼ 0 for all j � 1.

Taking the logarithm of Eq. (23) expresses the thrust
cumulants by the sum of three terms

M0
n ¼ M̂0

n þ
�
2

Q

�
n
�0

n þ in
dn

dyn
X1
k¼1

ð�1Þkþ1

k

	
�X1
j¼1

��jðyÞ
�
�

Q

�
j
�F�;j

�
y�

Q

��
k
��������y¼0

: (25)

The first two terms involve the perturbative cumulants M̂0
n

and the cumulants of the leading nonperturbative soft
functions �0

n,

M̂0
n ¼ in

dn

dyn

�
ln
1

�
�̂0ðyÞ

�
y¼0

;

�0
n ¼ in

2n
dn

dzn
½lnF�;0ðz�Þ�z¼0:

(26)

The third term in Eq. (25) represents contributions from
power-suppressed terms that are not contained in the lead-
ing thrust factorization theorem. These terms start at
Oð�2

QCD=Q
2Þ. At this order only �F�;1 has to be considered.

The terms �F�;i>2 do not contribute due to explicit powers of

�QCD=Q. Concerning �F�;2, it must be hit by at least one

derivative because �F�;2ð0Þ ¼ 0, and hence does not con-

tribute as well. Performing the nth derivative at y ¼ 0 and
keeping only the dominant term from the power correc-
tions gives the OPE

M0
n ¼ M̂0

n þ 2n�0
n

Qn þ n �Mn�1;1

2�1;1

Q2
þO

��3
QCD

Q3

�
: (27)

Here �1;1 is defined in Eq. (18). The perturbative

coefficient is

�M j;1 ¼
�
ij

dj

dyj
��1ðyÞ

�
y¼0

(28)

and so far unknown. For n ¼ 2 the absence of a 1=Q power
correction in Eq. (27) was discussed in Ref. [54].
The majority of our analysis will focus on M1 where

terms beyond the leading order factorization theorem are
power suppressed. For our analysis of Mn�2 we consider
the impact of both �s�1=Q corrections, and power cor-
rections suppressed by more powers of 1=Q. When we
analyzeM0

n�2 we will consider both 1=Q
n and 1=Q2 power

corrections in the fits.

III. RESULTS FOR M1

In this section, we present the main results of our analy-
sis, the fits to the first moment of the thrust distribution and
the determination of �sðmZÞ and �1. Prior to presenting
our final numbers in Sec. III D, we discuss various aspects
important for their interpretation. In Sec. III A, we discuss
the role of the log resummation contained in our fit code,
the perturbative convergence for different kinds of expan-
sion methods, and we illustrate the numerical impact of
power corrections and the renormalon subtraction. We also
briefly discuss the degeneracy between �sðmZÞ and�1 that
motivates carrying out global fits to data covering a large
range of Q values. In Sec. III B, we present the outcome of
the theory parameter scans, on which the estimate of theory
uncertainties in our fits are based, and show the final
results. We also display results for the fits at various levels
of accuracy. Section III C briefly discusses the effects of
QED and bottom mass corrections. Section IV shows the
results of a fit in which renormalon subtractions and power
corrections are included, but resummation of logs in the
thrust distribution is turned off.
For our moment analysis we use the thrust distribution

code developed in Ref. [8], where a detailed description of
the various ingredients may be found. We are able to
perform fits with different levels of accuracy: fixed order
at Oð�3

sÞ, resummation of large logarithms to N3LL accu-
racy,7 power corrections, and subtraction of the leading
renormalon ambiguity. Recently the complete calculation
of the Oð�2

sÞ hemisphere soft function has become avail-
able [62–64], so the code is updated to use the fixed
parameter s2 ¼ �40:6804 from Refs. [62,64]. A feature
of our code is its ability to describe the thrust distribution in
the whole range of thrust values. This is achieved with the
introduction of what we call profile functions, which are
�-dependent factorization scales. In the eþe� annihilation
process there are three relevant scales: hard, jet and soft,
associated to the center of mass energy, the jet mass and the
energy of soft radiation, respectively. The purpose of
�-dependent profile functions for these scales is to

7Throughout this publication NnLL corresponds to the same
order counting as NnLL0 in Ref. [8].
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smoothly interpolate between the peak region where we
must ensure that �i >�QCD, the dijet region where the

summation of large logs is crucial, and the multijet region
where regular perturbation theory is appropriate to de-
scribe the partonic contribution [8]. The major part of the
higher order perturbative uncertainties are directly related
to the arbitrariness of the profile functions, and are esti-
mated by scanning the space of parameters that specify
them. For details on the profile functions and the parameter
scans we refer the reader to the Appendix. We note that our
distribution code was designed forQ values above 22 GeV.

A. Ingredients

The theoretical fixed order expression for the thrust
moments contain no large logarithms, so we might not
expect that the resummation of logarithms in the thrust
spectrum will play a role in the numerical analysis. Wewill
show that there is nevertheless some benefit in accounting
for the resummation of thrust logarithms. This is studied in
Figs. 1 and 2, where for Q ¼ mZ we compare the theoreti-
cal value of moments of the thrust distribution obtained in
fixed order with those obtained including resummation.
(The error bars for the fixed order expansion arise from
varying the renormalization scale � between Q=2 and 2Q
and those for the resummed results arise from our theory
parameter scan method).

In Fig. 1, we show the total hadronic cross section �
from the fixed order �s expansion (blue points with
small uncertainties sitting on the horizontal line) and de-
termined from the integral over the log-resummed distri-
bution with/without renormalon subtractions (red triangles
and green squares). Both expansions are displayed includ-
ing fixed order corrections up to order �sðmZÞ, �2

sðmZÞ and
�3
sðmZÞ, as indicated by the orders 1, 2, 3, respectively. We

immediately notice that the resummed result is not as
effective in reproducing the total cross section as the fixed
order expansion. Predictions that sum large logarithms
have a substantial (perturbative) normalization uncertainty.
On the other hand, as shown in Ref. [8], the resummation
of logarithms combined with the profile function approach
leads to a description of the thrust spectrum that converges
nicely over the whole physical � range when the norm of
the spectrum is divided out, a property not present in the
spectrum of the fixed order expansion.

FIG. 1 (color online). Theoretical computations at various
orders in perturbation theory for the total hadronic cross section
at the Z pole normalized to the Born-level cross section �0. Here
the small blue points correspond to fixed order perturbation
theory, green squares to resummation without renormalon sub-
tractions, and red triangles to resummation with renormalon
subtractions.

FIG. 2 (color online). Theoretical prediction for the first three
moments at the Z pole at various orders in perturbation theory.
The blue circles correspond to fixed order perturbation theory
(normalized with the total hadronic cross section) at Oð�sÞ,
Oð�2

sÞ and Oð�3
sÞ, green squares correspond to resummed pre-

dictions at NLL, NNLL, and N3LL normalized with the total
hadronic cross section, and red triangles correspond to resum-
mation normalized with the norm of the resummed distribution.
For these plots we use �sðmZÞ ¼ 0:114.
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In Fig. 2, the expansions of the partonic moments M̂1,

M̂2, and M̂3 are displayed in the fixed order expansion
(blue circles) and the log-resummed result with either the
fixed order normalization (green squares) or a properly
normalized spectrum (red triangles). We observe that the
fixed order expansion has rather small variations from
scale variation, but shows poor convergence indicating
that its renormalization scale variation underestimates the

perturbative uncertainty. For M̂1 the fixed order and log-
resummed expressions with a common fixed-order normal-
ization (blue circles and green squares) agree well at each
order, indicating that, as expected, large logarithms do not
play a significant role for this moment. On the other hand,
the expansion based on the properly normalized log-
resummed spectrum exhibits excellent convergence, and
also has larger perturbative uncertainties at the lowest
order. In particular, for the red triangles the higher order
results are always within the 1-� uncertainties of the
previous order. The result shows that using the normalized
log-resummed spectrum for thrust, which converges nicely

for all �, also leads to better convergence properties of the
moments. At third order all the fixed order and resummed
partonic moments are consistent with each other. Since the
log-resummed moments exhibit more realistic estimates of
perturbative uncertainties at each order, we will use the
normalized resummed moments for our fit analysis.8

In Fig. 3, we show how the inclusion of various ingre-
dients (fixed order contributions, log resummation, power
corrections, renormalon subtraction) affects the conver-
gence and uncertainty of our theoretical prediction for
the first moment of the thrust distribution as a function of
Q. From these plots we can observe four points: (i) Fixed
order perturbation theory does not converge very well.

FIG. 3 (color online). Theory scan for uncertainties in pure QCD with massless quarks. The panels are fixed order (top-left),
resummation without the nonperturbative correction (top-right), resummation with a nonperturbative function using the MS
scheme for ��1 (bottom-left), resummation with renormalon subtraction and a nonperturbative function in the Rgap scheme for �1

(bottom-right).

8At N3LL in our most complete theory set up the norm of the
distribution and total hadronic cross section are fully compatible
within uncertainties, so it does not matter which is used.
Following Ref. [8], at N3LL we choose to normalize the distri-
bution with the fixed-order total hadronic cross section since it is
faster.
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(ii) Resummation of large logarithms in the distribution,
when normalized with the integral of the resummed distri-
bution, improves convergence for every center of mass
energy. (iii) The inclusion of power corrections has the
effect of a 1=Q-modulated vertical shift on the value of
the first moment. (iv) The subtraction of the renormalon
ambiguity reduces the theoretical uncertainty. This picture
for the first moment is consistent with the results of Ref. [8]
for the thrust distribution.

Another important element of our analysis is that we
perform global fits, simultaneously using data at a wide
range of center of mass energiesQ. This is motivated by the
fact that for eachQ there is a complete degeneracy between
changing�sðmZÞ and changing�1, which can be lifted only
through a global analysis. Figure 4 shows the difference
between the theoretical prediction ofM1 as a function ofQ,
when �sðmZÞ or �1 are varied by �0:001 and �0:1 GeV,
respectively. We see that the effect of a variation in �sðmZÞ
can be compensated with an appropriate variation in�1 at a
given center of mass energy (or in a small Q range). This
degeneracy is broken if we perform a global fit including
the wide range of Q values shown in the figure.
Finally, in Fig. 5 we show �sðmZÞ extracted from

fits to the first moment of the thrust distribution at
three-loop accuracy including sequentially the different
effects our code has implemented: Oð�3

sÞ fixed order,
N3LL resummation, power corrections, renormalon sub-
traction, b-quark mass and QED. The error bars of the first
two points at the left-hand side do not contain an estimate of
uncertainties associated with the power correction. Though
smaller, the resummed result is compatible at the 1-� level
with the fixed order result. The inclusion of the power
correction is the element which has the greatest impact on

�sðmZÞ; for the MS definition of �1 it reduces the central
value by 7%. The subtraction of the renormalon ambiguity
in the Rgap scheme reduces the theoretical uncertainty by a
factor of 3, while b-quark mass and QED effects give
negligible contributions with current uncertainties.

B. Uncertainty analysis

In Fig. 6, we show the result of our theory scan to
determine the perturbative uncertainties. At each order
we carried out 500 fits, with theory parameters randomly

0 50 100 150 200

0.004

0.002

0.002

0.004

Q GeV

M1 Q

s 1

FIG. 4 (color online). Difference between theoretical predic-
tions with default parameters for the first moment as a function
of Q when varying one parameter at a time. The red solid line
corresponds to varying ��sðmZÞ ¼ �0:001 and the blue dashed
lines to varying ��1 ¼ �0:1, with respect to the pure QCD
best-fit values. There is a strong degeneracy of the two parame-
ters in the region Q> 100 GeV, which is obviously broken
when considering values of Q below 70 GeV.

0.115

0.120

0.125

0.130

0.135

s mZ

s mZ from global first moment thrust fits

perturbative error

perturbative error

All errors: s mZ 0.1140 0.0016

O s
3 fixed order

0.1299 0.0038

3LL summation
0.1245 0.0038

Power Correction
0.1156 0.0021

R scheme
0.1142 0.0007 b mass & QED

0.1140 0.0007

FIG. 5 (color online). Evolution of the best-fit values for �sðmZÞ from thrust first moment fits when including various levels of
improvement with respect to fixed order QCD. Only points at the right of the vertical dashed line include nonperturbative effects.
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chosen in the ranges given in Table VIII of the Appendix
(where further details may be found). The left panel of
Fig. 6 shows results with renormalon subtractions using the
Rgap scheme for �1, and the right panel shows results in

the MS scheme without renormalon subtractions. Each
point in the plot represents the result of a single fit. As
described in the Appendix, in order to estimate perturba-
tive uncertainties, we fit an ellipse to the contour of best-fit
points in the �s-2�1 plane, and we interpret this as 1-�
theoretical error ellipse. This is represented by the dashed
lines in Fig. 6. The solid lines represent the combined
(theoretical and experimental) standard error ellipses.
These are obtained by adding the theoretical and experi-
mental error matrices which determined the individual
ellipses. The central values of the fits, collected in
Tables I and II, are determined from the average of the
maximal and minimal values of the theory scan, and are
very close to the central values obtained when running with
our default parameters. The minimal �2 values for these
fits are quoted in Table III as well. The best fit based on our

full code has �2=d:o:f: ¼ 1:325� 0:002 where the range
incorporates the variation from the displayed scan points at
N3LL. The fit results show a substantial reduction of the
theoretical uncertainties with increasing perturbative order.
Removal of the Oð�QCDÞ renormalon improves the pertur-

bative convergence and leads to a reduction of the theo-
retical uncertainties at the highest order by a factor of 2 in
�1, and factor of 3 in �sðmZÞ
To analyze in detail the experimental and the total un-

certainties of our results, we refer now to Fig. 7. Here we
show the error ellipses for our highest order fit, which
includes resummation, power corrections, renormalon sub-
traction, QED and b-quark mass contributions. The green
dotted, blue dashed, and the solid red lines represent the
standard error ellipses for, respectively, experimental,
theoretical, and combined theoretical and experimental
uncertainties. The experimental and theory error ellipses
are defined by ��2 ¼ 1 since we are most interested in
the one-dimensional projection onto �s. The correlation

0.110 0.115 0.120 0.125 0.130
0.4

0.6

0.8

1.0

1.2

1.4

s mZ

2 1

GeV

full results
3LL
2LL

NLL

0.110 0.115 0.120 0.125 0.130
0.4

0.6

0.8

1.0

1.2

1.4

s mZ

2 1

GeV

without renormalon subtractions
3LL
2LL

NLL

FIG. 6 (color online). Distribution of best-fit points in the �sðmZÞ-2�1 and �sðmZÞ-2 ��1 planes. The left panel shows results
including perturbation theory, resummation of the logs, the soft nonperturbative function, and �1 defined in the Rgap scheme with
renormalon subtractions. The right panel shows the same results, but with ��1 defined in the MS scheme, and without renormalon
subtractions. In both panels the dashed lines correspond to an ellipse fit to the contour of the best-fit points to determine the theoretical
uncertainty. The respective total (experimentalþ theoretical) 39% C.L. standard error ellipses are displayed (solid lines), which
correspond to 1-� (68% C.L.) for either one-dimensional projection.

TABLE I. Central values for �sðmZÞ at various orders with
theory uncertainties from the parameter scan (first value in
parentheses), and experimental and hadronic error added in
quadrature (second value in parentheses). The bold N3LL value
is our final result, while values below it show the effect of
leaving out the QED and b-mass corrections.

Order �sðmZÞ (with ��MS
1 ) �sðmZÞ (with �

Rgap
1 )

NLL 0.1173(82)(13) 0.1172(82)(13)

NNLL 0.1159(41)(14) 0.1139(15)(13)

N3LL (full) 0.1153(21)(14) 0:1140ð07Þð14Þ
N3LLðQCDþmbÞ 0.1160(20)(14) 0.1146(07)(14)

N3LLðpure QCDÞ 0.1156(21)(14) 0.1142(07)(14)

TABLE II. Central values for �1 at the reference scales
R� ¼ �� ¼ 2 GeV and for ��1 and at various orders. The
parentheses show theory uncertainties from the parameter
scan, and experimental and hadronic uncertainty added in quad-
rature, respectively. The bold value is our final result, while the
N3LL values below it show the effect of leaving out the QED and
b-mass corrections.

Order ��1 (MS) [GeV] �1 (Rgap) [GeV]

NLL 0.504(157)(45) 0.500(153)(45)

NNLL 0.405(82)(47) 0.413(43)(44)

N3LL(full) 0.318(75)(49) 0:377ð39Þð44Þ
N3LLðQCDþmbÞ 0.310(74)(49) 0.369(34)(44)

N3LLðpure QCDÞ 0.350(67)(49) 0.402(35)(44)
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matrix of the experimental, theory, and total error ellipses
are (i, j ¼ �s, 2�1)

Vij¼
�2

�s
2��s

��1
	��

2��s
��1

	�� 4�2
�1

0
@

1
A;

Vexp
ij ¼ 1:93ð15Þ	10�6 �1:18ð13Þ	10�4 GeV

�1:18ð13Þ	10�4 GeV 0:79ð13Þ	10�2 GeV2

 !
;

Vtheo
ij ¼ 5:56	10�7 1:85	10�5 GeV

1:85	10�5 GeV 5:82	10�3 GeV2

 !
;

Vtot
ij ¼ 2:49ð15Þ	10�6 �0:99ð13Þ	10�4 GeV

�0:99ð13Þ	10�4 GeV 1:37ð13Þ	10�2 GeV2

 !
;

(29)

where the experimental correlation coefficient is signifi-
cant and reads

	exp
�� ¼ �0:96ð14Þ: (30)

Adding the theory scan uncertainties reduces the correla-
tion coefficient in Eq. (30) to

	total
�� ¼ �0:54ð8Þ: (31)

In both Eqs. (30) and (31), the numbers in parentheses
capture the range of values obtained from the theory scan.
From V

exp
ij in Eq. (29) it is possible to extract the experi-

mental uncertainty for �s and �1 and the uncertainty due
to variations of �1 and �s, respectively,

�
exp
�s

¼ ��s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	2

��

q
¼ 0:0004;

�
exp
�1

¼ ��1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	2

��

q
¼ 0:013 GeV;

��1
�s

¼ ��s
j	��j ¼ 0:0014;

��s

�1
¼ ��1

j	��j ¼ 0:044 GeV:

(32)

Figure 7 shows the total uncertainty in our final result
quoted in Eq. (34) below.
The correlation exhibited by the green dotted experi-

mental error ellipse in Fig. 7 is given by the line describing
the semimajor axis

�1

32:82 GeV
¼ 0:1255� �sðmZÞ: (33)

Note that extrapolating this correlation to the extreme
case where we neglect the nonperturbative corrections
(�1 ¼ 0) gives �sðmZÞ ! 0:1255.

C. Effects of QED and the b mass

The experimental correction procedures applied to the
AMY, JADE, SLC, DELPHI and OPAL data sets were
typically designed to eliminate initial state photon radia-
tion, while those of the TASSO, L3 and ALEPH
Collaborations eliminated initial and final state photon
radiation. It is straightforward to test for the effect of these
differences in the fits by using our theory code with QED
effects turned on or off depending on the data set. Using
our N3LL order code in the Rgap scheme we obtain the
central values �sðmZÞ ¼ 0:1143 and �1 ¼ 0:376 GeV.
Comparing to our default results given in Tables I and II,
which are based on the theory code were QED effects are
included for all data sets, we see that the central value for
�s is larger by 0.0003 and the one for �1 is smaller by
0.001 GeV. This shift is substantially smaller than our
perturbative uncertainty. Hence our choice to use the the-
ory code with QED effects included everywhere as the
default for our analysis does not cause an observable bias
regarding experiments which remove final state photons.
By comparing the N3LL (pure massless QCD) and

N3LL (QCDþmb) entries in Tables I and II, we see that

0.112 0.113 0.114 0.115 0.116
0.6

0.7

0.7

0.8

0.8

0.9

s mZ

2 1
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theory
experimental
uncertainty

theory
uncertainty

2 1

FIG. 7 (color online). Experimental ��2 ¼ 1 standard error
ellipse (dotted green) at N3LL accuracy with renormalon sub-
tractions, in the �s-2�1 plane. The dashed blue ellipse repre-
sents the theory uncertainty which is obtained by fitting an
ellipse to the contour of the distribution of the best-fit points.
This ellipse should be interpreted as the 1-� theory uncertainty
for 1 parameter (39% confidence for 2 parameters). The solid red
ellipse represents the total (combined experimental and pertur-
bative) uncertainty ellipse.

TABLE III. Comparison of first moment fit results for analyses

with full results and �1 ¼ �
Rgap
1 , with ��1 and no renormalon

subtractions, without power corrections, and at fixed order
without power corrections or log resummation. The first number
in parentheses corresponds to the theory uncertainty, whereas the
second corresponds to the experimental and hadronic uncertainty
added in quadrature for the first two rows, and experimental
uncertainty for the last two rows.

�sðmZÞ �2=ðdofÞ
N3LL with �

Rgap
1 0.1140(07)(14) 1.33

N3LL with ��MS
1 0.1153(21)(14) 1.33

N3LL no power corr. 0.1236(39)(03) 2.03

Oð�3
s Þ fixed order no power corr. 0.1305(39)(04) 2.52
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including finite b-mass corrections causes a very mild
shift of ’ þ0:0004 to �sðmZÞ, and a somewhat larger shift
of ’ �0:033 GeV to �1. In both cases these shifts are
within the 1-� theory uncertainties. In the N3LL (pure
massless QCD) analysis the b-quark is treated as a mass-
less flavor, hence this analysis differs from that done by
JADE [23] where primary b quarks were removed using
Monte Carlo generators.

D. Final results

As our final result for �sðmZÞ and�1, obtained at N
3LL

order in the Rgap scheme for �1ðR�; ��Þ, including
bottom quark mass and QED corrections we obtain

�sðmZÞ ¼ 0:1140� ð0:0004Þexp � ð0:0013Þhadr
� ð0:0007Þpert;

�1ðR�; ��Þ ¼ 0:377� ð0:013Þexp � ð0:042Þ�sðmZÞ
� ð0:039Þpert GeV;

(34)

where R� ¼ �� ¼ 2 GeV and we quote individual 1-�
uncertainties for each parameter. Here �2=d:o:f: ¼ 1:33.
Equation (34) is the main result of this work.

In Fig. 8, we show the first moment of the thrust distri-
bution as a function of the center of mass energy Q,
including QED and mb corrections. We use here the best-
fit values given in Eq. (34). The band displays the theo-
retical uncertainty and has been determined with a scan on
the parameters included in our theory, as explained in the
Appendix. The fit result is shown in comparison with data
from ALEPH, OPAL, L3, DELPHI, JADE, AMY and
TASSO. Good agreement is observed for all Q values.

It is interesting to compare the result of this analysis
with the result of our earlier fit of thrust tail distributions in
Ref. [8]. This is shown in Fig. 9. Here the red upper shaded
area and corresponding ellipses show the results from fits
to the first moment of the thrust distribution, while the blue
lower shaded area and ellipses show the result from fits of
its tail region. Both analyses show the theory (dashed lines)
and combined theoretical and experimental (solid lines)
standard error ellipses, as well as the ellipses which corre-
spond to ��2 ¼ 2:3 (68% C.L. for a two-parameter fit,
wide-dashed lines). We see that the two analyses are
compatible.

IV. FIXED ORDER ANALYSIS OF M1

It is interesting to compare the result of our best fit with
an analysis where we do not perform resummation in the
thrust distribution, but where power corrections and renor-
malon subtractions are still considered. This is achieved by
setting the scales �H, �S, �J, �ns in our theoretical
prediction all to a common scale ��Q. We use R for
the scale of the renormalon subtractions and renormaliza-
tion group evolved power correction. Finally we will
neglect QED and b-mass corrections in this subsection.
Up to the treatment of power corrections and perturbative
subtractions, the fixed order results used for this analysis
are thus equivalent to those used in Ref. [48].
The OPE formula for the first moment in the Rgap

scheme for this situation is given by
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FIG. 8 (color online). First moment of the thrust distribution as
a function of the center of mass energy Q, using the best-fit
values for �sðmZÞ and �1 in the Rgap scheme as given in
Eq. (34). The blue band represents the perturbative uncertainty
determined by our theory scan. Data is from ALEPH, OPAL, L3,
DELPHI, JADE, AMY and TASSO.
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FIG. 9 (color online). Comparison of �sðmZÞ and �1

determinations from thrust first moment data (red upper right
ellipses) and thrust tail data (blue lower left ellipses). The plot
corresponds to fits with N3LL accuracy and in the Rgap scheme.
The tail fits are performed with our improved code which uses a
new nonsingular two-loop function, and the now known two-
loop soft function. Dashed lines correspond to theory uncertain-
ties, solid lines correspond to ��2 ¼ 1 combined theoretical and
experimental error ellipses, and wide-dashed lines correspond
to ��2 ¼ 2:3 combined error ellipses (corresponding to 1-�
uncertainty in two dimensions).
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M1 ¼ M̂
Rgap
1 ðR;�Þ þ 2�1ðR;�Þ

Q
;

�1ðR;�Þ ¼ �1 þ ��ðR;�Þ � ��ðR�; ��Þ:
(35)

In Eq. (35), the �1 with no arguments is the value deter-
mined by the fits, which is in the Rgap scheme at the

reference scale �� ¼ R� ¼ 2 GeV. Here ��ðR;�Þ is the

running gap parameter, and ��ðR;�Þ � ��ðR�; ��Þ is used
to sum logarithms from ðR�; ��Þ to ðR;�Þ in Eq. (35). The
analytic expression for ��ðR;�Þ � ��ðR�; ��Þ can be found
in Eq. (41) of Ref. [8] (see also Ref. [16]). The perturbative

M̂
Rgap
1 is related to the perturbative MS result by

M̂
Rgap
1 ðR;�Þ ¼ M̂MS

1 ð�Þ þ 2
ðR;�Þ
Q

;


ðR;�Þ ¼ e�ER
X3
i¼1

�sð�Þi
iðR;�Þ;
(36)

where the subtractions terms are [8,16]


1ðR;�Þ ¼ �0:848826LR;


2ðR;�Þ ¼ �0:156279� 0:46663LR � 0:517864L2
R;


3ðR;�Þ ¼ �0:552986� 0:622467LR � 0:777219L2
R

� 0:421261L3
R; (37)

with LR ¼ lnð�=RÞ. In Eq. (36) 
ðR;�Þ cancels the

Oð�QCDÞ renormalon in M̂MS
1 ð�Þ, and it is crucial that

the coupling expansions in both of these objects are done
at the same scale, �sð�Þ, for this cancellation to take place.
The relation to the MS scheme power correction is ��1 ¼
�1 þ 
ðR�; ��Þ, and the OPE in the MS scheme at this
level is

M1 ¼ M̂MS
1 ð�Þ þ 2 ��1

Q
: (38)

In the MS result there are no perturbative renormalon
subtractions (and thus no log resummation related to the

renormalon subtractions) and the parameter ��1 has a�QCD

renormalon ambiguity.
We will perform fits to the experimental data following

the same procedure discussed in the previous section.
Using Eq. (35) we consider two cases, (i) R�Q where
�1 is renormalization group evolved to R and there are no
large logarithms in the renormalon subtractions, and
(ii) fixing R at the reference scale, R ¼ 2 GeV, in which
case large logarithms are present in the renormalon sub-
tractions. We will also consider a third case, (iii), using the

MS OPE of Eq. (38). Results for these fits are shown in
Tables IV and V. For all cases �2=d:o:f: ’ 1:32.

For case (i) we take R���Q, so there are no large
logarithms in the 
ðR;�Þ of Eq. (35), and all large loga-
rithms associated with renormalon subtractions are

summed in ��ðR;�Þ � ��ðR�; ��Þ. Here we estimate the

perturbative uncertainty in �sðmZÞ and �1 by varying the
renormalization scale � and the scale R independently in
the range f2Q;Q=2g. We use one-half the maximum minus
minimum variation as the uncertainty, and the average for
the central value. The results for both �sðmZÞ and �1 are
fully compatible at 1-� to our final results shown in
Eq. (34). The agreement is even closer to the central values
for the fits without QED or b-mass corrections in Tables I
and II, namely �sðmZÞ ¼ 0:1142ð07Þð14Þ and �1 ¼
0:402ð35Þð44Þ. The one difference is that the perturbative
uncertainty for �1 in Table V is a factor of 3 smaller. The
case (i) results in the table also exhibit nice order-by-order
convergence, and if one plots M1 versus Q (analogous to
Fig. 2) the uncertainty bands are entirely contained within
one another. In order to be conservative, we take our
resummation analysis in Eq. (34) as our final results
(with its larger perturbative uncertainty and inclusion of
QED and b-mass corrections).
For case (ii) we take R� 2 GeV and ��Q as typical

values, so there are large logarithms, lnðR=QÞ, in the

ðR;�Þ renormalon subtractions. The central value for
�sðmZÞ at Oð�3

sÞ is again fully compatible with that in
Eq. (34). Here we estimate the perturbative uncertainty in
�sðmZÞ by varying � 2 f2Q;Q=2g and R ¼ 2� 1 GeV.
Due to the large logarithms the perturbative uncertainty in
�sðmZÞ for case (ii), shown in Table IV, is 3 times larger
than for case (i). It is also compatible with the difference
between central values at Oð�2

sÞ and Oð�3
sÞ. To estimate

the uncertainty for �1 we only vary �, which leads to the
rather large error estimate for �1 shown in Table V. The
contrast between the precision of the results in case (i), to

TABLE IV. MS scheme values for �sðmZÞ obtained from
various fixed order analyses. The first value in parentheses is
the uncertainty from higher order perturbative corrections
(obtained by the method described in the text), while the
second value is the combined experimental and hadronization
uncertainty.

Order Oð�2
sÞ Oð�3

sÞ
(i) Rgap R-RGE 0.1159(27)(14) 0.1146(06)(14)

(ii) Rgap FO Subt. 0.1185(63)(15) 0.1138(20)(14)

(iii) MS for ��1 0.1278(124)(19) 0.1186(38)(14)

TABLE V. �1 or
��1 values obtained from fixed order analyses

at various orders. The first value in parentheses is the uncertainty
from higher order perturbative corrections (obtained by the
method described in the text), while the second value is the
combined experimental and hadronization uncertainty.

Order Oð�2
sÞ Oð�3

sÞ
(i) Rgap R-RGE 0.407(8)(45) 0.400(8)(45)

(ii Rgap FO Subt. 0.216(126)(133) 0.359(42)(62)

(iii) MS for ��1 0.388(62)(47) 0.350(54)(44)
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the results in case (ii), illustrates the importance of sum-
ming large logarithms in the renormalon subtractions.

For case (iii), where the ��1 power correction is defined

in MS we do not have renormalon subtractions (and hence
no large logs in subtractions). Due to the poor convergence
of the fixed order prediction for the first moment, seen from
the blue fixed order points in Fig. 2, it is not clear whether
varying � in the range f2Q;Q=2g gives a realistic pertur-
bative uncertainty estimate. Hence we determine the per-
turbative uncertainty for case (iii) in Tables IV and V by
varying� in the range f2Q;Q=2g and multiply the result by
a factor of 2. The perturbative uncertainties for �sðmZÞ are
a factor of 2 larger than in case (ii). The central values for
�sðmZÞ in case (iii) are also larger, but are compatible with
those in case (ii) and Eq. (34) within 1-�.

It is interesting to compare our results to those of
Ref. [48], which also performs a fixed order analysis at
Oð�3

sÞ, and incorporates subtractions based on the disper-
sive model.9 Here the subtractions contain logarithms,
lnð�I=�Þ, where �I � 2 GeV and ��Q, that are not
resummed. From a fit to M1 in thrust they obtained
�sðmZÞ ¼ 0:1166� 0:0015exp � 0:0032th where the first

uncertainty is experimental and the second is theoretical.
Our corresponding result is the one in case (ii), and the
central values and uncertainties for �sðmZÞ are fully com-
patible. The perturbative uncertainty they obtain is a factor
of 1.6 larger than ours. It arises from varying the renor-
malization scale � 2 f2Q;Q=2g, the Oð�2

sÞ Milan factor
M by 20%, and the infrared scale �I ¼ 2� 1 GeV in the
dispersive model. In our analysis there is no precise analog
of the Milan factor because our subtractions and Rgap
scheme for �1 fully account for two and three gluon
infrared effects up to Oð�3

sÞ that are associated to thrust.
Other than this, the difference can be simply attributed to
the differences in subtraction schemes which have an
impact on the � scale uncertainty. Finally, note that we
have implemented the analytic results of Ref. [48] and
confirmed their � and �I uncertainties.

V. JADE DATA SETS

As discussed in Sec. I, our global data set includes thrust
moment results from ALEPH, OPAL, L3, DELPHI, AMY,
TASSO and the JADE data from Ref. [22]. In this section,
we discuss the impact on the results in Secs. III and IV of
replacing the JADE data from Ref. [22] with moment
results from an updated analysis carried out in Ref. [23],
which removes the contributions from primary b �b pair
production and provides in addition measurements at

Q ¼ 14 and 22 GeV. In Fig. 10, we show the data for
M1, including the JADE results from Refs. [22,23]. The
most significant difference occurs at Q ¼ 44 GeV. Our
analysis will treat these data sets on the same footing
without attempting to account for the effect of removing
the b �b’s.
For our analysis here, with theory results at N3LLþ

Oð�3
sÞ, we continue to exclude center of mass energies

Q � 22 GeV as in Sec. III. The dependence of the global
fit result on the data set for M1 is shown in Fig. 11.
Theoretical uncertainties are analyzed again by the scan
method giving the central dots and three inner ellipses,
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FIG. 10 (color online). Experimental data for the first moment
of thrust. The solid line corresponds to the result from the first
row of Table IV, and uses a fixed order code with power
corrections in a renormalon-free scheme, but no resummation
(neither QED nor bottom mass corrections).
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FIG. 11 (color online). Fit results when using ALEPH,
DELPHI, OPAL, L3, AMY, TASSO, but no JADE data (upper
blue ellipse), when also including JADE data from Ref. [22] (red
central ellipse) [our default data set], and when instead including
the JADE data from Ref. [23] (green lower ellipse). The ellipses
here correspond to 1-� for two parameters (68% C.L.).

9On the experimental side, Ref. [48] uses only the new JADE
data from Ref. [23] and OPAL data. In our analysis the new
JADE was excluded, but we utilized a larger data set that
includes ALEPH, OPAL, L3, DELPHI, AMY, TASSO, and older
JADE data. This may have a nonnegligible impact on the out-
come of the comparison.
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while the outer three ellipses show the respective combined
1-� total experimental and theoretical uncertainties. Using
all experimental data but excluding JADE measurements
entirely gives the fit result shown by the upper blue ellipse.
This result is compatible at 1-� with the central red ellipse
which shows our default analysis, using Ref. [22] JADE
M1 measurements. Replacing these two JADE data points
by the four Q> 22 GeV JADE M1 results from Ref. [23]
yields the lower green ellipse (whose center is ’ 1:5-�
from the central ellipse). For this fit the �2=d:o:f: increases
from 1.33 to 1.52 demonstrating that there is less compati-
bility between the data. For this reason, together with the
concern about the impact of removing primary b �b events
with Monte Carlo simulations, we have used only JADE
data from Ref. [22] in our main analysis.

A similar pattern is observed using the fixed order fits of
M1 discussed in Sec. IV. In this case, it is also straightfor-
ward to include the Q ¼ 14, 22 GeV JADE data from
Ref. [23]. If these two points are added to our default
data set (which contains Q ¼ 35 and 45 GeVas the lowest
Q results forM1) then we find �sðmZÞ ¼ 0:1155� 0:0012
and �1 ¼ 0:361� 0:035 GeV with �2=d:o:f: ¼ 1:3. This
is compatible at 1-� with our final pure QCD result
in Table I. If we include the entire set of JADE data
from Ref. [23] instead of those from Ref. [22] then
we find �sðmZÞ ¼ 0:1166� 0:0012 and �1 ¼ 0:306�
0:033 GeVwith �2=d:o:f: ¼ 1:6, very similar to the values
observed for the green lower ellipse in Fig. 11. Hence,
overall the fixed order analysis does not change the com-
parison of fits with the two different JADE data sets.

VI. HIGHER MOMENTANALYSIS

In this section, we consider higher moments, Mn�2,
which have been measured experimentally up to n ¼ 5.
From Eq. (21) we see that these moments have power
corrections / 1=Qk for k � 1. Since for the perturbative

moments we have M̂n=M̂nþ1 ’ 4–9, we estimate that the
1=Q2 power corrections are suppressed by 9�QCD=Q
which varies from 1=8 to 1=44 for the Q values in our
data set, Q � 35 GeV. Hence, for the analysis in this
section, we can safely drop the 1=Q2 and higher power
corrections and use the form

Mn ¼ M̂n þ 2n�1

Q
M̂n�1: (39)

By using our fit results for �sðmZÞ and�1 from Eq. (34)
we can directly make predictions for the momentsM2;3;4;5.

This tests how well the theory does at calculating the

perturbative contributions M̂2;3;4;5. The results for these

moments are shown in Fig. 12 and correspond to
�2=d:o:f: ¼ 1:3, 2.5, 0.8, 1.1 for n ¼ 2, 3, 4, 5 respectively,
indicating that our formalism does quite well at reproduc-
ing these moments. The larger �2=d:o:f: for n ¼ 3 is
related to a quite significant spread in the experimental
data for this moment at Q * 190 GeV. Note that we also

see that the relation Mn=Mnþ1 ’ 4–9 is satisfied by the
experimental moments.
An alternate way to test the higher moments is to per-

form a fit to this data. Since we have excluded the new
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FIG. 12 (color online). Predictions for the higher momentsM2,
M3, M4, M5 using the best fit values from Eq. (34), and our full
N3LLþOð�3

sÞ code in the Rgap scheme, but with QED and
mass effects turned off. The central points use different symbols
for different moments.
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FIG. 13 (color online). One-parameter fits for �sðmZÞ to the
first five moments. We use our full set up with power corrections
and renormalon subtractions, but with QED and mass corrections
turned off. The value of�1 is fixed from Eq. (34). The error bars
include theoretical and experimental errors added in quadrature
(not including uncertainty in �1).
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JADE data in Ref. [23], we do not have a significant data
set at smaller Q values for the higher moments. With our
higher moment data set the degeneracy between �sðmZÞ
and �1 is not broken for n � 2, and one finds very large
experimental errors for a two-parameter fit already at
n ¼ 2. However we can still fit for �sðmZÞ from data for
each individual Mn�2 by fixing the value of �1 to the best
fit value in Eq. (34) from our fit toM1. For this exercise we
use our full N3LLþOð�3

sÞ code, but with QED and mass
effects turned off. The outcome is shown in Fig. 13 and
Table VI. We find only a little dependence of �s on n, and
all values are compatible with the fit to the first moment
within less than 1-�. This again confirms that our value for

�1 and perturbative predictions for M̂n�2 are consistent
with the higher moment data.

In Ref. [48] a two-parameter fit to higher thrust
moments was carried out using OPAL data and the latest
low energy JADE data. For n ¼ 2 to n ¼ 5 the results
increase linearly from �sðmZÞ ¼ 0:1202� ð0:0018Þexp �
ð0:0046Þth to �sðmZÞ ¼ 0:1294� ð0:0027Þexp � ð0:0070Þth
respectively, and the weighted average for the first five
moments of thrust is �sðmZÞ ¼ 0:1208� 0:0018exp �
0:0045th. The results are fully compatible within the un-
certainties, and there is an indication of a trend towards
larger �sðmZÞ extracted from higher moments. In our
analysis we do not observe this trend, but our results should
not be directly compared since we have only performed
a one parameter fit. After further averaging over re-
sults obtained from event shapes other than thrust
Ref. [48] obtained as their final result �sðmZÞ ¼ 0:1153�
0:0017exp � 0:0023th. This is again perfectly compatible

with our result in Eq. (34).

VII. HIGHER POWER CORRECTIONS FROM
CUMULANT MOMENTS

In this section, we use cumulant moments as defined in
Eq. (27) to discuss the presence of higher power correc-
tions and their constraints from experimental data. There
are two types of power corrections that are relevant for the
cumulants, those defined rigorously by QCD matrix ele-
ments which come from the leading thrust factorization
theorem,�0

n, and those from our simple parametrization of
higher order power corrections in Eq. (15),�n;j�1. For the

latter a systematic matching onto QCD matrix elements
has not been carried out and the corresponding perturbative
coefficients have not been determined.
For the second cumulant M0

2 both types of power
correction contribute to the leading 1=Q2 term in the
combination

~� 0
2 ¼ �0

2 þ �M1;1�1;1: (40)

Without a calculation of the perturbative coefficient �M1;1

we cannot argue that either one dominates, and hence we
keep both of them. In terms of this parameter the OPE with
its leading power correction for the second cumulant
becomes simply

M0
2 ¼ M̂0

2 þ
4 ~�0

2

Q2
; (41)

where M̂0
2 is computed from our leading order factorization

theorem, see Eq. (11). For the third cumulantM0
3 the power

correction from the leading thrust factorization theorem is
1=Q3, while that from the subleading factorization theorem
is 1=Q2, so

M0
3 ¼ M̂0

3 þ
6 �M2;1�1;1

Q2
þ 8�0

3

Q3
; (42)

where we keep both of these power corrections.
For our analysis we assume that the perturbative coef-

ficients �M1;1 and �M2;1 get contributions at tree level, and

hence that their logarithmic dependence on Q is �s sup-
pressed. Thus for fits to M0

2 and M0
3 we consider the three

parameters ~�0
2, �M2;1�1;1, and �0

3. Our theoretical expec-

tations are that ð�0
nÞ1=n ��QCD and ð�1;1Þ1=2 � ð�0

nÞ1=n.
Since most of the experimental collaborations provide

measurements only for moments we computed the cumu-
lants using Eq. (3). To propagate the errors to the nth
cumulant one needs the correlations between the first n
moments, both statistical and systematical. Following ex-
perimental procedures we estimate the statistical correla-
tion matrix from Monte Carlo simulations. These matrices
are provided in Ref. [65] for Q ¼ 14, 91.3, 206.6 GeV.10

The computation of these matrices does not depend on the
simulation of the detector and hence can be a priory
employed on the data provided by any experimental col-
laboration. It was found that statistical correlation matrices
depend very mildly on the center of mass energy, and our
approach is to use the matrix computed at 14 GeV for
Q< 60 GeV, the one computed at 91.3 for 60 GeV �
Q< 120 GeV and the one at 206.6 GeV for Q �
120 GeV. The systematic correlation matrix for the mo-
ments is estimated using the minimal overlap model based
on the systematic uncertainties, and then converted to
uncertainties for the cumulants. We use this method even
for the few cases in which experimental collaborations
provide uncertainties for the cumulants directly, since we

TABLE VI. Numerical results for �s from one-parameter fits
to the Mn moments. The second column gives the central values
for �sðmZÞ, the third and fourth show the theoretical and
experimental errors, respectively. Since �1 was fixed for this
analysis we do not quote a hadronization error.

n �sðmZÞ �th½�s� �exp½�s� �2=dof

2 0.1149 0.0009 0.0005 1.24

3 0.1157 0.0009 0.0005 1.87

4 0.1151 0.0011 0.0010 0.39

5 0.1156 0.0015 0.0010 0.23

10We thank Christoph Pahl for providing details on the use of
correlation matrices for moments.
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want to treat all data on the same footing. In these cases we
have checked that the results are very similar.

To some extent the prescription we employ lies in be-
tween two extreme situations: (a) moments are completely
uncorrelated, and (b) cumulants are completely uncorre-
lated. Situation (a) corresponds to the naive assumption
that the moments are independent. Situation (b) is moti-
vated by considering that properties like the location of
the peak of the distribution (�M1), the width of the peak
(�M0

2), etc. are independent pieces of information. By
assuming moments are uncorrelated one overestimates
the errors of the cumulants. This would translate into larger
experimental errors for our fit results and very small
�2=d:o:f. Assuming that cumulants are uncorrelated indu-
ces very strong positive correlations between moments,
which then leads to small uncertainties for the cumulants,
especially for the variance, and larger �2=d:o:f: values.
With the adopted prescription we use one finds a weaker
positive correlation among moments, which translates into
a situation between these two extremes.11

For our analysis we use our highest order code as
described in Sec. III, and take the value �sðmZÞ ¼
0:1142 obtained in our fit to the first moment data with
this code (see Table I). Since we are analyzing cumulants
M0

n�2 the value of �1 is not required, and there is no

distinction between having this parameter in MS or the
Rgap scheme. Hence in order to fit for higher power
corrections we use our purely perturbative code in the

MS scheme. Thus all of the power correction parameters

extracted in this section are in the MS scheme. The per-
turbative error is estimated as in Sec. III, by a 500 point
scan of theory parameters (see the Appendix).

Before we fit for the higher power corrections, we will
check how well our factorization theorem predicts the
experimental cumulants using a simple exponential model
for the nonperturbative soft function (the model with only
one coefficient c0 ¼ 1 from Refs. [8,55]). This model has
higher power corrections that are determined by its one
parameter �1 : �0

2 ¼ �2
1=4, �

0
3 ¼ �3

1=8, �
0
4¼3�4

1=32,
�0

5 ¼ 3�5
1=32. Results are shown in Fig. 14, where good

agreement between theory and data is observed.
For the M0

n in Fig. 14 we also observe that M0
nþ1=M

0
n �

1=10, so the ðnþ 1Þth order cumulant is generically one
order of magnitude smaller than the nth order cumulant.

Next we will fit for the power correction parameters ~�0
2,

�M2;1�1;1, and �0
3. For this analysis we neglect QED and

b-mass effects. To facilitate this we consider the differ-
ence between the experimental cumulants M0

n and the

perturbative theoretical cumulants M̂0
n, namely M0

2 � M̂0
2

and M0
3 � M̂0

3. From Eqs. (41) and (42) these differences

are determined entirely by the power correction parameters
we wish to fit. The results are shown in Table VII and the

upper two panels of Fig. 15. From the M0
2 � M̂0

2 fit a fairly

precise result is obtained for ð ~�0
2Þ1=2. Its central value of

740 MeV is compatible with �2�QCD, and hence agrees

with naive dimensional analysis. Interestingly, we have
checked that including a constant and 1=Q term in the
second cumulant fit one finds that their coefficients
are compatible with zero, in support of the theoretically
expected 1=Q2 dependence.

For the fit to M0
3 � M̂0

3 there is a strong correlation

between�0
3 and

�M2;1�1;1 even though they occur at differ-

ent orders in 1=Q. Since the �2 is quadratic in these two
parameters we can determine the linear combinations that
exactly diagonalize their correlation matrix,

�2 �
�
6 �M2;1

0:07

�
�1;1

4
þ ð0:3105 GeV�1Þ�0

3;

�3 � �0
3 � ð0:3105 GeVÞ

�
6 �M2;1

0:07

�
�1;1

4
:

(43)

Note that these combinations arise solely from experi-
mental data. We have presented the coefficients of
these combinations grouping together a factor of

50 100 150 200

10 3

10 4

10 5

10 6

Q GeV

2
'

3
'

4
'

5
'

FIG. 14 (color online). Prediction of cumulants using our
best-fit values for �sðmZÞ and �1 from the fit to the first
thrust moment. The band includes only the theoretical uncer-
tainty from the random scan. The theory prediction includes
QED and mass corrections, in contrast to our numerical
analysis which has no QED and b-mass effects and uses our
default model, which translates into the following values for
higher nonperturbative power corrections: �0

2 ¼ �2
1=4, �

0
3 ¼

�3
1=8, �

0
4 ¼ 3�4

1=32, �
0
5 ¼ 3�5

1=32.

11One might also construct the correlation matrices using the
statistical and systematic errors from the thrust distributions
themselves. Bins in distributions are statistically independent
and systematic correlations are estimated using the minimal
overlap model. Unfortunately this can introduce biases, and we
thank Christoph Pahl for clarifying this point.
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ð6 �M2;1=0:07Þ, which is close to unity if 6 �M2;1 ’ M̂1.

The results in Table VII exhibit a reasonable uncertainty
for �2, but a large uncertainty for �3. Hence, at this
time it is not possible to determine the original parame-
ters �0

3 and �M2;1�1;1 independently. As in the previous

case, the fit does not exhibit any evidence for a 1=Q
correction, confirming the theoretical prediction for this
cumulant.

In Fig. 15, we also show results for cumulant differences

M0
n � M̂0

n versus Q for n ¼ 4 and n ¼ 5. In all cases

n ¼ 2, 3, 4, 5 the perturbative cumulants M̂0
n are the largest

component of the cumulant moments M0
n, as can be veri-

fied by the reduction of the values by a factor of 2–3 in
Fig. 15 compared to the values in Fig. 14. We also observe
an order of magnitude suppression between the ðnþ 1Þth
and nth terms, ðM0

nþ1 � M̂0
nþ1Þ=ðM0

n � M̂0
nÞ � 1=10. For

n ¼ 4, 5 the OPE formula in Eq. (27) involves both
2n�0

n=Q
n terms and terms with nontrivial perturbative

coefficients: ð2n �Mn�1;1�1;1Þ=Q2 þ . . . (where here the el-
lipses are terms at 1=Q3 and beyond). If the former domi-
nated we would expect a suppression by 2�QCD=Q for the

ðnþ 1Þth versus nth term. The observed suppression by
1=10 is less strong and is instead consistent with domina-
tion by the 1=Q2 power correction terms in the n ¼ 4, 5
cumulant differences. This would imply ½ðnþ 1Þ �Mn;1�=
½n �Mn�1;1� � 1=10 and could in principle be verified by

an explicit computation of these coefficients. In Fig. 15,
we show fits to a 1=Q2 power correction, which are essen-
tially dominated by the lowest energy point at the Z pole.
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FIG. 15 (color online). Determination of power corrections from fits to data. On the vertical axes we display the nth experimental
cumulant with the perturbative part subtractedM0

n � M̂0
n. The error bars shown are experimental (statistical and systematic combined)

added in quadrature with perturbative errors from the random scan over the profile parameters. The top-left panel shows the fit to
~�0
2=Q

2, and the top-right panel shows the fit to �M2;1�1;1=Q
2 and �0

3=Q
3 through the linear combinations in �2;3. The bottom two

panels for n ¼ 4, 5 show a simple fit to �M3;1�1;1 and �M4;1�1;1 taking �0
4 ¼ �0

5 ¼ 0.

TABLE VII. Determination of power corrections from fits to
M0

2 and M0
3. All values in the table are in GeV. Columns two to

four correspond to the central value, theoretical uncertainty, and
experimental uncertainty, respectively (the latter includes both
statistical and systematic errors added in quadrature). The values
displayed correspond to the linear combinations in Eq. (43),
which for M0

3 diagonalize the experimental error matrix.

Central �th �exp
�2

dof

ð ~�0
2Þ1=2 0.74 0.09 0.11 0.72

ð�2Þ1=2 1.21 0.10 0.22
0.93ð�3Þ1=3 �2:61 0.15 1.51
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The results are
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 �M3;1�1;1

q
¼ 0:20� 0:08 from fits to M0

4

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 �M4;1�1;1

q
¼ 0:07� 0:06 from fits to M0

5. These

values agree with our expectation of the �1=10 suppres-
sion between the two �Mn;1 perturbative coefficients.

In this section, we have determined the 1=Q2 power

correction parameter ~�0
2 with 25% accuracy, and find it

is 3:8� different from zero. For the higher moments there
are important contributions from a �1;1=Q

2 power correc-

tion, which appears to even dominate for n � 4. Clearly
experimental data supports the pattern expected from the
OPE relation in Eq. (27).

VIII. CONCLUSIONS

In this work, we have used a full �-distribution factori-
zation formula developed by the authors in a previous
publication [8] to study moments and cumulant moments
(cumulants) of the thrust distribution. Perturbatively it
incorporates Oð�3

sÞ matrix elements and nonsingular
terms, a resummation of large logarithms, lnk�, to N3LL
accuracy, and the leading QED and bottom mass correc-
tions. It also describes the dominant nonperturbative cor-
rections, is free of the leading renormalon ambiguity, and
sums up large logs appearing in perturbative renormalon
subtractions.

Theoretically there are no large logs in the perturbative
expression of the thrust moments, and when normalized in
the same way the perturbative result from the full � code
with resummation agrees very well with the fixed order
results. Nevertheless, when the code is properly self-
normalized it significantly improves the order-by-order
perturbative convergence towards the Oð�3

sÞ result. In
particular, the results remain within the perturbative error
band of the previous order, in contrast to what is observed
using fixed order expressions. This lends support to the
theoretical uncertainty analysis from the code with
resummation.

From fits to the first moment of the thrust distribution,
M1, we find the results for �sðmZÞ and the leading power
correction parameter�1 given in Eq. (34). They are in nice
agreement with values from the fit to the tail of the thrust
distribution in Ref. [8]. The moment results have larger
experimental uncertainties, and these dominate over theo-
retical uncertainties, in contrast with the situation in the tail
region analysis of Ref. [8]. Repeating the M1 fit using a
fixed order code with no ln� resummation, but still retain-
ing the summation of large logs in the perturbative renor-
malon subtractions, yields fully compatible results for
�sðmZÞ and �1.

Using a Fourier-space operator product expansion
we have parametrized higher order power corrections
which are beyond the leading factorization formula, and
analyzed the OPE both for moments Mn and cumulants
M0

n. In the moments Mn the �1=Q power correction from
the leading factorization theorem enters with a perturbative

suppression in its coefficient, and dominates numerically
over higher 1=Q corrections. In contrast, the cumulants
M0

n�2 depend on higher order cumulant power corrections
�0

n=Q
n from the leading factorization theorem, and are

independent of �1=Q; . . . ;�0
n�1=Q

n�1. Data on these cu-

mulants appear to indicate that they receive important
contributions from a 1=Q2 power correction that enters
at a level beyond the leading thrust factorization theorem.
Thus the OPE reveals that cumulants are appealing quan-
tities for exploring subleading power corrections. We per-
formed a fit to the second cumulant and determined a

nonvanishing ~�0
2=Q

2 power correction with a precision
of 25%.
It would be interesting to extend the analysis performed

here, based on OPE formulas related to factorization the-
orems, to other event-shape moments and cumulants.
Examples of interest include the heavy jet mass event
shape [7,66–69], angularities [70,71], as well as more
exclusive event shapes like jet broadening [72–76]. Other
event-shape moments were considered at Oð�3

sÞ in
Ref. [48] in the context of the dispersive model for the
1=Q power corrections.
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APPENDIX: THEORY PARAMETER SCAN

In this appendix we describe the method we use to
estimate uncertainties in our analysis. We will briefly
review the profile functions and the theoretical parameters
which determine the theory uncertainty. We will also
describe the scan over those parameters and the effects
they have on the fit results.
The profile functions used in Ref. [8], to which we

refer for a more extensive description, are �-dependent
factorization scales which allow us to smoothly interpolate
between the theoretical constraints the hard, jet and
soft scale must obey in different regions of the thrust
distribution:

PRECISION THRUST CUMULANT MOMENTS AT N3LL PHYSICAL REVIEW D 86, 094002 (2012)

094002-19



ð1Þpeak:�H�Q; �J�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�QCDQ

q
; �S*�QCD;

ð2Þtail:�H�Q; �J�Q
ffiffiffi
�

p
; �S�Q�;

ð3Þfar tail:�H¼�J¼�S�Q:

(A1)

The factorization theorem derived for thrust in Ref. [8] is
formally invariant under Oð1Þ changes of the profile func-
tion scales. The residual dependence on the choice of
profile functions constitutes one part of the theoretical
uncertainties and provides a method to estimate higher
order perturbative corrections. We adopt a set of six
parameters that can be varied in our theory error analysis
which encode this residual freedom while still satisfying
the constraints in Eq. (A1).

For the profile function at the hard scale, we adopt

�H ¼ eHQ; (A2)

where eH is a free parameter which we vary from 1=2 to 2
in our theory error analysis.

For the soft profile function we use the form

�Sð�Þ ¼

8>>><
>>>:
�0 þ b

2t1
�2; 0 � � � t1;

b�þ d; t1 � � � t2;

�H � b
1�2t2

�
1
2 � �

�
2
; t2 � � � 1

2 :

(A3)

Here, t1 and t2 represent the borders between the peak, tail
and far-tail regions. �0 is the value of �S at � ¼ 0. Since
the thrust value where the peak region ends and the tail
region begins is Q dependent, t1 ’ 1=Q, we define the
Q-independent parameter n1 by t1 ¼ n1=ðQ=1 GeVÞ. To
ensure that �Sð�Þ is a smooth function, the quadratic and
linear forms are joined by demanding continuity of the
function and its first derivative at � ¼ t1 and � ¼ t2,
which fixes b ¼ 2ð�H ��0Þ=ðt2 � t1 þ 1

2Þ and d ¼
½�0ðt2 þ 1

2Þ ��Ht1�=ðt2 � t1 þ 1
2Þ. In our theory error

analysis we vary the free parameters n1, t2 and �0.
The profile function for the jet scale is determined by the

natural relation between the hard, jet, and soft scales

�Jð�Þ ¼
�
1þ eJ

�
1

2
� �

�
2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�H�Sð�Þ
q

: (A4)

The term involving the freeOð1Þ parameter eJ implements
a modification to this relation and vanishes in the multijet
region where � ¼ 1=2. We use a variation of eJ to include
the effect of such modifications in our estimation of the
theoretical uncertainties.

In our theory error analysis we vary �ns to account for
our ignorance on the resummation of logarithms of � in the
nonsingular corrections. We consider three possibilities

�nsð�Þ ¼

8>>><
>>>:
�H; ns ¼ 1;

�Jð�Þ; ns ¼ 0;
1
2 ½�Jð�Þ þ�Sð�Þ�; ns ¼ �1:

(A5)

The complete set of theoretical parameters and the their
ranges of variation are summarized in Table VIII.
Besides the parameters associated with the profile func-

tions, the other theory parameters are �cusp
3 , j3, s3, and �2;3.

The cusp anomalous dimension at Oð�4
sÞ, �cusp

3 is esti-

mated via Padé approximants and we assign a 200%
uncertainty to this approximation. j3 and s3 represent the
nonlogarithmic three-loop term in the position-space
hemisphere jet and soft functions, respectively. These two
parameters and their variations are estimated via Padé
approximations. The last two parameters �2 and �3 allow
us to include the statistical errors in the numerical deter-
mination of the nonsingular distribution at two (from
EVENT2 [77,78]) and three (from EERAD3 [2]) loops,
respectively.
At each order we randomly scan the parameter space

summarized in Table VIII with a uniform measure, extract-
ing 500 points. Each of the points in Fig. 6 is the result of
the fit performed with a single choice of a point in the
parameter space. The contour of the area in the �s-2�1

plane covered by the fit results at each given order is fitted
to an ellipse, which is interpreted as a 1-� theoretical
uncertainty. The ellipse is determined as follows: in a first
step we determine the outermost points on the �s-2�1

plane (defined by the outermost convex polygon). We
then perform a fit to these points using a �2 which is the
square of the formula for an ellipse,

�2
ellipse ¼

X
i

½að�i � �0Þ2 þ 4bð�i ��0Þ2

þ 2cð�i � �0Þð�i ��0Þ � 1�2: (A6)

Here the sum is over the outermost points. The coordinates
for the center of the ellipse, �0 and �0, are fixed ahead of
time to the average of the maximum and minimum values
of �sðmZÞ and�1 in the scan. We then minimize �2

ellipse to

determine the parameters a, b, c of the ellipse.

TABLE VIII. Theory parameters relevant for estimating the
theory uncertainty, their default values and range of values used
for the theory scan during the fit procedure.

Parameter Default value Range of values

�0 2 GeV 1.5 to 2.5 GeV

n1 5 2 to 8

t2 0.25 0.20 to 0.30

eJ 0 �1, 0, 1
eH 1 0.5 to 2.0

ns 0 �1, 0, 1
�
cusp
3 1553.06 �1553:06 to þ4659:18

j3 0 �3000 to þ3000
s3 0 �500 to þ500
�2 0 �1, 0, 1
�3 0 �1, 0, 1
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One could further express the coefficients a and b by

a ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4c2��2��2

p

2��2
;

b ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4c2��2��2

p

8��2
;

(A7)

where �� and �� are just the half of the difference of
the maximum and minimum values of �sðmZÞ and �1,
respectively, on the ellipse. Setting �� and �� to the
corresponding values obtained from the fit points of the
scan (i.e., the perturbative errors) the coefficients a and
b can be fixed and only c remains as a free parameter.
The minimization of �2

ellipse in Eq. (A6) gives almost

identical results regardless of whether or not Eqs. (A7)
are imposed.

In Fig. 16, we vary a single parameter of Table VIII
keeping all the others fixed at their respective default

values, and we plot the change of �sðmZÞ and �1 as
compared to the values obtained from the first moment
thrust fit with the default setup. In the figure, the dark
shaded blue area represents a variation where the pa-
rameter is larger than the default value, and the light
shaded green one where the parameter is smaller. The
largest uncertainty is associated with the variation of
the hard scale, eH. The value of �sðmZÞ is similarly
affected by the uncertainty of the profile function
parameters, the statistical error from the numerical
determination of the three-loop nonsingular distribution
from EERAD3 [2], and by the parameter j3. It is rather
insensitive to the variation of the four-loop cusp anoma-
lous dimension and the statistical error from the deter-
mination of the two-loop nonsingular contribution to
the thrust distribution. The value of �1 is mainly
sensitive to the profile function parameters and �3, but
is quite insensitive to j3.

[1] S. Kluth, Rep. Prog. Phys. 69, 1771 (2006).
[2] A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover,

and G. Heinrich, Phys. Rev. Lett. 99, 132002 (2007).
[3] A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover,

and G. Heinrich, J. High Energy Phys. 12 (2007) 094.
[4] S. Weinzierl, Phys. Rev. Lett. 101, 162001 (2008).
[5] S. Weinzierl, J. High Energy Phys. 06 (2009) 041.
[6] T. Becher and M.D. Schwartz, J. High Energy Phys. 07

(2008) 034.

[7] Y.-T. Chien and M.D. Schwartz, J. High Energy Phys. 08
(2010) 058.

[8] R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu, and I.W.
Stewart, Phys. Rev. D 83, 074021 (2011).

[9] E. Farhi, Phys. Rev. Lett. 39, 1587 (1977).
[10] C.W. Bauer, S. Fleming, and M. E. Luke, Phys. Rev. D 63,

014006 (2001).
[11] C.W. Bauer, S. Fleming, D. Pirjol, and I.W. Stewart,

Phys. Rev. D 63, 114020 (2001).

s3

j3

2

3

0

n1

t2

eJ

eH

ns

3
cusp

0.0003 0.0002 0.0001 0.0001 0.0002
0

2

4

6

8

10

12

s mZ

s3

j3

2

3

0

n1

t2

eJ

eH

ns

3
cusp

0.04 0.03 0.02 0.01 0.01 0.02
0

2

4

6

8

10

12

1 GeV

FIG. 16 (color online). Impact on parameters of the M1 fit from variations of the best-fit values for �sðmZÞ and �1 values in the
ranges given in Table VIII. The dark shaded blue regions represent values of the parameters larger than their default values, the light
shaded green regions where the parameters are smaller than their default values.

PRECISION THRUST CUMULANT MOMENTS AT N3LL PHYSICAL REVIEW D 86, 094002 (2012)

094002-21

http://dx.doi.org/10.1088/0034-4885/69/6/R04
http://dx.doi.org/10.1103/PhysRevLett.99.132002
http://dx.doi.org/10.1088/1126-6708/2007/12/094
http://dx.doi.org/10.1103/PhysRevLett.101.162001
http://dx.doi.org/10.1088/1126-6708/2009/06/041
http://dx.doi.org/10.1088/1126-6708/2008/07/034
http://dx.doi.org/10.1088/1126-6708/2008/07/034
http://dx.doi.org/10.1007/JHEP08(2010)058
http://dx.doi.org/10.1007/JHEP08(2010)058
http://dx.doi.org/10.1103/PhysRevD.83.074021
http://dx.doi.org/10.1103/PhysRevLett.39.1587
http://dx.doi.org/10.1103/PhysRevD.63.014006
http://dx.doi.org/10.1103/PhysRevD.63.014006
http://dx.doi.org/10.1103/PhysRevD.63.114020


[12] C.W. Bauer and I.W. Stewart, Phys. Lett. B 516, 134
(2001).

[13] C.W. Bauer, D. Pirjol, and I.W. Stewart, Phys. Rev. D 65,
054022 (2002).

[14] C.W. Bauer, S. Fleming, D. Pirjol, I. Z. Rothstein, and
I.W. Stewart, Phys. Rev. D 66, 014017 (2002).

[15] A. H. Hoang and I.W. Stewart, Phys. Lett. B 660, 483
(2008).

[16] A. H. Hoang and S. Kluth, arXiv:0806.3852.
[17] A. H. Hoang, A. Jain, I. Scimemi, and I.W. Stewart, Phys.

Rev. Lett. 101, 151602 (2008).
[18] A. H. Hoang, A. Jain, I. Scimemi, and I.W. Stewart, Phys.

Rev. D 82, 011501 (2010).
[19] S. Bethke, Eur. Phys. J. C 64, 689 (2009).
[20] S. Bethke (unpublished).
[21] S. Bethke, A. H. Hoang, S. Kluth, J. Schieck, I.W. Stewart

et al., arXiv:1110.0016.
[22] P. A. Movilla Fernandez, O. Biebel, S. Bethke, S. Kluth,

and P. Pfeifenschneider (JADE Collaboration), Eur. Phys.
J. C 1, 461 (1998).

[23] C. Pahl, S. Bethke, S. Kluth, and J. Schieck (JADE
Collaboration), Eur. Phys. J. C 60, 181 (2009).

[24] G. Abbiendi (OPAL Collaboration), Eur. Phys. J. C 40,
287 (2005).

[25] K. Ackerstaff et al. (OPAL Collaboration), Z. Phys. C 75,
193 (1997).

[26] A. Heister (ALEPH Collaboration), Eur. Phys. J. C 35, 457
(2004).

[27] J. Abdallah et al. (DELPHI Collaboration), Eur. Phys. J. C
29, 285 (2003).

[28] J. Abdallah (DELPHI Collaboration), Eur. Phys. J. C 37, 1
(2004).

[29] P. Abreu et al. (DELPHI Collaboration), Phys. Lett. B 456,
322 (1999).

[30] M. Acciarri et al. (L3 Collaboration), Phys. Lett. B 489, 65
(2000).

[31] P. Achard et al. (L3 Collaboration), Phys. Rep. 399, 71
(2004).

[32] W. Braunschweig et al. (TASSO Collaboration), Z. Phys.
C 47, 187 (1990).

[33] Y. K. Li et al. (AMY Collaboration), Phys. Rev. D 41,
2675 (1990).

[34] A. Gehrmann-De Ridder, T. Gehrmann, E. Glover, and G.
Heinrich, J. High Energy Phys. 05 (2009) 106.

[35] S. Weinzierl, Phys. Rev. D 80, 094018 (2009).
[36] Y. L. Dokshitzer and B. R. Webber, Phys. Lett. B 352, 451

(1995).
[37] R. Akhoury and V. I. Zakharov, Phys. Lett. B 357, 646

(1995).
[38] R. Akhoury and V. I. Zakharov, Nucl. Phys. B465, 295

(1996).
[39] P. Nason and M.H. Seymour, Nucl. Phys. B454, 291

(1995).
[40] G. P. Korchemsky and G. Sterman, Nucl. Phys. B437, 415

(1995).
[41] M. Beneke, Phys. Rep. 317, 1 (1999).
[42] E. Gardi, J. High Energy Phys. 04 (2000) 030.
[43] Y. L. Dokshitzer, G. Marchesini, and B. R. Webber, Nucl.

Phys. B469, 93 (1996).
[44] Y. L. Dokshitzer, A. Lucenti, G. Marchesini, and G.

Salam, J. High Energy Phys. 05 (1998) 003.

[45] E. Gardi and G. Grunberg, J. High Energy Phys. 11 (1999)
016.

[46] O. Biebel, Phys. Rep. 340, 165 (2001).
[47] C. Pahl, S. Bethke, O. Biebel, S. Kluth, and J. Schieck,

Eur. Phys. J. C 64, 533 (2009).
[48] T. Gehrmann, M. Jaquier, and G. Luisoni, Eur. Phys. J. C

67, 57 (2010).
[49] Y. L. Dokshitzer, A. Lucenti, G. Marchesini, and G.

Salam, Nucl. Phys. B511, 396 (1998).
[50] Y. L. Dokshitzer and B. Webber, Phys. Lett. B 404, 321

(1997).
[51] C. Lee and G. Sterman, arXiv:hep-ph/0603066.
[52] C. Lee and G. Sterman, Phys. Rev. D 75, 014022 (2007).
[53] G. P. Korchemsky and G. Sterman, Nucl. Phys. B555, 335

(1999).
[54] G. P. Korchemsky and S. Tafat, J. High Energy Phys. 10

(2000) 010.
[55] Z. Ligeti, I.W. Stewart, and F. J. Tackmann, Phys. Rev. D

78, 114014 (2008).
[56] K. S.M. Lee and I.W. Stewart, Nucl. Phys. B721, 325

(2005).
[57] C.W. Bauer, M. E. Luke, and T. Mannel, Phys. Rev. D 68,

094001 (2003).
[58] C.W. Bauer, M. Luke, and T. Mannel, Phys. Lett. B 543,

261 (2002).
[59] A. K. Leibovich, Z. Ligeti, and M.B. Wise, Phys. Lett. B

539, 242 (2002).
[60] S.W. Bosch, M. Neubert, and G. Paz, J. High Energy

Phys. 11 (2004) 073.
[61] M. Beneke, F. Campanario, T. Mannel, and B. Pecjak, J.

High Energy Phys. 06 (2005) 071.
[62] R. Kelley, M.D. Schwartz, R.M. Schabinger, and H.X.

Zhu, Phys. Rev. D 84, 045022 (2011).
[63] A. Hornig, C. Lee, I.W. Stewart, J. R. Walsh, and S.

Zuberi, J. High Energy Phys. 08 (2011) 054.
[64] P. F. Monni, T. Gehrmann, and G. Luisoni, J. High Energy

Phys. 08 (2011) 010.
[65] C. Pahl, Ph.D. thesis, TU Munich, 2007.
[66] L. Clavelli, Phys. Lett. 85B, 111 (1979).
[67] T. Chandramohan and L. Clavelli, Nucl. Phys. B184, 365

(1981).
[68] L. Clavelli and D. Wyler, Phys. Lett. 103B, 383 (1981).
[69] S. Catani, G. Turnock, and B. Webber, Phys. Lett. B 272,

368 (1991).
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