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Abstract

Advanced Flow Lithography and Barcoded Particles
by

Ki Wan Bong

Submitted to the Department of Chemical Engineering on May 1 5th, 2012,
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Chemical Engineering

Anisotropic multifunctional particles have drawn much attention, leading to wide ranges of

applications from biomedical areas to electronics. Despite their enormous potentials,

particles with geometrically and chemically complex patterns are not widely used because

existing methodologies have limitations in large scale, facile production and suffer from

constraints of functionality and morphology. For example, the geometries of multifunctional

particles prepared by liquid-phase particle synthesis have been mainly restricted to spheres,

deformed spheres, or cylinders. This geometrical restriction has resulted from the tendency

of liquid systems to adopt arrangements that minimize surface energy. Although template-

assisted particle fabrication can overcome this, these methods are largely ineffective at

producing particles with chemical anisotropy or patterning, as the precursor liquid is

simply isolated in a non-wetting template and then crosslinked in situ. Currently, a

technique that can provide both geometrical and chemical complexities to particles has

been missing.

Distinguished with the above techniques, flow lithography (FL) has been emerging as a

powerful synthesis tool that enables the creation of microparticles with complex

morphologies and chemical patterns. Combining photolithography with microfluidic

methods, FL has provided precise control over particle size, shape, and chemical patchiness.

However, in the primitive versions of FL, particle geometry and chemical patterning has

been restricted to 2D and 1D, respectively. Also, these techniques have required the use of

polydimethylsiloxane (PDMS) devices, greatly limiting the range of precursor materials

which can be processed in FL. Here, we present advanced flow lithography to achieve much

higher degree of geometrical and chemical complexity than before. For example, lock

release lithography (LRL) can be used to introduce three-dimensional (3D) morphologies,

and provide chemical anisotropy in the x-y dimensions (in-plane dimensions) of particles.

Also, hydrodynamic focusing lithography (HFL) was developed to offer z-directional

(particle height direction) chemical anisotropy to particles. Lastly, oxygen-free flow

lithography was a technique designed to extend current PDMS-based FL to any kinds of

devices and allow for the creation of particles from previously inaccessible reagents such as

organic solvents.
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In this thesis, we have also demonstrated advanced barcoded particles as one application of
advanced flow lithography. Previously, barcoded hydrogel particles were created as a
promising diagnostic tool for high-throughput screening and multiplexed detection of
biomolecules. Utilizing advanced flow lithography, we have added advanced functions to
the hydrogel particles introducing magnetic beads, tri-layered structures or near-infrared
sensing materials. As the first advanced barcoded particles, we present magnetic barcoded
hydrogel particles that had led to practical applications in the efficient orientation and
separation of the barcoded particles. Also, we show reinforced barcoded particles that
combine the usually orthogonal characteristics of an open porous capture region for
biomolecule detection with strong structural properties that resist deformation in flow.
Finally, we demonstrate near-infrared barcoded particles which can exhibit label-free and
real time detection of target molecules.

Thesis Supervisor: Patrick S. Doyle

Title: Professor of Chemical Engineering

4



Acknowledgments

It was a great fortune for me to meet Prof. Doyle as a research advisor. First of all,
he has encouraged my naive ideas and developed the ideas to systematic research projects.

His encouragements have made me to think more creatively. Also, he has guided my

researches towards quantitative ways which PhD students should bear in mind. Following

his advices, I have experienced how rough ideas are changed to robust research papers, and

sharpened my research attitudes for scientific problems. Furthermore, whenever I need his

advices, he has set up immediate meetings and provided valuable comments. This is the

care that I was eager to receive in PhD course. Lastly, he has been a warm and humane

advisor to me. In particular, I deeply appreciated his great supports on my next career. On

these reasons, I want to express my foremost thanks to my advisor, Prof. Patrick S. Doyle.

My committee members were Prof. T. Alan Hatton and Prof. Ned Thomas. In past 5
years, both of professors have inputted many scientific and precious comments on my

researches. I thank Prof. Hatton about that he has been warm and generous to me. His door

has been always opened when I need helps. I also thank Prof. Thomas about that he has

actively discussed with me about my carrier goals. In spite of his busy schedules as

Engineering Dean, he has considered my committee meetings as important as his official

works. Again, I would express deep thanks to both of professors.

My undergraduate advisor, Prof. Hong H. Lee at Seoul National University, has also

been a great mentor for my graduate life. I sincerely appreciate his cares, advices and

encouragements.

I would like to also thank the Doyle group members. First, I cannot thank Steve

Chapin enough. As a modest and steadfast friend, he has provided innumerable helps on

research and sincere consultations for my PhD life. It was a cherishable moment to me that

we encouraged each other in Nashville, Groningen, and Seattle conferences. Dan Pregibon

5



has been a kind, optimistic, and creative friend. I am very thankful for his devoted efforts in
working with me and socializing me. I still remember when we sang a song together in his
house. Priyadarshi Panda has thankfully taken charge of my refreshment and relax. We
have also enjoyed doing experiments together on many nights. Jason Rich is my English
teacher. Also, he has been a valued friend to share difficulties in both research and life.
Sukyung Suh and Nakwon Choi are Korean lab mates who have exchanged useful
information and discussions. Our main discussion areas were magnetic particles,
electronics, and future life. Jing Tang is a dinner mate. We have sought to find good
restaurants that satisfy our fastidious tastes. Isabelle Adrianssens is my first and last
UROP. It was great experience for me to work with such a talented and nice woman. I
would also express thankfulness to William Uspal (my kind neighbor), Harry An (2nd bay
warrior), Rathi Srinivas, Ben Renner (CNN news teacher), Ramin Haghgooie, and Matt
Helgeson for their supports and helps. As collaborators, I further thank Sunggap Im,
Jingjing Xu, and Jongho Kim. By virtue of their efforts, our collaborations have successfully
come to fruition.

On a personal front, I would thank Korean Community at MIT. Taeho Shin,
Jongnam Park, Seungwoo Cho, Daeyeon Lee, Jonghoon Choi, Changhoon Lim, Jumin Kim,
Wonjae Choi, Yoonsung Nam, Jujin Ahn, Sunyoung Lee, Changyoung Lee, Yongku Cho,
Jungah Lee, Daekun Hwang, Younjin Min, Kyungsuk Yum, Jaehee Han, Changsik Song,
Woojae Kim, Byungsoo Kim, Sanghwal Yoon, Taeseok Moon, Gwanggyu Kim, Youngseok
Kim, and Hyunmin Lee have provided grateful cares to me as senior students. Also,
Seungwoo Lee, Tekhyung Lee, Seokjoon Kwon, Hyekyung Noh, Eunjee Lee, Jeongwoo Han,
Youjin Lee, Bobae Lee, Jinyoung Baek, Wookeun Chung, Hyomin Lee, Jiyeon Yang, Dongsook
Chang, Juhyun Song, Jouha Min, Youngwoo Son, Naeri Ohn, Siwon Choi, Jiyoung Ahn, Jongmi
Lee, Yongjin Sung, Yanghyo Kim, Jinkee Hong, Jeonggon Son, Younkyung Baek, Jeonghwan
Jeon, Kyungsun Son, Jongmin Lim, Seungkon Lee, Heechul Park, Kyoochul Park, and Jaejin
Kim have shared their valuable times with me. I would further thank international friends at MIT.
Joshua Middaugh, Wuisiew Tan, Jessie Wong, Christina Lewis, Ying Diao, Adebola Ogunniyi,
Qing Han, Shreerang Chhatre, Byron Masi, Pedro Valencia, and Adel Ghaderi have thankfully
given constant friendship.

I also acknowledge the following financial supports for the research projects
described in this thesis: KwanJeong Educational Foundation, the Singpore-MIT Alliances,
NSF, the MIT Deshpande Center, NIBIB, and NIH.

Finally, I should say that it would not be possible to finish this PhD journey without
endless love and dedications of my parents (Won Sik, Bong and Young Ok, Park). Also, I
should mention that my younger brother (Ki Tae, Bong) have greatly supported me during
past 5 years. I will miss that we performed experiments together at MIT for a few months. I
truly thank my family and hope them to be always healthy and happy.

6



Table of Contents

A b stra ct ....................................................................................................................................... 3

Chapter 1 ................................................................................................................................... 21

1.1 Anisotropic M ultifunctional Particles .......................................................................... 21

1.2 Current M ethodologies ..................................................................................................... 23

1.3 Flow Lithography ................................................................................................................... 25

1.3.1 Continuous Flow Lithography (CFL)............................................................. 26

1.3.2 Stop Flow Lithography (SEL)......................................................................... 27

1.3.3 Theory .................................................................................................................. 29

1.3.4 Applications of Flow Lithography ................................................................. 30

1.3.5 Lim itations .......................................................................................................... 32

1.4 Outline of Thesis.....................................................................................................................33

Chapter 2 ................................................................................................................................... 34

2 .1 In tro d u ctio n ............................................................................................................................. 3 4

2.2 Experim ental M ethods ..................................................................................................... 35

2.3 LRL for 3D Particle Synthesis........................................................................................ 36

2.3.1 Theory .................................................................................................................. 38

2.3.2 Various 3D Particles ........................................................................................... 39

2.4 LRL for Com posite Particle Synthesis .......................................................................... 42

2.4.1 Composite Particles with Two Chem istries................................................... 43

7



2.4.2 Scalability ............................................................................................................ 44

2.5 LRL for Functional Particle Synthesis ......................................................................... 45

2 .6 S u m m a ry .................................................................................................................................. 4 7

C h a p ter 3 ................................................................................................................................... 4 8

3 .1 In tro d u ctio n ............................................................................................................................. 4 8

3.2 Experimental M ethods ..................................................................................................... 49

3.3 Particle Synthesis in Stacked M onomer Flows ...................................................... 51

3.3.1 Throughput and Uniformity for Synthesis of Striped Particles .................... 52

3.3.2 Top -down Particle Design ............................................................................... 53

3.3.3 M ultilayered Particles..................................................................................... 56

3.4 Particle Synthesis in M ultidim ensional M onomer Flows ...................................... 58

3.5 Protein Coating on Particle Surfaces..................................................................... 60

3.6 Summ ary ..................................................................................................................... 61

C h a p ter 4 ................................................................................................................................... 6 2

4.1 Introduction.................................................................................................................62

4.2 Experimental M ethods .......................................................................................... 63

4.3 Non-PDM S Based Device Fabrication .................................................................. 65

4.3.1 Hom ogeneous N OA81 Channel Fabrication .................................................. 65

4.3.2 Heterogeneous N OA81 Channel Fabrication ................................................ 68

4.3.3 Evaluation of NOA -based Microchannel Performance...................68

4.4 On-the-fly Particle Synthesis ................................................................................ 70

4.4.1 Maximum Particle Synthesis Throughput of Oxygen -free FL.............. 71

4.4.2 M odified Hydrodynamic Resistance M odel..................................................... 71

4.4.3 Sym m etry Condition for Inert Flows (Qi = Qs).............................................. 75

4.4.4 M iddle Layer Thickness, Hm........................................................................... 76

4.4.5 On -the -fly Alteration of Particle Heights....................................................... 78

4.5 M aximum Residence Time ......................................................................................... 80

4.5.1 Transverse Diffusion....................................................................................... 80

4.5.2 Estim ation of M onom er Diffusivity.................................................................81

4.5.3 Theoretical Estimation for Maximum Residence Time..................82

4.5.4 Simulation Estimation for Maximum Residence Time ..................................... 84

4.6 Oxygen-free FL with Organic Precursors .............................................................. 85

8



4.6.1 Particle Synthesis Using Organic Solvents ................................................... 85

4.6.2 Synthesis of Near-infrared-active Anisotropic Particles ............................. 86

4.7 Discussion....................................................................................................................87

Chapter 5 ................................................................................................................................... 89

5.1 M agnetic Barcoded Particles ................................................................................. 90

5.1.1 Experim ental M ethods.................................................................................... 91

5.1.2 Synthesis of M agnetic Barcoded Particles..................................................... 93

5.1.3 Saturation Magnetization of Magnetic Barcoded Particles ........................... 95

5.1.4 Magnetic Response of Magnetic Barcoded Particles ..................................... 97

5.1.5 Bioassays Using Magnetic Barcoded Particles............................................. 99

5.1.6 Sum m ary............................................................................................................102

5.2 Reinforced Barcoded Particles..................................................................................102

5.3 N ear-infrared Barcoded Particles ............................................................................ 104

5.3.1 Experim ental M ethods......................................................................................104

5.3.2 Synthesis of N ear-infrared Barcoded Particles ............................................... 105

5.3.3 Performance of Near-infrared Barcoded Particles .......................................... 107

5.3.4 Sum m ary............................................................................................................108

Chapter 6 ................................................................................................................................. 109

6.1 LRL and H FL ............................................................................................................ 109

6.2 Solvent Com patible FL ............................................................................................. 111

6.3 Advanced Barcoded Particles ................................................................................... 116

Bibliography ............................................................................................................................ 120

9



List of Figures

Figure 1.1: Applications of spherical Janus particles (a) Water-repellent Janus microspheres. The
particles were used to form a super-hydrophobic monolayer on water. Then, a water droplet was
sitting on the layer. The Image was adapted from ref 23. (b) Bicolored Janus microspheres. By
varying the direction of an external magnetic field, the orientations of Janus particles were
changed switching fluorescent signals. The particles can be used for magnetoresponsive bead
display. Images adapted from ref 25. (c) Magnetic Janus microspheres. The particles were self-
assem bled in Zig-Zag structures in response to in -plain magnetic fields. Images adapted from
ref 30. (d) Self-propelling Jan us microspheres. The particles get propulsion force from uneven
degradation rates of hydrogen peroxide. The image was adapted from ref 31. Scale bars are 1
cm (a), 25 pm (c, left) and 100 pm (c, right) ................................................................................. 22

Figure 1.2: Applications of anisotropic multifunctional particles (a) 3D electronic circuits. The
structure was created from the assembly of truncated octahedron particles. The Image was
adapted from ref 34. (b) Micro-grippers. The particles can catch and release target entities by
chemically or thermally triggered actuation. The right fluorescent image shows that a micro-
gripper locomote gripping samples. Images adapted from ref 11 and 35. (c) Bottom -up assembly
of cell-laden anisotropic particles. The building blocks were assembled into the multi-component
constructs by hydrophobic interaction. Images adapted from ref 39. Scale bars are 100pm (c,
left 4 images) and 200 pm (c, right)................................................................ ............... 23

Figure 1.3: 3D particle synthesis (a)A schematic depicting experimental setups for two-photon
lithography. Figure adapted from ref 44. (b) Venus Statue. The micro-statue was fabricated
using the setup in (a). Image adapted from ref 44. (c) Inter-locking chain. The micro-chain was
fabricated from multi-photon absorption fabrication. Images adapted from ref 43. Scale bar is
1 0 0 p m (c)...........................................................................................................................................2 4

Figure 1.4: Mass-production of anisotropic particles (a) Off-wafer synthesis. The schematic describes
the fabrication process. Inserted images show micro -alphabets and layered composite particles.
Figures adapted from ref 48 and 49. (b) PRINT fabrication. The schematic describes the PRINT
process. Inserted image shows micro-cubes. Figures adapted from ref 51 and 52. Scale bars are
3 p m .................................................................................................................................................... 2 4

10



Figure 1.5: Other liquid-phase synthesis methods (a) SEM and TEM images of nanoparticles

synthesized from batch nucleation. Images adapted from ref 54. (b) A schematic depicting the

emulsification process. Figure adapted from ref 55. (c) Droplet-based microfluidics. Images

adapted from ref 24. (d) An optical image for a micro-doughnut particle prepared by the droplet-

template fabrication method. Image adapted from ref 63. (e) Electro-jettting fabrication for the

synthesis of Janus nanoparticles. Figure adapted from ref 64. (f) Micro-cylinders prepared by

micro-cutting fabrication route. Images adapted from ref 65. Scale bar is 500 pm (d). .......... 25
Figure 1.6: Continuous Flow Lithography (CFL) (a) A schematic diagram of CFL process. (b) - (e)

Differential Interference Contrast (DIC) images of various microparticles prepared by CFL.
Scale bars are 10 um. Figures adapted from ref 72. .................................................................. 26

Fi gure 1.7: Synthesis of Jan us particles (a) A schematic diagram showing the CFL process for the

synthesis of Jan us particles. (b) - (c) DIC and fluorescent images of a Janus particle synthesized

in the process (a). Scale bars are 100pm. Figures adapted from ref 72................................... 27
Figure 1.8: Compressed-air flow control system (a) Schematic of the pressure manifold and its

attachment to a two-inlet microfluidic device. Compressed air is down regulated and then

passed through a three-way solenoid valve that serves to either pressurize the manifold (open)

or vent to the atmosphere (closed). Two control channels, each with its own sample arm and
relief needle valve, are pictured branching off the main supply line. (b) Pulsed-flow operation.

Pulsing frequency was fixed at 0.5 Hz. The compressed-air system exhibited a rapid reaction to

th e d rivin g force................................................................................................................................. 2 7

Figure 1.9: Stop Flow Lithography (SFL) (a) Three steps in the SFL process. The first step is
stopping the flow ofpolymer solution. The second step is photopolymerization via flash of UV
light through a mask. The final step is flowing out of microparticles using a pressure pulse. (b)

Comparisons for particle throughputs of CFL and SFL. The throughput is a function ofparticle

size. When particle size is getting smaller, the difference of throughputs is getting larger. (c)

Comparisons for fluorescent signals of striped particles synthesized from CFL and SFL. Scale
bars are 50 pm (a) and 100,pm (c). Figures adapted from ref 73. ............................................ 28

Figure 1.10: A model for oxygen inhibited photo-polymerization (a) Schematic diagram of the

reaction -diffusion model. DIC images show measurements ofparticle width, x, and height, h. (b)

A plot for induction time ri as a function of Da. (c) A plot for the critical thickness of the

inhibition layer ie as a function of Da. Figures adapted from ref 75....................................... 29
Figure 1.11: Barcoded hydrogel particles (a) A schematic depicting the synthesis process of barcoded

particles. The inserted fluorescent image show barcoded particles produced from the process.

Figures adapted from ref 7. (b) The fluorescent image of color-coded particles. The colors were

genera ted from ID photonic crystal structures of magnetic nanoparticles. Image adapted from
ref 76. (c) A fluorescent image of barcoded particles conjugated with fluorescently labeled

viruses. Image adapted from ref 83. (d) High sensitivity of barcoded particles. The particles

detected micro-RNAs at atomolar concentrations. Figures adapted from ref 78. Scale bars are

500 p m (b) an d pm ( )................................................................................................................... 30
Figure 1.12: Bio-related applications of FL (a) Assembly of cell-laden hydrogel particles using a

railed microfluidic device. Image adapted from ref 84. (b) Biomimetic hydrogel particles. The

particles were enough squishy to penetrate into a channel that had smaller dimensions than
their sizes. Figures adapted from ref 86. (c) A fluorescent image of biodegradable particles. A
triangle particle was divided into two parts as the middle biodegradable part disappeared by
erosion. Image adapted from ref 85. (d) Nanoem ulsion composite microgels. The nanoem ulsions

allow for the release of drugs encapsulated in the gel particles, and reloading of drugs. Image

adapted from ref 88. Scale bars are 10 pm (b) and 50 pm (c and d)......................................... 31

11



Figure 1.13: Other applications of FL (a) A confocal image of a micro-gear for MEMs applications.
The gear was fully compacted with glassy silica colloidal particles. Image adapted from ref 89.
(b) Micro -actuators for MEMs applications. In the presence of external magnetic field, the

actuator exhibited anisotropic motions because the structure had programmed magnetic
anisotropy. Image adapted from ref 90. (c) Anisotropic amphiphilic particles. Particles with a
large hydrophilic head (blue) and a small hydrophobic tail (red) were assembled at the interface
of oil-in -water. Image adapted from ref 91. (d) Structural color printing. Magnetic nanoparticles
were used to generate different structural colors by modulation of external magnetic fields.
Image adapted from ref 92. Scale bars are 100,pm (a, b, and d), and 50pm (c) ..................... 32

Figure 1.14: Limitations in the primitive versions of flow lithography and barcoded particles. ......... 33
Figure 2.1: Process of lock release lithography. First, structures are polymerized by shining bursts of

UVight through a transparency mask and a microscope objective. The structures, having a
shape determined by the mask and channel topography, are 'locked" by relief structures in the
channel topographies. Particles are "released" with channel deflection after a relatively high
pressure (- 5psi) is applied to initiate flow. Differential interference contrast (DIC) image of
collection of 3D particles in the channel reservoir. ...................................................................... 37

Figure 2.2: Measurements of membrane deflection at apex for membrane thickness [Ref 100]........ 38
Figure 2.3: 3D particle synthesis from channels with negative topographies (a)-(d) Squares with 1-

pm -high line-space patterns using 30-pm -high channel with negative line-space patterns on its
floor and a square mask. (e)-(g) Squares with 10-pm -high gecko-type patterns using 20-pm -high
channel with negative dot patterns on its ceiling and a square mask. (h)-() Table-like 3D
particles with 1-pm-high line space patterns on the top and 30-pm -high supports on the bottom
using 30-pm -high channel with negative line-space patterns on both sides and a circle mask.
Scale bars are (b) 100,pm (c, g, i) 50 pm, (d) 10 pm, and (f) 200 pm..........................................40

Figure 2.4: Synthesis of variants by changing masks and/or channel topographies (a) Variants using
30-pm -high channels with same kinds of topographies of negative dots on their ceiling, but
different cross mask. (b) Micro T-shirt with 3D MIT logo. Scale bars are (a) 200 pm and (b) 50
p m . ...................................................................................................................................................... 4 1

Figure 2.5: 3D particle synthesis from channels with positive topographies. Microcups with 30-pm -
deep voids were generated using 60-pm -high channel with positive dot patterns on its ceiling
and a circle m ask. Scale bar is 50 pm . ........................................................................................ 41

Figure 2.6: Synthesis of composite particles. (a) A schematic diagram showing the synthesis of
composite particles. Locking structures with chemistry 1 are covalently linked to chemistry 2
through mask overlap and UV exposure after fluidic exchange with low pressure. Then, the
composite structures are released by high pressure in both flows. (b) A schema tic description of
particles produced by the process (a)............................................................................................. 42

Figure 2.7: Composite particles with two distinct chemistries. (a) DIC image of a composite particle
with a circular center and square exterior. (b) Fluorescence microscopy image of the particle
shown in (a). (c) DICimage of a composite particle with interior features and border. (d)
Fluorescence microscopy image of the particle shown in (d). Two streams containing PEG-DA
and PEG-DA with rhodamine -labeled monomer were used to respectively present chemistry 1
and chemistry 2. Scale bars are 100 pm (a and b) and 50 pm (c and d)..................................... 43

Figure 2.8: Composite particles with three distinct chemistries. (a) A schematic diagram showing the
synthesis of composite particles with three chemistries. First, we flow a prepolymer solution
with red fluorophores, rhodamine-acrylate. Using a first mask, we generated a frame and two
trunks of trees locked in the channel topographies. Then, in a low pressure, we replace the first
prepolymer solution as a second one with 200 nanometer green fluorescent beads. Using a

12



second mask, we created leaves of trees. After that, we flow third prepolymer solution with no

fluorophores in a low pressure. With a final mask, we connect trees with the frame. Finally, a

high pressure flow is used to release the composite particle. (b) Fluorescence microscopy image

of a composite particle synthesized in the process (a). Scale bar is 50 pm.................................44

Figure 2.9: Fluorescence microscopy images of multiple composite particles with different orientation.

(a) Composite particles with "fall trees" in a frame. (b) Composite particles with "spring trees" in

a fram e. S cale bar is 100 pm ............................................................................................................. 45

Figure 2.10: Functional particles. (a) Fluorescence and DIC images of "Venn diagram "particle

demonstrating interwoven (fluorescent monomer, orange) and excluded chemistries (beads,

green) in polymerization overlap region. (b) Fluorescence and DIC images of a DNA detector

particle with distinct probe regions. Shown are fluorescent images of a particle after incubation

with target #1 (green) or both targets #1 (green, insert in the top right corner). and #2 (red,
insert in the top right corner). (c) - (e) Fluorescence images ofparticles with pH-responsive fins

and a cross-shaped rigid support. The particle keeps its original 2D circle shape in low pH (c)

while in an alkaline pH, the fins bloom to form a 3D flower-like structure (d). (f) Fluorescence

and DIC images of overlapping zig-zag-shaped particles with encapsulated entities. One strand

contains 2 pm green fluorescent beads while the other has 5 nm red fluorescent strepta vidin

protein. In all DIC images, particles have been outlined for clarity. Scale bars are 50 pm (a,b),

an d 10 0 p m (c-f). ................................................................................................................................ 46

Figure 3.1: A schematic diagram for fabrication process of oxygen permeable two-layered PDMS

channels. A partially cured PDMS bottom channel is prepared on a glass slide via PDMS-PUA -
PDMS replica molding technique. Then, a top PDMS channel is assembled on the bottom

channel generating a two -layered gas permeable PDMS channel. ............................................ 50
Figure 3.2: Hydrodynamic focusing lithography (HFL) for high -throughput synthesis of Janus

microparticles. (a) Schematic description for the creation of layered monomer flows. Pi and P2

represent the inlet pressures of top and bottom channel respectively. All inlet dimensions are 40

pm X 40 pm. Particles are synthesized after layered flows are widened up to 1 mm in a 40 pm

tall region of the channel. (b) A side view of flow focusing and particle polymerization. (c)A

fluorescent image of 50 pm triangular particles with green (200 nm, green fluorescent beads)

and red (Rhodamine-A) layers. Hi and H2 are the heights of top (red) and bottom (green) layer

in a particle. Scale bar is 50 pm. ....................................................................... .......... 51
Fi gure 3.3: Uniformity of Jan us particles synthesized at A, B, C, D and E spots across a 1 mm width

channel. The intervals between spots are 100pm. Scale bar is 50pm. ................................... 52
Figure 3.4: Comparison ofmeasured H2H1 versus estimated flow ratio Q2/Qi. A simple

hydrodynamic resistance model predicts a curve for the relation. Scale bar is 20pm............. 53
Figure 3.5: A schematic description of a PDMS channel used for creation of two layered flows......... 54

Figure 3.6: Synthesis ofimulti-layered microparticles. (a) A schematic drawing for synthesis process

of tri-layered microparticles. In the stable layered flow, tri-phasic triangular particles can be

synthesized using a mask with triangles. (b) Differential interference contrast (DIG)image of 50
pm tri -layered triangular particles (c) Magnified fluorescent image for the circled region of (b).

Scale bars are 100jpm (b) and 50 pm (c). ................................................................................... 57
Figure 3.7 Tri-layered microparticles with different aspect ratios (a) 20pm pentagonal particles

with aspect ratio 2. These particles contain rhodamine -acryla te in both top and bottom layers

but no fluorophores in the middle layer. (b) 150 pm tri-layered ring particles with aspect ratio

0.4. Scale bars are 30 pm (a) and 100jpm (b).............................................................................. 57
Figure 3.8: Synthesis of dual-axis layered microparticles. (a) A schematic diagram for synthesis

process of dual-axis layered microparticles. Flow 1 (Fl), flow 2 (F2) and flow 3 (F3) contain 200

13



nm green fluorescent beads, 100 nm blue fluorescent beads and rhodamine-acrylates as
fluorophores. Inserted fluorescent images show dual-axis flows in a two-layered PDMS channel.
(b) A fluorescent image to show a side view of a 40pm cross shaped particle with red, blue (in

top) and green layers (in bottom) (c) A fluorescent image of mass -produced particles. Scale bars
are 80 pm (b) and 10 pm (c). ............................................................................................................. 58

Figure 3.9: Synthesis of four-layered sandwich microparticles. (a) A schematic diagram for synthesis
process of four layered sandwich particles with dual layers in the middle. A -B is the intersection
of the channel with dual-axis four layered flows. (b)-(d) Fluorescent images of a sandwich
particle generated by the process in (a). Scale bars are 50 pm. ................................................. 59

Figure 3.10: Synthesis of five-layered sandwich microparticles. (a) A schematic diagram for synthesis
process of five layered sandwich particles with dual layers in the top and bottom. A -B is the
intersection of the channel with dual-axis five layered flows. (b-c) DIC and fluorescent images of
a sandwich particle generated by the process in (a). Scale bars are 50 pm.............................. 59

Figure 3.11: Protein conjugation on particle sides. (a)A schematic diagram for preparation of
triangular particles with patterned protein coatings. The middle flow contains biotin -PEGA that
is copolymerized in the particle. After incubation, the triangular particles are coated with
streptavidin -cy3 on the sides. (b) A DIC image of the protein coated triangular particles. (c) A
fluorescent image of (b). Scale bars are 50 pm. ............................................................................ 60

Figure 4.1: NOA81 channel fabrication (A) Bottom layer of channel is created by sandwiching NOA
between glass substrate and SU-8 master mold bearing positive-relieffeatures and then curing
with 10-min UVexposure. (B) Top layer is created in a similar fashion, using a different master
mold and a silane-treated PDMS layer with inlet and outlet holes that align with the
corresponding SU-8 relief elements. Silane treatment of PDMS substrate facilitates bonding
betw een PD M S and N OA .................................................................................................................. 65

Figure 4.2: Inlet fabrication utilizing NOA81 capillary coating. (a) A schematic description of the
inlet fabrication process. (b) A SEM (Scanning Electron Microscope) image for intersection of an
NOA81 -coated PDMS inlet. During the sample cutting process, the hard NOA81 coating that
originally covered the entire circumference of the inlet was broken, and the image provided
shows only a portion of the original cylindrical coating. The white arrow indicates the remaining
portion of the broken NOA81 coating. (c) A magnified SEMimage of (b). (d) An optical image to
show the intersection of an evenly coated inlet. The NOA81 was coated with around 200 um
thick on the PDMS substrate. All scale bars are 1 mm. ............................................................. 66

Figure 4.3: iCVD nano-adhesive bonding (a) Schematic description for the iCVD nano-adhesive
bonding process. The nano-adhesive films ofpoly(4-aminostyrene) (PAS) and poly(glycidyl
methacrylate) (PGMA) were deposited on top and bottom channel substrates, respectively, via
iCVD. The two channel substrates are aligned and sealed together under vacuum via the ring-
opening reaction of the newly generated amine and epoxy groups. (b) Color image of fully
assembled channel mounted on a glass slide. The devices are optically transparent and can be
used with photolithographic techniques. Scale bar is 1 mm. ..................................................... 67

Figure 4.4: Bonding NOA81 channels with various substrates. All scale bars are 1 cm.................. 68
Figure 4.5: iCVD nano-adhesive bonding (a) Schematic description for the iCVD nano-adhesive

bonding process. The nano-adhesive films ofpoly(4-aminostyrene) (PAS) and poly(glycidyl
methacrylate) (PGMA) were deposited on top and bottom channel substrates, respectively, via
iCVD. The two channel substrates are aligned and sealed together under vacuum via the ring-
opening reaction of the newly generated amine and epoxy groups. (b) Color image of fully
assembled channel mounted on a glass slide. The devices are optically transparent and can be
used with photolithographic techniques. Scale bar is 1 mm. ..................................................... 69

14



Figure 4.6: On -the-fly alteration ofparticle height with inert flows (a) Schematic of microparticle
synthesis in gas-impermeable NOA channel. Particles were synthesized and then carried out of
the synthesis area using rapid, synchronized cycles of sh utter-media ted UV exposure and

pressure -driven flow. (b) A schematic to describe the vertical flow focusing process. Instead of

volumetric flow rates, we con trolled pressures at the inputs to provide rapid alternation

between the flow and stoppage states. The middle monomer flow is sandwiched between top and

bottom inert flows without mixing due to low Reynolds number flow conditions............70
Figure 4.7: A schematic description for two layered homogeneous NOA81 channels ...................... 72
Figure 4.8: On -the-fly alteration ofparticle height with inert flows (a) Schematic of microparticle

synthesis in gas-impermeable NOA channel. Particles were synthesized and then carried out of

the synthesis area using rapid, synchronized cycles of sh utter-media ted UV exposure and

pressure -driven flow. (b) A schematic to describe the vertical flow focusing process. Instead of

volumetric flow rates, we con trolled pressures at the inputs to provide rapid alternation

between the flow and stoppage states. The middle monomer flow is sandwiched between top and

bottom inert flows without mixing due to low Reynolds number flow conditions.....................73
Figure 4.9: The inlet pressure relation to achieve symmetry condition (Qi = Qs. When we use a

typical pressure 3.0 Psi as P2, P3 and Pi have a linear relation with slopes and intercepts
depending on which m odel is applied........................................................................................... 75

Figure 4.10: Comparing modified hydrodynamic model with the previous model in achieving the

symmetry condition. (a)A schematic description for preparing tri-layered particles containing
red dye in the middle layer. The dye was used to visualize symmetry of layers. (b) Optical
images of synthesized particles using inlet pressures predicted by each model. The modified
model gives more accurate prediction for inlet pressures to achieve the symmetry condition.... 76

Figure 4.11: A schematic diagram for flow profile in the channel ..................................................... 77
Figure 4.12: A plot for B versus Pi. B is the ratio of the volumetric flow rates of inert flow (Qi)

divided by the volumetric flow rates of middle monomer flow (Q2). In this plot, P2 is fixed to 3.0
Psi while Psis the linear relation with Pi to satisfy the symmetry condition.......................... 77

Figure 4.13: Particle height as a function of P1. Height of cylindrical particles was seen to vary with

inlet pressures in a manner that matched predictions from the hydrodynamic resistance model.
As shown in the graph, the Hm prediction compared well with measurements ofparticle heights.
............................................................................................................................................................ 7 8

Figure 4.14: On -the-fly alteration ofparticle heights in a PDMS device. (A)A schematic description
for the process adjusting particle heights with inert tuning fluids (B) An optical image of
collected particles in a reservoir. (C) A SEMimage showing top and side ofparticles. (D)
Comparison with the heights of original particles that were synthesized with oxygen lubrication
layers (-2 pm). The top particle has altered height of 19 pm while the bottom one has almost
chann el h eigh t of 36 pm . ................................................................................................................... 79

Figure 4.15: Transverse monomer diffusion (a) Experimental setup for measurement of diffusion
coefficient of PEG-DA 575 in PEG 200 in a PDMS device. The green stream consists of PEG 200
90% (v/v), PI 5% (v/v), food coloring 4% (v/v), and rhodamine acrylate 10% (v/v), while the gray
stream is comprised of PEG-DA 575 94% (v/v), PI 5%1 (v/v), and rhodamine acrylate l1% (v/v).

"T"-shaped exposure mask was used to determine the penetration depth (3) of PEG-DA. (b)
Fluorescence images ofparticles produced with various residence times. (c) Penetration depth
as a function ofresidence tim e.......................................................................................................... 81

Figure 4.16: Variation of PEG-DA 575 bading percentage to determine critical gel point (~15%
monomer concentration) Synthesis was performed in PDMS devices, and all streams contained

rhodamine acrylate for visualization ofparticle interfaces. ...................................................... 81

15



Figure 4.17: Schematic descriptions for time evolution of monomer concentration. We estimate
theoretical maximum value of time, to, at which critical gel point front reaches walls of gas-
impermeable device and induces particle sticking..................................................................... 83

Figure 4.18: COMSOL simulation for time evolution of monomer concentration in a slit-like NOA81
device (a) Simulation solution indicates the maximum residence time is 5.1 s for the creation of
particles at Hm= 20 pm. (b) A plot for monomer concentration versus z-distance. .................. 85

Figure 4.19: Anisotropic particle synthesis from organic precursors (a) Triangular particle synthesis
with PEG 200 inert flows in an NOA channel from organic precursor containing PEG-DA 200,
ruthenium dye (mixed with methanol (MeOH) and toluene), and PI (b and c) Brightfield and
fluorescence images of triangular particles synthesized in (a). (d) Particle synthesis in NOA
device with water-insoluble monomers (trimethylolpropane triacrylate (TMPTA) and
polyurethane acrylate (PUA), mixed with toluene) and P1 Inert flows consisted of Tergitol
surfactant to lower surface energy andprevent curvature in top and bottom faces ofparticle. (e
and f) Images ofparticles synthesized from TMPTA and PUA. Scale bars are (b and c) 30 pm, (e)
100 p m , an d (f) 50 p m ........................................................................................................................ 86

Figure 4.20: Synthesis of near-infrared (NIR)-active anisotropic particles (a) NIR-active triangular
particle synthesis. NIR emitting CdTeSe/ZnS quantum dots (QDs) were physically entrapped in
NOA polymer particles produced in NOA device. (b) Fluorescent signal intensity as a function of
quantum dot loading concentration. Fluorescence was integrated over a circle ofradius 30 Pim
centered on the triangular particles. Each point represents mean measurement from three
particles; error bars represent standard deviation. ................................................................... 87

Figure 5.1: Production of magnetic barcoded particles. (a) Synthesis process of magnetic barcoded
particles. Stop flow lithography (SFL) is used to generate particles with three distinct chemical
regions. The top stream is comprised of PEG-DA with food coloring and rhodamine A, while the
other streams consist of PEG-DA with probe oligonucleotide and magnetic beads, respectively.
Downstream of the synthesis site, a PEG-DA perfusion stream is used to move un-incorporated
magnetic beads into a waste outlet. (b) An experimental bright field image of the three phases
flowing in the channel. The magnetic beads in the bottom flow are seen to be well-dispersed. (c)
Dimensions of a magnetic barcoded particle. Coding holes are designed with the following
dimensions: '1' (12 x 15 pm), '2' (12 x 275 pm), and '3' (12 x 40 pm). The code in this
illustration is '2333' The scale bar is 50 ,um ................................................................................ 93

Figure 5.2: Magnetic barcoded particles. (a)A bright field image (20x objective) of magnetic barcoded
particles with code '2333' (b) A fluorescent image of (a). (c) The side view of a magnetic barcoded
particle in a bright field image (20x objective). (d) A fluorescent image of (c). (e) A bright field
image (5x objective) of magnetic barcoded particles with code '0013' Scale bars are 50pm (a and
b), 25pm (c and d) and 100 pm (e). .................................................................................................. 94

Figure 5.3: AGMmagnetization curve for the commercial magnetic beads that were used in
synthesis of the magnetic barcoded particles. The saturation magnetization of the beads was
found to be aroun d 28 em u/g............................................................................................................. 95

Figure 5.4: AGM magnetization curve for magnetic regions (dried) of the barcoded particles. The
curve also shows superparamagnetic behavior, and no hysteresis was found.......................... 96

Figure 5.5: Response of magnetic barcoded particles. (a) Response of magnetic barcoded particles to
out-of-plane (21.1-0. im T) magnetic field. (b) Response of magnetic barcoded particles to in -
plane (14. 7-0. im T) magnetic field. Scale bars are 100pm. ....................................................... 97

Figure 5.6: Orientation, transportation, and separation of magnetic barcoded particles. (a)
Reorientation of a magnetic barcoded particle in a microfluidic channel using a hand magnet.
(b) Snapshots of magnetic transportation of a magnetic barcoded particle using a hand magnet.

16



The particle was transported towards a narrow region in the microfluidic channel used for

single-particle scanning analysis. (c) Image of reoriented magnetic barcoded particles moving
towards a hand magnet. (d) Bulk separation of magnetic barcoded particles using a hand

magnet. Scale bars are 50pm (a and b), and 200 pm (c)........................................................... 98

Figure 5.7: Comparison between density-based separation strategy and magnetic force separation.

Fluorescent images of the magnetic barcoded particles after the ten rinsing steps of a DNA
hybridization assay were carried out. Insert image clearly shows that magnetic force separation

can provide a considerably smaller amount ofparticulate matter in the carrier solution than the

density-based separation strategy. The scale bar is 50pm. ........................................................ 99

Figure 5.8: Incubation matrix. Particles with a fluorescent code region, an internal probe region, and

a tail region were synthesized and incubated with either 0 or 200 amol of two different

biotinyla ted target oligonucleotides at 50 C for 90 min. Following incubation, probe-target

complexes were labeled with strepta vidin -phycoerythrin (SAPE) at 21.5 C for 45 min. Particle

type 1 featured no probe, a magnetic tail, and code '2333'; type 2 featured probe 1, a magnetic

tail, and code '2003'; type 3 featured probe 2, a magnetic tail, and code '0013'; type 4 featured

probe 1, a non -magnetic tail, and code '2013.' Each plot shows the average of 5 scans of each
particle type at the specified incubation condition. Horizontal axis is axial (length wise)position

in pixels, and vertical axis is mean fluorescent intensity in arbitrary units. The mean signal

across the width of the particle has been computed and plotted at each axial position. The red

numbers above each scan indicate the mean fluorescent intensity measured in the probe region
and in the tail region. The red bars in the first plot indicate the windows over which the

averages were taken. Quoted numbers represent the mean of five separate scans....................100
Figure 5.9: Effect of Particle Density on Target Signal Each plot shows the average of 5 scans of

each particle type at the specified incubation condition. Data for (a) was taken from an

incubation of-50 particles of only type 4 with 200 amol of target 1. Data for (b) was taken from

an incubation of -50 particles of each of the four types with 200 amol of target 2. For the two

cases, the total number ofparticles bearing probe complementary to the indicated target is

roughly equal. The comparable signal intensities (63.2, 69.4 AU) in the probe regions indicate

that the lower signals seen for types 2 and 4 in Figure 5.8 are in fact the result of spreading the

available target among a greater number ofparticles. Horizontal axis is axial (lengthwise)

position in pixels, and vertical axis is mean fluorescent intensity in arbitrary units. Mean

signals for each of the regions are calculated as described in Figure 5.8. ................................... 101
Figure 5.10: Porosity control for diffusion of target molecules The schema tic describes compositions

of a 4 layered particle produced by HFL. After incubating the particles with streptavidin, the

proteins did not combine with the biotins in A2 region of the particles due to size exclusion. The

scale ba r is 5 0 ,um . ........................................................................................................................... 103
Fi gure 5.11: Reinforced barcoded particles (a) Fluorescent image of soft PEG particles that were bent

due to the mechanical instability. (b-c) Fluorescent images of-reinforced barcoded particles. The

sandwiched particles consisted of three layers: (1) two soft porous layers in the top and bottom
of the particles (Red) and (2) a hard supporting layer in the middle of the particles (Green)... 103

Figure 5.12: Reinforced barcoded particles with 5 layered structures (a) A schematic description for
the structures of a 5 layered barcoded particle. The center consisted of a PEGDA 40% monomer
while the top and bottom comprised of side-by-side stacked PEGDA 10% monomers. Each top
and bottom layer has two regions of code and probe. (b) Fluorescent microscopy image of the
barcoded particles in (a). (c) Composite bright -field and fluorescent image of the barcoded

p articles in (b)..................................................................................................................................10 4

17



Figure 5.13: Synthesis of Janus particles using structured microflows in a NOA 81 channel. (a) An
optical image of a NOA81 device for Janus particle synthesis. In the first step, we prepared a
two-layered NOA81 device with 5 inlets and 1 outlet. Using soft lithography, we could easily
generate top and bottom NOA81 channels with geometries for the creation of 4 layered flows. To
combine these two channels, we also used the iCVD nano-adhesive bonding method. (b) A
schematic description for the generation of layered microflows which contain in their center
side-by-side stacked monomers which are bounded on inert flows (c) A fluorescent image for
Janus particles synthesized from this process. The scale bar is 50 pm....................................... 105

Figure 5.14: Synthesis ofnear-infrared (NIR)-active barcoded particles (a) A schematic description
for NR-active multifunctional encoded particle synthesis. Using Tergitol for inert flows, Janus
particles were created with a graphical barcode bearing near-infrared emitting QDs and a
separate probe region embedded with single-walled nanotubes (SWNTs) for label-free and real-
time detection. (b) DIC and near-infrared photoluminescence images ofparticles from (a). The
scale bar is 50 p m . ........................................................................................................................... 106

Figure 5.15: Synthesis of near-infrared (NIR)-active barcoded particles (a) Shift in emission
spectrum of embedded SWNTs upon introduction of 2.4 MHC. Blue arrow indicates most
pronounced shift, produced by (8, 7)-type SWNT. (b) Intensity decay for (8,7)-type SWNT during
H+ detection. Exponential quenching model was fit to the experimental data, providing
moderate proton quenching kinetic parameters............................................................................107

Figure 6.1: 3D folding of 2D patterned sheets (a) 3D structures self-assembled from magnetically
patterned sheets. Images adapted from ref 175. (b) 3D structures self-assembled from the
interaction between elasticity and capillarity. Images adapted from ref 197 (c) 3D structures
self-assembled from 2D metal sheets with patterned mechanical properties. Images adapted
from ref 198. Scale bars are 250pm (c)........................................................................................ 110

Figure 6.2: Designs of smart particles (a) A scheme illustrating three stages for folding of a magnetic
composite particle by magnetic fields. Image adapted from ref 175. b. A schematic illustrating
shape -changing process of a magnetic composite particle with heat responsive polymer.......... 111

Figure 6.3: Oxygen permeable perfluoropolyether (PFPE) (a) A schematic depicting a simple
experiment to check the existence of oxygen lubrication layers. In the experiment, a droplet of
PEGDA/PI was sandwiched between glass layers and polymerized by mask-defined UVlight.
Photopolymerized PEGDA structures between glass slides were immobile even after 1000
seconds. (b) The same experiment was performed for PFPE layers. Photo -polymerized PEGDA
structures between the PFPE layers were mobile just after UV exposure. This validated that
PFPE could provide oxygen lubrication layers. Scale bars are 100 pm....................................... 112

Fi gure 6.4: SFL in a PFPE device (a) A schematic depicting the SFL process to synthesize triangular
particles in a PFPE device. By virtue of oxygen lubrication layers, PFPE devices can allow for
the production of free-floating particles. (b) The inserted schematic shows a top view of the
process (a). Bright-field and fluorescent images show particles synthesized in (a). (c) Synthesis
of multifunctional barcoded particles. A mask with an array of barcode particle shapes was
aligned on three phase laminar flows that were created in a PFPE device with multiple inlets.
Bright-field and fluorescent images show the barcoded particles with three distinct
compartments. Scale bars are 100 pm (a) and 70pm (b)............................................................. 113

Figure 6.5: Comparison of SFL performance between PDMS and PFPE devices (a) Top view of
particles synthesized in both devices. The cylindrical particles were synthesized by SFL process
using a mask with an array of 15 pm circles. For both devices, the diameters of sixteen particles
were measured and plotted. The error bars indicate standard deviation. (b) Side view of

18



particles. The particles were toppled by stable laminar flow in microfluidic devices. Like (a), the

particle heights were measured and plotted with error bars. ...................................................... 114

Figure 6.6: Comparison of solvent-based SFL between PDMS and PFPE devices (a) A schematic

depicting toluene -based SFL process in PDMS devices. The particles have curved shapes due to

the swelling of the PDMS walls. The precursor consists of water insoluble monomer

(polyurethane acrylate (PUA)), toluene, photoinitiator, and rhodamine acrylate. (b) Bright-field

and fluorescent miscopy images of curved particles. (c) The fluorescent signals of three particles

were quantitatively analyzed on particle distance using Image J software. (e) A schematic

depicting toluene-based SFL process in PFPE devices. The particles have flat shapes due to

toluene resistance of PFPE devices. () Bright-field and fluorescent images of flat particles. (g)

Like (c), the fluorescent signals of three particles were analyzed on particle distance..............115

Figure 6.7: Droplet size modulation using the compressed-air flow control system. Images taken

downstream from a Tjunction demonstrate the size range that can be achieved by simple

adjustment of the dispersed phase driving pressure. All scale bars are 50pm. ......................... 116

Figure 6.8: Synchronization of SFL in droplet-based microfluidics (a) A schematic depicting the

synchronization process. A droplet is stopped prior to SFL polymerization. Then, mask-defined

particles are generated inside the droplet. After that, the droplet containing anisotropic

particles is released by flows. (b) A fluorescent image ofparticles prepared by process (a). Each

droplet contains a triangle particle inside. (c) Sequential DIC images to show the experimental

process. Scale bars are 50 pm . ........................................................................................................ 117
Figure 6.9: Advanced barcoded particles for living cell assays (a) A schematic depicting the synthesis

of extracellular matrix (ECM) microbeads encapsulating anisotropic particles. (b) A schematic

showing the final product in process (a). (c) Living cell assays. During cell cultures on ECM

microbeads, interior barcoded particles can be used to detect biomolecules secreted from living

c ells . .................................................................................................................................................. 1 1 8

19



List of Tables

Table 3.1 Geometries of a PDMS channel used for creation of two layeredflows ........................... 55
Table 3.2 Estim ated pressures and Q2/Qi............................................................................................ 56
Table 4.1 Summary for the maximum particle synthesis throughput for each type of FL .............. 71
Table 4.2 Geometries of a two layered homogeneous NOA81 channel............................................ 72
Table 4.3 Estimation of hydrodynamic resistances, R1 and R5......................................................... 74
Table 4.4 Estimation of hydrodynamic resistances, R3.....................................................................74

Table 4.5 Estimation of hydrodynamic resistances, R2 ................................. .. . . . .. . . . . .. . . . .. . . . .. . . . . .. . . . . . . . 74
Table 4.6 Comparison of hydrodynamic resistances estimated from two suggested models ....... 74
Table 4.7 Estimated diffusivity of PEGDA 575 in PEG 200............................................................. 82
Table 5.1 Design of the four different magnetic barcoded particle types. ......................................... 99
Table 6.1: Comparison ofproperties between PDMS and PFPE......................................................... 114

20



Chapter 1

In troduction

Recently, flow lithography (FL) has emerged as a promising way to prepare complex

anisotropic particles, combining photolithography with microfluidic-based methods. This

thesis is focused on the developments of advanced flow lithography to achieve much higher

degree of geometrical and chemical complexity of particles than the primitive versions of FL.

Also, advanced barcoded particles are proposed as a demonstrative application of the new

techniques.

1.1 Anisotropic Multifunctional Particles

Anisotropic multifunctional particles hold great potentials in drug delivery [1-3], tissue

engineering [4-6], sorting media [7-9], smart materials [10-15], optics [16],
microelectromechanical systems [17-19], and building blocks [20-22] for self-assembled,
dynamic structures with complex functionality. One of the simplest multifunctional

particles is spherical Janus particles. As inferred from Janus, the name which means two-

faced Roman god, the particles have two compartments of distinct chemical or physical

properties. Although the form is simple, the spherical Janus particles have yielded entirely

different applications that homogeneous microspheres cannot reach to. A simple example is

Janus microspheres that have hydrophobic and hydrophilic surfaces. Once these particles

can be spread out on the water, the hydrophilic regions are dipped into water leading to

face-up of hydrophobic areas. Then, the hydrophobic coated area can provide so-called 'lotus

effect' of antifogging and self-cleaning, and be used for the preparation of superhydrophobic
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films on car or building windows [23]. Another example is dichromatic Janus microspheres.
These particles can be electrically or magnetically controlled for face-up direction, and used
as pixels of flexible bead displays or papers [24, 25]. Janus microspheres were also of
interest in assembly as anisotropic building blocks [26-30]. Furthermore, the particles can
be used for optical probes [31] and self-propulsion [32, 33].

b

0 * .e*

Ha0.50*

Figure 1.1: Applications of spherical Janus particles (a) Water-repellent Janus microspheres. The
particles were used to form a super-hydrophobic monolayer on water. Then, a water droplet was
sitting on the layer. The Image was adapted from ref 23. (b) Bicolored Janus microspheres. By
varying the direction of an external magnetic field, the orientations of Janus particles were changed
switching fluorescent signals. The particles can be used for magnetoresponsive bead display. Images
adapted from ref 25. (c) Magnetic Janus microspheres. The particles were self-assembled in Zig-Zag
structures in response to in -plain magnetic fields. Images adapted from ref 30. (d) Self-propelling
Janus microspheres. The particles get propulsion force from uneven degradation rates of hydrogen
peroxide. The image was adapted from ref 31. Scale bars are 1 cm (a), 25 pm (c, left) and 100 pm (c,
right).

When physical or chemical structures of particles are getting complex, other interesting
applications can emerge. Gracius and co-workers have used geometrically and chemically
patterned particles to create 3D electronic circuits that had not been achieved with any
other methods [34]. Using particle self-folding, his group also developed micro-grippers to
capture targets [11, 35, 36] or micro-containers to load cells [37, 38]. The entities-loaded
particles were further traveled to the final destination by the remotely controlled
electromagnetic field [11, 36, 37]. When such complex particles hold even biocompatibility,
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they can be used for new applications for the biomedical areas such as diagnostics,
therapeutics and imaging. One example can be anisotropic building blocks which are
patterned with different cell lines for tissue engineering [39-41].

Figure 1.2: Applications of anisotropic multifunctional particles (a) 3D electronic circuits. The
structure was created from the assembly of truncated octahedron particles. The Image was adapted
from ref 34. (b) Micro-grippers. The particles can catch and release target entities by chemically or
thermally triggered actuation. The right fluorescent image shows that a micro-gripper locomote
gripping samples. Images adapted from ref 11 and 35. (c) Bottom-up assembly of cell-laden
anisotropic particles. The building blocks were assembled into the multi-component constructs by
hydrophobic interaction. Images adapted from ref 39. Scale bars are 100 pm (c, left 4 images) and
200pm (c, right).

1.2 Current Methodologies

The enormous potentials of anisotropic multifunctional particles have inspired scientists to

develop various fabrication methods. Complex 3D particles can be synthesized using multi-

photon fabrication [42-46]. With 100 nm feature resolution, the technique has provided

precise control over particle geometry in all dimensions. Unfortunately, the synthetic way

has not been widely used for mass-production of 3D particles as the technique is

prohibitively time consuming. To partially overcome this, it has been used to generate

masters for soft-molding [45].
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Figure 1.3: 3D particle synthesis (a) A schematic depicting experimental setups for two-photon

lithography. Figure adapted from ref 44. (b) Venus Statue. The micro-statue was fabricated using

the setup in (a). Image adapted from ref 44. (c) Inter-locking chain. The micro-chain was fabricated

from multi-photon absorption fabrication. Images adapted from ref 43. Scale bar is 100pm (c).

Anisotropic particles could be also introduced by off-wafer fabrication [47-49]. The

advantage of this process is the high-throughput synthesis of particles at a rate of 108

particles/min. However, the use of photoresist materials renders this approach suboptimal

for many biological applications. In addition, the layer by layer process makes the chemical

patterning limited to layered motifs. Alternatively, template-assisted particle fabrication

[50-52] could be used to create geometrically complex particles with sub-micrometer

dimensions. Unfortunately, this method is largely ineffective at producing particles with

chemical anisotropy or patterning, as the precursor liquid is simply isolated in a non-

wetting template and then crosslinked in situ. Although one-dimensional striped particles

have been generated [53], the synthesis requires complex steps including multiple

evaporation-refilling-crosslinking procedures, and the process cannot be applied to non-

volatile precursors.

a "b

Figure 1.4: Mass-production of anisotropic particles (a) Off-wafer synthesis. The schematic describes

the fabrication process. Inserted images show micro-alphabets and layered composite particles.

Figures adapted from ref 48 and 49. (b) PRINT fabrication. The schematic describes the PRINT

process. Inserted image shows micro-cubes. Figures adapted from ref 51 and 52. Scale bars are 3 pm.

Other liquid-phase particle synthesis methods have had limited success in creating

geometrically and chemically anisotropic particles due to the tendency of liquid systems to
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adopt arrangements that minimize surface energy. In current liquid-based methods such as

batch nucleation [54], emulsification [55], microreactor production [56, 57], droplet-based

microfluidics [24, 58-61], droplet template fabrication [62, 63], co-jetting [64], and
microcutting [65], the particle geometries have been restricted to spheres, deformed spheres,

or cylinders.

b
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Figure 1.5: Other liquid-phase synthesis methods (a) SEM and TEM images of nanoparticles
synthesized from batch nucleation. Images adapted from ref 54. (b) A schematic depicting the
emulsification process. Figure adapted from ref 55. (c) Droplet-based microfluidics. Images adapted
from ref 24. (d) An optical image for a micro-doughnut particle prepared by the droplet-template
fabrication method. Image adapted from ref 63. (e) Electrojettting fabrication for the synthesis of
Janus nanoparticles. Figure adapted from ref 64. (f) Micro-cylinders prepared by micro-cutting
fabrication route. Images adapted from ref 65. Scale bar is 500,pm (d).

1.3 Flow Lithography

Microfluidic methods provide a flexible toolset for patterning precursor liquids in the

synthesis process. The low Reynolds number regime of microfluidic devices offers several

advantages that can be exploited for the generation of nano- and microparticles [66, 67].

Complex laminar flow patterns can easily be established in microfluidic channels without

the need for physical separators, enabling a range of applications that cannot be achieved

with more traditional liquid handling technologies [68-71]. Flow lithography (FL) is a
versatile technique that combines photolithography with the capabilities of microfluidic

methods for the high-fidelity synthesis of anisotropic gel microparticles [72, 73]. In this

technique, photomask-defined shapes can be rapidly printed onto monomer flows, providing

precise control over particle size, geometry, and chemical patchiness.
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1.3.1 Continuous Flow Lithography (CFL)

In CFL, the first form of flow lithography, mask defined shapes are patterned into a
continuously flowing photo-polymerizable monomer stream [72]. The technique can
fabricate virtually any two-dimensional particle by simple mask exchanges. The nexus of
this technique is the lubrication layer (-lum thick) which is induced by atmospheric oxygen
diffusing in through the porous PDMS and locally inhibiting polymerization. By virtue of
this layer, particles formed via photo-polymerization are advected through unpolymerized
prepolymer liquids without sticking to the PDMS walls.

a Rowing
PDMS layer monomer PDMS device Glass slide

z inhbion layer

Transprency mask
(bid-stop A )

\ PDMS layerP ) Insert tnsparency mask with desired partcle shapein eld-Sop sider
(i) Flow mononw + initiator solution1hrough microchannelh W polymmusing shuttered LN ihtfrom microscope objecive
(n) The pericles polymerize qucidy and advect through the unpolymerized monomer

Figure 1.6: Continuous Flow Lithography (CFL) (a) A schematic diagram of CFL process. (b) - (e)
Differential Interference Contrast (DIC) images of various microparticles prepared by CFL. Scale
bars are 10 um. Figures adapted from ref 72.

In co-flowing laminar streams, CFL can be also used to generate multifunctional particles.

Figure 1.7a shows the schematic diagram for synthesis of Janus particles. The widths of the

streams in Figure1.7a can be altered by changing the flow rates of the streams, controlling

26



over both functional areas. However, particles with arbitrary chemical patterns cannot be

achieved by CFL because the chemical patterning relies on stream lines (Fig. 1.7c).

Figure 1.7: Synthesis of Janus particles (a) A schematic diagram showing the CFL process for the

synthesis of Janus particles. (b) - (c) DIC and fluorescent images of a Janus particle synthesized in

the process (a). Scale bars are 100pm. Figures adapted from ref 72.

1.3.2 Stop Flow Lithography (SM)
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Figure 1.8: Compressed-air flow control system (a) Schematic of the pressure manifold and its

attachment to a two-inlet microfluidic device. Compressed air is down regulated and then passed

through a three -way solenoid valve that serves to either pressurize the manifold (open) or vent to the

atmosphere (closed). Two control channels, each with its own sample arm and relief needle valve, are

pictured branching off the main supply line. (b) Pulsed-flow operation. Pulsing frequency was fixed

at 0.5 Hz. The compressed-air system exhibited a rapid reaction to the driving force.

27

SClose

C . lam -

Regula

Needle
Valve

0



In CFL, high velocity flows could not be used for particle synthesis because the particle
features would be smeared and distorted during the UV polymerization step. To address
this, stop flow lithography (SFL), which synthesizes particles while flow has been stopped
and then flushes the particles out by high velocity flow pulses, was developed [73]. In this
process, the rapid pulsing of microflows was achieved by a compressed-air flow control
system (Fig. 1.8a). The simple and inexpensive flow control apparatus was developed by
Doyle group, and has provided an economical and scalable solution to generating structured
microflows with tunable properties for a range of applications [74]. This pulsed flow control
was then synchronized with brief, shutter-mediated UV exposures to complete the SFL
process.

a Stop Polymerize Flow

Valve: closed closed open
Shutter: closed open (- 50 msec) closed

b c
106 - h - 10 pm (SFL) F

-, --- h =20 pm (SFL) 0-
105 - - h a 40 pim (SFL) --

104 . ,-CFL 0,8 -SFL

I-10
0

0 20 40 60 80 100 50 Go 70 so 90 100 110 120
Partle size (pm) position (pm)

Figure 1.9: Stop Flow Lithography (SFL) (a) Three steps in the SFL process. The first step is
stopping the flow of polymer solution. The second step is photopolymerization via flash of UV light
through a mask. The final step is flowing out of microparticles using a pressure pulse. (b)
Comparisons for particle throughputs of CFL and SFL. The throughput is a function of particle size.
When particle size is getting smaller, the difference of throughputs is getting larger. (c)
Comparisons for fluorescent signals of striped particles synthesized from CFL and SFL. Scale bars
are 50pm (a) and 100pm (c). Figures adapted from ref 73.

SFL essentially consists of three states (Fig. 1.9a). First, a flowing stream of oligomer is
stopped via pressure release before photo-polymerization. Then, on the stopped flow, an
array of particles is formed by UV exposure through a transparency mask using a standard
fluorescence microscope. Finally, the formed particles are flushed out at high flow rates
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before the cycle of stop-polymerize-flow is repeated. Compared to CFL, SFL has given much

improved resolution for particles as the particle synthesis is performed in a stationary fluid.

Also, the method can provide a higher throughput up to 107~ 108 particles per hour using a

single microscope. Because SFL does not impose a maximum flow velocity to maintain

synthesis fidelity, the technique can offer much faster averaged flow velocity and orders of

magnitudes higher throughput than CFL (Fig. 1.9b). Moreover, SFL can improve sharpness

of interfaces of striped particles utilizing the high velocity flows (Fig. 1.9c).

1.3.3 Theory
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Figure 1.10: A model for oxygen inhibited photo-polymerization (a) Schematic diagram of the

reaction -diffusion model. DIC images show measurements of particle width, x, and height, h. (b) A
plot for induction time -i as a function of Da. (c) A plot for the critical thickness of the inhibition layer

ie as a function of Da. Fgures adapted from ref 75.

The theoretical work about the oxygen lubrication layer has been done under 1D (z-

direction), unsteady state simplification of the reaction-diffusion model [75] (Fig. 1.10). The

oxygen inhibition effect is considered only at the top and bottom walls of the device as

particles are usually formed far away from the side walls. The work reveals that 'induction

time Ti (the time when a gel structure is first seen)' and 'Si,c (the critical thickness of the

inhibition layer)' are just related with a dimensionless number, Da which contains key FL
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process variables such as light intensity, photoinitiator concentration, and channel height
(Fig. 1.10b and c). The lumped parameter Da is given by the following equation.

Da = (op[PI10 H2

Do[02,eqb ]

where p is the quantum yield of formation of initial radicals, C is the molar extinction
coefficient of the photoinitiator at 365nm, [P1] is the concentration of the photoinitiator
species, Io is the light intensity, H is the height of the channel, Do is the diffusivity of
oxygen in the oligomer, and [02,eqb] is the equilibrium concentration of oxygen in the
oligomer, which in turn is always in contact with air-saturated PDMS.

1.3.4 Applications ofFow Lithography
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Figure 1.11: Barcoded hydrogel particles (a) A schematic depicting the synthesis process of barcoded
particles. The inserted fluorescent image show barcoded particles produced from the process. Figures
adapted from ref 7. (b) The fluorescent image of color-coded particles. The colors were generated
from ID photonic crystal structures of magnetic nanoparticles. Image adapted from ref 76. (c) A
fluorescent image of barcoded particles conjugated with fluorescently labeled viruses. Image adapted
from ref 83. (d) High sensitivity of barcoded particles. The particles detected micro-RNAs at
atomolar concentrations. Figures adapted from ref 78. Scale bars are 500 pm (b) and 50 pm (c).
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FL typically use monomers based off of poly(ethylene glycol) that is bio-friendly, highly
tunable, and can be functionalized with a variety of biomolecules. As a result, numerous
bio-related applications have been generated. One of the important applications is the
synthesis of barcoded particles that have code regions and one or more probe regions [7].
The particles have been used for the high-throughput screening of biomolecules in
multiplexed fashion. In this application, FL has allowed for easy modification of code

shapes and probe-sets. When structured colors are utilized by modulating 1D chain

structures of magnetic nanoparticles, the number of available codes can even reach to 810
[76]. Also, the barcoded particles have loaded various probe sets to detect wide ranges of
biomolecules including DNAs [7, 77], RNAs [78, 79], proteins [80-82], and even viruses [83].
The powerful advantages of the barcoded particles are high sensitivity and specificity for
target molecules. Recently, micro-RNAs, which are one of the important cancer signatures
and low abundance biomolecules, were detected in extremely low concentrations using the
barcoded particles [78, 79].

wC d

Figure 1.12: Bio-related applications of FL (a) Assembly of cell-laden hydrogel particles using a
railed microfluidic device. Image adapted from ref 84. (b) Biomimetic hydrogel particles. The
particles were enough squishy to penetrate into a channel that had smaller dimensions than their
sizes. Figures adapted from ref 86. (c) A fluorescent image of biodegradable particles. A triangle
particle was divided into two parts as the middle biodegradable part disappeared by erosion. Image
adapted from ref 85. (d) Nanoemulsion composite microgels. The nanoemulsions allow for the
release of drugs encapsulated in the gel particles, and reloading of drugs. Image adapted from ref 88.
Scale bars are 10 pm (b) and 50 pm (c and d).

Another application is the preparation of building blocks for tissue engineering. Anisotropic
cell-laden hydrogel particles were synthesized from FL [40], and assembled to target
constructs in a railed micro-fluidic device [84]. Other applications are biodegradable
particles to evolve shapes [85], squishy particles to exhibit similar behaviors to red blood
cells [86], and nanoemulsion composite microgels to release and reload drugs [87, 88].
However, applications of FL have not been limited in bio-areas. For MEMs applications, FL
was used to produce polymeric gear-shaped particles from monomer solutions containing
500 nm colloidal silica particles [89]. To convert the particles to hard micro-gears, they were
further sintered at 850 *C. Also, micro-actuators that could provide complex motion for
MEMs were achieved by patterning of magnetic anisotropy [90]. Moreover, the synthesis of
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amphiphilic particles have been interesting in assembly areas [91]. The particles had a

similar motif with block copolymers, and were assembled to multi-component constructs by

the hydrophobic and hydrophilic interactions. Lastly, for photonic applications, FL was

used for structural color printing [92].

44
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Figure 1.13: Other applications of FL (a) A confocal image of a micro-gear for MEMs applications.

The gear was fully compacted with glassy silica colloidal particles. Image adapted from ref 89. (b)

Micro-actuators for MEMs applications. In the presence of external magnetic field, the actuator

exhibited anisotropic motions because the structure had programmed magnetic anisotropy. Image

adapted from ref 90. (c) Anisotropic amphiphilic particles. Particles with a large hydrophilic head

(blue) and a small hydrophobic tail (red) were assembled at the interface of oil-in-water. Image

adapted from ref 91. (d) Structural color printing. Magnetic nanoparticles were used to generate

different structural colors by modulation of external magnetic fields. Image adapted from ref 92.

Scale bars are 100 pm (a, b, and d), and 50 pm (c).

1.3.5 Limitations

Although FL has been a versatile method for wide ranges of applications, the primitive

versions of flow lithography and barcoded particles have shown following limitations.
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Figure 1.14: Limitations in the primitive versions of flow lithography and barcoded particles.

First of all, flow lithography has only produced quasi-2D extruded particles. Also, the need

of oxygen inhibition layers has made the requirement of PDMS channels and fixed particle

heights to the channel heights. The PDMS dependence even prevents the use of solvents

and monomers that can swell PDMS. Furthermore, the chemical patterning of particles has

been limited to y-directional 1D stripe motifs. During such striped particle synthesis, the

method requires a precise mask alignment across the interface and each synthesis step

polymerizes only 1-D rows giving a low throughput. Finally, for the barcoded particles, the

particles have required complex post labeling steps and exhibited limited functions.

1.4 Outline of Thesis

The purpose of this work is to develop advanced flow lithography and barcoded particles to

address the above limitations. The organization of this work is as follows:

Chapter 2 describes a new technique called lock release lithography that moves FL from

2D to 3D, and provides complex chemical patterns in x-y dimensions of particles.

Chapter 3 describes a new technique called hydrodynamic focusing lithography that can

be used to provide chemical patterns in z-dimension or y-z dimensions of particles.

Chapter 4 describes a new technique called oxygen-free flow lithography that greatly

expands the synthesis capabilities of FL in the following three categories: (1) device

construction, (2) process control, and (3) operable material.

Chapter 5 describes advanced hydrogel barcoded particles that have magnetic

functionality, tri-layered structures, and near-infrared sensing abilities.

Chapter 6 suggests future directions for works presented in this thesis.
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Chapter 2

Lock Release Lithography for 3D and
Composite Microparticles

In this section, we present a new method called "Lock Release Lithography (LRL)" that

provides a means for the high-throughput production of particles with complex 3D
morphologies and composite particles with configurable chemistries. We demonstrate a

diverse set of functional particles that can be formed using this method. Particles made
using LRL can originate from a broad range of precursor materials and may contain variety

of functional entities including nucleic acids, proteins, quantum dots, beads, and living

cells. This technology may provide a powerful means to mass-produce functional units for

microfluidic operations, filtration systems, and tissue engineering constructs.

2.1 Introduction

Particles with three-dimensional (3D) morphologies and configurable chemistries hold

great potential for a host of applications in drug delivery [1, 2], tissue engineering [4-6],
optics [16] and electro mechanics [17]. In addition, they promise distinct advantages as

sorting media [7] and stimuli-responsive materials [2, 93, 94]. Of particular interest,
patterned particles with precisely positioned chemistries could provide the building

blocks for self-assembled, dynamic structures with complex functionality [21, 22].

Despite their enormous potential, 3D and composite particles cannot be efficiently

synthesized on a large scale using current methodologies [45-48, 95-98]. Multiphoton

fabrication [46] is a well-known method for synthesizing micro/nano 3D structures as it
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provides unparalleled control of morphology in all dimensions. In spite of the advantage,

this direct drawing technique is prohibitively time-consuming. For higher throughput,

3D particles can be generated using a layer-by-layer process with photo resists [47, 481.

Unfortunately, these materials are not ideal for many applications, the chemistries are

extremely restricted, and the chemical patterning is limited to layered motifs. Three-

dimensional particles can alternatively be generated using the PRINT method [95],
where particles are shaped using a 3D mold. However, the shapes of such molds are

limited, and the process is not suitable for the synthesis of particles with multiple

patterned chemistries. There exist several other synthesis techniques [96-98] that suffer

from similar constraints of morphology and functionality. Here, we present a method

called "Lock Release Lithography (LRL)" that utilizes a combination of channel

topography, mask design, and pressure-induced channel deformation to form and

release particles in a cycled fashion. This technique provides a means for the high-

throughput production of particles with complex 3D morphologies and composite

particles with configurable chemistries.

2.2 Experimental Methods

Materials

All of the particles shown in Figure 2.1 ~ 2.9 were made using solutions of 5% (v/v)

Darocur 1173 (Sigma Aldrich) initiator, 35% (v/v) IX TE buffer and 60% (v/v)

poly(ethylene glycol)(700) diacrylate (PEG-DA, Polysciences). Twenty base pair

oligonucleotide probes, #1 (5'-ATA GCA GAT CAG CAG CCA GA-3') and #2 (5'-CAC
TAT GCG CAG GTT CTC AT-3') were purchased from IDT with Acrydite modifications

and mixed into the monomers for a final concentration of 50 pM. To distinguish between

chemistries for multifunctional particles, we added 5% (v/v) food color into desired

chemistries. For swelling particle regions, we used solutions of 15% (v/v) acrylic acid

(Polysciences), 15% (v/v) PEG-DA (700), 30% (v/v) poly(ethylene glycol)(200) (PEG,
Sigma Aldrich), 5%(v/v) Darocur 1173 and 35% (v/v) IX TE. Finally, particle regions

with encapsulated entities were made from solutions comprised of 30% (v/v) PEG-DA

(700), 3.5% (v/v) Darocur 1173, 59.5% (v/v) IX TE buffer, 5% (v/v) Tween 20 (Sigma
Aldrich) with 2% (v/v) fluorescent protein (streptavidin-phycorytherin, Invitrogen) or

5% (v/v) 2 pm fluorescent beads (FITC, Polysciences) in 5% (v/v) Darocur 1173, 30% (v/v)

1X TE buffer and 60% (v/v) PEG-DA. Solutions, 0.01% wt, of the fluorescent

methacryloxyethyl thiocarbamoyl rhodamine B (Polysciences) in PEG-DA were used to

fluorescently label the hydrogel.

Microfluidic Device

Devices were fabricated by pouring polydimethylsiloxane (PDMS, Sylgard 184,Dow

Corning) on a silicon wafer containing positive-relief channels patterned in SU-8

photoresist (Stanford Foundary). The devices were 1,000 im wide channels with varying
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heights (20, 30 or 60 pm) and various negative or positive topograhies (10 or 30 Pm tall)

on their ceiling. These devices were placed on PDMS-coated glass slides or plasma

sealed to patterned PDMS surfaces after placing thin sacrificial layers of PDMS on the

channel alone and on the region of the PDMS surfaces which sits right under the

channel. This is to ensure that the oligomer was only exposed to the PDMS surfaces.

The devices were mounted on an inverted microscope (Axiovert 200, Zeiss), and the

formation of the microparticles was visualized using a charge-coupled-device camera

(KPM1A, Hitachi). Images were captured and processed using NIH Image software or a

digital camera (D200, Nikon) and Nikon Capture software.

SFL Setup

The setup for SFL requires the use of pressure provided by a compressed-air source to

drive flow inside the microfluidic channels. To generate controlled pressure in the range

of 0-15 psi, a compressed air source (- 40 psi) in the laboratory was first connected to

either a T3510 I/P transducer (Marshbellofram) or a Type 100 LR manual pressure

regulator (Control Air). Downstream of the transducer/regulator, a 3-way solenoid valve

(Burkert) was used to switch rapidly between atmospheric pressure (stop) and the input

pressure (flow). The output from the 3-way valve was connected to the microfluidic

device using Tygon tubing connected to a 10 ml pipette tip (Biosciences). The pipette tip

was filled with the desired fluid and inserted into the inlet hole punched in the

microfluidic device. The transducer, 3-way valve and shutter were all controlled using

VIs written in Labview 8.1 (National Instruments). The 3-way valve was controlled

using a 1024-HLS digital I/O board (Measurement Computing) and a relay. The

transducer and the shutter were controlled using serial connections.

Photopolymerization Setup

Photomasks were designed in AUTOCAD 2005 and printed using a high-resolution

printer at CAD Art Services (Bandon, OR). The mask was then inserted into the field-

stop of the microscope. A 100W HBO mercury lamp served as the source of UV light. A
filter set that allowed wide UV excitation (11000v2: UV, Chroma) was used to select

light of the desired wavelength and a VS25 shutter system (Uniblitz) driven by a

computer-controlled VMM-D1 shutter driver provided specified pulses of UV light.

Typical exposure times used were 30-100 ms and pressures ranged from 0.05 to 15 psi.

A reservoir was cut in the PDMS to collect the particles.

2.3 LRL for 3D Particle Synthesis

We introduce lock release lithography, built off of continuous-flow [72] and stop-flow

lithography [73], which can overcome the above limitations on throughput, 3D
morphology, and composite chemistries using the combination of channel topography,

mask features, and pressure-induced channel deformation. The process consists of (1)
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stopping the flow of a UV-sensitive monomer stream through a microfliudic channel, (2)
lithographically printing structures that are "locked" into regions with multi-level
channel topography, and (3) inducing channel deformation via high pressure to release
structures for harvesting. In the example shown in Figure 2.1, we formed particles by
75ms of UV exposure through a transparency mask using a standard fluorescence
microscope. Particle morphology is defined by a combination mask feature shape and
channel topography. Locked into the three-dimensional relief, particles remain
immobilized until a relatively high pressure (- 5 psi) is applied to the
poly(dimethylsiloxane) (PDMS) channel to initiate flow and deflect the channel beyond
the point of particle release. Using an automated valving system, the flow is then
stopped via pressure release, and the process is repeated, thus allowing the formation of
3D particles in an automated, semi-continuous manner.

AA
High Lj

Pressure

A A' Flow

Figure 2.1: Process of lock release lithography. First, structures are polymerized by shining bursts of
UV light through a transparency mask and a microscope objective. The structures, having a shape
determined by the mask and channel topography, are "locked" by relief structures in the channel
topographies. Particles are 'eleased" with channel deflection after a relatively high pressure
5psi) is applied to initiate flow. Differential interference contrast (DIC) image of collection of 3D
particles in the channel reservoir.

With the need for periodic channel deformation, this process is well-suited by stop-flow
lithography, but incompatible with continuous-flow techniques [72, 84]. Recently,
continuous-flow lithography was used to fabricate finned structures in "railed" channels
for guided self-assembly [84]. However, without release, this process cannot be used to
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generate diverse topographies. Several other advantages are afforded by stop-flow,
including improved resolution and a higher throughput up to 106 ~ 107 particles per

hour using a single microscope [73]. Like the other flow lithography techniques [72, 73,
84], LRL utilizes simple microfluidic control and can be applied to a broad range of
precursor materials. Functional particles generated with flow lithography have
contained nucleic acids for bioassays [7], whole cells for tissue engineering [40],
hydrophilic and hydrophobic materials for self-assembly [55], and even glassy materials
[561. Because LRL is a variant of flow lithography [72, 73, 84], the oxygen lubrication
layer near channel surfaces is expected to be a ~ 1 pm thick [72]. Thus, the achieved
particle size in LRL is limited to micrometer ranges. Due to the size limitation, the

particles produced by LRL could not be suitable for sub-micormeter applications such as
cell uptake. Topographical channel features used in LRL are at least a few microns in
size, larger than the UV wavelength (-360 nm), such that optical interference can be
disregarded.

2.3.1 Theory

To develop LRL, it is necessary to check whether the channel deformation in a PDMS
microfluidic device is big enough to release locked structures.
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Figure 2.2: Measurements of membrane deflection at apex for membrane thickness [Ref 100]

Fortunately, there are previous researches about the elastic deformation. Jensen and
coworkers have demonstrated that scaling analysis for a thick, "semi-infinite" PDMS
channel gives the flow-induced maximum deformation of
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Ahma = C, P(z)W (2.1)
E

Where C1 is a proportionality constant of magnitude order one, W is the width of the

channel, E is the young's modulus of PDMS, and P(z) is the pressure at any position z along

the direction of flow [99]. Using a typical operating pressure of 5 psi with a channel 1,000

pm wide, the maximum deformation is expected to be - 100 pm [99]. From their results, the

following considerations should be taken for the development of LRL. To exploit maximum

channel deformation and ensure safe particle release, particles will be polymerized near the

channel inlet, channels will be kept fairly wide, and the channel region near the outlet

designed to be taller than the particles. When much larger relief features are desired, it is

possible to use a thin PDMS channel, which allows for significantly more deflection. In this

case, the deformation is determined by classical elasticity theory as

PW4
Ak 0.142 (2.2)

Et 3

Where t is channel thickness [1001. For thin channels, which have a ceiling PDMS

thickness around 200 pm, 5 psi pressure will provide enough deflection to release 3D

particles with relief features of ~ 250 pm. For extremely thin channels (- a few microns

thickness), Folch and coworkers found that the channel deformation largely surpassed the

value predicted by the classical elasticity theory. They proposed that the theory would be

broken on the condition (t < d/2 where d is the maximum deformation) [100]. In this case,
the deflection must be determined empirically as shown in Figure 2.2. If LRL use these thin

channels, there will be requirements of PDMS adapters at the inlet and outlet to provide

robust connections for sample introduction and particle collection. Based on these

researches, LRL is feasible enough to produce 3D and composite particles via control of

pressure.

2.3.2 Various 3D Particles

In lock release lithography, particle morphology is defined by a combination of channel

topographies and mask feature shape. Numerous combinations can be used to produce

diverse 3D morphologies in particles. Using the first combination in Figure 2.3, we

generated squares with 1 micrometer line patterns. This validated that fine features of

only a few microns could be patterned although the oxygen lubrication layer near

channel surfaces is expected to be a ~1 pm thick [72]. As channel topographies, we used

very fine negative 3.5 pm line-space patterns (with 7 pm pitch). These troughs could be

oriented with the particle edges (Fig. 2.3c and d) or made to be oblique by simply

rotating the mask with respect to the channel. The particles might exhibit interesting

optical properties via interference with visible rays. The second combination in Figure

2.3 was used to generate squares with 10 micrometer high pillars that mimic gecko
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adhesive patterns. Adding bottom channel topographies can lead to more complex 3D
morphologies in particles. To demonstrate that both channel floor and ceiling

topographies could be used to dictate morphology, we synthesized table-like structures

with large relief features on one side and a highly resolved 5 pm line-space pattern on

the other (Fig. 2.3i). These particles demonstrate the ability to combine coarse and fine

features into particle topology.

Top Channel Mask

a

h

Top Channel Bottom Channel

Figure 2.3: 3D particle synthesis from channels with negative topographies (a)-(d) Squares with 1-

pm -high line-space patterns using 30-pm -high channel with negative line-space patterns on its floor

and a square mask. (e)-(g) Squares with 10-pm-high gecko-type patterns using 20-pm-high channel

with negative dot patterns on its ceiling and a square mask. (h)-() Table-like 3D particles with 1-pm -
high line space patterns on the top and 30-pm-high supports on the bottom using 30-pm-high

channel with negative line-space patterns on both sides and a circle mask. Scale bars are (b) 100pm
(c, g, ) 50 pm, (d) 10 pm, and (F) 200 pm.

Importantly, LRL can be performed with the same channel and varying masks to give a

variety of particle morphologies. To demonstrate this, we altered the square mask to a

cross-shaped mask in the 30 pm channels with negative dot patterns, and produced the

particles shown in Figure 2.4a. We also showed that the channel topographies could be

beyond dot and line patterns. Using a channel with negative MIT patterns, we

generated T-shirts particles with three dimensional MIT logo.
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Figure 2.4: Synthesis of variants by changing masks and/or channel topographies (a) Variants using
30-pm -high channels with same kinds of topographies of negative dots on their ceiling, but different
cross mask. (b) Micro T-shirt with 3D MIT logo. Scale bars are (a) 200,pm and (b) 50 pm.

Furthermore, positive channel topographies can be used to generate dishes and cups.
These particles have voids that could potentially be filled with active components or

cells. Morphologies generated with LRL can be more complicated depending on the mold

used to generate the channel topographies, and the mask used to polymerize the

particles. Molds generated using standard lithography can be multi-tiered, rounded, or

slanted [101], while virtually any topography can be achieved using multiphoton

fabrication [45, 46]. The transparency masks used to generate particles can have
virtually any two-dimensional shape, can be greyscale [17] to provide variability in

height along particles, and can be used in conjugation with interference masks to give

finely tuned microporous structures [102]. Combinations of channel topography and

mask shape can provide intricate structures such as coils, but in its current inception,
LRL is not suitable for the preparation of interlocking (like chain links) features or

particles with internal hollow structures.

Lock Release

P=0ps P=5 psi

Figure 2.5: 3D particle synthesis from channels with positive topographies. Microcups with 30-pm -
deep voids were generated using 60-pm -high channel with positive dot patterns on its ceiling and a
circle mask. Scale bar is 50 pm.
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2.4 LRL for Composite Particle Synthesis

Release

Lock Lock

Figure 2.6: Synthesis of composite particles. (a) A schematic diagram showing the synthesis of
composite particles. Locking structures with chemistry 1 are covalently linked to chemistry 2

through mask overlap and UV exposure after fluidic exchange with low pressure. Then, the

composite structures are released by high pressure in both flows. (b) A schematic description of

particles produced by the process (a).

Perhaps the most attractive feature of lock release lithography is that the release time

is controllable. Because particle release occurs at a critical pressure (related to

deformation), lower pressures can be used to exchange monomer without unlocking

particles - this allows subsequent addition of new chemistries. As such, LRL can be

used efficiently to generate composite particles with multiple precisely engineered

chemistries. The process is shown schematically in Figure 2.6. First, the multi-inlet

channel is filled with chemistry #1 and locked 3D structures are polymerized. Then, by

adjusting the pressures of the inlet streams (but keeping them below ~ 1 psi), a second

chemistry replaces the first without displacing the locked particle structure. A unique

mask can be used with this chemistry to polymerize distinct particle features that are

covalently linked to the locked particles via overlap. Finally, a high pressure flow (- 5

psi) is used to release the composite particles (Fig. 2.6b).
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2.4.1 Composite Particles with Two Chemistries

Figure 2.7: Composite particles with two distinct chemistries. (a) DIC image of a composite particle

with a circular center and square exterior. (b) Fluorescence microscopy image of the particle shown

in (a). (c) DIC image of a composite particle with interior features and border. (d) Fluorescence

microscopy image of the particle shown in (d). Two streams containing PEG-DA and PEG-DA with

rhodamine-labeled monomer were used to respectively present chemistry 1 and chemistry 2. Scale

bars are 100 pm (a and b) and 5 0 pm (c and d).

To demonstrate the synthesis of composite particles, we used two chemistries, both with

PEG-DA monomer and one with a fluorescent monomer (rhodamine-acrylate, orange) to

easily distinguish the chemistries via fluorescence after polymerization. We used

positive-relief locks to synthesize patterned particles with a circular center and square

exterior (Fig. 2.7a and b), and negative-relief locks to make more intricate particles with

interior features and border (Fig. 2.7c and d). Both particle types were generated using

two polymerization steps, and in the second case, it was important to lock in each

fluorescent region separately to maintain proper orientation before the filler chemistry

was added. The locks correspond to the brighter regions of fluorescence in the particle

corners and interior (Fig. 2.7c and d). In both cases, the channel topography locks were

only 10 pm tall, and thus we were able to use standard "thick" PDMS devices without

need for thin membrane-like deflection.
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2.4.2 Scalability

b Re'ss Lock

Figure 2.8: Composite particles with three distinct chemistries. (a) A schematic diagram showing the
synthesis of composite particles with three chemistries. First, we flow a prepolymer solution with red
fluorophores, rhodamine-acrylate. Using a first mask, we generated a frame and two trunks of trees
locked in the channel topographies. Then, in a low pressure, we replace the first prepolymer solution
as a second one with 200 nanometer green fluorescent beads. Using a second mask, we created
leaves of trees. After that, we flow third prepolymer solution with no fluorophores in a low pressure.
With a final mask, we connect trees with the frame. Finally, a high pressure flow is used to release
the composite particle. (b) Fluorescence microscopy image of a composite particle synthesized in the
process (a). Scale bar is 50fpm.

The LRL process for the synthesis of composite particles can be applied to any number of
unique chemistries. Shown in Figure 2.8 is one example that applies three chemistries. The

particles were synthesized by the same process using one more PEG-DA monomer stream

with 500 nm fluorescent beads (chemistry 3). In this case, the sequence of polymerization is
chemistry 2 (PEG-DA with rhodamin-acrylate), chemistry 3, and then chemistry 1 (PEG-
DA). However, due to lag times associated with fluidic exchange and mask alignment, the
throughput for composite particles depends on how many chemistries are applied. When
two chemistries are used, we can generate ~ 103 particles per hour on our current system.
When the number of chemistries increases, the throughput decreases. This can be

expedited in the future using dynamic mask systems [103].
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Figure 2.9: Fluorescence microscopy images of multiple composite particles with different

orientation. (a) Composite particles with "fall trees" in a frame. (b) Composite particles with

"spring trees" in a frame. Scale bar is 100 um.

2.5 LRL for Functional Particle Synthesis

We exploited the ability to spatially arrange multiple chemistries in Lock Release

Lithography to prepare particles diverse functionalities. The overlap regions of multi-

functional particles can be designed to provide interwoven chemistries or excluded

chemistries, depending on the pore size of the initial material and the size of entities

included in subsequent monomers. When the pore size is large enough for molecules to

leech in, the result is an interwoven blend of the two chemistries. However, when

entities included in the monomer blend are larger than the pore size of the existing

structure, those entities are excluded from the overlap region, resulting in a segregation

of chemistries. Examples of interwoven and excluded chemistries are shown in Figure

4a. We prepared "Venn diagram-like" particles to investigate the incorporation of

chemistries in the overlap regions. The first chemistry was a pure PEG hydrogel with a

pore size expected to be ~ 1 nm [104]. The second chemistry was PEG with the addition

of rhodamine-acrylate and 50 nm green fluorescent beads. As can be seen, the

fluorescent monomer penetrated the initial gel structure and was incorporated in the

overlap region while the colloidal entities were excluded. Figure 2.10b shows a DNA

detector particle18 with distinct probe regions. The interior region and four wings

contained DNA probe #1, while the other four wings contained probe #2. The particles

were incubated with target #1 (which was labeled with green fluorescence, FITC) or

both targets (target #2 was labeled with red fluorescence, Cy3) at 1OnM at 37C for

30min. Fluorescence images confirm that the target oligomers hybridize only with their

complementary probe regions. We also generated particle with opposing chemistries -

specifically swelling and non-swelling. Swelling chemistries were achieved using

PEG/acrylic acid monomer blends, which are well-known to be responsive to changes in

pH. We made particles with a cross-shaped support and pH-responsive, fluorescent fins

between each arm (Fig. 2.10c-e). In acidic conditions (pH ~ 3), these particles keep their

original 2D body (Fig. 2.10c), while in neutral to alkaline conditions (pH ~ 8), the
responsive fins bloom to form a 3D flower-like structure (Fig. 2. 10d and e).
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Figure 2.10: Functional particles. (a) Fluorescence and DIC images of "Venn diagram" particle

demonstrating interwoven (fluorescent monomer, orange) and excluded chemistries (beads,
green) in polymerization overlap region. (b) Fluorescence and DIC images of a DNA detector
particle with distinct probe regions. Shown are fluorescent images of a particle after incubation
with target #1 (green) or both targets #1 (green, insert in the top right corner). and #2 (red,
insert in the top right corner). (c) - (e) Fluorescence images of particles with pH-responsive fins
and a cross-shaped rigid support. The particle keeps its original 2D circle shape in low pH (c)
while in an alkaline pH, the fins bloom to form a 3D flower-like structure (d). (f) Fluorescence
and DIC images of overlapping zig-zag-shaped particles with encapsulated entities. One strand
contains 2 pm green fluorescent beads while the other has 5 nm red fluorescent streptavidin
protein. In all DIC images, particles have been outlined for clarity. Scale bars are 50 ,m (a,b),
and 100 ,um (c-f).
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Lastly, we demonstrate the generation of particles with various encapsulated entities
that are organized in complex hierarchies. We made particles with overlapping zig-zag-
shaped chemistries, one of which was laden with 2 gm fluorescent beads (FITC, green),
and the other with 5 nm fluorescent protein (streptavidin-phycorytherin, red) (Fig.

2.10f). This process can be used to encapsulate living cells, stimuli, or nutrients with
precise control over position, which has implications for applications in tissue

engineering. Compared to other hydrogel particle-based approaches to engineering

tissue constructs [4], we can prepare more precise and intricate building blocks in a
scalable and highly homogeneous manner.

2.6 Summary

We have demonstrated that lock release lithography can be used to easily generate a
diverse range of 3D and multifunctional composite particles through the association of

channel topography, mask features, and pressure-induced channel deformation. The
computer-automated method provides high resolution and high-throughput, similar to
that seen in standard stop-flow lithography [73]. Also, locked structures can be built

upon to generate complex, composite particles with a broad range of potential

chemistries, interwoven or excluded, with incorporated entities including nucleic acids,
proteins, or cells. For example, the length scales in LRL are ideally suited to generating

tissue engineering mesoconstructs each containing multiple cell lines which are

precisely positioned within the particle [4, 40]. In addition, the juxtaposition of swelling
and stiff materials can be exploited to create particles that can undergo dramatic shape

changes. Degradable polymers can be used to create microparticles which controllably

evolve or fragment over time. We envision that this technology will provide a simple

but powerful means to mass-produce functional units for microfluidic operations,
filtration systems, and tissue engineering constructs.
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Chapter 3

Hydrodynamic Focusing Lithography

Diverse patterns of flows in microfluidic channels have been utilized with great interests in
the field of mixing, separation, and flow cytometry for high throughput analysis of chemical
reagent or biomolecules. In this section, we describe a new approach, hydrodynamic

focusing lithography (HFL), in which the structuring of fluids in microflows combined with
lithography is exploited to create large arrays of functional microparticles. Contrary to our
prior flow lithography method, here the flows are stacked in multiple dimensions. We also
demonstrate the utility of this process in patterning of proteins.

3.1 Introduction

Biocompatible multifunctional particles hold great promise for drug delivery [1], imaging
[31], and construction of building blocks [22, 105] for dynamic meso-structures such as self-
assembled tissues [4] and 3D electrical circuits [34]. Of particular interest, multifunctional
particles with unique barcodes have been suggested as diagnosis tools for rapid screening of
biomolecules [7]. For these applications, particle design is at least as important as size

[106-108] and requires a fabrication technique with precise control over shape and chemical
patchiness. Methods currently used to generate multifunctional particles include
microcutting [65], cojetting [64], core/shell system [62], photo resist-based lithography [48]
and the PRINT method [53]. The morphology of particles prepared by cojetting,
microcutting and core/shell systems has been limited to spheres and cylinders [62, 64, 65].
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Although multilayer lithography overcomes this limitation [48], the use of photoresist

materials renders this approach non ideal for many applications. While the PRINT method

[53] has its strength in producing small submicron particles, to date multiphasic particles

beyond a 1-D stripe have not been synthesized. Furthermore, during multifunctional

particle synthesis, the technique needs multiple steps and does not provide flexibility as

particle shapes are restricted to the pre-defined stamping molds. Previously, we have

shown that flow lithography (FL) can be used to generate multifunctional particles - we

exploited several microfluidic characteristics such as co-flow of liquid monomers, rapid

fluidic exchange, and simple controllability [72, 73, 109]. In FL, we can use a combination of

adjacent flowing photocurable monomers with lithographic masks to simultaneously define

the shape and chemical pattern of particles [72, 73]. Recently, we also developed lock

release lithography (LRL) to extend chemical patterning to multiple dimensions [109].

However, these FL-based approaches for generating particles with patterned chemistries

require precise alignment of masks at flow interfaces and concomitant modest particle

throughput. Currently, FL cannot be used to synthesize multifunctional particles with

chemical anisotropy in the channel height direction. Here, we introduce a new method

called hydrodynamic focusing lithography (HFL) that harnesses flow focusing to create

stacked flows in two-layered channels for particle synthesis. Contrary to our prior methods

to create multilayered particles, here the fluid interface can be perpendicular to the UV

light propagation direction and precise mask alignment at the interface is no longer needed.

This change in geometry also allows us to polymerize 2-D arrays, compared to 1-D in the

prior method, which can increase throughput dramatically. In HFL, multiple monomer

streams can be simultaneously stacked in both the z- and y-direction leading to more

complex particles than before. Finally, we demonstrate that particles prepared by HFL can

be combined with capture proteins on selected layers.

3.2 Experimental Methods

Materials

All of the particles shown in Figure 2, and 3 were made using solutions of 60% (v/v)

poly(ethylene glycol)(700) diacrylate (PEG-DA, Polysciences), 5% (v/v) Darocur 1173 (Sigma

Aldrich) initiator, 30% (v/v) 1X TE buffer and 5% (v/v) fluorphores. Fluorphores were 100

nm blue fluorescent beads (Polysciences), 200 nm green fluorescent beads (Polysciences)

and the fluorescent methacryloxyethyl thiocarbamoyl rhodamine-A (Polysciences),
respectively. Particle regions for protein coupling were made from solutions comprised of

60% (v/v) poly(ethylene glycol)(700) diacrylate (PEG-DA, Polysciences), 5% (v/v) Darocur

1173 (Sigma Aldrich) initiator and 35% (v/v) biotin-PEGA in PBS. Biotin-PEGA solution
was prepared by mixing NHS-PEG(2000)-acrylate (Laysan Bio inc.) and biotin-hydrazide

(Polysciences) as 1:1 molar ratio in PBS buffer.
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Microfluidic Device and SFL Setup

PDMS channel

PUA

PDMS replica

Bottom channel
(Partially cured)

UV

60*C for 30 min.

4-

PUA replica

Bottom channel Top channel
(Partially cured)

Assembly

600C for 2 hr.

Figure 3.1: A schematic diagram for fabrication process of oxygen permeable two-layered PDMS

channels. A partially cured PDMS bottom channel is prepared on a glass slide via PDMS-PUA -

PDMS replica molding technique. Then, a top PDMS channel is assembled on the bottom channel

generating a two -layered gas permeable PDMS channel.

Flow lithography is made possible by the presence of a lubrication layer at the channel

walls, which results from the quenching of free-radical reaction at the channel walls via

oxygen that has diffused through the polydimethoxysilane (PDMS) [75]. Typically, two-

layered PDMS devices are irreversibly sealed using oxygen plasma activation [110, 111].

However, the activated surfaces covered with silanol groups are less permeable to oxygen,

diminishing the presence of a suitable lubrication layer. Although PDMS sacrificial layers

could be used during plasma treatment to avoid oxidizing specific regions of the devices, the

method leads to imperfect sealing with the potential of leaking. We observed that layered

flows in these devices were frequently mixed as a result of leaking. Alternatively, channels

can be sealed using the technique of partial curing, device fabrication, and complete curing.

This method is preferred when fabricating two-layered homogeneous PDMS channels for

flow lithography. Figure 4.1 shows the fabrication process of gas permeable two-layered

so
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PDMS channels. PDMS channels are generated by pouring PDMS (mixed at 10:1
base:curing agent) over an SU-8 master (Stanford Foundry) and then curing 2 hr at 60 0C in
an oven. To prepare a partially cured bottom PDMS channels on a glass slide, we used a
PDMS - polyurethane acrylate (PUA) - PDMS replica molding technique [112]. Briefly, a
droplet of PUA was put on a flat polyester (PET) film and sandwiched between the film and
a PDMS mold. The PUA was exposed to UV (365 nm) for 1 min and the PDMS mold was
removed to give a PUA mold on PET. In a similar manner, this PUA mold was used with a
droplet of PDMS to form a partially cured PDMS channel bottom after curing for 25 min at
60 'C. To finish the construction of a two-layered PDMS device, a PDMS mold with the top
channel was assembled on the bottom channel and the device was fully cured at 60 'C for 2
hr. Finally, SFL setup was same with Chapter 2.

3.3 Particle Synthesis in Stacked Monomer Flows

P2

40

Pi
um

w40 pm

P2

Z
Y

X

Figure 3.2: Hydrodynamic focusing lithography (HFL) for high-throughput synthesis of Janus
microparticles. (a) Schematic description for the creation of layered monomer flows. Pi and P2

represent the inlet pressures of top and bottom channel respectively. All inlet dimensions are 40 pm
X 40 pm. Particles are synthesized after layered flows are widened up to 1 mm in a 40 pm tall region
of the channel. (b) A side view of flow focusing and particle polymerization. (c) A fluorescent image of
50 pm triangular particles with green (200 nm, green fluorescent beads) and red (Rhodamine-A)
layers. H and H2 are the heights of top (red) and bottom (green) layer in a particle. Scale bar is 50

pm.
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Figure 3.2a shows a typical channel used for particle synthesis. Narrow channels (40 pm)
were used to minimize mixing as stacked streams were introduced, providing stable layered
flows in the z-direction [110, 112]. Further along the channel, the flows are widened up to 1
mm for particle synthesis. Like other flow lithography techniques [72, 73, 109], HFL can be
applied to a broad range of precursor materials. As before, we use monomers based on
poly(ethylene glycol) that are bio-friendly, and can be functionalized with a variety of
biomolecules. As the prepolymer solutions we employ here are miscible, we can neglect the
effect of surface tension between layered flows. Figure 3.2b shows the particle synthesis
process in a 2D side view. We first flow a prepolymer solution with red fluorophores,
rhodamine acrylate. We then flow a second prepolymer solution with 200 nm green
fluorescent beads. After that, we synthesized bifunctional, triangular PEG hydrogel
particles in the stacked monomers. In this method, the fluid interface could be
perpendicular to the UV light propagation direction and precise mask alignment at the
interface is no longer needed. As shown in Figure 3.2c, the layered flows could be used to
introduce chemical anisotropy in the z-direction of particles. The relative thickness of each
chemical region, Hi and H2, could be readily controlled by adjusting the ratio of inlet
pressures.

3.3.1 Throughput and Uniformity for Synthesis of Striped Particles

To mass-produce layered particles in the two-layered PDMS channels, we used stop flow
lithography (SFL). As mentioned earlier, during multifunctional particle synthesis,
traditional SFL requires precise mask alignment across the interface and each synthesis
step polymerizes only 1-D rows of particles. The change in orientation of the fluid interface
in HFL allows for production of 2D arrays in each step. With a circular polymerization
region of radius D and a particle dimension L, synthesis throughput per cycle is
approximately rD2/4L 2 for a 2D array of particles in comparison to D/L for a single row. In
our current setup, D is approximately 1 mm and taking a particle dimension of 5 pm, the
throughput is increased by more than 200x. Furthermore, resolution of layer heights is now
controlled by automated flow rather than manual mask alignment.

L = 0.6cm

Figure 3.3: Uniformity of Janus particles synthesized at A, B, C, D and E spots across a 1 mm width
channel. The intervals between spots are 100pm. Scale bar is 50 pm.
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We also demonstrated that during synthesis with HFL, particles with uniform dimensions
are generated across the channel width. It is known that PDMS channels deflect under
pressure-driven flows, giving a local channel height that is dependent on the position [99].
In this view, continuous flow lithography (CFL) [72] is not compatible with HFL as layer
thicknesses will be different at each location. However, SFL can be used to yield uniform
layered particles without position dependency since polymerization occurs at zero applied
pressure, after the PDMS channel has recovered from a deflected state - as long as the stop
time (ts) is longer than the time required for channel relaxation (tr). The relaxation time is
dependent on channel width, channel height, viscosity of the solution, and distances from
inlets [73]. At 0.6 cm downstream in a 1 mm wide channel with 40 pm heights, tr is
estimated to be 0.07s [73]. Also, the polymerization time (to) should be kept to a minimum
in order to prevent species diffusion between layers. Using tr of 300 ms and to of 50 ms, we
showed that layered particles with uniform features were generated across the channel
width (Fig. 3.3).

3.3.2 Top-down Particle Design

As shown in Figure 3.2, we synthesized bifunctional, triangular polyethylene glycol
particles comprised of an upper layer with rhodamine-acrylate and a bottom layer
containing 200 nm green fluorescent beads. In the synthesis of the particles, we control the
thickness of each chemical region in a predictive way. To demonstrate this, we produced
triangular particles with high aspect ratio on several conditions of volumetric flow rates. As
most particles were toppled, we easily measured the thickness of each chemical region.
Then, we compared the results with the estimated values by a simple model that predicted
a curve for the relation between measured H2/Hi and Q2/Q1 (Fig. 3.4). When the thickness of
each chemistry is much larger than the oxygen inhibition layer thickness, the ratio of H2/Hi
is approximately same as the ratio of Q2/Q1. As shown in the below graph, the estimation
compared well with the experiments. We were able to precisely tune the layer height from
32 to ~4.5 pm.

3

7 2

70

0 0.5 1 1.5 2 2.5

Estimated Q2/Q1

Figure 3.4: Comparison of measured H2/iM versus estimated flow ratio Q2/Qi. A simple
hydrodynamic resistance model predicts a curve for the relation. Scale bar is 20 pm.
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We recall that HFL (and SFL) can quickly stop and start the flows (polymerizing features
in the stop regime) because they control pressure at the inputs, whereas sources that
directly control flow rates (e.g. syringe pumps) typically have a slow response time. As a
result, we developed a hydrodynamic resistance model to estimate volumetric flow rates
from inlet pressures. This model was analogous to Ohm's laws. We calculated
hydrodynamic resistances from channel geometries, and converted pressure differences to
volumetric flow rates using the resistances. We make the following assumptions in our
model: (1) Newtonian, incompressible, fully developed and laminar flows, (2) negligible
surface tension between solutions, and (3) viscosity p is the same in all inlet flow streams.

Q2

+ +
P1 W1, Li

Al , Dh,1

W2,

P4 A2,
W4, L4

Q1 A4, Dh,4

5 W3, L3

W5, L5, A5 , Dh,5-+ A3 , Dh,3

L6

P7

W7, L7
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P2

L2

Dh,2

3

Figure 3.5: A schematic description of a PDMS channel used for creation of two layered flows.
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Width pm Area pm 2  Hydraulic pm Length Jim
diameter

W1 200 A1  8000 Dh,1 67 Li 3773
W2 100 A2 4000 Dh,2 57 L2 5430
W3 40 A3  1600 Dh,3 40 L3 3773
W4 40 A4  1600 Dh,4 40 L4 3217
W5 40 A5  1600 Dh,5 40 L5  520

1_ 1_ 1 1 1 L6 2000
W7 1 500 A7 20000 Dh,7 74 L7 3875

Table 3.1. Geometries of a PDMS channel used for creation of two layered flows

Then, for laminar flow in a pipe, we can express the volumetric flow rate Q as the following

equation (3.1),

Q= h (P )os,)
32 pL

(3.1)

Here, the hydraulic diameter (Dh) of rectangular tubes is given by the following equation
(3.2).

D = 2ab
a+b

(3.2)

Where a is the width of a pipe and b is the height of a pipe. From Figure 3.5 and the
equation (3.1), we can write the following equations.

32 pL,

A4D,42
32pL,

A5D 5 (P-P
32pL

2 32pL

( 32pLu '

= 32 4 (P7 )

_ P _ 3Dpi (P - P5)
32 pL 5

32 p L5

2H
=3u (P6

(3.3)

(3.4)

(3.5)2W2W2
PO(W + W)

Solving the above equations, we can get the following pressure relations.

P2 0.95 0.0077'

P 3 0.76 0.038 ,

P = 0.092 0.15 P4

P 0.014 0.022

P7 0.013 0.021

(3.6)

Using the relations, we can express the ratio of the volumetric flow rates as inlet pressures.
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- 0.57P, -0.092P4
Q 0.85P4-0.092P,

(3.7)

In table 3.2, we summarize the estimations of all intersection pressures (P 2, P3, P5, P6 , and
P7) and Q2/Q1 at given inlet pressures (P1 and P 4),

P1,int P4,inkt P2 Pa P5 P6  P7  Q2/Q1
(Psia) (Psia) (Psia) (Psia) (Psia) (Psia) (Psia)
3.0 5.0 2.9 2.5 1.0 0.15 0.15 0.31
4.0 5.0 3.8 3.2 1.1 0.17 0.16 0.47
5.0 5.0 4.8 4.0 1.2 0.18 0.17 0.63
5.0 4.0 4.8 4.0 1.0 0.16 0.15 0.84
5.0 3.0 4.8 3.9 0.9 0.14 0.13 1.23
5.0 2.0 4.8 3.9 0.8 0.12 0.11 2.14

Table 3.2. Estimated pressures and Q2/Qi.

Finally, we can derive a relation between H2/H1 and estimated Q2/Q1.

xH -H
H Q C

2 Q+Q1
H , 1 + Q 2 x H c - H ,

(H -H,)x2 -HQ

c 1, (3.8)

Where Hc is the channel height and Hi is the inhibition layer
experiments, Hc is 40 pm and Hi is approximately 2 pm.

thickness. For our

3.3.3 Multilayered Partidles

We showed that multiple flows can be stacked by increasing the number of inlets entering

sequentially from the bottom layer of the device (Fig. 3.6a). Using such multi-flow stacking,
we synthesized triangular particles containing three layers (Fig. 3.6b and c). In the tri-
layered flows, flow 1 was PEG-DA with 200 nm green fluorescent beads while flow 2 and
flow 3 were PEG-DA with 100 nm blue fluorescent beads and PEG-DA with rhodamine

acrylate, respectively. Considering the minimum chemical layer thickness of - 4 pm, we
could generate particles containing 10 different chemical layers from a 40 pm channel. The

aspect ratio of the layered particles is defined to be the ratio of the over-all particle height
divided by the size of the feature produced by the transparency mask. Using variations of
mask feature sizes in similar channels, we also generated particles with aspect ratios
greater than (Fig. 3.7a) or less than 1 (Fig. 3.7b).
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Flow 2 Flow 3

Flowi1.

Flow 2 Flow 3

Figure 3.6: Synthesis of multi-layered microparticles. (a) A schematic drawing for synthesis process
of tri-layered microparticles. In the stable layered flow, tri-phasic triangular particles can be
synthesized using a mask with triangles. (b) Differential interference contrast (DIC) image of 50 pm
tri -layered triangular particles (c) Magnified fluorescent image for the circled region of (b). Scale bars
are 100 pm (b) and 50 pm (c).

Figure 3.7: Tri-layered microparticles with different aspect ratios (a) 20 pm pentagonal particles
with aspect ratio 2. These particles contain rhodamine-acrylate in both top and bottom layers but no
fluorophores in the middle layer. (b) 150 pm tri -layered ring particles with aspect ratio 0.4. Scale
bars are 30 pm (a) and 100 pm (b).
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3.4 Particle Synthesis in Multidimensional Monomer Flows

a A B A

Flow 1 (F1)

Flow 2 (F2)

%C

Flow 3 (F3)%%

Figure 3.8: Synthesis of dual-axis layered microparticles. (a) A schematic diagram for synthesis
process of dual-axis layered microparticles. Flow 1 (Fl), flow 2 (F2) and flow 3 (F3) contain 200 nm
green fluorescent beads, 100 nm blue fluorescent beads and rhodamine-acrylates as fluorophores.
Inserted fluorescent images show dual-axis flows in a two-layered PDMS channel. (b) A fluorescent
image to show a side view of a 40 pm cross shaped particle with red, blue (in top) and green layers
(in bottom) (c) A fluorescent image of mass-produced particles. Scale bars are 80 pm (b) and 10 pm
(c).

As perhaps the most valuable feature of HFL, the method can also be used for high-
throughput synthesis of dual-axis multifunctional particles with mask-defined
morphologies. Such particles have not previously been made in microfluidic devices. We
generate a 2-D flow focusing [113] geometry by first co-flowing monomers F1 (PEG-DA with
Rhodamin-A) and F2 (PEG-DA with 100 nm blue fluorescent beads) using two inlets of top
channel. This flow is then stacked on monomer F3 (PEG-DA with 200 nm green fluorescent

beads), which enters from the bottom channel. Shown in Fig. 3.8a are the layered flows that
comprise the top (flow 1 and flow 2) and bottom layers (flow 3). Using a transparency mask
with a single row of features, we synthesized cross-shaped particles with dual-axis
functionality at the interface of flows (Fig. 3.8b and c). Although the production rate for this
process is similar to that of traditional SFL due to the necessity of 1-D row synthesis, the
process extends the degree of freedom for chemical anisotropy in a particle to two
dimensions. Furthermore, the multidimensional flows can be layered in a scalable way. We
generated 4 layered flows which contained in their center side-by-side stacked monomers
which were bounded on the top and bottom by a third monomer stream (Fig. 3.9).
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Figure 3.9: Synthesis of four-layered sandwich microparticles. (a) A schematic diagram for synthesis
process of four layered sandwich particles with dual layers in the middle. A -B is the intersection of
the channel with dual-axis four layered flows. (b)-(d) Fluorescent images of a sandwich particle
generated by the process in (a). Scale bars are 50 pm.

To achieve this, flow 3 was introduced in at both the top and second bottom channel, while

the monomers contained in the middle layer were combined at the first bottom inlet. Using

a mask of rectangular shapes with rounded corners, we synthesized sandwich-like

multifunctional particles at the interface of the two flows in the middle layer (Fig. 3.9a). As

shown in Figure 3.9b-d, the sandwich particles had green fluorescent top and bottom layers

(Fig. 3.9b) with red and blue fluorescent layers comprising the middle (Fig. 3.9c). For such

dual-axis particles, chemical anisotropy in the y-direction can be controlled by mask

alignments at the flow interface.

a A B

Flow 4
Flow 3.& A

Flow 1
Flow 3

B

Flow 5

Flow 2

Figure 3.10: Synthesis of five -layered sandwich microparticles. (a) A schematic diagram for synthesis
process of five layered sandwich particles with dual layers in the top and bottom. A -B is the
intersection of the channel with dual-axis five layered flows. (b-c) DIC and fluorescent images of a
sandwich particle generated by the process in (a). Scale bars are 50 pm.
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5 layered flows were also generated as shown in Figure 3.10. The center consisted of a
monomer while the top and bottom comprised of side-by-side stacked monomers. A particle
synthesized in the structured flows is shown in Figure 3.10b and c. As shown in these
examples, the number of layers in a particle is less than or equal to the number of inlet
flows because a layer can be generated from multiple inlet flows. Using this process,
virtually any number of flows can be stacked.

3.5 Protein Coating on Particle Surfaces

a
Streptavidin-Cy3
(- 5 nm)

30 min at 37C

C-
Porosity < Snm

Figure 3.11: Protein conjugation on particle sides. (a) A schematic diagram for preparation of
triangular particles with patterned protein coatings. The middle flow contains biotin -PEGA that is
copolymerized in the particle. After incubation, the triangular particles are coated with streptavidin -
cy3 on the sides. (b)A DIC image of the protein coated triangular particles. (c) A fluorescent image of
(b). Scale bars are 50 pm.

Finally, we demonstrate that particles prepared by HFL can be patterned with proteins on

a specific layer. These "caps" can be used to restrict target capture to specific particle faces

(Fig. 3.11) To achieve protein capturing, we first synthesized biotin-PEG-Acrylate by

mixing 1:1 molar mixture of biotin-hydrizide and acrylate-PEG-succinimidyl ester in 1X

PBS buffer and used this as an anchor to attach streptavidin. This allows us to directly co-
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polymerize biotin in a selected region of the particle. The trilayer flow is shown

schematically in Figure 3.11a, and the acrylated biotin is in the center flow. The resulting

synthesized triangular particles are shown in Figure 3.11b. Next, streptavidin-Cy3 was

incubated with the particles at 37 'C for 30 min. The streptavidin-Cy3 will strongly

associate with the biotin. As the size of streptavidin (- 5 nm) was bigger than the porosity

size of the hydrogel networks [104, 109], proteins were coated on sides of particles. In Fig.

4C, the fluorescence pattern indicates that proteins were not bound to top and bottom

layers. Furthermore, the resulting specific association shows that the biotin is still active

after UV-polymerization, akin to our prior work with nucleic acids [7]. The short UV

exposure dose required for synthesis is the most likely reason that bio-activity is retained

3.6 Summary

In this section, we have presented a new technique called hydrodynamic focusing

lithography (HFL) that combines flow-stacking and microfluidic particle synthesis. In HFL,

the layered flows can be used to introduce chemical anisotropy in z-direction of particles.

The top-down particle design was achieved by a simple hydrodynamic model. For certain

applications, the approach can increase the throughput of multifunctional particle

synthesis over 200 times when compared to traditional stop-flow-lithography. We have also

demonstrated that HFL can be used to produce dual-axis layered particles. To achieve this,

multidimensional stacked flows were used to synthesize the complicated particles, and

layered in a scalable way. The flows were further engineered in a predictive fashion. Lastly,
as a demonstrative application, we showed surface functionalization of particles patterning

proteins on a specific layer. HFL is a compelling method as the technique is compatible

with other flow lithographic methods such as LRL [109] and stop flow interference

lithography (SFIL) [102]. For example, the combination of HFL and LRL can lead to

chemical patterning in all dimensions as LRL can offer chemical isotropy of particles in x-y

dimension [109]. We have believed that HFL can provide a powerful way to reach new

complex particles.
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Chapter 4

Oxygen -Free Flow Lithography

FL currently relies on the use of polydimethylsiloxane (PDMS) microchannels because the
process requires local inhibition of polymerization near channel interfaces via oxygen
permeation. The dependence on PDMS devices greatly limits the range of precursor
materials which can be processed in FL. Utilizing an initiated chemical vapor deposition
(iCVD) nano-adhesive bonding technique to create non-PDMS based devices, here we
present oxygen-free flow lithography via inert fluid lubrication layers for the synthesis of
new classes of complex microparticles. We successfully synthesize microparticles with a
sub-second residence time and demonstrate on-the-fly alteration of particle height. This
technique greatly expands the synthesis capabilities of FL, enabling particle synthesis
using water-insoluble monomers, organic solvents, and hydrophobic functional entities such
as quantum dots (QDs) and single-walled carbon nanotubes. As one demonstrative
application, we created near-infrared barcoded particles for real-time, label-free detection of
target analytes.

4.1 Introduction

Current FL protocols require polydimethylsiloxane (PDMS) channels to allow for the
permeation of oxygen into the synthesis chamber for inhibition of polymerization near
channel interfaces. This localized inhibition layer enables the production of mobile
particulates (as opposed to fixed structures) that can be transported out of the synthesis
area via flow [72]. The current dependence on PDMS places restrictions on both device
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construction (e.g. glass or plastic cannot be used) and prevents the use of solvents and/or

monomers that swell PDMS. Employing an iCVD nano-adhesive bonding procedure to

construct a new class of non-PDMS devices, we now present oxygen-free FL, a versatile

particle synthesis method that uses inert fluid lubrication layers to achieve new levels of

chemical complexity. By vertically layering multiple laminar flows within this new

generation of devices, we produce anisotropic particles using sub-second residence times

without oxygen lubrication layers and tune particle heights on demand by adjusting flow

parameters. We further estimate maximum residence time for particle synthesis,

evaluating physical and kinetic properties such as flow layer thickness, critical gel point,

and diffusivity. Finally, we demonstrate solvent-based synthesis of complex anisotropic

particles from structured microflows of water-insoluble monomers and particles

encapsulating hydrophobic functional entities such as ruthenium, quantum dots (QDs) and

single-walled carbon nanotubes (SWNTs). Using this approach, we synthesize graphically

encoded particles that bear near-infrared-active QDs in the "code" region and SWNTs in a

separate "probe" region designed for label-free, real-time detection of target molecules. The

novel techniques described here greatly enhance the synthesis capabilities of FL and

further expand the library of chemically and geometrically complex microparticles that can

be produced.

4.2 Experimental Methods

Materials

For swelling experiments, we used an organic solvent comprised of 98% (v/v) toluene (EMD

Chemical Inc.) containing 2% (v/v) magnetic nanoparticles solution (EMG 905, Ferrotec, for

visualization). PEG structures inside NOA devices were generated from a monomer

solution containing 60% (v/v) PEG-DA 700 (Sigma Aldrich), 10% (v/v) 2-hydroxy-2-

methylpropiophenon (PI, Sigma Aldrich), and 30% (v/v) PEG 200 containing 20 mg/ml of

red acrylate 13 (Sigma Aldrich). PEG particles encapsulating ruthenium were synthesized

using solution of 84% (v/v) PEG-DA 200 (Sigma Aldrich), 10% (v/v) PI, 1% (v/v) NVP (Sigma

Aldrich), and 5% (v/v) ruthenium complex (II) dye solution. The dye solution was prepared

by dissolving dichlorotris(1,10-phenanthroline) ruthenium (II) hydrate (Sigma Aldrich)

powder into a mixture of methanol and toluene (4:1, v/v) at a concentration of 5 mg/ml.

Other PEG particles were made of the composition as in Figure 4.15. Unless noted, PEG

inert flows were PEG 200 (Sigma Aldrich) containing the same PI concentration as the

accompanying monomer solution. In experiments to find the critical gel point of PEG-DA

575, the monomer solutions were comprised of 5% (v/v) PI, 1% (v/v) methacryloxyethyl

thiocarbamoyl rhodamine B (Polysciences) in PEG 200 (1mg/ml), 4% (v/v) Food coloring

(Tone Brothers Inc.), X% (v/v) PEG-DA 575, and 90-X% (v/v) PEG 200. PUA and TMPTA

(Polysciences) particles were prepared from a prepolymer composition of 55% (v/v) monomer,

35% (v/v) toluene and 10% (v/v) PI. The liquid PUA precursor (MINS 311RM) was kindly

provided by Minuta Tech. For QDs stock solution, we purchased 915 nm CdTeSe/ZnS QDs
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dispersed in toluene at a concentration of 25 mg/ml (Nano Optical Materials Inc.). QDs
monomer mixture consisted of 10 % (v/v) PI, 40% (v/v) NOA81 (Norland Products), and 50%
QDs solution. The QDs concentration was adjusted by toluene dilution of stock solution.

iCVD Process

All iCVD films were deposited in a custom built vacuum reactor (Sharon Vacuum) with a
radius of 12 cm, as previously described [114]. The ChromAlloy filaments (Goodfellow) were
mounted in a parallel array to provide the thermal excitation, heated by a DC power supply
(Sorensen). The filament temperature was measured by a K type thermocouple (Omega
Engineering) attached to one of the filaments. The vertical distance between the filament
and the deposition stage was 1.5 cm. The stage was back-cooled by a recirculating
chiller/heater (NESLAB), which served as the purpose of maintaining the substrate
temperature constant to prevent the heating of the sample due to the heated filaments. All
the chemicals species were used as purchased without further purification. tert-Butyl
peroxide (Aldrich, 97%) initiator at room temperature, was fed into the reactor through a
mass flow controller (model 1479, MKS Instruments) at 1 sccm. iCVD deposition conditions
utilizing the monomer 4-aminostyrene (4-AS) (Aldrich, 97%) and glycidyl methacrylate
(Aldrich, 97%) (GMA) were adopted from previous work reported by Xu and Mao [115, 116].
Total pressure in the vacuum chamber was maintained at 0.3 torr and 0.2 torr for 4-AS and
GMA depositions respectively.

SFL Setup

The setup for SFL uses pressure provided by a compressed-air source to drive flow inside
the microfluidic channels. The compressed-air flow control system is described in our
previous work [74]. Devices were mounted on an inverted microscope (Axiovert 200, Zeiss)
equipped with a VS25 shutter system (UniBlitz) to precisely control the UV exposure dose.
A photomask was then inserted into the field-stop of the microscope. The masks were
designed in AUTOCAD 2005 and printed using a high-resolution printer at CAD Art
Services (Bandon, OR). A Lumen 200 (Prior) served as the source of UV light. A filter set
that allowed wide UV excitation (11000v2: UV, Chroma) was used to select light of the
desired wavelength. The VS25 shutter system driven by a computer-controlled VMM-D1
shutter driver provided specified pulses of UV light. The shutter-mediated UV exposures
were synchronized with the stop flow system using Python to allow the user to cycle SFL
process automatically through the specification of a flow duration, a stoppage duration, and
an exposure time. Typical exposure times used were 30-300 ms and pressures ranged from
0.05 to 15 psi.

Near Infrared Fluorescence Imaging Analysis

Near infrared fluorescence images of particles were taken using a fluorescence microscope
(Carl Zeiss, Axiovert 200), with a CCD camera (Carl Zeiss, ZxioCam MRm) and 2D InGaAs
array (Princeton Instruments OMA 2D). Samples were excited by a 658 nm laser (LDM-
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OPT-A6-13, Newport Corp) at 35 mW and the emission from 900 to 1400 nm was detected
for 1 s using a 20x objective.

4.3 Non-PDMS Based Device Fabrication

Oxygen-free FL is a technique designed to extend current PDMS-based FL to non-PDMS
based devices. These non-PDMS based devices include homogeneous and heterogeneous
devices created from numerous combinations of alternative substrate materials as well as
integrated devices to mount electric and magnetic circuits. In past work, the absence of a
suitably general bonding method to combine diverse types of substrates has led to
limitations in device construction. In developing oxygen-free FL, we required a bonding
method that (1) does not depend on substrate type for the creation of a wide array of devices
with different properties, (2) does not demand immediate bonding for further device
integration, and (3) offers strong mechanical resistance for high-throughput synthesis. With
these considerations in mind, we use the nano-adhesive iCVD bonding technique for the
creation of non-PDMS based devices. The versatile iCVD method is able to deposit
conformal and pinhole-free adhesive films on virtually any kind of substrate with
nanometer-level thickness control [115, 117, 118]. Also, the iCVD bonding process is
independent of the channel fabrication process, and deposited samples can be stored for
more than 2 months prior to bonding [115, 118]. Finally, bonded devices were able to
withstand pressures higher than 150 psia, and the all-iCVD nano-adhesive bonding process
displayed superior resistance against hydrolytic degradation [115].

4.3.1 Homogeneous NOA81 Channel Fabrication

Bottom NOA81 Channel

Silane Treated
b PDMS UV

Top NOA81 Channel

Figure 4.1: NOA8I channel fabrication (A) Bottom layer of channel is created by sandwiching NOA
between glass substrate and SU-8 master mold bearing positive -relief features and then curing with
10-min UV exposure. (B) Top layer is created in a similar fashion, using a different master mold and
a silane -treated PDMS layer with inlet and outlet holes that align with the corresponding SU-8 relief
elements. Silane treatment of PDMS substrate facilitates bonding between PDMS and NOA.
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We demonstrate that the iCVD nano-adhesive bonding technique can be used to fabricate
non-PDMS based channels. UV-curable Norland Optical Adhesive 81 (NOA81), a thiolene-
based resin, was chosen as the substrate material because it is commercially available and
allows for rapid prototyping and reliable replication of sub-micron features [119]. In
addition, this material can provide a number of attractive optical and physical properties
including transparency, high elastic modulus (- 3 Gpa), and excellent solvent resistance
[119]. The channel substrates are prepared using the process described in Figure 4.1.
Briefly, a droplet of NOA81 was put on a silicon wafer and sandwiched between the wafer
and a glass slide. After curing under the UV (365nm) lamp for 10 min and unmolding, a
bottom NOA81 channel was mounted on the glass slide. A blank PDMS slab with inlets and
an outlet was treated with oxygen plasma for 30 s and then with tricholorvinylsilane
(Aldrich, 98%) under vacuum for 5 min. Again, the NOA81 was exposed to UV for 10 min
giving a top NOA channel on the PDMS substrate.

a Cut 200 pl
pipette tip 1. Remove the wafer

2. Remove the tip
3. Repunch the inlet

UV 4. Cut edges

NOA 81 Wafer

bc d

Figure 4.2: Inlet fabrication utilizing NOA81 capillary coating. (a) A schematic description of the
inlet fabrication process. (b) A SEM (Scanning Electron Microscope) image for intersection of an
NOA81-coated PDMS inlet. During the sample cutting process, the hard NOA81 coating that
originally covered the entire circumference of the inlet was broken, and the image provided shows
only a portion of the original cylindrical coating The white arrow indicates the remaining portion of
the broken NOA81 coating. (c) A magnified SEM image of (b). (d) An optical image to show the
intersection of an evenly coated inlet. The NOA81 was coated with around 200 pm thick on the
PDMS substrate. All scale bars are 1 mm.

In PDMS device fabrication, inlet fabrication has not drawn attention as the material can
allow for easy inlet fabrication. PDMS can provide quick punching of inlets and tight
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supporting of tubing. However, this situation completely turns about in plastic or glass

channel fabrication. These channels sometimes require special equipment for inlet

punching and supporters to hold tubing [119]. Usually, such supporters are glued on the

inlets, occupying considerable areas that can be a problem in fabricating dense inlets. For

our case, we developed an inlet fabrication method accommodating the PDMS advantages.

The inlets had NOA81 coating on PDMS inlets (Fig. 4.2).

peroxie 010 peroxide
iCVD |iCVD 1 01O

Z NH N2 O.0 o

4-Amino- Poly(4- Glycidyl Poly(glycidyl
styrene Aminostyrene) methacrylate methacrylate)

Conformal iCVD
_ nanoadhesive bonding

Assemble \
90'C for 24 hr
under vacuum

NOA 81

OH OH
NH NH

Figure 4.3: iCVD nano-adhesive bonding (a) Schematic description for the iCVD nano-adhesive

bonding process. The nano-adhesive films of poly(4-aminostyrene) (PAS) and poly(glycidyl

methacrylate) (PGMA4) were deposited on top and bottom channel substrates, respectively, via iCVD.

The two channel substrates are aligned and sealed together under vacuum via the ring-opening

reaction of the newly generated amine and epoxy groups. (b) Color image of fully assembled channel

mounted on a glass slide. The devices are optically transparent and can be used with

photolithographic techniques. Scale bar is 1 mm.

A nano-adhesive bonding process utilizing iCVD has been developed previously [115, 118].

However, in the past construction of such devices, one substrate was required to be a soft

elastic PDMS substrate in order to ensure conformal contact to the other substrate [115,
118]. When hard channel substrates were combined together, air bubbles were entrapped

between channel interfaces, causing insufficient channel sealing and even distortion of

channel geometries. To overcome this, we developed a vacuum curing process to remove the

trapped air bubbles and, for the first time, generated homogeneous NOA81 channels using

the bonding technique (Fig. 4.3). It should be noted that the NOA81 channels can also be

prepared by existing thiolene-based bonding techniques [119-121]. However, these existing

methods do not satisfy all of the previously mentioned requirements for oxygen-free FL,
thereby limiting operational flexibility.
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4.3.2 Heterogeneous NOA81 Channel Fabrication

We also demonstrate that the iCVD bonding process can be used to fabricate heterogeneous
NOA81 channels. To do this, we prepared top NOA 81 channels by the process described in
(b) of Figure 4.1. In this process, we used an additional layer of PDMS to add thickness for
easier inlet fabrication. This elastic PDMS layer was easily modified for inlet creation
because holes could easily be punched into it using luer stubs, and the resulting elastomer
holes enabled tight fitting of pipettes containing monomer. As a result of this construction
process, the top substrate was a composite slab of PDMS and NOA81. However, it is
important to note that the channel surfaces in contact with the synthesis chamber itself
were comprised only of NOA81, and did not contain PDMS. Using the iCVD bonding
process, we successfully combined the hard NOA81 channel surfaces with a number of
substrates including Si wafers, PET and polycarbonate (Fig. 4.4). This is the first
demonstration that heterogeneous NOA81 channels can be created by the iCVD bonding
process. The results can further validate that the nano-adhesive bonding method can be
used to combine non-PDMS surfaces during the fabrication of various types of non-PDMS
based devices.

Figure 4.4: Bonding NOA81 channels with various substrates. All scale bars are 1 cm.

4.3.3 Evaluation ofNOA-based Microchannel Performance

The nano-adhesive bonding process was able to combine channel substrates, as well as
retain a range of substrate properties. The NOA devices bonded with the nano-adhesive
were optically transparent (Fig. 4.3b), compatible with standard photolithography
techniques, and displayed response time characteristics far superior to those of PDMS
channels [115, 119]. The high Young's modulus of the NOA81 channels [119] produces a
response time scale that is 1000 times smaller than that which can be achieved with PDMS
devices, thereby greatly decreasing the lag times associated with pulsed flow.

Tr,NOA81 EPDMS _ 1 Ma

Vr,PDMS ENOA81 30 a
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Also, the devices exhibited excellent compatibility with organic solvent flows, with little

evidence of swelling or deformation in numerous trials (Fig. 4.5a). To demonstrate the

improvement over previous iCVD nano-adhesive work [115, 118], we first fabricated a two-

layer hybrid channel (PDMS top, NOA81 bottom) and injected toluene at the inlet of the

bottom channel. When the toluene reached the PDMS substrate, the PDMS channels began

to shrink dramatically, and within 1 min, the width of the top PDMS channel was reduced

by - 60%. The reduction of channel size can significantly alter flow rates and velocity

profiles, and thus prevent the creation of stable layered flows. We then performed the same

experiments with homogeneous NOA81 channels and examined their performance with

organic solvent flows. Unlike the hybrid channels, we observed no significant swelling, even

after 5 hr of solvent exposure. This is the first demonstration that the devices bonded by the

nano-adhesive technique have solvent resistance.

a A A A A'
2 PDMS'i NOA81

A objective A Toluene Toluene

Dye NOA81 Dye NOA81

b PDMS Channel (Side View) Photopolymerize Rinse Result
02 Particles

Mask~~ PE~Rinse.e

Mask -I i PEGDA, Dye, and PI

NOA81 Channel (Side View)

02 Structures

PEGJ

Rinse
Mask - if

UV PEGDA, Dye, and PI

Figure 4.5: iCVD nano-adhesive bonding (a) Schematic description for the iCVD nano-adhesive

bonding process. The nano-adhesive films of poly(4-aminostyrene) (PAS) and poly(glycidyl

methacrylate) (PGMA) were deposited on top and bottom channel substrates, respectively, via iCVD.

The two channel substrates are aligned and sealed together under vacuum via the ring-opening

reaction of the newly generated amine and epoxy groups. (b) Color image of fully assembled channel

mounted on a glass slide. The devices are optically transparent and can be used with

photolithographic techniques. Scale bar is 1 mm.
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Lastly, as NOA81 substrates are gas-impermeable, the devices cannot provide oxygen
lubrication layers for the creation of free-floating particles. As mentioned earlier, oxygen
lubrication in gas-permeable PDMS channels allows for the creation of free-floating
particles that can be flushed out by rinsing solution and collected in a reservoir. However,
in gas-impermeable NOA81 channels, the radical polymerization was able to propagate to
the channel walls in the absence of oxygen and thereby generated photo-patterned
structures that were affixed to the channel and could not be removed by flow (Fig. 4.5b).

4.4 On-the-fly Particle Synthesis

a Flow b

Objectiwe

SOnOn Mask . P /

r Shutter

SMonomer .N
Inert Z

X Monomer Inert

Figure 4.6: On-the-fly alteration of particle height with inert flows (a) Schematic of microparticle

synthesis in gas -impermeable NOA channel. Particles were synthesized and then carried out of the
synthesis area using rapid, synchronized cycles of shutter-mediated UV exposure and pressure-
driven flow. (b) A schematic to describe the vertical flow focusing process. Instead of volumetric flow
rates, we controlled pressures at the inputs to provide rapid alternation between the flow and
stoppage states. The middle monomer flow is sandwiched between top and bottom inert flows
without mixing due to low Reynolds number flow conditions.

Oxygen-free FL is a technique developed to eliminate the requirement for oxygen

lubrication in the FL process by utilizing inert flows that cannot propagate the

polymerization reaction. Combining a hydrodynamic flow focusing technique with a

compressed-air flow control system [73, 74], we generated pulsed tri-layered flows

containing two bounding inert flows and a central monomer flow (Fig. 4.6). Although

vertical flow focusing techniques have been used in flow cytometry [110, 111], this is the

first demonstration of particle synthesis with stacked lubrication layers. Moreover, it is

important to note that our synthesis with the stacked lubrication layers was achieved with

a pulsed flow regime that periodically stopped the flow just prior to the

photopolymerization step to provide higher feature resolution and improved throughput

[73]. As pressure-driven sources typically provide quick dynamic response [74, 122], we

generated rapid pulsing of the layered microflows using our pressure-control system that

can allow for fast and simple modulation [74]. We rapidly polymerized cylindrical particles
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in the middle monomer layer by terminating the driving pressure, waiting 300 ms to ensure
complete flow stoppage, and then exposing the flow to a 75 ms UV burst. We then re-
initiated pressure-driven flow for 1 s to flush particles out to the reservoir (Fig. 4.6a). This
process was cycled and automated using a computer-controlled system. There were three
main criteria for the inert flows: (1) miscibility with the middle monomer to avoid
interfacial tension, (2) similar density with the middle monomer to prevent gravity-induced
reorientation of interfaces [123], and (3) a concentration of photoinitiator (PI) that matched
the concentration contained in the middle monomer to ensure homogenous polymerization.
To satisfy these conditions, we used polyethylene glycol (PEG) with PI for the inert flows for
synthesis trials with a central monomer of polyethylene glycol diacrylate (PEG-DA).

4.4.1 Maximum Particle Synthesis Throughput of Oxygen-free FL

Oxygen-free FL can provide a higher particle synthesis throughput than former FL
techniques, improving the throughput of SFL. The SFL process requires a stop time for the
channel relaxation of the elastic PDMS devices. This time ranges from tens of milliseconds
to one minute depending on the channel height, width, and length [73]. The technique also
need an induction time to deplete oxygen dissolved in the monomer flows [75, 124]. In our
current setup, the minimum induction time for 40 pm channel approximately occupies 20%
of the polymerization time. In addition, the PDMS devices have shown low pressure
resistance. Oxygen-free FL in NOA81 channels can use 1000 times smaller stop times than
SFL, and these oxygen impermeable devices can provide negligible induction time in the
ideal case in which oxygen dissolved in the monomer is completely depleted before injection.
The channels in oxygen-free FL can also utilize higher flow velocities, with operating
pressures over 150 psi. When we synthesized particles with 3 Pm feature size in a 1 mm
wide, 40 pm high, and 1 cm long channel, the maximum particle synthesis throughput for
CFL and SFL were respectively estimated in Reference 73. Estimating the maximum
particle synthesis throughput of oxygen-free FL for the synthesis condition, we prepared
Table 4.1 to summarize the maximum particle synthesis throughput for each type of FL.

UYL itet. /'J U - 50 ms ~ 20s ~ 20s 104- 105

SFL [Ref. 73] ~ 20 ms - 50 ms - 110 MS ~ 180 ms ~ 107

Oxygen-Free FL < 1 ms - 40 ms ~ 35 ms < 76 ms - 2.3x107

Table 4.1 Summary for the maximum particle synthesis throughput for each type of FL

4.4.2 Modified Hydrodynamic Resistance Model

We developed a predictive model for the creation of particles with inert flows that allowed
us to adjust particle height in a systematic fashion. In this approach, the volumetric flow
rates for the top and bottom inert flows were designed to be equal to give symmetrical inert

71



thickness in the synthesis chamber. To estimate volumetric flow rates from the measured

inlet driving pressures, we previously developed a model that calculated hydrodynamic

resistances from channel geometries and fluid viscosities [125].

W3,

A3 ,

W4,

A4,

W5, L5

L6

Dh,6

Figure 4.7: A schematic description for two layered homogeneous NOA81 channels

7780100 A 2 4000 Dh,2 57
W3 40 A3 1600 Dh,3 40 L3  4873
W4 200 A4 8000 Dh,4 67 L4 3773
W5 100 A5  4000 DhS 57 L5 5430
W6 40 A6 1600 Dh,6 40 L6 3773
W7 40 A7 1600 Dh,7 40 L7 3217
W8 40 As 1600 Dh,s 40 L8 400
W9 40 A9 1600 Dh,9 40 L9 120

1 1 Lio 2000
Wi1 500 Au 1 20000 Dh,i1 74 L11 3875
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Table 4.2 Geometries of a two layered homogeneous NOA81 channel



However, this model neglected resistances that arose from inlets, corners, defects, and
misalignments. To address this, we created a modified model that experimentally
determined total hydrodynamic resistances by lumping previously neglected factors (Fig.
4.8).

a Q1 0 0, Q2, Q3 = 0 at (P1., P2., P3 -)

P2- P3- p,* ..P2- P2- - PW - P3-Pr ~~~Patm-r=ra- -
Ri R4 Rs5 R4  A6

b Q1, Q 3 0,Q2 =0 at(P., P2-, P3 -) P3-

R3 Pl.--Pr-*= Pr- s)
-Pir- P2r- Ps R, R4

Patm
R1 R4 R5 PI prP2 a---psP

C Q1, Q2 # 0, Q3= 0 at (P-..., P2r, P3 --) P2.

R2 PV-- ... -
Pr--. P4 Pr R4 R5

Patm
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Figure 4.8: On-the-fly alteration of particle height with inert flows (a) Schematic of microparticle
synthesis in gas-impermeable NOA channel. Particles were synthesized and then carried out of the
synthesis area using rapid, synchronized cycles of shutter-mediated UV exposure and pressure-
driven flow. (b) A schema tic to describe the vertical flow focusing process. Instead of volumetric flow
rates, we controlled pressures at the inputs to provide rapid alternation between the flow and
stoppage states. The middle monomer flow is sandwiched between top and bottom inert flows
without mixing due to low Reynolds number flow conditions.

In this approach, we control inlet pressures to generate the three meta-stable
hydrodynamic states shown in Figure 4.8. In the first step, we set up all inlet pressures to a
fixed value. 2.0 Psia. Then, we independently reduce P2 and P3 to satisfy each case. For the
first case, we reduce both P2 and P3 to meet the moment at which flow colors are optically
clear on intersections. As we use food coloring to distinguish flows, the moment stands for
that volumetric flow rates, Q2 and Q3 are zero while Q1 is non-zero. As shown in Figure 4.8a,
Q1 has no color while Q2 and Q3 colors are red and green, respectively. In this meta-stable
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status, we can create a resistance diagram and successively set up two equations by mass
conservation. The diagram and equations can be found next to the optical images in Figure
4.8. For the other two cases (Fig. 4.8b and c), we can do the same process and eventually
write 6 equations with known 9 inlet pressures and R4. Note that R4 can be just estimated
from channel geometry as the resistance is not combined with inlets and corners. As the 6
equations have 6 unknown variables, we can determine all hydrodynamic resistances.
Table 4.3 ~ 4.6 summarize specific inlet pressures satisfying each case and hydrodynamic
resistance values extracted from the pressures.

1) Q1# 0, Q2, Q3= 0

2.0 0.8 0.6 0.027 0.014

Table 4.3 Estimation of hydrodynamic resistances, Ri and R5

2) Qi, Q3#0, Q2=0

2.0 1.0 2.0 0.048

Table 4.4 Estimation of hydrodynamic resistances, Rs

3) Q1, Q2# 0, Q3= 0

2.0 2.0 0.8 0.038

Table 4.5 Estimation of hydrodynamic resistances, R2

We also calculated the resistance values of R1, R2, R3, R4, and R5 from the previous model
considering only channel geometries [125]. Then, we compare the values with the
experimentally measured hydrodynamic resistances. This comparison shows considerable
differences between two models. For example, unlike the previous model, R2 and R3 have
larger values than Ri. Also, R5 is under-estimated in the previous model.

Previous 0.036 0.022 0.032 0.0045 I 0.0035
Modified 0.027 0.038 0.048 0.0045 0.014

Table 4.6 Comparison of hydrodynamic resistances estimated from two suggested models
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4.4.3 Symmetry Condition for Inert Flows (Qi = Qs)
We demonstrate that the modified model is superior to the previous one in estimating
hydrodynamic resistances and predicting inlet pressures to satisfy symmetry condition (Q1
= Q3) for inert flows. Using hydrodynamic resistances estimated from two models, we can
express intersection pressure P4 and P5 in terms of inlet pressures P1, P2 and P3. When we
use a typical pressure 3 psi for P2, P3 should have linear relations with P1 to achieve the
symmetry condition.

1) Previous Model

LP] = [0.14P5 0.06
0.22

0.091
I P =0.84P, -1.07 (for symmetry condition, P2=3.0 Psi)

2) Modified Model

[P]=0.28 
0.20 0.11]P

P 0.20 0.14 0.15iy2
-P3

P3 =1.4JP -0.61 (for symmetry condition, P2=3.0 Psi)

The linear relations between P3 and P1 have differences in slopes and intercepts depending
on applied model (Fig. 4.9). When P1 is getting high, the difference between the two models
to predict values for P3 will significantly increase. If we use 150 psi (which is the maximum
pressure that bonds can withstand) as Pi, the gap AP3 reaches to 85 psi.

Symmetry Condition (Qi=Q3)

- Modified Model
6 - Previous Model

C4

2-

0
0 1 2 3 4 5

P1 (PsI)

Figure 4.9: The inlet pressure relation to achieve symmetry condition (Qi Qs). When we use a
typical pressure 3.0 Psi as P 2, Ps and Pi have a linear relation with slopes and intercepts depending

on which model is applied.
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Experimental results validated that the modified model could provide accurate prediction
for inlet pressures to generate symmetrical inert flows. To visualize the symmetrical inert
layers, we performed an experiment to synthesize three-layered particles in a PDMS
channel (Fig. 4.10a). The middle layer has 0.01 wt% of rhodamine dye to distinguish top
and bottom inert layers. For all layers, we used PEGDA 575 95% (v/v) and PI 5% (v/v).
Fixing P2 = 3.0 Psi, we selected a specific Pi (= 4.9 Psi) pressure and used P3 predicted from
each model to generate symmetrical particles. After particle synthesis, we successfully
prepared particles containing symmetrical top and bottom layers when we used inlet
pressures predicted from the modified model (Fig. 4.10b).

a

b Previous
Model

Modified
Model

25 gm

Figure 4.10: Comparing modified hydrodynamic model with the previous model in achieving the
symmetry condition. (a) A schematic description for preparing tri-layered particles containing red
dye in the middle layer. The dye was used to visualize symmetry of layers. (b) Optical images of

synthesized particles using inlet pressures predicted by each model. The modified model gives more
accurate prediction for inlet pressures to achieve the symmetry condition.

4.4.4 Middle Layer Thickness, Hm

We have used pressure control system to provide quick stoppage of flows on the order of

milli-seconds. As a result, we have estimated volumetric flow rates from inlet pressures

using the modified hydrodynamic resistance model. To predict the middle layer thickness

(Hm), we need not only volumetric flow rates but also information for velocity profile of the

flows. We assume the layered flows can have velocity profile of Poiseuille flow as our
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channel geometry (channel aspect ratio < 0.1) is slit-like. The channel aspect ratio is
defined to the ratio of the channel height divided by the channel width. This will be a valid
assumption as previous work even shows that channel geometry with aspect ratio ~ 1 can
almost produce velocity profile of Poiseuille flow [126].

v(z) = Vm. 1- - (4.3)

Where v is the velocity of flow and he is the half of the channel height. We also used
following 3 assumptions: (i) Newtonian, incompressible, fully developed and laminar flows,
(ii) negligible surface tension between solutions, and (iii) viscosity p is the same in all inlet
flow streams.

z

X

Q1
Q2 --
Q3

_z = hc (0.5Hc)
-z = hm (0.5Hm)

z = 0

Figure 4.11: A schematic diagram for flow profile in the channel

We define the ratio of the volumetric flow rates of inert flow (Qi) divided by the volumetric
flow rates of middle monomer flow (Q2) as B. Then, B can be expressed in terms of inlet
pressures using the modified hydrodynamic model.

(4.4)

When we use the symmetry condition, B values are just function of Pi (Fig. 4.12).

B (=Q1102)

100

80&40-

0 2 4 6 8
P1 (PsI)

Figure 4.12: A plot for B versus Pi. B is the ratio of the volumetric flow rates of inert flow (Qi)
divided by the volumetric flow rates of middle monomer flow (Q2). In this plot, P2 is fixed to 3.0 Psi
while Psis the linear relation with Pi to satisfy the symmetry condition.
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We use B values as the values are directly related to the middle layer thickness (Hm). To
mathematically relate B values with Hm, we set up the mass balance equation.

he

Q1 Kh,, pv dz
B= J d (4.5)

G2 h pv dz

Where p is the density of flow, and hm is the half of the middle flow layer thickness (Hm).
Putting equation (4.3) into equation (4.5), we can get the following depressed cubic equation

that does not contain square term of hm.

h' -3h2 h, + 2hc =0 (4.6)
(B +1)

Solving this equation (4.6), we can get the final analytical expression of Hm.

Hm =2h cos -arcos - _-- (4.7)
(3 B+1 3,

4.4.5 On-the-By Alteration of Particle Heights

The particle heights (Hp) could be taken to be the same as the middle layer thickness (Hm)

because we synthesize particles with sub-second monomer residence time. Estimating the

flow time to the synthesis zone to be < 200 ms, the overall monomer residence time (flow

time + stop time + polymerization time) was ~ 500 ms, which was much smaller than the

characteristic time to diffuse the channel height (hC2/DPEGDA575 ~ 80 s, see Fig. 4.15). As a

result, we do not need to consider the additional thickness contributed by monomer

diffusion in the height dimension. As shown in the graph of Figure 4.13, the Hm prediction

compared well with measurements of particle heights.

40 Pi= 1.4 Psi Pi= 2.3 Psi

30 * Measured
E

=L20-
E

10_e

0 P2=3.0 Psi

Pi (Psi)

Figure 4.13: Particle height as a function of P1. Height of cylindrical particles was seen to vary with
inlet pressures in a manner that matched predictions from the hydrodynamic resistance model. As
shown in the graph, the Hm prediction compared well with measurements ofparticle heights.
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Through the precise control of inlet pressures, oxygen-free FL can be used to easily and
rapidly vary particle height in a channel with a fixed height. Current FL can synthesize
only one particle height from one device as the oxygen inhibition layer thickness is fixed to
~ 2 pm, and thus new PDMS devices must be prepared for each different particle height
that is desired. This requires the labor- and time-intensive fabrication of new master wafers.
It is important to note that for such PDMS devices, our inert-flow approach can still be
applied to generate particles with various heights. In Figure 4.14, we demonstrate the
adjustment of particle height in a PDMS device. In a same way with NOA 81 devices, we
used PEGDA 575 as monomer flow and inert PEG 200 as a tuning fluid in the top and
bottom streams of a three-layer flow (Fig. 4.14a). The thickness of the tuning layers was
adjusted by varying the inlet pressures of the streams. In a 40 pm high PDMS device, we
produced triangular particles with reduced heights (Fig. 4.14b and c). For our channel, a B
(Qu/ Q2) = 0.45 resulted in particles with a height of ~ 19 pm which was around 50 % of the
height of particles generated without tuning fluids (Fig. 4.14d). The particle height
predicted by the above equation (4.7) was 20 pm.

a
Pi H

Y

cd

TOP H -19 pmi

SIDE

H -36 pmi

Figure 4.14: On-the-fly alteration of particle heights in a PDMS device. (A) A schematic description
for the process adjusting particle heights with inert tuning fluids (B) An optical image of collected
particles in a reservoir. (C) A SEM image showing top and side ofparticles. (D) Comparison with the
heights of original particles that were synthesized with oxygen lubrication layers (-2 pm). The top
particle has altered height of19ypm while the bottom one has almost channel height of 36 pm.
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In the oxygen-free FL setup, there is a minimum residence time of ~ 0.1 s, which can result
in monomer diffusion into inert flows. Considering this time, the minimum particle height
in oxygen-free FL can be estimated to be around 2 pm by the following calculation: For very
thin middle layer, we can assume point source in 1D diffusion [127],

-z 2/(4Dt)

C(z, t) - Me m0 = CO3 (4.8)
2(TDt)12

Where 8 is the thin middle monomer layer thickness. Putting the minimum residence time t
~ 0.1(s), the critical gel point C*~ 15%, and the diffusivity D ~ 5 im 2/s into the equation (4.8),
we can estimate the z distance that the critical gel point front reach at the minimum
residence time.

z(C*)~-21n8 +2 (4.9)

The previous literature demonstrated that the minimum flow focusing thickness (Smin)
would be 0.5 pm [113]. Then, the smallest particle height, Hp, mi. is,

Hpmin ~221nm,, + 2 p2um (4.10)

In experiments, the minimum particle height that we achieved was ~ 3 pm, which was close
to the resolution noted above. Also, the transverse resolution was comparable with the one)
that conventional FL techniques have provided. In our current setup, the transverse
resolution for former FL techniques was 2 pm, which was achieved in 4.5 jim high channels
[86].

4.5 Maximum Residence Time

In the synthesis of particles using inert lubrication layers, a short residence time is
desirable in order to minimize the monomer/species diffusion into inert flows. However,
complex particles that are generated by applying gravitational, magnetic or electrical fields
often require longer residence times so that the external field can act sufficiently upon the
system. For example, structurally colored particles are typically prepared with a residence
time >1s to tune one-dimensional photonic crystal colors by magnetic field modulation and
to fix the color with localized UV exposure [76].

4.5.1 Transverse Diffision

To investigate transverse diffusion of monomer and the suitability of our strategy for longer
residence times, we designed an experiment to visualize the diffusional thickness of PEG-
DA 575 in PEG 200 (Fig. 4.15a). In this experiment, we used PDMS channels to generate
co-flows with a simple two-dimensional flow-focusing technique. One of the co-flows was a
green inert flow while the other was a gray monomer flow. We stopped the flow for specified
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amounts of time to allow monomer to diffuse into the inert flow. Then, we synthesized "T"-
shaped particles at the fluid interface such that the head of the "T" was aligned with the
interface and the leg of the "T" could be used as an indicator of monomer penetration length
(5). Because the stop time was much larger than the sum of the flow and exposure times
(-100 ms), we assumed the residence time to be roughly equal to the stop time. As shown in
Figure 4.15b, the diffusion length increased when the residence time was increased, and
the value of the slope (0.5) in a log-log plot of diffusional thickness (5) versus residence time
(t) confirmed the diffusion-based transport (Fig. 4.15c).

a b
Stop
time (t)

PEG 200w
and PI St0e

flows

PEGDA 575
and PI

C

U
U

100.

10.

0.1

Slope = 0.5

10 100
t (s)

Figure 4.15: Transverse monomer diffusion (a) Experimental setup for measurement of diffusion
coefficient of PEG-DA 575 in PEG 200 in a PDMS device. The green stream consists of PEG 200 90%
(v/v), PI 5% (v/v), food coloring 4% (v/v), and rhodamine acrylate 1% (v/v), while the gray stream is
comprised of PEG-DA 575 94% (v/v), PI 5% (v/v), and rhodamine acrylate 1% (v/v). "T"-shaped
exposure mask was used to determine the penetration depth (6) of PEG-DA. (b) Fluorescence images
of particles produced with various residence times. (c) Penetration depth as a function of residence
time.

4.5.2 Estimation ofMonomerDifusivity

PEGDA 575
25%

PEGDA 575
25%, 18% or 14%

PEGDA 575
25%, 16% or 11%

uv

Figure 4.16: Variation of PEG-DA 575 loading percentage to determine critical gel point (~15%
monomer concentration) Synthesis was performed in PDMS devices, and all streams contained
rhodamine acrylate for visualization ofparticle interfaces.
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When residence time is long, the diffusional broadening of monomers lead to additional
polymerization thickness. The polymerization can proceed to until the reaction is
terminated at the critical gel point of monomer. As a result, the end of diffusional length (5)
is the position of critical gel point (C*). We determined the critical gel point of the monomer
(-15%) by visually checking for gelation at various monomer concentrations (Fig. 4.16). As
we know the position of C* on a specific time, we can extract diffusion coefficient of
monomer from a diffusion model. We used infinite 1D transient diffusion model as the
diffusion characteristic time (10000s) was much larger than the investigated time scale
(30s). The diffusion characteristic time was estimated by L 2 /DPEGDA575 where L is 250 ptm,

the half of channel width. We also assumed that channel wall effects could be neglected
considering the monomer diffusion in the middle plane of the channel [128]. For infinite 1D
transient model, well-established theoretical solution exists as so-called error function.
Using the function and measured data, we estimate the diffusion coefficient of PEGDA 575
(in PEG 200) as 4.5 pm2/s.

Diffusivity ( m2/s) . 5.3 3.6 5.2 4.5

Table 4.7 Estimated diffusivity of PEGDA 575 in PEG 200

We compare the measured diffusivity with the value estimated from a previous literature
[129]. The bulk diffusivity of PEG in water at 25 *C can be calculated from the following)
equation.

- --- 0.557

DPEG =1.465x10 4 xM, (cm2 Is) (4.11)

We use this equation to estimate diffusivity of PEGDA 575 assuming PEGDA has similar
diffusional behavior with PEG. Also, we neglect temperature differences between
experiments. Then, the diffusivity of PEGDA 575 in water can be estimated to be 425 pm 2/s.

To find the diffusivity of PEGDA 575 not in water (i=1 cP) but in PEG200 (p=57 cP), we use
the Stokes-Einstein relation between viscosity and diffusivity.

PPEG200 _ DPEGDA575 (in WATER)
PWATER DPEGDA575 (in PEG200)

The final diffusivity of PEGDA575 in PEG 200 was 7.5 pm2/s. The estimated value is on the
same order of magnitude with the measured diffusivity.

4.5.3 Theoretical Estimation for Maximum Residence Time

We then returned to the layered flow system of the gas-impermeable devices. In tri-layered
stopped flows, monomer in the middle layer can be diffused into inert layers as time pass by.
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Figure 4.17: Schematic descriptions for time evolution of monomer concentration. We estimate
theoretical maximum value of time, tO, at which critical gel point front reaches walls of gas-
impermeable device and induces particle sticking.

We find the analytical solution for the time evolution of monomer concentration assuming

ID transient diffusion. In the first step, we write following governing equation and
boundary conditions (BC's).

ac= DV2 C,
at

aC(0, t) 0

az
aC(h t)

az

Initial condition (IC) will be given in a step function of monomer concentration at time 0.

C(h,0)= C4
0

(0< h < h)

(h <h<h)

Using dimensionless groups,

C h t
W =-, h = , ' I

Co0 h hi/D

We non-dimensionalize the governing equation, BC's and IC.

88)(1, r-) =0a1 =0,ar/7

8O(0, ) 0,
=a0, O(r, 0)=

(0 < < a)

(a < r/ <1)'
h,

a = - (4.16)
hk

To solve this equation, we use Fast Fourier Transformation (FFT) method.

Z(0, r) = (),(r0),
n=1

Considering the BC type, we can choose the case IV for basis function [127].
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(o (7)=1, 4, (q) = V2 cos nrv (case IV)

Then, we perform FFT transformation of the equation and IC. FFT transformation of the

equation,

S 8I 0 d
' O r dr

d8" +(nr 20 = 0,
d-r

n 2 dq= O n

T7y dq dq _1o=

1JD n d2 
Ez+E dq 2"dy=-(nic2

On(1)= c(ei"")2 T (4.19)

FFT transformation of the IC

J' (D ®(77,O)drl = 0n(0) 00(0) = a

1 a -,F2 sinnrcl " = sin nca

ST(,0d)dq = J o.r2 cos nrcr/dl = =

,OJT(r)= 2sin nza e-(nn)2
nrc

(n =1, 2,3...)

(n =1,2,3...)

The analytical solution for time evolution of monomer concentration,

0sin nra _( 2TO(q, r) = a + 2Y s e(r cos nrc77
n-1 nc

We can use the analytical solution to find maximum residence time to, at which critical gel
point front reaches channel walls and particle sticking happens. When the hm/ hc is 0.5, the
maximum residence time is estimated to be 5.1s from T satisfying e (0.99, ) = 0.16 (from
15% critical gel point and 95% Co).

4.5.4 Simulation Estimation for Maximum Residence Time

In addition, an accompanying COMSOL simulation showed good agreement with the
maximum residence time calculated from the analytical solution (Fig. 4.18). For the case in
which the middle monomer layer thickness (Hm) is 20 ptm, we perform COMSOL
simulation to check whether the 15% monomer concentration arise on the channel walls
after 5.1s. In this simulation, we used 2D rectangular constriction (40 ptm X 250 ptm) for
channel intersection and 5 ptm 2/s diffusivity of monomer. The concentration through the
constriction was calculated using COMSOL Multiphysics finite element modeling software
for a given monomer concentration at time Os. As shown in the plot of Figure 4.18b, the
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critical gel point front reaches channel walls after the maximum residence time, 5.1s. At

infinite time, the concentration converges to 47.5% which is the half of the initial monomer

concentration.

a A 40 pm high NOA81 device intersection 100 b
-- 0 % 90 7 90-

H 80 --- 95 % s20 pm' 70 i 75-

60 C eo-
Residence Time = Os 50

40 .---. - 0(s) .

30 g 30 !--' 0.5(s)
-_15%* / ---- 3.0(s)

Z ___*-___80___%___20___ 1 -- 51(s)\

0 0
Y 0 10 20 30 40

Residence Time = 5.1s Monomer Conc. (%) Z-distance (pm)

Figure 4.18 COMSOL simulation for time evolution of monomer concentration in a slit-like NOA81

device (a) Simulation solution indicates the maximum residence time is 5.1 s for the creation of

particles at Hm = 20 pm. (b)A plot for monomer concentration versus z-distance.

4.6 Oxygen-free FL with Organic Precursors

Perhaps the most valuable feature of the oxygen-free FL in NOA devices is the ability to

synthesize anisotropic particles using organic solvents, a process which is not possible with

current PDMS-based FL approaches.

4.6.1 Particle Synthesis Using Organic Solvents

We demonstrated the synthesis of anisotropic particles encapsulating ruthenium complex

(II) dyes dispersed in methanol/toluene (4:1 v/v) mixture (Fig. 4.19a). Previous work has

shown that encapsulated ruthenium dyes in PEG structures can be used for oxygen sensing

applications [130, 131]. Furthermore, particle-based sensors offer several detection

advantages over microarrays and similar arrangements of immobile structures, including

faster capture kinetics and rapid probe-set modification for more flexible assays [76, 78].

For this study with NOA81 devices and inert flows, we successfully synthesized triangular

particles that exhibited homogeneous fluorescent signal, thus confirming entrapment of the

ruthenium dyes (Fig. 4.19b and c). This proved that the new FL process could encapsulate

functional entities inside particles with the same spatial resolution and efficacy as prior

methods. We also synthesized geometrically complex particles from water-insoluble

monomers dissolved in toluene (Fig. 4.19d). We chose to demonstrate this capability with
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TMPTA (Trimethylolpropane triacrylate, p = 1.06 g/ml) and PUA (Polyurethane acrylate, p
= 1.09 g/ml), water-insoluble monomers with applications in particle assembly [91] and soft
molding [112], respectively. We could easily modulate the monomer composition in toluene
to tune both chemical and mechanical properties of the microparticles. In this hydrophobic
monomer system, we replaced the previously used PEG 200 inert flows with tergitol NP-10
(p = 1.06 g/ml) because the hydrophilic PEG was immiscible with the monomers and
produced curved particle surfaces. The amphiphilic tergitol surfactant had good miscibility
with and the same density as the monomers selected. In tri-layered tergitol-monomer-
tergitol flows, we successfully created TMPTA and PUA particles using two different mask
shapes (Fig. 4.19e and 4.19f). The generated particles were optically transparent and rigid
enough to allow for rinsing in organic solvents without swelling-based deformation.

a 10 ; b C

PEG 200 UV

PEGDA 200, P, Ruthenium, MeOH. and Toluene

d Flwf

Z

Tergitol
Monomer, Pl. and Toluene

Figure 4.19: Anisotropic particle synthesis from organic precursors (a) Triangular particle synthesis
with PEG 200 inert flows in an NOA channel from organic precursor containing PEG-DA 200,
ruthenium dye (mixed with methanol (MeOH) and toluene), and P1 (b and c) Brightfield and
fluorescence images of triangular particles synthesized in (a). (d) Particle synthesis in NOA device
with water-insoluble monomers (trimethylolpropane triacrylate (TMPTA) and polyurethane acrylate
(PUA), mixed with toluene) and P. Inert flows consisted of Tergitol surfactant to lower surface
energy and prevent curvature in top and bottom faces of particle. (e and f) Images of particles
synthesized from TMPTA and PUA. Scale bars are (b and c) 30 pm, (e) 100pm, and (f) 50 pm.

4.6.2 Synthesis ofNear-infrared-active Anisotropic Particles

To further demonstrate the utility of oxygen-free FL, we synthesized near-infrared-active
anisotropic particles from organic precursors. Near-infrared (NIR) fluorescence is emitted
in a "biologically transparent" window thereby minimizing auto-fluorescence interference
and tissue scattering [132]. Through the use of organic precursors that contain NIR-active
nano-entities, we introduce unprecedented shape-encoded particles which exhibit NIR
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fluorescence around the NIR II region (wavelengths between 1 ~ 1.4 pm) to maximize light
penetration depth in tissue [133]. NIR-active QDs are more easily prepared in organic
solvents than in water because the former provide synthetic advantages for the production
of narrow size distributions as well as a wide range of available sizes [134]. The highest
quality QDs produced from organic solvents are both hydrophobic and water-insoluble,
making them incompatible with former FL techniques. We purchased commercial
hydrophobic QDs dispersed in toluene and bearing a CdTeSe/ZnS core-shell structure with
a NIR 915 nm emission peak. To ensure high trapping efficiency of the small QDs (1-10 nm)
within the polymer matrix, we used NOA81 instead of PEG-DA. Although the minimum
pore size of our PEG system can reach ~ 1 nm [104], PEG hydrogel particles can swell in
water, leading to leakage of physically encapsulated QDs, a process that could introduce
serious toxicity issues for potential biological applications. NOA81 is biocompatible and has
smaller pores, which prevents the loss of entrapped QDs. To evenly disperse QDs in NOA81,
we mixed the monomer with a QD solution at a 1:1 volume ratio. Then, we placed the
resulting mixture layer between inert tergitol layers and produced triangular particles. The
particles physically encapsulated QDs, as shown by the strong near-infrared
photoluminescence (PL) signals in Figure 4.20a. Next, we synthesized particles with
different loading concentrations of QDs and quantified the PL intensities exhibited by each
batch. As expected, we found a simple linear relation between loading concentration and PL
intensity (Fig. 4.20b).

a Fb 25000

6 20000.

15000- 2.5 mg/mI

1.0mg/mi

' UV ,e00
NOA, PI- Pore < Inm
Toluene. and QOs _

Tergitol 01 2 3 4
QDs concentration (mg/mi)

Figure 4.20: Synthesis of near-infrared (NIR)-active anisotropic particles (a) NIR-active triangular
particle synthesis. NIR emitting CdTeSe/ZnS quantum dots (QDs) were physically entrapped in NOA
polymer particles produced in NOA device. (b) Fluorescent signal intensity as a function of quantum

dot loading concentration. Fluorescence was integrated over a circle of radius 30 pm centered on the
triangular particles. Each point represents mean measurement from three particles; error bars

represent standard deviation.

4.7 Discussion

Oxygen-free FL greatly expands the synthesis capabilities of FL in the following three
categories: device construction, process control, and operable material. The new technique
can be used in virtually any type of device, whereas conventional FL techniques have been
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limited to PDMS devices. To achieve this flexibility, we utilized the iCVD nanoadhesive

bonding technique for device construction. This strong and highly flexible bonding method
greatly augments the range of devices that can be used, which in turn provides a variety of

unique environments for particle synthesis. For example, the synthesis described here with

the iCVD nano-adhesive and inert flows could be integrated with indium tin oxide (ITO)

substrate for the fabrication of three-dimensional photonic crystal particles via dynamic

modulation of electric fields [135]. Another advantage of oxygen-free FL is that the

technique offers process control that is superior to former FL techniques. The use of hard

devices and the high-strength bonding method provides a considerable reduction of process

time scales for channel relaxation, polymerization, and flow. Also, the programmable

sheath-like inert flows allow for on-the-fly alteration of particle height, a significant

advantage over the current method in which particle height is dictated by channel height.

Finally, oxygen-free FL greatly expands the library of synthesis materials that can be used,
enabling the creation of particles from previously inaccessible reagents such as organic
solvents. Through the fabrication of solvent compatible NOA81 devices, we synthesized new
multifunctional particles from seven distinct organic precursors including four monomers
(PEGDA, TMPTA, PUA, and NOA) for supporting matrix and three nano-entities
(ruthenium, QDs and SWNTs) for functional units. Also, we demonstrated the synthesis of
near-infrared barcoded particles capable of label-free and real-time detection of analyte.
Significantly, all functions of the barcoded particles work around the second near-infrared
window, which greatly reduces the likelihood of signal interference from tissues, cells, and
biofluids in potential in-vivo multiplexed sensing applications. By allowing for a new range
of synthesis conditions and environments, we believe that oxygen-free FL can be a powerful
means to achieve novel categories of functional particles for diverse applications.
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Chapter 5

Advanced Barcoded Particles

Multifunctional barcoded particles have been developed by Doyle group as promising

diagnosis tools for rapid screening of biomolecules. The hydrogel barcoded particles have

exhibited high sensitivities and favorable hybridization kinetics, providing water-like

environments. The earliest form of barcoded particles was Janus type which had two

compartments of graphical codes and probes. The particles were produced by standard SFL

using precise mask alignments across the interface of two laminar flows. These barcoded

particles were designed for the multiplexed detection of target biomolecules, bearing over a

million unique codes to identify loaded probes. In multiplexed assays, the barcoded

particles are rapidly scanned in a microfluidic device, passing a detection region where the

codes are recognized and targets quantified. After the primitive version of barcoded

particles emerged, control regions were added to the barcoded particles to provide the basis

of target quantification. Also, the shape of the barcoded particles was changed for high-

throughput flow alignment of the particles. The development of advanced flow lithography

could further allow us to modify the barcoded particles to enhance functionalities,

introducing new structures and materials. In this section, we present following three kinds

of advanced barcoded particles: (1) magnetic barcoded particles, (2) reinforced barcoded

particles, and (3) near-infrared barcoded particles.
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5.1 Magnetic Barcoded Particles

Magnetic polymer particles consist of magnetically addressable components entrapped

within or coated on a polymer matrix that can be precisely tuned to exhibit a range of

desired physical and chemical properties. This powerful combination of functionality and

customization has enabled the use of such particles in biomedical applications [62, 136-138],
micro-scale assembly [29, 139-141], structural color printing [142], imaging [143], and

purification technology [144]. In addition, the particles have been employed in microfluidic

channels for bioassays [145-148], mixing [149-151], trapping [152], transporting [153], and
separation [154-158]. Recently, biological entities including cells and aptamers were labeled

with magnetic polymer particles and subsequently separated in a spatially-addressable

sorting manner by generating magnetic field gradients in microfluidic channels [159, 160].

The enormous potential of magnetic polymer particles has fueled the development of

several distinct synthesis methods. The conventional emulsification methods based on

homogenization use shear forces to encase superparamagnetic nanoparticles of metal oxides

within polymer droplets [161]. Unfortunately, these approaches produce droplets with a

wide size distribution and consume large amounts of energy [161]. Membrane [162] and

microchannel emulsifications [163-165] have been introduced as alternative methods that

can provide higher degrees of monodispersity for a fraction of the energy cost.

Microchannel emulsification in particular has produced anisotropic magnetic gel particles

using channel geometries [163] or a double emulsion technique [164]. Janus

superparamagnetic gel particles have also been generated with this approach [165].

However, the above methods have limited the particle morphologies to spheres or deformed

spheres. A more flexible synthesis system would expand the possible geometries and

thereby augment the applicability of the magnetic polymer particles produced. Encoded

microparticles have been suggested as diagnostic tools for the rapid, multiplexed screening

of biomolecules due to their advantages in detection and quantification [7, 166, 167].
Compared to traditional planar arrays, particle-based arrays offer easier probe-set

modification, more efficient mixing steps, and higher degrees of reproducibility. While

polymer microspheres doped with fluorescent dyes have been used most extensively [168],
there are numerous systems under development that employ chemical, graphical, electronic,
or physical encoding schemes for use in multiplexed detection [166]. Microcarriers

fabricated from a variety of advanced materials such as inverse-opaline photonic beads

[169] have the potential to transform the biodiagnostic field by enabling the analysis of

complex sample media (such as serum), eliminating the need for costly and time-consuming

labelling steps, and lowering limits of detection. Barcoded hydrogels are an emerging

subclass of encoded particles that exhibit higher sensitivities and more favorable

hybridization kinetics than common metallic and polystyrene microparticles that

immobilize probe species on solid surfaces [77]. To capture target molecules and report

interaction information in multiplexed analysis, each anisotropic particle bears a probe

region and a corresponding graphical code region that identifies the probe species.

Production of these particles requires a novel synthesis method called stop flow lithography
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(SFL), which affords precise control over morphology and functionality through the semi-

continuous photopolymerization across coflowing laminar streams of various chemical

compositions in microfluidic channels. While the resulting gel-based particles have proven

to be effective tools in past multiplexed sensing of DNA and RNA, their use in suspension

assays and other screening processes would be greatly simplified with the introduction of

an appropriate means for addressing and aligning the particles during rinsing, mixing, and

analysis procedures. Magnetic barcoded particles are now introduced as an enhanced

version of hydrogel microparticles for suspension assays that can be manipulated using

magnetic fields. Through a slight modification of the SFL technique [73], it is now possible

to incorporate magnetically addressable entities within a specific region of the

microparticles. Particles synthesized with a magnetic tail region respond to weak magnetic

fields, while still maintaining the ability to sensitivity and specifically detect

oligonucleotide targets in solution. The advantages of the magnetic tail are demonstrated

through directed orientation as well as bulk separation using a magnet.

5.1.1 Experimental Methods

Materials

All particles shown in this work were made from poly(ethylene glycol) (700) diacrylate

(PEG-DA 700, Sigma Aldrich). The code regions were synthesized using prepolymer

solutions of 35% (v/v) PEG-DA 700, 20% poly(ethylene glycol) (200) (PEG 200, Sigma
Aldrich), 5% Darocur 1173 (Sigma Aldrich) initiator, and 40% 3x Tris-EDTA (pH =8.0,
EMD) buffer. Rhodamine acrylate (Sigma Aldrich) and food coloring (Tone Brothers Inc.)

were mixed into the prepolymer solutions for the code to give final concentrations of 0.4%

and 2%, respectively. The composition of prepolymer for the probe regions was 20% PEG-

DA 700, 40% PEG 200, 5% Darocur 1173, and 35 % 3x Tris-EDTA buffer. Oligonucleotide
probes, #1 (5'-ATA GCA GAT CAG CAG CCA GA-3') and #2 (5'-CAC TAT GCG CAG GTT
CTC AT-3'), were purchased from IDT with acrydite modifications on the 5' end and mixed

into the probe prepolymer to give a final concentration of 50 PM. Lastly, the magnetic

region was prepared using solutions of 35% PEG-DA 700, 5% Darocur 1173, and 60 %

magnetic bead solutions (Seradyn Inc., carboxylate-modified, 5% solids). Prior to being

incorporated into the particles, the commercial superparamagnetic beads exhibited a short

response time upon the introduction of a magnetic field, a high saturation magnetization

value of 25 emu/g, and had uniform size (779 nm ± 10%, diameter). A perfusion solution

consisting of PEG-DA 700 was also used to move un-incorporated magnetic beads into a

waste reservoir to prevent the excess beads from sticking to the probe and code regions of

the synthesized particles.

Microfluidic Devices and SFL Setup

In each device, the particle synthesis chamber was 300 im in width and 20 im in height,
while the perfusion channel was 70 pm in width and 110 pm in height. For synthesis,
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devices were mounted on an inverted microscope (Axiovert 200, Zeiss) equipped with a

VS25 shutter system (UniBlitz) to precisely control the UV exposure dose. A reservoir was

cut into the PDMS to collect the particles. The other setups were same with Chapter 2.

Magnetic Responsiveness

To investigate the response of the magnetic barcoded particles in the presence of an

external magnetic field, we fabricated analysis reservoirs by sealing a PDMS rectangular

frame (5 X 5 x 5 mm) onto a PDMS-coated glass slide. Each reservoir was filled with the

magnetic barcoded particles suspended in deionized water with 0.005% (v/v) Tergitol NP-10

(Sigma Aldrich, St. Louis,MO) (to reduce interfacial tension that can cause hydrogel

particles to stick together) and then placed in a uniform magnetic field (planar or normal)

induced by an electromagnetic coil connected to a DC power supply (GPS-2303, GWInsteck).

The magnetic fields were calibrated using a Gauss meter (SYPRIS) with an axial probe (for

the normal induced magnetic field) or a transverse probe (for the planar induced field).

Hybridization and Labeling

Incubation mixtures were prepared by adding ~ 50 particles of each desired type to a 0.65

mL Eppendorf tube containing a hybridization buffer of 0.5 M NaCl in TET (1x Tris-EDTA
with 0.05% Tween-20 (Sigma Aldrich)). Particles were incubated with either 0 or 200 amol

of two different biotinylated target oligonucleotides at 50 'C for 90 min using a

thermomixer (Quantifoil Rio) with a mixing speed of 1800 rpm. Following hybridization, the

samples were rinsed twice with 450 pl TET and then twice with 450 pl PBST (1x PBS

(Cellgro) with 0.05% Tween-20). Then, the probe-target complexes were labeled by adding

streptavidin-phycoerythrin (SAPE) diluted 1:500 in TET to the Eppendorf tube. The

labeling process was carried out at 21.5 'C for 45 min with mixing at 1500 rpm in a Multi-

Therm shaker (Biomega). Before imaging, the particles were rinsed three times with 450 Il

TET and then twice with 450 pl PTET (5x Tris-EDTA buffer with 25% PEG 200 and 0.05%
Tween-20).

Imaging for Quantitative Analysis

A 15-pl droplet containing ~ 20 particles was pipetted onto a glass slide and sandwiched for

analysis using an 18 X 18 mm coverslip. The sample was mounted on a Zeiss Axiovert 200

microscope equipped with a UV Illumination source (X-Cite series 120, Exfo), and a custom

macro in NIH Image was used to capture ten sequential frames from an EB-CCD camera

(C7190-20, Hamamatsu) mounted to the side port of the microscope. Each frame had an

exposure time of 1/33 sec, and the macro produced a final output image for analysis by

averaging over the ten frames. Camera settings of 10, 1.6, and 9.9 for gain, offset, and

sensitivity, respectively, were used. Images were analyzed using Image J.
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5.1.2 Synthesis ofMagnetic Barcoded Particles

PEG-DA 
W1

PEG-DA
+ food coloring Waste Outlet
+ rhodamine A

PEG-DA Code Probe Magnetic
+ probe Region Region Region

PEG-DA 70 pm
+ magnetic beads EJI'-

105 pm 55 pm 90 pm

Figure 5.1: Production of magnetic barcoded particles. (a) Synthesis process of magnetic barcoded

particles. Stop flow lithography (SFL) is used to generate particles with three distinct chemical

regions. The top stream is comprised of PEG-DA with food coloring and rhodamine A, while the other

streams consist of PEG-DA with probe oligonucleotide and magnetic beads, respectively.
Downstream of the synthesis site, a PEG-DA perfusion stream is used to move un-incorporated
magnetic beads into a waste outlet. (b) An experimental bright field image of the three phases
flowing in the channel. The magnetic beads in the bottom flow are seen to be well-dispersed. (c)
Dimensions of a magnetic barcoded particle. Coding holes are designed with the following
dimensions: '1' (12 x 15jum), '2' (12 x 275 pm), and '3' (12 x 40 pm). The code in this illustration is
'2333' The scale bar is 50 pm.

Figure 5.1a shows a schematic depicting the synthesis of magnetic barcoded particles.
Different prepolymer mixtures are infused into the three inlets, thereby generating stable

three-phase laminar flows. The middle stream is composed of PEG-DA with an acrylate

modified DNA probe, while the top and bottom streams consist of PEG-DA with a

fluorescent dye, rhodamine acrylate, and with magnetic beads, respectively. The flows can

be stopped via pressure release, during which an array of magnetic barcoded particles are

formed by a 75 ms UV exposure through a transparency mask using a standard

fluorescence microscope. A pressure pulse is then used to advect the polymerized particles

into a collection reservoir. This process is repeated using an automated setup, allowing for

the high-throughput synthesis of particles (18,000 per hour) in a semi-continuous manner.

Prior to collection in the reservoir, a perfusion stream with flow perpendicular to that in the

synthesis chamber was used to move un-incorporated magnetic beads into a waste outlet.

This technique was introduced to simplify the rinsing procedures. While the excess beads

flowed into the perfusion line, the much larger encoded particles were only collected in the
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reservoir of the synthesis chamber. The commercially available superparamagnetic beads
were well-mixed with PEG monomer solutions and well-dispersed in microfluidic channels
(Fig. 5.1b). Aside from the addition of the simple perfusion stream, no special processing
steps or chemical treatments were required to integrate the magnetic streams into the SFL
process. The magnetic barcoded particles were comprised of three distinct regions: (1) code
region for identifying particle and probe embedded within, (2) probe region for detecting
target, and (3) magnetic region for providing magnetic addressability. The dimensions of
each region were 105 x 70 pm, 55 x 70 pm, and 90 x 70 pm, successively (Fig. 5.1c).

Figure 5.2: Magnetic barcoded particles. (a) A bright field image (20x objective) of magnetic barcoded

particles with code '2333' (b) A fluorescent image of (a). (c) The side view of a magnetic barcoded
particle in a bright field image (20x objective). (d) A fluorescent image of (c). (e) A bright field image

(5x objective) of magnetic barcoded particles with code '0013' Scale bars are 50 pm (a and b), 25 pm
(c and d) and 100 pm (e).

94



The size (0, 1, 2, and 3) and order of unpolymerized holes in the wafer structure were used
to construct a graphical code to distinguish particle types. The number "0" was designed as
a non-punched area, while the punched dimensions of numbers "1", "2", and "3" were 12 x
15 pm, 12 x 27.5 pm, and 12 x 40 tim, respectively. Careful focusing and inlet pressure
control during the photopolymerization process ensured a high degree of reproducibility in
the creation of the coding holes and the different chemical regions on each microparticle.
Figure 5.2 contains images of the synthesized magnetic barcoded particles. As seen in
brightfield images (Fig. 5.2a, c and e), the brown magnetic regions are clearly separated
from the neighboring probe regions. Well-developed code regions are shown in fluorescent
images (Fig. 5.2b and d), with sharp interfaces and feature resolution provided by the SFL
process. We prepared magnetic barcoded particles ~ 16 pm in height by using 20 pm-high
channels (Fig. 5.2c). The difference between particle and channel heights can be attributed
to the - 2 jim-thick oxygen inhibition layer on both the top and bottom channel surfaces.
Compared to code and probe regions, it was observed that the magnetic region was slightly
thinner due to UV absorption by the iron oxide cores of the magnetic beads. We also
observed that the code regions were thinner than the probe regions. Compared to the code
regions, the probe regions were synthesized using twice the concentration of porogen (PEG
200) in order to provide high porosity for fast transport of target molecules. The higher
porosity and lower cross-link density of the gel matrix in the probe regions led to a greater
degree of swelling in aqueous solutions.

5.1.3. Saturation Magnetization ofMagnetic Barcoded Particles

40.00

30.00

20.00 Saturation
E . Magnetization
& 10.00

~- .28 emu/g
0.00 .

-10.00

-20.00

-30.00

-40.00

-0.60 -0.40 -0.20 0.00 0.20 0.40 0.60

Applied Field (T)

Figure 5.3: AGM magnetization curve for the commercial magnetic beads that were used in
synthesis of the magnetic barcoded particles. The saturation magnetization of the beads was found
to be around 28 emu/g.
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Prior to being incorporated into the particles, the commercial superparamagnetic beads had

a density of 1.4 g/ml and uniform size (779 nm ± 10%, diameter), and exhibited a short
response time upon the introduction of a magnetic field. The reported value for saturation

magnetization of the beads was ~ 25 emu/g. Using alternating gradient magnetometry

(AGM, MicroMagTM 2900), we made a plot for magnetization of the beads as a function of

applied field. The magnetization curve shows superparamagnetic behavior, and no

hysteresis was found (Fig. 5.3). In the experiments, the saturation magnetization for the

beads was around 28 emu/g, which was quite close to the reported value.

4.00

3.00

Saturation
U0 2.00

Magnetization
S1.001.00 ~3 emu/g

0.00 e
-1.00

-2.00

-3.00

-4.00 4
-0.60 -0.40 -0.20 0.00 0.20 0.40 0.60

Applied Field (T)

Figure 5.4: AGM magnetization curve for magnetic regions (dried) of the barcoded particles. The

curve also shows superparamagnetic behavior, and no hysteresis was found.

We also prepared a curve for magnetization of the magnetic regions of the barcoded
particles. As the mass of each barcoded microparticle varied depending on the code design,
we polymerized particles consisting of only a magnetic region and measured the
magnetization value for these simple hydrogels. Like the commercial magnetic beads, the
magnetic hydrogels exhibited superparamagnetic behavior and no hysteresis as shown in
Figure 5.4. The measured saturation magnetization value for the magnetic regions of the
barcoded particles was ~ 3.0 emu/g. From the initial composition of the magnetic

prepolymer solution (assuming full conversion of PEG-DA during the polymerization), we
estimated the weight ratio of magnetic beads incorporated in the magnetic regions
(assuming all beads are encapsulated during polymerization) to be 9.7%. The saturation
magnetization value for the magnetic regions was thus anticipated to be 9.7% of the
saturation magnetization value for dried beads, ~ 2.7 emu/g. The good agreement between
the measured (3.0 emu/g) and estimated (2.7 emu/g) saturation magnetization values for
the magnetic regions leads us to conclude that the magnetic content in the regions can be
controlled by simply tuning initial compositions of magnetic prepolymer solutions.
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5.1.4 Magnetic Response ofMagnetic Barcoded Particles

To investigate magnetic response, we exposed the magnetic barcoded particles dispersed in

a 0.005% (v/v) aqueous Tergitol NP-10 solution in a PDMS reservoir to a weak

homogeneous field (21.1 ± 0.1 mT) perpendicular to the reservoir substrate. Suspended in a

non-magnetic medium, the particles acquired dipole moments and flipped up perpendicular

to the plane, forming columnar structures along the applied field direction (Fig. 5.5a). In

the presence of a weak homogenous field (14.7 ± 0.1 mT) parallel to the substrate plane,
attractive induced dipolar interactions lead to tail-to-tail self assembly of the particles (Fig.

5.5b). The magnetic functionality can be used to orient and transport the barcoded particles

as shown in Figure 5.6a-c. Using a hand magnet, it was possible to remotely and precisely

manipulate the orientation of magnetic barcoded particles at the inlet of a microfluidic

channel to aspirate all particles such that they proceeded down the analysis chamber in a
"probe first" (versus "code first") orientation. Figure 5.6a shows the reorientation process of

a barcoded particle from "code first" to "probe first" within a microfluidic channel.

Figure 5.5: Response of magnetic barcoded particles. (a) Response of magnetic barcoded particles to
out-of-plane (21.110. mT) magnetic field. (b) Response of magnetic barcoded particles to in-plane
(14.70. mT) magnetic field. Scale bars are 100gpm.

By moving a more powerful magnet even closer to the channel, it was possible to then

transport this reoriented particle from the inlet to a more narrow zone used for single-

particle analysis (Fig. 5.6b). Although the transportation velocity was only 10 pm/s in this

experiment, the process was performed in a simple manner using a common magnet. This

pumpless method for orientation and movement does not require the complex setup used in

pressure-driven alignment processes and does not subject the soft hydrogel particles to the

significant hydrodynamic forces that pressure-driven processes can introduce in

microchannels. This capacity to address the position and orientation of individual particles

provides a means for improving upon recently developed particle analysis methods. In

particular, the fabrication of a magnetic aspiration column could be used to deliver all

particles to a flow-through scanning chamber with the same probe-first orientation. As

existing high-throughput flow alignment methods cannot control which end of the particle
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leads in the flow [170], decoding algorithms that determine probe identity and amount of
bound target must additionally ascertain the orientation of the particle for accurate
analysis. This requires using one of the coding elements as an orientation marker. If all
particles could be magnetically addressed to give the same orientation prior to entrance
into the flow chamber, this would no longer be necessary and the coding capacity of these
microparticles could be expanded by a factor of four. It should also be noted that the
simultaneous reorientation and transportation of multiple barcoded particles was achieved
in a large reservoir using a hand magnet (Fig. 5.6c). This capability could potentially be
exploited for the ordered presentation of post-hybridization particles in a plate-based
stationary scan. The magnetic functionality also introduces a new means by which the
barcoded particles can be concentrated and subsequently separated from a carrier solution.
In previous implementations of barcoded hydrogel particles for biomolecule detection, ten
centrifugal separations were required for the rinsing steps in a typical assay. This density-
based separation strategy tends to concentrate fibers and other particulate matter along
with the encoded microparticles at the bottom of the sample tube. If these contaminants
then stick to the particles, they can interfere with the analysis of the fluorescence emitted
by the code and probe regions. Magnetic force separation provides an alternative approach
to segregating the barcoded particles for rinsing procedures. Using a permanent magnet,
we separated the particles on the side of a collection tube in 2 minutes (Fig. 5.6d).

Hand

Magnet

Hand Magnet

Figure 5.6: Orientation, transportation, and separation of magnetic barcoded particles. (a)
Reorientation of a magnetic barcoded particle in a microfluidic channel using a hand magnet. (b)
Snapshots of magnetic transportation of a magnetic barcoded particle using a hand magnet. The
particle was transported towards a narrow region in the microfluidic channel used for single-particle
scanning analysis. (c) Image of reoriented magnetic barcoded particles moving towards a hand
magnet. (d) Bulk separation of magnetic barcoded particles using a hand magnet. Scale bars are 50
pm (a and b), and 200 pm (c).
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In further experiments, the ten rinsing steps of a DNA hybridization assay were carried out

using magnetic barcoded hydrogel microparticles and only magnetic separation steps. Upon

analysis of the particles, it was determined that the vast majority of particles had been

retained and, furthermore, a considerably smaller amount of particulate matter was seen in

the carrier solution (Fig. 5.7).

Figure 5.7: Comparison between density-based separation strategy and magnetic force separation.

Fluorescent images of the magnetic barcoded particles after the ten rinsing steps of a DNA

hybridization assay were carried out. Insert image clearly shows that magnetic force separation can

provide a considerably smaller amount ofparticulate matter in the carrier solution than the density-
based separation strategy The scale bar is 50 pm.

5.1.5 Bioassays Using Magnetic Barcoded Particles

A wide variety of geometrically and chemically complex magnetic barcoded particles can be

prepared by SFL using simple mask replacements and inlet fluid exchanges. Table 5.1

summarizes the four particle types used in a multiplexed DNA sensing study, illustrating

the code, the identity of incorporated probe, and the presence or absence of magnetic beads

in the tail region. Types 1, 2, and 3 featured a magnetic tail and were incorporated with no

probe (type 1), probe #1 (type 2), or probe #2 (type 3) in the central region. Type 4 featured

a non-magnetic tail, bore probe #1, and was used to investigate the effect of the added

magnetic material on target detection. If the magnetic region is indeed inert with respect to

target capture, the mean signals from the target panels on types 2 and 4 should be the

same when incubated with target corresponding to probe #1.

1 2333 goi_ None Yes
2 2003 0 I Probe #1 Yes
3 0013 u Probe #2 Yes
4 2013 0 "I Probe #1 No
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Figure 5.8: Incubation matrix. Particles with a fluorescent code region, an internal probe region, and
a tail region were synthesized and incubated with either 0 or 200 amol of two different biotinylated
target oligonucleotides at 50 "C for 90 min. Following incubation, probe-target complexes were
labeled with streptavidin-phycoerythrin (SAPE) at 21.5 "C for 45 min. Particle type 1 featured no
probe, a magnetic tail, and code '2333' type 2 featured probe 1, a magnetic tail, and code '2003' type
3 featured probe 2, a magnetic tail, and code '0013' type 4 featured probe 1, a non-magnetic tail, and
code '2013.' Each plot shows the average of 5 scans of each particle type at the specified incubation

condition. Horizontal axis is axial (lengthwise) position in pixels, and vertical axis is mean
fluorescent intensity in arbitrary units. The mean signal across the width of the particle has been
computed and plotted at each axial position. The red numbers above each scan indicate the mean
fluorescent intensity measured in the probe region and in the tail region. The red bars in the first
plot indicate the windows over which the averages were taken. Quoted numbers represent the mean
of five separate scans.

100

150

100

so

4

~1'a

'I
4

0
'p'a

I
'WI

Eft4

II



The four particle types were hybridized with either 0 or 200 amol of two different
biotinylated target oligonucleotides. Following hybridization and labeling with SAPE, the
fluorescent images of five particles of each type for each incubation condition were analyzed.
An incubation matrix was prepared to compare the performance of the various particles
(Fig. 5.8). Each plot in the matrix represents the average signal of 5 scans of each particle
type at the specified incubation condition. The mean fluorescent intensity across the width
of the particle (vertical axis, A.U.) was calculated and then plotted at each lengthwise
position (horizontal axis, pixels) along the particle. The fluorescent intensities in the probe
and tail regions were crucial to evaluating the success of the detection and examining the
effect of the magnetic regions. As illustrated by a comparison of the results from types 2
and 4 in Figure 5.8, the mean signals in these regions are similar whether the tail region is
magnetic or non-magnetic, indicating that the magnetic material does not interfere with
the sensitive and specific detection of the oligonucleotides. It should be noted that target 1
generated a lower signal than target 2 when incubations were performed with all four types
simultaneously in a single Eppendorf tube. The lower signal for target 1 can be attributed
to the presence of two particle types. (2 and 4) bearing probe 1 in the incubation mixture.
Because of this redundancy, target 1 was spread over -100 total particles per incubation,
whereas target 2 was spread over only -50 total particles per incubation.

Type 4 Incubated with 200 amol Target 1 Type 3 Incubated with 200 amol Target 2

150150
63.2 17.6 69.4 17.9

100 100

50 50

0 0

0 100 200 0 100 200

Figure 5.9: Effect of Particle Density on Target Signal. Each plot shows the average of 5 scans of
each particle type at the specified incubation condition. Data for (a) was taken from an incubation of
-50 particles of only type 4 with 200 amol of target 1. Data for (b) was taken from an incubation of
-50 particles of each of the four types with 200 amol of target 2. For the two cases, the total number
of particles bearing probe complementary to the indicated target is roughly equal. The comparable
signal intensities (63.2, 69.4 AU) in the probe regions indicate that the lower signals seen for types 2

and 4 in Figure 5.8 are in fact the result of spreading the available target among a greater number of
particles. Horizontal axis is axial (lengthwise) position in pixels, and vertical axis is mean

fluorescent intensity in arbitrary units. Mean signals for each of the regions are calculated as
described in Figure 5.8.
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When the same amount of target 1 (200 amol) was incubated with -50 particles of type 4
(probe 1, non-magnetic) alone, a signal (~63.2 AU) as high as that seen with the particles
bearing probe 2 in the earlier assays was observed, thus confirming that the particle
density led to the disparity in the original target levels (Fig. 5.9).

5.1.6 Summary

We have demonstrated that a modified form of SFL can be used to generate magnetic
barcoded particles through the addition of a monomer stream containing
superparamagnetic beads, as well as a perfusion rinse stream. The added magnetic region
can acquire dipole moments in the presence of low-strength homogeneous magnetic fields,
allowing the particles to align along the applied field direction. The magnetic barcoded
particles have exhibited an enhanced range of functionality, providing novel means for
orientation and separation during biological assays. The magnetic region has no apparent
negative effects on the sensitive and specific multiplexed sensing of oligonucleotide targets.
Although we have demonstrated the creation and use of relatively simple magnetic
barcoded particles, the flow lithographic process for loading magnetic materials described
here can perhaps be combined with more complex, multidimensional synthesis strategies
such as lock release lithography (LRL) and hydrodynamic focusing lithography (HFL) to
produce microparticles with additional novel properties advantageous for self-assembly and
biomolecule detection studies.

5.2 Reinforced Barcoded Particles

Barcoded hydrogel particles have been used for detection of small biomarkers including
DNAs, miRNAs, and low molecular weight (M.W.) proteins. For the case of large target
biomolecules, barcoded particles should require more porous probe regions than before. We
performed an experiment to check whether the adjustment of porosity for probe regions
could control penetration of target molecules into gel networks. For the probe-target
binding chemistry, we used the click chemistry of biotin- streptavidin as mentioned in
section 3.5. Using the advanced flow lithography of HFL, we prepared 4 layered particles
(Fig. 5.10). In the middle layer of the particles, the one region (A2) was comprised of biotin-
PEGA 10% (v/v) and PEGDA 700 60% (v/v) while the other region (B) consisted of biotin-
PEGA 10% (v/v) and PEGDA 700 10% (v/v). The particles were also bounded on the top and
bottom by a blocking layer (Al). The blocking layers were inert without incorporating with
biotin, and prevented diffusion of targets into the layers as they had porosity < 1nm. After
incubation, streptavidin (- 5 nm) only diffused into the region of lower PEGDA
concentration as shown in Figure 5.10. This validated that we should enlarge porosity of gel
matrix to detect large biomolecules. Interestingly, the layered particles allowed us to
visualize the degree of the protein diffusion as time passed. The time graph could be useful
for extracting kinetic information such as the diffusivity of the proteins in the gel network.
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Al

Al: PEG-DA 700 60%
A2: PEG-DA 700 60%

Biotin-PEGA 10%
B : PEG-DA 700 10%

Biotin-PEGA 10%

Figure 5.10: Porosity control for diffusion of target molecules The schematic describes compositions

of a 4 layered particle produced by HFL. After incubating the particles with streptavidin, the
proteins did not combine with the biotins in A2 region of the particles due to size exclusion. The scale
bar is 50pm.

Highly porous barcoded particles that are prepared by low concentration (< 10%) of PEGDA
monomer can offer sensing capability to detect large targets. However, the pure soft

barcoded particles cannot have been scanned in a microfluidic device, showing the

mechanical instability that results in the bending or folding of the particles (Fig. 5.11a). To

address this, we synthesized trilayered reinforced barcoded particles using HFL. In the

particles, two soft porous layers were comprised of < 10% PEGDA while one hard

supporting layer consisted of > 40% PEGDA. As shown in Figure 5.11b and c, the

supporting middle layer prevented the distortion of soft top and bottom layers. Compared to

the particle structure in Figure 5.10, this configuration for the layer arrangements is
advantageous to maximize detection regions.

Native a Re-enforced b Re-enforced C

PEGDA 10%0SC0 PEGDA 10%ay. PEGDA 40% iayer 50 M

Figure 5.11: Reinforced barcoded particles (a) Fluorescent image of soft PEG particles that were bent

due to the mechanical instability. (b-c) Fluorescent images of reinforced barcoded particles. The

sandwiched particles consisted of three layers: (1) two soft porous layers in the top and bottom of the

particles (Red) and (2) a hard supporting layer in the middle of the particles (Green).

Lastly, graphical code regions should be added on the above particles for practical

applications. This has required dual-axis functionality of the particles. As shown in Figure

5.12, we successfully prepared those particles utilizing 5-layered flows in HFL. This new

platform could expand the detection ranges of current barcoded particles to micron-sized

targets such as viruses.
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Code
Soft porous layer
(PEG-DA <10%) Probe

Hard supporting layer Reinforced
(PEG-DA >40%) barcoded particle S

Soft porous layer 10014r
(PEG-DA <1 0%)

Figure 5.12: Reinforced barcoded particles with 5 layered structures (a) A schematic description for

the structures of a 5 layered barcoded particle. The center consisted of a PEGDA 40% monomer

while the top and bottom comprised of side-by-side stacked PEGDA 10% monomers. Each top and

bottom layer has two regions of code and probe. (b) Fluorescent microscopy image of the barcoded

particles in (a). (c) Composite bright-field and fluorescent image of the barcoded particles in (b).

5.3 Near-infrared Barcoded Particles

Although current barcoded particles have been extremely sensitive and working in high-

throughput manner, the particles have required complex post-labeling steps. Also, the

particles have not been used to examine dynamic information of probe-target binding

events. Furthermore, target quantification has been achieved using the fluorescently

labeled reporters which are excited by UV light. As a result, the particles are inappropriate

for in -vivo multiplexed detection because the UV light has short penetration depth in tissue.

Here, we introduce near-infrared barcoded particles to overcome these limitations.

5.3.1 Experimental Methods

Materials

In the synthesis of near-infrared barcoded particles, the code region was made of 10 % (v/v)

PI, 40% (v/v) NOA81 (Norland Products), 30% (v/v) QDs solution and 20% (v/v) PEG-DA 700.
The PEG probe region was made of 10 % (v/v) PI, 30 % (v/v) SWNT/PDDFs toluene solution,
and 60% (v/v) PEG-DA 700. To disperse SWNT in toluene, a 5 mg portion of SWNT was

added into 10 mL of toluene containing poly(9,9-dioctylfluorenyl)-2,7-diyl (PDDF, 100 mg).

The resulting mixture was then sonicated using a probe-tip sonicator for 90 min at 10 W in

an ice bath. The SWNT solution was centrifuged for 40 min at 16000 g, and then the

supernatant was decanted for further experiments. Lastly, tergitol inert flows were tergitol

NP-10 (Sigma Aldrich) containing 10% (v/v) PI.

104



Near infrared Fluorescence Spectrum Analysis

Near infrared fluorescence spectra of SWNTs from barcoded particles were measured using
a home-built near infrared fluorescence microscope. Briefly, a Zeiss AxioVision inverted
microscope was coupled to a Princeton Instruments InGaAs 1-D array detector through a
PI-Acton SP150 spectrograph. Samples were excited by a 785 nm laser at 30 mW and the
emission from 900 nm to 1400 nm was detected. Spectra were acquired for 2 sec using a 50x
objective. For proton detection using a Janus particle, a particle was placed in the channel,
which was mounted on the microscope stage. Then, a particle was focused using a 50x
objective to maximize its near infrared fluorescence intensity. A diluted solution of HCl (70
IiL, 7.2 M) was slowly added into the solution (140 pL) in the channel, and the near infrared
fluorescence response to protons was measured in real-time for 10 min (785 nm laser, 2 sec
of exposure time).

5.3.2 Synthesis of Near-infrared Barcoded Particles

We previously demonstrated that virtually any number of flows could be stacked increasing
number of inlets entering from the top and bottom layers of the devices (Fig. 5.13a). To
generate the structured flows shown in upper right corner of Figure 5.13b, inert flows are
introduced in at both the top and second bottom channel while the monomers contained in
the middle layer are combined at the first bottom inlet. In the 4-layered flows, we
synthesized Janus triangular particles at the interface of the two flows in the middle layer.
Each compartment of the particles was labeled using different fluorescent dyes to confirm
the synthesis of Janus particles (Fig. 5.13c).

b zMonomer 1
Inert

LY

xa'
Inert

Monomer 2

Figure 5.13: Synthesis of Janus particles using structured microflows in a NOA 81 channel. (a) An
optical image of a NOA81 device for Janus particle synthesis. In the first step, we prepared a two-
layered NOA81 device with 5 inlets and 1 outlet. Using soft lithography, we could easily generate top
and bottom NOA81 channels with geometries for the creation of 4 layered flows. To combine these
two channels, we also used the iCVD nano-adhesive bonding method. (b) A schematic description for
the generation of layered microflows which contain in their center side-by-side stacked monomers
which are bounded on inert flows (c) A fluorescent image for Janus particles synthesized from this
process. The scale bar is 50 pm.
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Using this process, we fabricated near-infrared barcoded particles embedded with QDs in
the code region and SWNTs in the probe region (Fig. 5.14). The central stream
corresponding to the code was the same composition as the QD monomer mixture in Section
4.6.2, except 20% (v/v) of toluene was replaced with PEG-DA 700 to promote gelation at the
probe/code interface. The central stream corresponding to the probe was PEG-DA/PI
containing 30% (v/v) SWNTs/toluene dispersion. Dispersing SWNTs in the PEG-DA/PI
mixture presented a significant challenge due to the SWNTs tendency to aggregate in the
meta-phase of the hydrophilic monomer and hydrophobic PI. Although SWNTs can be
dispersed via covalent attachment of a polymer to their sidewall, this covalent
functionalization disrupts the electronic structure and PL of the SWNT [171, 172].
Therefore, it is crucial to stably disperse SWNTs with polymers in a non-covalent manner
in order to retain the properties that make them effective optical sensors [173]. To overcome
these difficulties, we non-covalently dispersed SWNTs by hydrophobic poly(9,9-di-n-
dodecylfluorenyl-2,7-diyl) polymer (PDDF) in toluene to preserve their sensing abilities.
Then, we mixed the solution with PEG-DA/PI by vortexing for 30 s and dispersed SWNTs in
the monomer mixture by toluene solvation. By sandwiching the two central streams
between bounding tergitol flows, we were able to synthesize bifunctional barcoded particles.

a ______________

SToluene/SWNTs
UV Emulsions

M Tergol
NOA/PEGDA, P1, Toluene and Os (Code) Near-infrared
PEGDA, P, Toluene and SWNTs (Probe) Barcoded Parile

Figure 5.14: Synthesis of near-infrared (NIR)-active barcoded particles (a) A schematic description

for NIR-active multifunctional encoded particle synthesis. Using Tergitol for inert flows, Janus

particles were created with a graphical barcode bearing near-infrared emitting QDs and a separate

probe region embedded with single-walled nanotubes (SWNTs) for label-free and real-time detection.

(b) DIC and near-infrared photoluminescence images ofparticles from (a). The scale bar is 50pm.

In near-infrared imaging of the particles, we observed the expected signal patterns from the
'2013' graphical code region and the SWNT-embedded probe region (Fig. 5.14b).
Importantly, the near-infrared fluorescence of barcoded particles was stable during long
periods of laser excitation, a feature that is crucial for read-out of barcodes and accurate
quantification of targets in real-time experiments.
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5.3.3 Performance ofNear-infrared Barcoded Particles

The SWNTs embedded within probe regions were able to detect a specific target in real-
time, with label-free reporting of the binding events. Selectivity for a particular target was
achieved by adjusting the wrapping of compounds around the SWNTs [173, 174]. This
ability to tune selectivity suggests that this platform can be used for the multiplexed
detection of several targets in a single assay. A distinct advantage of the SWNT probes used
in these experiments is the possibility of label-free detection. When a SWNT encounters a
target, the PL signal intensity of the SWNT is reduced and the emission wavelength shifts.
This emission change allows for the detection and quantification of targets without complex
post-target-capture labeling steps, thereby streamlining the assay process and eliminating
the possibility of cross-reactivity between probes and labeling reagents. To illustrate the
sensing capabilities of near-infrared fluorescence-barcoded particles, we performed simple
proton detection through near-infrared fluorescence response. Before the introduction of
protons, the spectrum of the probe region showed peaks generated from different types of
SWNTs: (9,2), (11,3), (8,7) and (12,4). Among the four peak signals, we used the highest
signal of (8,7) type for the analysis. Upon the introduction of 2.4 M HCl, the signal of (8,7)
type was reduced to 26% of the original signal (Fig. 5.15a). We also extracted proton
quenching kinetic information as the signal reduction was tracked in real time. We used an
exponential quenching model to fit experimental data and found quenching kinetic
parameters of 0.01s1 and 0.02 s- for 0.6 and 2.4 M target concentrations, respectively (Fig.
5.15b).
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Figure 5.15: Synthesis of near-infrared (NIR)-active barcoded particles (a) Shift in emission
spectrum of embedded SWNTs upon introduction of 2.4 M HC Blue arrow indicates most
pronounced shift, produced by (8,7)-type SWNT (b) Intensity decay for (8,7)-type SWNT during H+
detection. Exponential quenching model was fit to the experimental data, providing moderate proton
quenching kinetic parameters.
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5.3.4 Summary

We demonstrated the synthesis of near-infrared barcoded particles capable of label-free and

real-time detection of analyte. As QDs and SWNTs were dispersed in toluene, the precursor

solutions were organic phase which was not compatible with standard SFL process. As a

result, we used the advanced flow lithography of oxygen-free FL in solvent-resistant

NOA81 devices. Generating 4 layered microflows inside the devices, we synthesized Janus

type barcoded particles that contained QDs in a code region and SWNTs in a separate probe

region. Then, we performed a simple proton detection to check functions of the barcoded

particles. In the experiments, we showed label-free detection via fluorescent signal shifts of

embedded SWNTs. We also examined proton quenching kinetics utilizing the real-time

detection abilities of SWNTs. Significantly, all functions of the barcoded particles work

around the second near-infrared window (X ~ 1 pm), which greatly reduces the likelihood of

signal interference from tissues, cells, and biofluids in potential in-vivo multiplexed sensing

applications.
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Chapter 6

Outlook

In this thesis, we have improved the synthesis capabilities of FL and performance of

barcoded particles. However, there are still needs to refine these techniques or develop

more advanced methods and applications. For example, although LRL and HFL have

greatly expanded the control over particle geometry and chemical patchiness, these

techniques have not been used for clear applications, yet. In this section, we suggest future

directions for advanced flow lithography and barcoded particles.

6.1 LRL and HFL

LRL can provide complex 2D chemical patterns in x-y dimension of particles while HFL can

offer z-directional chemical patterns. The combination of these two techniques can allow for

3D chemical patterning in particles and yield new applications.

Future Direction

Previous studies have shown that 2D patterned films have transformed to 3D structures

against diverse stimuli such as magnetic fields [175], heat [176-185], light [186-189],

electrical voltage [190], and pH [13, 94, 191-196]. As shown in Figure 6.1a, various 3D

structures have self-assembled from magnetically patterned 2D elastomeric sheets [175].

Also, the wrapping of a liquid droplet by a planar sheet has resulted in 3D structures whose

variety and complexity are governed by number, order and orientation of folds (Fig. 6.1b)
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[197]. Complex 3D structures have been further constructed by patterning mechanical
properties onto 2D sheets of metal and polymer thin films (Fig. 6.1c) [198]. Recently, 2D
patterned gel sheets were also transformed to 3D shapes by thermally induced buckling
[184, 185].

a b c

mr2xR 612.3 nnm
nubM 30.7 Bmm LAS

Figure 6.1: 3D folding of 2D patterned sheets (a) 3D structures self-assembled from magnetically

patterned sheets. Images adapted from ref 175. (b) 3D structures self-assembled from the
interaction between elasticity and capillarity. Images adapted from ref 197. (c) 3D structures self-

assembled from 2D metal sheets with patterned mechanical properties. Images adapted from ref

198. Scale bars are 250 pm (c).

As LRL and HFL can spatially arrange multiple chemistries in all dimensions of particles,
the techniques could be used for the design of smart particles to transform to elegant three-

dimensional shapes. A simple example could be the synthesis of cross-shaped particles

shown in Figure 6.2a. The particle contains magnetic materials (e.g. y-Fe2O3) in six arms

while the center consists of non-magnetic materials (e.g. PEG-DA). In the presence of an

external magnetic field, the magnetic portions get induced dipole moments. Then, long-

range dipolar interactions between the portions can induce columnar structures along the

applied field direction [163]. Therefore, if the direction of the magnetic field is out of plane,

the particle would be a 3D container as six arms stand up (Fig. 6.2a). When magnetic

particles are patterned with heat responsive polymers such as PNIPAM (PolyN-

isopropylacrylamide) [199] and HEMA (2-hydroxyethyl methacrylate) [200], the particles

could experience a two-step stimuli induction process (Fig. 6.2b). First, these particles could

be heated by irradiation with alternating electromagnetic fields [201, 202]. Then, the
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induced hyperthermia could make the heat responsive polymers swelled, enlarging porosity
of the polymers for drug release. These smart particles could be efficiently used for curing
cancers because they can generate hyperthermia and drugs at the same time by a magnetic
field. Particles with precisely positioned swelling/non-swelling chemistries would be also an
interesting self-actuating material. A preliminary result for the proof-of-concept was made
using the particle that has a cross-shaped rigid support and pH-responsive, fluorescent fins
between each arm (Fig. 2. 10c-e). Instead of displaying homogeneous swelling characteristics,
these particles have shown anisotropic and reversible shape changing process. The pH-
responsive particles could be useful for applications of microactuation [93, 203] and optics
[204].

a Nonmagnetic Materials b
Magnetic Materials

Heat Responsive Polymers

TT
Magnetic Fields (Out of plane)

Alternating Magnetic Fields
Magnetic Materials

Figure 6.2: Designs of smart particles (a) A scheme illustrating three stages for folding of a magnetic
composite particle by magnetic fields. Image adapted from ref 175. b. A schematic illustrating
shape-changing process of a magnetic composite particle with heat responsive polymer.

6.2 Solvent Compatible FL

We have synthesized particles from organic precursors using oxygen-free FL in solvent
resistance NOA81 devices. However, the device fabrication process in oxygen-free FL is
somewhat complex as the devices should be prepared as 3D channels for flow-stacking. On
this reason, we have sought an alternative way to achieve solvent compatible FL without
flow stacking process. If a device provides oxygen permeability as well as solvent resistance,
we can do solvent-based particle synthesis using the prior oxygen lubrication layers.

Future Direction

Very recently, we have been attracted to a fluorinated elastomer called perfluoropolyether
(PFPE). This material not only is commercially available (Product Name: SIFEL X71-8115)
but also enables soft lithography. This product has two parts: (1) Part A that consists of a
PFPE backbone capped with vinyl silicone and (2) Part B that consists of a PFPE backbone
capped with silicon hydride. During soft lithography, the two parts are mixed in the ratio of
1 to 1 and cured by a hydrosilation reaction in the presence of platinum catalysts at 120 'C.
The curing process is very similar to the PDMS curing process. The distinct merit of PFPE
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is that the material has chemical resistances against organic solvents, acids, and alkali
[205]. Before fabricating the PFPE devices, we designed an above simple experiment and
checked whether the PFPE-silicone elastomer could provide oxygen lubrication layers for
FL (Fig. 6.3). Typically, photocrosslinked PEGDA microparticles between glass slides were
adhered onto the glass surfaces. Due to the oxygen impermeability of glass, the radical
polymerization between glass slides was able to propagate to the glass surfaces without
inhibition and thereby generated photo-patterned structures that were affixed to the
surfaces. However, the photo-polymerized PEGDA structures between the PFPE layers
were mobile just after UV exposure. This result implied that the oxygen permeability of
PFPE elastomer could be high enough to create oxygen lubrication layers.

a
.--- 35% PEG700DA

Photomask -- - Glass cover slip

t t t tUV

b
35% PEG700DA

m e' --PFPE (SIFEL X71-8115)
Photorask Glass cover slip

tt tuv

Figure 6.3: Oxygen permeable perfluoropolyether (PFPE) (a) A schematic depicting a simple

experiment to check the existence of oxyger' lubrication layers. In the experiment, a droplet of

PEGDA/PI was sandwiched between glass layers and polymerized by mask-defined UV light.

Photopolymerized PEGDA structures between glass slides were immobile even after 1000 seconds.

(b) The same experiment was performed for PFPE layers. Photo -polymerized PEGDA structures

between the PFPE layers were mobile just after LV exposure. This validated that PFPE could

provide oxygen lubrication layers. Scale bars are 100 pm.

As multilayered microfluidic PFPE devices were fabricated by off-ratio bonding technique
in a previous study, we prepared PFPE devices via the literature procedures [205]. Then,
we used stop flow lithography to generate microparticles inside the devices. As expected, we

found oxygen lubrication layers to allow for the fabrication of mobile particulates and

synthesized homogeneous triangular particles as shown in Figure 6.4b. Also, we prepared

PFPE devices with three inlets, and synthesized multifunctional barcoded particles on

three phase laminar flows (Fig. 6.4c). These results demonstrated that PFPE devices could

be used to synthesize particles in same throughput and spatial resolution as prior PDMS

devices. To further evaluate the performance of PFPE devices for SFL process, we compared

PFPE with PDMS from previous literatures. In Table 6.1,'we summarized key properties of
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both materials for SFL process. As the oxygen permeability and elastic modulus of PFPE
are close to those of PDMS, PFPE devices can provide similar oxygen lubrication layers and
channel response time to PDMS devices [206]. Also, PFPE has extremely low surface
energy which is less than half of the PDMS surface energy, allowing for non-destructive
SFL device construction [207, 208]. Furthermore, the fluorinated devices can minimize the
monomer accumulation on surfaces, extending the SFL process time. In the long run of SFL
process, PDMS devices has led to monomer accumulation at synthesis spot, eventually
resulting in particles sticking to PDMS walls. Actually, we performed an experiment to
determine process time at which particle sticking started for each device, and found that
PFPE devices could offer about 2 times longer process time than PDMS devices.

a

b
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Inlet Outlet

PDMS

PFPE
microchannel

Mask Glass slide
UV

Figure 6.4: SFL in a PFPE device (a) A schematic depicting the SFL process to synthesize triangular
particles in a PFPE device. By virtue of oxygen lubrication layers, PFPE devices can allow for the
production of free-floating particles. (b) The inserted schematic shows a top view of the process (a).
Bright-field and fluorescent images show particles synthesized in (a). (c) Synthesis of multifunctional
barcoded particles. A mask with an array of barcode particle shapes was aligned on three phase
laminar flows that were created in a PFPE device with multiple inlets. Bright-field and fluorescent
images show the barcoded particles with three distinct compartments. Scale bars are 100 pm (a) and
70 pm (b).
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Material PDMS PFPE
Oxygen Permeability (Barrers) [ref. 206] 550 400

Young's Modulus (MPa) [ref. 206] 2.4 3.9
Surface Energy (mN/m) [ref. 207] 25 12

Table 6.1: Comparison ofproperties between PDMS and PFPE

As mentioned before, PFPE devices can have similar SFL environments to PDMS devices.

To demonstrate this, we synthesized cylindrical particles with high aspect ratio in both

devices using same SFL process conditions. As particles were toppled by flows, we easily

measured the width and height of particles for each device. In PDMS devices, the width of

particles was 14.4 im while the height of particles was 21.8 Pm. In PFPE devices, the width

of particles was 13.5 im while the height of particles was 21.2 Pm. Importantly, the

differences of the particle dimensions between devices were only below 1 Pm (Fig. 6.5). This

result validate that PFPE devices can provide SFL environments akin to the PDMS devices.
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PDMS PFPE
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Figure 6.5: Comparison of SFL performance between PDMS and PFPE devices (a) Top view of
particles synthesized in both devices. The cylindrical particles were synthesized by SFL process
using a mask with an array of 15 pm circles. For both devices, the diameters of sixteen particles
were measured and plotted. The error bars indicate standard deviation. (b) Side view of particles.
The particles were toppled by stable laminar flow in microfluidic devices. Like (a), the particle
heights were measured and plotted with error bars.
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The most valuable feature of PFPE devices is that the devices have solvent resistances. In
both PDMS and PFPE devices, we synthesized 300 im long bar-shaped particles from
water-insoluble monomers dissolved in toluene. The shape was chosen to investigate
channel shape after swelling on the coordinate of channel width. In these experiments, the
particles synthesized in PDMS devices were deformed reflecting swollen channel shape (Fig.
6.6a and b). On the other hand, the particles synthesized in PFPE devices were flat without
shape distortion (Fig. 6.6e and f). We further quantified the fluorescent signals on the
particle distance (Fig. 6.6c and g). The fluorescent signal of particles synthesized in PDMS
devices was two times lower than the signal of particles synthesized in PFPE devices,
validating that the former particles had thinner thickness than the latter particles. Also,
the former particles had shown concave fluorescent signals which represented the deformed
shapes of the particles. This result clearly demonstrated- that PFPE devices could be used to
synthesize anisotropic particles using organic solvents. However, solvent-based FL in PFPE
devices could have some of drawbacks. First, the devices can be swollen as times goes by
and unsuitable for long time synthesis. Also, the kinds of operable solvents in PFPE device
have been limited. For these cases, we could use the previous oxygen-free FL [209].
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Figure 6.6: Comparison of solvent-based SFL between PDMS and PFPE devices (a) A schematic

depicting toluene-based SFL process in PDMS devices. The particles have curved shapes due to the
swelling of the PDMS walls. The precursor consists of water insoluble monomer (polyurethane
acrylate (PUA)), toluene, photoinitiator, and rhodamine acrylate. (b) Bright-field and fluorescent
miscopy images of curved particles. (c) The fluorescent signals of three particles were quantitatively
analyzed on particle distance using Image J software. (e) A schematic depicting toluene -based SFL
process in PFPE devices. The particles have flat shapes due to toluene resistance of PFPE devices. (f)
Bright-field and fluorescent images of flat particles. (g) Like (c), the fluorescent signals of three
particles were analyzed on particle distance.
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6.3 Advanced Barcoded Particles

Although barcoded particles have been used for the detection of various biomolecules
including DNAs, RNAs, Proteins, and viruses, the particles have not been used for living
cell assays yet. For these assays, it would be important to incorporate ECM (extracellular
matrix) with encoded particles.

Future Direction

To begin with, we suggest a fabrication way to prepare ECM microspheres encapsulating
shape-coded particles. Usually, natural ECM such as collagen, alginate, and chitosan can
be thermally or chemically cured [210-219]. Droplet based microfluidics have been
successfully used to produce various ECM microspheres because the technique is
compatible with various curing processes [220-223]. As a result, we propose to synchronize
FL with drop-based microfluidics to create the suggested particles. Numerous works have
been made in forming droplets by cross-flow shear method in T-junction microfluidic
devices [158, 224-230]. However, any of these researches has not been performed with the
stop flow system. We introduced the compressed-air flow control system [74] that could
provide the rapid pulsing of microflows in order to synthesize particles in a stationary fluid
for higher feature resolution and improved throughput.

SP2
I 3.3 Psi

- Flow I
Food Coloring 100%
- Flow 2
Mineral Oil 100% P1=2.5 Psi P1=2.8 Psi P1=3.0 Psi P1=3.1 Psi

Figure 6.7: Droplet size modulation using the compressed-air flow control system. Images taken

downstream from a T-junction demonstrate the size range that can be achieved by simple

adjustment of the dispersed phase driving pressure. All scale bars are 50 pm.

The control system can be further utilized to produce monodisperse droplets with flow-
focusing channels (Fig 6.7). Generally, in droplet-based microfluidics, syringe pumps have
been used as a driving source to squeeze droplets into immiscible flows using channel
geometry [231]. Our system can be implemented for this application for only 20% of the cost
of the syringe approach. In addition, as syringes use a rotary motor to control volumetric
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flow rates, the size variation of droplets can be substantial at low flow rates [231]. Our
system exhibited high monodispersity at these reduced rates, and the rapid response of the
pressure-driven setup was used to quickly change droplet size during experiments.

a

C
Droplet
Generation

Figure 6.8: Synchronization of SFL in droplet-based microfluidics (a) A schematic depicting the
synchronization process. A droplet is stopped prior to SFL polymerization. Then, mask-defined
particles are generated inside the droplet. After that, the droplet containing anisotropic particles is
released by flows. (b) A fluorescent image of particles prepared by process (a). Each droplet contains
a triangle particle inside. (c) Sequential DIC images to show the experimental process. Scale bars are
50'pm.

Also, the system can instantly stop and start flow with milli-seconds resolution. On this
time scale, we can easily control picoliter flow volume that is equivalent with a single

droplet volume. In the squeezing regime, simple scaling analysis suggests that we could
manipulate a single droplet when the flow time (t) is,
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HWL, 2HWL, L, Qd

Qd Qd W Q

Where Qd is the volumetric flow rates of disperse phase, Qc is the volumetric flow rates of
continuous phase, H is the height of the main channel, W is the width of the main channel,
e and ) are the fitting parameters, and L, is the length of a plug. The left term in the
inequality is the time required for the generation of single droplet while the right term is
the time required for the generation of double droplets. As long as we keep flow time
between these two times, we can manipulate single droplet. Here, the attractive point is
that we can synchronize this single droplet manipulation with shutter-mediated
lithography and generate droplets containing anisotropic shaped particles with 100%
accuracy. This schematic in Figure 6.8a describes how the process works. Using this process,
we prepared droplets containing a triangle (Fig. 6.8b and c).

a Water "' m ' b C ECM microbeads with 0 0
P (with Gkitaraldehyde) Baded Partices Lving Cell Assays
PEGDA 0
Rhodarnine /
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Chitosan Cells
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UV Polymerization Pomeriztion

Figure 6.9: Advanced barcoded particles for living cell assays (a) A schematic depicting the synthesis

of extracellular matrix (ECM) microbeads encapsulating anisotropic particles. (b) A schematic

showing the final product in process (a). (c) Living cell assays. During cell cultures on ECM

microbeads, interior barcoded particles can be used to detect biomolecules secreted from living cells.

Of particular interest, the use of two independent cross-linking mechanisms can allow us to
create particles that have two different layers comprised of same phases. The synthesis of
this type of particles has been challenging in emulsion techniques. In Figure 6.9a, we show
the schematic description for the process. Using a disperse phase containing PEG-DA,
chitosan (one of natural ECMs), photoinitiator, and rhodamine, we can generate anisotropic
PEG particles inside a droplet by UV polymerization. Then, the outer chitosan shell can be
chemically crosslinked by glutaraldehyde in the continuous phase. After that, unreacted
PEG-DA, rhodamine and photoinitiator in the shell can be removed by rinsing the particles.
The final product can be shown in Figure 6.9b. In this process, the encapsulated particles
can be Janus type particles when two disperse phases are used. As a result, we could
prepare the advanced barcoded particle shown in Figure 6.9c. As the outer shell of the
particles consists of natural ECMs, we anticipate that cells would be favorably attached to
the particles, and well-cultured. A recent study has shown that ECM microspheres can be
used for an excellent scaffold for cell-cultures [223]. It is also important to note that cell
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cultures on microspheres might be different with cell cultures in microwells as the spheres
can provide scaffold similar to 3D environments. These particles could be novel platform for
the multiplexed detection of biomolecules secreted from living cells.
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