
A GRAPHICAL QUERY LANGUAGE SUPPORTING

FLEXIBLE DATABASE ACCESS

by

NANCY LYNN PETERS

A.B., Computer Science and Fine Arts
Brandeis University, Waltham, Massachusetts

(1982)

Submitted to the Department of Architecture
in Partial Fulfillment of

the Requirements of the Degree of
Master of Science

at the

Massachusetts Institute of Technology

September 1988

Q Nancy L. Peters 1988. All rights reserved.

The author hereby grants to MIT permission to reproduce and
to distribute copies of this thesis document in whole or in part.

Signature of Author 4__
Nancy L. Peters

Department of Architecture
August 12, 1988

Certified by
Timothy Johnson

Principal Research Associate, MIT
Thesis Supervisor

Accepted by
William L. Porter

Chairman, Departmental Committee
for Graduate Students

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

SEP 2 398
RotC c
UBRisiS

A GRAPHICAL QUERY LANGUAGE SUPPORTING

FLEXIBLE DATABASE ACCESS

by

NANCY LYNN PETERS

Submitted to the Department of Architecture
on August 12, 1988 in partial fulfillment of the

requirements for the Degree of Master of Science

ABSTRACT

GRAF-ASQ (Itaphical And Eully-_Accessible Structure-based Queries) is a
graphical query language designed to provide flexible, wide access to data via the
use of n-tuples and Prolog concepts. It is also designed to provide the ability to
view the database schema graphically and to store queries which can be
retrieved and from which more complex queries can be built.

The system is built to interface with MacDRAW so that it can store and retrieve
information connected to graphical objects. The system is independent of
MacDRAW, however. It accepts data in a general format that other programs can
give it.

Implemented so far is the ability to view the schema with different central foci
and to make atomic attributes invisible. Also implemented is the ability to get
data about graphical objects from MacDRAW, including type and simple attribute
information, and to query and search for data via menues. If the data found
relates to MacDRAW objects, those objects can be highlighted within MacDRAW.
The graphical query language itself has not been implemented.

Thesis Supervisor: Timothy Johnson

Title: Principal Research Associate

2

Sponsorship

This thesis was funded in part by Apple Computer, Inc.,
Educational Marketing Division.

2a

Table of Contents

Contents

Abstract

Sponsorship

Table of Contents

Table of Tables

Table of Figures

Acknowledgements

1. Introduction

2. Database Background

2-1. Databases

2-1-1. Introduction

2-1-2. Hierarchic

2-1-3. Network

2-1-4. Relational

2-1-4-1. Regular

2-1-4-2. Irreducible

2-1-5. Entity-Relationship

2-1-6. Summary - Classification of GRAF-ASQ

2-2. Computer-Aided Design (CAD) Database Facilities

2-2-1. Introduction

2-2-2. Simple Attributing (AutoCAD)

2-2-3. Summary - GRAF-ASQ for CAD

3. Recent Developments in Graphical Databases

3-1. Introduction

Page

2

2a

3

6

7

8

9

11

11

11

11

12

14

14

16

17

18

20

20

20

21

22

22

3

Contents

3-2. Guide 22

3-3. LID 23

3-4. SKI 24

3-5. GORDAS 25

3-6. ISIS 27

3-7. QBE 27

3-8. Summary - GRAF-ASQ vs. the Mentioned Systems 28

4. The Reason for this System 29

5. The Use of N-Tuples 32

6. Relational Completeness of Language 38

7. The System 44

7-1. Data Model 44

7-2. Choice of Prolog 47

7-3. Detailed Examples 50

7-3-1. Assigning Attributes 50

7-3-1-1. Simple Attributing 50

7-3-1-2. Complex Attributing 50

7-3-1-3. Putting Functional Attribute Results in Database 51

7-3-2. Schema (or Meta Data) 51

7-3-3. Queries 52

7-3-3-1. Creating 53

7-3-3-2. The Eight Permutations of a 3-tuple 53

7-3-3-3. The N-Tuple 54

7-3-3-4. Complex Query 54

4

Page

Contents

7-3-3-5. Creating Domains

7-3-4. Functions

7-3-4-1. Creating

7-3-4-2. Executing

7-3-4-3. Linking

7-3-5. Functional Attributes

7-3-5-1. Creating

7-3-5-2. Recursive

7-3-5-3. Relational Product

7-3-6. Comparison Query

7-3-7. Relational Database Only Query

7-3-8. Modification

7-3-8-1. Of Schema

7-3-8-2. Of Data

8. Conclusion

Bibliography

Appendix I:

Appendix II:

Appendix III:

Appendix IV:

Appendix V:

Appendix VI:

Appendix VII:

Appendix VIII:

Symbol List

Legal Connections

Syntax

Semantics of Symbols

Menues

Windows

Schema Display

Attribute Desk Accessory

55

55

55

56

56

56

57

57

58

59

59

59

60

60

76

78

83

84

85

90

94

97

98

99

5

Page

Table of Tables

Table Number Title Page

Table 1 Person Relation 1 32

Table 2 Person Relation 1
with 3-tuple highlighted 33

Table 3 Person Relation 2
with atomic and non-atomic values 33

Table 4 Person Relation 3
showing n-tuples 34

Table 5 The Sister, Brother, and Sibling
Relations 38

Table 6 The Manufacturer, Part, and
Manufacturer/Part Relations 40

Table 7 The Sister Relation where
Name = "Joan" 41

Table 8 The Name Relation 42

6

Table of Figures

Figure Number Title Page

Figure 1 Union in GRAF-ASQ 39

Figure 2 Difference in GRAF-ASQ 40

Figure 3 Product in GRAF-ASQ 41

Figure 4 Selection in GRAF-ASQ 42

Figure 5 Projection in GRAF-ASQ 43

Figure 6 Simple attributing 61

Figure 7 Complex Attributing 62

Figure 8 Schema Views 63

Figure 9 Steps to Create Query 64

Figure 10 The first four of the eight
permutations of straight 3-tuples 65

Figure 11 The second four of the eight
permutations of straight 3-tuples 66

Figure 12 5-tuple Query 67

Figure 13 Complex Query 68

Figure 14 Creating a Domain 69

Figure 15 Creating a Function 70

Figure 16 Linking Functions 71

Figure 17 Creating a Functional Attribute 72

Figure 18 A Recursive Functional Attribute 73

Figure 19 Comparison Query 74

Figure 20 Relational Database Only Query 75

7

Acknowledgments

I want to thank Patrick Purcell for hanging in there for me, Ron MacNeil

for introducing me to this project, and Muriel Cooper for her help at various times

during my stay at M.I.T. I want very much to thank Stanley Zdonik, whose

comments along the way helped me greatly in thinking about the system.

I appreciate the help of Linda Okun, Leon Groisser, Dean Frank Perkins and

my soon-to-be little one for helping assure that the thesis got completed this

summer.

I want to thank Doug Lanam for all the phone help he gave with his

product, Advance A. I. Systems Prolog and for the Prolog itself, which was great to

work with.

I especially want to thank my advisor, Timothy Johnson, for the wonderful

discussions we had which helped me to develop the system to its present form and

for his thoroughness in testing out my ideas along the way.

Lastly, I want to thank all my relatives who gave me encouragement. In

particular, I want to thank my Aunt Erica, my sister-in-law, Jan, my parents and,

most of all, my sweet love, my husband Bob, who gave me support the entire way.

8

1. Introduction

The system described in this paper, GRAF-ASQ (QL.&aphical An d

Eully-Accessible j-tructure-based Queries) is designed as a graphical query system

that will provide a number of advantages:

- flexible, wide, graphical access to data via the use of n-tuples and Prolog

concepts, including the ability to gaphically store and retrieve queries

in the form of "functions".

- the ability to interface with MacDRAW for use with CAD or other

graphical data (as well as the built-in possibility of connecting with

other programs).

- a clear and simple graphical language.

- a graphical view of the database schema, with the ability to vary the

central focus.

- desirable features from both relational and entity-relationship

databases.

The paper describes these advantages by giving some background material in

relationship to GRAF-ASQ and by describing the system itself.

Section 2 gives a brief history of databases, describing how various types of

databases work and placing GRAF-ASQ in the context of those database types.

Then, the simple attributing ability present in AutoCAD is described and compared

to the more complex, object-to-object attributing available in GRAF-ASQ.

Section 3 discusses recent developments in graphical database systems,

including a variety of entity-relationship type databases and a relational type

database, QBE. It then compares these systems to GRAF-ASQ.

Section 4 discusses the reason for the system, including detail on the

9

advantages listed above.

Section 5 goes into detail on the definition of an n-tuple in this system.

(The definition is different from that of an n-tuple in a relational database). It

first defines a 3-tuple and then expands the definition to an n-tuple. It also

explains how general retrieval is done on the n-tuple.

As mentioned before, GRAF-ASQ has desirable features from both relational

and entity-relationship databases. Section 6 goes into detail on a desirable

relational database feature found in GRAF-ASQ, relational completeness. This

feature gives GRAF-ASQ a retrieval flexibility found only in relational databases.

Section 7 provides detail about the system itself, including a data model,

why Prolog was chosen as the language for this system, and many examples of

how it works. The examples include scenarios of how a user would perform

certain actions and a variety of sample queries.

Section 8 is the conclusion.

The appendices provide information on the syntax and semantics of the

language, the contents of the menues, and the windows. There is also an appendix

which shows constructs for schema display. The last appendix shows the attribute

desk accessory, used for assigning attributes.

It should be noted that the ability to view the schema with different central

foci and with atomic attributes made invisible is implemented. Also implemented

is the ability to get simple attributed data from MacDRAW and to query and search

for data via menues. If the data found relates to MacDRAW objects, those objects

can be highlighted within MacDRAW. The graphical query language itself has

just been designed, not implemented. The ability to query and search via menues

is a temporary substitute for the graphical query language.

10

2. Database Background

The following sections will provide background on the general types of

databases that exist and on database facilities in computer-aided design

environments.

2-1. Databases

2-1-1. Introduction

Before computers, filing was the about the only storage and retrieval

system available. However, with computers came the invention of databases and,

with the invention of databases, came numerous database styles. The following

sections will discuss the basic styles of databases: hierarchical, network,

relational, and entity-relationship.

2-1-2. Hierarchic

A hierarchic database consists of trees of records. Each record has a type.

A record type is made up of one or more field types. Field types identify the pieces

of information stored in the record. For example, a person record type might

contain a first name field type, a last name field type, a social security field type,

etc. A record is a common database structure.

Each tree also has a type. A tree type is made up of a root record type and an

ordered set of zero or more dependent sub-tree types. Each sub-tree type, in turn,

is made up of a root record type and an ordered set of zero or more dependent

sub-tree types. Since all the sub-tree types ultimately relate to the original root

11

record type, the structure of the entire database is one big tree type.

Types specify the structure of the data. The data itself is referred to as

occurrences: occurrences of trees, occurrences of records, occurrences of fields.

For example, if there is a person record type, each record that contains

information about a specific person is known as an occurrence of a person

record, or as just a person record.

The operators in a hierarchic database include:

- an operator to locate a specific tree in the database,

- an operator to move from one tree to the next,

- operators to move from record to record within tree by moving up

and down various hierarchic paths,

- operators to move from record to record among all the sub-records under

a particular root record type,

- an operator to insert a new record,

- an operator to delete a specified record.

2-1-3. Network

A network database is a more generalized form of a hierarchic database.

It differs in the following ways:

- Its "trees" are not really trees. Record types that belong to one root

record type can also belong to another.

- There does not have to be one big "tree" for the entire database. There

can be any number.

The main components of a network database are known as sets

12

(which correspond to hierarchic trees), owners (which correspond to hierarchic

root records) and members (which correspond to hierarchic sub-records). A set

consists of one owner and an ordered set of members. A set is not restricted as

much as a tree. Any of the following may be true of a set:

- A member of one set can be the owner of another.

- An owner of one set can be the owner of any number of sets.

- A member of one set can be a member of any number of sets.

- If there is a set with owner of record type A and members of record type

B, there can be other sets with this same combination. What would differ

is the ordering of members or that a particular owner would have

at least one different member in each of the sets.

- Record type A might be the owner record type to member record type B

in one set, yet that same record type B may be the owner record type to

member record type A in another set.

The operators in a network database include:

- an operator to locate a specific record, given some value for a field in the

record,

- an operator to move from an owner to its first member within a set,

- an

- an

- an

- an

- an

operator to move from member to member within a set,

operator to move from member to owner within a set,

operator to create a new record,

operator to delete an existing record,

operator to modify an existing record -- that is, to modify fields within

it,

- an operator to take an existing record that has a record type which is the

record type of members of a particular set and connect that record into

13

the set as a new member,

- an operator to disconnect a current member of the set from the set,

- an operator to disconnect a current member of one set and reconnect it

with another set of the same set type.

2-1-4. Relational

The sections below describe the relational database model and a variation,

an irreducible relational database model, which is a variation corresponding

more directly to GRAF-ASQ.

2-1-4-1. Regular

The structure of a relational database looks very different from that of the

hierarchic or network structures. Data is stored in the form of relations, which

are essentially tables. A relation is made up of attributes, values, tuples* and

primary keys. A tuple is a row in a relation, an attribute is a column header and

each member of the column is a value that corresponds to that attribute, and a

primary key is a unique identifier such that each tuple can be distinguished via

the primary key alone. Another relational term is domain. A domain is a set of

values from which an attribute can obtain its specific values from. For example,

if there was an attribute City Name, that attribute's domain would be the set of all

* Note that the term "tuple" here is different than the term
"n-tuple" used by GRAF-ASQ. See section 5 for further
explanation.

14

names of cities.

A relation has the following properties:

- It contains no duplicate tuples.

- Its tuples are unordered.

- Its attributes are unordered.

- All the values of its attributes are atomic. This means two things: (1) A

row-column position can contain no more than one value and (2) A value

cannot itself be a relation.

The operators in a relational database include:

- select, which extracts specified tuples from a specified relation,

- project, which extracts the values of specified attributes from a specified

relation,

- product, which builds a relation from two specified relations consisting

of all possible concatenated pairs of tuples, one from each of two

specified relations,

- union, which builds a relation from two specifed relations consisting of

all possible concatenated pairs of tuples, one from each of the two

specified relations,

- intersect, which builds a relation consisting of all tuples appearing in

both of two specified relations,

- difference, which builds a relation consisting all tuples appearing in the

first and not the second of two relations,

- join, which builds a relation from two specified relations consisting of

all possible concatenated pairs of tuples, one from each of the two

specified relations, such that, in each pair, the two tuples satisfy some

specified condition,

15

- divide, which takes two relations, one binary and one unary, and builds a

relation consisting of all values of one attribute of the binary relation

that match (in the other attribute) all values in the unary relation.

2-1-4-2. Irreducible

Before discussing the irreducible model, let's discuss the related binary

model. A binary relational database consists of a bunch of atomic facts. Each fact

consists of a primary key, an attribute, and the value for that attribute in relation

to the primary key. For example, (person-id-number, first-name, John), would be

a single atomic fact (in section 5, this is referred to as a 3-tuple). However, not

every piece of data can be reduced in this way. For example, if one wanted to store

the batting averages of baseball players, taking into account the year played and

the teams they played on, the following problem would arise. If one stored

(person-id-number, batting-average, .265), (person-id-number, year, 1980), and

(person-id-number, team, Slammers), there would be no way to know that these

three pieces of information are actually associated with one another.

One way to get around this would be to allowing nesting, such as

(((person-id-number, year, 1980), team, Slammers), batting-average, .265). This

would need to be converted into a representation consisting of pointers to the

nested atomic facts. For example, it would be stored as (fact-a, batting-average,

.265) , where fact-a would be (fact-b, team, Slammers), and fact-b would be

(person-id-number, year, 1980). This is representation has the disadvantage of

being assymetric and of needing to work with the pointers.

Another way to get around it would be to have special key that would relate

the three tuples: (batting-average-id, player, person-id-number),

16

(batting-average-id, team, Slammers), (batting-average-id, year, 1980), and

(batting-average-id, batting-average, .265). This would perserve the atomic fact,

or 3-tuple structure, symmetrically, yet it introduces an artificial construct and

the need for more data.

Another alternative is a variation on the binary model, known as the

irreducible data model. In it, its definition of an atomic fact extends to

interrelated data as in the batting average example. To do this it allows

information to be composite. Thus, batting-average information stated above

could be represented by having the composite information (person-id-number,

Slammers, 1980) to produce ((person-id-number, Slammers, 1980),

batting-average, .265), or have the composite information (Slammers, 1980, .265)

to produce (person-id-number, batting-average, (Slammers,1980,.265)).

2-1-5. Entity-Relationship

An entity-relationship database consists of entities, relationships,

sub-types, and super-types. An entity is an object of some particular type. A

person might be an entity, for example and have the type person type. A

relationship is either some property of the object or some way in which it relates

to another object. Some entity-relationship databases distinguish between these

two types of relationships. In fact, some entity-relationship databases consider a

relationship as a special type of entity and so do not even make the

entity-relationship distinction.

Entities can have a sub-type, which means that, in addition to having a

type A, they a sub-type B and every entity that has sub-type B also have type A. A

super-type is actually a type that has been added to make two or more types into

17

sub-types. For example, if there existed the types tree type and flower type, a

desirable super-type could be plant type.

Operators in this type of model vary from database to database, but usually

consist of some way to extract information in a way that corresponds to the

relational operators selection, projection, union, intersection, and difference.

2-1-6. Summary - Classification of GRAF-ASQ

GRAF-ASQ relates to the irreducible model and the entity-relationship

model. It is like the irreducible model in that it stores irreducible chunks of

information in a manner similar to that of a irreducible model and that it is

relationally complete (see section 6). It does not store irreducible chunks in

exactly the same way, however, as it does not use the idea of the composite.

Instead, it flattens out the information so that, in the batting average example

expressed in section 2-1-4-2, the GRAF-ASQ representation would be (person-1,

batting-average, Slammers, 1980, .265). This is extending the idea of the atomic

fact expressed in the binary model (see section 2-1-4-2), known as 3-tuple in

GRAF-ASQ, into an n-tuple (see section 5).

GRAF-ASQ relates to the entity-relationship model because each irreducible

chunk of information either relates an entity (referred to as an object in

GRAF-ASQ) to another entity or to some atomic value via a relationship (known as

as attribute in GRAF-ASQ). The way the user conceives of data in the GRAF-ASQ

environment is similar to other entity-relationship databases. That is, it is

conceived as a network of entity and atomic types connected by relationships.

Thus, a GRAF-ASQ schema (an overall view of the types and how they interrelate)

looks like a typical entity-relationship schema.

18

The reasons for this combined relational (specifically,

irreducible)/entity-relationship design is discussed in further sections (in

particular, see section 4).

19

2-2. Computer-Aided Design (CAD) Database Facilities

2-2-1. Introduction

Computer-aided design (CAD) systems help a user produce and modify

designs more quickly and easily, much as a word processor helps a user produce

and modify documents more quickly and easily. In other words, a CAD system can

help speed up typical design work. However, there is more that it can do. It can

also a_dA features that would be difficult or impossible to have when only working

with pen and paper.

One possible feature would be a database facility that would allow a user to

store and retrieve information about objects in the design. Thus far, simple

attributing, such as found in AutoCAD, is about the limit this feature has been

introduced into CAD. The next section will discuss simple attributing in AutoCAD

and the summary section will compare simple attributing to what is available

with GRAF-ASQ.

2-2-2. Simple Attributing (AutoCAD)

AutoCAD allows the user to assign attributes to objects within a CAD

drawing. Later the user can retrieve attribute information, restricting the

retrieval to only certain attributes. For example, an object can be tagged as a

"desk". If the attributes size, manufacturer, and material are associated with this

tag, the user will be prompted for the appropiate values to go with the particular

desk. When the user wants to retrieve information, he can either individually

select the objects he wants data on or can specify certain tags. All the objects

20

that have those tags will be retrieved. The user can restrict what attributes are

retrieved, instead of retrieving all the values for all the attributes associated with

the tag. This is basically the extent of the facility. A user can modify attribute

information as well, but there is no further ability to search and retrieve.

2-2-3. Summary - GRAF-ASQ for CAD

AutoCAD provides a limited attributing capability. GRAF-ASQ extends that

ability considerably. First of all, GRAF-ASQ allows two objects to be related to

each other. For example, there can be an attribute like "next to" and a desk object

can be given the attribute "next to" with, say, a wall object as the value for that

attribute.

Another thing added by GRAF-ASQ is more extensive search capabilities.

GRAF-ASQ can search for objects that have have attributes with certain values.

For example, if "manufactured by" was an attribute, it could search for all doors

manufactured by Stanley. It can even use operators such as "and", "not" and "or"

to construct more complex queries such as "search for all doors manufactured by

Stanley that are not taller than 10 feet". The search capabilities extend far

beyond this and can be read about it in sections 5, 6, and, especially, 7.

Thus, CAD is an area where database capabilities would be useful, yet are thus far

found in only a very primitive form. GRAF-ASQ provides an alternative.

21

3. Recent Developments in Graphical Databases

3-1. Introduction

Most query languages that exist are based on typing textual commands,

which is a very error-prone approach. Graphical interfaces, such as employed

by programs on the MacIntosh computer, aid in ease of use, learning and in the

reduction of errors.

There are not many graphical query languages that exist in experimental

stages or in actuality. Here are some examples of the few recently developed

graphical query languages and how they compare to GRAF-ASQ. The following

are either entity-relationship or relational database systems.

3-2. GUIDE

The GUIDE system [W082, W083] provides the means to graphically view a

statistically-based database. The user can view the database schema as a graph

and manipulate that graph for better viewing. For example, it can be moved and

zoomed; nodes can be hidden, and a particular node can be made the central focus.

Also, the schema can be viewed on different levels, based on a pre-ranking. The

user can also view an individual attribute, seeing all the possible values for the

attribute.

By picking items off the graph-like schema, and a using menu, the user

can construct queries. A user can create partial queries, view the results, and

then put those queries together to create more complex queries.

One of the qualities that most distinguishes this system from other

22

graphical query systems is that it provides the user with the ability to construct

partial queries, test them, and combine them to produce more complex queries.

GRAF-ASQ provides this facility as well by the use of functions. Using GRAF-ASQ, a

user can create a query, test it out, and save it as a function, reduced to just a

name. Then, a user can link up functions or use a function as a part of a more

complex query. GRAF-ASQ provides the advantage of allowing the functions to be

saved and by allowing the user to use them without having to see the details of

their contents.

Another useful facility that GUIDE has is to allow the schema to be viewed

based on different central foci. GRAF-ASQ allows this too. In GRAF-ASQ, the user

specifies the object type that is to serve as the central focus when displaying the

schema. GUIDE allows different levels of the schema to be viewed, based on a

pre-ranking. GRAF-ASQ allows different levels to be viewed, based on distance of

level from the current central focus. GUIDE is more flexible in this regard.

However, a limiting factor to GUIDE is that its use is directed toward

statistically-based databases. GRAF-ASQ does not have this limitation. It can be

used for statistical, or other alphanumeric data, and it can also be hooked onto

graphical data, such as architectural blueprints.

3-3. LID

LID [F084] is a graphical browser which allows a user to pick one type of

entity from a menu and see information about it in a form similar to a deck of 3X5

cards. The user can then browse or search through these 3X5 card look-alikes to

select the desired specific entity. From there, the user can see a schema diagram

directly connected to the entity and traverse the database to find related

23

information.

One limitation of traversing in this one-by-one manner is that, in some

cases, it could lead to having to go up and down branches to get all the desired

information. This was noted in the paper about LID. Another limitation that was

noted was its inability to retrieve lists of items. Although an

extension,"list-oriented LID", was proposed, this extension did not provide for the

use of boolean operators in constructing queries, so even the extension would be

limited for selective retrieval.

Although LID is interesting in its graphical, hierarchical card file

approach, it is limited in that it does not provide retrieval by query.

3-3. SKI

SKI [KI84] is another graphical schema-display/query language. When

the article about it was written, the underlying language SEMBASE was in place,

but the graphical interface SKI was in the design stage.

As part of its graphical interface, a window/menu is used to display schema

and query information, with the window divided into the categories Parent Types,

Attributes, Attribute Ranges, Predicates, and Subtypes. Set notation is used to

construct sub-types in the "Predicates" section. This can be good if the user is

familiar with set notation, otherwise there is that much more for the user to

learn. The sub-types help restrict domains and therefore provide the user with

an easier means to browse. (Browsing is done via first, last, next, and previous

operations). This restricted information can also be reported. However, it does

not appear that attributes can be selectively displayed; the user has to display all

the attributes of a particular object type.

24

An interesting feature to this system is that it allows a user to check how

any two object types are related. A visual display of the path between the two is

shown in the display menu. This facility is not directly provided by GRAF-ASQ.

However, although the information would not be in graphical form, the same

information is accessible by creating a recursive function that would identify the

path of attributes that connect two objects. (See the section on recursive

functions).

Another facility provided by SKI is the ability to determine how the

deletion of a particular object type would affect other object types. This is

actually similar to the "show how two objects related" facility.

Based on these two emphasized features, the main purpose of this system is

to allow the user to be able to work with the part of the schema he most wants to

work with and not worry about the rest, even if the "part of the schema" really

isn't a part at all, but two disconnected parts. In GRAF-ASQ, a part of the schema

can be viewed, and functions can be created to retrieve how two objects are

related without searching around the schema. However, there is no direct "how

related" facility. "How related" is certainly a useful function, yet it should not be

provided at the expense of a global overview, which is also important. SKI does

not provide a way to view all the interconnections between types at once, or even

a section as such. The user must gradually unveil global information.

3-5. GORDAS

GORDAS [EL85] is another schema-view/query language which allows the

user differing views of the database. The schema will actually change to

25

correspond with the differing views. For example, when there is a different

central focus for a view, a many-to-one relationship may become one-to-one.

When this happens, the attributes from the two objects in the one-to-one

relationship can be combined and become attributes of one object instead.

For querying, the user chooses attributes from the graphical schema,

operators from a menu, and types in any literal values desired. At various steps

along the way, if it is necessary to find out if the user wants further conditions,

natural language questions are created by the system to help the user create the

precise query intended.

The ability to change focus (present also in GRAF-ASQ) and the natural

language questioning are good features. However, there is a rather clumsy aspect

to the system. The user has to jump from mode to mode to select entities and

relationships desired in the query, choose the root entity, select the conditions,

select restrictions, and to select attributes to be displayed. This could become very

confusing. This confusion is compounded by the distinction that is made between

conditions (conditions for the root entity) and restrictions (conditions for other

entities). In GRAF-ASQ, the user switches windows, one for constructing queries

and one for viewing the schema. However, this is a clear delineation. There is no

confusion as to what mode one is in. Also, there is not the choppy distinction

made between all those different steps.

Another minor, but potentially bothersome, aspect of the language is that it

is based on sets in a way that can confuse the user. In GORDAS, the symbol "="

stands for set equality. When a user wants to indicate what would more typically

be "Name = Joan", he has to put "Name Includes Joan", meaning Joan is included in

the set of names. To help with this problem, GORDAS prompts a user to make sure

he means set equality when he uses "=". However, the need for this kind of

26

prompting is an artifical appliance to cover up a syntax design problem.

3-6. ISIS

ISIS [G085,ZD86] provides a means for navigating through and modifying

schema and data in a consistent, graphical fashion. It provides a query facility.

As a result of query searches, sub-classes and attributes are derived. Another

feature important to the system is version control. However, GRAF-ASQ is not

dealing with this issue.

The system is nice in its consistency. A user needs to change environment

only to construct a query. It also shows all data, yet boldfaces the data that is

chosen. This is useful when there is not too much data. It would probably be

difficult to find boldfaced items in a large list obtained if dealing with a large

database, however.

ISIS, GORDAS, LID, and SKI all emphasize browsing as the main access

vehicle. Query is used to restrict the browsing domain. GUIDE is somewhat more

query-oriented, yet is designed for a restricted type of data (statistical, numerical

data). GRAF-ASQ has more of an emphasis on queries, allowing the user flexibility

and wider capibility is this area. Besides working on alphanumeric data, it

connects to graphical data.

3-7. QBE

QBE [DA86] is a graphical version of a relational database and also has an

emphasis on search. It allows a user to create queries by placing variables,

operators, and literals into a skeleton relational table, instead of having to make

27

query statements.

It is useful that the form that data is displayed and the form in which

queries are constructed are the same. However, the commands themselves are

cryptic and it is not always intuitively obvious how to work with relational

constructs, such as joins.

3-8. Summary - GRAF-ASQ vs. the Mentioned Systems

GRAF-ASQ is designed to provide a graphical query language that captures

the best of both the relational and entity-relationship worlds. It is designed to

provide flexibility and wider capability in query construction, as is provided in a

relational language, by providing n-tuples and relational completeness (see

sections on "The Use of N-Tuples" and "Relational Completeness of Language"). It

takes advantage of Prolog languages concepts for retrieval and to provide the

user with the flexibility provided by functions and functional attributes. Even

functional attributes that use recursion can be created.

It also takes the more intuitive form of a entity-relationship type structure.

A user can think in more real-life terms of entities, or objects, rather than tables.

Although GRAF-ASQ does not provide all the features present in all the languages

mentioned, it provides the bulk of them, including one of the most useful: a

schema view with a central focus that can be varied. This is very important

because it aids the user in remembering the structure of the data so that

accessing it can be accomplished more easily. With the use of relational tables,

the user has to depend upon his memory because there is no overall view as such.

28

4. Reason for this System

Some recently-developed graphical database systems have been mentioned

and compared to GRAF-ASQ. They all provide a graphical interface with either a

relational or entity-relationship structure. None of them, however, actually work

with graphical data and none have a graphical query language whereby the

components of the language are graphical symbols. Those that have query

capabilities at all provide a purely menu/textual form for the query language.

In addition, none of the non-relational databases have full relational query

capabilities. The one relational graphical database, QBE, has full relational

capabilies, yet it has the non-intuitive relational database form which forces the

user to think in terms of relational tables, instead of a world of objects.

Thus, the following is a list of the important features that distinguish this

system:

1. Provides flexibility and wide capability in the area of queries.

The flexibility and wide capability is there because GRAF-ASQ is based on

the PROLOG programming language. It is designed to take

advantage of PROLOG's extensive capabilities. It is designed to

allow the user to store queries in a form called a function (as it takes input,

processes it, and provides output). More complex queries can be built from the

functions. It is also designed to allow the user to define functional attributes,

which are attributes based on queries, instead of on straight data. The user

can even create multi-definitions and recursive definitions for an attribute.

29

2. Provides a means for searching on MacDRAW graphics items.

In GRAF-ASQ, the user can assign attributes to MacDRAW graphics items,

search on those items, and see what was chosen on the MacDRAW item.

3. Provides a graphical language for querying that is simple and clear.

The graphical query language is based on a small number of graphical

constructs that can be used to create sophisticated statements. The user need

not bother typing in queries. Instead, he chooses and puts together graphical

constructs.

4. Allows the user to view the database structure graphically.

The user can view the schema graphically, can choose the central focus of

the schema, and can choose whether or not to have atomic types be visible or

invisible.

5. Interfaces with other programs.

GRAF-ASQ need not be used with MacDRAW, data can be brought in from

other MacIntosh sources. Also, output can be sent to other systems for fancy

formatting, such as to a generalized spreadsheet program.

30

6. Has desirable features from both relational and entity-relationship databases.

GRAF-ASQ is relationally complete, so it provides all the capability of a

relational database language. It also provides the more intuitive view of

objects, their attributes, and relationships between objects that is provided by

an entity-relationship database.

31

5. The Use of N-Tuples

One of the goals of GRAF-ASQ is to provide flexible and wide access to data

stored in the database. To aid in this, GRAF-ASQ uses the n-tuple as its basis. Using

the capabilities of Prolog, each piece of information in the n-tuple is easily

accessible.

To demonstrate this, let's define the term n-tuple as it applies in GRAF-ASQ.

Then we will see how the form of the n-tuple allows wide access to data. In

GRAF-ASQ, an n-tuple is defined as follows:

(<object> <attribute> (<qualifier>) <value>)

where {} means zero or more.*

A 3-tuple is a sub-instance of an n-tuple and is defined as follows:

(<object> <attribute> <value>)

For the definition of <attribute>, <object>, and <value>, we will look only at 3-tuples.

Then, we will look at the more general n-tuple to define <qualifier>.

The definition of an <attribute> is based on relations. For example, let's look

at the Person Relation.** Person has the <attribute>s Name and Eye Color:

Name Eve Colo

person-1 Frieda blue
person-2 Joe blue
person-3 John brown
person-4 Sally green

Table 1. Person Relation 1.

* In the language of relational databases, an n-tuple is different.
It is a row from a relation, consisting of n elements.
Thus, looking at table 1, the n-tuple for person-1 would be (Frieda,
blue). When n-tuples are mentioned in this paper, they are
defined as above, unless explicitly specified otherwise.

** Person-1, person-2, etc. are not items found in relations. They
are placed here to help express the non-relational concept of object.

32

Thus, an <attribute> is the name of a set of members (e.g. Name for (Frieda,

Joe, John, Sally) or Eye Color for (blue, blue, brown, green)), in terms of relations.

Before describing an <attribute> in terms of a 3-tuple, let's look at what <object>s and

<value>s are in terms of relations.

In the relation above, the <object>s are person-1, person-2, person-3, and

person-4. They correspond to what the <attribute>s belong. A <value> is the specific

<attribute> value that belongs to a specific <object>. For example, Frieda is a <value> in

the relation above; it belongs to person-i as the <attribute> Name's value.

Thus, a 3-tuple is a piece of a relation:

Name Eve Color

person-1 Frieda blue
person-2 Joe blue
person-3 John brown
person-4 Sally green

Table 2. Person Relation 1 with 3-tuple highlighted.

The piece of the relation highlighted is the 3-tuple (Name person-1 Frieda).

Another thing to note is that an <object> in one 3-tuple can be a <value> in

another. Look at the following relation:

Name Eve Colo Sibling

person-I Frieda blue person-2
person-2 Joe blue person-I
person-3 John brown
person-4 Sally green

Table 3. Person Relation 2 has atomic and non-atomic values.

One 3-tuple from this relation is (Sibling person-1 person-2), where person-2 is

the <value>, yet another 3-tuple is (Name person-2 Joe), where person-2 is the

33

<object>. A <value> that is also an <object> in another 3-tuple is known as a

<non-atomic value>. A <value> which is never an <object>, like Frieda in this

example, is known as an <atomic value>.

We have only dealt with 3-tuples so far, so <qualifier>s have been ignored.

Let's look at the <attribute> Average, which is the <attribute> of a 5-tuple, to

produce a definition for a <qualifier>:

Team Yea Average

person-1 team-1 1982 .310
person-1 team-1 1983 .290
person-1 team-2 1983 .280
person-i team-2 1982 .295
person-2 team-2 1984 .268

Table 4. Person Relation 3, showing 5-tuples.

Notice how the attribute Average is dependent on the attributes Team and Year.

One <object>, person-1, has several different <value>s for Average based upon the

<value>s for Team and Year. Thus, the 3-tuple (person-1 Average .310) is correct,

but the 3-tuple (person-1 Average .290) is also correct and there is further

database information to make the distinction between the two meaningful. The

further information is the Team/Year combination that goes with each.

Thus, to give the most information about the <attribute>, Average should be

a nested 3-tuple:

(((person-1 Year 1982) Team team-1) Average .310).

An n-tuple (in this case, a 5-tuple) is a shortened form of a nested 3-tuple. To

construct the n-tuple, the <attribute> would probably be given a more specific

name like Team-Year-Avg and the 5-tuple for this example would be:

(person-1 Team-Year-Avg team-1 1982 .310).

Team-1 and 1982 are <value>s within the 3-tuples (person-1 Team team-1)

34

and (person-1 Year 1982), respectively, but are <qualifier>s within the 5-tuple

shown above. They serve to further qualify the <object>-<value> relationship

present in the 5-tuple.

Ordering of <qualifier>s can, but does not always, have significance. In the

example given, Team comes before Year, but this is not significant because a

person could play several years on one team or on several teams within one year.

If, however, a person could play several years on one team, yet only be on one

team within one year, this order would have significance. Team would qualify

Year.

Now that n-tuples have been defined, let's see how they provide flexible,

wide access to data. Suppose we have the following database of n-tuples:

(house-a has-room room-1)

(house-a has-room room-2)

(room-1 is-next-to room-2)

(room-1 has-window window-1)

(room-1 is-room-type livingroom)

(house-b has-room room-3)

(room-3 is-room-type livingroom)

the following information will be easily accessible:

Does house-a contain room-i?

Expressed as:
(house-a has-room room-1)

Retrieves:
yes

What rooms does house-a have?

35

Expressed as:
(house-a has-room ?)

Retrieves:
room-1
room-2

How is house-a related to room-1?

Expressed as:
(house-a ? room-1)

Retrieves:
has-room

Which rooms are livingrooms?

Expressed as:
(? is-room-type livingroom)

Retrieves:
room-1
room-3

Tell me about what relates to room-1.

Expressed as:
(room-1 ? ?)

Retrieves:
is-next-to room-2
has-window window-1
is-room-type livingroom

Tell me what objects are related by 'has-room'.

Expressed as:
(? has-room ?)

Retrieves:
house-a room-I
house-a room-2
house-b room-3

36

Tell me about what room-2 relates to.

Expressed as:
(? ? room-2)

Retrieves:
house-a has-room
room-1 is-next-to

Retrieve all the information in the database.

Expressed as:

Retrieves:
house-a has-room room-I
house-a has-room room-2
room-1 is-next-to room-2
etc.

That is, every permutation of missing object, attribute and/or value can be

retrieved.

Thus, the n-tuple provides a means for easy access of not only objects and the

values of their attributes, but also the more unusual information: how an object is

related to a value, what objects and values have a certain relationship, etc. This is

more generalized retrieval than a typical query language provides.

37

6. Relational Completeness of Language

According to Date [DA86], a relationally complete language must be able to

perform the five basic relational operations: union, difference, product,

selection, and projection. GRAF-ASQ is able to perform these operations. Note

that in this section, tuples will be defined according to the relational language

definition (see the section entitled N-Tuples).

In relational language, the union of relations A and B is relation C, the set

of all tuples belonging to either relation A, relation B, or both. In GRAF-ASQ,

inclusive-or can be used to access the same information as union would create in

a new relation. As an example, here are three relations: Brothers, Sisters, and

their union, Siblings:

Name Has Sister
person-1 Joan person-2
person-2 Ann person-1
person-3 Bill person-I
person-3 Bill person-2

Name Has Brother
person-1 Joan person-3
person-2 Ann person-3

Name Has Sibling
person-1 Joan person-2
person-1 Joan person-3
person-2 Ann person-I
person-2 Ann person-3
person-3 Bill person-I
person-3 Bill person-2

Table 5. The Sister, Brother, and Sibling Relations.

In GRAF-ASQ, the following functional attribute could be created:

38

(Dbrother of

& sister of

G sibling of

Figure 1. Union in GRAF-ASQ.

This would provide a "functional" attribute "sibling of" that would retrieve

a brothers, sisters, or both of a given person. Thus, its effect would be like

having sibling data created from the current brother and sister data. Via a menu

command, used in conjunction with that functional attribute, the user could even

request all the siblings be calculated and then entered into the database as

straight data. If the user wishes, he could also indicate, via a menu item, that

siblings should be entered into the database incrementally every time a user uses

the attribute in a query.

Difference could be accomplished in a simlar fashion. In relational

language, the difference of relations C and A (C minus A) is relation B, the set of

all tuples belonging to relation C, but not relation A. (If one calculates A minus C,

the result is relation D, the set of all tuples belonging to relation A, but not

relation C). Using the same relations as in Table 5, the Sister Relation is the

difference when the Brother Relation is subtracted from the Sibling Relation.

GRAF-ASQ has the ability to produce the equivalent difference. If the attributes

"sibling of' and "brother of" already existed, the functional attribute "sister of"

could be created to accomplish this:

39

brother of

& Q sister of

_ ~ sibling of

Figure 2. Difference in GRAF-ASQ.

This "sister of" functional attribute is similar to the functional attribute

"sibling of' described in the union example. "Sister of" in this example would be

obtained from the calculation of the query "'sibling of and not 'brother of".

Also, similarly, the "sister of' data could be entered into the database, via a menu

item, as straight data.

The product of relations A and B is relation C, such that each tuple in

relation A is concatenated with each tuple in relation A. In the relations shown

below, the product of the Manufacturer Relation and the Part Relation is the

Manufacturer/Part Relation:

Manufacturer Name
manufacturer-1 ABC Corp.
manufacturer-2 Parts R Us

Part Name
part-1 Gadget
part-2 Widget

Manufacturer Name Part Part Name
manufacturer-1 ABC Corp. part-I Gadget
manufacturer-1 ABC Corp. part-2 Widget
manufacturer-2 Parts R Us part-1 Gadget
manufacturer-2 Parts R Us part-2 Widget

Table 6. The Manufacturer, Part and Manufacturer/Part Relations.

In GRAF-ASQ, one can again create a functional attribute. Shown below is

40

a special functional attribute that takes two domains and connects each member

of Domain A with each member of Domain B, via the specified attribute:

anufacturers parts m has parts

Figure 3. Product in GRAF-ASQ.

Thus, if manufacturer-1, manufacturer-2, part-1, and part-2 exist in the database,

creating the functional attribute in Figure 3, and using a menu item, will cause

the creation of the GRAF-ASQ n-tuples (manufacturer-i has-part part-1),

(manufacturer-1 has-part part-1), (manufacturer-2 has-part part-1) and

(manufacturer-2 has-part part-2).

Selection is choosing only certain tuples from relation A based on a

condition relating to one of the attributes in the relation. As an example, take the

Sister Relation shown in Table 5. One selection on that relation would be to select

on "Name = 'Joan"'. Relation B, the resultant relation, is shown in Table 7.

Name Has Sister
person-1 Joan person-2

Table 7. The Sister Relation where Name = "Joan".

In GRAF-ASQ, the following domain-creation query would accomplish the

same thing:

41

Joan first name is

People named Joan(O

Figure 4. Selection in GRAF-ASQ.

Although Figure 4 does not show anything about sisters, remember that in

GRAF-ASQ, once one has access to a non-atomic value, as is every member of a

domain, one can access all the attributes of that non-atomic value. In this case,

sisters of Joan, as well as all other attributes of Joan, would be accessible using the

Domain "People named Joan".

Projection is simply taking attribute(s) (i.e. column(s)) from relation A to

create relation B. Thus, if one takes the Sibling Relation from Table 5 and projects

attribute "Name", the following relation would result:

Name
person-1 Joan
person-2 Ann
person-3 Bill

Table 8. The Name Relation.

In GRAF-ASQ, the following query would provide the equivalent

information:

42

first name is

Figure 5. Projection in GRAF-ASQ.

This query would produce a list of names, not a new relation. However, the

relation is essentially in the database anyway, in the form GRAF-ASQ n-tuples

(person-1 first-name-is Joan), (person-2 first-name-is Ann), (person-3

first-name-is Bill). Performing this query would just let the user see this select

information.

Thus, GRAF-ASQ can perform the five basic relational operations and is

therefore relationally complete.

43

7. The System

The following sections will discuss the system in detail. Included is a

section that describes the data model, a discussion of why Prolog was the chosen

language to program the system in, and a collection of numerous scenarios and

examples used to describe how the system works.

7-1. Data Model

This section describes how data should be viewed in GRAF-ASQ in the

context of the main components that make up the system.

The GRAF-ASQ database contains obiects which correspond to items found

in the everyday world. Each object has a type. Each type has zero or more

attributes associated with it. Thus, a "person type" might have the attributes

"first name", "last name", "social security number", "spouse", etc. associated with

it. Attributes can either be straight data or calculated based on other information.

For example, "mother-in-law" might be calculated using the "spouse" and

"mother" attributes. An attribute that is calculated is known as a functional

attribute.

Each object can have a yvalue associated with each of its type's attributes.

All objects within a type do not have to have values for all its type's attributes,

however. Each value also has a type. A value can either be atomic (has a type

with zero attributes associated with it) or non-atomic (has a type with one or more

attributes associated with it).

Object-attribute-value information is in the form of a 3-tuple which can be

extended to an n-tuple. A 3-tuple has the form (<object> <attribute> <value>) and an

n-tuple has the form (<object> <attribute> {<qualifier>) <value>). (See section 5 for

44

full definitions of 3-tuples and n-tuples).

The following describes domains, lists, and queries. Note that, in GRAF-ASQ,

these components are graphical. (Examples of this are given in section 7.3).

However, in this section, they will be discussed as if they were textual.

D o m a i n s are collections of objects, usually of the same type, but not

necessarily. Domains can contain all the objects of the database, or some

restricted portion. For example, the "person domain" might consist of all objects

of type "person type". A further restriction might produce the domain "people

named John", which would consist of objects of type "person type" with each of

their "first name" attributes having the value "John". Domains are either in the

system by default or are created via the use of queries (see section 7-3-3-5).

Lists are sets of sets of atomic values. The values within a set-within-a-set

relate to each other. Thus, a list might consist of a set of "first name/last name"

sets. In this case, the value for first name would belong to the same object as the

value for last name in each set. The list might look like this:

((John,Smith),(Mary,Jones),...). Lists are created via the use of queries. In fact,

lists (and sometimes domains) can be considered the results of queries.

A query is a request to retrieve data from the database. The request is built

by using operators to associate n-tuples with one another. Either the query is

requesting a confirmation of the existence of certain data in the database and no

unknowns are needed or the query is requesting the retrieval of data and

unknowns must be placed in the query request. For example, a query for

confirmation of existence might be:

(joan,sibling,sue) and (sue,sex,female).

Notice there are no unknowns (variables) in this query. If data was desired, the

query might be:

45

(joan,sibling,?) and (?,sex,female).

The result would be data, the list ((sue)).

A function is a storable form of a query. It appears in a reduced form so

that the details of how the query works is not shown. However, it can be expanded

back into full query form.

It was mentioned above that queries contain operators. An operator is one

of such boolean operators as "and", "not", "inclusive or" and "exclusive or" or one

of such relational operators such as "=", "<", and >

There are other constructs that are used in creating queries, functions, and

functional attributes. They will not be mentioned, however, since this section

was written to give a general idea of how data is stored and retrieved in the system

and discussion of the other constructs is not necessary.

46

7-2. Choice of Prolog

This section includes a description of how Prolog works on a basic level and

a discussion of why it is used for GRAF-ASQ.

Prolog is a programming language that was designed mainly for the

development of artificial intelligence programs, especially expert systems. Its

ability to store and retrieve information in a form whereby solutions to questions

may be derived make it ideal for use with expert system applications. As a side

effect, its storage and retrieval capabilities make it useful for database

programming as well. Prolog works as follows:

A Prolog program consists of "facts" and "rules". A fact is straight data in

the form of:

<functor>.

or

<functor> (<argument> (,<argument>}),

where {} means zero or more. An example of a fact would be "sister (joan,sue)."

In this case, "sister" is the functor and "joan" and "sue" are arguments. (Note that

"joan" and "sue" begin with lower-case letters because they are constants, not

variables. This is explained further below).

If a programmer wanted a way to determine "sister" without there being

any "sister" facts, he could create a rule. A rule has the form:

<goal> :- <goal> {<separator> <goal>}.

A <separator> is either a "," (which represents "and") or a ";" (which represents

"or"). A goal has the same form as a fact, except its arguments can be variables

instead of constants. The goal on the left side of the rule is the goal solved for and

its arguments must be variables. The way Prolog distinguishes between constants

and variables is by having constants begin with lower-case letters and having

47

variables begin with upper-case letters.

Below is an example of a sister rule:

sister (Siblingi, Sister2) :-

(sibling (Sibling1,Sister2); sibling (Sister2,Siblingl)),

female (Sister2),

not (Sibling1 = Sister2).

If given the goal "sister (Siblingl,sue)", Prolog would look for a fact that has the

form "sister (<some constant>,sue)" or a rule with a left-side goal of the form

"sister (Variable1,Variable2)". If the database contained the fact "sister

(joan,sue)", Prolog would report "Sibling1 = joan" as the answer. If instead, it

contained the sister rule stated above and the following facts:

sibling (joan,sue).

female (sue).

the answer would also be "Siblingi = joan", but the answer would need to solved by

Prolog, instead of just found.

The example goal of "sister (Siblingl,sue)" uses only one variable.

However, a goal can have more than one variable. If given the goal "sister

(Sibling1,Sister2)", Prolog would return:

"Sibling1 = joan"

"Sister2 = sue".

A goal can have a variable for any or all of its arguments.

Now that a limited description of the workings of Prolog has been given,

the following is a discussion of why it was chosen as the language for GRAF-ASQ.

First of all, it provides a means to retrieve the eight permutations of n-tuples very

easily (see section 5 on The Use of N-Tuples). Notice that in the fact "sister

(joan,sue)", "joan" is similar to an object, "sue" is similar to a value, and "sister" is

48

similar to an attribute. Thus, using this form, objects and values can be searched

for easily. This ability is not sufficient to allow searching on the eight

permutations, however. There must be a way to search for attributes, too. Even

though Prolog has no way to search on a functor directly, a trick can be used to

solve this problem.

The way to solve the problem is to store the fact in a different way. Instead

of storing "sister (joan,sue)", the programmer can store "data (joan,sister,sue)".

Then a variable can be put in the "sister" (attribute) position, as well as the "joan"

(object) and/or "sue" (value) positions and thus a search can be done on any of

the eight permutations.

Another thing about Prolog that makes it useful for GRAF-ASQ is that the

mechanism of rules facilitates the use of functions and functional attributes. A

function is basically a storable query. In Prolog, a function can be stored as a

rule. A functional attribute is a special attribute that is calculated. Similar to a

function, it can be stored as a rule. (In this case, the attribute would have to be in

the functor position, which would not correspond to the attribute position used

when an attribute is part of a fact. However, a Prolog program can be written to

get around this problem).

Since Prolog allows rules to have the same name, there can be different

queries with the same name and different functional attributes with the same

name. This allows for the creation of recursive functional attributes, as discussed

in section 7-3-5-2.

Thus, there are numerous reasons for the choice of Prolog for this

application. In fact, GRAF-ASQ is almost a graphical Prolog, taking advantage of

its main capabilities. However, although the graphical query language has some

correspondence to Prolog syntax, it does not directly imitate it.

49

7-3. Detailed Examples

This section gives a variety of scenarios and examples demonstrating how

the system works and some of the more unusual and desirable actions it was

designed to perform.

7-3-1. Assigning Attributes

This section describes various ways in which attributes can be assigned to

objects. There are three basic ways: simple attributing (assigning atomic values),

complex attributing (connecting objects), and putting functional attribute results

into the database.

7-3-1-1. Simple Attributing

Figure 6 shows how MacDRAW objects are given simple attributes

(attributes that have atomic values). First a user selects a MacDRAW object. Then

he chooses the desk accessory "Attribute". The user then types in the type of

object and the attributes and values he wants to give it. When finished, the data

obtained from the desk accessory can be brought into the database by using the

menu command "Get from MacDRAW".

7-3-1-2. Complex Attributing

Figure 7 shows how MacDRAW objects are given complex attributes

(attributes that connect objects to one another). First a user selects a MacDRAW

50

object. Then he gets into the Attribute Desk Accessory and defines the type,

attributes, and values as desired. If he wants to assign an attribute that has a

non-atomic value, instead of typing in a value, he selects the "Get Non-Atomic

Value" button and is brought back to MacDRAW where he selects another object.

Then he goes back to the desk accessory, where he can a type, attributes, and

values to that second object. If he goes back to MacDRAW, chooses the first object

again, and goes backs into the desk accessory, he will notice that the value of the

attribute that needed a non-atomic value will be filled in with "object of type

<second object's type>".

7-3-1-3. Putting Functional Attribute Results in Database

Functional attributes (see section 7-3-5) are calculated every time a query

uses them. There is an attributes menu command "Functional to Database",

however, that allows the user to essentially make a functional attribute into a

regular attribute. When the command is executed on a selected functional

attribute, all the n-tuples which currently fulfill the requirements of the

functional attribute will be created and placed into the database. Thus, if there

was a functional attribute "sister", and by calculating it Ann was found to be

John's sister and Jill was found to be Tom's sister, the data (John, sister, Ann) and

(Tom, sister, Jill) would be entered into the database.

7-3-2. Schema (or Meta Data)

To specify the view of a schema to be displayed, a user chooses the center

object type by selecting the menu item "Choose Center". The user will be given a

51

choice of the possible object types from which he can choose the center object

type. He can also choose how many levels from the center object type he wants

displayed by choosing the schema menu item "Choose Number of Levels".

For example, if the chosen center was "person type" and it connected to

"company type" via the attribute "works at", "company type" might be further

connected to "location type". If the user requested to see one level, "location type"

would not show, as it is part of level two. The exception to that would be if "person

type" was also connected to "location type". Then "location type" would be part of

level one and would show. The connection of "company type" to "location type"

would also show in that case because all the connections between any types that

are currently displaying will be shown.

Another option for the user is to use the menu item "Include Atomic" to

specify whether or not types for atomic values should be shown. For visual

distinction, atomic types are displayed in a lighter box than non-atomic types.

Figure 8 shows two example views of the same schema with the following

options specified:

(1) "person type" as the center, number of levels = 1, include atomic off.

(2) "company type" as the center, number of levels = 2, include atomic on.

7-3-3. Queries

This section describes how to create queries and gives examples of a variety

of them as a hint to what's possible. Examples of further possibilites are expressed

in later sections.

52

7-3-3-1. Creating

Figure 9 shows the step-by-step creation of a query. First a user views the

schema and chooses the attributes desired for the query. These attributes, with

their tuple connectors already attached, are automatically put into the query

window. Then the user selects the desired operators and connects them to the

tuple connectors. Then the user selects the desired input/output symbols,

attaches them where desired and the query is created. To execute the query, the

user then chooses "Execute Query" from the query menu and the results appear in

the list window.

7-3-3-2. The Eight Permutations of a 3-tuple

Figures 10 and 11 show a series of example queries which correspond to the

eight permutations of a straight 3-tuple query as discussed in section 6. The

permutations are:

(<object> <attribute> <value>)

(<object> <attribute> ?)

(<object> ? <value>)

(? <attribute> <value>)

(<object> ? ?)

(? <attribute> ?)

(? ? <value>)

(? ? ?)

53

7-3-3-3. The N-Tuple

Figure 12 shows an example of a query on an n-tuple of higher dimension

than a 3-tuple (namely, a 5-tuple). The form of graphic used distinguishes the

special relationship the non-attribute members of the n-tuple have. That is, how

they are inter-related, and should, therefore, not be divided into separate 3-tuples.

However, the graphic is also consistent, so that the similarity between and a

3-tuple and n-tuple is seen. In a relational database, the distinction is not made

and, in most other databases, the consistency is not there, some kind of additional

construct is needed to express the special multi-relationship present in an

n-tuple.

7-3-3-4. Complex Query

In context of GRAF-ASQ, "complex query" is a query that has at least one

"and" and at least one "or" connecting tuples. The "and"s and "or"s used as part of

an input do not count, Figure 13 is an example of a query that makes liberal use of

"and"s and "or"s. Notice that the English statement almost directly conforms to

the graphical version. The "or" divides the two phrases "located in Iowa and have

female employees" and "located in Kansas and have employees that earn over

$25,000", just as in the English statement. "Retrieve all names of all companies"

corresponds to the part of the graphical query which includes the "company

name" attribute connected to the output list.

54

7-3-3-5. Creating Domains

Figure 14 shows an example of a construct to create a domain. The

construct is really a special type of query, so the process for producing it is the

same as for a query. The user picks the attribute "year born", chooses the

operators needed, then chooses the input/output symbols needed. The output is

the "unnamed domain". Then, the user chooses "Execute Query" for the query

menu. When the query is complete, the user can name and save the resultant

domain by choosing the "Save Domain" menu item from the input/output menu.

7-3-4. Functions

Functions provide a means to store and re-execute queries and to connect

them to one another to produce more complex queries. The following sections will

describe how to create a function, how to execute a function and how to link two

functions together.

7-3-4-1. Creating

Figure 15 shows, step-by-step, how to create a function. First the user

creates a query. Then the user surrounds everything but the input/output part of

the query with a function box. (The user chooses "Function Box" from the

functions menu and is then able to draw a function box). Then he chooses the

"Reduce Function" menu item to reduce the function, and finally he chooses the

"Save Function" menu items to name and save it.

55

7-3-4-2. Executing

A function is actually a query in a different form and is executed like a

query. The user either creates a function as stated before or selects one by

choosing the functions menu item "Select Function". After the function is

brought into the query window, he chooses the menu item "Execute Query" to

execute it.

7-3-4-3. Linking

Figure 16 shows how to link one function to another to produce a more

complex query. First the user selects the functions that are to be linked and they

will appear in the query window. Then he chooses "Regular Connection" from

the connections menu and uses it to connect the output of one of the functions to

the input of the other. Then he chooses "Link Functions" from the functions

menu and the two functions are linked together. A function can be linked to an

ordinary query in the same way.

7-3-5. Functional Attributes

Functional attributes are special attributes that are calculated instead of

being part of n-tuples in the database. They are calculated based on a query that

has no input/output symbols. They can be converted to regular attributes via a

menu command, however (see section on Putting Functional Attribute Results in

Database).

An example of how to create a functional attribute and an example of a

56

recursive functional attribute are shown below. Also shown is an example of how

to create a relational product, which is done with the use of a functional

attribute.

7-3-5-1. Creating

Figure 17 shows how to create a functonal attribute, step-by-step. First the

user creates a query without input/output symbols. Then he selects "Undefined

Attribute" from the attributes menu. He chooses "Define-Functional-Attribute

Connector" from the connectors menu and uses it to connect the query without

input/output symbols to the undefined attribute. Then the user chooses "Save

Attribute" from the attributes menu and is prompted for a name. The functional

attribute is saved with that name and a pattern is assigned to the attribute symbol.

7-3-5-2. Recursive

Figure 18 shows an example of a recursive functional attribute. This is

useful in producing generalized attributes in certain situations. For example,

without recursion, one would have to create a grandparent attribute, a

great-grandparent attribute, etc. to get at all the ancestors of a person. Using the

recursive ability, one would only need to create an ancestor attribute, as shown.

To create a recursive functional attribute, the user actually creates two

definitions for the attribute. One terminates and one is recursive (refers to itself

within its definition). When the attribute is executing, the terminating definition

will be tried. The recursive definition will only be tried if the terminating

definition fails.

57

The capability to create two definitions for a functional attribute is not

restricted to the times when a recursive attribute is desired. A user can create

more than one definition is any case.

7-3-5-3. Product

To create a product, the user creates a functional attribute definition

whereby the ends of the undefined attribute connects to two domains. Figure 3

shows an example of this. Then the user names and saves the new functional

attribute via the attributes menu item "Save Attribute". Then the user chooses the

menu item "Functional to Database" from the attributes menu. This will cause

each item from the first domain to be associated with each item of the second

domain via the newly-defined attribute. Thus, a 3-tuple will be created for each

first domain object/second domain object combination as follows:

(object-1-in-domain-1 newly-defined-attribute object-i -in-domain-2)

(object-1-in-domain-1 newly-defined-attribute object-2-in-domain-2)

(object-I-in-domain-I newly-defined-attribute object-n-in-domain-2)

(object-n-in-domain-1 newly-defined-attribute object-1 -in-domain-2)

(object-n-in-domain-1 newly-defined-attribute object-2-in-domain-2)

(object-n-in-domain-I newly-defined-attribute object-n-in-domain-2).

58

7-3-6. Comparison Query

In a comparison query, two unknown values are compared. In figure 19,

the unknown age of John is compared to the unknown ages of all people in the

database to produce a list of the names of all people older than John. This is done

by setting either an equal to, less than, and/or greater than symbol between the

two unknowns.

7-3-7. Relational Database Only Query

Figure 20 shows a query that is difficult for non-relational databases to

handle: "Retrieve the names of any departments that sell every item that some

company makes". As shown, GRAF-ASQ can handle it. First the user creates a

functional attribute which determines, for each department, what companies

make items that the department does Lai sell. Then the user creates a query,

using that functional attribute, that says "Retrieve the name of any department

whereby there is some company that it does not 'not sell all items the company

makes"'. When the double negative is converted to a positive, this query

translates to the original.

7-3-8. Modification

The discussion has focussed on querying and related operations thus far.

Another important feature of a database is modification. The following sections

will discuss how to modify the schema and how to modify data.

59

7-3-8-1. Of Schema

At this point, schema data can only be added (via the attribute desk

accessory), as shown in figure 6. Along with attribute and value data, type

information is entered. Type and attribute information make up the schema. In

most databases, a schema needs to set up beforehand in its entirety and cannot be

added to easily, so it is an advantage to be able to add to a schema as one proceeds.

However, there is no facility to delete or modify the schema in the same way. That

can only be done by directly modifying the file that holds the schema

information.

7-3-8-2. Of Data

To modify data, the user executes a query. Then the user can choose the

query menu item "Delete All Results" and all the n-tuples from which the results

were obtained will be deleted. If the user chooses, "Delete Results One by One", the

user will be prompted about whether or not to delete each n-tuple.

Similarly, the user can execute a query and then choose the query menu

item "Modify All Results". In that case, the user will be prompted for a

modification and all the n-tuples from which the results were obtained will be

modified in that way. If the user chooses, "Modify Results One by One", the user

will be prompted for a modification for each n-tuple.

60

After a user selects a MacDRAW object, he enters the attribute desk accessory.

Menn of Attrihutes
I

M~rni nf V~a1ii~e
I

I I~j I
I

I

OK) C17et

I I I

Non-A i I Cancel

The user gives the object a type at the top and then puts in attributes and

values. As he puts in attributes and values, they are placed into the "Menu
of Attributes" and "Menu of Values". Then, whenever the user enters the

same type (in this case, door) at the top, the attributes and values already

keyed in will be available for the user to select from, instead of re-typing
them.

door

f~n nf VIlitpc

Itn e

ZOK C Get Non-Atomi V Cancel

The user can bring this information into the database by issuing the menu
command "Get from MacDRAW" from the query menu in GRAF-ASQ.

Figure 6. Simple attributing.

61

___ A ____ I ___

height is |t""| 10.5

After a user selects a MacDRAW object, he enters the attribute desk accessory
and assigns attributes and values as desired (see Figure 6).

door

M________________________________ ,iI M

c zOK -

10.5

The user can enter an attribute that receives a non-atomic value by typing
in the attribute and then pressing the "Get Non-Atomic Value" button. The
user is then brought back into MacDRAW, where he selects another object to
be the value of the attribute.

Idoor
- Mpn nf Va1III~ -cMM

II Stirn1~vII i le

OK

When the user chooses the first object again in MacDRAW and then returns
to the attribute desk accessory, he will notice that a description of the
non-atomic value has been put in.

door

Sann nf Vtanlev

he iht k1 i I
Onext tn c<hiect of tvne window>

OK No-Atoi Cance

Figure 7. Complex attributing.

Cancel

height is

next to

62

Get N n-At mic \alue

IC

trihuteq

hPi

0 aht iq

Schema view with "person type" as the center, number
of levels = 1, and include atomic off.

SCHEMA

LEGEND

Location IVworks-at

TyptteTpeHih Tp hegti

located-at

Company Person Tysype
Type

Schema view with "company type" as the center, number
of levels = 2, and include atomic on.

SCHEMA

LEGEND

Locaion tateTypesibling-of
LocaionStaeTple Ight Typ~e

TyeHih ype height-is

V year-born

MEworks-at

located-at

City Type Company $ Person Type state-located

city-located

has-parts

Parts T ype Year Type

Figure 8. Schema Views

63

Choose attributes from schema via a menu that is created
with the schema view.

They will appear in the query window, with tuple connectors.

Querv Aftz-
Choose operators from operators menu and attach them

to tuole connectors.

Choose appropiate input/output from input/output menu
and attach them (for input, use regular connector).

User may now execute query
appear in the list window.

Figure 10. Steps to create the query:
"Retrieve the first names of all John's sisters".

64

I -

I

Does a person with the first name John exist?
(<object> <attribute> <value>)

person

What are the first names of people in the database?
(<object> <attribute> ?)

How are people related to the value "John"?
(<object> ? <value>)

John

(unnamed4

Create a domain of objects with a
first name of "John".
(? <attribute> <value>)

Figure 10. The first four of the eight
permutations of straight 3-tuples.

65

What are all the attributes and values John Jones?
(<object> ? ?)

What objects and values are related by the attribute "first name of"?
(? <attribute> ?)

John

(<nnamedy

What objects with what attributes have the value "John"?
(? ? <value>)

What are all the objects and all attributes and values in the database?
(? ? ?)

Figure 11. The second four of the eight
permutations of straight 3-tuples.

66

. E first name of

undefined attribute

Figure 12. 5-tuple query:
"Retrieve the full names of all players with an

average over .300 and the names of the teams
they played on in the year 1987".

67

Note, this would not count as an "or"
in the definition of a complex query
as a query that has at least one "and"
and at least one "or".

company name is

Figure 13. Complex query:
"Retrieve the names of all companies which are:

located in Iowa and have female employees
OR

located in Kansas and have employees that
earn over $25,000".

68

state located

works at

sex is

earns

MMMMMMMMM

year born

Create by the same methodology as a query, as this a special
type of query.

Execute the query via the menu item "Execute Query".
Store and name the domain via the menu item "Save Domain".

Figure 14. Creating the domain "People born in 1970".

69

Create a query.
(below is "Retrieve the full names of people born in 1970").

Choose "Function Box" from the functions menu and
draw a function box around non-input/output.

Choose the menu item "Reduce Function" to put it in
reduced form.

Choose the menu item "Save Function" to name and save

Figure 15. Creating the function "Names of people born in
given year".

70

year born

full name of

Choose two functions.

Connect the output of one with the input of another
with a regular connector.

Choose the menu item "Link Functions" from the functions menu to
get the following:

<first name type>

First names of sisters of

First names of husbands of

Figure 16. Linking Functions

71

User creates a query without input/output.

User selects "Undefined Attribute" from
the attributes menu.

User connects the two using the
define-functional-attribute connector.

User chooses "Save Attribute" from the attributes
attributes menu and is prompted for a name. After
the functional attribute is named, its symbol is
assigned a pattern.

Figure 17. Creating the functional attribute "aunt of'

72

Create the terminating functional attribute
(which translates to "parent of", in this case).

Create the recursive functional attribute
(which translates to "parent of ancestor of",

in this case).

Figure 18. The recursive functional attribute
"ancestor of'

parent of

ancestor of

73

I

Figure 19. Comparison query:
Retrieve names of all people older than John.

74

first name is

age is

First, create the functional attribute "does not sell all .items of".

Use this functional attribute to produce the desired

Figure 20. Relational Database Only Query:
"Retrieve the names of any departments that sell

every item some company makes."

75

8. Conclusion

GRAF-ASQ is designed as a graphical query system that contains a limited

number of symbols to provide simplicity and to provide the user with the ability

to access data not normally accessible in entity-relationship databases yet in a

entity-relationship form. It is also designed to interface with other systems,

particularly systems like those for computer-aided design (CAD), which need, yet

normally do not provide, extensive search abilities.

The implemented parts include:

- the ability to view the schema with different central foci and with

atomic attributes made invisible.

- the ability to get simple attributed data from MacDRAW and to query and

search for data via menues.

- the ability to highlight found objects within MacDRAW.

The usefulness of having the schema view has been seen in other

languages (see Section 3). The ability to interface with MacDRAW is also useful.

It allows a user to create graphical drawings in a familiar environment and to

store and retrieve data corresponding to those drawings, using that same

environment. The ability to query and search for items via menues gives a taste

of the query capabilities the final graphical query language would contain.

It will take a full implementation to know the usefulness of the graphical

query language itself. On paper, a variety of queries can be put together in a

very simple, comprehensible form. The queries that are possible include those

often atypical for a entity-relationship type database, yet the user can still think

in terms of entities (objects) and relationships (attributes) when constructing the

queries.

76

The potential of the function and functional attribute constructs were

explained to some extent. These constructs relate to known constructs, such as

functions and procedures, found in programming languages. They are not as

often found in query languages, yet can add greatly to ease of use. They, among

other things, allow a user to test pieces of queries as they go along and to store

them so that the same queries will not have to be reproduced over and over again.

The big question is how quickly a naive user would take to this form. The

simple graphics and the entity-relationship form are definite plusses, yet are not

guarantees. GRAF-ASQ is definitely a new language and how quickly a naive user

would catch on to it is unknown. Only testing with a fully implemented version

would make this clear.

77

Bibliography

Graphical Database Interfaces

The following all use the Entity-Relationship model and
let the user have a graphical view of the database structure.
Each annotation will point out a key idea(s) brought out
in the particular paper.

[EL85] Elmasri, R.A., J.A. Larson,
"A Graphical Query Facility for ER Databases",
Proceedings of the Fourth International Conference on

Entity-Relationship Approach, pp. 236-45,
Oct. 1985, Chicago, IL,

IEEE Comput. Soc. Press, Silverspring, MD.

This database interface (GORDAS) allows users to see a
hierarchical view of the structure based on any entity the user

selects.

[F084] Fogg, D.,
"Lessons from a 'Living in a Database' Graphical Query",
ACM SIGMOD, vol. 14, no. 2,
Proceedings of the Annual Meeting, Jun. 1984.

This database interface (LID) emphasizes browsing, starting from
a particular entity and branching off to entities related to it.

[G085] Goldman, K.J., S.A. Goldman, P.C. Kanellakis, S.B. Zdonik,
"ISIS: Interface for a Semantic Information System",
SIGMOD Rec., vol. 14, no. 4, pp. 328-42, Dec. 1985, USA,
Proceedings of the ACM-SIGMOD 1985 International Conference on

Management of Data, pp. 28-31, May 1985, Austin, TX.

This database interface provides a consistent way to view both the
database structure and the data itself. It allows the results of a query
to be added to the database structure in the form of a sub-class.
A sub-class is actually a collection of the entities that fit the query
criteria.

[K184] King, R.,
"Sembase: A Semantic DBMS".
Proceedings of the First International Workshop on Expert Database

Systems, Kiawah Island, South Carolina, Oct. 1984.

This database interface (SKI) shows the user the relationship
between parts of the database that are not directly related.

78

[W082] Wong, H.K.T., I. Kuo,
"GUIDE: Graphical User Interface for Database Exploration",
Proceedings of Very Large Data Bases, Eighth International

Conference, pp. 22-32, Sep. 1982, Mexico City, Mexico,
VLDB Endowment, Saratoga, CA.

This database interface allows a user to examine the results of

partial queries before creating the complete query. It also
allows the user to view the database structure at various radii,
and can get aggregate results of retrieved data such as sums
and averages. However, it specifically handles statistical
applications and only uses numeric data.

[W083] Wong, H.K.T., W.-L. Yeh,
"Graphical Query Systems for Complex Statistical Databases",
Computer Science and Statistics: Proceedings of the Fifteenth

Symposium on the Interface, pp. 35-49, Mar. 1983, Houston, TX,
North-Holland, Amsterdam, Netherlands.

More about GUIDE (see [W082]).

[ZD86] Davison, Jay W. and Stanley B. Zdonik,
"A Visual Interface for a Database with Version Management",
ACM Transactions on Office Information Systems, vol. 4, no. 3.,
July 1986, pp. 226-256.

Other Related Database Facilities

[CA80) Cattell, R.G.G.,
"An Entity-based Database User Interface",
Proceedings of the ACM SIGMOD Conference on Management of Data,

May, 1980.

This paper speaks about SDB, and includes discussion of the
advantages of entity-relationship databases.

[HA81] Hammer, M., D. McLeod,
"Database Description with SDM: A Semantic Database Model",
ACM TODS vol. 6, no. 3, Sep. 1981, pp. 351-387.

This paper gives a detailed description of an entity-relationship
model, and brings out two interesting constructs: a grouping
(a super-type) and an aggregate (a subset of entities that the
user groups together manually).

79

Database Background

[C072] Codd, E.F.,
"Relational Completeness of Data Base Sublanguages",
Database Systems, ed. R. Rustin,
Prentice Hall, NJ, 1972, pp. 65-98.

This paper presents a methodology to determine the relational
completeness of a language.

[DA83] Date,C.J.,
An Introduction to Database Systems, Vol. 2,
Addison-Wesley Publishing Company, 1983.

With volume 1, this is a good introductory text on databases.

[DA86] Date,C.J.,
An Introduction to Database Systems, Vol. 1, 4th ed.
Addison-Wesley Publishing Company, 1986.

With volume 2, this is a good introductory text on databases.

[KE78] Kent, William,
Data and Reality.
North-Holland Publishing Co., 1978, Chapter 10.

This paper contains an enlightening discussion of n-tuples.

[SC84] Schiel, Ulrich,
"A Semantic Data Model and its Mapping to an Internal Relational
Model",
Databases -- Roles and Structures, ed. P.M. Stocker, P.M.D. Gray,
M.P. Atkinson,
Cambridge University Press, 1984, pp. 373-400.

This paper talks about the difference between models that
distinguish between attributes and relationships and those that
do not.

80

Prolog

[BR86] Bratko, I.,
Prolog Programming for Artificial Intelligence,
Addison-Wesley Publishing Co., Inc., 1986.

Prolog is described in the context of artificial intelligence
applications. It gives a good, basic introduction to the language
and how to think about programming with it.

[C086] Covington, M.A.,
"Expressing Procedural Algorithms in Prolog",
Research Report 01-0021,
Advanced Computational Methods Center, Univ. of Georgia,
May, 1986.

This paper gives helpful hints for procedural programming
using Prolog.

[LA86] Lanam, D.H.,
Advanced A.I. Systems' Prolog Reference Manual,
Version M-1.0 and 1.10,
Advanced A.I. Systems, Inc., Mountain View, CA., 1986.

This is the manual for the Prolog being used for the thesis
project.

[MA86] Marcus, C.
Prolog Programming: Applications for Database Systems.
Expert Svtems. and Natural Language Systems,
Arity Corporation,
Addison-Wesley Publishing Company, Inc., 1986.

81

MacIntosh

[AP85] Apple Computer, Inc.
Inside MacIntosh. Vol. 1,
Addison-Wesley Publishing Company, Inc., 1985.

This manual gives information about MacIntosh facilities needed
for the thesis project, such as QuickDraw, the ToolBox and the
windowing facilities.

[CH85] Chernicoff, S.
MacIntosh Revealed. Vol. 1 -- Unlocking the Toolbox

Hayden Book Company, 1985.

This manual was used as a supplement to Inside MacIntosh.
Especially useful is its detailed listing of traps.

[Ch85] Chernicoff, S.
MacIntosh Revealed. Vol. 2 -- Programming with the Toolbox

Hayden Book Company, 1985.

This manual was used as a supplement to Inside MacIntosh.
Especially useful is its detailed listing of traps.

AutoCAD

[AU87] The AutoCAD Drafting Package Reference Manual,
Publication TD106-009,
Autodesk, Inc., 1987.

This manual was used as the information source on
attributing using AutoCAD.

82

Symbol List
I

Main Symbols |
Single Input

List

Domain

Existence

Attribute

Function Box
(draw around

query except
input and output).

I List Operators

For Each Element

"And" All Elements

"Or" All Elements

Boola Oprts

Not

And

Inclusive Or

Exclusive Or

U - U

Relational Operators

0DEqual To

I

Greater Than

G :) Less Than

Connectors

Regular Connector

-- Tuple Connector
(gets thicker when the type it connects to is lower in

the ordering - e.g. using the attribute "owns pet",
"person type" would have a higher ordering than
"animal type" and thus a thicker line would go to
"animal type")

** Attribute-as -Value Connector

--- Define-Functional -Attribute Connector

83

I-I

czzz~

0

E~J

I

Appendix I.

D
CD
CD
ED

Appendix II. Legal Connections

OOOOE)o

o- J
0 ~ ~ ~ J _ - - --

8-- --- if - _J J+

o -fJ

~ii -- -+ - - -A

84

Key

.A -Connect in one direction

- Connect in both directions

Appendix III. Syntax

Action Query I Create-Domain I Func-Attr-Def Func-Def

S ym b ol any piece of syntax that can be expressed
as a single graphic item, string, or number

The following pages contain the syntax, divided as follows:

Lowest Level Syntax - Symbols
Lower Level Syntax - Tuples and Input/Output
Higher Level Syntax - Object Groups
Highest Level Syntax - Actions

Note: All symbols are connected by
Regular-Connectors, unless a
Special-Connector is explicitly
specified (see Lowest Level
Syntax page for syntax definitions
of Connectors).

85

Key

Or

[] Optional

() One or More

() Connected
Symbols

Lowest Level Syntax - Symbols

<value> which never serves as <object>
<Atomic Value> (see chapter entitled "N-Tuples")

is either character string or number

Single-Input <Atomic Value>

Multiple Boolean Operator
(Multi-Bool-Op)

For-Each Operator
(For-Each-Op)

Relational Operator G G)
(Rel-Op)

(DG) (C ~)I
Boolean Operator (with Inclusive Or only)
(Bool-Op-Incl) ..

Boolean Operator Bool-Op-Incl
(Bool-Op)

Not-Op

Regular-Connector

Tuple-Connector etc.

Attribute as Value
Connector
(Attr-as-Value-Connector)
Define Functional Attribute

Connector 4
(Def-Func-Attr-Connector)

Special -Connector ::Tuple-Connectorl
Attribute-as-Value Connector
Def-Func-Rel Connector

Attribute 0
Input-Domain : Namedt

(contains objects)

Output-Domain (Unname
(empty until search done)

List

Existence

86

Appendix III.

Appendix III. Lower-level Syntax -
Tuples and Input/Output

Attribute with 2 or more Tuple-Connectors
tt hk dla Ce

(parent) (child)

(sibling) (sibling)

(batter) (avg)

(team) ear)

parent of

sibling of

O team year avg of

Atomic-Input ::(Single-Input

FJoeI

(List For-Each-Op Rel-Op [Attr-as-Value-Connector])

(List Multi-Bool-Op [Attr-as -Value-Connector]) I

Bool-Op-Incl
attached

with 2 or more (Rel-Op Single-Input)

Tuple

Rel-Op)

Non-Atomic-Output:: Output-Domain j Existence

Atomic-Output :: List (Attr-as-Value-Connector List)

87

Higher-Level Syntax - Object Groups

Positive Object Group:: Tuple
(Pos-Obj-Group) Bool-Op with optional Input Domain and 2 or more

Tuples attached

(Person

Object Group :: Pos-Obj -Group
(Obj -Group) (Not-Op Pos-Obj-Group)

&

Multiple Object Group.: Obj-Group
(Multi-Obj-Group) Bool-Op with 2 or more Obj-Groups attached

Rel-Op with 2 or more Obj-Groups attached

RelOp ith2 r mre bj-rops ttahe

88

Appendix III.

Appendix III. Highest-Level Syntax - Actions

Q u e r :: ([(Atomic-Input connected to Tuple-Connector of <Atomic Value>)]
Multi-Obj-Group

[(Atomic-Output connected to Tuple-Connector of <Atomic Value>)])
([(Atomic-Input)] Function ([Atomic-Output]))

| Joe i k p

Cr e a t e - Do m a in:: ([(Atomic-Input connected to Tuple-Connector of <Atomic Value>)]

Multi-Obj-Group
[(Output-Domain connected to Bool-Op)]

([{Atomic-Input)] Function Output-Domain)

(Output-Domain is
later named via menu)

Functional Attribute::
Definition

(Func- Attr-Dif

Fun ction Def in it ion::
(Func-Def)

Multi-Obj-Group with Def-Func-Attr-Connectors
attached to each stray Tuple-Connector or Bool-Op
Domain with Def-Func-Attr-Connector pointing to
end of a Tuple

e
each

Multi-Obj-Group reduces to <Function Name>

which can be called as the function
and expanded again via menu

IF~ l fI~Joel

89

Semantics of Symbols

The following pages contain the semantics of the symbols,
divided as follows:

Semantics - Main Symbols and Connectors
Semantics - Operators

90

Appendix IV.

Semantics - Main Symbols

<atomic value

ID

O0

LIII

Single Input:
used to input a single atomic value into the query.

List:
a list of sets of atomic values retrieved from the query,
each set containing one or more atomic values (e.g. first
and last names referring to the same person would be in
the same set). The box containing the lines of different
thicknesses is where the incoming tuple connectors come
into, depicting ordering, the narrower the line, the higher
in the ordering. Thus, if the ordering was to be first name,
then last name, the tuple connector for "first name of"
would connect to the narrowest line and that for "last name
of" would go to the second narrowest line.

Domain:
collection of objects, usually with some common trait,
such as being of the same type and/or having a common
attribute value.

Existence:
query output which indicates whether or not what was
searched for exists.

Attribute:
the attribute of an n-tuple.

Function Box:
this is drawn around a query, except its input and output.
Then, the query is reduced to a function box that has the
input and output coming off of it. This is now known as a
function which can be named, stored, and executed like the
original query. It can also be connected to other functions
and to queries to create more complex queries.

91

Appendix IV.

Appendix IV. Semantics - Connectors

Regular Connector:
the connector most commonly used to connect
non-connector symbols.

Tuple Connector:
the connector that is an off-shoot to an attribute.
It is used to indicated the ordering of the other items
in the n-tuple. The lighter the line, the higher the
ordering. The object of the n-tuple will always connect
to the lightest line. However, the value of the n-tuple
could be equally light if there is no ordering. For example,
if the attribute is "sibling is", the ordering is equal,
because the either the object or the value could be in the
object position. If the attribute is "parent of", however,
only the object and value would have to have the given order
and the value would be connected by a darker line.

Attribute-as-Value Connector:
in the case where there is a query to find out a list of
attributes this connector is connected from an attribute
to a list symbol to avoid confusion with a tuple connector,
which also connects to an attribute.

Define-Functional-Attribute Connector:
this is used to connect a query with a new attribute
which will define the new attribute as a functional
attribute, to be calculated based on the query.

92

Appendix IV. Semantics - Operators

Relational Operators

Equal To:
determines whether or not the input value
the corresponding n-tuple value.

Greater Than:
determines whether or not the input value
the corresponding n-tuple value.

Less Than:
determines whether or not the input value
the corresponding n-tuple value.

is equal to

is greater than

is less than

Boolean Operators

Not:
negates the results of an any of the other boolean operators,
or any of the relational operators.

And:
determines whether or not all the object-groups (see Appendix III)
or input values connected to it are true.

Inclusive Or:
determines whether or not at least one of the object-groups
(see Appendix III) or input values connected to it are true.

Gt Exclusive Or:
determines whether or not only one of the object-groups

(see Appendix III) or input values connected to it are true.

The lighter line within the symbol would be connected to the
object-group that shoul be tested first. If more than two
object-groups were connected to the exclusive or, more lines
would appear.

List Operators

For Each Element:
treats each element of a list as an individual input value
for the query.

"And" All Elements:
"ands" together all the elements of a list as if each element
were a separate input value being "anded" together with the

others.

S"Or" All Elements:
"inclusive-ors" together all the elements of a list as if each
element were a separate input value being "inclusive-ored"
together with the others.

93

CD
CD

Appendix V. Menues

Main Menu

Schema Queryj Operatorsj Input/Outpul Connectorsl AttributesI Functions

Schema Menu Items

Display Schema:
Schema will be displayed in the Schema Window with the
specifications as indicated by the other menu items.

Choose Center:
A menu of object types will appear and one can be chosen as the.

center. The current center will have a check mark beside it.

Include Atomic:

If check mark beside it, indicates that atomic value types should be

displayed on the schema display. Otherwise, they will be invisible.
Choose Number of Levels:

User will be able to indicate the number of levels from the center
object that should be displayed on the schema diagram.

Query Menu Items
Create Query:

Opens up window for query creation.
Execute Query:

Once the query has been constructed, choose this to actually
perform the query.

Delete All Results:
Once the query has executed, choose this to delete all the items
chosen from the database.

Delete Results One by One:
Once the query has executed, choose this to walk through each item
selected and decide individually whether or not to delete
it from the database.

Modify All Results:
Once the query has executed, choose this to modify all items chosen
chosen from the database. The user will prompted for the
modification.

Modify Results One by One:
Once the query has executed, choose this to walk through each item
selected and decide individually whether or not to modify it.
The user will be prompted for the modification.

Get from MacDRAW:
Put the latest n-tuples created through the Attribute Desk
Accessory in MacDRAW into the database.

Show in MacDRAW:
Highlight any MacDRAW objects selected via the most recent query
when enter MacDRAW.

Operators Menu Items
The following operators will be in the menu for the user to choose from
and user for a query:

equal to less than greater than

(n ot CDand Ec exclusive or QSinclusive or

94

Appendix V. Menues Continued

Input/Output Menu Items:

User can select an empty input/output or select one already saved as part
of creating a query.

empty input value

empty list

empty domain

existence

Save List:
User will be prompted for name for domain and then it will be saved.

Select List:
User will be prompted to select a list from the ones saved.

Save Domain:
User will be prompted for name for list and then it will be saved.

Select Domain:
User will be prompted to select a domain from the ones saved.

Connectors Menu Items:

User can choose a connector to connect other symbols or modify

tuple connector:

regular connector

"" attribute-as-value connector

1' define-functional-attribute connector

Modify tuple connector:

Lighten or darken the chosen tuple connector to change the ordering.

Attributes Menu Items:

User can choose undefined attributes to use in a query, or
can choose one of the other items.

O undefined attribute

Save attribute:
User will be prompted for a name for the attribute and then it
will be saved.

Select attribute:
User will prompted to select an attribute from all that exist.

Select attribute from Schema View:
User will prompted to select an attribute from all that exist
within the current schema view.

Modify attribute:
User will be prompted to change name of selected attribute.
If the attribute is a functional attribute, the user will be able to
modify the query associated with it.

Delete attribute:
All n-tuples that contain the currently selected attribute
will be deleted.

Functional to Database:
The selected functional attribute will calculate all its members
and enter them into the database.

95

Appendix V. Menues Continued

Functions Menu Items:

User can choose function box in order to draw one around a query, or

can choose one of the other items.

function box

Reduce Function:
Reduces the query, surrounded by a function box, to a function
box with the input and output attached to it.

Save Function:
User will be prompted for name for the current function and
then the function will be saved.

Select Function:
User will be prompted to select a function from the ones saved.

Delete Function:

Deletes the current function.
Modify Function:

Expands the current function into its original query form
and allows the user to modify the current function.

Link Functions:

Two functions are chosen by the user and then the output from
one is connected to the input of the other via a regular connector.
The user then chooses "Link Functions" to link them together.

96

Appendix VI. Windows

Schema

+|4-

+
44~~

List

+ ||--

Window within which the
schema is shown.

Window within which the
user can create and execute
a query (including functions).

Window within which the
list output is shown.

97

Query

Appendix VII. Schema

Attribute Constructs

Undirected Attribute
(A 3-tuple is
exemplified).

Directed Attribute
(A 5-tuple is exemplified).
Each increase in line thickness
is a further subordinate link.

I

Legend
Relation A

Relation B

98

LEGEND

sibling-of

height-is

year-born

works-at

Attribute Desk Accessory

The user chooses an object from MacDRAW, then gets into the Attribute
Desk Accessory. When in the desk accessory, he keys in the object's type
(if the type has already been keyed in, the type is already shown). The
user can then assign attributes and values by choosing from the old ones
in the above scrolling region, or type in new ones below.

Key in a Type (Otherwise the Last Selected Type is Used)

<Type is put in here>

Menu of Attributes Menu of Values

<Old attribute is shown here> <Old value is shown here>

<New attribute is put in here> <New value is put here>

OK Z (Get Non-Atomic Value Cancel

The user can assign a non-atomic value by assigning an attribute and
not assigning a value for it, but press the "Get Non-Atomic Value"
button instead. Then the user will brought back to MacDRAW, where
he can choose the non-atomic value by choosing another object.

99

Appendix VIII.

