Search for a W^\pm or Techni-ρ Decaying into WZ in pp Collisions at $\sqrt{s}=7\text{ TeV}$

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>Chatrchyan, S. et al. “Search for a W^\pm or Techni-ρ Decaying into WZ in pp Collisions at $\sqrt{s}=7\text{ TeV}$.” Physical Review Letters 109.14 (2012).</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.109.141801</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://hdl.handle.net/1721.1/76280</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution 3.0</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by/3.0/</td>
</tr>
</tbody>
</table>
Search for a W' or Techni-ρ Decaying into WZ in pp Collisions at $\sqrt{s}=7$ TeV

S. Chatrchyan et al.*
(CMS Collaboration)
(Received 3 June 2012; published 2 October 2012)

A search is performed in pp collisions at $\sqrt{s}=7$ TeV for exotic particles decaying via WZ to final states with electrons and muons. The data sample corresponds to an integrated luminosity of approximately 5 fb$^{-1}$. No significant excess is observed in the data above the expected standard model background. Upper bounds at 95% confidence level are set on the production cross section of the W' boson described by the sequential standard model and on the W' WZ coupling. W' bosons with masses below 1143 GeV are excluded. Limits are also set in the context of low-scale technicolor models, under a range of assumptions concerning the model parameters.

DOI: 10.1103/PhysRevLett.109.141801

PACS numbers: 13.85.Rm, 12.60.Cn, 14.80.Rt, 14.80.Tt

The standard model (SM) of particle physics has passed many rigorous tests, and its predictions have often been matched by experimental data with amazing precision. However, it is widely accepted that the SM cannot be the ultimate theory of fundamental particles and their interactions since it has a number of shortcomings; e.g., it fails to incorporate gravity and has no explanation for the dominance of matter over antimatter in the Universe. Various extensions of the SM have been proposed to address these problems and to explain the mechanism of electroweak symmetry breaking. Many of these models predict the existence of a new heavy charged gauge boson, generically known as W', that decays into a pair of W and Z bosons [1–6]. Previous W' searches have typically interpreted their results in terms of the sequential standard model (SSM) [7–12], a simple extension of the SM in which the couplings of the W' to fermions are identical to those of the W. Many of these searches have been conducted in leptonic final states and assume that the $W' \rightarrow WZ$ decay mode is suppressed. Searches for exotic particles that decay into WZ pairs are thus complementary to searches in the leptonic channels. Moreover, there are other models in which the W' couplings to SM fermions are suppressed, giving rise to a fermiophobic W' with an enhanced coupling to W and Z bosons [13,14]. It is therefore important to search for W' bosons also in the WZ final state.

Another model predicting a new heavy boson decaying into WZ is technicolor (TC): a gauge theory modeled on QCD with no elementary scalar particles [15,16]. TC provides a dynamical explanation of electroweak symmetry breaking by generating masses of the W and Z bosons through the binding energy of techni-fermions. Furthermore, it predicts a series of techni-hadrons that are bound states of the new strong interaction. By analogy with QCD, the techni-hadrons with $I^G(J^{PC})=1^-(0^{-0})$, $1^+(1^{-})$, and $1^+(1^{-+})$ are called π_{TC}, ρ_{TC}, and a_{TC}, respectively. In low-scale technicolor (LSTC) [17,18], the lightest techni-hadrons are expected to have masses below 700 GeV, with the charged ρ_{TC} and a_{TC} able to decay to WZ boson pairs. Since these two states are expected to be nearly mass-degenerate [18], they would appear as a single feature in the WZ invariant mass spectrum, and we hereafter refer to them collectively as ρ_{TC}. The relationship between the masses of ρ_{TC} and π_{TC}, $M(\rho_{TC})$ and $M(\pi_{TC})$, significantly affects the ρ_{TC} branching fractions [19]. If $M(\rho_{TC})<2M(\pi_{TC})$, the decay $\rho_{TC} \rightarrow \pi_{TC}+W$ dominates, such that the branching fraction $B(\rho_{TC} \rightarrow WZ) < 10\%$. However, if this decay is kinematically inaccessible, $B(\rho_{TC} \rightarrow WZ)$ approaches 100%.

This Letter presents a search for new particles decaying via a WZ pair with $W \rightarrow e\nu$ and $Z \rightarrow \ell\ell$ in the final state, where $\ell = e, \mu$. The results are interpreted in the context of a SSM W' boson and a LSTC ρ_{TC} particle. A previous search in this channel performed by the D0 experiment excludes W' bosons with masses between 188 and 520 GeV at 95% confidence level (C.L.) [9]. Their result also excludes ρ_{TC} between 208 and 409 GeV at 95% C.L., under the assumption that $M(\rho_{TC}) < M(\pi_{TC}) + M(W)$. The analysis presented here considers the case where the relations between parameters are those of Ref. [19], $M(\pi_{TC}) = \frac{3}{4} M(\rho_{TC}) - 25$ GeV, and also investigates the results of varying the ρ_{TC} and π_{TC} masses.

This study uses data corresponding to an integrated luminosity of 4.98 ± 0.11 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=7$ TeV, recorded by the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) in 2011. The central feature of the apparatus is a superconducting solenoid, of 6 m internal diameter, providing a field of 3.8 T. Inside the magnet coil are the silicon pixel and strip tracker, the lead tungstate crystal electromagnetic calorimeter, and the brass-scintillator hadron calorimeter.
Muons are measured in gas-ionization detectors embedded in the steel return yoke. In addition to the barrel and end cap detectors, CMS has extensive forward calorimetry. The trigger system, composed of a custom hardware layer feeding into a commercial processor farm, reduces the event rate to approximately 300 Hz for storage and further analysis. A detailed description of the CMS apparatus may be found elsewhere [20].

The $WZ \rightarrow 3\ell + \nu$ decay under study is characterized by a pair of same-flavor, opposite-charge, isolated leptons with high transverse momentum (p_T), having an invariant mass consistent with that of the Z boson, along with a third, high-p_T, isolated lepton, and missing transverse energy (E_T^{miss}) associated with the escaping neutrino. Other sources of events with three leptons, genuine or misidentified, constitute the background, and can be grouped into the following classes: (1) The irreducible SM WZ background, (2) Nonresonant events with no genuine Z boson in the final state, including top pair ($t\bar{t}$), multijet, $W + jet$, $W\gamma$, and $WW + jet$ production. Only the first of these makes a significant background contribution, and the others are therefore not considered in this analysis. (3) Events with a genuine Z boson decaying to leptons and a third misidentified or nonisolated lepton that is reconstructed as isolated. These events include $Z + jets$ (both light and heavy flavor) and $Z\gamma$ processes. (4) Events with a genuine Z boson decaying to leptons and a third genuine isolated lepton, dominated by $ZZ \rightarrow 4\ell$ decays in which one of the four leptons is undetected. Although irreducible, this contribution is small because of the low ZZ production cross section and dilepton decay branching fraction.

The background was modeled using samples produced with a full GEANT4 [21] simulation of the CMS detector. The primary SM background arises from the $WZ \rightarrow 3\ell + \nu$ process, which was generated using the MADGRAPH5.1 [22] generator, interfaced to PYTHIA 6.422 [23] for parton showering, hadronization, and simulation of the underlying event. The CTEQ6L1 [24] parton distribution functions (PDFs) were used with PYTHIA tune $Z2$ [25]. Higher-order effects were estimated using next-to-leading-order (NLO) K-factor corrections, obtained using MCFM 6.1 [26]. The other background processes were also generated with MADGRAPH in combination with PYTHIA, with the exception of the ZZ process, which was generated using POWHEG 1.1 [27]. The signal was simulated using PYTHIA 6.422 with mass-dependent next-to-next-to-leading-order cross sections obtained using the simulation code FEWZ 2.0 [28]. Characteristic signal widths are in the range 50–150 GeV for the W' and 50–70 GeV for the p_{TC} masses examined. These are dominated by the detector resolution, as the natural widths are approximately 10 and 2 GeV, respectively.

Candidate events were triggered using a double-electron or double-muon requirement, with p_T thresholds of 17 and 8 GeV, respectively, for the highest-p_T and second-highest-p_T leptons. In the offline selection, events were required to have at least three reconstructed leptons within the tracking acceptance of $|\eta| < 2.5$ (2.4) for electrons (muons), where $\eta = -\ln[\tan(\theta/2)]$, and θ is the polar angle with respect to the counterclockwise proton beam. To reduce background from jets misidentified as leptons, all lepton candidates were required to satisfy a series of identification and isolation criteria. In calculating isolation variables, the track momenta and energy deposits, excluding those associated with the lepton itself, were summed in a cone of $\Delta R < 0.3$ around the lepton direction, where $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$, and divided by the lepton transverse momentum. These sums were corrected for additional proton-proton interactions in each bunch crossing (pileup) using the fast jet energy density technique [29,30]. For simulated samples, pileup was modeled by superimposing generated minimum-bias interactions onto simulated events, weighted such that the interaction multiplicity agreed with the luminosity profile of the data set used. An additional scale factor (equal to one within 5%) derived from “tag-and-probe” [31] studies was applied to simulated events to correct for differences in lepton
selection efficiency measured in recorded and simulated event samples.

Z boson candidates were reconstructed from pairs of opposite-sign, same-flavor leptons with the highest and second-highest lepton p_T greater than 20 and 10 GeV, respectively, and with an invariant mass between 60 and 120 GeV. In events where more than one such pair was found, the one with invariant mass closest to the nominal Z mass was selected. If four leptons compatible with two distinct Z candidates were present, the event was rejected in order to suppress ZZ background. The candidate for the W boson decay product was required to pass tighter isolation and identification requirements. If multiple lepton candidates existed, the highest-p_T remaining lepton, with p_T greater than 20 GeV, was chosen. Finally, candidate events were required to have $E_T^{miss} > 30$ GeV, as measured with a particle-flow algorithm [32], in order to discriminate against $Z +$ jets events with high-p_T jets misidentified as leptons and against $Z\gamma$ events with converted photons.

As the momentum component of the neutrino along the beam direction is unknown, the invariant mass of WZ candidates cannot be uniquely determined. However, by assuming the W to have its nominal mass, the value of the neutrino longitudinal momentum is constrained to one of the two solutions of a quadratic equation. Owing to detector resolution effects, the reconstructed transverse mass was found to lie above the invariant W mass, $M(W)$, in 20% of events, leading to complex solutions for the neutrino longitudinal momentum. In these cases, a real solution was recovered by setting $M(W)$ equal to the measured transverse mass. This results in two identical solutions for the neutrino longitudinal momentum. In simulated events with two unique solutions, the smaller-magnitude solution was found to be correct in approximately 75% of the cases, and this solution was therefore chosen for all events. The observed invariant mass distribution of WZ candidates, $M(WZ)$, is shown on the upper panel of Fig. 1.

In order to optimize the expected upper limit on the signal cross section, an additional selection requirement was applied on the scalar sum of the transverse momenta of the charged leptons coming from the W and Z bosons (L_T). For each W'/\rhoTC mass hypothesis considered, an optimized WZ mass search window and a minimum L_T requirement were jointly determined to give the best expected limit. The chosen L_T and mass-window requirements are listed in Table I, and the WZ invariant mass after applying the L_T requirement for the W' mass point at 600 GeV is shown on the lower panel of Fig. 1. There is no excess observed in the data above the expected standard model background.

As a cross-check of the simulation, the $Z +$ jets and $t\bar{t}$ backgrounds were estimated from the data by measuring the efficiencies for genuine and misidentified leptons to pass the isolation criteria and applying those efficiencies to a sample of events passing all requirements except for isolation. The total background result agrees with the numbers from simulation, and the uncertainties assigned to the $Z +$ jets and $t\bar{t}$ contributions when determining limits were based on the uncertainties in the estimates from data.

Systematic uncertainties affecting the product of acceptance, reconstruction, and identification efficiencies for the final-state objects were determined from simulation. These include uncertainties stemming from lepton and E_T^{miss} energy scales and resolutions, NLO effects, and pileup simulation. Following the recommendations of the PDF4LHC group [33], PDF and α_s variations of the MSTW2008 [34], CTEQ6.6 [35], and NNPDF2.0 [36] PDF sets were taken

Table I

Minimum L_T requirements and search windows for each W'/\rhoTC mass point along with the number of expected background events, observed events, and signal efficiency. Indicated uncertainties are statistical and systematic combined in quadrature.

<table>
<thead>
<tr>
<th>$M(W'/\rhoTC)$ (GeV)</th>
<th>L_T (GeV)</th>
<th>WZ Mass-Window (GeV)</th>
<th>N_{BG}^{MC}</th>
<th>Data</th>
<th>ϵ_{sig} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0</td>
<td>190–210</td>
<td>50 ± 9</td>
<td>52</td>
<td>8.0 ± 0.4</td>
</tr>
<tr>
<td>250</td>
<td>150</td>
<td>230–270</td>
<td>34 ± 6</td>
<td>40</td>
<td>8.8 ± 0.4</td>
</tr>
<tr>
<td>300</td>
<td>160</td>
<td>280–320</td>
<td>24 ± 5</td>
<td>23</td>
<td>18 ± 1</td>
</tr>
<tr>
<td>400</td>
<td>220</td>
<td>360–440</td>
<td>13 ± 2</td>
<td>7</td>
<td>29 ± 1</td>
</tr>
<tr>
<td>500</td>
<td>230</td>
<td>450–550</td>
<td>8 ± 2</td>
<td>9</td>
<td>41 ± 1</td>
</tr>
<tr>
<td>600</td>
<td>290</td>
<td>540–660</td>
<td>3.4 ± 0.7</td>
<td>2</td>
<td>45 ± 1</td>
</tr>
<tr>
<td>700</td>
<td>360</td>
<td>620–780</td>
<td>1.8 ± 0.4</td>
<td>2</td>
<td>48 ± 1</td>
</tr>
<tr>
<td>800</td>
<td>400</td>
<td>710–890</td>
<td>1.0 ± 0.2</td>
<td>1</td>
<td>52 ± 2</td>
</tr>
<tr>
<td>900</td>
<td>400</td>
<td>760–1040</td>
<td>1.0 ± 0.2</td>
<td>0</td>
<td>61 ± 2</td>
</tr>
<tr>
<td>1000</td>
<td>400</td>
<td>820–1180</td>
<td>0.8 ± 0.2</td>
<td>0</td>
<td>65 ± 2</td>
</tr>
<tr>
<td>1100</td>
<td>400</td>
<td>890–1310</td>
<td>0.6 ± 0.1</td>
<td>0</td>
<td>63 ± 1</td>
</tr>
<tr>
<td>1200</td>
<td>400</td>
<td>940–1460</td>
<td>0.4 ± 0.1</td>
<td>0</td>
<td>58 ± 1</td>
</tr>
<tr>
<td>1300</td>
<td>400</td>
<td>1020–1580</td>
<td>0.3 ± 0.1</td>
<td>0</td>
<td>50 ± 1</td>
</tr>
<tr>
<td>1400</td>
<td>400</td>
<td>1110–1690</td>
<td>0.18 ± 0.05</td>
<td>0</td>
<td>36 ± 1</td>
</tr>
<tr>
<td>1500</td>
<td>400</td>
<td>1200–1800</td>
<td>0.13 ± 0.04</td>
<td>0</td>
<td>30 ± 1</td>
</tr>
</tbody>
</table>
into account and their impact on the signal cross sections estimated.

The uncertainty on the background simulation is dominated by the 10% uncertainty due to NLO K-factor corrections for the WZ component. Cross section uncertainties of 7.5% for ZZ [26], 13% for Zγ [37], and 17% for WZ [38] were also taken into account, along with a 2.2% uncertainty on the integrated luminosity [39].

Exclusion limits on the production cross section \(\sigma(pp \rightarrow W'p_{TC} \rightarrow WZ) \times B(WZ \rightarrow 3\ell\nu)\) were determined by comparing the number of observed events with the numbers of expected signal and background events in each search window. The calculations were performed using the RooStats implementation [40] of the CLs statistic. The event counts and efficiencies are shown in Table I. We note that the efficiency drops at high \(W'\) mass because of the isolation requirement as the leptons from the boosted Z boson become more collimated. We interpolate between mass points where we have simulated the signal to establish mass limits for each model.

In the SSM, these limits allow the exclusion of \(W'\) bosons with masses below 1143 GeV (Fig. 2). For LSTC, with the chosen parameters \(M(\pi_{TC}) = \frac{3}{4}M(\rho_{TC}) - 25\) GeV, \(\rho_{TC}\) hadrons with masses between 167 and 687 GeV are excluded (see Fig. 3). Figure 3 also shows LSTC limits determined as a function of the \(\rho_{TC}\) and \(\pi_{TC}\) masses. The lower mass limits are obtained by extrapolating below 200 GeV. For the parameters chosen by the D0 experiment, \(M(\rho_{TC}) < M(\pi_{TC}) + M(W)\), more stringent limits are obtained, excluding the range 180 to 938 GeV for \(M(\rho_{TC})\). It can be seen that the LSTC interpretation of a deviation from the SM observed by the CDF experiment in the \(W + \) jets channel [41], with proposed
FIG. 4 (color online). Upper limit at 95% C.L. on the strength of the W' WZ coupling normalized to the SSM prediction, as a function of the W' mass. The 1σ and 2σ combined statistical and systematic expected variation is shown as green (dark) and yellow (light) bands, respectively. PDF uncertainties on the theoretical cross section are not included.

performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes and acknowledge support from FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and RFBR (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); and DOE and NSF (USA).
University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
Universidad Autónoma de Madrid, Madrid, Spain
Universidad de Oviedo, Oviedo, Spain
Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
CERN, European Organization for Nuclear Research, Geneva, Switzerland
Paul Scherrer Institut, Villigen, Switzerland
Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
Universität Zürich, Zurich, Switzerland
National Central University, Chung-Li, Taiwan
National Taiwan University (NTU), Taipei, Taiwan
Cukurova University, Adana, Turkey
Middle East Technical University, Physics Department, Ankara, Turkey
Bogazici University, Istanbul, Turkey
Istanbul Technical University, Istanbul, Turkey
National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
University of Bristol, Bristol, United Kingdom
Rutherford Appleton Laboratory, Didcot, United Kingdom
Imperial College, London, United Kingdom
Brunel University, Uxbridge, United Kingdom
Baylor University, Waco, Texas, USA
The University of Alabama, Tuscaloosa, Alabama, USA
Boston University, Boston, Massachusetts, USA
Brown University, Providence, Rhode Island, USA
University of California, Davis, Davis, California, USA
University of California, Los Angeles, Los Angeles, California, USA
University of California, Riverside, Riverside, California, USA
University of California, San Diego, La Jolla, California, USA
University of California, Santa Barbara, Santa Barbara, California, USA
California Institute of Technology, Pasadena, California, USA
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
University of Colorado at Boulder, Boulder, Colorado, USA
Cornell University, Ithaca, New York, USA
Fairfield University, Fairfield, Connecticut, USA
Fermi National Accelerator Laboratory, Batavia, Illinois, USA
University of Florida, Gainesville, Florida, USA
Florida International University, Miami, Florida, USA
Florida State University, Tallahassee, Florida, USA
Florida Institute of Technology, Melbourne, Florida, USA
University of Illinois at Chicago (UIC), Chicago, Illinois, USA
The University of Iowa, Iowa City, Iowa, USA
Johns Hopkins University, Baltimore, Maryland, USA
The University of Kansas, Lawrence, Kansas, USA
Kansas State University, Manhattan, Kansas, USA
Lawrence Livermore National Laboratory, Livermore, California, USA
University of Maryland, College Park, Maryland, USA
Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
University of Minnesota, Minneapolis, Minnesota, USA
University of Mississippi, University, Mississippi, USA
University of Nebraska-Lincoln, Lincoln, Nebraska, USA
State University of New York at Buffalo, Buffalo, New York, USA
Northeastern University, Boston, Massachusetts, USA
Northwestern University, Evanston, Illinois, USA
University of Notre Dame, Notre Dame, Indiana, USA
The Ohio State University, Columbus, Ohio, USA
Princeton University, Princeton, New Jersey, USA
University of Puerto Rico, Mayaguez, USA
Purdue University, West Lafayette, Indiana, USA
Purdue University Calumet, Hammond, Indiana, USA
Rice University, Houston, Texas, USA
University of Rochester, Rochester, New York, USA
The Rockefeller University, New York, USA

Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA

University of Tennessee, Knoxville, Tennessee, USA

Texas A&M University, College Station, Texas, USA

Texas Tech University, Lubbock, Texas, USA

Vanderbilt University, Nashville, Tennessee, USA

University of Virginia, Charlottesville, Virginia, USA

Wayne State University, Detroit, Michigan, USA

University of Wisconsin, Madison, Wisconsin, USA

aDeceased.
bAlso at Vienna University of Technology, Vienna, Austria.

cAlso at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
dAlso at Universidade Federal do ABC, Santo Andre, Brazil.
eAlso at California Institute of Technology, Pasadena, CA, USA.
fAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
gAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.
hAlso at Suez Canal University, Suez, Egypt.
iAlso at Zewail City of Science and Technology, Zewail, Egypt.
jAlso at Cairo University, Cairo, Egypt.
kAlso at Fayoum University, El-Fayoum, Egypt.
lAlso at Ain Shams University, Cairo, Egypt.
mAlso at Soltan Institute for Nuclear Studies, Warsaw, Poland.
nAlso at Université de Haute-Alsace, Mulhouse, France.
oAlso at Moscow State University, Moscow, Russia.
pAlso at Brandenburg University of Technology, Cottbus, Germany.
qAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
rAlso at Eötvös Loránd University, Budapest, Hungary.
sAlso at Tata Institute of Fundamental Research—HECR, Mumbai, India.
tAlso at University of Visva-Bharati, Santiniketan, India.
uAlso at Sharif University of Technology, Tehran, Iran.
vAlso at Isfahan University of Technology, Isfahan, Iran.
wAlso at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
xAlso at Facoltà Ingegneria Università di Roma, Roma, Italy.
yAlso at Università della Basilicata, Potenza, Italy.
zAlso at Università degli Studi Guglielmo Marconi, Roma, Italy.
aaAlso at Università degli studi di Siena, Siena, Italy.
bbAlso at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania.
cAlso at Faculty of Physics of University of Belgrade, Belgrade, Serbia.
ddAlso at University of Florida, Gainesville, FL, USA.
eAlso at University of California, Los Angeles, Los Angeles, CA, USA.
ffAlso at Scuola Normale e Sezione dell' INFN, Pisa, Italy.
ghAlso at INFN Sezione di Roma, Università di Roma “La Sapienza,” Roma, Italy.
hhAlso at University of Athens, Athens, Greece.
iiAlso at Rutherford Appleton Laboratory, Didcot, United Kingdom.
jjAlso at The University of Kansas, Lawrence, KS, USA.
kkAlso at Paul Scherrer Institut, Villigen, Switzerland.
nlAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia.
mmAlso at Gaziosmanpasa University, Tokat, Turkey.
nnAlso at Adiyaman University, Adiyaman, Turkey.
oooAlso at Izmir Institute of Technology, Izmir, Turkey.
ppAlso at The University of Iowa, Iowa City, IA, USA.
qqAlso at Mersin University, Mersin, Turkey.
rrAlso at Ozyegin University, Istanbul, Turkey.
ssAlso at Kafkas University, Kars, Turkey.
ttAlso at Suleyman Demirel University, Isparta, Turkey.
Also at Ege University, Izmir, Turkey.
Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
Also at INFN Sezione di Perugia, Università di Perugia, Perugia, Italy.
Also at University of Sydney, Sydney, Australia.
Also at Utah Valley University, Orem, UT, USA.
Also at Institute for Nuclear Research, Moscow, Russia.
Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
Also at Argonne National Laboratory, Argonne, IL, USA.
Also at Erzincan University, Erzincan, Turkey.
Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.
Also at Kyungpook National University, Daegu, Korea.