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Abstract: In reviewing the literature pertaining to interfacial water, colloidal stability, and 

cell membrane function, we are led to propose that a cascade of events that begins with 

acute exogenous surfactant-induced interfacial water stress can explain the etiology of 

sudden death syndrome (SDS), as well as many other diseases associated with modern 

times. A systemic lowering of serum zeta potential mediated by exogenous cationic 

surfactant administration is the common underlying pathophysiology. The cascade leads to 

subsequent inflammation, serum sickness, thrombohemorrhagic phenomena, colloidal 

instability, and ultimately even death. We propose that a sufficient precondition for sudden 

death is lowered bioavailability of certain endogenous sterol sulfates, sulfated glycolipids, 

and sulfated glycosaminoglycans, which are essential in maintaining biological equipose, 

energy metabolism, membrane function, and thermodynamic stability in living organisms. 

Our literature review provides the basis for the presentation of a novel hypothesis as to the 

origin of endogenous bio-sulfates which involves energy transduction from sunlight. Our 

hypothesis is amply supported by a growing body of data showing that parenteral 

administration of substances that lower serum zeta potential results in kosmotropic cationic 

and/or chaotropic anionic interfacial water stress, and the resulting cascade. 

Keywords: inflammation; serum sickness; colloidal instability; interfacial water stress; 

bio-sulfates; Shwartzman phenomena; sudden death syndrome  
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Glossary of Terms 

Anaphylaxis a severe, rapidly progressing, life-threatening, generalized allergic reaction. 
Biological equipoise a stable, non-equilibrium, dissipative system synonymous with life. 

Cholesterol sulfate 
(Ch-S) 

quantitatively the most important known sterol sulfate in human plasma 
where it regulates the activity of the serine proteases, in cell membranes 
where it has a stabilizing role, and in platelet membranes where it supports 
platelet adhesion. 

Coherence domain 
(CD) 

a water CD is a collection of liquid water molecules which oscillate in 
unison in tune with a self-trapped electromagnetic field at a well-defined 
frequency. The coherent oscillations produce an ensemble of quasi-free 
electrons, able to collect noise energy from the environment and transform 
it into high-grade coherent energy in the form of electron vortices. This 
high-grade energy may then activate biomolecules resonating with the 
water CD. 

Colloidal instability 

a property attributed to a colloidal suspension that develops when 
stabilizing repulsive steric and electrostatic forces between colliding 
particles are insufficient to prevent their natural tendency to aggregate into 
masses large enough to precipitate. 

Colloidal suspension 
a colloid that has a continuous liquid phase in which a solid is suspended in 
a liquid, e.g., our flowing blood. 

Exclusion zone (EZ) 

a glass-like, gel phase consisting of water CDs resonating in-phase, 
adjacent to hydrophilic surfaces, several hundred micrometers wide which 
excludes colloidal particles and various solutes as a consequence of water 
molecules re-orienting to produce a more ordered structure, which then 
excludes the particles. 

Exogenous interfacial 
water stress (EIWS) 

a property of interfacial water—interfacial tension—which destabilizes 
enzymes, protein structure, and cell membranes. 

Glycosaminoglycans 

a group of high molecular weight linear polysaccharides constructed with 
various disaccharide repeating units usually occurring in proteoglycans, 
including the chondroitin sulfates, dermatan sulfates, heparan sulfate and 
heparin, keratan sulfates, and hyaluronic acid, with the primary 
configurations containing an amino sugar and a uronic acid. 

Hofmeister series 

the Hofmeister series or lyotropic series is a classification of ions in order 
of their ability to change water structure. A scale can be established 
wherein: 
kosmotropic ions or nonionic kosmotropes stabilize proteins and 
hydrophobic aggregates in solution and reduce the solubility of 
hydrophobes, and  
chaotropic ions or nonionic chaotropes unfold proteins, destabilize 
hydrophobic aggregates and increase the solubility of hydrophobes. 
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Interfacial tension 

a measure of the cohesive (excess) energy present at an interface arising 
from the imbalance of forces between molecules at an interface (gas/liquid, 
liquid/liquid, gas/solid, liquid/solid). The excess energy is called surface 
free energy and can be quantified as a measurement of energy/area, i.e., the 
energy required to increase the surface area of the interface by a unit 
amount. 

Jones-Ray effect 
the observation of a minimum in the surface tension at very low ionic 
concentrations (<1 mM). 

Kinetic Terahertz 
Absorption (KITA) 

KITA monitors the changing THz electric field pulse shape on the 
picosecond time scale Δt, as a chemical reaction proceeds on a longer time 
scale t, and has been applied to measure the changing protein-hydration-
water dynamics. 

Shwartzman reaction 
or Shwartzman phenomenon occurs when a “preparatory”, i.e., injection of 
bacterial filtrates, is followed after a proper time interval by intravenous 
“provocation” with the same or some similar material. 

Surface tension 

the cohesive forces among liquid molecules responsible for the surface free 
energy at a gas liquid interface is produced by the attraction between the 
molecules being directed away from the surface as surface molecules are 
more attracted to the molecules within the liquid than they are to molecules 
of the gas at the surface. 

Surfactant 
in principle, anything can be called a surfactant that affects the surface 
tension of a liquid, the interfacial tension between two liquids, or that 
between a liquid and a solid. 

Thrombohemorrhagic 
phenomenon (THP) 

a change characterized by thrombosis and hemorrhage. 

Zeta potential (ZP) a measure of the net charge density of a particle. 

1. Introduction 

An extensive review of the colloid and interface science literature has led us to conclude that the 

very earliest events in inflammation, disease, and sudden death are purely biophysical. We now 

strongly believe that biophysical properties underlie the origin, development, and perpetuation of life. 

The evidence also supports our view that inflammation, disease, and sudden death rest on purely 

biophysical events that provoke a branching, cascade-like, chain of reactions, which typically begins in 

our vascular system. The literature amply supports the concept that our vascular system, including the 

molecular and humoral immune defense and lymphatic systems, acts as though it is a single organ [1]. 

Both microvascular disease and endothelial dysfunction share a common initial pathophysiology.  

A better understanding of these earliest of biophysical events will enable a more rational approach to 

dealing with many of today’s idiopathic diseases. These diseases, are likely to be pluricausal [2] and 

highly stereotyped [3] in their clinical presentations, often with substantial overlap of symptoms.  

In this review, we hope to highlight, summarize, and call attention to some of the many historical 

milestones we have relied on to recommend areas of further research in the diagnosis, treatment, and 

prevention of disease. We believe that the development of sustainable health paradigms of tomorrow 

will require a multidisciplinary approach today. This approach will, at times, require each of us to look 

to the literature found in diverse fields of endeavor, for better understanding, particularly in areas in 
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which we were not formally trained. We have purposefully chosen to limit the scope of this review to 

simply trying to prospectively identify, at least in broad terms, potentially fruitful areas of future 

research which might have meaningful impact on the public health. The references cited in support of 

this review are intended to give the reader a place to begin. Lead references are cited upon which to 

base further inquiry. 

We will begin this review by discussing the definition and clinical characteristics of a syndrome of 

events, the net outcome of which is all too often, the sudden death of the victim. We will follow with a 

delineation of some of the underlying colloid and interface science which can reasonably be implicated 

in the pathophysiology of sudden death. We will present the preclinical research which we believe is 

most relevant to understanding sudden death. We will give examples of ongoing clinical research 

which are the progeny of colloid and interface science. We will present a novel hypothesis as to the 

origin of endogenous bio-sulfates, and discuss their central role in the establishment and maintenance 

of our biomembranes. We focus on the glycocalyx layers upon which rests the interfacial stability and 

function of our biomembranes in health. We will detail the role of the nitric oxide synthase family of 

enzymes, which, we argue, plays an essential role in energy capture and energy transduction, in 

support of the integrity of our biomembranes. We will introduce and define the concept of exogenous 

interfacial water stress (EIWS) and review several clinically-relevant sources of EIWS. Throughout 

this review we will endeavor to point out the necessary, central role of interfacial water as an essential 

reactant, mediator, and effector molecule in our bodies. Since water is the most abundant molecule on 

Earth and in our bodies, and the third most abundant molecule in the Universe (after H and CO), and 

because the vast majority of water in our bodies is interfacial water, it is in no way unreasonable to 

conclude that life without water is an impossibility. 

In the recent medical literature, SDS (Sudden Death Syndrome) is used as an umbrella term for a 

number of conditions that can lead to a sudden death. Two distinct forms of SDS have been identified: 

Sudden Infant Death Syndrome (SIDS) and Sudden Adult Death Syndrome (SADS). In this paper, we 

expressly define Sudden Adult Death Syndrome (SADS) as non-traumatic, non-violent, and 

unexpected occurrences resulting from unknown cause. We strongly believe that defining SADS as 

Sudden Arrhythmia Death Syndrome or as Sudden Cardiac Death is misleading and unfortunate 

because such a definition (a) infers a cardiac etiology, when the etiology is often unknown; (b) infers a 

six hour or less time frame, when the time frame is also unknown; and (c) limits by inference any 

open-minded investigation as to the actual cause to solely cardiac etiologies, when other etiologies 

may well exist. 

Multiple hypotheses have been proposed as the pathophysiologic mechanisms responsible for SIDS. 

However, none have been proven. The triple-risk model of SIDS proposes that the cause of SIDS is 

multifactorial, and that the sudden death of an infant may occur when a predisposed infant in an 

unstable period of homeostatic control is exposed to triggering factors [4]. Examples of various 

proposed etiologies include the QT interval hypothesis, the apnea hypothesis, neuroconvulsive, 

anaphylactic, thrombohemorrhagic, infectious, inflammatory, genetic, e.g., Brugada’s syndrome [5], 

and brainstem etiologies [6]. SIDS is a diagnosis of exclusion used to describe the sudden and 

unexpected death of an infant when no other plausible cause can be found [7]. Factors such as maternal 

smoking, prone sleeping, infection, lack of breast feeding and overheating have all been associated 
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with SIDS mortality [8]. Several theories have been proposed to explain the sudden deaths in this age 

group; however, the mechanisms responsible for SIDS remain poorly understood [6,9–15].  

Colloid and interface science literature supports the novel view that all instances of SDS share an 

initial common pathophysiology which is purely biophysical. Hofmeister (1888) ordered anions 

according to their ability to precipitate globular proteins from water [16]. Setschenow (1889) 

established an empirical law linking the solubility of a protein with cosolute (salt) concentration [17]. 

Heydweiller (1910) discovered that salt dissolved in water increased the surface tension of the 

solution-air interface [18]. Langmuir (1917) was the first to attempt a theoretical explanation of the 

physical mechanism behind the increase in surface tension produced by electrolytes [19]. More 

recently, Dér et al. instead of focusing on air-water surface tension, used protein-water interfacial 

tension as a general description of the free energy changes associated with salt-induced changes of 

protein solubility and conformation [20,21]. In general terms, the interfacial tension is determined by 

the cohesion and adhesion free energies within and between phases separated by the interface, 

respectively. Fluctuations in protein conformation are linked to interfacial tension and protein 

structural stability [22–25]. The fluctuation-dissipation theorem [22] was first proven by Callen and 

Welton in 1951. This theorem describes how dissipative forces and fluctuating random forces are 

connected. According to Grassia in 2000, when a large particle moves through a sea of small particles, 

on the microscale, all particle collisions are elastic. However, on the macroscale, where only the large 

particle is properly resolved, dissipative forces and fluctuating random forces are observed [23]. Many 

working proteins (functional proteins such as enzymes) oscillate between “open” and “closed” 

conformations, which also implies water-exposed surface area changes [20,21]. Hofmeister ion-dependent 

fluctuations at the interface are implied. Hofmeister effects can be rationalized by considering the 

contribution of interfacial energy to the total free energy change of the protein. A general relationship 

exists between salt concentration and protein-water interfacial tension. Protein-water interfacial tension 

plays a key role in protein structure and dynamics. An essential role for correct protein folding can be 

gleaned from the observation that the unfolded protein response is a common stressor leading to 

cellular apoptosis. 

Rosina has reported the temperature dependence of blood surface tension of healthy subjects [26]. 

There is now ample literature [27–39] to support the conclusion that many of the surfactants, 

administered parenterally to humans in vaccines, such as aluminum, mercury, and polysorbate 80 (in 

the acidic pH range), raise blood surface tension, leading to an increase in surface tension of 

intracellular, extracellular, and interstitial water, resulting in a pathology that we will refer to 

henceforth as “water stress”. Throughout this paper, we will refer to water stress as a property of 

interfacial water—interfacial tension—which destabilizes enzymes, protein structure, and cell 

membranes [20,21,40–49].  

Several compelling examples of water stress as applied to humans can now be cited [26,37,38,44,45,47–57]. 

Polycation-induced agglutination and sensitization of red blood cells has been demonstrated by several 

investigators [47–49,58–67]. In 1985, Coakley et al. demonstrated a regular periodicity of cell-cell 

contact points by both light microscopy and transmission electron micrography of polylysine 

agglutinated erythrocytes [44,49,68–70]. Serum surface tension was reported by Enoki Yoshisuke to 

be transiently elevated after provocation injection for the Shwartzman reaction [71]. Absolom has data 

showing that the surface tension of erythrocytes obtained from untreated cardiac arrhythmia patients 
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was higher than that of treated patients [45]. Kratochvil and Hrncir demonstrated that the level of 

surface tension of the blood marks changes occurring in various disease conditions such as rheumatoid 

arthritis, proliferative glomerulonephritis, and some tumors of the central nervous system or the 

urogenital tracts [72]. Kazakov et al. applied dynamic surface tensiometry of serum and cerebrospinal 

fluid for diagnosis and monitoring of treatment in patients with rheumatic, neurological and 

oncological diseases [57]. Esitashvili and Msuknishvili observed an increase in blood surface tension 

during acute myocardial infarction in humans [54]. Electrostatic interactions and interfacial charge 

regulation of biomembranes is a focus of intense ongoing research [65–67,73–81]. Fiszer-Kierzkowska 

recently suggested that cationic liposomes may not be suitable vehicles for gene transfection, given 

that they produced apoptosis and aggregation of misfolded proteins and/or fluidity changes of cellular 

membranes [82].  

Recently, experiments with yeast and in cardiac cells by Lloyd et al. has revealed astonishing 

parallels and similarities in their dynamic biochemical organization, despite being separated by 

1.2 billion years of evolution according to the prevailing orthodoxy [83]. This is not the first time that 

oscillatory fluctuations of characteristic periodicity have been noted in living tissue. Fluctuating 

phenomena of this nature have been studied for almost a decade. They are likely to be mesoscopic, 

supramolecular manifestations of the fluctuation-dissipation theorem [22].  

Literature review provides strong support for our conclusion that the serial parenteral administration 

of both polycationic and non-ionic surfactants is causing cumulative, synergistic, and systemic interfacial 

water stress. Non-ionic surfactants, e.g., Triton 100 and Tween 80, found in many of today’s marketed 

vaccines, can induce apoptotic cell death [36,84], hemolysis [32,33,38], and meningoencephalitis [85]. 

Aluminum hydroxide gels have been used as vaccine adjuvants for many years. There is a well-known 

relationship between hemolytic activity and adsorption capacity of aluminum hydroxide adjuvants [28]. 

Intraperitoneal exposure to aluminum sulfate in rats increases blood viscosity and red blood cell 

aggregation [86]. A link between aluminum and the pathogenesis of Alzheimer's disease was recently 

proposed [87]. Aluminum hydroxide injections have been shown to lead to motor deficits and motor 

neuron degeneration in mice [88]. Aluminum-treated mice showed significantly increased apoptosis of 

motor neurons and increases in reactive astrocytes and microglial proliferation within the spinal cord 

and cortex. Morin stain detected the presence of aluminum in the cytoplasm of motor neurons with 

some neurons also testing positive for the presence of hyper-phosphorylated tau protein, a pathological 

hallmark of various neurological diseases, including Alzheimer's disease and frontotemporal dementia. 

Aluminum (Al), the most commonly used vaccine adjuvant, is a demonstrated neurotoxin and a strong 

immune stimulator. Hence, adjuvant Al has the potential to induce neuroimmune disorders. Al in 

vaccines may also be a contributing factor in autism spectrum disorder (ASD) [89–93]. 

More than a century ago, in 1858, the Russian investigator Botkin first described what later became 

known as “erythrocyte agglutination thrombi” [94]. In 1894, Sanarelli first observed a condition which 

later became known as the generalized Sanarelli-Shwartzman phenomenon (SSP-G) [95], after further 

clarification by Schwartzman in 1928 [3,96]. There is ample evidence in the literature that this is an 

appropriate model for serial exogenous surfactant administration, as in scheduled vaccination programs, 

and it may constitute a “preparatory” or “sensitizing” or “priming” event. A final “provocation” or 

“challenge” or “shocking” event may induce a chain of reactions or a branching (avalanche-like) 
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cascade of events [97–102], equated with the Sanarelli-Shwartzman Phenomenon, whether localized or 

generalized [3,97,98,103,104].  

Thrombohemorrhagic phenomena (THP), also either localized (THP-L) or generalized (THP-G), 

are manifestations of the nonspecific or generalized stress adaptation syndrome [105]. In 1981, there 

was a proposal for a univisceral or single organ third type of Shwartzman reaction [106]. Sometimes, 

after the inflammatory cascade is “induced”, a new equilibrium is achieved, albeit in a more susceptible 

state for further subsequent thrombohemorrhagic events, which are sometimes fatal, depending 

critically upon such factors as the blood ζ-potential (zeta potential, to be abbreviated herein as ZP) and 

surface tension, in part controlled by bio-sulfate levels. Whether this is truly a “new equilibrium” or a 

“stable, non-equilibrium” or an “unstable, non-equilibrium” is uncertain to the authors, in light of 

Bauer, Voeikov and Del Giudice, and Morowitz and Smith [101,102,107]. Our literature review 

supports the view that human blood ZP, serum surface tension, and systemic bio-sulfate levels 

[76,108–113] should be employed clinically as biomarkers for risk of SDS. Such biomarkers might 

thereby guide future preventive health strategies. 

In this paper, we introduce a novel hypothesis to explain sudden death, relating impaired sulfur 

metabolism to serum colloidal instability. We argue that individuals with such impairment are 

vulnerable to an acute reaction to exposure to toxins that would otherwise be efficiently expelled from 

the body. Cholesterol sulfate (Ch-S), whose structure is depicted in Figure 1, sulfated 

glycosaminoglycans (sGAGs), and sulfated glycolipids play an essential role in maintaining the in vivo 

serum ZP in all living organisms. Any process which acutely lowers the ZP, such as the introduction of 

polycationic surfactant stress into the vascular system, has the potential to trigger SDS. Mediated by 

water, this manifests hemodynamically as increased viscosity, decreased RBC and vascular 

distensibility, increased vascular permeability, acutely deranged ionic gradients [ion channelopathy], 

colloidal instability, abnormal blood flow dynamics, impaired tissue oxygenation and oxygen delivery, 

thrombohemorrhagic phenomena, microvascular ischemia, cellular anoxia, infarctions, cell necrosis, 

and death. 

While we believe that everyone is vulnerable to SDS, some are more vulnerable than others. A child’s 

prenatal (via the mother) and postnatal nutritional status are important determinants of risk [114]. 

Adequate blood Ch-S sources are essential to health, e.g., adequate endogenous and exogenous 

cholesterol [114–117] and sulfur [114,118], as well as certain minerals and cofactors, e.g., zinc and 

tetrahydrobiopterin (BH4). Sunlight exposure to the skin is essential in the production of Ch-S (as well as 

its derivative, vitamin D3-sulfate), and excessive use of sun block will interfere with this process [114]. We 

propose that lowered levels of endogenous sterol sulfates, sulfated glycolipids, and sulfated GAGs are 

a sufficient risk factor for sudden death, in the context of cationic surfactant water stress. These 

biologically active molecules are essential for maintaining biological equipose, energy metabolism, 

membrane function, and thermodynamic stability in living organisms.  
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Figure 1. Cholesterol sulfate.  

 
 

This review calls attention to the very earliest perturbations to our living internal biological milieu 

that we believe are common to all pathways to the sudden death syndrome. These involve cationic 

kosmotropic or anionic chaotropic surfactant induction of interfacial water stress, lowering of ZP, 

colloidal instability, membrane instability, cellular dysfunction, and electrokinetic, hemorrheologic, 

and hemodynamic derangements. We propose that the induction of interfacial water stress is mediated 

by exogenous dietary and environmental exposures, often in the form of polycationic surfactants, some 

of which are parenterally administered, hence iatrogenic. We further propose that the toxicity of these 

stressors is both cumulative and synergistic.  

A pioneering study [119] by Gruebele and Havenith in 2008, provided an important new 

technology, Kinetic Terahertz Absorption (KITA) spectroscopy, which was employed to measure the 

changing protein-hydration-water dynamics during the fast refolding of ubiquitin. KITA has been 

shown to be generally applicable to studies of water hydration dynamics and protein folding. These 

studies [119–125] have revealed that solvent dynamics are coupled to secondary structure formation of 

the protein. Terahertz (THz) spectroscopy has provided experimental evidence that collective long-

range dynamics are a key factor of biomolecular hydration [121]. We suggest that KITA studies of 

water hydration dynamics may provide additional direct empiric support for our concept of interfacial 

water stress [IWS]. For example, when a polyanionic osmolyte (sodium citrate) was added to an 

aqueous solution, long-range collective water dynamics were enhanced [126]. We suggest that the 

observed long-range collective water dynamics enhancement likely occurred via concomitant raising 

of the ZP and lowering of IWS.  

2. Results  

In this paper, we propose that the biophysical effects of pro-inflammatory cationic surfactants on 

cell membrane function, mediated by water, provide the provocation that induces SDS. Under our 

hypothesis, polycationic surfactants are proinflammatory agonists. The downstream anti-inflammatory 

counter-regulatory effectors, which balance out the hyper-permeable state, are hydrogen sulfide (H2S), 

inorganic sulfate, and the bio-sulfates. The restoration of basal permeability and/or promotion of 

enhanced barrier integrity are based on adequate sunlight exposure and adequate dietary sulfur, 

cholesterol, and zinc. Recent studies by Chen and Mehta and Kleinbongard demonstrated that human 

erythrocytes possess an active and functional eNOS that is located within the plasma membrane 

[127,128]. It is with these background studies clearly in mind that we are led to introduce here a key 
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novelty, the “Seneff hypothesis,” the concept that membrane bound endothelial and erythrocytic nitric 

oxide synthase (eNOS), in the presence of caveolin-1, and sunlight, oxidizes H2S to sulfate [114]. See 

Figure 2. To wit, the zinc-tetrathiolate complex, situated in a cavity formed between the two 

monomers of the eNOS dimer, is the proposed site of endogenous sulfate biosynthesis, with 

superoxide being provided for the reaction as a consequence of sunlight exposure to the flavins, FMN 

and FAD. We propose further that Ch-S, sulfated glycolipids, and sulfated GAGs form as subsequent 

reaction products. 

Figure 2. Schematic depiction of membrane bound Nitric Oxide Synthase Producing Sulfate.  

 

 

We thus propose that eNOS, in addition to its role in producing small amounts of nitric oxide (NO), 

has a more significant but heretofore overlooked role as a major supplier of sulfate to the extracellular 

matrix proteins throughout the body. We propose here the novel hypothesis that eNOS is a dual-purpose 

enzyme, and that, in many cells, its main purpose might be to produce sulfate (an anionic kosmotrope) 

rather than nitrate (an anionic chaotrope), the ultimate product from nitric oxide. This makes both 

intuitive and biophysical sense in light of the apparent alignment between cellular Ch-S production and 

eNOS localization, and the positions of nitrate and sulfate within the Hofmeister series [16]. Under 

pathological conditions, when excess calcium enters the cell due to stressors, eNOS detaches from the 

membrane and switches to nitrate synthesis, in order to compensate for the kosmotropic cation 

(calcium) that is replacing the chaotropic cation (potassium). Aluminum, which is added as an 

adjuvant to many vaccines, is a much stronger kosmotrope than calcium, and hence has an even more 

dramatic effect in dislodging eNOS and disabling sulfate synthesis. 

Eukaryotic cells have a characteristic negative surface charge established by anionic integral or 

peripheral plasma membrane components [129]. At physiologic pH in health, both the blood serum ZP 

and pH are high and the cellular elements of our blood are dispersed and electronegative [130]. The 

ionic buffering of our blood by inorganic sulfate and the bio-sulfates (sulfatides and sulfamates)—

sterol sulfates, sulfated glycolipids, and sulfated GAGs—is essential in maintaining the ZP of our 

blood [131]. Any event which sufficiently lowers the concentration of sulfate results in colloidal 

instability of the many macromolecules and cells suspended in our blood. 
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Below a certain threshold of ZP-lowering, “salting out” of various macromolecules and cells will 

occur [132]. Such a phase-transition can be fatal. Platelets release thrombin and thromboplastin to 

restore hemostasis via clot formation. Albumin provides electrostatic stability to our blood and buffers 

the effect of exogenous cations and polyelectrolytes [133]. With age, our blood albumin levels decline. 

This decline shifts the balance between blood clotting and blood dispersion towards clotting. Both 

mercury and aluminum bind strongly to cysteines in serum albumin in the blood stream [134,135]. The 

absorption of aluminum onto serum albumin has a profound effect on ZP [134], driving it even to 

positive values at physiologic pH with sufficient concentrations of aluminum hydroxide. It is believed 

that much of the mercury that is filtered into the proximal tubular lumen in the glomerulus of the 

kidney is present primarily as a conjugate of albumin, bound to the sulfhydryl group of a cysteine 

molecule [135]. Thus, positively-charged mercuric Hg2+ salts bound to serum albumin would be 

expected to cause a similar effect as aluminum on serum ZP. 

2.1. Stress Induced Breathing Patterns Following Vaccination 

“Stress”, according to Hans Selye, is “the sum of all nonspecific changes caused by function, 

damage, or the rate of wear and tear in the body. In simple terms: the common results of exposure to 

anything” [2]. We propose that interfacial water stress [44] triggers the non-specific stress adaptation 

syndrome, resulting in the stereotyped, biophysically-determined phenomena, e.g., THP-G, and  

SSP-G, so well-described by Selye [3] and others, which are ultimately responsible for the “pluricausal 

diseases”. All stressors have the potential to produce the characteristic manifestations of an “alarm 

reaction”. Alarm reactions are not due to distinctive actions but to the stressor property that they 

share—the ability to induce interfacial water stress [44]. 

Stress-induced respiratory pattern changes have been reported in asthma [136], pulmonary 

microembolism [137], pulmonary inflammation [137], septicemia [138,139], myocardial infarction [140], 

brainstem infarction [141], preeclampsia [142,143], eclampsia [135], and anaphylactic shock [144]. 

Emotions and stress are known to change the respiratory pattern [136,145,146]. The breathing control 

centre of the brain is in the respiratory centre located in the lower part of the brain stem called the 

medulla oblongata.  

According to Dr Viera Scheibner, SIDS researchers refer to all the events where a child is breathing 

very shallowly, but not dying, as “false alarms” with regard to SIDS. Instead of deeming such events 

as insignificant, Dr Scheibner used a computerized breathing monitor to study them, recording the 

babies’ breathing longitudinally over weeks on end. She maintains that overnight six to eight hour 

studies, often used in SIDS research, are very misleading [11–15]. Through non-stop hour by hour 

recording of babies’ breathing for up to 5 1/2 months, both apneas (pauses in breathing) and hypopneas 

(a stress-induced shallow, low volume breathing pattern) can be demonstrated, all of which showed 

increased stress patterns after vaccinations. The time frame for these stress patterns has been described 

by Dr Scheibner as the “critical days” [12]. According to Dr Scheibner, the pattern of breathing  

of babies after vaccinations shows an alarm reaction within one to two days, which may be  

biphasic, followed by the stage of resistance around day 5 to 7, and finally the stage of exhaustion 

around day 16 [15,147]. 
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2.2. Hofmeister Effect 

Hofmeister [16,24,148] showed that neutral salts varied in their effect on the solubility of proteins. 

One group of salts could be ranked according to their efficiency at precipitating proteins, while a 

second group could be ranked according to their efficiency at solubilizing proteins. The Hofmeister 

ionic sequence has been thought of as ranging from stabilizing “kosmotropes” to disruptive 

“chaotropes.” The structure-making (kosmotrope) and structure-breaking (chaotrope) influence of ions 

on the hydration water has been basically understood as arising from a balance between the water-water 

and ion-water interactions, which vary considerably with the charge density on the solute surface. 

Different salts have different efficiencies in salting-out proteins, while some salts have no effect. Most 

importantly, the effectiveness of the anions and cations seems to assume a particular specific order. 

The Hofmeister series has been speculated to reflect different ordering powers of ions on the 

surrounding water molecules. There is ample evidence supporting the importance of hydration effects 

beyond the first hydration shell [40,43,149–157]. The structure and dynamics of interfacial water 

molecules are different from those in the bulk and exhibit specific ion effects [40,43,158–163]. 

2.3. Serum Albumin and Zeta Potential 

One of the main functions of serum albumin is to control colloidal stability in the blood [133]. The 

hypoalbuminemia of aging and the hypoalbuminemia of end stage renal disease potentiate coagulation 

by cationic electrolytes and/or polyelectrolytes. Cells and complex molecules suspended in the blood 

avoid agglomeration through a negative charge field maintained in the immediate surrounding space. 

The rate at which a charged particle suspended in a medium will travel in an applied electric field is an 

important measure of colloidal stability in the medium, and is associated in physics with Zeta Potential  

(ZP) [130]. A high negative value for ZP is essential for maintaining blood as a colloidal suspension [164]. 

In 2010, Tigrek and Barnes (p. 35) defined ZP more specifically as “the electrical potential drop from 

the particle surface across the bound fluid, to the interface where the liquid begins to flow under the 

shear stress. Stated another way, the ‘zeta potential’ is the potential at the surface boundary between 

the stationary fluid and the liquid that is moving with the particle” [165].  

2.4. Origin of the Surface Charge 

Most particles in an aqueous colloidal suspension carry an electric charge. There are many origins 

of this surface charge depending upon the nature of the particle and its surrounding medium. Some of 

the more important mechanisms include ionization of surface groups, differential loss of ions, and 

adsorption of charged species. Surfactant ions may be specifically adsorbed onto the surface of a 

particle. Anionic surfactants would lead to a negatively charged surface, whereas cationic surfactants 

would lead to a positively charged surface. Most cells of eukaryotic origin have a net negative surface 

charge from anionic plasma membrane components [129,130]. This charge distribution is thought to be 

important in the movement of various macromolecules across cell membranes.  
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2.5. Surfactant-Induced Interfacial Water Stress 

Riddick found a minimum in the ZP enhancement at low concentrations, e.g., 100 parts per million, 

of potassium sulfate, in an anionic colloidal suspension of Minusil [132]. See Figure 3. Jones and Ray 

observed a minimum in the surface tension of electrolyte solutions at around 1mM concentrations 

[166] using the capillary rise method. See Figure 4. At that time, the ‘Jones-Ray Effect’ was essentially 

dismissed as an artifact of the indirect experimental method used. However, in 2004, Petersen et al. 

[167,168] presented direct experimental confirmation of the enhanced anion concentration around 1 

mM. See Figure 4. Interestingly, the human arterial plasma concentration of inorganic sulfate is 0.5 

mM [169]. We do not believe that this concentration is accidental. This sulfate concentration is found 

at the minima for both ZP enhancement and surface tension enhancement. Our blood is a 

predominantly-anionic colloidal suspension. Sulfate is a kosmotropic dianion at physiologic pH. We 

propose that interfacial inorganic sulfate and the bio-sulfates, at comparable conditions (similar pH, 

time, temperature, and electrolyte concentrations), lower both the serum and the plasma dynamic 

surface tension of human blood, in vivo. The net effect is to stabilize colloidal suspensions, membrane 

function, protein function, and cellular function. We surmise that elevated plasma bio-sulfate 

concentrations in X-linked ichthyosis and liver cirrhosis represent lowered bioavailability, probably 

related to concentrations of bio-sulfates which exceed the low millimolar concentrations at which the 

Jones-Ray surface enhancement and Riddick ZP enhancement are likely to occur [76,170]. Inhibition of 

3-hydroxy-3-methylglutaryl coenzyme A reductase activity and sterol synthesis by Ch-S has been shown 

in cultured fibroblasts [171]. We suggest that this observation represents a non-specific surfactant effect 

of the sterol sulfate mediated by interfacial water stress found on the “upslope” of the Jones-Ray and 

Riddick curves [132,166,172,173].  

According to Collins [40,43,152], Von Hippel et al. [174] and Dos Santos et al. [175,176] proteins 

are stabilized by high concentrations of strongly hydrated anions and destabilized by high 

concentrations of weakly hydrated anions or strongly hydrated cations. Stabilization and, in the 

extreme case, crystallization, are associated with a decrease in the solvent accessible surface of a 

protein, induced by kosmotropes, whereas destabilization, and, in the extreme case, solubilization, are 

associated with an increase in the solvent accessible surface. Protein structure is destabilized and 

function is impaired by cationic electrolyte and polyelectrolyte surfactants, mediated by interfacial 

water stress [20,21,29,40–44,85,148–158,174–184]. Solutes have effects upon the structure of water 

which extend far beyond the first two hydration shells [149–157,185–187].  

Kosmotropic cations and chaotropic anions increase the viscosity [152] and surface  

tension [148,175–177,189–191] of water, as well as lowering the ZP and the pH, and increasing 

aggregation and cell-cell adhesion, properties that could lead to catastrophic changes in blood serum  

if left unchecked. For example, there is evidence that the blood surface tension shows higher values  

for patients with acute myocardial infarction compared to the control group [54]. The surface tension 

of erythrocytes obtained from untreated cardiac arrhythmia patients also tends to be higher than that of 

treated patients [45]. 
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Figure 3. Zeta potential data for various electrolytes in an anionic colloidal suspension of 

100 ppm Minusil [132]. Data were originally published per Thomas M. Riddick (1968)  

in [132] and are reproduced here with permission of Zeta-Meter, Inc. (Staunton, VA, 

USA).  

 

Wu et al. reported linkage between ZP and electron donicity of charged polar surfaces [192]. 

Plurivalent counterions are well-known flocculents, making the polar surfaces more 

hydrophobic. Yoshisuke [71], and others [97,98,193], have shown that the Shwartzman reaction 

induces thrombus formation and hemorrhagic necrosis [71]. How the molecular and humoral 

immune responses are converted into mechanical and physical phenomena in the circulation 

remains unclear. It is the authors’ opinion, that neither humoral nor cellular immune responses 

are fast enough to explain the rapidity in which SDS has been reported to occur, unless there has 

been previous sensitization. Even the substantial mobility of Ch-S, attributable to its amphiphilic 

character, is not likely sufficient to completely explain the connectedness and rapidity of the 

reaction in SDS. Rather, we believe that the branching (avalanche-like) chain of reactions 

leading to SDS can only be explained by invoking the direct involvement and intermediacy of 

interfacial water. The provocation in SDS is the inducement of interfacial water stress by 

exogenous environmental “stressors”. Sometimes the exogenous interfacial water stress (EIWS) 

is of sufficiently great degree that prior sensitization is not a necessary prerequisite to SDS. 

Serum surface tension is transiently elevated after provocation injection for the Shwartzman 

reaction, and the coefficient of foaming is simultaneously reduced at the site of the hemorrhage 

caused by the sensitization injection [71]. In addition, it was found that the interface viscosity of 

serum and vascular endothelium is greater when interfaced with sensitized endothelium than 

with normal endothelium. We hypothesize that these vascular changes may be due to a 

breakdown of the sulfated glycocalyx following the sensitizing event. 



Entropy 2012, 14 1412 

 

 

Figure 4. Surface tension data for all 13 Jones-Ray electrolyte solutions. The points are the 

original data from 1937 by Jones and Ray [166]. The change in the surface tension of all 13 

Jones-Ray salts were fitted to a simple model by Petersen and Saykally [167,168,188]. 

Good agreement was found with even larger surface adsorption energies as determined in 

second harmonic generation (SHG) experiments in the ultraviolet range. Reproduced here 

with permission from Journal of the American Chemical Society [188]. Copyright 2005 

American Chemical Society.  

 

Interfacial water accounts for some 70 percent by weight of most organisms, including human 

beings, making organisms effectively liquid crystalline [185,194]. Most if not all water in living 

organisms is interfacial water, as it is almost never further away from surfaces such as membranes or 

macromolecules than a fraction of a micron. Intracellular water is interfacial water [194–196]. 

Extracellular and interstitial water are substantially interfacial water as well. The vascular system acts 

as though it were a single organ [1]. Parenteral administration of certain polycationic ions with high 

charge densities, described as strong kosmotropic cations, affects the entire vascular system. This 

effect is mediated by interfacial water.  

The rate of surface tension lowering of anionic surface-active agents by electrolytes is largely 

determined by the charge of the added positive ion [197]. When an ionic surfactant is used to produce 

bubbles [198], the sign of microbubble charge is determined by the polar head of the surfactant. The 

charge of bubbles exhibits “unusual positive surface charge characteristics” in solutions of trivalent 

aluminum cations [199]. Analysis of their results indicated that the reversal of bubble charge can be 
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attributed to specific adsorption of Al3+ and its hydroxo complexes at the gas-liquid interface in the 

low pH range and to precipitation of aluminum hydroxide in the intermediate pH range. In the 

presence of nonionic surfactants, bubbles can be charged either positively or negatively depending on 

the pH, and the isoelectric points appear to be related to the oxygen-to-carbon ratio of the surfactant 

molecule [198].  

In 1996, Weissenborn studied the surface tension of aqueous solutions of simple inorganic 

electrolytes [189]. Results were analyzed in terms of surface tension/electrolyte concentration gradients 

and this parameter was found to correlate with the entropies of ion hydration, Jones-Dole viscosity 

coefficients and dissolved oxygen gradients. The concentration of salt in our bodies corresponds to the 

minimum required for optimal prevention of bubble coalescence [200–202]. As small bubbles are 

much less harmful than large bubbles, this fact is crucial [203–205]. pH sensitive phase transitions have 

been suggested as mechanisms for cellular action [159]. The “autothixotropy” of water is thought to 

possibly play an important role in proton transfer in living beings [206]. Solute-free “exclusion zones,”  

a general feature of water adjacent to hydrophilic surfaces, were first reported four decades ago [207] 

by Green et al. pH measurements show an extreme drop of pH immediately beyond the exclusion 

zone, often to less than pH 3 [154–161]. Variation in the size of the exclusion zone with charge, pH, 

and solutes, reported by Zheng and Pollack in 2003, is consistent with a water-structuring hypothesis 

[208] which may involve as many as 106 solvent layers. We suggest that KITA studies may enable 

further experimental validation of the formation of such massive Exclusion Zones [154].  

2.6. Zeta Potential and Cardiovascular Disease 

There is a close relationship between inflammation, intravascular coagulation, and cardiovascular 

disease. We propose that the underlying reason is that all three processes are driven by the colloidal 

instability of the blood associated with abnormally low ZP. We propose that the earliest events in the 

inflammatory process are characterized by ZP lowering, increased water stress, cell membrane 

dysfunction [29,156,157], and hemostatic [3] and immune derangement [3,209–214]. Inflammation 

and serum sickness can be thought of as an unstable dispersion state of our blood, which has an 

increased tendency to aggregate, flocculate, gelate, hemorrhage, and coagulate [3,209–214]. This 

unstable state is manifest clinically as acute coronary syndromes, transient cerebral ischemic events, 

myocardial infarctions [211,212] and cerebrovascular accidents [211,215]. It is known that static 

surface tension of blood (49–50 Din/cm2) is normally lower than the surface tension of water or 

normal saline solution (approx. 72 Din/cm2). An increase in blood surface tension during acute 

myocardial infarction has been observed in humans [54], a difference that was significant (p < 0.05). It 

was suggested that the increasing surface tension of blood results in rheological disturbances leading to 

heart failure during acute myocardial infarction.  

Sherman (1981) has argued through simple physical considerations based on Laplace’s equation of 

capillarity, that blood will flow out of capillaries into both the arteries and the veins when the surface 

tension is too high in the capillary, due to the inverse relationship between the size of the vessel and 

the pressure [216]. “Critical closure” is a term which describes the phenomenon of flow cessation in the 

presence of a positive perfusion pressure gradient. Sherman’s use of the term “critical closure”, may be 

slightly misleading because “closure” seems to imply a “collapse” of capillary lumen. It might be more 
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accurate to say irreversible “critically-arrested capillary flow”, especially if RBCs, proteins, and bodily 

humors become “trapped” within the capillary lumen, as is likely to occur, for example, in the “no 

reflow” phenomenon. Perfusion is strongly dependent on interfacial tension at the microvascular level 

because capillary interfacial tension, if high enough, can not only reduce capillary flow, but also lead to 

flow reversal, and eventually to emptying of the capillary and collapse or arresting of flow. The 

suggestion was made that factors affecting the surface tension of blood to decrease the interfacial 

tension between blood and endothelium may be clinically beneficial [216].  

The term microvascular disease refers to the damage that occurs to the smallest blood vessels 

throughout the body, including the vital organs (e.g., heart, brain, kidneys, liver). It usually affects the 

whole body to some degree. The small blood vessels of the eye, the kidney and of the sheaths around 

the nerves, are often at great risk in diabetes, i.e., risk for the development of diabetic retinopathy, 

nephropathy, neuropathy. Interestingly, cardiac syndrome X, sometimes referred to as microvascular 

angina, often has associated findings of systemic microvascular dysfunction [217] to strongly suggest 

that microvascular dysfunction is a systemic malady. While vascular complications of diabetes are often 

attributed to loss of nitric-oxide-mediated vasodilation, we suggest an alternative pathophysiology: 

impaired microvascular perfusion due to (a) decreased fluidity and deformability of the RBC 

membrane related to bio-sulfate deficiency in the endothelial glycocalyx layer (EGL); and 

(b) increased capillary endothelial interfacial tension. That is, we suggest that the vascular defect in 

diabetes is more a problem with elevated capillary endothelial interfacial tension [216] and poorly 

deformable RBCs, than it is a problem with loss of nitric-oxide mediated vasodilation. 

The respiratory and auditory centers [218,219] in the brainstem are vulnerable to microvascular 

ischemic stress. So too is the pancreas [220–225]. Watershed and terminal vascular distributions are 

particularly susceptible to microvascular ischemic stress [223–225]. These vascular distributions would 

be predicted to be highly susceptible to pathologic inflammatory stimulation and thrombohemorrhagic 

phenomena [3] induced by zeta potential-lowering and interfacial water stress-inducing properties 

of cationic kosmotropic electrolytes and polyelectrolyte surfactants. Dr Mohammed Al-Bayati’s 

histopathologic analyses of SIDS [220–222] and so-called Shaken Baby Syndrome (SBS) victims [226] are 

most informative. Al-Bayati’s work provides strong support for the view that microvascular ischemia plays 

a central role in the pathophysiology of SIDS and, by inference, all SDS events [220–222]. Surfactant-

induced water stress [29,40,43,45,54,174,178,211,212], especially that associated with polycationic 

surfactants, is an important determinant of risk. Any exogenous food, chemical, or biological exposure 

which lowers blood pH and ZP is also a risk factor. Risk factors for SDS are synergistic and 

cumulative. Expressed most simply, anything that perturbs the ZP toward less negative values and/or 

induces cationic kosmotropic or anionic chaotropic water stress represents a step in the direction of 

enzyme inhibition, protein dysfunction, cellular dysfunction, flocculation, gelation, coagulation, 

microvascular ischemia, cellular anoxia, infarction, and death. Transcytosis, both endocytosis and 

exocytosis, membrane potentials [219,227], and ion channels are all profoundly disrupted by 

polycationic surfactants [31,89,228–231]. A very relevant example is aluminum (Al3+), a kosmotropic 

trivalent cation, which is a potent and irreversible blocker of voltage activated calcium channels in 

mammalian neurons [31,228]. Ca-ATPase, protein kinase C and calmodulin (CaM) are biological 

systems known to be disrupted by aluminum [37,87,178,232]. Another very relevant example is 

mercury (Hg2+), a kosmotropic divalent cation. It has been shown in infant monkeys that the 
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ethylmercury in thimerosal is more readily stored as inorganic mercury (Hg2+) in the brain than is 

orally-delivered ethylmercury and that inorganic mercury tends to linger longer in the tissues [231].  

Thus, the sudden death syndrome can now be defined as an acute disruption of the colloidal 

stability of the vascular system, which triggers a cascade of events [97–100,229,230] leading to death, 

whenever compensatory mechanisms to maintain colloidal stability of the blood are insufficient. If 

compensatory mechanisms are sufficient, the cascade can instead lead to a new equilibrium. 

Mucopolysaccharides, also known as glycosaminoglycans (GAGs), contribute to the inflammatory 

state of the Shwartzman phenomenon [233–236]. Upon exposure to systemic stress, increases in 

sulfomucopolysaccharide incorporation occur throughout the body, and this is designated as the 

“universal nonspecific mesenchymal reaction” [3]. 

Examples of sudden death syndrome from the medical literature support our hypothesis, including 

thrombohemorrhagic phenomena (THP), such as anaphylaxis [229,230,237–239], disseminated 

intravascular coagulation (DIC) [240,241], HELLP syndrome [242], acute liver necrosis [243], 

Waterhouse–Friderichsen’s syndrome, hemolytic uremic anemia, idiopathic pulmonary hemorrhage [244], 

acute pancreatitis [245], acute pituitary necrosis [246], pseudomembranous colitis, thrombotic 

thrombocytopenic purpura (TTP), Sanarelli-Shwartzman phenomenon (SSP), Henoch-Schonlein 

purpura (HSP), eclampsia [238], serum sickness, hemolytic anemia, preeclampsia, and stillbirths [247].  

2.7. The Role of Bio-sulfates in Maintaining Cell Membrane Function 

Adequate endogenous and dietary cholesterol is essential in maintaining proper cell membrane 

function [114–117], as is adequate endogenous and dietary sulfur [114,118]. The surface charge of 

RBCs plays a significant role in cell-to-cell interactions [248]. We propose that it is primarily the 

negatively-charged sulfate head-groups imparted to RBC and endothelial cell membranes that are 

responsible for both their net and specific surface charge [130]. We propose that this is one of the 

mechanisms by which cell membranes are able to store energy [249–252]. The amphiphilic property of 

Ch-S endows it with extremely facile, dynamic intercellular and intracellular mobility. We further 

suggest the novel concept that RBCs may actually discharge negative charge by unloading sulfate onto 

the endothelial wall, as illustrated in Figure 5. In part due to their higher concentration of CO2, veins 

are more acidic than arteries, which suggests that there is an electric field that would propel negatively 

charged particles in the capillaries towards the veins. This process would be renewable as the RBCs 

travel through superficial veins, regenerating their supply of Ch-S through a process catalyzed by 

sunlight exposure [114,116,253].  

The electrostatic charge-charge repulsion of the negatively-charged Ch-S and GAG head-groups in 

the outer membrane are the primary determinants of viscosity of membrane lipids in both eukaryotes 

and prokaryotes. The ZP is of critical importance to maintenance of membrane viscosity in all cells. 
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Figure 5. A proposal: (a) RBC loses charge through capillary, (b) Negative charge builds 

on artery wall, (c) Battery poles are thus maintained between artery and vein.  

 
 

We hypothesize that the cumulative ZP-lowering effect of serial vaccination with polycationic 

surfactants lessens microvascular perfusion throughout the entire body, especially in the terminal 

watershed vascular distributions. Sulfated glycolipids and sulfated GAGs are ubiquitous and 

undoubtedly play very important roles in life [254–257], along with the sterol sulfates. These bio-sulfates 

generate the net surface charge density, as well as the specific surface charge density, and are 

determinants of bio-membrane viscosity and permeability. For instance, histochemical, autoradiographic, 

and histologic studies by Horn et al. suggest that a sulfated mucopolysaccharide, possibly of leukocytic 

origin, is a component of the fibrinoid thrombi of the generalized Shwartzman reaction [233–236].  

Due to its ionic charge and amphiphilic property, Ch-S is far more agile than cholesterol in entering 

plasma membranes. Its rate of inter-membrane exchange is approximately ten times faster than that for 

cholesterol [258,259]. The biosynthesis, properties, and function of Ch-S are not yet fully described. 

Ch-S has been hypothesized to play an important role in capacitation of human spermatozoa [260–264]. 

More recently, sterol sulfates have been shown to play a role in synaptic function [264–266]. Sulfated 

neurosteroids have been shown to be potent non-competitive antagonists of GABAA receptors without 

a clear structure-activity relationship [266]. Ch-S is found in relatively large amounts in RBC’s where 

it is known to play a role in osmosis. Its presence induces a change in shape from discoid to echinocytic, 

caused by the tendency of Ch-S to migrate to the outer membrane layer [267]. An impairment in such 

deformability due to glycated hemoglobin is associated with diabetes [268]. In canine blood, Ch-S has 

been shown to lessen hemolysis and stabilize RBCs [269]. Scanning electron microscopy has 

demonstrated stabilization by Ch-S of the normal biconcave shape of the human RBC [270]. Ch-S was 

shown to protect the human RBC against hypotonic hemolysis. At physiological concentrations of  

Ch-S, the sulfate moiety, as well as the side chain of Ch-S, were both shown to be necessary to 

biological activity in vitro [271]. Figure 6 shows a graphical depiction of cholesterol sulfate in the red 

blood cell membrane, and Figures 7 and 8 show how the shapes of red blood cells change under the 

influence of Ch-S. 
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Figure 6. Graphical depiction of cholesterol sulfate in the red blood cell membrane. 

Adapted from Cooper and Hausman: The Cell: A Molecular Approach, Fifth Edition, [272] 

by permission of the publisher. 

 
 

Figure 7. (a) Scanning electron micrograph of human erythrocytes in hypotonic saline 

solution. ×10,000; (b) Scanning electron micrograph of human erythrocytes in hypotonic 

saline solution. ×20,000. Scans were originally published by Bleau et al. [271] and are 

republished here with permission of the publisher. 
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Figure 8. Scanning electron micrograph of human erythrocytes in hypotonic saline 

solution in presence of 10−5 M cholesterol sulfate. ×10,000. From Bleau et al. (1975) [271] 

with permission of publisher. 

 
 

2.8. The Major Determinants of RBC Deformability 

The major determinants of RBC deformability include cell geometry, cell shape and internal viscosity 

(i.e., mean cell hemoglobin concentration and components of the erythrocyte membrane) [273].  

Blood flow in the microvasculature and the large arteries depends on erythrocyte deformability. 

Fluidity of the RBC membrane and RBC deformability is decreased in patients with diabetes mellitus. 

Dondorp et al. showed that RBC deformability is a predictor of anemia in severe falciparum malaria. 

RBCs with reduced deformability are more likely to be cleared from the circulation by the spleen, a 

process that is augmented in acute malaria. Since the majority of RBCs even in severe malaria are 

uninfected, the reduction in RBC deformability in the patients resulted mainly from changes in the 

unparasitized erythrocytes, i.e., due to a systemic response. Impairment of microcirculatory flow by 

rigid red blood cells is suggested by the strong correlation of mortality with RBC deformability at a 

lower shear stress corresponding to that encountered in the capillaries [274]. 

Babu demonstrated a significant decrease in RBC deformability and increase in shape parameters in 

diabetes with hypercholesterolemia [275] which might increase microcirculatory complications 

compared to diabetes with normal cholesterol. Condon et al. demonstrated that intravenously injected 

mesenteric lymph produced during hemorrhagic shock decreased RBC deformability in the rat [276]. 

The in vivo inhibition of inducible nitric oxide synthase (iNOS) did not prevent lymph-induced RBC 

injury. These results suggest that this effect is not dependent on activation of the iNOS pathway but 

seems to require white blood cells (WBCs). Zaets et al. showed that interruption of lymph flow from 

the gut into the bloodstream by lymph duct ligation prevents trauma/hemorrhagic shock-induced RBC 

damage. Because decreased RBC deformability contributes to impaired perfusion of the microcirculation, 
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preservation of RBC deformability may decrease the incidence of trauma/hemorrhagic shock-induced 

organ dysfunction [277].  

Important parameters of erythrocyte function and integrity are thought to be negatively affected in 

Alzheimer’s disease (AD) patients. Vascular abnormalities in AD have been implicated by growing 

evidence. Altered RBC morphology and reduced RBC deformability of RBCs is a highly suspect 

vascular abnormality in AD [278]. Interestingly, amyloid beta protein (Aβ) has been identified in 

extraneuronal tissue, including RBCs and brain capillaries. Misiti et al. very recently demonstrated that 

Aβ exposure results in a decrease in the immune staining of erythrocyte eNOS with concomitant 

alteration in RBC morphology, decreases in nitrite and nitrate levels, and alteration in membrane 

acetylcholinesterase activity [279]. The alteration in RBC morphology was reported to take place at 

just 10 μM Aβ concentrations. This observation begs the question as to what effect, if any Aβ 

concentrations have on the measured ZP and interfacial tension of the blood of AD patients. That is, do 

the known neurotoxic effects of Aβ depend, at least in part, on induction of interfacial water stress? 

Conceivably, a KITA study of Aβ in the presence of a suspension of RBCs from control subjects 

compared to that of AD patients might be informative, with respect to the induction of morphologic 

and functional alterations in the RBCs. Neurologic phenotypes have been associated with RBC 

acanthocytosis [280]. RBC acanthocytosis, i.e., deformed erythrocytes with spike-like protrusions, 

coincides with nervous system abnormalities and comprise a heterogeneous group referred to as the 

neuroacanthocytosis (NA) syndromes [281].  
 
2.9. Acute Shock and Role of Endothelial NOS-derived NO in SDS 
 

Anaphylactic shock is a sudden, life-threatening allergic reaction associated with severe 

hypotension. Platelet-activating factor (PAF) is implicated in the cardiovascular dysfunctions 

occurring in various shock syndromes, including anaphylaxis. Anaphylactic shock is especially 

associated with quadrivalent HPV vaccine, which contains aluminum hydroxide. Based on the number 

of confirmed cases, the estimated rate of anaphylaxis following quadrivalent HPV vaccine was 

significantly higher than identified in comparable school-based delivery of other vaccines [282].  

In this review, we have described several of the adverse biophysical properties associated with 

cationic surfactants, Al3+ salts, and non-ionic surfactants. The U.S. CDC VAERS database provides 

considerable evidence of life threatening anaphylactic shock and anaphylactoid events associated with 

HPV vaccine, as well as with all of the aluminum (3+) containing vaccines, some of which resulted in 

sudden death. The U.S. CDC Vaccine Excipient & Media Summary states, “Excipients are inactive 

ingredients of a drug product necessary for production of a finished pharmaceutical formulation.” In 

the February 2012 update, the CDC disclosed that excipients in U.S. HPV vaccine include amorphous 

aluminum hydroxyphosphate sulfate, polysorbate 80, and sodium borate (from the manufacturer’s 

package insert of March, 2011). The relevance to SDS is apparent from reports of unexplained deaths 

of some women attributed to HPV vaccines in the CDC VAERS database, some of which were 

described variably as death during sleep or while bathing. A reasonable question should be raised as to 

the purported safety and alleged biologic inactivity of the ingredients in the HPV vaccine, particularly 

aluminum, polysorbate 80, and sodium borate. Moreover, a further reasonable question should be 
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raised as to the purported safety and alleged biologic inactivity of all of the aluminum and polysorbate 

80 containing vaccines. This question may be further explored by analysis of the CDC VAERS database. 

For example, CDC VAERS report ID: 337242 states “my daughter had her 3rd GARDASIL 

vaccine in Sept. She was a very healthy young lady, she went to take a shower and died. Autopsy 

report states undermined [undetermined] death. There was no sign of trauma to the body to indicate a 

fall. She had pointed the shower head away from her and she got down on her knees and put her head 

on the edge of the tub and passed away.” 

Excessive production of the vasodilator NO causes inflammatory hypotension and shock. It had 

been generally accepted that transcriptionally regulated NOS (iNOS) was responsible for the NO 

synthesis. However, Cauwels et al. found that anaphylactic shock depends on PI3K (phosphatidylinositol 

3 kinase) and eNOS-derived NO. In two different models of active systemic anaphylaxis, either eNOS 

deficiency or inhibition of eNOS, PI3K, or Akt provided complete protection. Thus, in contrast to the 

unsubstantiated paradigm that only excessive iNOS-derived NO underlies cardiovascular collapse in 

shock, their data strongly supported the unexpected concept that eNOS-derived NO is the principal 

vasodilator in anaphylactic shock [229]. Duran et al. have proposed a putative mechanism by which 

eNOS-derived NO stimulates increased microvascular permeability [230].  

In the experiment which demonstrated that eNOS was responsible for NO production [225], the 

conditions inducing anaphylactic shock in mice included aluminum hydroxide adjuvant, as does HPV 

vaccine. We propose that eNOS switches from sulfate to nitrate production under such conditions, 

after detaching from the membrane at the caveolae. The surfactant aluminium, a highly kosmotropic 

cation, binds CaM with a much greater affinity than does calcium. Calcium, upon binding to CaM, 

causes eNOS to detach from the membrane, and, following phosphorylation, to produce nitric oxide. 

We hypothesize that eNOS produces sulfate only when it is attached to the membrane, so that, in this 

way, aluminum interferes with eNOS’ ability to produce sulfate. Through subsequent systemic 

depletion of sulfate, this leads inexorably to SDS. 

Dianionic inorganic SO4
2− raises the ZP and provides the putative obligatory precursor (sulfate)  

for the bio-sulfates (sulfamates and sulfatides)—sterol sulfates, sulfated glycolipids, and sulfated  

GAGs-monoanionic (1-) at physiologic pH—which also raise the ZP. The bio-sulfates (sulfatides and 

sulfamates) are essential in maintaining the ZP, viscosity, permeability barriers of the vascular system, 

ion channel function, and transcytosis of nutrients and metabolites of our cells. Sulfate is also 

responsible for binding to cationic toxins like mercury [98] and aluminum and expelling them through 

the kidneys. Such action would however also lead to a further reduction in the bioavailability of 

sulfate. X-linked icthyosis and liver cirrhosis are examples of two clinical conditions in which plasma 

bio-sulfate levels are elevated, but unavailable, biologically [76,170]. 

The formation of sulfate by eNOS results in an immediate increase (to more negative values) in the 

ZP [132], and thus the disruption of this process would lead to further induction of water stress. Within 

the sheltered environment of the caveolae, within lipid rafts of endothelial, erythrocytic, and neuronal 

cell membranes, sulfotransferases (SULTs) synthesize Ch-S and sulfated sphingolipids. Any dietary, 

environmental, or iatrogenic (e.g., parenteral) event that impairs sulfate synthesis by endothelial NOS 

(eNOS) or neuronal NOS (nNOS), also impairs bio-sulfate synthesis, thereby immediately altering the 

junctional proteins between endothelial cells and increasing microvascular permeability. The clinical 

signs and symptoms of the metabolic syndrome, microvascular ischemia, and endothelial dysfunction 
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are often seen together in diabetic patients [283], who are highly-prone to multisystemic, end-organ 

damage involving the retina, kidneys, nervous system, and vascular system. Shedding of the EGL 

during acute hyperglycemia has been shown to coincide with endothelial dysfunction, including 

increased permeability of the endothelium, increased reactive oxygen species (ROS), reduced nitric 

oxide (NO) synthesis, and coagulation activation in vivo [272]. It is entirely possible that the 

underlying, shared, pathophysiology is elevated microvascular interfacial tension [216,284–287], as 

has been discussed previously. We surmise that an EGL which is depleted in sulfate content has 

elevated microvascular interfacial tension, a key risk factor for insulin resistance [283,285]. Cationic 

surfactants generally associate with GAGs, e.g., the EGL of the vascular system [249,250,284–288], 

disabling their protection against water stress. The process of expelling cationic surfactants via the 

kidney necessarily further depletes the sulfate supply. The deficit in intramembrane sterol sulfate and 

sulfated GAGs results in decreased intramembrane viscosity, decreased intramembrane deformability, 

and increased intramembrane permeability, all of which compromise the stability of the blood  

colloidal system.  

3. Discussion 

The terms “anaphylaxis” and “allergy” were created by Charles Richet in 1901 and Clemens von 

Pirquet in 1906, respectively. When Charles Richet attempted to vaccinate dogs to jellyfish (Physalia) 

poison, he provoked a violent reaction that quickly killed the dogs following a second injection. These 

results were subsequently replicated with the tentacles of sea anemone (Actinia eqnina). Remarkably, 

certain of the dogs experienced no apparent ill effects and survived when they received only a single 

injection. However, when a repeat injection was given three to four weeks after the first sensitizing (or 

preparatory) dose, the animals immediately showed serious symptoms of shock: vomiting, bloody 

diarrhea, dyspnea, incontinence, hypotension, syncope, unconsciousness, asphyxia and death, within 

15 to 30 minutes. For this reaction, Richet used a Latin term ana-phylaxis or anti-protection, because 

the outcome was the opposite from the protection that the vaccine was supposed to provide. In further 

experiments with numerous other species, including cats, rabbits and horses, Richet showed that 

anaphylaxis is a universal immune system response [237–239,289]. In 1907, Richet demonstrated what 

is known as passive anaphylaxis. He also established a relationship between leukocytosis and 

anaphylaxis. He concluded his Nobel Prize lecture in 1913, stating that “anaphylaxis is an universal 

defence [sic] mechanism against the penetration of heterogenous substances in the blood, whence they 

can not be eliminated.”  

At the close of the 1800s, a similar anaphylactic phenomenon, serum sickness (“Serum-

Krankheit”), was a common outcome in children subjected to injections of the first mass preserved, 

hypodermically delivered injections of sera for scarlet fever, tetanus and diphtheria. The symptoms 

observed included urticaria, erythema, pangs of pain, itching, and in the worst cases near-syncope, 

with nausea, vomiting, hyperthermia, edema over the whole skin area and general urticaria. Viennese 

pediatrician Clemens von Pirquet introduced the Latin derived term “allergy” in 1906, to better 

describe this “altered reactivity” to the sera [290]. With it he wanted to describe in general a change in 

reactivity of the organism, namely in time, quality and quantity. Prior to advent of vaccination, mass 

allergy such as serum sickness was unknown. According to allergist Warren Vaughan, “serum disease, 
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as this is called, is a man-made malady. If we had no curative serums and if there were no such thing 

as a hypodermic syringe with which to introduce the material under the skin, there would be no serum 

disease.” Hence, serum sickness is iatrogenic disease [290,291]. 

Based on extensive review of the scientific literature, we propose in this paper that any exogenous 

substance that lowers the ZP, and/or introduces polycationic kosmotropic interfacial water stress, 

and/or lowers the bio-sulfate level, increases the likelihood of sudden death, by triggering a cascade of 

events in the pathogenesis of inflammation, allergy, infection, thrombosis, hemorrhage, ischemia, 

infarction, anaphylaxis, disease, and death. Inflammation, allergy, anaphylaxis, and serum sickness 

should be redefined to reflect this reality. A novel hypothesis as to the etiology of sudden death 

syndrome is presented which looks specifically at the very earliest events in the pathophysiology  

of SDS. In most instances, introduction of polycationic surfactants into our bloodstream causes  

acute interfacial water stress, lowering of ZP, lowering of pH, elevation of viscosity, and 

electrohemorheologic—hemodynamic derangement. This triggers a cascade of immunologic and 

hemostatic events, leading inexorably to tissue hypoperfusion, cellular anoxia, seizures, arrhythmias, 

infarctions, cardiovascular collapse, and death [97–100,209,229,230,237–239].  

A biophysically-based disruption of blood flow seems likely to be involved in SDS. Seizure activity 

or cardiac arrhythmias, sometimes both, often accompanies SDS. Shock, either cardiogenic or 

anaphylactic, followed rapidly by cardiovascular collapse, e.g., with froth at mouth, is often the initial 

manifestation of SDS. Rudolph Virchow originally proposed, in 1856, that vascular events are a 

common pathophysiology for deaths and disease [292]. More recently, postmortem studies [220–222] 

of SIDS victims commonly use the word “ischemic,” as in “ischemic changes,” on histopathology 

analysis. Thrombohemorrhagic phenomena, e.g., disseminated intravascular coagulation (DIC), 

thrombotic thrombocytopenic purpura (TTP), hemolytic, inflammatory, and anaphylactic events, have 

all been associated with SDS. Thus, in the authors’ opinion, an acute vascular ischemic etiology is 

strongly favored as the central common pathophysiology of SDS. We propose that the initial events in 

SDS are universally vascular events. These hemorrheologic events trigger a cascade of immunologic 

and hemostatic consequences, leading rapidly to death. They are “sparked” by exogenous polycationic 

surfactant-induced water stress. They are biophysical in origin and have profound hemodynamic 

consequences. 

We hypothesize that acute lowering of the ZP can result in an acute increase in endothelial cell 

permeability and acute alteration in RBC morphology from dispersed biconcave discs to adherent rouleaux 

formations [248], echinocyte, stomatocyte, acanthocyte, and spherocyte transformations [113,293–306], 

with consequent elevation in blood viscosity, elevated resistance to microvascular blood flow, 

diminished oxygen transport, and diminished oxygen delivery. CO2 overload is a secondary inevitable 

consequence of the acute colloidal instability of our blood induced by the ZP-lowering, polycationic 

surfactant stress. Acute colloidal instability of flowing blood impairs perfusion to the brainstem 

respiratory and auditory centers. Flowing blood has electrokinetic, hemodynamic, and hemorheologic 

properties which are substantially affected by polycationic surfactant water stress. Our entire vascular 

system, including the lymph, and all body fluids in the humoral system, reacts to water stress like a 

single organ system [1] at mesoscopic scales [194–196,307,308] in a quantum coherent manner. 

Exogenous surfactant-induced interfacial surface tension, i.e., “water stress,” is the biophysical 

basis [1–3] for the generalized Sanarelli-Shwartzman phenomenon, generalized thrombohemorrhagic 
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phenomena, the nonspecific generalized stress adaptation syndrome, the systemic inflammatory 

response syndrome, immune cell activation, macropinocytosis [73,304–306], vesiculation [77], 

adhesion [63,64,78], engulfment [45,46,256], envelopment [309], fusion [74,77,78,172,309–311], 

podokinesis [312–315], transcellular diapedesis [316] and nutritive endocytosis [317–320]. These 

highly-stereotyped supramolecular (mesoscopic), quantum coherent, biological processes are examples 

of the biophysical properties which motivate homeopathy. 

ZP-lowering immediately lessens microvascular perfusion and increases interfacial water stress 

throughout the entire vascular system, especially in the terminal watershed vascular distributions. This 

explains sudden death from snake bites [321,322], vaccines [323–333], and cocaine [215], in otherwise 

healthy people, as examples. Depending on their surfactant property and their position within the 

Hofmeister series, environmental biological or chemical intoxicants of virtually any type can provide 

the EIWS to induce SDS. Certain dietary deficiencies, e.g., sulfur and zinc, and lack of adequate 

sunlight are likely to predispose to SDS. Bio-sulfate deficiency, in particular, is very likely to lower the 

threshold for an exogenous interfacial water “stressor” to induce the branching (avalanche-like) chain 

of reactions we have referred to as SDS. Our basal endogenous interfacial water tone is likely to be 

closely-related to bio-sulfate levels. Inorganic sulfate and the bio-sulfates—Ch-S, sulfated GAGs, and 

sulfated glycolipids—play an essential role in preserving and maintaining our ZP. It is appropriate that 

they be strongly considered for use as biomarkers of disease, including autoimmune, neurodegenerative, 

and oncologic disease [334]. Both bio-sulfate levels and measurement of EIWS may ultimately prove 

to be useful in diagnosing Shoenfeld’s syndrome [335], the autoimmune (autoinflammatory) syndrome 

induced by adjuvant (ASIA). Sunlight exposure to the skin is essential to the maintenance of the 

supply of Ch-S to the blood system and to the tissues, mediated by eNOS. 

4. Conclusions  

We have reviewed the colloid and interface science literature as a basis for proposing a new 

hypothesis as to the cause of the Sudden Death Syndrome. We have defined the concept of surfactant-

induced interfacial water stress and conclude that the initial events in the inflammatory cascade are 

purely biophysical. We have detailed the role of the bio-sulfates in maintaining cell membrane 

function and the role of endothelial Nitric Oxide Synthase-derived Nitric Oxide in acute shock and the 

Sudden Death Syndrome.  
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