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Abstract

Electromagnetic plasma waves in the ion cyclotron range of frequencies (ICRF) are
routinely used in magnetic fusion experiments to heat plasmas and drive currents.
However, many experiments have revealed that wave energy losses in the plasma
edge and at the wall are significant, and detected that the acceleration of ions into
the walls due to the formation of radio-frequency (RF) sheaths is one of the root
causes of this problem. Since the RF-enhanced sheaths have many undesirable effects,
such as impurity production and hot spot generation, a predictive numerical tool is
required to quantitatively evaluate these effects with complicated boundary shapes
of tokamaks taken into account.

In this thesis the numerical code that solves self-consistent RF sheath-plasma
interactions in the scrape-off layer for ICRF heating is developed based on a nonlinear
finite element technique and is applied to various problems in the one-dimensional
(1D) and two-dimensional (2D) domains corresponding to simplified models for the
poloidal plane of a tokamak. The present code solves for plasma waves based on
the cold plasma model subject to the sheath boundary condition, in which the most
important physics that happens in the sheath is captured without using the field
quantities in the sheath.

Using the developed finite element code, several new properties of the RF sheath-
plasma interactions are discovered. First, it is found in the 1D domain that multiple
roots can be present due to the resonance of the propagating slow wave and its
nonlinear interaction with the sheath. Second, sheath-plasma waves are identified
in a 2D slab geometry, and it is proved in conjunction with an electrostatic 2D
sheath mode analysis that the sheath-plasma wave only appears in the vicinity of
the sheath surface if the plasma density is greater than the lower hybrid density, and
its wavelength depends on various parameters. Third, as a consequence of the self-
consistent interaction between the propagating slow wave and the sheath, it is shown



that the electric field distribution pattern in the plasma smoothly varies along the
magnetic field lines between the conducting-wall and quasi-insulating limits.

In the numerical analysis employing the 2D domain whose scale is equivalent to
the Alcator C-Mod device, it is demonstrated that the calculated sheath potential
can reach the order of kV, which is sufficient to yield enhanced sputtering at the wall.
In addition, it is shown that the sheath potential in the close vicinity of the antenna
current strap can be insensitive to the direction of the background magnetic field
in the RF sheath dominated regime. Further, it is found from a series of nonlinear
calculations that the sheath potential sensitively varies depending on the plasma
density and electron temperature, which is consistent with the scaling derived from
the Child-Langmuir law and the definition of the RF sheath potential.

Lastly, a new finite element approach, which is named the finite element wave-
packet method, is developed for the purpose of solving for multiscale plasma waves
in the tokamak poloidal plane accurately with reasonable computational cost. This
method is established by combining the advantages of the finite element and spec-
tral methods, so that important properties in the finite element method, such as
the sparsity of the global matrix and the ease in satisfying the boundary conditions,
are retained. The present scheme is applied to some illustrative 1D multiscale prob-
lems, and its accuracy improvement is demonstrated through comparisons with the
conventional finite element method.
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Errata Sheet 

This errata sheet contains corrections of errors in the doctoral thesis. 

Page 18 
16 lines down from the top of the page: The numerator should be (bnc11E11) 4 

because ell depends on plasma density. Therefore, replace the evaluation of V0 

with Vo"' (bnc11E11) 4 / (n~Te)· 
Page 50 

Equation (2.97): dn should be replaced with dv. 

Pages 66, 67, 69, and 70 
Equations (3.25), (3.26), (3.33), (3.39), and (3.43): Nis should be replaced with 
-s 

Ni. 

Pages 67, 68, 69, and 180 

Equations (3.31), (3.32), (3.35), (3.41), and (B.3): [Nf NJ N2 J should be re­

placed with [ Nis NJ N2] in order not to be confused with the definition of Nis 
in Equation (3.21). 

Page 130 
Equation ( 4.17): Insert c11 into the numerator, i.e., 

Tr C Tr C (bnc11E11) 4 

VO"' shVsh"' 2 T. 
ne0 e 

Page 137 
Insert the following sentences at the end of the second sentence: "Note that 
although ell depends on plasma density, c11E11 remains approximately constant 
when plasma density is varied at fixed antenna current, because the parallel 
component of Equation (2.10) implies that lextll "'c11E11. Therefore, the rectified 
sheath potential Vo can be evaluated as Vo"' (n~Te)-1 ." 

Page 180 
Add the following sentence to make the definition of the coefficients A;(m) and 
B7(m) more clear: "The coefficients A;(m) and ... the element e(m), and their 
values are zero at the other grid nodes." 

Errata - p.1 



Acknowledgments

This thesis work could not have happened without the support of a number of people.

First of all, I would like to thank the staff and graduate students in the PSFC at

MIT for their collaboration and cooperation. I am deeply grateful to Paul Bonoli, my

thesis reader, for his all thoughtful support, not only relating to research, but also

for various affairs which cannot be mentioned in a word. He has been kind enough

to entirely read this thesis and provide me with valuable feedback. My deepest

appreciation also goes to John Wright, my thesis reader, for his great support in

running the rfSOL code on Loki and NERSC. I would never have been able to conduct

high performance simulation without his deep knowledge of the computer field. I am

indebted to Jeff Freidberg, my thesis supervisor, for giving me a thorough education

on plasma physics and valuable comments on my research. It has become a cherished

memory that Jeff Freidberg generously organized a group study for preparation of the

qualifying exams. I cordially would like to express my gratitude to Ron Parker for the

time that he spent answering my many questions when I took his courses. His lecture

notes of plasma physics and electrodynamics will serve as a valuable reference for

many years to come. Special thanks to Antoine Julien Cerfon and Roark Marsh for

tutoring me in the basics of plasma physics as teaching assistants. Their assistance

was indeed invaluable when I struggled to understand the material in the plasma

physics course.

Soon after I passed the qualifying exams, my research was directed to the simula-

tion of RF sheath-plasma interactions. My heartfelt appreciation goes to Jim Myra

and Dan D’Ippolito at Lodestar Research Corporation whose teaching, comments,

and suggestions about RF sheath physics were inestimable value for my study. They

were always kind enough to answer many of my trivial questions in detail by e-mail,

and in particular, it was a great experience for me to visit them in Boulder and have

intensive discussions with them. I am very honored that I could have an opportunity

to collaborate with them in the course of my doctoral research, and it is surely my



great pleasure to continue collaboration in this exciting research area in the future.

It is also very important to mention that I have greatly profited from the experts in

the finite element method. I would particularly like to express my sincere gratitude to

Klaus-Jürgen Bathe who made an insightful comment related to the development of

the finite element wave-packet method. At the early stage of the rfSOL development,

Atsushi Fukuyama kindly invited me into his office at Kyoto University and generously

gave me valuable materials. I acknowledge my former supervisor Takahiko Tanahashi,

who made enormous contributions to my basic knowledge of the finite element method

when I was a graduate student at Keio University.

The more I learn plasma physics and finite element techniques, the more I realize

how little I know about them. I am lucky enough that I could find these challenging

research areas and meet many great friends, colleagues, and collaborators through

twelve years of my research life.

Lastly, I would like to thank my wife Saiko Kohno for her moral support and

warm encouragement while I prepared the thesis. It is with much pleasure that I

could share many invaluable moments with her at MIT.



Contents

1 Introduction 1

1.1 Sustainable Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Practical Solutions to the Energy Problem . . . . . . . . . . . . . . . 2

1.2.1 Possible Primary Source of Energy after 100 Years . . . . . . . 2

1.2.2 Sustainability of Nuclear Electricity Generation . . . . . . . . 4

1.3 Overview and Prospects for Fusion Energy . . . . . . . . . . . . . . . 6

1.4 Ion Cyclotron Heating of a Tokamak Plasma . . . . . . . . . . . . . . 8

1.5 Radio-Frequency Sheaths . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6 Previous Studies on RF Sheath Simulation . . . . . . . . . . . . . . . 14

1.7 Thesis Outline and Summary of Results . . . . . . . . . . . . . . . . 16

2 Theory of Plasma Waves and RF Sheath Physics 21

2.1 Prologue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Validity of Using a Cold Plasma Model . . . . . . . . . . . . . . . . . 22

2.3 Cold Plasma Formulation in the SOL . . . . . . . . . . . . . . . . . . 23

2.4 Fast and Slow Waves in the ICRF . . . . . . . . . . . . . . . . . . . . 26

2.4.1 FW and SW Dispersion Relations . . . . . . . . . . . . . . . . 28

2.4.2 Electrostatic Dispersion Relation . . . . . . . . . . . . . . . . 28

2.4.3 FW and SW Polarizations . . . . . . . . . . . . . . . . . . . . 29

2.4.4 FW and SW Resonances and Cut-Offs . . . . . . . . . . . . . 30

2.5 Necessity of Introducing the Collisional Effect . . . . . . . . . . . . . 31

i



2.6 A Condition for Sheath Formation . . . . . . . . . . . . . . . . . . . 33

2.7 Derivation of the Sheath Boundary Condition . . . . . . . . . . . . . 35

2.7.1 Sheath Boundary Condition for a Flat Wall . . . . . . . . . . 36

2.7.2 Electrostatic Approximation . . . . . . . . . . . . . . . . . . . 43

2.7.3 Verification with a Curved Wall . . . . . . . . . . . . . . . . . 44

2.8 Evaluation of Sheath Width . . . . . . . . . . . . . . . . . . . . . . . 47

2.8.1 Sheath Width for V0 ∼ VB . . . . . . . . . . . . . . . . . . . . 48

2.8.2 Sheath Width for V0 ∼ Vsh . . . . . . . . . . . . . . . . . . . . 50

2.8.3 Approximate Expression for the Sheath Width . . . . . . . . . 51

2.9 Absorbing Boundary Condition . . . . . . . . . . . . . . . . . . . . . 52

3 Development of the rfSOL Code 55

3.1 Prologue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Finite Element Discretizations . . . . . . . . . . . . . . . . . . . . . . 57

3.2.1 Discretization of Maxwell’s Equation . . . . . . . . . . . . . . 58

3.2.2 Discretization of the Antenna Current . . . . . . . . . . . . . 63

3.2.3 Discretization of the Sheath Boundary Condition Imposed on

a Flat Wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2.4 Discretization of the Sheath Boundary Condition Imposed on

a Curved Wall . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3 Newton-Raphson Method . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4 Parallel Computation Using MUMPS . . . . . . . . . . . . . . . . . . 73

3.4.1 General Information on MUMPS and Code Implementation . 73

3.4.2 Precautions for Use . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5 Code Verification in 1D Geometry . . . . . . . . . . . . . . . . . . . . 77

3.5.1 Analytical Solution for Constant n0 and B0 in a 1D Domain . 77

3.5.2 Comparison between the Analytical and Numerical Solutions . 82

3.5.3 Lower Hybrid Resonance in a Varying n0 Field . . . . . . . . . 86

3.5.4 Thick-Sheath Limit . . . . . . . . . . . . . . . . . . . . . . . . 88

ii



3.6 Computational Performance . . . . . . . . . . . . . . . . . . . . . . . 92

4 Numerical Simulation of RF Sheath-Plasma Interactions 95

4.1 Prologue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2 Propagating SW and Sheath Interaction in 1D Geometry . . . . . . . 96

4.3 Multiple Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4 Sheath-Plasma Waves in 2D Slab Geometry . . . . . . . . . . . . . . 105

4.4.1 Numerical Analysis of the RF Sheath Interaction for Constant

n0 and B0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.4.2 Electrostatic 2D Sheath Mode Analysis . . . . . . . . . . . . . 112

4.4.3 Numerical Analysis of the RF Sheath Interaction for Constant

n0 and Varying B0 . . . . . . . . . . . . . . . . . . . . . . . . 119

4.5 Nonlinear Sheath-Plasma Interactions in 2D Slab Geometry . . . . . 120

4.6 RF Sheath-Plasma Interactions in an Alcator C-Mod Scale Device . . 130

5 Development of the Finite Element Wave-Packet Method 141

5.1 Prologue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.2 Finite Element Wave-Packet Approach . . . . . . . . . . . . . . . . . 144

5.2.1 Foundation of the Numerical Method . . . . . . . . . . . . . . 144

5.2.2 Linear, Quadratic, and Hermitian Wave-Packet Interpolation

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.2.3 Imposing the Boundary Conditions . . . . . . . . . . . . . . . 151

5.3 A Required Condition in ν . . . . . . . . . . . . . . . . . . . . . . . . 154

5.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.4.1 Wave Propagation through Different Media . . . . . . . . . . . 156

5.4.2 Airy-Type Equation . . . . . . . . . . . . . . . . . . . . . . . 157

5.4.3 Wasow Equation . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

iii



6 Conclusions and Future Work 167

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.2 Future Work on the rfSOL Code . . . . . . . . . . . . . . . . . . . . . 169

6.2.1 Developmental Direction . . . . . . . . . . . . . . . . . . . . . 169

6.2.2 Singularity Problem . . . . . . . . . . . . . . . . . . . . . . . 171

6.3 Future Work on the Wave-Packet Approach . . . . . . . . . . . . . . 172

A Calculations of the Integrals in Finite Element Discretization 173

A.1 Integrals in Maxwell’s Equation . . . . . . . . . . . . . . . . . . . . . 173

A.2 Integrals in the Sheath Boundary Condition . . . . . . . . . . . . . . 176

B Derivative Expressions of the Discretized Boundary Condition 179

iv



List of Figures

1-1 US energy production by major source during 1949–2006 and a predic-

tion for the coming 100 years. . . . . . . . . . . . . . . . . . . . . . . 3

1-2 A prediction of the worldwide oil production peaks. . . . . . . . . . . 4

1-3 Comparison of the radiated power utilizing different antennas. . . . . 12

2-1 Illustration of the tokamak poloidal cross-section in the vicinity of the

limiter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2-2 Slab model with a flat wall. . . . . . . . . . . . . . . . . . . . . . . . 36

2-3 Geometry showing a curved sheath in curvilinear coordinates. . . . . 45

2-4 A profile of the electric potential in a planar sheath. . . . . . . . . . . 49

3-1 A nine-node element in the physical and mapping spaces. . . . . . . . 60

3-2 Normal vectors at the boundary nodes. . . . . . . . . . . . . . . . . . 61

3-3 The interpolation function defined along the antenna current. . . . . 64

3-4 An example of the matrix partitioning for a parallel computation. . . 74

3-5 1D calculation model for the derivation of the analytical solution. . . 77

3-6 Comparison between the analytical and numerical solutions for the

linearly-approximated sheath boundary condition. . . . . . . . . . . . 84

3-7 Comparison between the analytical and numerical solutions for the

nonlinear sheath boundary condition. . . . . . . . . . . . . . . . . . . 85

3-8 Plot of Im
(
E‖
)

vs. x for the background magnetic field parallel to the

walls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

v



3-9 Plot of the real and imaginary parts of k⊥ for the background magnetic

field parallel to the walls. . . . . . . . . . . . . . . . . . . . . . . . . . 88

3-10 Demonstration that the sheath boundary condition reduces to the in-

sulating boundary condition in the thick-sheath limit. . . . . . . . . . 91

3-11 Plot of the real and imaginary parts of k⊥ for the background magnetic

field slightly inclined to the walls. . . . . . . . . . . . . . . . . . . . . 92

3-12 Wall clock time and the percentage of communication vs. number of

processors for a problem in the 2D domain. . . . . . . . . . . . . . . . 94

4-1 1D calculation model for the propagating SW with the sheath bound-

ary condition imposed on the right wall. . . . . . . . . . . . . . . . . 97

4-2 Plots of the real and imaginary parts of E‖/K for four different antenna

current values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4-3 Plot of the real and imaginary parts of E‖/K for K = 50 kA/m. . . . 99

4-4 The sheath width and normalized normal component of the electric

displacement on the sheath surface as functions of the antenna current. 100

4-5 The rectified sheath potential as a function of the antenna current,

including comparison with the Bohm sheath potential. . . . . . . . . 100

4-6 1D calculation model for the propagating SW confined between a wall-

sheath and a reflection point where ε⊥ = 0. . . . . . . . . . . . . . . . 101

4-7 The rectified sheath potential at the right sheath as a function of the

antenna current for the case without dissipation. . . . . . . . . . . . . 102

4-8 Comparison of the real and imaginary parts of E‖/K among the three

roots for K = 40 kA/m. . . . . . . . . . . . . . . . . . . . . . . . . . 103

4-9 Graphical solution for the case without dissipation. . . . . . . . . . . 104

4-10 The rectified sheath potential at the right sheath as a function of the

antenna current for the case with dissipation. . . . . . . . . . . . . . 106

4-11 Graphical solution for the case with dissipation. . . . . . . . . . . . . 106

4-12 Infinitely long slab model defined on the 2D space. . . . . . . . . . . 107

vi



4-13 Plots of n2
⊥ as a function of n0 as determined by the FW and SW

dispersion relations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4-14 Filled contour plots of the real and imaginary parts of E‖ for n0 =

2.0× 1018 m−3 under the conducting-wall boundary condition. . . . . 110

4-15 Filled contour plots of the real and imaginary parts of E‖ for n0 =

2.0× 1018 m−3 under the thermal sheath boundary condition. . . . . 111

4-16 Plots of the real and imaginary parts of E‖ on the thermal sheath for

two different plasma density values. . . . . . . . . . . . . . . . . . . . 113

4-17 Plot of the real and imaginary parts of E‖ for n0 = 2.0 × 1018 m−3

along the cross-section at y = 0.1 m. . . . . . . . . . . . . . . . . . . 114

4-18 The quantities varied in the electrostatic sheath mode analysis. . . . . 115

4-19 Plot of the real and imaginary parts of ky at the sheath-plasma interface

as functions of n0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4-20 Plots of the real and imaginary parts of ky at the sheath-plasma inter-

face as functions of θp for two different plasma density values. . . . . 117

4-21 Plots of the real and imaginary parts of ky at the sheath-plasma inter-

face as functions of αBP for two different plasma density values. . . . 118

4-22 Plots of the real and imaginary parts of ky at the sheath-plasma inter-

face as functions of Te for two different plasma density values. . . . . 118

4-23 Plots of the real and imaginary parts of ky at the sheath-plasma inter-

face as functions of kz for two different plasma density values. . . . . 119

4-24 Filled contour plots of the real and imaginary parts of E‖ for a varying

B0 field under the thermal sheath boundary condition. . . . . . . . . 121

4-25 Plot of the real and imaginary parts of E‖ on the thermal sheath where

the value of B0x is sinusoidally varied. . . . . . . . . . . . . . . . . . . 122

4-26 Filled contour plots of the real and imaginary parts of E‖ for Kmax = 1

A/m under the nonlinear sheath boundary condition. . . . . . . . . . 124

vii



4-27 Filled contour plots of the real and imaginary parts of E‖ for Kmax = 60

A/m under the nonlinear sheath boundary condition. . . . . . . . . . 125

4-28 Filled contour plots of the real and imaginary parts of E‖ for Kmax =

160 A/m under the nonlinear sheath boundary condition. . . . . . . . 126

4-29 Slab model used for the demonstration of the phase change in the

reflected wave. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4-30 Normalized normal component of the electric displacement vs. y at

the right boundary for five different antenna current values. . . . . . . 129

4-31 Rectified sheath potential vs. y at the right boundary for five different

antenna current values. . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4-32 Schematic diagram of a simplified Alcator C-Mod poloidal cross section.131

4-33 Filled contour plots of the real part of E‖ for Kmax = 1 A/m with two

different poloidal components of the background magnetic field. . . . 133

4-34 Rectified sheath potential vs. y for four different antenna current values

for B0x = 1.5 T, B0y = 0.5 T, and B0z = 4.0 T. . . . . . . . . . . . . 134

4-35 Plot of
∣∣E‖∣∣max

and
∣∣bnE‖

∣∣
max

as functions of θp for Kmax = 300 A/m,

|B0p| = 1.58 T, and B0z = 4.0 T. . . . . . . . . . . . . . . . . . . . . 135

4-36 Comparison of the rectified sheath potential variation for Kmax = 300

A/m between the two examples employing different B0p fields. . . . . 135

4-37 Plot of
∣∣E‖∣∣max

and
∣∣bnE‖

∣∣
max

as functions of θt for Kmax = 300 A/m,

|B0| = 4.3 T, and θp = 40◦. . . . . . . . . . . . . . . . . . . . . . . . 136

4-38 Filled contour plots of Vmax vs. n0 and Te for Kmax = 300 A/m, and

B0x = 1.5 T, B0y = 0.5 T, B0z = 4.0 T. . . . . . . . . . . . . . . . . . 138

4-39 Comparison of the contour lines of Vmax between the analytical predic-

tion and the numerical result obtained by employing the rfSOL code. 139

4-40 Contour lines at Vmax = 200 V obtained by employing the rfSOL code

with three different antenna current values. . . . . . . . . . . . . . . . 139

5-1 Schematic diagram of a linear wave-packet interpolation function. . . 146

viii



5-2 Profiles of the Hermitian wave-packet interpolation functions together

with their envelope functions for ∆x = 0.1 and νj = 100. . . . . . . . 148

5-3 An example of the structure of the global matrix for the analysis using

the Hermitian finite element wave-packet method. . . . . . . . . . . . 150

5-4 The numerical results obtained by the linear finite element wave-packet

method for ν = 0.5, Nx = 2. . . . . . . . . . . . . . . . . . . . . . . . 152

5-5 Numerical solutions of the wave propagation problem through different

media. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5-6 Comparison of the numerical error for the wave through different media

among three different methods. . . . . . . . . . . . . . . . . . . . . . 159

5-7 Comparison of the numerical error for the wave through different media

between the finite element wave-packet and conventional methods. . . 160

5-8 Exact solution of the Airy-type equation for α = 21π/2. . . . . . . . . 161

5-9 Comparison of the numerical error for the Airy-type equation among

the three different wave-packet methods. . . . . . . . . . . . . . . . . 162

5-10 Comparison of the numerical error for the Airy-type equation between

the finite element wave-packet and conventional methods. . . . . . . . 163

5-11 Numerical solution of the Wasow equation. . . . . . . . . . . . . . . . 164

5-12 Comparison of the numerical error for the Wasow equation between

the finite element wave-packet and conventional methods. . . . . . . . 165

6-1 Progression of the rfSOL models towards realism. . . . . . . . . . . . 170

ix



Chapter 1

Introduction

1.1 Sustainable Energy

Achieving sustainable energy is a monumental challenge. To paraphrase the definition

in Reference [1], sustainable energy means achieving “a living harmony between the

equitable availability of energy services to all people and the preservation of the earth

for future generation.” Let us first think about “the equitable availability of energy

services to all people.” In 2009 the world primary energy consumption was 11 billion

tonnes of oil equivalent [2]. Suppose all the people in the world consume the primary

energy at the same rate as for the US citizens. Then the energy required is more

than 50 billion tonnes of oil equivalent, i.e., approximately five times larger than the

current level. For a goal of energy sustainability we have to generate this huge amount

of energy for many centuries to come stably in an evenly-distributed manner without

being affected by any political uncertainties. In addition, for “the preservation of

the earth for future generation,” the energy resources should not yield any harmful

substance to the environment and world peace.

Although sustainable energy should be pursued with multiple means of energy

production, we still need a “key player” to satisfy the above-mentioned tremendous

energy demand. In the next section several candidates will be examined to answer
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the question which option could play a major role for this purpose.

1.2 Practical Solutions to the Energy Problem

1.2.1 Possible Primary Source of Energy after 100 Years

The world energy consumption is steadily increasing. For example, some estimates

indicate that the total primary energy in the USA may rise up to 150 quads annually

after 100 years [3]. If this did happen, which of the existing energy options can be

a primary source that supports the expected massive energy consumption after a

century?

This question can be answered by examining the energy use trends and each of

the energy options. Figure 1-1 shows the variations of the US energy production

by major source for the last 50 years [1] and a prediction for the coming 100 years.

We notice that for the last 20 years coal, natural gas, and nuclear electric power are

increasing on the whole, while crude oil is rapidly decreasing, and renewable energy

sources are kept at a lower level. Some environmentalists insist that the increasing

energy needs should be met only by renewable energy sources. This might appear to

be an ideal solution since using renewable energy is surely the most environmentally-

friendly way for the preservation of the earth. However, to achieve this goal, the

use of renewable energy must be “exponentially” increased in this century, which is

clearly an impossibility due to limitations on land, high costs of power generation,

and the intrinsic downsides of each renewable option (see Chapter 1 of Reference [4]

for detailed description). Among them, low competitiveness in costs would be a

crucial issue. For example, currently the construction of the photovoltaic facility

costs 20 times as much as that of a nuclear power plant for the same amount of

energy production, and of course this affects the price of electricity. There is no

reason to abandon much cheaper energy options from an economic point of view, so

that renewable energy should not be a primary source of energy (or electricity) even
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Figure 1-1: US energy production by major source during 1949–2006 and a prediction
for the coming 100 years. Source EIA (2006).

after 100 years.

Next, consider crude oil. As we know, oil is one of the most useful (and thus the

most consumed) fuels in the world. However, for example, according to a prediction

shown in Figure 1-2, it is highly possible that crude oil will be virtually depleted

sometime in the present century. This would not be hard to believe considering the

steady growth in worldwide population and energy consumption [3]. Due to this

problem of scarcity, and according to the recent trend in energy production, we could

conclude that oil will not be a primary source of energy in the far future.

Despite the recent overall increase in energy production, natural gas would also

be destined to follow the same trend as oil due to the problem of scarcity, since the

current natural gas reserves are estimated to be exhausted after less than 100 years

at the present rate of usage [4]. Also, contributions to the greenhouse effect will be

considered more seriously in the future, which may curb the use of this fossil fuel.

Coal has been taking on an important role in electricity production; more than
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Figure 1-2: A prediction of the worldwide oil production peaks. Source EIA (2004).

50% of the electricity in the USA is currently generated by this fossil fuel. The cost

of coal-fired electricity generation is relatively cheap, and unlike oil and natural gas,

sufficient reserves, which are capable of supplying for hundreds of years, are assured.

Nevertheless, there is a possibility that coal-based energy will rapidly shrink in the

latter half of this century. The main cause would be the imposition of a high carbon

tax with the expectation of a deterrent effect against several environmentally-related

problems, including global warming, and the resultant physical and economic damage.

Considering the arguments above, only nuclear electric power remains as a viable

energy option. The following subsection is intended to clarify whether this option has

the potential to become a primary source of energy in the distant future.

1.2.2 Sustainability of Nuclear Electricity Generation

The generation of electricity by the nuclear fission reaction has many attractive fea-

tures. There are many references which cover this topic in full detail (e.g., see Chapter

1 of Reference [4]). One definite advantage is that this form of electricity production

does not emit any greenhouse gases, which is the consequence of a nuclear reaction in-
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stead of a chemical reaction. The second important advantage is that the reserves are

virtually inexhaustible. A current mainstream approach is to use low-enriched ura-

nium, which is formed by enriching U235 to 3–5%. The reserves of U235 are estimated

to be available for several hundreds of years, but even if this resource was depleted

sometime in the latter half of this century, one could still continue the nuclear power

generation with another approach, namely with a fast-breeder nuclear reactor which

utilizes U238 with an availability of more than ten thousand years. It is true that

the high-level radioactive waste is extremely harmful to human bodies. However, its

amount is estimated to be sufficiently small, and safe methods for disposing of nuclear

waste are established.

On the other hand, there exist several disadvantages in fission-based nuclear power

generation. They are political and manufacturing safety issues. First, plutonium,

which is extracted from the spent fuel of light water reactors, can be diverted to

nuclear weapons. This problem will be far more serious when the fast-breeder nuclear

reactors start full production of electricity, since the amount of plutonium is amplified

in these reactors. Second, safe operation of the future fast-breeder reactor will be more

difficult than that of a light-water reactor since (1) metallic sodium used for cooling

is strongly reactive, which leads to an explosion when exposed to water; and (2) the

radiation strength of plutonium is much higher than that of U235.

Nevertheless, overall, one could conclude that the presently-used nuclear electric

power has a sufficient potential to be sustainable for many years to come. However,

we should not rush into a conclusion that the above-mentioned fission-based power is

the ultimate source of energy on earth. There is another form of nuclear power, which

can supply equivalently large amount of energy with sufficient reserves in a safe and

environmentally-friendly way when success is achieved — the power generated by the

nuclear fusion reaction. The fundamental physics in fusion and the future prospects

of the technology are briefly described in the next section.
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1.3 Overview and Prospects for Fusion Energy

Fusion energy is the energy released in a nuclear reaction between light elements. For

example, the D-T reaction yields

D + T→ α + n + 17.6 MeV (1.1)

where D, T, α, and n represent the deuterium, tritium, alpha particle (helium nu-

cleus), and neutron, respectively. The released energy is equivalent to slightly de-

creased total nuclear mass, i.e., E = ∆mc2 = 17.6 MeV. This D-T reaction is consid-

ered to be the easiest of all the fusion reactions and thus extensively studied in the

world (for other types of reactions, see Chapter 2 of Reference [4]).

There are two main reasons that make the fusion reaction particularly difficult.

First, every nucleus is surrounded by the “electron cloud,” whose radius is much

larger than that of a nucleus (one frequently cited example is to compare the electron

cloud and a nucleus to a stadium and a coin, respectively). Second, even if the

electron clouds are completely removed, the mutually approaching nuclei normally

repel each other at some point, since both nuclei have a positive electric charge and

thus the Coulomb repulsive force works on both particles. In order to remove the

electron cloud and then bring two nuclei close to each other to the range where the

nuclear force is dominant, every particle must have extremely high kinetic energy to

overcome the Coulomb force. For this purpose one needs to extraordinary increase

the temperature and make a gas the state in which a certain portion of the particles

is ionized — a plasma.

Considering the above-mentioned physical background, it would not be hard to

imagine that the reaction rate depends on the density of nuclei and temperature. In

fact, the fusion power of the D-T reaction is expressed by multiplying the reaction
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rate by an energy Ef generated by each fusion collision:

PDT = nDnT 〈σv〉DT Ef (1.2)

where nD and nT are the number densities of deuterium and tritium, respectively,

and 〈σv〉DT is the reaction rate coefficient for the D-T reaction. It can be numerically

demonstrated that the reaction rate coefficient increases with a rise in temperature

up to approximately 70 keV [4].

Another important point is that the plasma should not touch the reactor wall in

order to maintain itself. An approach which enables the plasma to be kept floating

apart from the wall is to confine the plasma in a toroidal geometry and apply the

magnetic fields in the toroidal, poloidal, and vertical directions. This is one of the

most widely used magnetic confinement schemes, and the corresponding reactor is

called a tokamak. Confinement of a tokamak plasma can be successfully achieved if

the ratio of the plasma pressure to magnetic pressure does not exceed a certain critical

value [4]. However, since the magnitude of the magnetic field is usually limited by

technology or cost, there exists an allowable range for the plasma pressure in practice.

Due to many difficulties and uncertainties, fusion energy production is still unre-

alized. Particularly, two main difficulties that exist with a tokamak are that confine-

ment is anomalous and that the devices are pulsed, whereas steady state operation

is needed for a tokamak to operate as a commercial reactor. However, tremendous

advances in theory and experiment have been made for more than half a century, and

now we are in a transition period before realizing full scale electricity-producing fusion

power plants. In particular, the International Thermonuclear Experimental Reactor

(ITER), which is under construction, will be a significant milestone in the history

of fusion research. If the ITER project is successful, a demonstration power plant

(DEMO) will be constructed in the middle part of this century, and the development

for commercialization will be rapidly facilitated.

Nuclear-fusion power generation has the potential to become one of the realistic
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solutions to satisfy a large share of expanding energy demand in an environmen-

tally benign way without the concerns of radiation contamination and proliferation

of nuclear weapons. Although it is still hard to be optimistic considering the current

performance of fusion reactors (for example, we have to eventually achieve full steady

state operation with the power gain Q = 30–50, while the current performance is

Q ∼ 1), continuous efforts in technology development will be the only way to acquire

sustainable energy and achieve sustainable human development.

1.4 Ion Cyclotron Heating of a Tokamak Plasma

As mentioned in the previous section, the highest performance magnetic confinement

scheme to date is the tokamak. To enable a plasma to be ignited in a tokamak

reactor, it must be heated with temperature of about 15 keV according to the ignition

condition (see Chapter 4 of Reference [4]). Since the alpha power becomes dominant

above 5–7 keV and heats the plasma to the required temperature for ignition, the task

is to achieve the transition temperature by applying sophisticated heating techniques.

The first-step approach is based on the fact that a plasma conducts current, unlike

normal gases. In tokamak operation, the toroidal current, which is induced by the

transformer to yield the poloidal background magnetic field, produces ohmic heating

and it raises the plasma temperature. However, since the resistivity of a plasma

decreases with temperature in such a manner that η ∝ T−3/2, one cannot achieve

the required transition temperature solely by ohmic heating. For this reason, various

auxiliary heating methods have been proposed, including the neutral beam heating,

electron and ion cyclotron (resonance) heating. The details of these techniques are

given in many references (e.g., see Chapter 15 of Reference [4]), so that only ion

cyclotron heating (ICH) will be briefly described below as this is closely related to

the present research.

ICH is one of the auxiliary heating methods using radio-frequency (RF) waves.
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This method is aimed at heating a plasma employing the electromagnetic waves whose

applied frequencies correspond to the cyclotron frequencies of ions and their cyclotron

harmonics. Since the ion cyclotron frequencies are one of the natural resonant fre-

quencies of the plasma, a strong absorption of energy occurs when electromagnetic

waves at the ion cyclotron frequencies are launched into the plasma (same applies

to electron cyclotron heating (ECH)). Although the heating mechanism is similar to

that in a microwave oven, the resonance mechanism is quite different; for a plasma

the resonance occurs by the “collisionless damping.” The ICH is produced by high

power vacuum tubes, transmitted via a coaxial transmission line, and launched into

the plasma by means of an antenna placed inside the vacuum chamber. Here, the

geometric structure of the antenna determines the spectrum of the wavenumber com-

ponent k‖ parallel to the background direct-current (DC) magnetic field. Compared

to ECH, ICH is considered to be achievable at a lower cost with well-established

technology.

Regarding ICH, there are several issues that need to be pointed out. First, the

particle resonance does not occur in a pure deuterium plasma at the fundamental

frequency (i.e., the deuterium cyclotron frequency) since the polarization of the fast

wave (FW), which propagates in a high-density plasma, is exactly in the opposite

direction of the ion particle’s motion. One of the methods to overcome this difficulty

is to add a dilute, minority ion species, which is lighter than the majority species, into

the plasma. This is so-called the minority ICH and in Alcator C-Mod, hydrogen is

used as a minority ion species (approximately 5 % of the plasma consists of hydrogen,

while the rest is deuterium). When the minority ions are added to the plasma, it

turns out that the FW polarization yields a component which corresponds to the

ion rotational direction; the wave can then interact with the hydrogen ion when its

applied frequency is chosen at the hydrogen cyclotron frequency. In Alcator C-Mod

the frequency of the FWs is set at 80 MHz, which matches the hydrogen cyclotron

frequency at the center of the tokamak poloidal plane (where the magnetic field is
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adjusted at 5.4 T). The detail of this mechanism is described in Reference [5].

Second, there is a challenge in the ICH. As will be described in Section 2.4, the FW

branch has an evanescent layer at the edge of the plasma, where the plasma density

is lower than the wave cutoff density. Thus, from this point of view, the antenna

should be placed at the position where the plasma density is higher than the cutoff

density, so that the wave power can be transmitted to the hot plasma region without

decay. However, in reality, the antenna cannot be placed that close to the surface

of the plasma since heat damage becomes more serious due to high temperature and

plasma breakdown can occur. Therefore, the antenna position is determined by the

balance between these effects; as a result, the antenna faces the plasma in the scrape-

off-layer (SOL) — the region where the flux surfaces intersect with solid structures

in a tokamak.

However, even if the antenna is placed in a low density and low temperature area,

the metal structures in the vicinity of the antenna can be seriously damaged due to

the effect of “RF sheaths,” which is the central theme of this thesis and described in

detail in the next section.

1.5 Radio-Frequency Sheaths

Although RF waves in the ion cyclotron range of frequencies (ICRF) have been suc-

cessfully applied to heating experiments in fusion plasmas, many experimental and

theoretical studies have shown that deleterious edge plasma interactions can occur

due to various nonlinear mechanisms (see Reference [6] and the references therein).

One of the most important nonlinear effects is RF sheath formation, in which the

sheath potential on the walls and limiters of the tokamak device is enhanced by the

ICRF waves in an unfavorable way [6, 7]. Plasma sheath formation by RF waves

was studied in the 1960’s [8], and the basic physical mechanism for RF sheaths is

now well known. However, in a tokamak device with ICRF power, RF sheaths are
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associated with plasma waves, which have quite-complicated structures, and they are

often classified into the following two broad categories.

First, sheaths on the antenna surface and nearby material boundaries, such as

limiters, are referred to “near-field sheaths.” A root cause of them is considered to

be the generation of the parasitic slow wave (SW), which has a large E‖ component

(electric field component parallel to the background magnetic field) driven by the

current straps. Since the background magnetic field in a tokamak has both poloidal

and toroidal components, there must exist some position where the antenna current

has a component parallel to the magnetic field line. This parallel component of the

antenna current is coupled to the E‖ field of the SW, which propagates until it reaches

a material surface. Due to the presence of the SW with a large-amplitude E‖ field,

electrons, which have lighter mass and thus stronger response to the RF E‖ field,

near surfaces are more encouraged to be expelled from the plasma when the electric

field points into the plasma (than ions when the electric field points into the sheath),

leading to the development of the net positive DC voltage, namely, “rectified” sheath

potential to maintain charge ambipolarity (or quasi-neutrality; the former expression

is used to describe equal fluxes of charge, while the latter is the resulting state of

plasma, i.e., charge neutrality) [9]. When the current source is large, the rectified

sheath potential can reach the order of kV and has important consequences. As a

result of the increased sheath potential, ions are significantly accelerated in the close

vicinity of wall material causing enhanced sputtering, impurity generation, and power

dissipation.

The significance of near-field sheaths was appreciated in the 1980’s; from then

on, much experimental and theoretical work was conducted at the end of the past

century to investigate the effect of sheaths on nearby antenna structures [9–13], and

its various secondary effects, such as sheath currents and RF sheath-driven edge

plasma convection [14–18]. Several ideas to mitigate the RF sheath problem on

ICRF antennas were proposed [19,20]. Recently, important evidence for the effects of

11





  










 



Figure 1-3: Comparison of the radiated power utilizing different antennas (courtesy
of S.J. Wukitch).

RF sheaths was observed in experiments on Alcator C-Mod [21–23] and Tore Supra

[24]. The quantities measured in the experiments are (1) RF-generated impurities

(measurement of the increased impurity influx to the core plasma), (2) missing power

and reduced heating efficiency (e.g., due to sheath power dissipation), (3) hot spots on

the antenna and surrounding limiters (also due to sheath power dissipation), and (4)

effects of RF sheath-driven convection (e.g., work on JET and Tore Supra). Figure

1-3 shows an example of experimental evidence for impurity production that may

be related to RF sheath formation in the Alcator C-Mod tokamak [23]. It is seen

that the radiated power significantly increases when the second discharge is heated

by the same antenna, which indicates the acceleration of impurity generation, while

low radiated power is maintained when the second discharge is heated by the different

antenna.

Second, RF sheaths are also generated on material surfaces when a launched FW

propagates to a wall due to SOL propagation or poor central absorption [25,26], and

the flux surfaces do not match the wall shape. These kinds of sheaths are referred

to “far-field sheaths.” In this case the incident FW typically generates a reflected

FW and an evanescent SW (due to high plasma density) at the wall together with

the rectified sheath potential. Efforts to develop efficient analytical models to un-

derstand the mechanism of far-field sheath formation have continued [27, 28]. The

sheath potentials for far-field sheaths are considered to be less important than near-

field sheaths from the standpoint of local damage to material structures. However, if
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far-field sheaths cover a substantial portion of the wall, their total integrated contri-

bution to the sheath power dissipation could be significant, leading to reduced heating

efficiency.

There are other interesting phenomena relating to RF sheath-plasma interactions.

Particularly, sheath-plasma waves [29, 30] and sheath-plasma resonances [28, 31, 32]

were identified as early as the 1960’s, and it is still an open question whether these

physical phenomena yield significant effects on tokamak operations.

In order to unravel these complicated issues, numerous analytical approaches have

been proposed thus far. If one seeks a truly accurate description of RF-sheath inter-

actions, of course, one must consider kinetic effects and detailed sheath structures.

However, if the research aim is directed at the evaluation of practically important mat-

ters, such as the effect of sheaths on waves in the SOL and sheath potentials, these

details may be considered as high-order effects. Based on this philosophy, Myra,

D’Ippolito, and their collaborators have established various analytical models includ-

ing most notably a derivation of the “sheath boundary condition” [27], which is the

idea that essential sheath effects on a main plasma are captured through the boundary

condition for plasma analysis without using the field quantities in the sheath.

As will be shown in Chapter 2, the derivation of the sheath boundary condition

is based on the assumption that the sheath is effectively a vacuum region, which

corresponds to the zeroth-order approximation for the sheath description. Although

this is seemingly a rough approximation, the sheath boundary condition captures the

most important physics that happens in the sheath, that is, the rapid variation of

the very large dielectric tensor component ε‖ (later shown in Equation (2.13)) in the

sheath region. D’Ippolito and Myra recently improved the sheath boundary condition

to a self-consistent form [33], and demonstrated various important results, such as

threshold-like turn-on of the sheath potential variation, existence of multiple roots,

and sheath-plasma resonances, in their subsequent papers [28,34–37].

For more detailed understanding and predictive capability useful for quantitative
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evaluation, numerical simulation of sheath-plasma interactions with realistic geom-

etry and plasma profiles is required. In the next section previous studies aiming

at numerically solving the RF sheath interaction problems in the framework of the

above-mentioned concept are overviewed, which will clarify the motivation for this

thesis research.

1.6 Previous Studies on RF Sheath Simulation

There have been several reports that numerically solve RF sheath-plasma interaction

problems. If the numerical simulation covers the main plasma (the edge and/or core

plasma in a tokamak), where its characteristic length is several orders of magnitude

greater than a typical sheath width, one has to approximate the sheath physics with

an appropriate model; otherwise, prohibitively large computational cost would be

required even for the analysis in a one-dimensional (1D) domain (see the description

in the first paragraph of Section 2.7). The sheath boundary condition is one of such

models, since the sheath region and the field quantities in the sheath are excluded

from the calculation domain owing to the vacuum approximation and the continuity

conditions. Other notable examples are the Godyak-Lieberman sheath models [38,39],

which were incorporated into the numerical schemes developed by Jaeger et al. [40]

and Carter et al. [41] for plasma processing. Their numerical treatments for the RF

sheath may be summarized as follows.

A paper by Jaeger et al. takes into account the effect of the RF sheath by intro-

ducing the effective dielectric constant Keff in a grid that contains the sheath. The

normalized sheath width δ is a function of the fundamental of the sheath voltage,

which is calculated using a solution of Maxwell’s equation. The calculated sheath

potential yields reasonable values; however, there are some drawbacks with their

method. First, although the sheath region is not directly resolved by grids, their def-

inition of the effective dielectric constant requires a grid cell sandwiching the sheath
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region to be sufficiently small anyway since otherwise the normalized sheath width

can be so small that the sheath contribution becomes negligible. On the other hand,

even if the “sheath grid” is adjusted to be a comparable size with the sheath width,

some unwanted numerical oscillation could occur since the values of the dielectric

tensor components abruptly change from K = Kplasma (at the grid lines in the close

vicinity of the sheath) to K = Ksheath = 1 in the adjacent grid cells. Second, two

components of the electric field are assumed to be electrostatic, which is not a good

approximation for a general two-dimensional (2D) analysis.

Carter et al. adopted a similar method to that in Reference [40]; however, several

generalizations were made. First, the RF sheath effect is evaluated under the full

electromagnetic formulation. Second, the finite sheath width is retained without

normalizing it by the grid size. The local dielectric tensor components in the sheath

region are defined using the effective nonlinear conductivity of the sheath and allows

a smooth transition between the plasma and vacuum. The expression for the sheath

width is similar to that proposed by D’Ippolito and Myra [33], although they use

a different model; both consist of the sum of the RF sheath and thermal sheath

contributions. Their 2D sheath solver employing the Lieberman’s model is combined

with the bulk 2D plasma transport and RF Maxwell solvers, and the RF sheath

voltages in the plasma region are successfully calculated. A drawback in their method

would be that the normal component of the electric field across the sheath (normal

to the sheath surface) is fixed at a given value, which is calculated by Maxwell’s

equation in cold plasma, so that the RF sheath effect on the plasma waves is not

taken into account. Also, their finite difference formulation would not be amenable to

the problem that has a spatially complicated geometry (the plasma region considered

in their paper is rectangular, and so the finite difference technique suffices).

Besides the work conducted by Jaeger and Carter et al., there was an attempt to

incorporate sheath effects into a numerical code by means of the sheath boundary

condition proposed by D’Ippolito and Myra [33]. Compernolle et al. tried to imple-
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ment the sheath boundary condition into their TOPICA code [42,43] using a realistic

ICRF antenna model [44]. However, it would probably be fair to say that their work is

stopped at a primitive level for the following reasons. First, the sheath boundary con-

dition is introduced to a vacuum RF model, which means that the boundary condition

is not coupled with the plasma dielectric tensor, yielding unphysical consequences.

Second, as they mention in their paper, the power lost by the ions accelerated in the

DC sheath potential increases in an unexpected way possibly due to problems in their

code.

In summary, up to this point there has been no numerical code that solves RF

sheath-plasma interactions truly in a self-consistent way in the domains with com-

plicated boundary shapes. As mentioned in the previous section, experiments show

that impurities are generated in the ICRF regime, which is serious because they limit

heating of plasma. The difficulty is that in some cases it is hard to identify the source

of impurities unless specific areas of the tokamak are covered with specific types of

impurities. Therefore, developing a predictive numerical tool which possesses the

above-mentioned features is essential to a complete understanding of the source; one

can then consider various measures to mitigate the unwanted effects. In particular,

such a numerical tool will answer the question whether rotating the antenna has a

significant effect on the wall sputtering as a source of impurities. This is the motiva-

tion for this thesis research. The major achievements obtained in the present study

are summarized in the following section.

1.7 Thesis Outline and Summary of Results

The major achievements of this thesis work are summarized as follows:

(1) Development of a novel numerical scheme that solves self-consistent RF sheath-

plasma interactions in the SOL for an ICRF heating system.

(2) Discovery of various new 1D and 2D effects caused by the mutual interaction
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between the sheath and cold plasma in the SOL.

(3) Quantitative predictions of the localized RF sheath potential observed in an

Alcator C-Mod scale device.

(4) Development of the finite element wave-packet method that solves multiscale

wave problems accurately with low computational cost.

The numerical code that solves RF sheath-plasma interactions strictly in a self-

consistent way in the 1D and 2D domains with an arbitrary boundary shape is de-

veloped for the first time with use of a nonlinear finite element technique. A novel

approach is that two independent weight functions are defined for the discretization of

a combined form of Maxwell’s equations and the sheath boundary condition, and the

obtained discretized equations are combined into a vector equation. In addition, the

numerical scheme is constructed with the aim of achieving a fast and accurate solver

by applying (1) the central point approximation to the Jacobian and the components

of the cofactor matrix in each integral of the discretized Maxwell’s equation, and (2)

the element-average technique to the sheath width in the discretization of the sheath

boundary condition. Owing to these approximations, the expression of the global

matrix in the Newton-Raphson iteration is explicitly obtained without the necessity

of using any numerical integration method, and the resultant numerical scheme is

robust and realizes fast computation.

Using the above numerical code, several new properties of the RF sheath-plasma

interactions are discovered. In the 1D domain with a varying plasma density profile,

it is found that multiple roots can be present due to the resonance of the propa-

gating SW and its nonlinear interaction with the sheath. In a 2D slab geometry,

sheath-plasma waves are identified for the first time via numerical simulation, and it

is proved in conjunction with an electrostatic 2D sheath mode analysis that (1) the

sheath-plasma wave only appears in the vicinity of the sheath surface if the plasma

density is greater than the lower hybrid density, and (2) its wavelength mainly de-
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pends on the plasma density, magnitude of the poloidal background magnetic field,

and electron temperature. It is also demonstrated for the first time that the elec-

tric field distribution pattern in the plasma varies along the magnetic field lines as a

consequence of the self-consistent interaction between the propagating SW and the

sheath, and the corresponding sheath potential can reach the order of kV for param-

eters similar to those used for the ICRF operation in Alcator C-Mod. It is found

that this variation smoothly occurs between the conducting-wall and quasi-insulating

limits.

In the numerical analysis employing the 2D domain whose scale is equivalent to

the Alcator C-Mod device, it is confirmed that the calculated sheath potential values

are comparable to the experimental measurements. In addition, it is demonstrated

for constant plasma density and straight magnetic field lines that the sheath potential

in the close vicinity of the antenna current strap is insensitive to the direction of the

background magnetic field in the RF sheath dominated regime. Furthermore, from

the derivation of the nonlinear sheath boundary condition, an important scaling is

discovered for the sheath potential V0 having the form V0 ∼
(
bnE‖

)4
/ (n2

e0Te), where

bn, E‖, ne0, and Te are the normal component (to the sheath) of the unit vector

along the direction of the background magnetic field, parallel electric field strength,

electron density, and electron temperature, respectively. It is found that the nonlinear

self-consistent code that solves RF sheath-plasma interactions including the antenna

coupling to E‖ plays a major role in quantitative evaluation of the sheath potential,

which sensitively varies depending on the electron density and electron temperature

according to the above scaling.

Finally, a new finite element approach — finite element wave-packet method —

is developed by enriching usual finite element interpolations with wave packets. This

method settles intrinsic difficulties pertaining to conventional spectral approaches in

(1) satisfying the boundary conditions accurately and (2) achieving fast computation.

It is proved that the proposed method can yield much more accurate results for
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multiscale wave problems than using the conventional finite element method under

the same computational costs.

The outline of this thesis is as follows. In Chapter 2 the basic theory of plasma

waves in the SOL is reviewed, and the derivation of the sheath boundary condition

is demonstrated using flat and curved walls. A practically useful expression for the

sheath width is established with the use of the Child-Langmuir law and the limits of

the thermal and RF sheath dominated regimes. In addition, it is emphasized that

introducing an artificial collision frequency is important to ensure a stable calculation

for the case where the lower hybrid resonance appears in the calculation domain, and

to separate the SOL region from the core plasma.

In Chapter 3 the discretization procedures of a combined form of Maxwell’s equa-

tions and the sheath boundary condition are presented, and then the iteration algo-

rithm for the resultant nonlinear system of discretized equations is described. The

large-scale matrix equation obtained from this system is solved using massively par-

allel linear algebra routines. The developed numerical scheme is named “rfSOL,”

and its validity is verified by comparison with an analytical solution in the 1D closed

domain and the results of the local dispersion relation.

Using the rfSOL code developed in Chapter 3, various RF sheath-plasma inter-

action problems in the 1D and 2D domains are solved based on the parameters for

the Alcator C-Mod tokamak in Chapter 4. In the 1D analysis the sheath potential

variation with an increase in the antenna current is investigated with constant and

varying plasma density profiles. In the 2D analysis the numerically identified wave

mode on the sheath is verified and further investigated through an electrostatic 2D

sheath mode analysis. This is followed by the calculations of the most deleterious

SW-sheath interactions, in which the variations in magnitude and distribution of the

sheath potential are assessed by varying the magnitude of the current source, and

the mechanism of the wave pattern variation is considered. Lastly, a series of numer-

ical analyses is conducted under conditions close to the Alcator C-Mod tokamak by
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enlarging the calculation domain and antenna length.

The thesis research takes a new direction in Chapter 5. Here a finite element wave-

packet procedure is presented to solve problems of wave propagation where multiscale

behavior is important. A motivation for this research is that it is still challenging to

resolve all the multiscale plasma waves in the tokamak poloidal plane due to limited

computational performance. The proposed scheme combines the advantages of finite

element and spectral methods. The basic formulation is presented, and the capa-

bilities of the procedure are demonstrated through the solution of some illustrative

problems, including a problem that characterizes the mode-conversion behavior in

tokamak plasmas.

Finally, Chapter 6 summarizes the main results of this thesis and addresses future

work.

20



Chapter 2

Theory of Plasma Waves and RF

Sheath Physics

2.1 Prologue

This chapter describes the basic theory of plasma waves and the RF sheath physics

observed in the SOL of a tokamak in the ICRF. The goal is to derive the equations

that govern the behavior of plasma waves in the SOL and the interaction between the

waves and the sheath on metal surfaces, which are directly employed in the present

finite element numerical analyses. The geometry considered here is shown in Figure

2-1; this is a simplified schematic of the tokamak poloidal cross-section in the vicinity

of the limiter, assuming that the magnetic field lines intersect with a metal surface and

thereby the sheath is formed. If the effect of RF waves is negligibly small, the sheath

width and potential drop inside the sheath can be evaluated using the well-known

Bohm sheath theory [45]. However, if the RF waves with large electric-field strength

approach the wall, the sheath width can be significantly increased to avoid further

expelling the electrons from the plasma and then the ions are further accelerated inside

the sheath, enhancing sputtering as a result. Therefore, it is important to establish

a predictive numerical tool which quantifies the sheath potential with consideration
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Figure 2-1: Illustration of the tokamak poloidal cross-section in the vicinity of the
limiter (courtesy of J.R. Myra).

of self-consistent RF sheath-plasma interactions.

The plan in this chapter is as follows. First, a description of the electromagnetic

wave propagation in a cold plasma is presented. A special attention will be given to the

classification of the waves in the ICRF into fast and slow waves. Second, the necessity

of introducing the collisional effect for a certain condition is described. Third, the

concept of the “sheath boundary condition” is introduced and its formulation is fully

described. Finally, the absorbing boundary condition is introduced to complete the

present numerical model.

Unless otherwise noted, the units used in this study conform to the International

System of Units (SI).

2.2 Validity of Using a Cold Plasma Model

All the analyses in this study will be conducted using a cold plasma model. One

parameter which shows the validity of this premise is the Larmor radius factor defined

as

bLj =
k2
⊥v

2
tj⊥

2ω2
cj

(2.1)
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where k⊥ is the perpendicular wavenumber, vtj⊥ is the perpendicular thermal speed,

and ωcj is the cyclotron frequency; the term “perpendicular” means the perpendicular

direction to the background magnetic field, and the subscript j indicates an ion (i) or

an electron (e). Here the perpendicular thermal speed and cyclotron frequency are,

respectively, defined as vtj⊥ = (2Tj⊥/mj)
1/2 and ωcj = |qj|B/mj, where Tj⊥ is the

temperature perpendicular to the background magnetic field, mj is the particle mass,

qj is the electric charge, and B is the magnitude of the background magnetic field.

When the condition bLj � 1 is satisfied, it can be seen that the hot plasma equations

naturally reduce to the corresponding cold plasma equations [46]. In the ICRF the

perpendicular wavenumber can be expressed as k⊥ ' ω/vA [46], where ω is the applied

angular velocity, and vA is the Alfvén speed defined as vA = (B2/µ0mini)
1/2

. Here µ0

is the permeability in vacuum, and ni is the number density of ions. In the regime

where Ti⊥ ∼ Te⊥ is valid, one can only evaluate bLi to show that bLj � 1, since

bLi � bLe in this case. For a plasma with µi = 2, Ti⊥ ' 10 eV, and ni = 1.0 × 1018

m−3 under B = 5.4 T and f = 80 MHz, it follows that bLi = 2.6× 10−7.

Throughout this study, only deuterium is considered as an ion species, so that

mi = 3.3436 × 10−27 kg, which is consistent with the Alcator C-Mod plasma in the

SOL.

2.3 Cold Plasma Formulation in the SOL

We start the derivation of the governing equation in a cold plasma from Maxwell’s

equations:

∇×E = −∂B
∂t

(2.2)

∇×B = µ0J +
1

c2

∂E

∂t
(2.3)
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where c is the speed of light. Using the assumption of small-amplitude perturbation,

the electric field E, the magnetic field B, and the current density J in Equations

(2.2) and (2.3) can be expanded in the following way:

Q (x, t) = Q0 +Q1 (x, t) (2.4)

where the subscripts 0 and 1 denote the zeroth-order equilibrium quantity and the

first-order perturbed quantity, respectively. Here we use a Fourier analysis in time

for the quantity Q1, namely

Q1 (x, t) = Q̂1 (x) exp (−iωt) (2.5)

where i is the imaginary unit. Then the first-order equations corresponding to Equa-

tions (2.2) and (2.3) are, respectively, written as follows:

∇×E1 = iωB1 (2.6)

∇×B1 = µ0J1 − i
ω

c2
E1 (2.7)

The perturbed current J1 consists of the induced current Jind and the external current

Jext, i.e.,

J1 = Jind + Jext (2.8)

Further, the induced current is related to the perturbed electric field through Ohm’s

law:

Jind = σ ·E1 (2.9)
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where σ is the conductivity tensor. Substituting Equation (2.6) into Equation (2.7)

and using the relations (2.8) and (2.9), we obtain the following equation:

∇×∇×E1 −
ω2

c2
ε ·E1 − iωµ0Jext = 0 (2.10)

where ε is the dielectric tensor defined as

ε = I +
i

ε0ω
σ (2.11)

Here I is the unit tensor, and ε0 is the dielectric constant in vacuum, which is yielded

from the relation c2 = (ε0µ0)−1. Equation (2.10) is the governing equation in the

SOL used in the present analysis. Hereafter, the subscript 1 in E1 will be omitted,

since the equilibrium electric field (E0) is assumed to be zero.

In order to obtain the expression for the dielectric tensor, in general, we are

required to conduct a long calculation by starting from the momentum equations

[4,46]. However, the following dyad notation allows us to easily obtain the expression

for any coordinate system:

ε = (I − bb) ε⊥ + bbε‖ + ib× Iε× (2.12)

where b is the unit vector along the background magnetic field (b = B0/ |B0|). Here

the coefficients ε⊥, ε‖, and ε× are expressed as follows:

ε⊥ = 1−
∑
j

ω2
pj

ω2 − Ω2
j

ε‖ = 1−
∑
j

ω2
pj

ω2

ε× =
∑
j

ω2
pjΩj

ω
(
ω2 − Ω2

j

)
(2.13)
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where ωpj is the plasma frequency defined as ωpj = (nj0e
2/ε0mj)

1/2
, and Ωj =

qjB0/mj; the subscript j indicates two-species particles, i.e., an ion (i) or an elec-

tron (e). In the Cartesian coordinate system, the dielectric tensor components are

calculated as follows:

ε =


(1− b2

x) ε⊥ + b2
xε‖ −bxby

(
ε⊥ − ε‖

)
− ibzε× −bxbz

(
ε⊥ − ε‖

)
+ ibyε×

−bxby
(
ε⊥ − ε‖

)
+ ibzε×

(
1− b2

y

)
ε⊥ + b2

yε‖ −bybz
(
ε⊥ − ε‖

)
− ibxε×

−bxbz
(
ε⊥ − ε‖

)
− ibyε× −bybz

(
ε⊥ − ε‖

)
+ ibxε× (1− b2

z) ε⊥ + b2
zε‖


(2.14)

where bx, by, and bz are the components of b in the x, y, and z directions, respectively.

Throughout this study, we assume that charge ambipolarity in the plasma is retained,

i.e., ne0 = ni0 = n0.

2.4 Fast and Slow Waves in the ICRF

Further assuming the Fourier mode in space in Equation (2.5), we can convert ∇

to ik in Maxwell’s equations, where k is the wavenumber vector. This implies that

we consider a homogeneous plasma with constant plasma density and a constant

magnetic field in space at the equilibrium state (in a strict sense). Then Equation

(2.10) reduces to

n× (n×E) + ε ·E +
i

ε0ω
Jext = 0 (2.15)

where n is the index of refraction defined as n = ck/ω. Now let us focus on the

region where Jext = 0. Using the vector identity

n× (n×E) = (n ·E)n− n2E
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(here n2 = n · n), Equation (2.15) can be rewritten as follows:

(
nn− n2I + ε

)
·E = 0 (2.16)

Equation (2.16) readily yields the following dispersion relation:

∣∣nn− n2I + ε
∣∣ = 0 (2.17)

In the coordinate system defined as

ς =
k⊥
|k⊥|

, $ =
b× k⊥
|k⊥|

, b =
B0

|B0|
(2.18)

the components of the dielectric tensor are given as follows:

ε =


ε⊥ −iε× 0

iε× ε⊥ 0

0 0 ε‖

 (2.19)

Substituting Equation (2.19) into Equation (2.17) and noting that n = n⊥ς + n‖b,

one gets∣∣∣∣∣∣∣∣∣
ε⊥ − n2

‖ −iε× n⊥n‖

iε× ε⊥ − n2 0

n⊥n‖ 0 ε‖ − n2
⊥

∣∣∣∣∣∣∣∣∣ = 0 (2.20)

Evaluating Equation (2.20) yields the fourth order dispersion relation

(
n2
⊥ − ε‖

) (
n2
‖ − ε⊥

) (
n2 − ε⊥

)
− n2

⊥n
2
‖
(
n2 − ε⊥

)
− ε2

×
(
n2
⊥ − ε‖

)
= 0 (2.21)

in which both fast and slow waves are coupled.
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2.4.1 FW and SW Dispersion Relations

Equation (2.21) can be reduced to the second order dispersion relations by taking two

limiting cases [27]. First, the FW obeys the ordering n2
⊥ ∼ n2

‖ ∼ ε⊥, ε× � ε‖. Then

the second term in Equation (2.21) is smaller than the other terms by O
(
ε⊥/ε‖

)
, and

thus it can be omitted. As a result, we obtain the FW dispersion relation as follows:

(
n2
‖ − ε⊥

)2
+ n2

⊥
(
n2
‖ − ε⊥

)
− ε2

× = 0 (2.22)

On the other hand, the SW obeys the ordering n2
⊥ ∼ ε‖ � ε⊥, ε× ∼ n2

‖. Then the

third term in Equation (2.21) is smaller than the other terms by O
(
ε⊥/ε‖

)
, and thus

it can be omitted. Consequently, we obtain the SW dispersion relation as follows:

n2
‖ε‖ + ε⊥

(
n2
⊥ − ε‖

)
= 0 (2.23)

Note that the same results are obtained in Stix’s notation [46] by considering that

|sin θ/ cos θ| ∼ 1 for the FW and |sin θ/ cos θ| � 1 for the SW, where sin θ = n⊥/n

and cos θ = n‖/n.

2.4.2 Electrostatic Dispersion Relation

Forming the inner product of Equation (2.15) with k while keeping Jext = 0, we

obtain

k · (ε ·E) = 0 (2.24)

When the electrostatic approximation is valid, the electric field is expressed as E =

−∇Φ = −ikΦ. In this case, Equation(2.24) yields

k · ε · k = 0 (2.25)
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for a nontrivial solution (E 6= 0). Then using Equation (2.19) and noting that

k = k⊥ς + k‖b, we obtain the following relation from Equation (2.25):

k2
⊥ε⊥ + k2

‖ε‖ = 0 (2.26)

This is the electrostatic dispersion relation. Alternatively, we can rewrite Equation

(2.26) as

n2
⊥ε⊥ + n2

‖ε‖ = 0 (2.27)

Here note that Equation (2.27) is obtained from the SW dispersion relation (2.23)

when the condition n2
‖ � ε⊥ is satisfied.

2.4.3 FW and SW Polarizations

Based on the coordinate system of Equation (2.18), Equation (2.16) is rewritten in a

matrix form as follows:
ε⊥ − n2

‖ −iε× n⊥n‖

iε× ε⊥ − n2 0

n⊥n‖ 0 ε‖ − n2
⊥



Eς

E$

E‖

 =


0

0

0

 (2.28)

The polarizations for the fast and slow waves are determined from the appropriate sub-

matrices of Equation (2.28). In the FW ordering, we notice that |Eς | ∼ |E$| �
∣∣E‖∣∣

(
∣∣E‖∣∣ / |Eς | ∼ O (ε⊥/ε‖)), so that Equation (2.28) reduces to

ε⊥ − n2
‖ −iε×

iε× ε⊥ − n2

Eς

E$

 '
0

0

 (2.29)
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It is confirmed that the dispersion relation (2.22) is directly obtained from Equation

(2.29). The FW polarization is then expressed as follows:

Eς
E$

= −i ε×
n2
‖ − ε⊥

(2.30)

Similarly, in the SW ordering, we find that |Eς | ∼
∣∣E‖∣∣ � |E$| (|E$| / |Eς | ∼

O
(
ε⊥/ε‖

)
). As a result, Equation (2.28) reduces to the following equation:

ε⊥ − n2
‖ n⊥n‖

n⊥n‖ ε‖ − n2
⊥

Eς
E‖

 '
0

0

 (2.31)

Again, we notice that Equation (2.23) is directly obtained from Equation (2.31). The

SW polarization is thus written as

Eς
E‖

=
n‖n⊥
n2
‖ − ε⊥

(2.32)

From the results in Equations (2.30) and (2.32), we can straightforwardly obtain the

unit polarization vectors used in Reference [27].

2.4.4 FW and SW Resonances and Cut-Offs

The fast and slow wave dispersion relations in Equations (2.22) and (2.23) are, re-

spectively, rewritten in terms of n2
⊥ as follows:

n2
⊥ =

(
n2
‖ − εR

)(
n2
‖ − εL

)
ε⊥ − n2

‖
(FW) (2.33)

n2
⊥ =

ε‖
ε⊥

(
ε⊥ − n2

‖
)

(SW) (2.34)

where

εR = ε⊥ + ε×, εL = ε⊥ − ε× (2.35)
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Here k‖ is assumed to be determined by the antenna. Then from Equation (2.33),

we find that the resonance for the FW occurs at n2
‖ = ε⊥, which corresponds to the

Alfvén resonance. Also, we see from Equation (2.34) that the resonance for the SW

occurs at ε⊥ = 0, which corresponds to the lower hybrid resonance. On the other

hand, the FW cutoff occurs at n2
‖ = εR, εL, while the SW is cutoff at n2

‖ = ε⊥.

When n2
‖ ' ε⊥, the value of n2

⊥ for the FW becomes very large, while its value

becomes very small for the SW. In this case the orderings that were used to originally

separate the fast and slow waves (see Section 2.4.1) are no longer valid.

2.5 Necessity of Introducing the Collisional Effect

When a resonance appears in the calculation domain in a numerical analysis, the

numerical result becomes unstable, and we often see grid-scale oscillation. This is

due to the fact that there exists a region where the grid resolution is not enough to

capture very small wavelengths of the wave in the vicinity of (and at) the resonance

point, no matter how fine the grids are (recall that the resonance corresponds to an

infinite value of k⊥, which yields an infinitesimal wavelength). This is a difficulty

of employing the cold plasma formulation, which arises unavoidably for a certain

condition (e.g., by spatially varying density or background magnetic field). However,

we can avoid this problem by introducing the collisional effect, which will be described

in this section.

First, for a low-temperature plasma, the macroscopic fluid equations describing

conservation of momentum for electrons and ions are written as follows:

mene

(
∂

∂t
+ ue · ∇

)
ue ' −ene (E + ue ×B)−meneν̄ei (ue − ui)

mini

(
∂

∂t
+ ui · ∇

)
ui ' eni (E + ui ×B)−meneν̄ei (ui − ue)

(2.36)

where ue,i are, respectively, the macroscopic electron and ion velocities, and ν̄ei is the
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electron-ion momentum exchange collision frequency defined as

ν̄ei =

√
2

12π3/2

e4ni

ε2
0m

1/2
e T 3/2

ln Λ ' 1.8× 105 n20

T
3/2
k

[
s−1
]

(2.37)

for ln Λ = 20 [4]; here n20 = ni [m−3] /1020 [m−3] and Tk = T [eV] /103 [eV]. In

Equation (2.36) the pressure gradient terms are omitted as being small. Now let us

assume a homogeneous plasma at the equilibrium state, which is described as

ne = ni = n0, ue = ui = 0

B = B0, E = 0

and use a Fourier analysis in time for the first-order quantities. Then the electron

and ion equations in Equation (2.36) are, respectively, rewritten as follows:

− iωmeneue1 = −ene (E1 + ue1 ×B0)−meneν̄ei (ue1 − ui1)

− iωminiui1 = eni (E1 + ui1 ×B0)−meneν̄ei (ui1 − ue1)
(2.38)

As an example, for a plasma with n0 = 1.0× 1018 m−3 and Te = Ti = 10 eV, the

electron-ion momentum exchange collision frequency is calculated at ν̄ei ' 1.8 × 106

s−1, which is much smaller compared to the applied frequency in ICRF (f = 80 MHz).

Thus, the macroscopic electron and ion velocities can be evaluated by neglecting the

collision terms in Equation (2.38). As a result, one gets

ue1⊥ ∼ ui1⊥,
ue1‖

ui1‖
∼ O

(
mi

me

)
(2.39)

where the subscripts ⊥ and ‖ denote the quantities in the perpendicular and parallel

directions to the background magnetic field, respectively. Therefore, we can estimate
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ue1 − ui1 ∼ ue1 in order of magnitude, and rewrite Equation (2.38) as

− iωmeneue1 = −ene (E1 + ue1 ×B0)−meneν̄eiue1

− iωminiui1 = eni (E1 + ui1 ×B0) +meneν̄eiue1

(2.40)

Further, we find in the perpendicular component of the ion equation that even for

ω ∼ ν̄ei the collision term is much smaller than the inertial term by O (me/mi).

Consequently, we could neglect the collision term in the ion equation and consider the

collisional effect only in the electron equation. The end result is that the electron mass

me is simply replaced by the quantity me (1 + iν̄ei/ω), which is the same conclusion

given by Stix [46]. Using this newly-defined “electron mass,” the resonances described

in Section 2.4.4 do not occur, since the quantity ε⊥ now has a nonzero imaginary part

so that ε⊥ 6= 0 or n2
‖ − ε⊥ 6= 0 at every point in the calculation domain for any

density variation. The wavenumber is then kept finite in the resonance region, and

the corresponding wave can be well resolved with sufficiently fine grids. Of course, we

do not need to consider the collisional effect if it is assured that no resonance occurs

in the calculation domain.

2.6 A Condition for Sheath Formation

The previous sections have provided an overview of the wave phenomena observed in

the edge plasma. The rest of this chapter will mainly be devoted to the descriptions

of the sheath physics, which is the central theme in this study.

First, let us consider a condition for the thermal sheath to be formed on a metal

wall when the magnetic field line intersects with the wall at a sufficiently large angle

ϑ. The origin of the sheath formation is the difference in thermal velocity between

the electrons and ions at a conductor surface, where both species try to leave plasma.

Since the electrons always move along the field lines faster than the ions due to their

smaller mass, it would be natural to gather that the electrons become scarcer than the
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ions in the close vicinity of the metal wall. When this really happens, the potential

barrier inside the sheath plays a role to confine the electrons and restore charge

ambipolarity in the plasma; in fact, the potential drop and sheath width ∆sh (defined

later) are determined such that the net flux to the wall vanishes in steady state. For

electrons and ions having the velocity components ven and vin perpendicular to the

wall, the following relation is required to be satisfied for the thermal sheath to be

retained at the wall:

∆sh

ven

<
∆sh

vin

(2.41)

Equation (2.41) indicates that the electron transit time across the sheath needs to be

smaller compared to the ion transit time. Here the velocity components ven and vin

are, respectively, evaluated as follows:

ven ∼ vte sinϑ (2.42)

vin ∼ cs (2.43)

where vte is the electron thermal speed defined as vte = (2Te/me)
1/2, cs is the acoustic

velocity defined as cs = (Te/mi)
1/2, and sinϑ = |Bn/B|, where Bn is the perpendicular

component of the background magnetic field to the wall. Note that Equation (2.43)

comes from the Bohm sheath criterion [45]. Then, substituting Equations (2.42) and

(2.43) into Equation (2.41) yields

ϑ &

(
me

mi

)1/2

(2.44)

This is the required angle for the sheath formation. If the magnetic field line is close

to be parallel to the metal wall, the electron loss would be negligibly small due to

the gyro motion. Therefore, having a lower limit of the contact angle as described in

Equation (2.44) is physically reasonable.
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Most situations of practical interest for sheaths in a tokamak obey the condition

shown in Equation (2.44). This type of sheath is sometimes called an ion-rich sheath

(since the electrons are mostly excluded from the sheath region). For smaller an-

gles, the ions can actually be lost to the wall faster than the electrons, resulting in

an entirely different sheath structure (i.e., electron-rich sheath; see Reference [47]).

However, this situation will not be considered in this thesis.

The discussion in this section assumes that RF electric fields are not present. If

they exist, the electrons are further accelerated along the field lines, so that the RF

driven sheaths can have higher voltage than the thermal (Bohm) sheaths considered

here. The details of the Bohm and RF sheath potentials will be discussed in more

depth in Section 2.8.

2.7 Derivation of the Sheath Boundary Condition

In the previous subsection we find that an ion-rich sheath can be formed on the

metal wall when the magnetic field line intersects with the wall at an angle larger

than (me/mi)
1/2. The next question is how we should take into account the sheath

region in the present numerical analysis. Recall that our interest includes the physics

of plasma in the SOL, whose characteristic length is several orders of magnitude

greater than a typical sheath width (the order of the Debye length). Then it would

be virtually impossible to calculate detailed wave phenomena in the SOL and sheath

simultaneously, since these two spatial scales are so different that a prohibitively large

number of grids would be required in numerical simulation if the grid size is adjusted

to the size which is sufficient to resolve the physics in the sheath region (it is true

even if we use a nonuniform mesh, since the adjacent grid sizes should not be vastly

different for a stable calculation). Furthermore, kinetic effects must be considered if

we aim to investigate the correct physics inside the sheath, which raises a question

of how to naturally connect with the cold plasma formulation in the SOL (of course,
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Figure 2-2: Slab model with a flat wall for the derivation of the sheath boundary
conditions.

we can apply the kinetic equations even in the SOL, but it will make computational

cost truly enormous since in general the integrals have to be evaluated numerically).

The above-mentioned difficulties, however, can be solved if we make some reason-

able approximations for the sheath. Surprisingly, the sheath effect can then be taken

into account without resolving the sheath region; in fact, by means of a boundary

condition. This is the “sheath boundary condition,” which was first derived by Myra

et al. for the full electromagnetic case [27] and later improved to a self-consistent form

by D’Ippolito and Myra [33]. The purpose of this section is to review the derivation

of the sheath boundary condition by reference to their previous work and recent sup-

plements [48, 49]. First, the analysis is conducted for the case of an electromagnetic

wave incident on a flat wall. Then, the derived sheath boundary condition is verified

with a curved wall based on a general curvilinear coordinate system.

2.7.1 Sheath Boundary Condition for a Flat Wall

The geometry considered here is shown in Figure 2-2. The sheath is assumed to be

planar with the time-averaged characteristic width ∆sh and sandwiched between the

conductor (left) and the plasma (right). The Cartesian coordinate system is employed

for the subsequent calculation; the y-z plane is set parallel to the conductor, and x = 0

is positioned at the left edge of the sheath.

In the sheath region electrons are excluded due to the potential barrier so that
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the electron density there is much smaller compared to that in the plasma away

from the sheath. Thus, the coefficients ε⊥, ε‖, and ε× in the dielectric tensor can be

approximated as ε⊥ ' ε‖ ' 1 and ε× ' 0 (see Equation (2.13)). As a result, the

dielectric tensor is reduced to ε ' I as is evident from Equation (2.12), and we see

that σ ' 0 (in Equation (2.11)) and then Jind ' 0 (in Equation (2.9)). In addition,

we notice that n · E = 0 from Equation (2.15). Consequently, Equation (2.16) is

simplified as

(
n2 − 1

)
E = 0

which yields the following dispersion relation:

n2 = 1 (2.45)

This is identical with the dispersion relation in vacuum. The results shown here

indicate that the sheath is reasonably modeled as a vacuum layer of the same width.

Next, let us consider that the electric field in the sheath (vacuum) region, E(sh),

is expressed by the two linearly independent vectors, namely, the transverse electric

(TE) and transverse magnetic (TM) modes:

E(sh) = CeETE + CmETM (2.46)

where Ce and Cm are arbitrary constants. The TE mode of the electric field, ETE, is

defined such that ETEx = 0, while the TM mode of the electric field, ETM, is defined

such that BTMx = 0. Assuming a wave of the form exp (ikyy + ikzz) in the y-z

plane and a standing wave sin (kxx) in the x direction, and noting that the boundary

condition E
(sh)
t = 0 (vanishing tangential components) must be satisfied at x = 0,
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the electric fields ETE and ETM are expressed in the following form:

ETE = ei(kyy+kzz−ωt) [0, a1 sin (kxx) , a2 sin (kxx)] (2.47)

ETM = ei(kyy+kzz−ωt) [b1 cos (kxx) , b2 sin (kxx) , b3 sin (kxx)] (2.48)

The procedure to determine the coefficients a1, a2, b1, b2, and b3 is as follows. First,

since we assume that Jind = 0 in the sheath, it is required that ∇ ·E(sh) = 0, which

in turn ∇ ·ETE = 0 and ∇ ·ETM = 0. The divergence-free condition of ETE leads to

ikya1 + ikza2 = 0

Then we can choose a1 = −nz (= −ckz/ω) and a2 = ny, and get

ETE = ei(kyy+kzz−ωt) [0, −nz sin (kxx) , ny sin (kxx)] (2.49)

Similarly, the divergence-free condition of ETM yields

−kxb1 + ikyb2 + ikzb3 = 0

Also, the definition of the TM mode requires that ∇×ETM|x = 0, leading to

−kzb2 + kyb3 = 0

Thus, we can choose b1 = n2
y + n2

z, b2 = −inxny, and b3 = −inxnz. Consequently,

Equation (2.48) is rewritten as

ETM = ei(kyy+kzz−ωt)
[(
n2
y + n2

z

)
cos (kxx) , −inxny sin (kxx) , −inxnz sin (kxx)

]
(2.50)

It is easily confirmed from Equations (2.49) and (2.50) that ETE ·ETM = 0.

Without loss of generality, the tangential component of the wavevector can be
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aligned parallel to the z axis. Then we can set ky = 0, and the electric field in the

sheath is written as

E(sh) =

Ce


0

−nz sin (kxx)

0

+ Cm


n2
z cos (kxx)

0

−inxnz sin (kxx)


 ei(kzz−ωt) (2.51)

The corresponding magnetic field, B(sh), is obtained using Faraday’s law as follows:

B(sh) =

Ce


n2
z sin (kxx)

0

inxnz cos (kxx)

+ Cm


0

nz cos (kxx)

0


 ei(kzz−ωt)/c (2.52)

Here the vacuum dispersion relation (2.45) is employed.

Since the transition between the sheath and plasma regions is smooth, the follow-

ing conditions of continuity must be satisfied at the sheath-plasma boundary:

E
(sh)
t = E

(pl)
t = Ẽ

(pl)
t ei(kzz−ωt) (2.53)

D(sh)
n = εshE

(sh)
n = D(pl)

n = D̃(pl)
n ei(kzz−ωt) (2.54)

where the superscript pl denotes the quantities on the plasma side, and the subscripts

t and n denote the tangential and normal components to the boundary, respectively.

In Equation (2.54) Dn is the normal component of the electric displacement, and εsh

is the dielectric constant in the sheath, which is assumed to be equal to ε0 in vacuum.

Substituting Equation (2.51) into Equations (2.53) and (2.54) yields

Ẽ(pl)
y = −Cenz sin (kx∆sh) (2.55)

Ẽ(pl)
z = −iCmnxnz sin (kx∆sh) (2.56)

D̃(pl)
x = εshCmn

2
z cos (kx∆sh) (2.57)
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In addition, Ampere’s law and Gauss’s law for magnetism give the following conditions

of continuity:

B
(sh)
t = B

(pl)
t = B̃

(pl)
t ei(kzz−ωt) (2.58)

B(sh)
n = B(pl)

n = B̃(pl)
n ei(kzz−ωt) (2.59)

Substituting Equation (2.52) into Equations (2.58) and (2.59), one gets

B̃(pl)
y = Cmnz cos (kx∆sh) /c (2.60)

B̃(pl)
z = iCenxnz cos (kx∆sh) /c (2.61)

B̃(pl)
x = Cen

2
z sin (kx∆sh) /c (2.62)

We have so far six relations in Equations (2.55)–(2.57) and Equations (2.60)–

(2.62). However, two of them are redundant. This is confirmed by Faraday’s law and

Ampere’s law on the plasma side. First, Faraday’s law

∇×E(pl) = −∂B
(pl)

∂t
= iωB(pl)

yields

B(pl)
x = −kz

ω
E(pl)
y

which proves that Equation (2.55) is identical with Equation (2.62). Second, Ampere’s

law

∇×B(pl) = µ0
∂D(pl)

∂t
= −iωµ0D

(pl)
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gives

D(pl)
x =

kz
ωµ0

B(pl)
y

which shows that Equations (2.57) and (2.60) are redundant. Therefore, the inde-

pendent equations are

Ẽ(pl)
z = −iCmnxnz sin (kx∆sh)

D̃(pl)
x = εshCmn

2
z cos (kx∆sh)

B̃(pl)
z = iCenxnz cos (kx∆sh) /c

B̃(pl)
x = Cen

2
z sin (kx∆sh) /c

From these four equations we can obtain two relations by eliminating the coeffi-

cients Ce and Cm. Using Equations (2.56) and (2.57), one gets

nzE
(pl)
z = −inx

D
(pl)
x

εsh

tan (kx∆sh) (2.63)

Similarly, Equations (2.61) and (2.62) yield

nxB
(pl)
x = −inzB(pl)

z tan (kx∆sh) (2.64)

Equations (2.63) and (2.64) show the general boundary conditions at the sheath-

plasma boundary, which are derived rigorously from Maxwell’s equations, except that

the sheath region is approximated as vacuum space.

In the present analysis we can reasonably take the following thin-sheath limit:

|kx∆sh| � 1 (2.65)

The evidence is as follows. If Equation (2.65) is correct, the following inequality must
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also be satisfied:

(ω
c

)2

∆2
sh − k2

z∆
2
sh � 1

As will be shown later, the sheath width can be estimated to be in the order of the

electron Debye length. Then, in ICRF (f = 80 MHz) we can surely confirm that

ω∆sh/c � 1. Also, as will be evident in later numerical analyses, the condition

|kz∆sh| � 1 is usually satisfied. The approximation (2.65) simplifies the previous

results as follows:

ikzE
(pl)
z =

(
k2

0 − k2
z

) ∆sh

εsh

D(pl)
x (2.66)

B(pl)
x = −ikz∆shB

(pl)
z (2.67)

where k0 = ω/c. Due to Faraday’s law, we notice that B
(pl)
x = −kzE(pl)

y /ω and

B
(pl)
z ' kx,pE

(pl)
y /ω, where kx,p is the characteristic wavenumber in the x direction on

the plasma side. Then Equation (2.67) is rewritten as

(1− ikx,p∆sh)B(pl)
x ' 0 (2.68)

Since the condition |kx,p∆sh| � 1 is usually satisfied, Equation (2.68) can be simply

approximated as

B(pl)
x ' 0 (2.69)

On the other hand, the right-hand side of Equation (2.66) cannot be neglected in

general since the coefficient ε‖ is large.

If the conductor and plasma are located in the opposite way with respect to the

sheath, we can still follow the same procedure as above, but notice the following

change: tan (kx∆sh) → − tan (kx∆sh). Thus, the result corresponding to Equation
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(2.66) becomes

ikzE
(pl)
z = −

(
k2

0 − k2
z

) ∆sh

εsh

D(pl)
x (2.70)

at the sheath-plasma boundary.

Consequently, in the thin-sheath limit we can write the sheath boundary condi-

tions in differential form as follows:

∇t ·E(pl)
t =

(
k2

0 +∇2
t

)(∆sh

εsh

D(pl)
n

)
(2.71)

B(pl)
n = 0 (2.72)

where the subscript n denotes the perpendicular direction to the sheath pointing to

the plasma side, and the subscript t denotes the plane tangential to the sheath. It

should be emphasized here that the above boundary conditions are described only

with the fields on the plasma side, which makes it unnecessary to resolve the narrow

sheath region in numerical analysis.

2.7.2 Electrostatic Approximation

In ICRF the value of k0 is usually much smaller compared to that of kt (or kz here).

Then Equation (2.66) can be approximated as

E(pl)
z = ikz

∆sh

εsh

D(pl)
x (2.73)

which leads to the following sheath boundary condition in differential form:

E
(pl)
t = ∇t

(
∆sh

εsh

D(pl)
n

)
(2.74)

In fact, neglecting k0 (or assuming that n2 ' 0) in Equation (2.66) corresponds to

the electrostatic approximation in vacuum. This is easily confirmed by approximating

43



ε ' I in Equation (2.25).

In the electrostatic limit, the electric field in the sheath must be expressed using

the electric potential Φ(sh) as follows:

E(sh) = −∇Φ(sh) (2.75)

In this case the corresponding magnetic field is zero due to Faraday’s law so that

Equation (2.72) is automatically satisfied (and thus redundant). In order for Equation

(2.46) to be consistent with Equation (2.75), we require that Ce → 0. Then the electric

potential Φ(sh) is explicitly expressed as

Φ(sh) = −Cm
c

ω
nx sin (kxx) ei(kzz−ωt) (2.76)

Notice again that we employ n2 ' 0. In the thin-sheath limit Equation (2.76) is

approximated as

Φ(sh) ' −Cmn
2
xxei(kzz−ωt) (2.77)

The important fact here is that the electric potential is linearly varied in the perpen-

dicular direction to the metal (or sheath) surface.

2.7.3 Verification with a Curved Wall

The sheath boundary condition (2.74) in the previous subsection was calculated based

on the assumption of a flat wall, in which the sheath width ∆sh is constant. In order to

verify the obtained result, let us consider next the curved geometry shown in Figure

2-3. Here, it is assumed that in a general curvilinear coordinate system (τ, υ, z)

the metal-sheath and sheath-plasma boundaries are located at υ = 0 and υ = δ,

respectively, and the wave has a variation of exp (ikzz) in space.

In the electrostatic limit, the electric field in the sheath is expressed as shown in
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Figure 2-3: Geometry showing a curved sheath in curvilinear coordinates.

Equation (2.75). The expression for the electric potential Φ(sh) should be in principle

obtained by solving Laplace’s equation subject to the boundary conditions at the two

surfaces, namely, Φ(sh) (τ, 0) = 0 and Φ(sh) (τ, δ) = Φs (τ). However, in the thin-sheath

limit, it would be a reasonable ansatz to have the electric potential of the form

Φ(sh) = Φs (τ)
υ

δ
= Φ̃s (τ)

υ

δ
ei(kzz−ωt) (2.78)

from the result in Equation (2.77).

In the curvilinear coordinates considered here, the covariant base vectors gi (i =

1, 2, 3) are defined as follows:

∂r

∂x1
=
∂r

∂τ
= g1 = heτ

∂r

∂x2
=
∂r

∂υ
= g2 = qeυ

∂r

∂x3
=
∂r

∂z
= g3 = ez

(2.79)

where r is the position vector, and x1 = τ , x2 = υ, x3 = z; eτ , eυ, and ez are the

unit vectors in the τ , υ, and z directions, respectively. In general h and q are the

functions of τ and υ. Since the relation between the covariant base vectors and the

corresponding contravariant base vectors gj is

gi · gj = δji (2.80)
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(δji is the Kronecker delta), the contravariant base vectors for these coordinates are

g1 =
1

h
eτ , g2 =

1

q
eυ, g3 = ez (2.81)

Then the gradient of Φ(sh) is written as follows:

∇Φ(sh) =
∂Φ(sh)

∂xi
gi

=
1

h

∂Φ(sh)

∂τ
eτ +

1

q

∂Φ(sh)

∂υ
eυ + ikzΦ

(sh)ez

(2.82)

where the summation convention applies to the superscript i. Substituting Equation

(2.78) into Equation (2.82), and using Equation (2.75) yields the following expression

for the electric field in the sheath:

E(sh) = − υ

hδ

dΦs

dτ
eτ −

Φs

qδ
eυ − ikzΦs

υ

δ
ez (2.83)

Then at υ = δ one gets

E
(sh)
t = −1

h

dΦs

dτ
eτ − ikzΦsez

E(sh)
n = −Φs

qδ

(2.84)

Now recall that we can employ two conditions of continuity in terms of the electric

field at the sheath-plasma boundary, which are shown in Equations (2.53) and (2.54).

First, continuity of the tangential electric field components simply gives the following

relation at the surface υ = δ:

E
(sh)
t = E

(pl)
t = −∇tΦs (2.85)

Second, continuity of the normal electric displacement together with Equation (2.84)
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yields the expression for the electric potential Φs as follows:

Φs = − qδ
εsh

D(pl)
n (2.86)

Notice that ∆sh ' qδ in the thin-sheath limit where q ' q (τ). Consequently, substi-

tuting Equation (2.86) into Equation (2.85), we obtain the sheath boundary condition

of the form

E
(pl)
t = ∇t

(
∆sh

εsh

D(pl)
n

)
(2.87)

which is identical with Equation (2.74). Therefore, at least in the lowest order, we

could conclude that the sheath boundary condition (2.87) is valid for any curved

(but reasonably smoothed) geometry with the assumption that the sheath is vacuum,

thin, and electrostatic. Here note that the sheath width ∆sh should appear inside the

nabla operator. An important physical observation is that for ∆sh → 0 the sheath

boundary condition naturally reduces to the conducting-wall boundary condition,

where the tangential electric field components are zero at the boundary.

2.8 Evaluation of Sheath Width

The next step which is necessary to employ the sheath boundary condition (2.87) is

to determine the sheath width ∆sh. In this study the sheath width is assumed to

satisfy the Child-Langmuir law [50,51]

∆sh = λDe

(
eV0

Te

)3/4

(2.88)

where λDe is the electron Debye length defined as λDe = (ε0Te/ne0e
2)

1/2
, and V0 is

the rectified (DC) sheath potential. The choice of V0 depends on the magnitude of

eVsh/Te, which will be described in the following subsections (including the definition
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of Vsh).

This Child-Langmuir law should be valid when E×B drifts and finite ion Larmor

radius can be neglected. These conditions may break down in some cases, such as

when the background magnetic field intersects at a very small angle with the surface.

However, as mentioned in Section 2.6, this is beyond the scope of this thesis research.

2.8.1 Sheath Width for V0 ∼ VB

First, let us recall the derivation of the Bohm sheath criterion [45]. With the assump-

tion that Ti � Te and the electrostatic approximation, the ion and electron densities

are, respectively, expressed as follows:

ni0 = n0

(
1− 2eφ

miu2
0

)−1/2

(2.89)

ne0 = n0 exp

(
eφ

Te

)
(2.90)

where φ is the negative electric potential which approaches zero with increasing dis-

tance from the sheath, and u0 is the ion velocity, which is perpendicular to the sheath,

at the point where φ = 0 (see Figure 2-4). Here assume that u0 & cs for the sheath

formation (see Section 2.6), which is equivalent to

miu
2
0

Te

∼ 1 (2.91)

Then, from Equations (2.89) and (2.91) we notice that ni0 ' n0 for |eφ/Te| � 1.

Due to the formation of the sheath, the ions are accelerated inside the sheath,

while most of the electrons are reflected by the potential barrier; i.e., the role of

the sheath is to preserve charge ambipolarity in the plasma in such a way as briefly

described in Section 2.6. Based on this standpoint, the Bohm sheath potential VB

(> 0) is defined such that the electron flux becomes equal to the ion flux at the wall.
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Figure 2-4: A profile of the electric potential in a planar sheath and a ballistic ion
entering with the velocity u0.

Namely, for ni0 ' n0 we obtain

n0evin − n0e−eVB/Teeven = 0

which yields

ven

vin

= eeVB/Te (2.92)

Substituting Equations (2.42) and (2.43) into Equation (2.92) leads to the following

approximate expression for VB:

VB '
Te

e
ln

[(
mi

me

)1/2

sinϑ

]
(2.93)

When the rectified sheath potential is the same order as the Bohm sheath potential

(V0 ∼ VB), the corresponding sheath width is evaluated as

∆sh = CthλDe (2.94)

49



where

Cth =

{
ln

[(
mi

me

)1/2

sinϑ

]}3/4

(2.95)

Notice that the sheath width is a function of the contact angle. At this point it is

important to keep in mind that Equation (2.95) is not valid when ϑ < (me/mi)
1/2

due to the criterion (2.44) derived in Section 2.6. If the calculated contact angle at

some point on the wall becomes less than (me/mi)
1/2 in numerical analysis, a useful

remedy would be to switch the value of Cth to zero, i.e.,

Cth =


0 for ϑ ≤ (me/mi)

1/2{
ln

[(
mi

me

)1/2

sinϑ

]}3/4

for ϑ > (me/mi)
1/2

(2.96)

The transition between the two cases is smooth since Cth = 0 for sinϑ = (me/mi)
1/2.

2.8.2 Sheath Width for V0 ∼ Vsh

Next, consider the case where the rectified sheath potential is the same order as the

instantaneous sheath voltage Vsh defined by

Vsh ≡
∣∣∣∣∫ E(sh)

n dn

∣∣∣∣ ' ∆sh

∣∣E(sh)
n

∣∣ (2.97)

The integral in Equation (2.97) is taken across the sheath in the direction normal to

the wall. Using the expression that V0 = CshVsh where Csh is an order-unity constant

giving the rectification factor [11], Equation (2.88) becomes

∆sh = λDe

(
eCshVsh

Te

)3/4

(2.98)
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Substituting Equation (2.97) into Equation (2.98) yields

∆sh =

(
eCsh

Te

∣∣E(sh)
n

∣∣)3

λ4
De (2.99)

Due to the continuity of the normal electric displacement at the sheath surface (see

Equation (2.54)), Equation (2.99) can be further rewritten as follows:

∆sh =

(
eCsh

εshTe

∣∣D(pl)
n

∣∣)3

λ4
De (2.100)

Notice that the sheath boundary condition becomes nonlinear for this case. From

Equation (2.100) we find that the sheath width can be largely increased by the RF

waves with high electric-field strength.

2.8.3 Approximate Expression for the Sheath Width

Based on the results obtained in the previous subsections, a useful approximate ex-

pression for the sheath width would be written as follows:

∆sh =

(
eCsh

εshTe

∣∣D(pl)
n

∣∣)3

λ4
De + CthλDe (2.101)

The accuracy of this expression is valid for eVsh/Te � 1 and eVsh/Te � 1. In the

intermediate region (eVsh/Te ∼ 1) the proposed form may not be so accurate, but

provides a smooth interpolation between the two limits. The corresponding rectified

sheath potential can be obtained from Equation (2.88) as follows:

V0 =
Te

e

(
∆sh

λDe

)4/3

(2.102)

which approaches CshVsh for eVsh/Te � 1 and VB for eVsh/Te � 1.
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2.9 Absorbing Boundary Condition

The last topic in this chapter is the boundary condition between the hot core plasma

and the cold plasma in the SOL. Although there is no clear boundary between the

two regions, the core plasma needs to be excluded from the calculation domain since

obviously the cold plasma formulation cannot be applied to this high temperature

plasma. On the other hand, one has to avoid having reflected waves from the fictitious

core-edge plasma boundary since these waves are not physical. Therefore, the task

here is to establish a boundary condition which enables to cut out the hot plasma

region without affecting an important sheath-plasma interaction observed in the SOL.

In cases of practical interest for tokamak heating, most of the RF waves that

enter the core plasma are absorbed there. As far as studying the RF sheath-plasma

interactions in the SOL is concerned, it does not matter how this absorption occurs,

so we can use an artificial absorption condition at the boundary of the edge and core

regions. The easiest way would be to introduce a damping layer in the vicinity of

the core-edge plasma boundary. Specifically, the electron-ion momentum exchange

collision frequency introduced into the electron mass in Section 2.5 is replaced with

ν = ν0e−(x−xabs)/λν + CRν̄ei (2.103)

where ν0 is the artificial frequency, xabs is the position of the core-side boundary

of the plasma, and λν represents the length of the damping layer. The choice of the

values for ν0 and λν depends on the calculation condition and requires some numerical

experimentation. However, it is important to point out that ν0 must be much larger

than the applied frequency ω to assure an appropriate damping on the core side,

and the length λν should correspond to several wavelengths of a propagating wave.

The coefficient CR in Equation (2.103) is a positive rectification factor adjusted to

assure the numerical stability for a given grid resolution in the resonance region.

According to the above procedure, the actual boundary condition on the core side is
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not important (since E → 0 for complete absorption) so that we can impose that

Et = 0, for example. This condition identical with the boundary condition for a

conducting wall, together with the damping layer, is called the “absorbing boundary

condition” in later numerical analyses.
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Chapter 3

Development of the rfSOL Code

3.1 Prologue

The goal in this chapter is to develop a numerical scheme based on the governing

equations, which were derived in Chapter 2, in the 2D space, and verify its accuracy

using the analytical solution and theories. For the discretization of the governing

equations, a conventional finite element technique with piecewise (bi)quadratic in-

terpolation functions [52] is employed. One of the most important advantages of

the finite element method is that it can easily deal with the problems with compli-

cated boundary shapes. Considering that an ultimate goal is to apply the developed

numerical scheme to a realistic tokamak divertor geometry, this feature is indeed

essential. Other important features include ease in incorporating various boundary

conditions into the scheme and formation of a sparse global matrix, which makes it

possible to achieve fast computation with use of state-of-art matrix solvers. In addi-

tion, the extension of the code to solve a problem in the 3D space can be conducted

in a straightforward manner. Due to these favorable features, many researchers have

adopted the finite element method to calculate various problems in tokamak plasmas

(e.g., see References [53–56]).

The present finite element scheme is developed with the aim of achieving a fast
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and accurate solver for RF sheath-plasma interaction problems. For this purpose, two

special techniques are adopted in the scheme. First, the central point approximation

is applied to the Jacobian and the components of the cofactor matrix in each integral

of the discretized Maxwell’s equation (more precisely, a combined form of Maxwell’s

equations). This enables the integrals to be calculated analytically without the neces-

sity of using any numerical integration method, leading to a large increase in speed

of computation, especially for plasma wave problems that require a huge number

of grid points for accurate predictions. In fact, this approximation is also desirable

from a stability point of view, since a high-order numerical integration method can

yield unwanted numerical oscillation when the grid size becomes smaller. Second, the

element average employing piecewise quadratic interpolation functions is effectively

applied to the discretized equation corresponding to the sheath boundary condition.

Recall that ∆shD
(pl)
n ∝

∣∣∣D(pl)
n

∣∣∣3D(pl)
n on the right-hand side of the sheath boundary

condition for the RF sheath dominated regime. Applying the element average to the

sheath width and its derivative not only achieves further speed-up of the code but

also largely simplifies calculations to obtain explicit values of the global matrix com-

ponents, compared to the case where every electric field component in the polynomial

is naively interpolated with quadratic interpolation. In general, the techniques men-

tioned here are not automatically adopted in commercial finite element solvers, so

that a careful derivation of the system of discretized equations is necessary.

Chapter 3 begins with the finite element discretization of Maxwell’s equation (with

special attention to the treatment of the antenna current) and the sheath boundary

condition. For ease of understanding, the discretization procedure for the sheath

boundary condition is demonstrated for a flat wall at the beginning, and then it

is generalized so as to be applied to an arbitrarily-shaped curved wall. The ob-

tained nonlinear system of discretized equations is then iteratively solved by means

of a Newton-Raphson method. Here, focusing on the sparsity of the global ma-

trix, MUMPS (MUltifrontal Massively Parallel Solver) is effectively employed for the
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large-scale computation. The validity of the established numerical scheme is verified

with several test problems in a 1D domain, and the performance of calculations is

investigated through a scaling test at the end of this chapter.

The developed finite element code is named “rfSOL (integrated code for RF

sheath-plasma interactions with a realistic SOL geometry),” and will be extensively

used in the next chapter to analyze various sheath-plasma interaction problems.

3.2 Finite Element Discretizations

The first half of this chapter will be devoted to the description of how the new

finite element code is constructed. In this section the discretization procedure for the

governing equations is described with the assumption that the calculation domain

is bounded by the sheath and absorbing boundary conditions. The brief overview

of the present finite element formulation is as follows. First, a combined form of

Maxwell’s equations is multiplied by an arbitrary function (weight function) and

integrated over the volume (including its surface) defining the domain, according to

the standard finite element procedure. Here the arbitrary function W is chosen for

convenience such that its tangential components are zero on the boundary surface.

This allows the sheath boundary condition to be introduced as a Dirichlet boundary

condition of the problem. Since the sheath boundary condition is expressed as a

partial differential equation, it is also necessary to discretize this boundary condition

using an appropriate technique. Although the choice of the discretization method for

the sheath boundary condition can be arbitrary, a straightforward and efficient way

is to apply the 1D finite element approach by employing a different weight function

W S defined on the boundary. The weight functions and unknown electric field are

represented on grid elements with use of piecewise-defined interpolation functions.

The goal of this section is to obtain a set of coupled equations for the unknown nodal

values of the electric field components in the Cartesian coordinate system.
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3.2.1 Discretization of Maxwell’s Equation

The present numerical scheme is constructed based on the weighted residual method.

First, forming the inner product of Equation (2.10) with the weight function W , and

then integrating it over the calculation domain Ω yields

∫
Ω

W ·
(
∇×∇×E − ω2

c2
ε ·E − iωµ0Jext

)
dΩ = 0 (3.1)

Due to the identity

W · (∇×∇×E) = ∇×W · ∇ ×E −∇ · [W × (∇×E)]

the first term on the left-hand side of Equation (3.1) is rewritten as follows:

T1 =

∫
Ω

W · (∇×∇×E) dΩ

=

∫
Ω

∇×W · ∇ ×E dΩ −
∫
Γ

n̂ · [W × (∇×E)] dΓ

=

∫
Ω

∇×W · ∇ ×E dΩ −
∫
Γ

n̂×W · ∇ ×E dΓ

where Γ represents the boundary of the domain Ω , and n̂ is the outward-pointing

unit normal vector on Γ . Here Gauss theorem is employed to obtain the boundary

integral term. Then, substituting this expression into Equation (3.1) gives

∫
Ω

(
∇×W · ∇ ×E − ω2

c2
W · ε ·E − iωµ0W · Jext

)
dΩ

=

∫
Γ

n̂×W · ∇ ×E dΓ

(3.2)

Since the sheath and absorbing boundary conditions are regarded as Dirichlet bound-

ary conditions and imposed on the tangential components of the electric field at the

boundary, the weight function at the boundary is required that Wt = 0; here the

subscript t denotes the component in the tangential plane to the boundary. Thus, the
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boundary integral term in Equation (3.2) is omitted due to the fact that n̂×W = 0.

Consequently, the weak form of Maxwell’s equation for this analysis is given by

∫
Ω

(
∇×W · ∇ ×E − ω2

c2
W · ε ·E − iωµ0W · Jext

)
dΩ = 0 (3.3)

In order to spatially discretize Equation (3.3) in the x-y plane, the calculation

domain is divided into nine-node grid elements, and then the weight function and

electric field are defined based on the standard Galerkin approach as follows:

W = ŴiNi (x, y) e−ikzz = ÑiŴi (3.4)

E = ÊjNj (x, y) ei(kzz−ωt) (3.5)

where Ni and Nj are the piecewise biquadratic interpolation functions, Ŵi and Êj

are the nodal vectors, and the subscripts i and j denote the global node number.

Here the summation convention applies to the subscripts i and j. Since the shape

function Ni is nonzero only in the grid elements which include the node i, it can be

defined in a grid element using the local coordinate variables ξ and η as follows:

Nα (ξ, η) =

[
ξαξ

2
(1 + ξαξ) +

(
1− ξ2

α

) (
1− ξ2

)]
·
[ηαη

2
(1 + ηαη) +

(
1− η2

α

) (
1− η2

)] (3.6)

where −1 ≤ ξ, η ≤ 1, and the subscript α denotes the local node number (α =

1, . . . , 9). Here

ξα = (ξ1, . . . , ξ9) = (−1, 1, 1,−1, 0, 1, 0,−1, 0)

ηα = (η1, . . . , η9) = (−1,−1, 1, 1,−1, 0, 1, 0, 0)

Figure 3-1 shows a nine-node element defined in the physical space based on the Carte-

sian coordinate system (x = (x, y)) and in the mapping space based on a normalized
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Figure 3-1: A nine-node element in the physical and mapping spaces.

coordinate system (ξ = (ξ, η)).

Substituting Equation (3.4) into the first term in Equation (3.3) and using the

identity

∇×W · ∇ ×E = ∇×
(
ÑiŴi

)
· ∇ ×E

=
(
∇Ñi × Ŵi + Ñi∇× Ŵi

)
· ∇ ×E

=
[
(∇×E)×∇Ñi

]
· Ŵi

(here ∇× Ŵi = 0 in the Cartesian coordinate system) we obtain

Ŵi ·
∫
Ω

(
∇×E ×∇Ñi −

ω2

c2
Ñiε ·E − iωµ0ÑiJext

)
dΩ = 0 (3.7)

The requirement that Equation (3.7) needs to be satisfied for arbitrary weight func-

tions in the domain Ω (excluding the boundary Γ ) leads to the following equation:

∫
Ω

(
∇×E ×∇Ñi −

ω2

c2
Ñiε ·E − iωµ0ÑiJext

)
dΩ = 0 in Ω (3.8)

On the boundary Γ we impose the condition Wt = 0, so that

si ·
∫
Ω

(
∇×E ×∇Ñi −

ω2

c2
Ñiε ·E − iωµ0ÑiJext

)
dΩ = 0 on Γ (3.9)
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Figure 3-2: Normal vectors at the boundary nodes.

where si is the unit normal vector at the node i to the boundary Γ . In Equation (3.9)

we note that the summation convention is not applied to the subscript i. Since the

interpolation function Ñi possesses nonzero values only in the grid elements which

include the node i, the integration range in Equations (3.8) and (3.9) is restricted

within these grid elements.

Although si can be directed either outward or inward, we define it as the unit

normal vector pointing to the plasma side so that it can also be used to determine Dn

conveniently in the sheath boundary condition. If the local node number (1,2,3) of

the nodes in a grid edge that constitutes a part of the boundary is defined as shown

in Figure 3-2, the unit normal vector at the local node number 3 is easily obtained

as follows:

se =
y2 − y1

Γe

ex −
x2 − x1

Γe

ey (3.10)

where x1,2, y1,2 are the coordinate values corresponding to the local node number

shown in their subscripts, Γe is the length of the grid edge, and ex, ey are the unit

vectors in the x, y directions, respectively (the same shall apply to ez). The unit

normal vector at the local node number 1 or 2 (the node i in Figure 3-2) is then

calculated by applying the nodal-average method to the 1D grid elements on the
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boundary as follows:

s′i =
se1Γe1 + se2Γe2

Γe1 + Γe2

(3.11)

where the subscripts e1 and e2 denote the grid elements that possess the node i, and

se1, se2 are the unit normal vectors at the local node number 3 in the elements e1

and e2, respectively. To assure that its magnitude is 1, the vector s′i is normalized by

si =
s′xi(

(s′xi)
2 +

(
s′yi
)2
)1/2

ex +
s′yi(

(s′xi)
2 +

(
s′yi
)2
)1/2

ey (3.12)

Assuming that the external current is expressed as

Jext = Jante
i(kzz−ωt)ey (3.13)

and the dielectric tensor is also interpolated as ε = Nkεk using its nodal values εk,

the components of Equation (3.8) are written as follows:

• x component

Fxi ≡
∫
Ω

[
k2
zNiNjÊxj + ikzNi

∂Nj

∂x
Êzj −

∂Ni

∂y

∂Nj

∂x
Êyj +

∂Ni

∂y

∂Nj

∂y
Êxj

−ω
2

c2
NiNjNk

(
εxxkÊxj + εxykÊyj + εxzkÊzj

)]
dΩ = 0

(3.14)

• y component

Fyi ≡
∫
Ω

[
∂Ni

∂x

∂Nj

∂x
Êyj −

∂Ni

∂x

∂Nj

∂y
Êxj + ikzNi

∂Nj

∂y
Êzj + k2

zNiNjÊyj

−ω
2

c2
NiNjNk

(
εyxkÊxj + εyykÊyj + εyzkÊzj

)]
dΩ

= iωµ0

∫
Ω

NiJantdΩ ≡ Ryi

(3.15)
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• z component

Fzi ≡
∫
Ω

[
∂Ni

∂y

∂Nj

∂y
Êzj − ikz

∂Ni

∂y
NjÊyj − ikz

∂Ni

∂x
NjÊxj +

∂Ni

∂x

∂Nj

∂x
Êzj

−ω
2

c2
NiNjNk

(
εzxkÊxj + εzykÊyj + εzzkÊzj

)]
dΩ = 0

(3.16)

The calculations of the integrals are summarized in Appendix A.1. Here the Jacobian

and the components of the cofactor matrix in each grid element are evaluated at the

centroid of the element (i.e., at ξ = η = 0 in the mapping space). Owing to this

approximation, all the integrals are calculated analytically, which leads to significant

speed-up of the scheme (since in general, a numerical integration method requires

iterative calculations). Using Equations (3.12), (3.14), and (3.15), Equation (3.9) is

rewritten as follows:

sxiFxi + syiFyi = 0 on Γ (3.17)

Here we assume that Ryi = 0 at the boundary. The discretization of the term includ-

ing the external current in Equation (3.15) will be described in the next subsection.

3.2.2 Discretization of the Antenna Current

In this study, the external current, which corresponds to the antenna current, is mod-

eled with a delta function in such a way that Jant = K (y) δ (x− xant) for simplicity;

here we assume that the current strap is located at x = xant. Then the integral on

the right-hand side of Equation (3.15) is calculated as follows:

∫
Ω

NiJantdΩ =

∫
l

NA
i N

A
j Kjdl (3.18)

where l represents the 1D coordinate along the direction of the antenna current,

and the subscripts i and j denote the global node number of the nodes located on
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Figure 3-3: The interpolation function NA
i defined along the antenna current.

the current strap (see Figure 3-3). Here the surface current K is interpolated as

K = NA
j Kj using its nodal values Kj. The shape function NA

j is the piecewise

quadratic interpolation function which can be defined in a 1D grid element on the

current strap as follows:

NA
α (ξ) =

ξαξ

2
(1 + ξαξ) +

(
1− ξ2

α

) (
1− ξ2

)
(3.19)

where −1 ≤ ξ ≤ 1, and the subscript α denotes the local node number (α = 1, 2, 3);

ξ1,2,3 = −1, 1, 0.

3.2.3 Discretization of the Sheath Boundary Condition Im-

posed on a Flat Wall

The sheath boundary condition described in Equation (2.87) can be discretized by

employing the 1D finite element method when we consider the problem in the 2D

space. At the beginning, this procedure is demonstrated with a flat wall that lies in

the y-z plane as shown in Figure 2-2; that is, we only consider a 2D slab geometry

here. The discretization procedure will be generalized so as to be applied to a general

curved geometry in the next subsection.

First, forming the inner product of Equation (2.87) with the weight function W S,
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and then integrating it over the sheath region Γ S yields

∫
ΓS

W S ·
[
Et −∇t

(
∆sh

εsh

Dn

)]
dΓ S = 0 (3.20)

where the superscript pl is omitted. Let us next define the weight function and electric

field as

W S = Ŵ S
i N

S
i (τ) e−ikzz = ÑS

i Ŵ
S
i (3.21)

E = ÊS
jN

S
j (τ) ei(kzz−ωt) (3.22)

where NS
i and NS

j are the piecewise quadratic interpolation functions with respect to

τ (see Figure 2-3), and the subscripts i and j denote the global node number on Γ S.

Here the summation convention applies to the subscripts i and j, and the superscript

S is attached to explicitly show that the quantity is positioned on Γ S. The shape

function NS
i or NS

j can be locally defined in a 1D grid element on the sheath as shown

in Equation (3.19).

When we assume that the sheath is planar and its surface lies in the y-z plane,

the sheath boundary condition is expressed as

Et = ±∇t (∆shκ) (3.23)

where

∆sh =

(
eCsh

Te

)3

λ4
De |κ|

3 + CthλDe

κ = εxxEx + εxyEy + εxzEz

(3.24)

The positive and negative signs in front of the nabla operator on the right-hand side

of Equation (3.23) correspond to the cases where the conductor is located on the left

and right sides of the sheath, respectively.
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For the left planar sheath whose boundary with the plasma is located at x = xL,

Equation (3.20) reduces to

∫
ΓS

NS
i (y) [Et −∇t (∆shκ)] dΓ S

∣∣∣∣
x=xL

= 0 (3.25)

considering that Equation (3.20) needs to be satisfied for arbitrary weight functions

(recall that the calculation domain is defined in the x-y plane). The y component of

Equation (3.25) is then simply written as

∫
ΓS

NS
i

[
Ey −

d

dy
(∆shκ)

]
dΓ S

∣∣∣∣
x=xL

= 0 (3.26)

Now, let us make the following approximation for the derivative of ∆shκ:

d

dy
(∆shκ) '

〈
d∆sh

dy

〉
e

κ+ 〈∆sh〉e
dκ

dy
(3.27)

Here the variables surrounded by angle brackets with the subscript e represent the

element-averaged quantities defined by

〈∆sh〉e ≡
1

Γ S
e

∫
ΓS
e

∆shdΓ S =

(
1

Γ S
e

∫
ΓS
e

NS
αdΓ S

)
(∆sh)α (3.28)

〈
d∆sh

dy

〉
e

≡ 1

Γ S
e

∫
ΓS
e

d∆sh

dy
dΓ S =

(
1

Γ S
e

∫
ΓS
e

dNS
α

dy
dΓ S

)
(∆sh)α (3.29)

where NS
α is the local quadratic functions defined in a three-node element (see Ap-

pendix A.2 for further calculations). Equation (3.27) is the key approximation which

makes the discretization tractable (recall that ∆sh ∝ |Dn|3). Assuming that the di-

electric tensor on Γ S is interpolated as ε = NS
k ε

S
k using its nodal values εS

k, and

substituting Equations (3.22), (3.24) (for κ), and (3.27) into Equation (3.26), one
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gets

∑
m

{∫
ΓS
e(m)

NS
i N

S
j Ê

S
yjdΓ S

−
〈
d∆sh

dy

〉
e(m)

∫
ΓS
e(m)

NS
i

[(
NS
k ε

S
xxk

) (
NS
j Ê

S
xj

)
+ · · ·

]
dΓ S

−〈∆sh〉e(m)

∫
ΓS
e(m)

NS
i

[
d
(
NS
k ε

S
xxk

)
dy

(
NS
j Ê

S
xj

)
+ · · ·

]
dΓ S

}∣∣∣∣∣
x=xL

= 0

(3.30)

where m represents 1D grid elements (or a grid element) which include(s) the node

i. Equation (3.30) can be further simplified in the following form:

Gyi|x=xL
≡
∑
m

[[
NS
i N

S
j

]
ÊS
yj −

(〈
d∆sh

dy

〉
e(m)

[
NS
i N

S
j N

S
k

]
+ 〈∆sh〉e(m)

[
NS
i Ñ

S
j Ñ

S
k

])
·
(
εS
xxkÊ

S
xj + εS

xykÊ
S
yj + εS

xzkÊ
S
zj

)]∣∣∣
x=xL

= 0

(3.31)

with

[
NS
i N

S
j

]
≡
∫
ΓS
e(m)

NS
i N

S
j dΓ S,

[
NS
i N

S
j N

S
k

]
≡
∫
ΓS
e(m)

NS
i N

S
j N

S
k dΓ S

[
NS
i Ñ

S
j Ñ

S
k

]
≡
[
NS
i

(
NS
j

)′
NS
k

]
+
[
NS
i N

S
j

(
NS
k

)′]
[
NS
i

(
NS
j

)′
NS
k

]
≡
∫
ΓS
e(m)

NS
i

dNS
j

dy
NS
k dΓ S

[
NS
i N

S
j

(
NS
k

)′] ≡ ∫
ΓS
e(m)

NS
i N

S
j

dNS
k

dy
dΓ S

(3.32)

The calculations of the integrals in Equation (3.32) are summarized in Appendix A.2.

The z component of Equation (3.25) is written as

∫
ΓS

NS
i (Ez − ikz∆shκ) dΓ S

∣∣∣∣
x=xL

= 0 (3.33)
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considering that κ ∝ eikzz. Then the corresponding discretized equation is given by

Gzi|x=xL
≡
∑
m

[[
NS
i N

S
j

]
ÊS
zj − ikz 〈∆sh〉e(m)

[
NS
i N

S
j N

S
k

]
·
(
εS
xxkÊ

S
xj + εS

xykÊ
S
yj + εS

xzkÊ
S
zj

)]∣∣∣
x=xL

= 0

(3.34)

using the approximation that ∆sh ' 〈∆sh〉e(m).

In the same way, the discretized equations on the right planar sheath surface,

which is located at x = xR, are obtained as follows:

Gyi|x=xR
≡
∑
m

[[
NS
i N

S
j

]
ÊS
yj +

(〈
d∆sh

dy

〉
e(m)

[
NS
i N

S
j N

S
k

]
+ 〈∆sh〉e(m)

[
NS
i Ñ

S
j Ñ

S
k

])
·
(
εS
xxkÊ

S
xj + εS

xykÊ
S
yj + εS

xzkÊ
S
zj

)]∣∣∣
x=xR

= 0

(3.35)

Gzi|x=xR
≡
∑
m

[[
NS
i N

S
j

]
ÊS
zj + ikz 〈∆sh〉e(m)

[
NS
i N

S
j N

S
k

]
·
(
εS
xxkÊ

S
xj + εS

xykÊ
S
yj + εS

xzkÊ
S
zj

)]∣∣∣
x=xR

= 0

(3.36)

Notice that the sign in front of the derivatives of ∆shκ is reversed (see Equation

(3.23)).

3.2.4 Discretization of the Sheath Boundary Condition Im-

posed on a Curved Wall

The discretization of the sheath boundary condition can be straightforwardly ex-

tended to deal with the problem including a curved wall. When we assume that the

sheath surface lies in the τ -z plane, the sheath boundary condition is expressed as

Et = ∇t (∆shκ) (3.37)
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where

∆sh =

(
eCsh

Te

)3

λ4
De |κ|

3 + CthλDe

κ = s · (ε ·E)

(3.38)

The τ component of the integral equation is written as

∫
ΓS

NS
i (τ)

[
Eτ −

d

dτ
(∆shκ)

]
dΓ S = 0 (3.39)

Here, consider the following approximation for the derivative of ∆shκ:

d

dτ
(∆shκ) '

〈
d∆sh

dτ

〉
e

κ+ 〈∆sh〉e
dκ

dτ

'
[〈

d∆sh

dτ

〉
e

〈s〉e + 〈∆sh〉e
〈
ds

dτ

〉
e

]
· (ε ·E) + 〈∆sh〉e 〈s〉e ·

d

dτ
(ε ·E)

(3.40)

As before, the variables surrounded by angle brackets with the subscript e represent

the element-averaged quantities. Following the same procedure shown in Equations

(3.30) and (3.31), one gets

Gτi ≡
∑
m

{[
NS
i N

S
j

]
ÊS
τj

−

[(〈
d∆sh

dτ

〉
e(m)

〈sx〉e(m) + 〈∆sh〉e(m)

〈
dsx
dτ

〉
e(m)

)[
NS
i N

S
j N

S
k

]
+ 〈∆sh〉e(m) 〈sx〉e(m)

[
NS
i Ñ

S
j Ñ

S
k

]] (
εS
xxkÊ

S
xj + εS

xykÊ
S
yj + εS

xzkÊ
S
zj

)
−

[(〈
d∆sh

dτ

〉
e(m)

〈sy〉e(m) + 〈∆sh〉e(m)

〈
dsy
dτ

〉
e(m)

)[
NS
i N

S
j N

S
k

]
+ 〈∆sh〉e(m) 〈sy〉e(m)

[
NS
i Ñ

S
j Ñ

S
k

]] (
εS
yxkÊ

S
xj + εS

yykÊ
S
yj + εS

yzkÊ
S
zj

)}
= 0

(3.41)
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The quantity ÊS
τj needs to be expressed using ÊS

xj and ÊS
yj with use of the following

relation:

ÊS
τj = ex · eτjÊS

xj + ey · eτjÊS
yj (3.42)

where eτj is the unit normal vector in the τ direction at the node j, which can be

obtained in a similar way to si (see Section 3.2.1).

Next, the z component of the integral equation is given by

∫
ΓS

NS
i (Ez − ikz∆shκ) dΓ S = 0 (3.43)

Then the corresponding discretized equation is

Gzi ≡
∑
m

[[
NS
i N

S
j

]
ÊS
zj

− ikz 〈∆sh〉e(m) 〈sx〉e(m)

[
NS
i N

S
j N

S
k

]
·
(
εS
xxkÊ

S
xj + εS

xykÊ
S
yj + εS

xzkÊ
S
zj

)
−ikz 〈∆sh〉e(m) 〈sy〉e(m)

[
NS
i N

S
j N

S
k

]
·
(
εS
yxkÊ

S
xj + εS

yykÊ
S
yj + εS

yzkÊ
S
zj

)]
= 0

(3.44)

using the approximations that ∆sh ' 〈∆sh〉e(m) and s ' 〈s〉e(m).

3.3 Newton-Raphson Method

The nonlinear system of discretized equations derived in the previous section can be

solved by employing the Newton-Raphson method, which is one of the most frequently

used iteration schemes (a number of related methods can be seen in Reference [57]).

The procedure will be described here in detail.

First of all, the present finite element equations are simply written as follows:

F = R (3.45)
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with

F T =
(
Fx(1) · · ·Fx(NP) Fy(1) · · ·Fy(NP) Fz(1) · · ·Fz(NP) Fυ(1) · · ·Fυ(NS+NA)

Gτ(1) · · ·Gτ(NS) Gz(1) · · ·Gz(NS) Hτ(1) · · ·Hτ(NA) Hz(1) · · ·Hz(NA)

) (3.46)

RT =
(
0 · · · 0 Ry(1) · · ·Ry(NP) 0 · · · 0

)
(3.47)

where NP, NS, and NA are the numbers of nodes in the plasma, on the sheath surface,

and on the core-edge plasma boundary, respectively, and the total number of nodes is

expressed as NT (= NP+NS+NA); Hτi andHzi correspond to the boundary condition

on the core side, i.e., Et = 0, and υ corresponds to the direction perpendicular to

the sheath surface. Note that each number in the parenthesis in Equations (3.46)

and (3.47) does not correspond to the global node number; instead it represents an

independent equation. The task here is to find the solution Ê∗ of the equation

f
(
Ê∗
)

= F −R = 0 (3.48)

In the present numerical analysis f is treated as being a real vector by splitting the

components of F andR into real and imaginary parts. Then the solution is expressed

as

(
Ê∗
)T

=
(
Ê

(R,I)∗
x1 · · · Ê(R,I)∗

xNT Ê
(R,I)∗
y1 · · · Ê(R,I)∗

yNT Ê
(R,I)∗
z1 · · · Ê(R,I)∗

zNT

)
(3.49)

where the superscripts R and I denote the real and imaginary parts of the quantities,

respectively.

Let us assume that an intermediate solution Ê(n) is evaluated in the n-th iteration.

Then a Taylor series expansion gives

fi

(
Ê(n) + δÊ

)
= fi

(
Ê(n)

)
+

NT∑
j=1

∂fi

∂Ê
(R,I)
x,y,zj

∣∣∣∣∣
Ê(n)

δÊ
(R,I)
x,y,zj +O

(
δÊ2

)
(3.50)
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for i = 1, . . . , 6NT. In matrix notation Equation (3.50) is

f
(
Ê(n) + δÊ

)
= f

(
Ê(n)

)
+K(n) · δÊ +O

(
δÊ2

)
(3.51)

where

K(n) =
∂fi

∂Ê
(R,I)
x,y,zj

∣∣∣∣∣
Ê(n)

eiej (3.52)

Notice that the expression of K(n) is explicitly obtained using the discretized equa-

tions (3.14)–(3.16), (3.41), and (3.44). A procedure to obtain the derivative ex-

pressions of the discretized sheath boundary condition is demonstrated in Appendix

B for a flat wall. Neglecting the high-order terms in Equation (3.51) and setting

f
(
Ê(n) + δÊ

)
= 0, we obtain a set of linear equations for the correction δÊ, namely

K(n) · δÊ = −f
(
Ê(n)

)
(3.53)

In this study the matrix equation (3.53) is solved by MUMPS, which will be described

in the next section. The solution is then improved by adding the correction:

Ê(n+1) = Ê(n) + δÊ (3.54)

The process is iteratively conducted until the solution is fully converged. The present

scheme adopts the following convergence criterion:∣∣∣δÊx∣∣∣∣∣∣Ê(n+1)
x

∣∣∣ ,
∣∣∣δÊy∣∣∣∣∣∣Ê(n+1)
y

∣∣∣ ,
∣∣∣δÊz∣∣∣∣∣∣Ê(n+1)
z

∣∣∣
∣∣∣∣∣∣
max

< εerr (3.55)

where εerr is a parameter which may be adjusted depending on the problems; in

general, the condition where εerr ≤ 10−3 yields an accurate solution.

If the nonlinear part of the sheath boundary condition, specifically, the first term
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of Equation (2.101) can be neglected (due to low electric field strength), the finite

element equations (3.45) reduce to the following linear form:

F = G · Ê = R (3.56)

In this case the solution Ê is directly calculated by inverting the matrix G, namely

Ê = G−1 ·R (3.57)

Notice that the solution then becomes proportional to Jant in Equation (3.13).

3.4 Parallel Computation Using MUMPS

3.4.1 General Information on MUMPS and Code Implemen-

tation

As described in the previous section, the present numerical scheme is required to

calculate the system of linear equations with 6NT unknowns at each Newton-Raphson

iteration. Considering that our interest is the physics of plasma waves in the 2D

domain and SWs often yield small wavelengths, it is not hard to anticipate that the

computational cost becomes indeed huge when satisfactory grid resolution is provided

for an accurate numerical solution. However, at the same time, it is important to

keep in mind that the unsymmetric matrix K(n) defined in Equation (3.52) is sparse

owing to the finite element discretization. For this reason, the present numerical

simulation can be effectively conducted by employing MUMPS (ver.4.9.2), which is

briefly described below.

MUMPS is a software package for solving large sparse systems of linear equations

of the formA·x = b, whereA can be an unsymmetric matrix, on distributed memory

parallel computers. MUMPS is a direct method based on a multifrontal approach
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Figure 3-4: An example of the matrix partitioning for a parallel computation.

which performs a direct factorization A = L ·U or A = L ·D ·LT depending on the

symmetry of the matrix. The software is written in Fortran 90 and requires MPI for

message passing. More detailed descriptions can be found in Reference [58].

Figure 3-4 shows an example of the matrix partitioning used in the present finite

element code for parallel computation with MUMPS. As a matter of convenience in

programming, the total number of processors, NPROC, is determined such that it is

in multiples of 6, and the matrix K(n) is divided into NPROC groups of rows. In each

group of rows only nonzero matrix elements are extracted, and their row and column

numbers together with their values are stored into the corresponding processor. On

the other hand, the entire column vector f
(
Ê(n)

)
on the right-hand side of Equation

(3.53) is stored into only processor 0. To enable high-resolution computation with a

large size sparse matrix, ParMETIS is employed at the analysis step in the execution

of MUMPS. The calculations are performed on the Franklin Cray-XT4 computer

system at NERSC (National Energy Research Scientific Computing Center).

3.4.2 Precautions for Use

When the problem size, or the number of unknowns is increased, it is more likely

to encounter several errors which are mostly related to the amount of memory. The
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following are the list showing some of the most frequently seen error messages in the

present calculations and the possible solutions to these errors.

(1) “MPICH has run out of unexpected buffer space. Try increasing the value of env

var MPICH UNEX BUFFER SIZE (cur value is 62914560), and/or reducing

the size of MPICH MAX SHORT MSG SIZE (cur value is 128000).”

The problem can be solved by adding the following sentences into the batch

script:

setenv MPICH UNEX BUFFER SIZE 130000000

setenv MPICH MAX SHORT MSG SIZE 64000

(2) “OOM killer terminated this process.”

The application used more memory than available on a Franklin node ∼8 GB.

The problem can be avoided by running with only 1 core per node by adding

the following sentence into the batch script:

#PBS -l mppnppn=1

The corresponding command to launch a parallel job is written as

aprun -n NPROC -N 1 ./(executable file name)

(3) “On return from DMUMPS, INFOG(1)= -17”

The internal send buffer that was allocated dynamically by MUMPS on the

processor is too small. The problem can be solved by increasing the value of

ICNTL(14) in the main file.

(4) “PtlMEInsert failed with error : PTL NO SPACE”
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The internal send buffer allocated is so large that the buffer space was run out.

The problem can be solved by decreasing the value of ICNTL(14).

Among these errors, setting the appropriate buffer sizes can be tricky. The main

reason is that every application has a different communication pattern. In principle,

if an application sends and receives many messages, it will likely need more MPI

buffer spaces. Therefore, errors occur if the communication buffers are exhausted

when processors need to communicate with each other. Currently, the most effective

way to avoid the error pertaining the buffer size would be to adjust the value of

ICNTL(14). However, this approach requires us to struggle between errors (3) and

(4) above through trial and error.

Empirically, it is found that the buffer size error is less frequently occurred when

the total number of processors is set at the smallest value for a given problem size,

which is equivalent to maximize the computation/communication ratio. This may

be explained by the following reasons. First, spending more time in computing al-

lows the buffers to be cleared and reused for message communication. Or secondly,

increasing the ratio of computation to communication may decrease the necessity of

communication since more data is available locally on each processor. However, it

should be pointed out that even with this approach, the calculation becomes fre-

quently failed by errors (3) and (4) when the total number of processors gets large

(more than approximately 100 for the present finite element code). Although it is

possible to increase the number of processors without limit when the code is run on

Franklin, the present MUMPS algorithm virtually imposes a limitation on a problem

size due to limited buffer space.
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Figure 3-5: 1D calculation model for the derivation of the analytical solution.

3.5 Code Verification in 1D Geometry

3.5.1 Analytical Solution for Constant n0 and B0 in a 1D

Domain

In order to verify the developed numerical scheme named “rfSOL,” this section at-

tempts to derive an analytical solution for the plasma wave driven by the antenna

current in the 1D geometry subject to the sheath boundary condition at both ends,

and compare the numerical results with the corresponding analytical results. The

calculation domain considered here is shown in Figure 3-5; a constant-density plasma

is filled in a waveguide which is assumed to be infinitely long in the y and z direc-

tions. The background magnetic field is also assumed to be constant in magnitude

and pointed purely in the x direction. The wavenumber components ky and kz are

fixed (imposed), and the antenna current density is given by

Jext = Kδ (x− xant) ei(kyy+kzz−ωt)ey = Kδ (x− xant)

where K is constant.

The derivation starts from a single vector equation for E derived in Chapter 2,

which is repeated here for convenience:

∇×∇×E − ω2

c2
ε ·E − iωµ0Jext = 0 (3.58)
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From Equation (2.14) one can write the dielectric tensor components as

ε =


εxx 0 0

0 εyy εyz

0 εzy εzz

 (3.59)

due to the assumption that by = bz = 0. Now, let us look for a solution to Equation

(3.58) in the following form:

E = Êei(kxx+kyy+kzz−ωt) (3.60)

Then, substituting Equation (3.60) into Equation (3.58), and focusing on the region

where Jext = 0 yields
D11 D12 D13

D21 D22 D23

D31 D32 D33



Ex

Ey

Ez

 =


0

0

0

 (3.61)

where

D11 = k2
y + k2

z −
ω2

c2
εxx, D12 = −kxky, D13 = −kxkz

D21 = −kxky, D22 = k2
x + k2

z −
ω2

c2
εyy, D23 = −kykz −

ω2

c2
εyz

D31 = −kxkz, D32 = −kykz −
ω2

c2
εzy, D33 = k2

x + k2
y −

ω2

c2
εzz

(3.62)

A straightforward calculation shows that the dispersion relation derived from Equa-

tion (3.61) forms a quadratic equation in terms of k2
x:

A1k
4
x +A2k

2
x +A3 = 0 (3.63)
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where

A1 = εxx

A2 = k2
y (εxx + εyy) + k2

z (εxx + εzz)−
ω2

c2
εxx (εyy + εzz)

A3 =
(
k2
y + k2

z

) (
k2
yεyy + k2

zεzz
)
− ω2

c2

[
k2
yεyy (εxx + εzz) + k2

zεzz (εxx + εyy)

+ε2
yz

(
k2
y + k2

z −
ω2

c2
εxx

)
− ω2

c2
εxxεyyεzz

]
(3.64)

The expression for k2
x is then easily obtained as follows:

k2
x =
−A2 ± (A2

2 − 4A1A3)
1/2

2A1

(3.65)

Notice that the coefficients A1, A2, and A3 in Equation (3.64) are all real values.

If the background magnetic field has the z component, the corresponding dispersion

relation yields a general 4th-degree equation in terms of kx, which is difficult to solve.

In general, Equation (3.65) gives two possible values for k2
x, which results in four

different roots for kx. Since the domain is bounded in the x direction, all the roots

are physically acceptable, so that the general solution to Equation (3.58) is written

as

E =

(
4∑
j=1

CjẼje
ikxjx

)
ei(kyy+kzz−ωt) (3.66)

where C1,...,4 are arbitrary constants, and Ẽj is the polarization eigenvector corre-

sponding to kxj.

In order to facilitate the derivation of the eigenvector Ẽj, let us rewrite the matrix

equation (3.61) in the following form:

Di · Ẽi = 0 (3.67)
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where the subscript i indicates the number 1, . . . , 4 corresponding to kx = kx1, . . . , kx4,

respectively. Since we know that det (Di) = 0, this implies only two of the three

equations in Equation (3.61) are independent (in other words, for example, the third

row equation must be obtained by the linear combination of the first and second row

equations). In fact, by observing the matrix elements, we notice that one can pick

up any two equations to obtain the eigenvectors. Here, let us specify that Ẽzi = 1.

Then the resulting polarization eigenvectors are calculated using the first and second

row equations of Equation (3.61) as follows:

Ẽxi =
1

D21

(
D22
D31D23 −D21D33

D31D22 −D21D32

−D23

)
Ẽyi = −D31D23 −D21D33

D31D22 −D21D32

Ẽzi = 1

(3.68)

When the domain is divided by the presence of the external surface current, the

general solutions for the electric field in region A and region B in Figure 3-5 are,

respectively, written as

EA =

(
4∑
j=1

CAjẼje
ikxjx

)
ei(kyy+kzz−ωt) (3.69)

EB =

(
4∑
j=1

CBjẼje
ikxjx

)
ei(kyy+kzz−ωt) (3.70)

where CA1, . . . , CA4 and CB1, . . . , CB4 are constants to be determined. The corre-

sponding expressions for the magnetic field are calculated by Faraday’s law (see

Equation (2.6)). The results are as follows:

BA =− i

ω
ei(kyy+kzz−ωt)

4∑
j=1

iCAje
ikxjx

·
[(
kyẼzj − kzẼyj

)
ex +

(
kzẼxj − kxjẼzj

)
ey +

(
kxjẼyj − kyẼxj

)
ez

] (3.71)
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BB =− i

ω
ei(kyy+kzz−ωt)

4∑
j=1

iCBje
ikxjx

·
[(
kyẼzj − kzẼyj

)
ex +

(
kzẼxj − kxjẼzj

)
ey +

(
kxjẼyj − kyẼxj

)
ez

] (3.72)

where the subscripts A and B denote the quantities in region A and region B, respec-

tively, in the same way as for the electric field.

Since the magnetic field line intersects at a right angle with the walls, the sheath

must be present at both ends, which yields the following four conditions:

EAt|x=xL
= ikt

[(
αsh |εxxEx|3 + βsh

)
εxxEx

]∣∣
x=xL

EBt|x=xR
= −ikt

[(
αsh |εxxEx|3 + βsh

)
εxxEx

]∣∣
x=xR

(3.73)

where

αsh =

(
eCsh

Te

)3

λ4
De, βsh = CthλDe

kt = kyey + kzez

(3.74)

At the position where the surface current is present (x = xant), one has to consider

the jump conditions in both the electric and magnetic fields, which are given by

EAy|x=xant
= EBy|x=xant

, EAz|x=xant
= EBz|x=xant

BAy|x=xant
= BBy|x=xant

, BAz −BBz|x=xant
= µ0Kei(kyy+kzz−ωt)

(3.75)

Consequently, one finds that the problem can be analytically solved since eight un-

knowns are calculated with the same number of equations.

If the nonlinear part of the sheath boundary condition can be neglected based on

the amplitude of the RF fields, the linear system of equations is written as

G ·C = R (3.76)
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where

CT =
(
C

(R,I)
A1 · · ·C

(R,I)
A4 C

(R,I)
B1 · · ·C(R,I)

B4

)
(3.77)

The constant vector C is then immediately obtained by applying the Gaussian elim-

ination, for example. However, in general the nonlinearity in the sheath boundary

condition needs to be taken into account. In that case one has to iteratively calculate

the vector C, for example, using the Newton-Raphson method described in Section

3.3. The corresponding equation is written in the following form:

K(n) · δC = −f
(
C(n)

)
(3.78)

where the superscript n indicates the number of iteration, and

K(n) =
∂fi

∂C
(R,I)
A,Bj

∣∣∣∣∣
C(n)

eiej

δC = C(n+1) −C(n)

(3.79)

Here K(n) is a second order tensor with i = 1, . . . , 16 and j = 1, . . . , 4.

3.5.2 Comparison between the Analytical and Numerical So-

lutions

First of all, the numerical results obtained with the 1D rfSOL code, which is straight-

forwardly constructed by converting ∂/∂y to iky in Section 3.2, are compared with

the results given by the analytical solution both for the linear and nonlinear cases.

Based on Figure 3-5 the calculation domain is defined such that xL = 0 m, xant = 3.5

m, and xR = 5 m. The plasma density and background magnetic field are assumed

to be constant; n0 = 2.0× 1017 m−3 and B0 = 5.4 T. The other common parameters

fixed in this analysis are f = 80 MHz, Te = 10 eV, ky = 0 m−1, and kz = 10.8 m−1.
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For these parameters a SW propagates in the x direction, which can be confirmed

by rewriting Equation (2.23) in terms of n2
‖. The surface current K is set at 1 A/m

for the linear case, while it is increased to 5 kA/m for the nonlinear case. In this

numerical analysis a uniform mesh which includes 201 grid points (100 three-node

elements) is used for the finite element discretization.

Figure 3-6 shows the comparison between the analytical and numerical solutions

for the linear case, which are obtained by approximating the sheath boundary condi-

tion as

Et = ikt

(
βsh

εsh

Dn

)
= ikt

λDe

εsh

{
ln

[(
mi

me

)1/2
]}3/4

Dn (3.80)

(see Equation (2.96)). Here “BC” in the legend stands for “boundary condition,” and

the dashed line indicates the antenna position. It is confirmed that the profiles of

Im(Ex) and Re(Ez) are in good agreement. It is also found that the sheath boundary

condition slightly increases the magnitude of variation in both electric field compo-

nents, by comparing with the results for the conducting-wall boundary condition, i.e.,

Et = 0. However, it is not always the case. As will be shown later, the electric field

amplitude can be reduced with the increase of the sheath width.

Figure 3-7 shows the comparison between the analytical and numerical solutions

for the nonlinear case. Here, the rectification factor Csh and the convergence criterion

εerr are fixed at 0.6 and 1.0×10−7, respectively. It is again confirmed that the profiles

of Im(Ex) and Re(Ez) are in good agreement. Since the large surface current yields

high electric field strength, the instantaneous sheath voltage Vsh dominates the Bohm

sheath potential VB in this problem; in fact, CshVsh = 8.8 kV, while VB = 41 V at the

right boundary. The resultant enlarged sheath width can modify the whole profile

of the electric field corresponding to the Bohm sheath model (Csh = 0) as shown in

both figures.
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Figure 3-6: Comparison between the analytical and numerical solutions for the
linearly-approximated sheath boundary condition: (a) Im(Ex) vs. x; and (b) Re(Ez)
vs. x. The vertical dashed line indicates the antenna position.
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Figure 3-7: Comparison between the analytical and numerical solutions for the non-
linear sheath boundary condition: (a) Im(Ex) vs. x; and (b) Re(Ez) vs. x. The
vertical dashed line indicates the antenna position.
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3.5.3 Lower Hybrid Resonance in a Varying n0 Field

Next, let us consider the case where the plasma density is varied in the x direction

with a constant background magnetic field parallel to the walls. The purpose of

this calculation is to see whether the lower hybrid resonance correctly appeares at

the right position. In this test problem the calculation domain is defined such that

xL = 0 m, xant = 0.155 m, and xR = 0.23 m. The plasma density is assumed to be

varied according to the following formula:

n0 = (nL − nR) exp

(
−x− xL

λn

)
+ nR (3.81)

where nL and nR are the density values at the left and right boundaries, respectively;

these values are set at nL = 2.0× 1019 m−3 and nR = 2.0× 1016 m−3. The length λn

is chosen such that xR − xL � λn; here, λn = 0.02 m. The other fixed parameters

are B0 = 5.4 T (B0 = B0ez), f = 80 MHz, K = 1 A/m, ky = 0 m−1, and kz = 10.8

m−1, and a piecewise uniform mesh of 3201 grid points (1600 three-node elements;

1080 elements in xL ≤ x ≤ xant and 520 elements in xant ≤ x ≤ xR) is used. Since the

magnetic field lines are aligned parallel to the walls, the sheath boundary condition

can be approximately expressed as Et = 0 (i.e., the nonlinear contribution is regarded

as being small).

As described in Section 2.4.4, the lower hybrid resonance corresponds to ε⊥ = 0.

For n0 = ne0 = ni0 the lower hybrid density nLH is analytically calculated using

Equation (2.13) as follows:

nLH =
ε0

e2

[∑
j

1

mj

(
ω2 − Ω2

j

)]−1

(3.82)

Then, substituting Equation (3.82) into the left-hand side of Equation (3.81) leads to
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Figure 3-8: Plot of Im
(
E‖
)

vs. x for the background magnetic field parallel to the
walls. The red line shows the position of the lower hybrid resonance, and the vertical
dashed line indicates the antenna position.

the expression for the position xLH where the lower hybrid resonance appears:

xLH = −λn ln
nLH − nR

nL − nR

(3.83)

For the parameters given above, it follows that xLH = 9.27× 10−2 m.

Figure 3-8 shows the variation of Im
(
E‖
)
, where E‖ = E · b (b = B0/ |B0|),

along the calculation domain. Here the dashed and red lines indicate the positions

at x = xant and x = xLH, respectively. It is confirmed that the position of the lower

hybrid resonance is correctly calculated with the present numerical scheme.

The wavenumber (or the wavelength) at some particular position in the low-

density region can be evaluated using the local SW dispersion relation. From Equation

(2.34) one gets

k⊥ = kx = ±ω
c

[
ε‖
ε⊥

(
ε⊥ − n2

‖
)]1/2

(3.84)
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Figure 3-9: Plot of the real and imaginary parts of the perpendicular wavenumber
component for the background magnetic field parallel to the walls. The red line
indicates the position of the lower hybrid resonance.

The obtained perpendicular wavenumber component (i.e., the wavenumber compo-

nent perpendicular to the direction of the background magnetic field) is plotted in

Figure 3-9. It is observed that the SW is propagating on the right side of the lower

hybrid resonance (due to the fact that Re(k⊥) > 0). Using this result, for example,

the wavelength at x = 0.2 m is calculated at 3.4×10−2 m, which agrees well with the

numerical result shown in Figure 3-8.

3.5.4 Thick-Sheath Limit

When we assume wave modes at the sheath-plasma interface, the sheath boundary

condition is expressed as

Et = ikt
∆sh

εsh

Dn (3.85)
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Here, let us consider the limit where ∆sh →∞. Since physicallyEt must be finite, it is

required that Dn → 0. Consequently, the sheath becomes equivalent to an insulating

layer, for which the boundary condition (3.85) reduces to

Dn = 0, Bn = 0 (3.86)

The purpose of the last numerical example presented below is to confirm that the

developed numerical scheme surely possesses this property.

The calculation model considered here is the same as used in the previous section,

except that the background magnetic field has a small x component; B0x = 0.5 T and

B0z = 5.4 T. To test the thick-sheath limit, the sheath width ∆sh is expressed as

∆sh = αampCthλDe

= αampλDe

{
ln

[(
mi

me

)1/2
B0x

(B2
0x +B2

0z)
1/2

]}3/4 (3.87)

where αamp is the artificial amplification factor. The discretized expressions corre-

sponding to the insulating boundary condition (3.86) are, respectively, given by

εxxÊxi + εxyÊyi + εxzÊzi = 0 (3.88)

kyÊzi − kzÊyi = 0 (3.89)

where the subscript i denotes the nodes at the left and right boundaries.

Figure 3-10 shows the comparison of the numerical results obtained by imposing

the sheath boundary condition with αamp = 1, 1000 and the insulating boundary con-

dition. It is observed that the wave profiles of Re
(
E‖
)

and Im
(
E‖
)

for αamp = 1000

are completely overlapped with the numerical results obtained using the insulating

boundary condition, which demonstrates that the present code yields the correct

property in the thick-sheath limit. It is also shown that the wave amplitude is suf-

ficiently reduced when the sheath width becomes very large, although its transition
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may not be monotonic (see Section 4.5 for a possible cause).

In this problem the perpendicular and parallel wavenumber components can be

expressed as

k⊥ ' kx

k‖ = bxkx + bzkz

(3.90)

Substituting Equation (3.90) into the SW dispersion relation (2.34) yields a quadratic

equation in terms of kx:

CSW1k
2
x + CSW2kx + CSW3 = 0 (3.91)

where

CSW1 =
( c
ω

)2 (
b2
xε‖ + ε⊥

)
, CSW2 = 2

( c
ω

)2

bxbzε‖kz

CSW3 = ε‖

[( c
ω
bzkz

)2

− ε⊥
] (3.92)

The roots of Equation (3.91) are plotted in Figure 3-11. It is confirmed that the

calculated wavelength around x = 0.2 m, which is approximately 0.02 m, agrees with

the analytical estimate corresponding to the lower branch of Re(k⊥). In addition, it is

interesting to see that the lower hybrid resonance does not occur when the background

magnetic field is slightly tilted to the walls. In fact, at the position where ε⊥ = 0, the

electrostatic approximation (n2
‖ � ε⊥) is well satisfied, yielding a finite value of kx:

kx|ε⊥=0 = −bz
bx
kz (3.93)

For the given parameters the value of kx is calculated at −117 m−1.
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Figure 3-10: Demonstration that the sheath boundary condition reduces to the in-
sulating boundary condition in the thick-sheath limit: (a) Re

(
E‖
)

vs. x; and (b)
Im
(
E‖
)

vs. x. The vertical dashed line indicates the antenna position.
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3.6 Computational Performance

In closing this chapter the performance of calculations using the rfSOL code is briefly

described in this section. Here the linear sheath-plasma interaction problem for a

2D domain is solved with two different grid resolutions: 100 × 130 and 200 × 260

nine-node elements. The detailed geometry of the 2D domain and the calculation

parameters will be described in Section 4.4.1, and are thus omitted here.

Plots of wall clock time and the percentage of communication vs. number of pro-

cessors are illustrated in Figure 3-12. These data were measured by the NERSC devel-

oped Integrated Performance Monitoring (IPM) Tool for MPI programs on Franklin.

It is observed in both grid resolutions that the wall clock time is decreased with the

increase in the number of processors when the number of processors is relatively small.

However, due to the increase in communication among processors, the wall clock time

eventually hovers at a certain level for both cases. It is also confirmed from Figure

3-12b that the percentage of communication in the total run time goes up to about
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50 percent, but then stays almost constant.

It should be noted, however, that there is considerable variation in the estimated

root size selected for Scalapack even if exactly the same run is submitted in a row;

this variation of course affects the wall clock time and the percentage of communica-

tion. This may be caused by some unoptimized structure in MUMPS or ParMETIS.

Therefore, the results shown in Figure 3-12 should be regarded as an example of

possible trends.
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Figure 3-12: (a) Wall clock time and (b) the percentage of communication vs. number
of processors with two different grid resolutions for a problem in the 2D domain.
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Chapter 4

Numerical Simulation of RF

Sheath-Plasma Interactions

4.1 Prologue

Using the rfSOL code described in the previous chapter, we are now ready to numer-

ically solve various problems including RF sheath-plasma interactions. To begin, the

rfSOL code is applied to two problems in the 1D domain, and the basic physics of the

sheath-plasma interactions is investigated by observing the variation of the sheath

potential as a function of the antenna current and the effect of sheath on waves in the

edge plasma. A particular emphasis is placed on a resonance phenomenon generated

by a propagating SW confined between a wall-sheath and a reflection point where

ε⊥ = 0, and the resultant multiple roots. This is followed by the analysis in a 2D

slab domain, in which both the thermal and RF sheaths are considered with various

plasma density values and background magnetic fields. Here an analytical investiga-

tion is also conducted to assess the accuracy of the numerical results and elucidate

the characteristics of the wave mode appeared on the sheath surface. The parameters

used in the present numerical simulations come from typical ICH operating conditions

in Alcator C-Mod.
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4.2 Propagating SW and Sheath Interaction in 1D

Geometry

The first application of the rfSOL code is directed to the 1D problem including the

propagating SW and sheath interaction as shown in Figure 4-1. Here it is assumed

that the sheath (or the metal wall) is present only on the right-hand side, while the

SW is evanescent due to the absorbing layer on the left-hand side of the domain.

Based on the notation in Figure 4-1 the calculation domain is defined such that

xL = 0 m, xant = 2.8 m, and xR = 3.0 m; a sufficiently long distance is provided

between the left boundary and the antenna position to assure that the left-going

wave amplitude is smoothly decayed to zero within the absorbing layer and thereby it

is not reflected from the left boundary. The plasma density and background magnetic

field are assumed to be constant; n0 = 1.0× 1017 m−3, and B0x = 1.5 T, B0y = 0 T,

and B0z = 4.0 T. The value of B0z used here corresponds to a typical value of the

toroidal background magnetic field in the edge region of the Alcator C-Mod tokamak

for the hydrogen minority heating scenarios with the ICRF source frequency (in this

case the toroidal background magnetic field at the major radius is adjusted to 5.4

T). The other parameters fixed in this analysis are f = 80 MHz, Te = 10 eV, ky = 0

m−1, kz = 10.8 m−1, Csh = 0.6, and εerr = 1.0 × 10−3; the absorbing layer is formed

with ν0 = 3.0× 1011 s−1, xabs = 0 m, and λν = 0.2 m (see Equation (2.103)). In this

numerical analysis a uniform mesh which includes 3001 grid points (1500 three-node

elements) is used for the finite element discretization.

Figure 4-2 shows the variations of the real and imaginary parts of the parallel

electric field component (E‖ = E · b = E · B0/ |B0|) obtained with four different

antenna current values. Here the electric field is normalized by dividing it by the

corresponding antenna current value; thus, the profiles of Re
(
E‖
)
/K and Im

(
E‖
)
/K

should be unchanged if the sheath width is independent of the electric field strength.

It is observed that the waves propagate with a constant wavelength until they are
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Figure 4-1: 1D calculation model for the propagating SW with the sheath boundary
condition imposed on the right wall.

absorbed on the left-hand side. The wavelength can be analytically calculated at 0.19

m, which corresponds to one root of the SW dispersion relation (see Equations (3.91)

and (3.92)) and agrees well with the numerical results. In addition, it is confirmed

from Figure 4-3 that the real and imaginary parts of E‖ are π/2 out of phase, which

indicates there is no reflection from the left boundary and proves that the absorbing

boundary condition is successfully introduced into the problem.

An interesting observation is that the results for K = 5000 kA/m are almost

overlapped with the results for K = 500 kA/m. This may be explained in a similar

fashion to the thick-sheath limit described in Section 3.5.4. From the sheath boundary

condition we obtain

|Ez| /K
|Dn| /K

= kz
∆sh

εsh

(4.1)

Here recall that ky = 0 in this analysis. Thus, when |Ez| /K is unchanged with

respect to K (or varied slowly compared with ∆sh), |Dn| /K should vary inversely

with ∆sh. In fact, this can be seen in Figure 4-4; |Dn| /K decreases with an increase

of ∆sh for sufficiently large values of K. Therefore, in the limit where ∆sh → ∞, it

is expected that the sheath boundary condition will reduce to the quasi-insulating

boundary condition expressed as

Dn/K = 0, Bn = 0 (4.2)
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Figure 4-2: Plots of the real (a) and imaginary (b) parts of the normalized parallel
electric field component along the 1D domain for four different surface current val-
ues. The vertical dashed line indicates the antenna position. These plots show the
propagating SWs.
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Figure 4-3: Plot of the real and imaginary parts of the normalized parallel electric
field component for K = 50 kA/m. The vertical dashed line indicates the antenna
position.

Figure 4-5 shows the variation of the rectified sheath potential V0 as a function

of K, including the comparison with the Bohm sheath potential VB. First, it is

seen from Figure 4-5a that the rectified sheath potential variation has a threshold-

like turn-on characteristic, which is similar to the results obtained by the previous

analytical work conducted by Myra and D’Ippolito [34, 35]. This characteristic is

also observed in the variation of the sheath width (shown in Figure 4-4a) due to

the relation (2.102). For the present numerical condition the sheath potential value

and sheath width abruptly start increasing with the antenna current around K = 20

kA/m. Although the sheath potential appears to be growing almost linearly with

K when the antenna current exceeds this critical value, the variation is not exactly

linear due to the fact that the sheath width is a function of the electric field strength.

Further, it is important to realize that this threshold-like turn-on has no relation to

the transition from the thermal sheath dominated regime (second term in Equation
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Figure 4-4: (a) The sheath width ∆sh and (b) normalized normal component of the
electric displacement |Dn| /K on the sheath surface as functions of the antenna current
K.
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Figure 4-5: The rectified sheath potential V0 as a function of the antenna current
K: (a) entire variation; and (b) comparison with the Bohm sheath potential VB in a
restricted range of K.
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Figure 4-6: 1D calculation model for the propagating SW confined between a wall-
sheath and a reflection point where ε⊥ = 0.

(2.101)) to the RF sheath dominated regime (first term in Equation (2.101)). As

shown in Figure 4-5b, this transition occurs around K = 5 kA/m, below which the

entire system can be approximated as being linear since the Bohm sheath potential

dominates the sheath potential.

4.3 Multiple Roots

Consider next the sheath-plasma interaction in 1D geometry with a varying plasma

density profile. The calculation model, which is shown in Figure 4-6, is mostly the

same as used in the previous problem, except that the absorbing layer is replaced

with the metal wall covered by a sheath, and the distribution of the plasma density

is given by Equation (3.81) with nL = 1.0 × 1019 m−3, nR = 1.0 × 1017 m−3, and

λn = 0.4 m. Here the calculation domain is defined such that xL = 0 m, xant = 0.8 m,

and xR = 1 m. The background magnetic field and all other parameters (including

a uniform mesh) are fixed using the same values as in the previous example. An

important fact in this problem is that a SW is confined between a wall-sheath and a

reflection point where ε⊥ = 0 due to the varying plasma density profile, which can

cause resonant phenomena, as will be seen below. It is also a case of some practical

importance since this situation can occur in realistic tokamak plasmas.

Figure 4-7 shows the variation of the rectified sheath potential V0 at the right
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Figure 4-7: The rectified sheath potential V0 at the right sheath as a function of
the antenna current K for the case without dissipation: (a) entire variation showing
multiple roots; and (b) comparison between root 1 and the Bohm sheath potential
VB in a restricted range of K. The vertical dashed line indicates the critical antenna
current (46.9 kA/m) at which root jumping occurs.

sheath as a function of K. It is interesting to see in Figure 4-7a that there are three

different roots for the antenna current less than 46.9 kA/m (= Kcrit). As the antenna

current increases, the sheath voltages in root 1 and root 2 encounter a threshold at

K = Kcrit where it becomes possible for root 1 and root 2 to undergo a jump to root

3. The transition of this sharp voltage increase cannot be explained by the present

assumptions, but the multiple roots we obtain are the solutions of the steady-state

problem considered here. Figure 4-7b shows a magnified variation of root 1 together

with the horizontal red line showing the Bohm sheath potential. It is confirmed that

the RF sheath potential starts to matter around K = 15 kA/m in the present case.

Figure 4-8 shows the comparison of the real and imaginary parts of the normalized

parallel electric field component among the three roots for K = 40 kA/m. It is seen

that the phase and amplitude of the three roots are different from each other.

The question why we have multiple solutions in this problem can be answered

by looking at the graphical solution [36] in Figure 4-9. Here the thick black curve
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Figure 4-8: Comparison of the real (a) and imaginary (b) parts of the normalized
parallel electric field component among the three roots for K = 40 kA/m. The
vertical dashed line indicates the antenna position. The profiles on the right half of
the plots show the propagating SWs.

corresponds to the RF sheath potential at the right sheath (V0 ' CshVsh), which

is obtained by employing the linear 1D rfSOL code with “specified” sheath widths

(the sheath width on the left-hand side is assumed to be zero). The colored curves

correspond to the sheath potential V0 computed from the Child-Langmuir law (see

Equation (2.102)). Notice that the vertical axis of the plot shows the voltage value

normalized by the antenna current; therefore, one can draw an infinite number of

Child-Langmuir curves depending on the value of K. The intersections between

the black and colored curves correspond to the self-consistent solutions (i.e., self-

consistent sheath widths and potential values).

In Figure 4-9a we see a resonance behavior in the numerical solution when the

sheath width approaches 3 mm. This occurs due to the phase matching of the SW

confined between a wall-sheath on one side and a reflection point where ε⊥ = 0 on

the other side. All the antenna current values shown here have three intersection

points (see Figure 4-9b for a magnified local variation in the bottom left corner of

Figure 4-9a). However, two intersection points approach each other with increasing
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Figure 4-9: Graphical solution for the case without dissipation: (a) entire variation;
and (b) local variation in a magnified area within a restricted range of ∆sh.

antenna current; they eventually merge into one intersection point (corresponding to

the tangent point to the left resonant curve) and then disappear at that point. This

behavior corresponds to the root jumping observed in Figure 4-7a. It is seen that the

graphical solution agrees well with the self-consistent nonlinear numerical result for a

large value of V0. For example, the thick black curve on the right-hand side intersects

with the cyan curve (K = 40 kA/m) at V/K = 0.22 Vm/A, which gives V = 8.9 kV

and agrees with the numerical result (root 3) in Figure 4-7a.

In the present case the lower hybrid resonance does not appear in the calculation

domain, although there is a point where ε⊥ = 0 (see Section 3.5.4). Therefore,

computation is stably conducted without introducing the collisional effect described

in Section 2.5. However, this leads to a seemingly unphysical consequence where

the sheath potential can be dominated by the RF contribution even for K → 0

(corresponding to the intersection of root 2 and root 3 in Figure 4-7a) in connection

with the fact that the resonance peak in Figure 4-9a is infinitely high. In reality,

the plasma possesses small amount of dissipation, so that the resonance curve should

have a finite height. The last numerical analysis in this section aims to confirm this
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property by explicitly adding the dissipation into the problem.

Let us consider introducing the dissipation in the form of complex electron mass:

me (1 + iν/ω). Here, for simplicity, ν is assumed to be constant and set at 3.0× 109

s−1. In fact, this value is quite large (larger than the applied frequency), but it is

useful to qualitatively illustrate the effects of dissipation in this problem. Figures 4-10

and 4-11 show the self-consistent numerical result obtained by the rfSOL code and the

graphical solution, respectively. It is seen in Figure 4-11 that the dissipation allows

the black resonance curve to have a finite height. Correspondingly, the region where

the multiple roots exist becomes bounded by K = Kcrit1 (lower critical current) and

K = Kcrit2 (higher critical current) as shown in Figure 4-10, and thus we obtain only

root 1 in the limit where K → 0, which yields the Bohm sheath potential in a desired

way. The mechanism for the root jumping can involve hysteresis. For example, root

1 jumps to root 3 at K = Kcrit2 for increasing antenna current, while root 3 jumps to

root 1 at K = Kcrit1 for decreasing antenna current.

4.4 Sheath-Plasma Waves in 2D Slab Geometry

Although we have observed several important phenomena in the 1D domain (e.g.,

the quasi-insulating limit and the presence of multiple roots), it is necessary to fur-

ther investigate the problem in the 2D domain since we are mostly interested in the

physics in finite geometry where in general one cannot assume Fourier modes in two

independent spatial directions. In view of this, the rest of this chapter will be devoted

to the analysis in 2D geometry using the developed 2D rfSOL code.

4.4.1 Numerical Analysis of the RF Sheath Interaction for

Constant n0 and B0

Figure 4-12 shows the problem definition which corresponds to a simplified geometry

of the edge plasma region including an antenna in the poloidal cross-section of a

105



0 20 40 60 80 100
0

3

6

9

12

15

K [kA/m]

V
0 [k

V
]

 

 

Root 1
Root 2
Root 3

Figure 4-10: The rectified sheath potential V0 at the right sheath as a function of the
antenna current K for the case with dissipation, showing multiple roots in a certain
range of K. The vertical dashed lines indicate the critical antenna currents (10.9
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Figure 4-11: Graphical solution for the case with dissipation.
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Figure 4-12: Infinitely long slab model defined on the 2D space.

tokamak (see Figure 2-1). Here the electric field in the 2D slab geometry is numerically

solved subject to the sheath boundary condition on the right-hand side, the absorbing

boundary condition (if necessary) on the left-hand side, and the periodic boundary

condition at the top and bottom of the domain. The antenna surface current is given

by a sine function in the y direction in such a way that the value at both ends is zero,

which is achieved using the following expression:

Jext = K (y) δ (x−Dlw-ant) ei(kzz−ωt)ey (4.3)

where

K (y) =
Kmax

2

{
sin

[
π

(
2y − Ly + Lant

Lant

− 1

2

)]
+ 1

}
(4.4)

As a first step, consider the case where the plasma density and background mag-

netic field are assumed to be constant over the domain and only the thermal contribu-

tion in the sheath boundary condition plays a role in the sheath-plasma interaction

(due to a small electric field). Although this assumption is still far from realistic
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tokamak conditions, it yields many interesting features which are not observed in a

simple 1D domain, as will be demonstrated below. The calculation domain and an-

tenna position are determined such that Lx = 0.6 m, Ly = 0.4 m, Lant = 0.05 m, and

Dlw-ant = 0.57 m. Two density values, n0 = 2.0× 1018 m−3 and n0 = 6.0× 1017 m−3,

are considered with a constant background magnetic field B0x = 1.5 T, B0y = 0.5

T, and B0z = 4.0 T. For these density values both the fast and slow waves do not

propagate in the cold plasma according to the results obtained by the corresponding

local dispersion relations (see Figure 4-13; the red and blue lines indicate the higher

and lower plasma density values considered here). Thus, it is not necessary to form

an absorbing layer on the left-hand side of the domain since the electric field far away

from the antenna is sufficiently damped; only the conducting-wall boundary condi-

tion, Et = 0, on the left boundary (x = 0) suffices. In this analysis the toroidal

wavenumber component is fixed at 10.8 m−1, the antenna surface current Kmax is 1

A/m, the electron temperature is 10 eV, and the applied frequency is 80 MHz. For

the finite element discretization a uniform mesh which includes 801×1041 grid points

(400× 520 nine-node elements; in the x and y directions, respectively) is used.

Figure 4-14 shows the filled contour plots of the real and imaginary parts of the

parallel electric field component for n0 = 2.0 × 1018 m−3, which are obtained by

imposing the conducting-wall boundary condition on the right boundary. Here the

antenna and magnetic field lines are also superimposed on the plots with black lines.

As expected, the large-amplitude electric field only exists in the vicinity of the current

source due to the evanescent plasma waves.

However, the electric field distribution becomes significantly changed when the

conducting-wall boundary condition is replaced with the thermal sheath boundary

condition as seen in Figure 4-15. Clearly, a wave mode is observed along the sheath

surface in both real and imaginary parts of E‖. This particular form of wave was

confirmed in previous experimental and analytical studies [28–30, 36] and called the

“sheath-plasma wave (SPW)” — a particular wave generated as a consequence of
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Figure 4-13: Plots of n2
⊥ as a function of n0 as determined by: (a) the FW dispersion

relation, and (b) the SW dispersion relation. The red and blue lines indicate the
higher and lower plasma density values considered here.

imposing the sheath boundary condition. The SPW observed here looks quite regular

in distribution, and it is localized in the vicinity of the sheath. The source of the

SPW may be attributed to the large-amplitude electric field, which is localized at the

intersections between the sheath and the magnetic field lines penetrating through the

antenna.

Figure 4-16 shows the variations of the parallel electric field component along the

thermal sheath for the two plasma density values. It is seen for both density values

that the waves are mostly sinusoidal with particular wavelengths, and the real and

imaginary parts of E‖ are π/2 out of phase, indicating that the SPWs are propagating

along the sheath surface. This is indeed an interesting phenomenon since the sheath

plays a role to convey the wave energy to the region far away from the current source,

although the amplitude of the SPW would reduce exponentially with distance from

the antenna when both the fast and slow waves are evanescent (like in the present

condition). It is also confirmed that the amplitude of the electric field around the cen-

ter of the sheath surface is increased when the sheath boundary condition is imposed,
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(a)

(b)

Figure 4-14: Filled contour plots of the real (a) and imaginary (b) parts of the parallel
electric field component for n0 = 2.0× 1018 m−3 under the conducting-wall boundary
condition.
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Figure 4-15: Filled contour plots of the real (a) and imaginary (b) parts of the parallel
electric field component for n0 = 2.0× 1018 m−3 under the thermal sheath boundary
condition.
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compared to the results for the conducting-wall boundary condition.

Figure 4-17 shows the real and imaginary parts of the parallel electric field com-

ponent for n0 = 2.0 × 1018 m−3 along the cross-section at y = 0.1 m, corresponding

to the radial variations. It is quantitatively confirmed that the SPW only exists in a

narrow band adjacent to the sheath.

4.4.2 Electrostatic 2D Sheath Mode Analysis

In Figure 4-16 we have seen that the wavelength of the SPW varies depending on

the plasma density. Then a reasonable question is what happens to the wavelength

if other physical quantities, such as the plasma temperature and specified toroidal

wavenumber component, are varied. In order to comprehensively understand the

relations between the wavenumber of the SPW and various quantities on the sheath,

one can effectively apply the theory of an electrostatic 2D sheath mode, which is

summarized below.

Consider a homogeneous plasma with constant density and a uniform constant

magnetic field at the equilibrium state. First, let us focus on the sheath boundary

condition, which is repeated here for convenience:

Et = ∇t

(
∆sh

εsh

Dn

)
(4.5)

The presence of wave patterns on the sheath invokes the mode∼ exp (ik · x). Further,

assume that the electrostatic model is valid (i.e., E = −∇Φ = −ikΦ). Then for a

constant sheath width, one gets

1 = i∆shs · (ε · k) (4.6)

where s is the unit normal vector pointing to the plasma side. If the conditions
∣∣ε‖∣∣�

|ε⊥|, |ε×| and |(s · b) s| & |b− (s · b) s| are satisfied, one can make an approximation
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Figure 4-16: Plots of the real and imaginary parts of the parallel electric field compo-
nent on the thermal sheath with a comparison to the results for the conducting-wall
boundary condition for: (a) n0 = 2.0× 1018 m−3, and (b) n0 = 6.0× 1017 m−3.
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Figure 4-17: Plot of the real and imaginary parts of the parallel electric field compo-
nent for n0 = 2.0× 1018 m−3 along the cross-section at y = 0.1 m.

such that ε · k ' ε‖k‖b in Equation (4.6) (see Equations (2.18) and (2.19)), yielding

1 = −i∆shbxε‖k‖ (4.7)

Here the sheath is assumed to be located on the right boundary, so that s · b = −bx.

The wavenumber components must also satisfy the electrostatic dispersion relation

in the plasma, which is given by

k2
⊥ε⊥ + k2

‖ε‖ = 0 (4.8)

Consequently, one can solve Equations (4.6) and (4.8) (or Equations (4.7) and (4.8)

when the required conditions are satisfied) to determine kx and ky for given ω and

kz. Similar to the way the analytical solution in 1D geometry is obtained (see Section

3.5.1), the Newton-Raphson method can be effectively applied for this calculation.

Now we are ready to investigate the characteristics of the SPW (specifically, the

wavenumber component parallel to the sheath surface) by varying several quantities
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Figure 4-18: The quantities varied in the electrostatic sheath mode analysis.

in the electrostatic sheath mode analysis. Here, consider varying the plasma density,

angle and magnitude of the poloidal component of the background magnetic field,

electron temperature, and toroidal wavenumber component as schematically shown

in Figure 4-18. For each case only one quantity is varied with other parameters

fixed at their default values (specified in Section 4.4.1). Although Equation (4.7)

is well satisfied for the present calculation condition except in the case where the

poloidal angle of the background magnetic field is varied, Equation (4.6) is employed

throughout the analysis to assure accuracy of the results.

Figure 4-19 shows the variations of the real and imaginary parts of ky at the sheath-

plasma interface as functions of the plasma density with semi-logarithmic scale for

the horizontal axis. Here the red and blue lines indicate the higher and lower plasma

density values considered here, and the green line points out the density value at the

lower hybrid resonance observed in Figure 4-13b. Notice that the variation pattern

becomes completely opposite at the lower hybrid density nLH. According to this

result, the SPW only appears for the plasma density greater than the lower hybrid

density since for n0 < nLH, Im(ky) largely exceeds Re(ky), so that the SPW is quickly

damped before its wave motion is emerged on the sheath. For the density values

considered here, the corresponding wavelengths are calculated using one root for each

case at 3.6 × 10−2 m for n0 = 2.0 × 1018 m−3 and 1.5 × 10−2 m for n0 = 6.0 × 1017

m−3, which agree well with the numerical results shown in Figure 4-16.

Figure 4-20 shows the variations of Re(ky) and Im(ky) at the sheath-plasma in-
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Figure 4-19: Plot of the real and imaginary parts of ky at the sheath-plasma interface
as functions of the plasma density. The red and blue lines indicate the higher and
lower plasma density values considered here, and the green line shows the position of
the lower hybrid resonance.

terface as functions of the poloidal angle of the background magnetic field for two

density values; n0 = 2.0× 1018 m−3 and n0 = 1.0× 1017 m−3. Here the poloidal angle

θp is defined such that θp = 0 when the direction of B0p is identical with the positive

direction of the x axis (see Figure 4-18). Also, the red line in Figure 4-20 indicates

the default angle (this also applies to the rest of the analysis in this section). It is

observed for a higher density value that |Re (ky)| rapidly increases at two specific

angles (θp = π/2, 3π/2), indicating that the wavelength of the SPW gets shorter as

the contact angle between the magnetic field line and the wall approaches zero and

thus, fine grids are required in the vicinity of the sheath where the magnetic field

lines are almost parallel to the wall. For a lower density value (n0 < nLH), although

|Re (ky)| grows to infinity at the two specific angles, Im(ky) always dominates Re(ky),

so the wave behavior should not be observed on the sheath.

Figure 4-21 shows the plots of Re(ky) and Im(ky) at the sheath-plasma interface

as functions of the magnitude of the poloidal component of the background magnetic
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Figure 4-20: Plots of the real and imaginary parts of ky at the sheath-plasma interface
as functions of the poloidal angle of the background magnetic field for: (a) n0 =
2.0 × 1018 m−3, and (b) n0 = 1.0 × 1017 m−3. The red line indicates the default
parameter.

field for the two plasma density values. Here only the magnitude of the poloidal

component, |B0p|, is enlarged or lessened by multiplying its default value by the am-

plification factor αBP, while the poloidal angle θp is unchanged from its default value.

It is seen for large values of plasma density that the real wavenumber component

rapidly decreases for lower values of αBP, but gradually decreases for αBP & 1 with

an increase of αBP. On the other hand, the value of |Re (ky)| is always much smaller

than that of |Im (ky)| for a smaller density value (smaller than nLH) as for the results

in the n0 and θp variations.

Figure 4-22 shows the plots of Re(ky) and Im(ky) as functions of the electron

temperature for the two plasma density values. Recall that ∆sh ∝ λDe ∝ T
1/2
e for

the thermal sheath; thus, the variation of Te directly affects the sheath width. For

a higher density value it is observed that the wavenumber of the SPW gradually

decreases with an increase in temperature. Again, the variation pattern for the lower

density is almost the opposite of that for the higher density.

Lastly, Figure 4-23 shows the plots of Re(ky) and Im(ky) as functions of the
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Figure 4-21: Plots of the real and imaginary parts of ky at the sheath-plasma interface
as functions of the amplification factor in the poloidal component of the background
magnetic field for: (a) n0 = 2.0 × 1018 m−3, and (b) n0 = 1.0 × 1017 m−3. The red
line indicates the default parameter.
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Figure 4-22: Plots of the real and imaginary parts of ky at the sheath-plasma interface
as functions of the electron temperature for: (a) n0 = 2.0 × 1018 m−3, and (b)
n0 = 1.0× 1017 m−3. The red line indicates the default parameter.
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Figure 4-23: Plots of the real and imaginary parts of ky at the sheath-plasma interface
as functions of the toroidal wavenumber component for: (a) n0 = 2.0×1018 m−3, and
(b) n0 = 1.0× 1017 m−3. The red line indicates the default parameter.

toroidal wavenumber component for the two plasma density values. As seen, the

wavenumber component ky at the sheath-plasma interface is almost independent of

kz (for a given range of kz).

In summary, the SPW only appears for the plasma density greater than the lower

hybrid density, and its wavelength depends mainly on the plasma density, magnitude

of the poloidal component of the background magnetic field, and electron temperature

when the condition |(s · b) s| & |b− (s · b) s| is satisfied.

4.4.3 Numerical Analysis of the RF Sheath Interaction for

Constant n0 and Varying B0

As a last example of this section, consider the case where the background magnetic

field has a variation along the thermal sheath surface. Here the x component of the

background magnetic field is given by

B0x =
2

3
B̃0x

[
1− 1

2
cos

(
2y

Ly
π

)]
(4.9)
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where B̃0x = 1.5 T, while the other components are fixed at B0y = 0.5 T and B0z = 4.0

T. The density value is constant at n0 = 2.0× 1018 m−3. All other input parameters

are unchanged from the previous example in Section 4.4.1.

Figure 4-24 shows the filled contour plots of the real and imaginary parts of the

parallel electric field component, and the corresponding variations along the sheath

are shown in Figure 4-25. It is observed that the wavelength of the SPW varies along

the sheath surface; the wavelength becomes shorter with distance from the antenna

in accordance with the analytical predictions shown in Figures 4-20a and 4-21a. It

is also interesting to see that the decay length of the SPW becomes shorter with a

decrease in the SPW wavelength.

4.5 Nonlinear Sheath-Plasma Interactions in 2D

Slab Geometry

The discussion for the 2D domain so far focused on the linear sheath-plasma interac-

tion, and the numerical results were only given for the plasma density values greater

than the lower hybrid density nLH. This section aims to solve propagating SW-sheath

nonlinear interactions in the 2D slab geometry. This problem may be more important

than the previous numerical example from a practical point of view, since the SW

electric field parallel to the magnetic field line can be largely intensified by the par-

allel component (to the magnetic field line) of the antenna current, and the resulting

sheath potential can be quite large (∼ kV), which enhances the wall sputtering. It is

also important to confirm if the phenomena observed in the 1D analysis (in Section

4.2) appear even in the 2D case.

The calculation model used here is the same as in the previous section (shown

in Figure 4-12) except that the thermal sheath is now replaced with the RF sheath

which includes the electric field contribution. The calculation domain and antenna

position are determined such that Lx = 0.7 m, Ly = 0.3 m, Lant = 0.05 m, and
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(a)

(b)

Figure 4-24: Filled contour plots of the real (a) and imaginary (b) parts of the parallel
electric field component for a varying B0 field under the thermal sheath boundary
condition.
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Figure 4-25: Plot of the real and imaginary parts of the parallel electric field compo-
nent on the thermal sheath where the value of B0x is sinusoidally varied.

Dlw-ant = 0.65 m. The plasma density and background magnetic field are assumed to

be constant; n0 = 1.0 × 1017 m−3, and B0x = 1.5 T, B0y = 0.5 T, and B0z = 4.0 T.

For this density value the SW propagates in the cold plasma according to the results

shown in Figure 4-13. Thus, one is required to form an absorbing layer on the left-

hand side of the domain; here it is formed with ν0 = 3.0× 1011 s−1, xabs = 0 m, and

λν = 0.05 m (see Equation (2.103)). The other parameters fixed in this analysis are

f = 80 MHz, Te = 10 eV, kz = 10.8 m−1, Csh = 0.6, and εerr = 1.0× 10−3. A uniform

mesh which includes 841× 961 grid points (420× 480 nine-node elements) is used for

the finite element discretization. In this analysis the strength of the antenna current,

specifically the value of Kmax in Equation (4.4) is varied in the range of 1–320 A/m.

Figures 4-26, 27, and 28 show the filled contour plots of the real and imaginary

parts of the parallel electric field component, which is normalized by dividing it by

the maximum surface current value, for Kmax = 1, 60, and 160 A/m, respectively. It

is observed that the SWs are propagating along the field lines, but the distribution

patterns are clearly different among these three cases; the normalized wave amplitude
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in the edge plasma is enhanced for a large value of Kmax (particularly, Kmax = 160

A/m), while it is not seen for Kmax = 1 A/m. In fact, the difference in the electric field

distribution pattern was also observed in the analysis for the 1D domain (see Figure

4-2). One of the reasons for this phenomenon may be explained by the phase change

in the reflected wave, which is demonstrated below using a simplified condition.

Suppose that a SW is propagating in a low density plasma with a constant uniform

background magnetic field (B0 = B0xex). Further, assume that the sheath is formed

on the right-most boundary (x = xR) of the plasma-filled domain; thus, there are

incident (from left to right) and reflected (from right to left) waves in the vicinity

of the metal wall as schematically shown in Figure 4-29. Here the perpendicular

wavenumber components are imposed such that ky = 0 and kz = kt, so that one can

write k‖ = kx and k⊥ = kz. For this simplified condition the parallel wavenumber

component can be easily obtained from the SW dispersion relation (2.23) as follows:

k‖ = ±kr (4.10)

where

kr =
ω

c

[
ε⊥
ε‖

(
ε‖ − n2

⊥
)]1/2

(4.11)

Then the electric field in the plasma is expressed as

E =
(
C1Ẽ1eikrx + C2Ẽ2e−ikrx

)
ei(ktz−ωt) (4.12)

where C1, C2 are arbitrary constants, and Ẽ1, Ẽ2 are the polarization eigenvectors

corresponding to kx = ±kr, respectively. In the SW limit the electric field is governed
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(a)

(b)

Figure 4-26: Filled contour plots of the real (a) and imaginary (b) parts of the parallel
electric field component for Kmax = 1 A/m under the nonlinear sheath boundary
condition.
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(a)

(b)

Figure 4-27: Filled contour plots of the real (a) and imaginary (b) parts of the parallel
electric field component for Kmax = 60 A/m under the nonlinear sheath boundary
condition.

125



(a)

(b)

Figure 4-28: Filled contour plots of the real (a) and imaginary (b) parts of the parallel
electric field component for Kmax = 160 A/m under the nonlinear sheath boundary
condition.
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Figure 4-29: Slab model used for the demonstration of the phase change in the re-
flected wave.

by the following equation (see Equation (2.31)):

ε⊥ − n2
‖ n⊥n‖

n⊥n‖ ε‖ − n2
⊥

Ez
Ex

 =

0

0

 (4.13)

Here, let us specify that Ẽz1 = Ẽz2 = 1. Then the expressions of Ẽx1 and Ẽx2 are

given by

Ẽx1 = −Ẽx2 = −
ε⊥ − n2

‖

n⊥nr

(4.14)

where nr = ckr/ω and n⊥ = ckt/ω.

Now consider the two opposite limits in the sheath boundary condition; ∆sh → 0

and ∆sh →∞. In the former and latter cases the sheath boundary condition reduces

to the conducting-wall and insulating boundary conditions (i.e., Et = 0 and Dn = 0),

respectively, for a finite wave source. In this analysis they are simplified to Ez = 0

and Ex = 0, so that one gets

C1Ẽz1eikrxR + C2Ẽz2e−ikrxR = 0 (for conducting-wall BC)

C1Ẽx1eikrxR + C2Ẽx2e−ikrxR = 0 (for insulating BC)
(4.15)

Substituting the expressions for the polarization eigenvector components into Equa-
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tion (4.15), we obtain the expressions of C2 with respect to C1. Consequently, the

electric fields in the plasma corresponding to the two limits are

E =

C1

[
Ẽ1eikrx − Ẽ2eikr(2xR−x)

]
ei(ktz−ωt) (∆sh → 0)

C1

[
Ẽ1eikrx + Ẽ2eikr(2xR−x)

]
ei(ktz−ωt) (∆sh →∞)

(4.16)

Observe that the signs of the reflected wave are opposite. In other words, the phase

shift occurs with an amount of π. This is the same result found in the 2D resonance

cone analysis [34].

The waves that reflect from the right boundary and return to the plasma interfere

with the left-going waves launched directly by the antenna. The interference will be

constructive or destructive depending on the parallel wavenumber component, the

distance between the antenna and the wall along the field line, and whether there is

a phase change on reflection. For fixed wavenumber and antenna-to-wall distance the

interference behavior could be determined by the phase shift caused by the presence

of the sheath. The phase shift should occur smoothly between the two opposite limits

in the sheath boundary condition, so that one can see an intermediate electric field

pattern as shown in Figure 4-27.

Figure 4-30 shows the variations of the normalized normal component of the elec-

tric displacement on the sheath surface for five different antenna current values. It is

seen that the normalized quantity decreases with an increase of the antenna current,

which is a similar behavior to the result shown in Figure 4-4b, indicating that the

sheath boundary condition approaches the quasi-insulating limit. It is also observed

that the distribution pattern becomes spread out as the maximum antenna current

increases (in the present condition). Figure 4-31 shows the variations of the rectified

sheath potential corresponding to the five antenna currents. The maximum sheath

potential value increases with an increase of the antenna current, which was also

observed in the previous analysis in the 1D domain (see Figure 4-5a).
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Figure 4-30: Normalized normal component of the electric displacement vs. y at the
right boundary for five different antenna current values.
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Figure 4-31: Rectified sheath potential vs. y at the right boundary for five different
antenna current values.
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4.6 RF Sheath-Plasma Interactions in an Alcator

C-Mod Scale Device

As a last numerical example, propagating SW-sheath nonlinear interaction problems

are considered on the scale equivalent to the Alcator C-Mod device. Figure 4-32

shows a schematic diagram of an Alcator C-Mod poloidal cross section with represen-

tative measurements. Here this poloidal cross section is further simplified to the slab

geometry used in the previous sections (shown in Figure 4-12) by taking Ly as the

circumferential length of the outer wall. With this approximation the curvature effect

of the wall is neglected. However, in general this contribution to the sheath-plasma

interaction is considered to be small for this large-scale device (see Section 2.7.3).

Other major approximations are (1) the plasma density is assumed to be constant;

(2) relating to this, there are no reflected waves (due to the lower hybrid resonance)

from the core plasma side; and (3) the background magnetic field is assumed to be

spatially constant. The purpose of this section is to investigate a characteristic order

of the sheath potential and its sensitivity to parameters in the RF sheath-plasma

interactions in a large-size domain comparable to Alcator C-Mod. Admittedly, the

present model is still far from the realistic tokamak condition. Nevertheless, a se-

ries of calculations will provide some important insight into the localized RF sheath

formation on the material surface near the antenna.

The important scaling to assess the numerical results here is

V0 ∼ CshVsh ∼ C
b4

nE
4
‖

n2
e0Te

(4.17)

where C is the product of fundamental constants. Equation (4.17) can be easily

derived from Equations (2.97), (2.100) and the approximation that Dn ' ε0ε‖E‖bn

for
∣∣ε‖∣∣ � |ε⊥|, |ε×| (see Section 4.4.2). Note that E‖ has a dependence on bn, ne0,

and Te through the sheath boundary condition.
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Figure 4-32: Schematic diagram of a simplified Alcator C-Mod poloidal cross section.

Based on the definition in Figure 4-12, two kinds of slab domains, which are called

slab 1 and slab 2 here, are used depending on the tilt angle of the magnetic field lines.

In both domains the following three lengths are fixed: Ly = 2.14 (' 2π × 0.34) m,

Lx−Dlw-ant = 0.075 m, and Lant = 0.44 m. The number of grid points is also fixed at

921× 1201 (460× 600 nine-node elements), and 81 grid points (40 grid elements) are

provided between the antenna and the sheath (right wall). In slab 1, Lx = 3.0 m and

the absorbing layer on the left-hand side of the domain is formed with ν0 = 2.0×1011

s−1 and λν = 0.3 m. In slab 2, Lx = 1.5 m and the absorbing layer is formed with

ν0 = 1.0× 1011 s−1 and λν = 0.1 m (in both cases xabs = 0 m).

The first numerical analysis is focused on the effect of the tilt angle of the magnetic

field lines to the sheath and antenna current. To investigate this, the following two sets

of poloidal components of the background magnetic field are particularly considered:

B0x = 1.5 T, B0y = 0.5 T (case 1) and B0x = 0.5 T, B0y = 1.5 T (case 2). In these

cases the toroidal background magnetic field component is fixed at B0z = 4.0 T. In

order to obtain accurate numerical results, case 1 and case 2 are calculated using slab

1 and slab 2, respectively. The other parameters are fixed at n0 = 1.0 × 1017 m−3,
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f = 80 MHz, Te = 10 eV, kz = 10.8 m−1, Csh = 0.6, and εerr = 1.0× 10−3.

Figure 4-33 shows the filled contour plots of the real part of the parallel electric

field component in case 1 and case 2 for Kmax = 1 A/m. First, compared to the result

shown in Figure 4-26a, it is found in Figure 4-33a that the electric field strength is

largely reduced (compare the maximum and minimum values in the colorbar between

the two results). Since the plasma density and background magnetic field are the

same in these cases, this reduction is attributed to the increase in the antenna length

(or decrease in the gradient of the antenna current strength in its length direction).

In connection with this, the sheath potential values, which are calculated using four

different antenna current values in case 1, in Figure 4-34 are much smaller compared

to the results shown in Figure 4-31. Considering that the maximum antenna current

in Alcator C-Mod can be estimated at around 5 kA/m and the measured sheath

potential values are the order of hundred volts [23], the predictions shown in Figure

4-34 seem to be more realistic. In most cases the sputtering effect starts to emerge

when the sheath potential exceeds 100V; thus, one can anticipate from these numerical

results that the experimental configuration of Alcator C-Mod would lead to enhanced

sputtering.

Second, it is seen in Figure 4-33b that the electric field strength in case 2 is

increased by approximately three times compared to the result in case 1 when the

magnetic field lines intersect with the antenna at a smaller angle. This occurs because

the parallel electric field component is directly intensified by the projection of the

antenna current to the magnetic field lines (i.e., J‖ext = Jext · b).

Figure 4-35 shows the variations of
∣∣E‖∣∣max

and
∣∣bnE‖

∣∣
max

as functions of the

poloidal angle θp defined in Figure 4-18 for Kmax = 300 A/m and |B0p| = 1.58

T, B0z = 4.0 T. Here
∣∣E‖∣∣max

is the maximum value of the parallel electric field

component on the sheath, and slab 1 is used for the calculations when the poloidal

angle of the magnetic field lines is equal to or less than 65◦, while slab 2 is used for

the other cases. It is found that the value of
∣∣bnE‖

∣∣
max

is insensitive to θp. Therefore,
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(a)

(b)

Figure 4-33: Filled contour plots of the real part of the parallel electric field component
for Kmax = 1 A/m with two different poloidal components of the background magnetic
field: (a) B0x = 1.5 T, B0y = 0.5 T (case 1); and (b) B0x = 0.5 T, B0y = 1.5 T (case
2).
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Figure 4-34: Rectified sheath potential vs. y for four different antenna current values
for B0x = 1.5 T, B0y = 0.5 T, and B0z = 4.0 T (case 1). The horizontal dashed line
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according to Equation (4.17), the sheath potential values in case 1 and case 2 should

become comparable under the condition where ne0 and Te are constant. This is verified

in the results shown in Figure 4-36, where the rectified sheath potential variations

are compared between the two cases for Kmax = 300 A/m.

The angle dependence on the rectified sheath potential is also investigated by vary-

ing the toroidal angle θt. Using the toroidal angle, the components of the background

magnetic field are defined as follows:

B0x = |B0| sin θt cos θp

B0y = |B0| sin θt sin θp

B0z = |B0| cos θt

where |B0| = 4.3 T. Figure 4-37 shows the variations of
∣∣E‖∣∣max

and
∣∣bnE‖

∣∣
max

as

functions of the toroidal angle θt with the poloidal angle θp fixed at 40◦ for Kmax = 300
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ground magnetic field.
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Figure 4-37: Plot of
∣∣E‖∣∣max
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A/m. Again, it is confirmed that the value of
∣∣bnE‖

∣∣
max

is insensitive to θt. There

is a subtlety in the electric field strength affected by the magnitudes of the poloidal

and toroidal background magnetic field components, which might be clarified by an

analytical work.

From these numerical results, it could be concluded that the sheath potential on

the material surface in the close vicinity of the antenna current strap can be insensitive

to the direction of the background magnetic field in the RF sheath dominated regime

(∼kV), if the contact angle between the magnetic field line and the sheath surface is

not too small, so that the approximation Dn ' ε0ε‖E‖bn is valid.

As a last numerical examination, a series of calculations is conducted to inves-

tigate the sheath potential variation depending on the plasma density and electron

temperature with the antenna current and background magnetic field fixed. Figure

4-38 shows the filled contour plots of the maximum rectified sheath potential Vmax

(on the sheath) as a function of the plasma density and electron temperature for

Kmax = 300 A/m, and B0x = 1.5 T, B0y = 0.5 T, B0z = 4.0 T. Here a comparison
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is made between the approximate analytical result and the nonlinear self-consistent

numerical result. Figure 4-38a is obtained using Equation (4.17) with the assump-

tion that E‖ is independent of n0 (= ne0) and Te, and the numerical result is only

provided at n0 = 1.0 × 1017 m−3 and Te = 10 eV. Figure 4-38b is obtained from the

numerical results calculated by the rfSOL code in the range of n0 = 1.0–2.0 × 1017

m−3 and Te = 5–10 eV. Both figures are drawn by employing 6× 6 sheath potential

values. Although the overall trends are qualitatively similar between the two cases,

the variation range in the numerical result is significantly reduced compared to that

in the analytical prediction: the lowest and highest values of Vmax are 86 V and 686

V, respectively, in Figure 4-38a, while they are 133 V and 510 V in Figure 4-38b.

The contour lines at Vmax = 200 V and 150 V are compared in Figure 4-39. It is

seen that the contour line of the numerical result at Vmax = 150 V significantly de-

viates from that of the analytical prediction (recall that the latter is drawn using a

one-point numerical result around Vmax = 300 V, and hence the deviation is smaller

at Vmax = 200 V). The difference comes from the fact that the numerical solution

(the first-order electric field) is obtained (1) so as to satisfy the sheath boundary

condition, and (2) by taking into account the dependence on parameters in the an-

tenna coupling to E‖. It should be emphasized from this comparison that the present

nonlinear self-consistent code plays a major role in accurate quantitative evaluation

of the RF sheath potential, which sensitively varies depending on the plasma density

and electron temperature.

Lastly, Figure 4-40 shows how the contour line at V0 = 200 V shifts on the

parameter plane for n0 and Te with an increase in the antenna current. Since higher

antenna current yields an increased electric field, the contour line shifts to the higher

plasma density or higher electron temperature side according to the scaling shown in

Equation (4.17).
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(a)

(b)

Figure 4-38: Filled contour plots of the maximum rectified sheath potential vs. plasma
density and electron temperature for Kmax = 300 A/m, and B0x = 1.5 T, B0y = 0.5 T,
B0z = 4.0 T: (a) analytical prediction with Dn fixed; and (b) nonlinear self-consistent
numerical result.
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Figure 4-39: Comparison of the contour lines at Vmax = 200 V (a) and Vmax = 150 V
(b) between the analytical prediction and the numerical result obtained by employing
the rfSOL code. Here, Kmax = 300 A/m, and B0x = 1.5 T, B0y = 0.5 T, B0z = 4.0 T.
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Figure 4-40: Contour lines at Vmax = 200 V obtained by nonlinear self-consistent
numerical simulation with three different antenna current values for B0x = 1.5 T,
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Chapter 5

Development of the Finite Element

Wave-Packet Method

5.1 Prologue

In the previous chapters the nonlinear sheath-plasma interactions in the SOL have

been numerically solved under various conditions, and many interesting phenomena

have been discovered. One of the important next steps will be to further increase the

spatial resolution, together with complexity of the boundary geometry, in order to

capture unidentified multiscale behaviors, especially, slow waves whose wavelengths

are much smaller compared to the characteristic length of the domain. In particular,

if resonance is involved in the calculation domain, conventional numerical methods

require a sufficiently fine mesh to accurately capture fine-scale variations in the vicin-

ity of the resonance region. In this case, even though most of the domain should not

require a fine mesh, one still has to provide fine discretization for almost the entire

domain, since in general we cannot predict precisely prior to the analysis where res-

onance will occur. Much effort has been devoted to the development of computer

programs to solve wave propagations in hot tokamak plasmas [59–61]. However, as

described in Section 3.4, there are currently several limits related to memory size even
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if a highly sophisticated simulator, such as the computer system at NERSC, is em-

ployed; for this reason, 3D simulation is still a challenge for most of the fusion plasma

problems. It is true that the above-mentioned difficulty will be gradually solved with

improvement of computational performance from the hardware point of view, but we

can also achieve this goal by developing more efficient interpolation functions used

for the discretization of governing equations. Based on this standpoint, the last topic

of this thesis is directed to the development of a new finite element procedure for

multiscale wave equations with application to plasma waves. Below is the summary

of the previously published paper [62].

To solve wave propagation problems accurately, the spectral method [63] or spec-

tral finite element method have been used [64–66] and good results have been obtained

in certain analyses. However, these methods can be computationally expensive, and

more importantly, the methods show intrinsic difficulties in satisfying the boundary

conditions for arbitrarily-shaped domains. Since in many wave propagation analy-

ses, the domain considered is geometrically complex, the available spectral techniques

may not be effective.

Another possibly more efficient approach is to utilize basic interpolation functions

that are enriched with waves. This means in essence to construct special interpolation

functions that are more amenable to capture the desired response. This approach is

rather natural to increase the effectiveness of the finite element method for the solution

of specific problems, and has been pursued for a long time, like for example in the

analysis of wave propagations [67–69], global local solutions [70, 71], piping analyses

[72], the development of beam elements [73], and in fluid flow analyses [74,75]. Such

methods have lately also been referred to as partition of unity methods or extended

finite element methods, see for example [76–79]. In addition, recently, discontinuous

Galerkin methods [80] and related techniques have been researched for the solution of

wave propagation problems, but these techniques can be computationally expensive

to use.
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Whenever such a problem-specific method is proposed, the generality for a specific

class of problems and effectiveness are crucial. For plasma wave problem solutions,

Pletzer et al. proposed a wave-packet approach using Gabor functions as envelopes

[81]. Although this method has several good features, five parameters need to be

selected, where it is difficult to find near optimal choices. Also, since the values of

the Gabor functions are nonzero in the entire calculation domain, a cutoff value has

to be defined. Furthermore, it is difficult to incorporate general boundary conditions.

The objective in this chapter is to present a finite element scheme in which basic

finite element interpolations are used enriched with wave packets. The method is

quite simple and is based on the standard finite element method [52] and spectral

method [63], but does not have the above-mentioned disadvantages. It turns out that

the resulting interpolation functions have the same structure as those proposed in Ref-

erences [67,68] but can be applied to a much broader range of problems. Specifically,

the procedure can also be used to solve a range of plasma wave propagation problems,

for example in which mode conversion occurs. In these cases, waves with dramatically

different wavelengths can exist in localized regions, which are determined by sophis-

ticated plasma models considering kinetic effects. An important point is that the

governing equations corresponding to the kinetic model include integrals, since the

dielectric tensor is evaluated by integrating over the whole of velocity space and past

particle trajectory time. For that reason, the methods referenced above [67–69,76,77]

cannot directly be used to such plasma wave problems, because they use solutions

of some specific differential equations. The approach presented here utilizes classical

finite element interpolations with spectral enrichments, and can be applied to the

equations including integrals as well as general differential equations. The combined

interpolation technique can be used to easily satisfy Dirichlet boundary conditions

and solve for many different wavenumbers in one solution.

In this chapter, first, the proposed numerical procedure is presented in detail, and

then the solutions of some test problems are given, including a problem modeling

143



wave behavior in plasmas. It will be shown that the proposed finite element method

gives more accurate results than the conventional finite element method for wave

propagation problems. While this chapter only considers 1D linear problems, there

is considerable intrinsic potential of the method to be effective for multi-dimensional

and even nonlinear solutions.

5.2 Finite Element Wave-Packet Approach

The method proposed here is based on three important features: the technique can

be thought of as using the interpolations of the traditional finite element method

enriched by waves, the resultant global coefficient matrix is sparse as in finite element

methods, and the boundary conditions are easily incorporated. The purpose of this

section is to describe each feature in detail.

5.2.1 Foundation of the Numerical Method

The basis of the proposed scheme is a weak form of the weighted residual method [52].

Consider a general 1D ordinary differential equation written as L [u]+f (x) = 0, where

L is an ordinary differential operator. Let û be an approximate numerical solution.

The numerical solution û is determined such that the following integral equation is

satisfied:

∫
Ω

h (x) (L [û] + f (x)) dΩ +

∫
Γ

h (x) (B [u]− B [û]) dΓ = 0 (5.1)

where h(x) is a weight function, B is an operator for the boundary term, Ω and Γ

denote the calculation domain and its boundary, respectively. Using the standard

Galerkin approach, the numerical solution and weight function are given by the same

type of interpolation functions, which are formulated next.
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5.2.2 Linear, Quadratic, and Hermitian Wave-Packet Inter-

polation Functions

The interpolation functions are constructed by multiplying sinusoidal functions by

well-known finite element interpolation functions. First, the numerical solution û

and the weight function h are expressed using the linear or quadratic wave-packet

interpolation functions g(i,j) as follows:

û (x) = g(i,j) (x)u(i,j) (5.2)

h (x) = g∗(i′,j′) (x)h(i′,j′) (5.3)

where the superscript ∗ denotes the complex conjugate; u(i,j), h(i′,j′) are nodal complex

values in the coordinate-frequency space identified by the global node number i and

the harmonic number j. Here the summation convention applies to the subscripts i

and j. Since the proposed method utilizes a finite element interpolation function as

an envelope function, the value of the envelope function is one at some nodal point

xk and zero at xj (j 6= k). This allows the functions g(i,j) to be defined in each grid

element, and the linear wave-packet interpolation functions are locally expressed as

g(α,j)(ξ) =
1

2
(1 + ξαξ) exp

[
2πiνj

(
xe +

∆x

2
ξ

)]
(5.4)

Similarly, for the quadratic envelope one gets

g(α,j) (ξ) =

[
ξαξ

2
(1 + ξαξ) +

(
1− ξ2

α

) (
1− ξ2

)]
exp

[
2πiνj

(
xe +

∆x

2
ξ

)]
(5.5)

where i, xe, ∆x, and ξ are the imaginary unit, x-coordinate at the center of an element,

length of an element, and coordinate variable in the calculation space (−1 ≤ ξ ≤ 1),

respectively; the physical space is then related to the calculation space by x = xe +

(∆x/2) ξ. The subscript α denotes the local node number, and the values of ξα are
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Figure 5-1: Schematic diagram of a linear wave-packet interpolation function.

ξ1,2 = −1, 1 for the linear case and ξ1,2,3 = −1, 1, 0 for the quadratic case, respectively.

The wavenumbers 2πνj are determined by νj = jν, where ν is the fundamental

frequency and j is an integer in the range − (NF − 1) /2 ≤ j ≤ (NF − 1) /2 with the

cutoff number of harmonics NF. Here NF ≥ 1 is an odd integer. The schematic profile

of a linear wave-packet interpolation function is shown in Figure 5-1. As we will see

in the numerical examples in Section 5.4, the quadratic wave-packet interpolation is

actually more effective.

Another possibly more efficient wave-packet approach can be established by em-

ploying Hermitian cubic beam functions [52] where then the nodal values and also the

derivative values at the nodes are used. This makes the expressions for the numerical

solution and weight function slightly different from Equations (5.2) and (5.3):

û (x) = g(i,j) (x) ũ(i,j) (5.6)

h (x) = g∗(i′,j′) (x) h̃(i′,j′) (5.7)

Here the Hermitian wave-packet interpolation functions and corresponding nodal com-

plex values comprise two different expressions:

g(i,j) =

g
1
(i,j) for 1 ≤ i ≤ Nx

g2
(k,j) for Nx + 1 ≤ i ≤ 2Nx

(5.8)
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ũ(i,j) =

u(i,j) for 1 ≤ i ≤ Nx

u′(k,j) for Nx + 1 ≤ i ≤ 2Nx

(5.9)

(same applies to h̃(i,j)) where Nx is the total number of nodes, and the value of the

subscript k is related to the value of i by k = i−Nx. In a similar way to the linear and

quadratic wave-packet interpolations, the functions in Equation (5.8) can be written

locally as follows:

g1
(α,j) (ξ) =

1

4
(ξ + ξα)2 (−ξαξ + 2) exp

[
2πiνj

(
xe +

∆x

2
ξ

)]
g2

(α,j) (ξ) =
∆x

8
(ξ + ξα)2 (ξ − ξα) exp

[
2πiνj

(
xe +

∆x

2
ξ

)] (5.10)

where ξ1,2 = −1, 1. The real-valued profiles of the Hermitian wave-packet interpola-

tion functions are shown in Figure 5-2.

For a real-valued solution, we can easily derive the following restrictions from

Equations (5.2) and (5.6):

u(α,j) = u∗(α,−j)

u′(α,j) = u′∗(α,−j)

(5.11)

where the equation involving derivatives is of course only considered for the Hermitian

wave-packet interpolation functions. These relations reduce the number of unknowns

to half and consequently, the size of the global matrix to a quarter. Using Equation

(5.11), for example, we can modify the linear wave-packet interpolation functions as

follows:

û (x) = ga
(α,0)u(α,0) +

(NF−1)/2∑
j=1

[
gb

(α,j)u
(R)
(α,j) + gc

(α,j)u
(I)
(α,j)

]
= g(α,m)ũ(α,m)

(5.12)
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Figure 5-2: Profiles of the Hermitian wave-packet interpolation functions together

with their envelope functions for ∆x = 0.1 and νj = 100: (a) plot of Re
[
g1

(α,j)

]
vs. ξ;

and (b) plot of Re
[
g2

(α,j)

]
vs. ξ.
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with

ga
(α,0) =

1

2
(1 + ξαξ)

gb
(α,j) = (1 + ξαξ) cos

[
2πνj

(
xe +

∆x

2
ξ

)]
gc

(α,j) = − (1 + ξαξ) sin

[
2πνj

(
xe +

∆x

2
ξ

)] (5.13)

g(α,m) =


ga

(α,0) for m = 0

gb
(α,j) for 1 ≤ m ≤ (NF − 1) /2

gc
(α,k) for (NF − 1) /2 + 1 ≤ m ≤ NF − 1

(5.14)

ũ(α,m) =


u(α,0) for m = 0

u
(R)
(α,j) for 1 ≤ m ≤ (NF − 1) /2

u
(I)
(α,k) for (NF − 1) /2 + 1 ≤ m ≤ NF − 1

(5.15)

where u
(R)
(α,j), u

(I)
(α,j) are the real and imaginary parts of u(α,j), respectively, and the

subscripts j, k, and m in Equations (5.14) and (5.15) are related to one another by

j = m, k = m − (NF − 1) /2. Of course, if we consider a general plasma wave, the

numerical solution is always complex, and hence Equations (5.11) to (5.15) are not

applicable.

An interesting observation is that for j = 0 all the wave-packet interpolation

functions given in Equations (5.4), (5.5), and (5.10) reduce to the usual finite element

interpolation functions as a result of νj = jν = 0. Thus, for NF = 1, the present

interpolation scheme consists only of the conventional finite element interpolation

functions, and indeed the present wave-packet approach becomes identical to the

conventional finite element method when NF = 1 (see Section 5.2.3). We will see that

this property leads to a straightforward treatment of the boundary conditions.

The present scheme results in a relatively low computational cost since the global
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Figure 5-3: An example of the structure of the global matrix for the analysis using
the Hermitian finite element wave-packet method.

matrix is sparse. This sparsity is due to the local interpolation of wave packets. As

an example, the distribution of the global matrix elements for the case of using the

Hermitian functions is shown in Figure 5-3, where the nonzero regions are block-

diagonalized with a regular bandwidth of 3NF.

As an illustration, consider a 1D sine-wave problem described by u′′ + α2u = 0 in

the range 0 ≤ x ≤ 1 subject to the boundary condition u (0) = 0, u′ (1) = α. Here

α is a constant with cosα = 1. The exact solution for this problem is then given by

u = sin (αx). Figure 5-4a shows a numerical solution obtained by the linear finite

element wave-packet approach for α = 4π, ν = 0.5, Nx = 2, and NF = 9. As seen,

with only one element used, we obtain virtually the exact analytical result. This is

the desired result since the method is based on the Fourier decomposition technique,

so that any smooth function should be reproduced by the combination of sinusoidal

waves with different wavenumbers regardless of the value of Nx. Figure 5-4b is a semi-

log plot of the error norm, which is defined by ‖L2‖ ≡
[∫

(u− û)2 dx/
∫
u2dx

]1/2
, as

a function of NF. We notice that the error decreases logarithmically with the number

of harmonics for NF ≥ 5. Due to this feature, the present wave-packet approach can
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yield more accurate results compared to the conventional finite element method by

orders of magnitude.

5.2.3 Imposing the Boundary Conditions

An important feature of the present method is the ease of imposing the boundary

conditions. Consider a 1D problem governed by a certain differential equation. When

imposing the Dirichlet boundary condition, we choose a weight function whose value

is forced to be zero at the boundary in the same way as in the conventional Galerkin

finite element method. But an important point to notice is that the interpolated nodal

values u(i,j) (or ũ(i,j)) are not identical to the nodal values of the numerical solution

û (x). Thus, for example, if we intend to exactly satisfy the Dirichlet boundary

condition at the boundary x = xb (the right-hand side boundary), the following

equality must be satisfied:

û (xb) = ub =

g(i,j) (xb)u(i,j) for the linear and quadratic cases

g(i,j) (xb) ũ(i,j) for the Hermitian case

(5.16)

For ub being real, Equation (5.16) leads to

(NF−1)/2∑
j=−(NF−1)/2

[
cos (2πνjxb)u

(R)
(Nx,j)

− sin (2πνjxb)u
(I)
(Nx,j)

]
= ub

(NF−1)/2∑
j=−(NF−1)/2

[
sin (2πνjxb)u

(R)
(Nx,j)

+ cos (2πνjxb)u
(I)
(Nx,j)

]
= 0

(5.17)

where we note that Equation (5.17) does not lead to a unique solution for NF > 1.

However, the following choice always satisfies the boundary condition for any ν and
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Figure 5-4: The numerical results obtained by the linear finite element wave-packet
method for ν = 0.5, Nx = 2: (a) the calculated wave for NF = 9; and (b) the norm
of error as a function of NF.
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xb:

u
(R)
(Nx,j)

=

ub for j = 0

0 for j 6= 0

u
(I)
(Nx,j)

= 0

(5.18)

This corresponds to the concept of imposing the exact boundary value in the con-

ventional finite element component (j = 0). Note that Equation (5.18) is consistent

with the statement in Section 5.2.2; the present scheme reduces to the conventional

finite element method for NF = 1.

On the other hand, the proposed method only approximately satisfies the Neu-

mann boundary conditions, again as in the conventional finite element method. For

the linear or quadratic wave-packet approach, the value of the weight function at the

boundary can be arbitrary. The boundary term in the discretized equation is calcu-

lated in the same way as in the standard finite element method. For the Hermitian

wave-packet approach, we specify h′(i,j) = 0 at the Neumann boundary and choose

the boundary nodal values in a similar way to the Dirichlet boundary condition as

follows:

u
′(R)
(Nx,j)

=

u
′
b for j = 0

0 for j 6= 0

u
′(I)
(Nx,j)

= 0

(5.19)

Here we assume that the Neumann boundary condition is imposed at x = xb. In

general, the above choice does not exactly satisfy the Neumann boundary condition
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because

dû

dx

∣∣∣∣
x=xb

=
2

∆x

(
dg1

(α=2,j) (ξ)

dξ
u(α=2,j) +

dg2
(α=2,j) (ξ)

dξ
u′(α=2,j)

)∣∣∣∣∣
ξ=1,x=xb

=
2

∆x

dg1
(2,j) (ξ)

dξ
u(2,j)

∣∣∣∣∣
ξ=1,x=xb

+ u′b

(5.20)

In general, the first term on the right-hand side is nonzero, and thus dû/dx|x=xb
6= u′b.

For NF = 1, the scheme reduces to the conventional Hermitian finite element method,

and then the Neumann boundary condition is exactly satisfied.

5.3 A Required Condition in ν

In the present scheme, we need to specify three numerical parameters: Nx, NF, and

ν. Here one required condition for a proper choice of ν is derived by relating it to the

value of Nx.

First of all, an important point is that every integral in the locally discretized

equations can be written in the following form:

I =

∫ 1

−1

(∑
n=0

Cnξ
n

)
exp (aξ + b) dξ (5.21)

where

a = πi (νj − νj′) ∆x

b = 2πi (νj − νj′)xe

(5.22)

Here n ≥ 0 takes integer values, and the Cn are the coefficients determined depending

on the differential equations considered. Now define

F (n) ≡
∫ 1

−1

ξn exp (aξ + b) dξ (5.23)
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Then Equation (5.21) is simply expressed by I =
∑

n=0CnF (n). Consider first the

case of νj 6= νj′ (i.e., j 6= j′). For n ≥ 1 one can rewrite Equation (5.23) as follows:

F (n) =

[
ξn

a
exp (aξ + b)

]1

−1

− n

a
F (n− 1) (5.24)

For n = 0 we have

F (0) =

∫ 1

−1

eaξ+bdξ =
1

a

(
ea+b − e−a+b

)
(5.25)

Thus, using Equations (5.24) and (5.25) we obtain F (n) for any value of n through

successive calculations. For νj = νj′ (j = j′), the integral in Equation (5.23) is easily

solved as follows:

F (n) =

∫ 1

−1

ξndξ =
1

n+ 1

[
1− (−1)n+1] (5.26)

These analytical expressions are desirable since we do not need to apply any numerical

integration to the integral shown in Equation (5.21); consequently, the computation

of each term is fast without a numerical error due to numerical integration.

Now, using Equations (5.24) and (5.26), consider the following two important

limits: |a| → ∞ and |a| → 0. Assume that a given differential equation is discretized

by properly choosing finite element wave-packet interpolation functions. For |a| →

∞, we find that |Ij=j′ | / |Ij 6=j′ | → ∞ and |Ij=j′ | → ∞ for j 6= 0 in a non-sparse

block (i, i′), where |Ij=j′ | and |Ij 6=j′ | are the integrals obtained by adding up all the

discretized derivative terms for j = j′ and j 6= j′, respectively, expressed in the form

of Equation (5.21). On the other hand, for |a| → 0, we find that |Ij 6=j′| / |Ij=j′| → ∞

and |Ij 6=j′| → ∞ in a non-sparse block (i, i′). Of course, the numerical solutions

for these cases do not make any sense. Therefore, a required condition should be

|a| ∼ 1, i.e., ν∆x ∼ 1, for which the magnitude of every term in Equation (5.21) is

about like in the conventional finite element discretization (j = j′ = 0). The physical
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interpretation to this constraint is that the waves in the wave packet should have at

least one wavelength in a grid element (see Figure 5-1).

5.4 Numerical Results

In this section the performance of the finite element wave-packet approach is illus-

trated using three test examples. The problems considered here are a wave propaga-

tion through different media, a problem described by the Airy-type equation, whose

exact solution is available for comparison with the numerical results, and a problem

described by the Wasow equation, which models the mode-conversion behavior of

RF waves in plasmas. The last two examples are chosen from Reference [81]. All

solutions are obtained using uniform meshes, and when the solution accuracies of the

proposed approach are compared with the accuracy obtained using the conventional

finite element method, the fact that the solutions are real is employed and the same

number of unknowns is used (see Section 5.2.2).

5.4.1 Wave Propagation through Different Media

Consider the wave propagation problem through different media in the domain 0 ≤

x ≤ 2, which is described by the following equation:

d2u

dx2
+ α2u = 0 (5.27)

where α2 = α2
I for 0 ≤ x < 1 and α2 = α2

II for 1 < x ≤ 2. We assume that

sinαI = sinαII = 0 and cosαI = cosαII subject to the boundary conditions u (0) = 0

and u′ (2) = αII. The exact solution is then uI = (αII/αI) sin (αIx) in the range

0 ≤ x < 1 and uII = sin (αIIx) in 1 < x ≤ 2. Here we consider two cases: αI = 8π,

αII = 4π in case 1 and αI = 64π, αII = 8π in case 2.
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The local (within a grid element) discretized equation for Equation (5.27) is:

∫
Ωe

(
dg∗(α,j′)
dx

dg(β,j)

dx
− α2g∗(α,j′)g(β,j)

)
dx · u(β,j) − g∗(α,j′)

du

dx

∣∣∣∣
boundary

= 0 (5.28)

As for the parameters used in the numerical scheme, the number of envelope positions

(i.e., nodes), cutoff number of harmonics, and fundamental frequency are set at Nx =

9, NF = 5, ν = 1.8 (Nx = 21, NF = 11, ν = 6.0) for the linear, quadratic wave-packet

methods and Nx = 5, NF = 5, ν = 1.5 (Nx = 11, NF = 11, ν = 6.0) for the Hermitian

wave-packet method in case 1 (case 2).

The profiles of the numerical solutions obtained by the Hermitian wave-packet

method are shown in Figure 5-5. Figure 5-6 shows the comparison of the numerical

error (û−u) for the linear, quadratic, and Hermitian wave-packet approaches. As seen,

the error is considerably smaller if we use higher-order envelope functions, although

the difference between the quadratic and Hermitian wave packets is small for this

problem. Figure 5-7 shows the comparison of the numerical error between the present

wave-packet method and the conventional finite element method with Nx = 25 in case

1 and Nx = 121 in case 2, both of which utilize the Hermitian interpolation functions.

We see that the numerical results obtained using the Hermitian wave-packet method

are several orders of magnitude more accurate than the results obtained using the

standard finite element method. Especially, the result in Figure 5-7b demonstrates

that a sufficient number of harmonics yields rapid convergence for a smooth function

as for the standard Fourier series (see Figure 5-4b).

5.4.2 Airy-Type Equation

Second, the methods are applied to the following second-order differential equation:

d2u

dx2
+ α2 (1− 2x)u = 0 (5.29)
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Figure 5-5: Numerical solutions of the wave propagation problem through different
media: (a) u = 0.5 sin (8πx) in 0 ≤ x < 1 and u = sin (4πx) in 1 < x ≤ 2 (case 1);
(b) u = 0.125 sin (64πx) in 0 ≤ x < 1 and u = sin (8πx) in 1 < x ≤ 2 (case 2).
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Figure 5-6: Comparison of the numerical error for the wave propagation problem
through different media among the three different wave-packet methods: (a) case 1;
and (b) case 2.
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Figure 5-7: Comparison of the numerical error for the wave propagation problem
through different media between the finite element wave-packet method and the con-
ventional finite element method: (a) case 1; and (b) case 2.
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Figure 5-8: Exact solution of the Airy-type equation for α = 21π/2.

in the domain 0 ≤ x ≤ 1 whose exact solution is described by the Airy function:

u = Ai
[
(α/2)2/3 (2x− 1)

]
. Here the coefficient α is fixed at 21π/2 (the same value as

in Reference [81]), and the corresponding boundary conditions are given by u′ (0) =

−8.3239 and u′ (1) = −9.8696×10−5. Figure 5-8 shows the profile of the corresponding

exact solution. The fundamental frequency, numbers of the envelope position and

Fourier mode are ν = 2.0, Nx = 9 for the linear, quadratic cases, Nx = 5 for the

Hermitian case, and NF = 5.

Figure 5-9 gives the numerical error for the three different wave-packet approaches.

As before, the errors obtained using the higher-order wave-packet interpolations are

much smaller than the error obtained using the linear interpolation. Also, it is ob-

served that the higher-order finite element wave-packet methods are comparable in

accuracy with the Gabor element method developed by Pletzer et al. [81]. Figure

5-10 shows the comparison of the numerical error between the present wave-packet

method and the conventional finite element method (with Nx = 25), both of which

utilize the Hermitian interpolation functions. Again, it is observed that the numerical

result using the Hermitian wave-packet method is much more accurate; note that the
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Figure 5-9: Comparison of the numerical error for the Airy-type equation among the
three different wave-packet methods.

error-scale differs by two orders of magnitude.

5.4.3 Wasow Equation

Lastly, we consider the numerical solution of the Wasow equation, which models the

mode conversion effects of RF waves in plasmas. The equation considered here is

given by

{
d2

dx2
+ k2 [1− 0.5 (x− 0.5)]

}{
d2

dx2
+ k2 [1− 160 (x− 0.5)]

}
u+αu = 0 (5.30)

in the domain 0 ≤ x ≤ 1 where k2 = 2×103 and α = 8×106 subject to the boundary

condition u (0) = 0, u (1) = 1 and u′ (0) = u′ (1) = 0 (the same boundary condition

as in Reference [81]). Equation (5.30) implies the formation of multiscale waves with

different wavenumbers by a factor of 320. Here a comparison is made between the

finite element wave-packet method and the conventional finite element method, both

utilizing the Hermitian interpolation functions which can be straightforwardly applied
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Figure 5-10: Comparison of the numerical error for the Airy-type equation between
the finite element wave-packet method and the conventional finite element method.

to this fourth-order equation. As for numerical parameters, we choose ν = 10.5,

Nx = 10, and NF = 11, and compare the results with a conventional finite element

calculation.

Since an analytical solution to this problem is not available, we first calculate

the problem with a very fine mesh using the conventional finite element method that

employs the Hermitian interpolation functions, and utilize the obtained result as a

“quasi-exact” solution. Figure 5-11 shows the numerical solution obtained with 1000

grid elements. We see that the fast and slow waves are coupled on the left half of

the domain (see Figure 5-11b), while only the SW having a shorter wavelength is

evanescent on the right half. This is also confirmed in Equation (5.30); although the

sign of r1 = k2 [1− 0.5 (x− 0.5)] is always positive in the entire domain, the sign of

r2 = k2 [1− 160 (x− 0.5)] changes from positive to negative at x = 0.5. The former

corresponds to propagation of the FW at every point, whereas the latter corresponds

to evanescence of the SW on the right half of the domain. The mixing of these

very different waves makes it more difficult to accurately solve the Wasow equation
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Figure 5-11: Numerical solution of the Wasow equation: (a) macroscopic oscillation;
and (b) fine-scale oscillation.

compared to the equations in the previous problems.

A comparison of the numerical error (û − uquasi-exact) between the finite element

wave-packet method and the conventional finite element method is shown in Figure

5-12. Again, the present wave-packet approach gives a more accurate numerical result

compared to the conventional finite element solution.

5.5 Conclusions

In this chapter a finite element wave-packet method was presented for the analysis

of waves through media, and some illustrative problems were solved. The method

is in particular directed to solve waves in plasmas accurately with reasonable com-

putational cost. The key idea is to enrich the usual finite element interpolations

with wave packets. We see that this approach results into some favorable features

drawing from both, conventional finite element and spectral methods. First, the in-

terpolation functions are locally defined in the same way as in the conventional finite

element method, which is effective for programming. Second, this local definition
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Figure 5-12: Comparison of the numerical error for the Wasow equation between the
finite element wave-packet method and the conventional finite element method.

results in the formation of a sparse global matrix. Third, all the integrals in the

discretized equation are analytically solved, yielding simple expressions (of course,

numerical integration could be used and probably has to be used for wave equations

of higher dimensions). Fourth, the boundary conditions are easily incorporated into

the discretized equation. In fact, the Dirichlet and Neumann boundary conditions

are treated in a similar way as in the conventional finite element method. Fifth,

using the wave packets can give more accurate results than using the corresponding

conventional finite element methods under the same computational costs.

Plasma wave equations can be far more complex than the 1D equations solved

here, but the 1D equations/solutions exhibit some of the fundamental characteristics

of these more complex waves. In further research the method should be applied to

and tested in two- and three-dimensional solutions with nonuniform meshes. Also, a

mathematical convergence analysis should be pursued to identify the rate and order

of convergence, and the optimal value of fundamental frequency.

165



166



Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis has presented two main numerical schemes and revealed various 2D prop-

erties caused by self-consistent RF sheath-plasma interactions in the ICRF. Regarding

the new numerical schemes, first, the numerical code that solves self-consistent RF

sheath-plasma interactions in the SOL for ICRF heating was developed for the first

time based on the nonlinear finite element method, and named “rfSOL.” Second,

the finite element wave-packet method was developed for the purpose of solving for

multiscale plasma waves in the tokamak poloidal plane accurately with reasonable

computational cost. The validity of the rfSOL code was confirmed through compar-

isons with an analytical solution in the 1D closed domain and the results of the local

dispersion relation in Chapter 3. Also, it was demonstrated using three test exam-

ples that the finite element wave-packet method yields much more accurate results

compared to the conventional finite element method in Chapter 5.

The present numerical results that contribute to the efforts on the RF sheath-

plasma interaction problems are summarized as follows. In the 1D analysis with

constant plasma density a similar variation pattern of the rectified sheath potential

to the results shown in References [34, 35] was obtained, which supports the validity
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of the analytical models proposed by Myra and D’Ippolito. It was also confirmed that

the sheath boundary condition reduces to the quasi-insulating boundary condition,

in which the normal electric displacement normalized by the surface current value

vanishes, in the limit where the sheath width goes to infinity. Further, in the numerical

analysis employing a varying plasma density profile, multiple roots were found in the

process of increasing the antenna current. With the help of graphical solution, it was

confirmed that the presence of the multiple roots is attributed to a combination of box

resonance effects of the confined propagating slow wave together with nonlinearity of

the sheath boundary condition. It was clarified by introducing dissipation into the

problem that the root jumping mechanism can involve hysteresis.

In a 2D slab geometry sheath-plasma waves were identified for the first time by

means of numerical simulation, and their characteristics were investigated through

the electrostatic 2D sheath mode analysis. An important consequence is that the

sheath-plasma wave only appears if the plasma density is greater than the lower hy-

brid density. It was found that the wavelength of the sheath-plasma wave depends

mainly on the plasma density, magnitude of the poloidal component of the back-

ground magnetic field, and electron temperature when the contact angle between the

magnetic field line and the wall is not too small. In addition, it was revealed for a

varying background magnetic field that the decay length of the sheath-plasma wave

into the plasma becomes shorter with a decrease of its wavelength.

For the plasma density lower than that at the lower hybrid resonance, it was

demonstrated in the 2D slab geometry that propagating slow waves yield large sheath

potential values, which can reach the order of kV for parameters similar to those of

Alcator C-Mod. A similar trend to the analysis in the 1D domain was observed in the

variation of the normalized normal electric displacement, which assures the validity

of the quasi-insulating limit. An analytical investigation with a simplified condition

showed that the phase shift can be the cause for the variation of the electric field

distribution pattern along the magnetic field lines.
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In the numerical analysis corresponding to an Alcator C-Mod scale device, it was

discovered that the key parameters which determine the magnitude of the RF sheath

potential are the parallel electric field strength, contact angle between the magnetic

field line and the sheath, electron density, and electron temperature. Furthermore,

it was demonstrated that the sheath potential in the close vicinity of the antenna

can be insensitive to the direction of the background magnetic field in the RF sheath

dominated regime for constant plasma density and straight magnetic field lines, if

the contact angle between the magnetic field line and the sheath is sufficiently large.

This is a significant consequence that could help elucidate the effect of the rotated

antenna, which will be examined in the Alcator C-Mod experiments soon.

As a matter of course, a more refined treatment of the geometry of the magnetic

field, SOL, and wall together with accurate plasma density and temperature profiles

will be required for an accurate prediction. Nevertheless, the simulation code (rfSOL)

that was developed in this thesis work is extensible with modifications to arbitrary

vessel geometry and magnetic field configurations (see next section), and eventually it

should be possible using this code to make an accurate quantitative prediction for the

RF sheath potential at specific locations on the wall structure in existing tokamaks

as well as in a reactor scale device such as ITER.

6.2 Future Work on the rfSOL Code

6.2.1 Developmental Direction

The road map for establishing a practically useful numerical code that possesses an

accurate predictive capability for a realistic tokamak geometry is shown in Figure

6-1. As Chapter 4 has shown, the present rfSOL code solves various problems in step

1 at a satisfactory level, and if a certain condition is met (which will be clarified in

the next subsection), the code can also solve some problems in step 2. The ultimate

goal is to combine the rfSOL code to the core-plasma solver (or it might be more
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Figure 6-1: Progression of the rfSOL models towards realism (courtesy of J.R. Myra).

straightforward to replace the cold plasma equation with the hot plasma equation in

the present approach) and solve the problem in a realistic divertor geometry (see the

diagram in step 4). It is not a difficult issue to generalize the scheme so as to apply

the rfSOL code to a curved geometry as shown in the diagram in step 3 when we

employ the formulation presented in Section 3.2.4. However, even for a simple 2D

slab geometry considered in this thesis, there still remain several things that need to

be improved.

First, in order to take into account the sheath power dissipation, it would be

important to introduce a small imaginary part into the scalar dielectric constant in

the sheath. According to the analytical model given in [33], this imaginary part is

inversely proportional to the instantaneous sheath voltage Vsh, so that its effect may

be less important if the sheath potential reaches the order of kV. However, if Vsh is

relatively small (but much larger than the thermal sheath potential), the resistive

part of the sheath dielectric would become more significant and enhance nonlinearity
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in the sheath boundary condition.

Second, more importantly, there is a singularity in the sheath boundary condi-

tion. This singularity cannot be avoided when considering the real tokamak geometry

problem with varying background magnetic fields, and thus must be settled in an ap-

propriate way. The details are described in the next subsection.

6.2.2 Singularity Problem

According to the result shown in Figure 4-20, the wavenumber component tangen-

tial to the sheath surface rapidly increases to infinity when the magnetic field line

approaches parallel to the wall (or when b · s = bn → 0, where b and s are the unit

vectors along the background magnetic field and perpendicular to the sheath surface,

respectively). This behavior is similar to the lower hybrid resonance; therefore if this

singular point is included in the calculation domain, unwanted numerical oscillation

is triggered from that point no matter how fine the grids are. On the other hand,

the tangential electric field component should vanish when bn → 0, since in that case

most of the electrons do not escape to the wall, and thus, the ion-rich sheath is not

formed (recall that the sheath boundary condition reduces to the conducting-wall

boundary condition for ∆sh → 0). However, this does not help to avoid the difficulty

mentioned above since the tangential electric field component is not exactly zero in

the close vicinity of the singular point. Of course, if the calculation domain does not

include the point where bn = 0 on the sheath, an accurate and converged numerical

result can be obtained as shown in Figure 4-24 (see also Equation (4.9)).

In order to tackle this singularity problem, the following two methods have been

proposed: (1) add the diffusion term in the sheath boundary condition, and/or (2) add

the imaginary part (dissipation) in the dielectric tensor components. Both approaches

are successful “mathematically” (i.e., the unstable numerical oscillation disappears)

if large artificial coefficients are used for them. However, it turns out that important

physics on the sheath surface, such as sheath-plasma waves, can also be damped out

171



due to these artificial parameters. Further, it is not clear if a good-looking numerical

result, which is finally obtained by manipulating the artificial coefficients by try and

error, is physically correct.

Another approach would be to modify the sheath boundary condition so as to

lessen the tangential wavenumber component in the vicinity of the singular points to

the extent where the sheath-plasma wave can be resolved with a given grid resolution.

A simple way, which appears to be effective, is to switch the boundary condition to

Et = 0 for kt ≥ kcrit, where kcrit is a critical value below which the sheath boundary

condition is accurately discretized by given grids. However, this approach causes a

discontinuity in the gradient of Et, which makes the numerical simulation unstable.

A promising remedy is to replace the discretization method for the sheath bound-

ary condition with a 1D spectral approach. At least, this will prevent unwanted

grid-scale oscillations. Although the global matrix size will be expanded with the

number of harmonics, this approach is worth pursuing to proceed towards the ulti-

mate goal of the rfSOL code development.

6.3 Future Work on the Wave-Packet Approach

As briefly described in Section 5.5, the most important next step is to establish the

method that gives the optimal value of the fundamental frequency. This value is

seemingly related to the solution of the characteristic equation corresponding to the

differential equation considered, but it is not that simple since it is confirmed that

the optimal value also depends on the grid resolution. Once a successful method is

devised, it would be straightforward to extend the finite element wave-packet proce-

dure to 2D applications; for example, the approach used in Reference [82] would be

effective.
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Appendix A

Calculations of the Integrals in

Finite Element Discretization

A.1 Integrals in Maxwell’s Equation

The integrals appeared in the discretized Maxwell’s equation can be analytically calcu-

lated by applying the element average techniques to the Jacobian and the components

of the cofactor matrix. In a nine-node element shown in Figure 3-1, the coordinate x

is expressed as

x = N (1)
α xα (A.1)

where N
(1)
α is the local bilinear interpolation functions defined as

N (1)
α (ξ, η) =

1

4
(1 + ξαξ) (1 + ηαη) (A.2)

Here the summation convention applies to the subscript α, which denotes the local

node number at the apexes of an element (i.e., α = 1, . . . , 4). Using the expression
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(A.1), the Jacobian J is approximately calculated in the 2D space as follows:

J =

∣∣∣∣∣∣
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∂N

(1)
α

∂ξ
xα

∂N
(1)
β

∂ξ
yβ

∂N
(1)
α

∂η
xα

∂N
(1)
β

∂η
yβ

∣∣∣∣∣∣
=

1

16

∣∣∣∣∣∣xαξα (1 + ηαη) yβξβ (1 + ηβη)

xαηα (1 + ξαξ) yβηβ (1 + ξβξ)

∣∣∣∣∣∣
' 1

16

∣∣∣∣∣∣xαξα yβξβ

xαηα yβηβ

∣∣∣∣∣∣ ≡ Je

(A.3)

where the subscript β denotes the local node number (same as for the subscript

α). This procedure corresponds to the central point approximation; the value of the

Jacobian in a grid element is evaluated at ξ = η = 0. Similarly, the components of

the cofactor matrix, Aij (i, j = 1, 2), are evaluated as follows:

 ∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y

 =
1

J

 ∂y
∂η

−∂y
∂ξ

−∂x
∂η

∂x
∂ξ

 ' 1

J

(A11)0 (A12)0

(A21)0 (A22)0

 (A.4)

where

(A11)0 =
1

4
ηαyα, (A12)0 = −1

4
ξαyα

(A21)0 = −1

4
ηαxα, (A22)0 =

1

4
ξαxα

(A.5)

It is then straightforward to calculate the integrals in Equations (3.14)-(3.16) an-

alytically. Due to the characteristics of the finite element interpolation functions,

calculations can be conducted over an element Ωe using the local shape functions Nα,

Nβ, and Nγ (see Equation (3.6)). The results are shown below:

∫
Ωe

NαNβdΩ = Je [NN ]ξ [NN ]η
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∫
Ωe

∂Nα

∂x
NβdΩ = (A11)0 [N ′N ]ξ [NN ]η + (A12)0 [NN ]ξ [N ′N ]η∫

Ωe

Nα
∂Nβ

∂x
dΩ = (A11)0 [NN ′]ξ [NN ]η + (A12)0 [NN ]ξ [NN ′]η∫

Ωe

∂Nα

∂y
NβdΩ = (A21)0 [N ′N ]ξ [NN ]η + (A22)0 [NN ]ξ [N ′N ]η∫

Ωe

Nα
∂Nβ

∂y
dΩ = (A21)0 [NN ′]ξ [NN ]η + (A22)0 [NN ]ξ [NN ′]η∫

Ωe

∂Nα

∂x

∂Nβ

∂x
dΩ =

1

Je

[
(A11)2

0 [N ′N ′]ξ [NN ]η + (A12)2
0 [NN ]ξ [N ′N ′]η

+ (A11)0 (A12)0

(
[N ′N ]ξ [NN ′]η + [NN ′]ξ [N ′N ]η

)]
∫
Ωe

∂Nα

∂y

∂Nβ

∂x
dΩ =

1

Je

(
(A11)0 (A21)0 [N ′N ′]ξ [NN ]η + (A12)0 (A22)0 [NN ]ξ [N ′N ′]η

+ (A12)0 (A21)0 [N ′N ]ξ [NN ′]η + (A11)0 (A22)0 [NN ′]ξ [N ′N ]η

)
∫
Ωe

∂Nα

∂x

∂Nβ

∂y
dΩ =

1

Je

(
(A11)0 (A21)0 [N ′N ′]ξ [NN ]η + (A12)0 (A22)0 [NN ]ξ [N ′N ′]η

+ (A11)0 (A22)0 [N ′N ]ξ [NN ′]η + (A12)0 (A21)0 [NN ′]ξ [N ′N ]η

)
∫
Ωe

∂Nα

∂y

∂Nβ

∂y
dΩ =

1

Je

[
(A21)2

0 [N ′N ′]ξ [NN ]η + (A22)2
0 [NN ]ξ [N ′N ′]η

+ (A21)0 (A22)0

(
[N ′N ]ξ [NN ′]η + [NN ′]ξ [N ′N ]η

)]
∫
Ωe

NαNβNγdΩ = Je [NNN ]ξ [NNN ]η

where

[NN ]ξ =
ξαξβ

6
+

1

30

(
32− 28ξ2

α − 28ξ2
β + 27ξ2

αξ
2
β

)
[NN ]η =

ηαηβ
6

+
1

30

(
32− 28η2

α − 28η2
β + 27η2

αη
2
β

)
[N ′N ]ξ =

2

3
(ξα − ξβ) +

ξαξβ
2

(2ξα − ξβ)
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[NN ′]ξ =
2

3
(ξβ − ξα) +

ξαξβ
2

(2ξβ − ξα)

[N ′N ]η =
2

3
(ηα − ηβ) +

ηαηβ
2

(2ηα − ηβ)

[NN ′]η =
2

3
(ηβ − ηα) +

ηαηβ
2

(2ηβ − ηα)

[N ′N ′]ξ =
ξαξβ

2
+

2

3

(
2− 3ξ2

α

) (
2− 3ξ2

β

)
[N ′N ′]η =

ηαηβ
2

+
2

3

(
2− 3η2

α

) (
2− 3η2

β

)
[NNN ]ξ =

32

35
+

1

15
(ξαξβ + ξβξγ + ξγξα)− 88

105

(
ξ2
α + ξ2

β + ξ2
γ

)
− 1

60

(
ξ2
αξβξγ + ξαξ

2
βξγ + ξαξβξ

2
γ

)
+

83

105

(
ξ2
αξ

2
β + ξ2

βξ
2
γ + ξ2

γξ
2
α

)
− 103

140
ξ2
αξ

2
βξ

2
γ

[NNN ]η =
32

35
+

1

15
(ηαηβ + ηβηγ + ηγηα)− 88

105

(
η2
α + η2

β + η2
γ

)
− 1

60

(
η2
αηβηγ + ηαη

2
βηγ + ηαηβη

2
γ

)
+

83

105

(
η2
αη

2
β + η2

βη
2
γ + η2

γη
2
α

)
− 103

140
η2
αη

2
βη

2
γ

The definitions of ξα, ξβ, and ξγ are the same as that of ξα in Equation (3.6). In the

same way, the values of ηα, ηβ, and ηγ are followed by the definition of ηα in Equation

(3.6).

A.2 Integrals in the Sheath Boundary Condition

Unlike the integrals in the discretized Maxwell’s equation, the integrals in the dis-

cretized sheath boundary condition can be analytically calculated without approxi-

mation (i.e., without a one-point integration). However, the calculations are largely

simplified when the element average is applied to the derivatives of ∆shκ as shown in
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Equation (3.27). Here the values of 〈∆sh〉e and 〈d∆sh/dy〉e are calculated as follows:

〈∆sh〉e ≡
1

Γ S
e

∫
ΓS
e

∆shdΓ S =

(
1

Γ S
e

∫
ΓS
e

NS
αdΓ S

)
(∆sh)α = Aα (∆sh)α (A.6)

〈
d∆sh

dy

〉
e

≡ 1

Γ S
e

∫
ΓS
e

d∆sh

dy
dΓ S =

(
1

Γ S
e

∫
ΓS
e

dNS
α

dy
dΓ S

)
(∆sh)α = Bα (∆sh)α (A.7)

where NS
α is the local quadratic functions defined in a three-node element. The

coefficients Aα and Bα are given by

Aα =
1

2

(
4

3
− ξ2

α

)
→ A1 =

1

6
, A2 =

1

6
, A3 =

2

3
(A.8)

Bα =
ξα
Γ S

e

→ B1 = − 1

Γ S
e

, B2 =
1

Γ S
e

, B3 = 0 (A.9)

As a consequence of this approximation, one is only required to calculate the integrals

shown in Equation (3.32), whose calculations can be conducted over an element Γ S
e

using the local shape functions NS
α , NS

β , and NS
γ (see Equation (3.19)). The results

are as follows:

∫
ΓS
e

NS
αN

S
βdΓ S = Je [NN ]ξ

∫
ΓS
e

NS
αN

S
βN

S
γ dΓ S = Je [NNN ]ξ

∫
ΓS
e

NS
α

dNS
β

dy
NS
γ dΓ S =

4

15
(−ξα + 2ξβ − ξγ) +

1

12
ξαξβξγ

+
1

15

(
−7ξ2

αξβ + 6ξαξ
2
β + 6ξ2

βξγ − 7ξβξ
2
γ + ξ2

γξα + ξγξ
2
α

)
+

1

20

(
−2ξ2

αξ
2
βξγ − 2ξαξ

2
βξ

2
γ + 9ξ2

αξβξ
2
γ

)
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∫
ΓS
e

NS
αN

S
β

dNS
γ

dy
dΓ S =

4

15
(−ξα − ξβ + 2ξγ) +

1

12
ξαξβξγ

+
1

15

(
ξ2
αξβ + ξαξ

2
β − 7ξ2

βξγ + 6ξβξ
2
γ + 6ξ2

γξα − 7ξγξ
2
α

)
+

1

20

(
9ξ2
αξ

2
βξγ − 2ξαξ

2
βξ

2
γ − 2ξ2

αξβξ
2
γ

)
The definitions of ξα, ξβ, and ξγ are the same as that of ξα in Equation (3.19). Here,

Je = Γ S
e /2.
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Appendix B

Derivative Expressions of the

Discretized Boundary Condition

The global matrix K(n) appeared in the Newton-Raphson iteration algorithm con-

sists of the derivative of the discretized entire vector f with respect to the solution

Ê and can be explicitly obtained using the discretized governing equations derived in

Section 3.2. In this appendix a procedure to obtain the derivative expressions of the

discretized sheath boundary condition is partly demonstrated. Although the calcu-

lations are straightforward, they will clarify the effectiveness of the element-average

technique that is applied to the sheath width since this method largely simplifies the

derivation of the derivative expressions. The derivatives of the discretized Maxwell’s

equation are easily obtained from Equations (3.14)–(3.16) and are thus omitted here.

For simplicity, let us consider the case where the sheath boundary condition is

imposed on a flat wall lying in the y-z plane. In Section 3.2.3 we derived the discretized

sheath boundary condition on the left wall, which is repeated here for convenience.

Gyi =
∑
m

Gyi|e(m) =
∑
m

([
NS
i N

S
j

]
ÊS
yj − S

yL
ijkκjk

)∣∣∣
e(m)

= 0 (B.1)
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Gzi =
∑
m

Gzi|e(m) =
∑
m

([
NS
i N

S
j

]
ÊS
zj − iSzLijkκjk

)∣∣∣
e(m)

= 0 (B.2)

where

SyL
ijk = T yL

ijkl (∆sh)l , SzLijk = T zLijkl (∆sh)l

T yL
ijkl = A

e(m)
l

[
NS
i Ñ

S
j Ñ

S
k

]
+B

e(m)
l

[
NS
i N

S
j N

S
k

]
T zLijkl = kzA

e(m)
l

[
NS
i N

S
j N

S
k

]
κjk = εS

xxkÊ
S
xj + εS

xykÊ
S
yj + εS

xzkÊ
S
zj

(B.3)

Here, note that the element-averaged sheath width and its derivative are expressed

as

〈∆sh〉e(m) = A
e(m)
l (∆sh)l〈

d∆sh

dy

〉
e(m)

= B
e(m)
l (∆sh)l

(B.4)

where the subscript l denotes the global node number. The coefficients A
e(m)
l and

B
e(m)
l are defined such that they possess specific values given by Equations (A.8) and

(A.9) at the grid nodes constituting the element e(m). The expression of Gyi|e(m) in

Equation (B.1) is easily divided into real and imaginary parts as follows:

G
(R)
yi

∣∣∣
e(m)

=
[
NS
i N

S
j

]
Ê

S(R)
yj − SyL

ijkκ
(R)
jk

G
(I)
yi

∣∣∣
e(m)

=
[
NS
i N

S
j

]
Ê

S(I)
yj − S

yL
ijkκ

(I)
jk

(B.5)

where the superscripts R and I denote the real and imaginary parts of the quantity,

respectively. Notice that SyL
ijk and SzLijk are real values. Recalling that the sheath width

is expressed as

(∆sh)l =
(
αsh |κ|3 + βsh

)
l

(B.6)
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where

αsh =

(
eCsh

Te

)3

λ4
De, βsh = CthλDe (B.7)

the derivative expression of G
(R)
yi

∣∣∣
e(m)

with respect to Ê
S(R)
xn (where the subscript n

denotes the global node number) is given by

∂G
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∂Ê
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(
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)
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inkε
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xxk

Here, it is assumed that the node n is included in the element e(m). Note that the

summation convention does not apply to the subscript n, and εS
xxk has both real and

imaginary parts due to the assumption that the electron mass is a complex-valued

quantity (see Section 2.5). Similarly, the derivatives of G
(R)
yi

∣∣∣
e(m)

with respect to

the other real and imaginary parts of the electric field components are calculated as

follows:
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∂Ê
S(R)
zn

∣∣∣∣∣
e(m)

= −3T yL
ijknκ

(R)
jk (αsh)n |κn|

(
κ(R)
n εS(R)

xzn + κ(I)
n ε

S(I)
xzn

)
− SyL

inkε
S(R)
xzk

∂G
(R)
yi

∂Ê
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The derivatives of G
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Following the same procedure as above, one can obtain the derivative expressions

of G
(R)
zi

∣∣∣
e(m)

and G
(I)
zi

∣∣∣
e(m)

with respect to the solution vector components.
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