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Abstract
The large diversity of cells that comprise the human immune system requires methods

that can resolve the contributions of individual cells to an immunological response. The release
of cytokines is one of several important functions carried out by immune cells. Analytical
methods that yield multiple measures of the breadth and quality of cytokine secretion from
heterogeneous populations are highly desired in basic and clinical immunology. Microengraving
is a process that uses a dense, elastomeric array of nanowells to generate microarrays of proteins
secreted from large numbers of individual live cells. In this thesis, we improved the sensitivity
and multiplicity of microengraving and adapted it to detect cytokine secretions from primary
immune cells. We demonstrated that microengraving could provide quantitative measurements
of both the frequencies and the distribution in rates of secretion for up to four cytokines
simultaneously. The experimental limits of detection ranged from 0.5 to 4 molecules/s for most
cytokines in our experiments. These multidimensional measures resolve functional responses by
cells exposed to stimuli with greater sensitivity than single-parameter assays. Primary T cells
with specific profiles of secretion can also be recovered after microengraving for subsequent
expansion in vitro.

The release of multiple cytokines by T cells has been associated with beneficial immune
responses. To date, however, time-integrated end-point measurements have not resolved the
temporal dynamics of these functions. Here, we used serial microengraving to measure Thl-
skewed cytokine responses (IFNy, IL-2, TNFa) from individual cells after activation ex vivo.
The results show that multifunctional cytokine responses are initiated asynchronously but the
ensuing dynamic trajectories of these responses evolve programmatically in a sequential manner.
Furthermore, these dynamic trajectories are strongly associated with the various states of cell
differentiation, suggesting that transient programmatic activities of many individual T cells
contribute to sustained, population-level responses. The trajectories of responses by single cells
may also provide unique, time-dependent signatures for immune monitoring that are less
compromised by the timing and duration of integrated measures. Together, these results
demonstrate the utility of quantitative, multidimensional profiles of single cells for analyzing the
diversity and dynamics of immune responses in vitro, thus generating immune signatures for
diseases.

Thesis Supervisor: J. Christopher Love
Title: Latham Family Career Development Professor
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Chapter 1. Introduction

Chapter 1. Introduction

The activation of T cells is an essential process for coordinating both cellular and

humoral immune responses. The release of cytokines is one of several important functions

carried out by T cells during either a protective immune response to pathogens or autoimmune

responses. The number of responsive cells provides a measure of the magnitude, while the

nature and diversity of the functional responses has also been associated with measures of quality.

Both the magnitude and quality of cytokine secretion are, therefore, considered important metrics

in evaluating the efficacy of an immune response (1). In addition, T cell responses are dynamic

upon activation. Resolving when activated T cells initiate the release of cytokines, and how their

responses evolve, may provide further insight into how individual cells modulate intercellular

signals dynamically to affect population-level responses towards pathological conditions or

clinical interventions. Understanding the phenotypes and dynamic functions that indicate

effective T cell responses to diseases and clinical interventions has been a central effort to

improve immune monitoring. Existing analytical methods can assess the frequencies, magnitude,

and number of cytokines produced by individual cells, but few assigns multiple functional and

phenotypic characteristics to the same individual cells without affecting their viability or

responses. Therefore, most available functional assays of different T-cell subsets lack temporal

resolution, and such functional profiles are also hard to further correlate with other cell activities,

such as proliferation and cytotoxicity. To solve this technical problem, this thesis aims to

develop a high-throughput and multiplexed assay to resolve the dynamic functional responses of

individual cells following stimulation while minimizing external perturbations that could

unintentionally alter their behaviors.

1.1 Diversity of T cells

1.1.1 T cell differentiation and classification

T cells are an important category of lymphocytes in the immune system and play a

significant role in adaptive immune responses to infectious diseases and in the pathogenesis of

inflammatory diseases (2). T cells are highly heterogeneous population: an individual T cell

15



Chapter 1. Introduction

expresses a unique receptor (TCR) that recognizes antigens as peptides bound to major

histocompatibility complex (MHC) molecules on the surface of antigen-presenting cells (APCs).

Two signals are required to activate T cells: binding of TCR to peptide/MHC complexes delivers

the first signal to T cells, while a second signal is provided by costimulatory ligands on APCs (3,

4). After antigen-specific stimulation, naive T cells can undergo clonal expansion, culminating

in a higher frequency of antigen-specific cells endowed with effector functions (5).

There are two major classes of T cells: T helper cells (Th cells, CD4*) and cytotoxic T

cells (CTLs, CD8*). Naive CD4* T cells differentiate into functional subsets, such as Thi cells

and Th2 cells, which produce one or more cytokines and chemokines to induce proliferation,

modulate inflammation, mediate cytolysis of other cells, and inhibit viral replication (2). In

addition to differences in cytokine repertoire, effector CD4* T cells exhibit diversity in homing,

e.g. migration to lymph node follicles to help B cells versus migration to inflamed tissues.

Effector CD4* T cells also help B-cell responses and enhance CD8* T-cell development through

the activation of APCs. CD8' T cells mediate their effector functions by the production of

cytokines such as IFNy and TNFa and/or by cytolytic mechanisms (6). These responses are

important in preventing or maintaining control against disease in a variety of intracellular

infections and perhaps also against certain tumors. Most effector cells are short-lived and

rapidly decrease in number towards the end of a response.

Upon clearance of the antigen, two major types of memory T cells remain: central

memory cells (TcM) and effector memory cells (TEM), which mediate reactive memory and

protective memory, respectively (2, 5, 7). TcM home to T cell-rich areas in secondary lymphoid

organs. They have little or no effector function, but readily proliferate and differentiate to

effector cells in response to antigenic stimulation. TEM migrate to inflamed peripheral tissues,

such as the skin and the gut, and display immediate effector functions, such as killing infected

cells and/or secrete inflammatory cytokines that inhibit replication of the pathogen. These

memory T cells form the basis for protective immune responses.

16
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T-cell migration is dependent on the expression of a particular set of selectins, chemokine

receptors, and integrins, which determine the steps of extravasation and positioning in different

tissue microenvironments. Therefore, differentiated subsets of T cells (naive, memory, and

effector cells) can be distinguished by the expression of homing receptors and activation markers,

e.g. CD45RA, CCR7, and CD62L (8-10). Naive T cells have not encountered its cognate

antigen within the periphery and express CD45RA and CCR7. Terminally-differentiated effector

T cells are CD45RA*CCR7- with limited potential for proliferation and expansion after antigenic

stimulation.

TcM are CD45RA- and constitutively express CCR7 and CD62L, which are required for

cell extravasation through high endothelial venules and migration to T-cell areas of secondary

lymphoid organs. When compared with naive T cells, TCM have higher sensitivity to antigenic

stimulation, are less dependent on costimulation, and upregulate CD40L to a greater extent, thus

provide more effective stimulatory feedback to dendritic cells and B cells. Following TCR

triggering, TcM produce mainly IL-2, but after proliferation, they efficiently differentiate to

effector cells and produce large amounts of cytokines, e.g. IFN-y or IL-4 (11).

TEM lose constitutive expression of CCR7, are heterogeneous for CD62L expression, and

display characteristic sets of chemokine receptors and adhesion molecules that are required for

homing to inflamed tissues. When compared with TcM, TEM are characterized by rapid effector

function. CD8+ TEM carry large amounts of perforin, and both CD4* and CD8' TEM produce

IFNy, IL-4, and IL-5 within hours following antigenic stimulation. Some CD8* TEM express

CD45RA (defined as TEMRA) and carry the largest amount of perforin (11).

The relative proportions of TCM and TEM in blood vary in the CD4* and CD8* T cells.

TcM is predominant in CD4* T cells and TEM in CD8* T cells. Within the tissues, however, TcM

and TEM show characteristic patterns of distributions. TcM are enriched in lymph nodes and

tonsils, whereas lung, liver, and gut contain greater proportions of TEM (12). When stimulated in

vitro, memory T cells show low-activation threshold and vigorous proliferation. Although both
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TcM and TEM have a high responsiveness to antigenic stimulation, the expansion potential

decreases from TcM to TEM and is very low in CD8' TEMRA (9).

1.1.2 Functional diversity of Th cells

Th cells exert functions mainly through secreting cytokines and chemokines that activate

or recruit target cells. The type and magnitude of cytokine secretions determine the effectiveness

of immune responses. Antigen-activated naive Th cells can develop into various functional

subsets, depending on external cues and the transcription factors induced (13). Effector Th cells

have been classically considered to contain two subsets: Th1 cells and Th2 cells. Each subset

has unique cytokine products, signaling pathways, and lineage-specific transcription factors or

master regulators. More types of effector subsets were discovered later, including Thl7, Treg,

TFH, Th9, Trl, Th22, etc. (2, 14).

Thl cells mediate immune response against intracellular pathogens (15). In humans, they

play a particular important role in resistance to mycobacterial infections and are also responsible

for the induction of some autoimmune diseases. Thl cells are regulated by transcription factors

STATI, STAT4, and T-bet. Their principle cytokine products are IFNy, LTa, and IL-2. IFNy is

important in activating macrophages to increase their microbicidal activity (16). IL-2 production

is important for CD4* T cell memory. IL-2 stimulation of CD8' cells during priming phase is

critical for their memory formation (17).

Th2 cells mediate host defense against extracellular parasites (15). They are important in

the induction and persistence of asthma and other allergic diseases. Th2 cells are regulated by

transcription factor STAT6 and GATA-3, and mainly produce IL-4, IL-5, IL-9, IL-10, and IL-13.

Thl7 cells mediate immune responses against extracellular bacteria and fungi (18). They

are responsible for, or participate in, the induction of many organ-specific autoimmune diseases.

RORyt is important in Thl7 differentiation. Thl7 cells produce IL-17a, IL-17f, IL-21, and IL-22.

Treg cells play a critical role in maintaining self-tolerance as well as in regulating

immune responses (19). Increasing Treg numbers and enhancing their suppressive function may
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be beneficial for treating autoimmune diseases and for preventing allograft rejection. Treg cells

are regulated by transcription factor Foxp3. The molecular basis of suppression in some cases is

through their production of TGF-p, IL-10, and IL-35.

Differentiation of naive T cells to functional specific effectors involves positive feedback

of cytokines and cross-inhibition between lineages. For example, IFNy and IL-4 signaling

suppress mutually, TGF-p suppresses both Thl and Th2 differentiation, and both IL-4 and IFNY

inhibit Thl7 differentiation (20). The differentiation of Th cells was originally viewed as an

unidirectional process with little plasticity in cytokine responses, however, recent searches reveal

that T-cell functions, particularly in iTreg and Thl7 cells, are more complex and flexible than

what was previously assumed (13).

1.1.3 Multifunctionality and dynamic responses

With the development of multiparameter cytometry, individual T cells were found to

have heterogeneous profiles of production of cytokines even within the same functional subsets

and may produce multiple cytokines simultaneously. The breadth and magnitude of the

production has been associated with productive immune responses to infectious diseases (21-23)

or to vaccines (24-26). In the mouse model of L. major infection, Th1 cells were able to produce

all combinations of three cytokines: IFNy, IL-2, and TNFa. The generation of multifunctional T

cells was found to strongly correlate with protection against subsequent challenges (25). In

humans, virus-specific CD4* T cells are also able to secrete all possible combinations of IFNy,

IL-2, and TNFa. Triple producers were found to express highest level of cytokines per cell and

have higher frequency of CD40L expression, which demonstrated a positive association between

cytokine coproduction and other functional characteristics of CD4* T cells (27).

Cytokine responses are also dynamic. The types and concentrations of cytokines in the

extracellular milieu, and percentages of cells producing them, are known to shift globally over

time (28, 29). Kinetics study on gene expression of naive CD4* T cells in response to TCR-

mediated activation revealed several cytokine or cytokine-receptor genes (e.g. IL-2 and LTa) that

had significant changes in expression level as early as 4 h and then dynamically expressed within
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24 h (30). The secretion of both IL-2 and IFNy by CD4' T cells in vivo has been shown to begin

within hours of stimulation and wane after 16-18 h (31, 32).

Studies on super antigen-stimulated CD8' T cells showed that production of cytokines

segregates into discrete subpopulations and occurs with different kinetics. At the population

level, cells first initiated TNFa production that was then tightly followed by IFNy, and IL-2

production started last. These data indicated sequential acquisition of TNFa, IFNy, and IL-2

expression in the subpopulation that coexpresses these three cytokines (33). Research on human

influenza-specific CD4' T cells showed that IL2*IFNy- single functional cells was committed to

IL2*IFNy* pattern under subsequent growth regardless of Thl- or Th2-biased media condition,

suggesting that the expression of a subset of all potential cytokines by a T cell is transient and

reversible (34).

1.2 Single-cell analysis

1.2.1 General review of cell diversity

Besides the apparent diversity of cell types in a population, such as lymphocytes in the

immune system, it is also well known that individual cells, even those identical in appearance,

differ in numerous characteristics, such as variability in the expression of a particular gene,

concentration of a critical metabolite or ion, or pattern of response to a given stimulus (35-38).

Living cells possess very low copy numbers of many components, including DNA and important

regulatory molecules. Both stochastic events inherent in the biochemical process of gene

expression (intrinsic noise) and fluctuations in other cellular components (extrinsic noise)

contribute substantially to overall variation (39-41). Cell types, mutations, and fluctuations all

contribute to the diversity of cells.

However, most clinical or cell-based assays analyze cells in bulk, for example, using

serum, cell culture media, or pooled cell lysates. These assays may overlook the rich

information available or attribute the contribution of small subset of cells to the whole population.

Bulk analysis cannot provide detailed information that is critical to evaluate the state of

biological system, such as whether two or more genes are co-expressed in the same population or
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in different sub-populations; whether a small increase in expression measured in the ensemble

results from a small, homogeneous increase across all cells or a large increase in a subset of cells.

Single-cell analysis, therefore, is necessary to resolve the underlying heterogeneity.

So far, some single-cell analyses have demonstrated unique advantages to understand the

biological process and the mechanism of disease. Microscopic imaging and chemical

separations have elucidated unique biological phenomena in single cells that are not discoverable

by bulk sampling procedures (42). One example of these discoveries is the unique patterns of

repetitive increase and decrease in Ca2 + concentration over time after stimulating single cells (43).

This phenomenon is hidden when studying a whole population of cells, due to differences in

timing and responses of individual cells. Single-cell measurements are also valuable for

studying populations of mixed cells, such as cells in immune system or cells from tissue sample.

Single-cell studies of tumor biopsies have shown that the majority of cells within a tumor tissue

may be normal and among these abnormal cells, significant heterogeneity exists (44, 45).

1.2.2 Single-cell technologies for immunology

Over the past few decades, series of technologies have been developed for high-

throughput studies of the molecular machinery of individual cells.

Enzyme-linked immunospot (ELISpot) and related variants are commonly used to study

the release of cytokines from single immune cells (46, 47). In this technology, cells are loaded

and grow on a membrane that is functionalized with specific antibodies for target analytes.

During culturing, cytokines produced by each cell are captured by the antibodies around the cell.

After removing cells, membrane is interrogated by detection antibodies and the secreted product

from individual cells can be eventually visualized as colored spots. This method provides both

qualitative results of secreted protein and semi-quantitative results of the frequency of

responding cells. This assay has limited sensitivity, and typically, only measures one or two

analytes per cell (48). Recent modifications that incorporate fluorescence-based analysis of

secretions have expanded the number of analytes, but the inefficient capture of analytes still
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necessitates long time to accumulate sufficient material for detection (49, 50). Furthermore,

individual cells cannot be retrieved after the measurements.

Intracellular cytokine staining (ICS) of fixed cells for analysis by flow cytometry has

provided a convenient alternative to measure multiple cytokines over short periods of time (4-6 h)

(51). In this assay, single cells are stained with fluorescently-labeled antibodies against either

surface markers or intracellular proteins. With the development of new detection techniques, up

to 19 parameters (17 fluorescent colors and 2 physical parameters) can be detected

simultaneously from each cell (51), though routine use is typically limited to 6 to 8 colors. It can

analyze several thousands of cells per second. The typical sensitivity is -0.1%, and requires

sufficient staining of the target cells. To further expand the detection capacity, single-cell mass

spectrometric (cytometry by time-of-flight or CyTOF) has been developed recently (52). In this

approach, heavy metal isotopes are used to label antibodies and then labeled cells are analyzed

by high-throughput mass spectrometry. More than 30 parameters can be quantified at the single-

cell level with very little crosstalk between channels. This technology enables systematic study

on the phenotypic and functional complexity of immune cells (53, 54).

Two modified approaches for flow cytometry-'artificial receptors' and microbeads (55,

56)-allow the capture of secreted cytokines near the extracellular surface of the cell. Analytical

models for the mass transport in these two processes indicate, however, that the rate of diffusion

of released cytokines into the bulk media limits the sensitivity of these measurements for poor

secretors and can introduce cross-contamination among cells (57). Encapsulation of cells at cold

temperatures in polymeric matrices may also perturb secretion.

Another set of high-throughput techniques aim to detect rare circulating tumor cells

(CTC) from blood, such as CTC-chip (58), microfilter device (59), micropores (60). Some are

techniques that improve the efficiency of the detection system, such as rare event imaging

system (REIS) (61) and fiber-optic array scanning technology (FAST) (62). The advantage of

these methods is the ability to screen and isolate rare cells quickly. However, the cell type that

can be captured and downstream analysis of captured cells are limited.
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Lab-on-a-chip (LOC) technology is another platform for single-cell detection. Many

systems use microfluidics technology to trap and manipulate single cells in nanolitre or picolitre

volumes. Arrays of microwells have also been manufactured using a range of materials to

facilitate the isolation and interrogation of single cells (63-72). Combining with biochemical

assays or imaging techniques, variety of cellular measurements can be adapted on chip with

improved sensitivity and throughput: cytometry, transcriptional detection, electrophoretic

analysis, cell-environment interactions, and single-cell PCR (42).

1.2.3 Challenges of cytokine detection from single T cells

Heterogeneity among subsets of T cells requires analytical methods that yield multiple

measures of the breadth, quality, and dynamics of functions exhibited by individual cells (1).

Functions of T cells are usually measured directly ex vivo to reduce the variation and artificial

activity introduced by long-term cell culture. This requirement excludes some single-cell

technologies that require genetic modification of cells, e.g. construction of stable reporters. Two

additional considerations for practical application in clinical studies are that methods should be

amenable for characterizing small numbers of cells (104-106) and sufficient to detect target cells

at low frequencies (1 in 104 to 106). Therefore, desired assay should work in a high-throughput

manner to screen all possible individual cells from the sample while maintain a high sensitivity.

Existing analytical methods can assess the frequencies, magnitude, and number of

cytokines produced by individual cells. ELISpot use a direct measure of secretion to determine

the frequencies of cytokine-producing cells, but quantifying the subtle differences among cells in

a population is difficult. The intensities of spots can indicate the rates of secretion (73), but poor

sensitivity requires integrating signals over 12-48 h to detect most cytokine-secreting cells (<<

100 molecules/s). ICS has become a common alternative to assess the number and magnitude of

cytokines expressed by single cells (74, 75). Mean fluorescence intensities (MFI) provide a

relative measure of the quantity of a protein trapped intracellularly, however these values are

difficult to compare directly among independent samples. Furthermore, ICS measures only the

productive capacity of a cell when prohibited from secretion, and may not accurately reflect the

quantity of cytokine that would have been secreted by the cell. More importantly, both

23



Chapter 1. Introduction

technologies are not able to resolve the temporal differences of responses among cells (with time

scale of 1-2 h for some cytokines), because they require integrating signal over long periods of

time (6-48 h). Although ICS takes snapshot of cytokine production over a shorter period of time

than ELIspot, compromise of the timing has to be made between cytokines with rapid producing

kinetics (e.g., TNFa) and those with a delay (e.g., some chemokines). Furthermore, both

technologies provide only endpoint measures, because neither of them can easily retrieve single

live cells after measurement. Therefore, it has not been possible, however, to determine whether

cells release multiple cytokines simultaneously or sequentially in time.

1.3 Microengraving technology.

Microengraving is a soft-lithographic method that transfers proteins secreted in a

paracrine manner from single cells onto a solid substrate in a manner analogous to intaglio

printing (76, 77) (Figure 1.1). An array of nanowells (sub-nanoliter volume) is formed in a

biocompatible elastomer, PDMS, by replica molding. Cells are deposited from a suspension

onto the array and the cells settle in the wells by gravity. The distribution of cells into the wells

is a Poisson process, and ~30% of the wells contain single cells on average. A glass slide

supporting one or more affinity-based reagents (e.g., antibodies) is sealed onto the array for a

period of time (typically 1-2 h). During incubation, secreted analytes of interest are captured

onto the glass. The glass bearing captured proteins is removed and interrogated by applying

fluorescent detection antibodies. The array of cells can be placed in a reservoir of media for

additional culturing. The spatial address of the wells and the secreted products links the data

from each part of the process. Since microengraving is non-destructive, it therefore allows serial

measurements from the same cells to expand the breadth of data collected or to monitor

temporal-evolving responses (78, 79).

The original process of microengraving was established to screen of hybridoma cells (77).

In this implementation, single hybridoma cells are distributed in an array of nanowells, with

~80,000 wells are distributed in 3"x1" area. In this way, thousands of single-cell loaded wells

are achieved and the secretion of IgG from individual cells can be tested in parallel. Because of

the small volume of each well (0.125 nL), the concentration of secreted IgG can reach detected
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level (~ng/mL) within short time period (~3-120 min). The overall efficiency of screening is

largely improved from traditional methods using 96-well plates. The high sensitivity of this

assay also allows the detection of even poor secretors, such as primary cytokine-secreting cells

(80).

The same nanowell platform used in microengraving has been further developed to adapt

other single-cells measurements, such as detection of specific genes by RT-PCR reaction,

measure cytolytic function of CD8' T cells, single-cell manipulation and cloning (81-83). These

different modular operations can either be used alone or integrated together to expand the

information gained from single cells (84).

1.4 Objective and structure of the thesis

Heterogeneity of T cells exists at several levels: phenotypes (CD4* or CD8*),

differentiation states (naive, memory, and effector), functional secretion (types and magnitude of

cytokine production), dynamics (timing and duration of responses), proliferation, gene

expression, cytotoxic activity, etc. Identifying specific patterns based on these properties could

improve the correlation of T-cell function with a protective response to a vaccine or the efficacy

of a treatment for a disease. Microengraving is a promising technology that could perform a

variety of assays on single cells without reducing cell viability. This thesis focuses on the

adaptation of microengraving for cytokine-detection and the development of microengraving into

a sensitive, multiplexed, and quantitative analytical tool for generating immunological signatures

of diseases.

There are seven chapters in this thesis. Chapter 1 gives an overview of the thesis and

provides some related background on the heterogeneity of T cells and current single-cell

technologies. Chapter 2 describes all experimental methods, materials, and data analysis that are

used in the following chapters.

Chapter 3 emphasizes the technical improvements achieved for microengraving to detect

cytokines, including optimization of surface immobilization, expansion of multiplicity in a single

assay, validation of antibody pairs, and generation of background images to assist array
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alignment. At the end of this chapter, we demonstrate the capability of microengraving in

multiplexed detection of cytokine from primary T cells and the retrieval of single T cell after

detection.

Chapter 4 focuses on the fundamental characterization of analyte capture in the nanowell

system, including theoretical characterization of the capturing process and calculation of the

rates of secretion from single cells. We first developed a numerical model to quantitatively

characterize the capture of analytes during microengraving, and then studied how some of the

system parameters affect the capture efficiency. Based on these results, we established a series

of criteria to identify positive spots from the images and methods to determine the rate of

secretion and detection limit.

Chapter 5 compares microengraving technology with other conventional technologies,

including qPCR, ELISpot, ICS, and Luminex, and discusses the unique advantages of

microengraving. At the end of this chapter, we showed that the combination of both frequency

and rate of secretion improves the resolution of subtle differences of cell responses.

Chapter 6 applies serial microengraving to measure dynamic responses of multifunctional

T cells. We examined how the synchronicity and evolution of cytokines released vary among

different subsets of primary human CD3+ T cells upon TCR-specific and nonspecific activation.

The kinetic measurements showed heterogeneous and dynamic responses by T cells and their

multifunctional secretion states were found to be an unstable intermediate state during cell

activation. Using computational tools, we calculated the transition probability between

functional states and generalized several dominant trajectories of the functional evolution. At the

end, we also discussed how these new findings contribute to our current knowledge of T-cell

functions.

Chapter 7 concludes the main results of this thesis work, remarks on their significance,

and suggests several directions for further work.
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1.5 Figures
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Chapter 2. Materials and Methods

2.1 Microengraving

2.1.1 Fabrication of arrays of nanowells

Arrays of nanowells were manufactured by injecting a silicone elastomer (PDMS; 10:1

base:catalyst; Dow Coming) into a custom-built mold and cured at 80 'C for at least 2 h. Each

array comprising 72x24 blocks of wells are 1 mm thick and adhered directly to a 3"x1" glass

slide. In this study, two designs of blocks of wells were used: blocks of 7x7 nanowells with

dimensions of 50 tm x 50 ptm x 50 [m (center-to-center distance is 100 tm) for a total of

84,672 wells per array, and blocks of 12x 12 nanowells with dimensions of 30 tm x 30 [tm x 30

[tm (center-to-center distance is 60 Rm) for a total of 248,832 wells per array (76).

2.1.2 Preparation of poly-lysine slides

Poly-lysine slides were prepared according to published protocols available online

(http://cat.ucsf.edu/pdfs/PolylysineSlides.pdf). Briefly, 3"x1" glass slides (Coming) were

cleaned by soaking in solution with 2.5 M NaOH and 60% ethanol for at least 2 h. After

thoroughly washing with deionized water, slides were submerged in 0.001% poly-L-lysine

solution (diluted in 0.1xPBS) for 1 h with gentle shaking. Coated slides were further washed

with water, spun dry, and stored in a desiccator until use.

2.1.3 Immobilization of capture antibodies

Antibodies for capturing secreted proteins were diluted in a buffer comprising 50 mM

sodium borate, 8 mM sucrose, and 50 mM NaCl (pH 9.0) (85), deposited on the surface of poly-

lysine slides (80 ptL), spread by lifterslip (Electron Microscopy Sciences), and incubated for 1 h

at 25 *C. Coated slides can be used directly or stored in 4 'C until use. Slides were then blocked

in non-fat milk (3% w/v in PBS) for 30 min at 25 *C, washed three times with PBS, dipped in

water, and spun dry.
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2.1.4 Cell loading and printing

The array of nanowells was first exposed to oxygen plasma for 30 s (Harrick PDC-32G)

to turn the surface to hydrophilic. Then, single-cell suspension (~2x 105 cells/mL) was placed on

the surface of the array, and the cells were allowed to settle into the wells by gravity at a density

of ~1 cell per well. It is better to include serum in the loading media or pre-block the array with

0.5% BSA solution to prevent cells sticking on the outer surface of the wells. After washing

excess cells from the surface of the array with serum-free media, a glass slide coated with

capture antibodies was placed onto the loaded array. The array and glass slide was held together

under sufficient compression in a hybridization chamber (Agilent Technologies, G2534A) to

avoid media leakage and contamination between wells, and incubated at 37 'C with 5% CO2.

After incubation, the glass slide was separated from the array and placed in PBS.

2.1.5 Processing printed microarrays

After microengraving, slides were washed and probed with fluorescent detection

antibodies in slide washer (Tecan). Briefly, slides were first blocked with 1% non-fat milk in

PBST (PBS with 0.05% (v/v) Tween 20) for 15 min, washed with PBST twice, and then

incubated with detection antibodies (1 tg/mL for each antibody) for 45 min at 25 *C. After that,

the slides were washed with PBST and PBS three times, respectively, rinsed briefly with water,

and dried under nitrogen. A reference slide for quantification of fluorescence intensity was

prepared after the experiments: a gradient of individual detection antibody was prepared by

diluting stock antibody in H20, and then spotted on a poly-lysine slide in triplicates (1 iL/spot)

and vacuum dried. Slides with printed proteins and reference slides were scanned by Genepix

4200AL microarray scanner (Molecular Devices) with the same settings of gain and power.

Genepix Pro 6.1 software was used for image analysis (refer to Chapter 4 for details).

2.1.6 Cell imaging and enumerating

Cells were stained for viability or surface markers either in bulk before distributed on the

array or on-chip after microengraving. Cell images were acquired on an automated inverted

epifluorescence microscope (Zeiss) equipped for live-cell imaging (temperature and CO 2 control).

The arrays were mounted face-up on the microscope with a lifterslip placed on top of the array.
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Transmitted light and epifluoresence micrographs were collected block-by-block (7 x 7 or 12 x 12

nanowells per block) automatically. Images were then analyzed using a customized software

program to determine the number of cells present in each well and the corresponding mean

fluorescence intensity in each fluorescent channel.

2.2 Estimation of the binding sites on the glass

To estimate the number of total binding sites available on a glass slide after adsorbing a

capture antibody from solution, we used a fluorescent, sandwich-style assay to evaluate the

saturating quantity of analyte immobilized on the surface. Briefly, a capture antibody (50

[tg/mL) was spotted on the surface of poly-lysine slides (1 tL/spot) and incubated for 1 h at 25

C. After blocking and washing the surface, the slide was placed in 96-well Microplate

Microarray Hardware (Arraylt, MMH96) and 100 tL of recombinant antigen (100 ng/mL; e.g.,

IFNy) was added on each spot. The dose was selected to saturate the capture antibody fully, as

determined by serial dilution on similar arrays. After 2-h incubation at 37 *C, the slide was

washed, and a fluorescently labeled detection antibody (10 tg/mL) was applied at 25 *C. The

labeled slide was then scanned, and the amount of detection antibody was calculated by

comparing with data collected from a standard slide on which known amounts of the detection

antibody were spotted.

2.3 Hybridoma culture and IgG detection

Hybridoma cells HYB 099-01 (Anti-ovalbumin, Statens Serum Institute) were cultured at

37 'C in a 5% CO 2 incubator in DMEM Media (Mediatech) supplemented with 10% FBS (PAA

Laboratories), 100 U/mL penicillin, 100 mg/mL streptomycin, 10 mM HEPES, 50 tM 2-

mercaptoethanol, 1 mM sodium pyruvate, and 0.1 mM nonessential amino acids. The cultures

were split every 2-3 days to maintain a density of 105-106 cells/mL. Poly-lysine slides were

coated with a mixture of two antibodies: goat anti-mouse IgG from Zymed (81-6500) and

Southern Biotech (1010-01), 50 [tg/mL of each (77). Three arrays were loaded with hybridoma

from the same culture in parallel, and IgG secretion were measured by microengraving for 15, 30,

and 45 min. After microengraving, live cells were stained by adding 1 tM of Calcein violet AM
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(Invitrogen) on top of the arrays for 20 min; exposure to light was minimized during this step.

The arrays of cells were then imaged for cell counting. Anti-ovalbumin IgG captured on the

glass slides were detected by ovalbumin-Alexa 555 (Invitrogen, 2 [tg/mL).

2.4 Isolation and culture of human PBMCs

Venous blood was drawn from healthy controls into green-capped, lithium heparin tubes

(Kendall) with institutional Internal Review Board Approval. PBMCs were separated using

density centrifugation on Ficoll-Paque PLUS (GE Healthcare), frozen at a concentration of

1 x 107 cells/mL in 10% dimethylsulfoxide (Sigma-Aldrich)/90% fetal calf serum (Atlanta

Biologicals), and stored in liquid nitrogen until use. Before experiment, frozen PBMCs were

thawed, washed, and resuspended at 106 cells/mL in RPMI 1640 medium (Mediatech),

supplemented with 10% FBS, 2 mM L-glutamine, 10 mM HEPES, 100 U/mL penicillin, 100

mg/mL streptomycin, 0.1 mM non-essential amino acids, and 1 mM sodium pyruvate. Before

stimulation, PBMCs were rested at 37 'C with 5% CO 2 over night. In kinetics study, CD3+ T

cells were isolated from thawed PBMCs by negative selection (EasySep@, STEMCELL

technology) according to manufacture's instructions. Isolated T cells were suspended in HL-1

media supplemented with 10% FBS, 2 mM L-glutamine, 10 mM HEPES, 100 U/ml penicillin,

100 mg/ml streptomycin, 0.1 mM non-essential amino acids, and 1 mM sodium pyruvate. T

cells were also rested over night before use.

2.5 Multiplexed detection of cytokines

For capture, 10 tg/ml of each capture antibody (IFNy, IL-17, IL-2, and TNFa) was used

to coat poly-lysine slides. PBMCs were stimulated by PMA (10 ng/mL) and ionomycin (1

[g/mL) in bulk for 6 h, stained with Calcein violet AM, loaded onto the array, and imaged in

media containing the applied stimuli. The array was then washed with serum-free media and

immediately applied onto a glass slide pre-coated with capture antibodies. After printing for 2 h,

a mixture of labeled antibodies was used for detection (1 tg/ml for each antibody). All detection

antibodies were labeled by Alexa Fluor-NHS esters according to manufacturer's instructions
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(Invitrogen): IL-17-Alexa Fluor 488, IFNy-Alexa Fluor 555, IL-2-Alexa Fluor 594, and TNFa-

Alexa Fluor 647.

2.6 Kinetic measurements of cytokine secretion

For TCR-independent stimulation, resting T cells were stained with anti-CD8-Alexa

Fluor 488 (Biolegend), anti-CD45RA-Alexa Fluor 568 (Biolegend), anti-CCR7-Alexa Fluor 647

(Biolegend), and live cell marker (Calcein violet AM). Labeled cells were washed and loaded

into an array of 50 pm nanowells from a suspension (500 [tL) with a density of 4x 105 cells/mL.

The array of nanowells was imaged and then cultured in serum-free HL-1 complete media

supplemented with 10 ng/ml PMA and 1 pig/ml ionomycin, at 37 'C with 5% CO 2 , for

stimulation. Purified human IgG1 (150 ng/ml) was added into the culture media to create an

independent background to facilitate accurate determinations of positions for each well in the

microarrays resulting from microengraving. Kinetic measurements of cytokine secretion started

2 h after stimulation and repeated every 2 h. The stimuli were included throughout both culture

and microengraving. During each cycle, cytokine secretion was detected by microengraving for

1 h followed by culturing the nanowells in a large reservoir of media (30 mL) for another hour.

Each round of interrogation used fresh media prepared from the same stock to allow detection of

the current state of activity by individual cells. After eight consecutive microengravings, cells

were stained in situ with a live cell marker Calcein and a dead cell marker SYTOX green

(Invitrogen), and then imaged. For the comparison with TCR stimulation, five consecutive

microengravings were performed (2-10 h).

Stimulation via the TCR was achieved by co-culturing of T cells with anti-CD3/CD28

Dynabeads@ (Invitrogen). T cells were stained and loaded as described above, except that an

array comprising 30 ptm nanowells was used to improve the contact between T cells and beads,

and to increase the number of events scored per array. The array with T cells alone was imaged

first for cell staining, then beads were loaded onto the array and the array was imaged again to

quantify the number of beads in each well. Kinetic measurements of cytokine secretion were

performed as described above with PMA/ionomycin stimulation, except that only five cycles
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were performed (2-10 h). After serial microengraving, cells were stained in situ with Calcein

violet and SYTOX green for viability evaluation.

In all kinetics experiments, three Thi cytokines were measured: IFNy, IL-2, and TNFa.

For capture, 10 [tg/ml of each capture antibody was used. Detection antibodies were labeled by

Alexa Fluor-NHS esters: IFNy-Alexa Fluor 555, IL-2-Alexa Fluor 594, TNFa-Alexa Fluor 647,

and IgG-Alexa Fluor 700.

2.7 IL-6 measurement from PBMCs

To stimulate IL-6 secretion, LPS (10 tg/mL), PHA (5 [tg/mL), or PWM (5 tg/mL) was

added to human PBMCs in round bottom 96-well microtiter plates and then incubated at 37 'C

with 5% CO2. Poly-lysine slides were coated with 40 tg/mL mouse anti-human IL-6 (MAB206,

R&D) and 10 tg/mL goat anti-human IgG (81-7100, Invitrogen). PBMCs were stained with

Calcein violet before loading onto the array. After depositing cells onto the array, the cells were

imaged under temperature and CO 2 control. During image collection, stimuli were included in

the media and the array of wells was covered with a lifterslip. The array of wells was then rinsed

gently with media containing a trace amount of human serum (1:40,000) and immediately

applied onto a glass slide pre-coated with capture antibodies for 2 h. Alexa Fluor 488 (A20000,

Invitrogen) labeled goat anti-human IL-6 (AF-206-NA, R&D) and Alexa Fluor 700 (A20010,

Invitrogen) labeled goat anti-human IgG (109-175-098, Jackson Immune Research) were used

for detection. To assess surface-expressed markers present on the cells after microengraving, 10

tg/ml of CD3-Alexa Fluor 488, CD11b-Alexa Fluor 568, and CD14-Alexa Fluor 660 were

added on the array of wells. After incubation at 4'C for 30 min, the array of wells was washed

by PBS and re-imaged.

Another portion of the LPS-stimulated PBMCs were collected for mRNA quantification

by real-time PCR at intervals matched to the microengraving. RNA from PBMCs was purified

using the absolutely RNA microprep kit (Stratagene). cDNA was made using a Taqman kit with

supplied random hexamers (Applied Biosystems). The 32-microglobulin (B2M) and IL-6
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primers and probe were obtained from Applied Biosystems and used according to recommended

methodologies. The IL-6 gene expression is shown relative to B2M.

2.8 Primary cell retrieval and cloning

Memory T cells and monocytes were isolated using negative selection (Miltenyi Memory

CD4* T Cell Isolation Kit and Monocyte Isolation Kit II). Memory T cells and monocytes were

combined in a 1:1 ratio in the presence of LPS (100 ng/mL) and anti-CD3 (OKT3 1 tg/mL) in

HL-1 media and 10% fetal calf serum for 3 days before being deposited on the array of

nanowells and analyzed for IL-17 and IFN-y secretion (2 h). The array of nanowells was

incubated in culture media supplemented with 20 U/mL IL-2 for 2 days after microengraving.

Cells that exhibited IFNy or IL-17 secretion in individual nanowells were retrieved using an

automated system for micromanipulation (CellCelector, AVISO GmbH) equipped with a drawn

glass capillary (50- tm diameter). Retrieved cells were deposited into a round bottom 96-well

microtiter plate containing irradiated PBMCs used as feeder cells for clonal expansion in the

presence of PHA and IL-2. After two weeks, proliferated clones were collected, stimulated with

PMA and ionomycin in the presence of monensin (BD GolgiStopT, BD Bioscience) and

interrogated for cytokine expression by ICS.

2.9 Data analysis

2.9.1 Matching cell information

Data extracted from both the array of cells and the printed microarrays were matched by

customized program using unique identifiers assigned to each well within the array. The

matched dataset was filtered to only include the locations in the array that contained desired

number of cells (in most cases, single cells) matched to secreted proteins on the corresponding

microarray for subsequent analysis. In kinetics study, the combined data set was filtered to

include wells occupied with single live cells both pre- and post-microengraving that yielded

cytokine secretion at any of the measured time points.
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2.9.2 Classification of differentiated cell types

Cytokine expression data was organized into a matrix with m rows and n columns. The

number of rows corresponds to the number of observations (i.e., the number of cells within each

differentiated population), and the number of columns reflects the number of variables, n=24 in

the full data set (i.e., 8 time pointsx3 cytokines). A training set was defined by randomly

sampling 75% of the data. An equal-sized validation set was defined by randomly sampling 75%

of the data. Training data were used to identify the unique subspace (defined by select principal

components) that best discriminates the given cell subtype from other subtypes. The principal

components of the training data set were determined by the princomp( function in MATLAB.

The minimum number of components that preserved at least 90% of the variance in each data set

was preserved for classification.

Following PCA, we cycled through all combinations of the remaining components to

identify the subset that offered the greatest discrimination among differentiated cell types. We

preserved the minimum number of components that maximized the score of the algorithm. Then,

each observation in the validation data was projected onto the reduced subspace of each

differentiated cell type. The observation was classified according to the projection that resulted

in the maximum Euclidian norm; the computed classification was compared with the "true" cell

type as determined by surface markers. The entire classification process was iterated 10 times

with a different random sampling of training and validation data. The reported percent correct

classification reflects the mean results over the 10 independent runs.

Integrated secretion profile: Each cell's cytokine secretion profile was integrated into

end-point data, reflecting a single measurement of cytokine secretion that spans a specified time

window. As such, cytokine expression data was organized into a matrix with m rows and 3

columns for PCA analysis and feature selection; the top 2 principal components were used,

preserving >95% of the variance.

Time-aligned data: Each cell's cytokine secretion profile was aligned to reflect the onset

of cytokine activity in the first time point. When evaluating the full (8-pt) data set, only cells
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that originally initiated activity at the 2 h time point were preserved; all other cells were omitted

from analysis. When evaluating a T-point data set (where Ts8), we preserved those profiles that

reflected cytokine activity within the first 8-(T-1) time points. Otherwise, the corresponding data

was neglected in the given analysis.

Binary classification: In addition to classifying the four cell subtypes simultaneously, we

applied the same algorithm to combinations of any two given cell subtypes to determine the

accuracy of binary classification. From these results, we also computed the receiver operating

characteristic (ROC) curves of the binary classification to determine the relative sensitivity of

classification. We report the ROC curve from each of the 10 iterations of the classification

algorithm.

2.9.3 Clustering of dynamic secretory profiles

Self-organizing maps (SOM) were used for clustering similar dynamic profiles from

individual T cell responses. Analysis was performed using GenePattern (Broad Institute,

Cambridge, MA, USA). For each dataset, the first three time points of time-aligned secretory

profiles (2-6 h) were first organized into a matrix with m rows and 9 columns; the number of

rows corresponds to the number of cells, and the number of columns reflects the number of

variables (i.e., 3 time points per cytokine). Mean-centered Z scores of rates of secretion specific

to each cytokine were used in the clustering algorithm.

Comparison of profiles among subsets of CD8 T cells: Dynamic secretion data from

each subset were clustered independently. For each cytokine in the cluster, the average rate of

secretion was set to 0 when the rate was below the detection limits determined in the experiment.

Qualitatively similar clusters were subsequently combined according to the type of cytokine as

well as the trajectory across the time. These combined clusters were consistent with the results

obtained by a second round of SOM clustering. This analysis yielded 12 different distinct

profiles among the CD8 T cells. The distributions of cells among these 12 profiles were

assessed for all four subsets.

37



Chapter 2. Materials and Methods

Comparison of profiles between PMA/ionomycin and TCR stimulation: An equal number

of cells (n=478) were randomly sampled from each population, combined, and used for

clustering by SOM. After clustering, the distributions of cells among clusters were compared

between the two stimulations. The two distributions were significantly different (p<0.0001; chi-

square test with confidence interval 0.95).
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Chapter 3. A single-cell technology for multiplexed cytokine analysis

3.1 Introduction

Microengraving was first invented to detect IgG secretion from mouse hybridoma cells

and later applied to detect cytokine secretion from primary human immune cells. Although these

applications share similar principles of measurement, there are still several challenges when

adapting this technology to broad functional assays in the immunological field.

First, most of the time, this assay relies on specific antibodies to capture and detect

proteins of interests. The cost of high-quality monoclonal antibodies for cytokines is generally

much higher than that of mouse IgG and other reagents in the assay. In addition, the rate of

secretion of cytokines from primary cells is one or two orders of magnitude lower than the

production of IgG from hybridoma cells. Therefore, the general protocol requires optimization

to improve the sensitivity while reducing the amount of the reagent needed.

Second, multiplexed analysis is required in most immunological studies to generate a

systematic profile of functional molecules, e.g. cytokines and chemokines, from heterogeneous

populations. The original implementation was very limited with the number of analytes in a

single assay (one or two). Multiple rounds of microengraving with the same set of cells are able

to increase the total number of analytes, but it takes more time and labor for experiments. More

importantly, the secretion profile may be highly dynamic within hours under certain conditions,

and data collected at a neighboring time points may not reflect the same biological process.

Therefore, it is difficult to correlate data measured from different time points and characterize

multifunctional populations. Instead of multiple manipulations, it would be ideal to detect all the

proteins of interest simultaneously from a single assay. To achieve this goal, a high specific,

multiplexed detection format is needed.

Third, identification of the locations of wells containing responding cells will be

challenging in cytokine assays. High frequencies of events and rates of secretion of IgG from

hybridoma cells give strong positive signals on the entire array. These data can easily determine
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the location of the entire array. The sparse and weak signals of cytokine secretion from human

primary cells, however, usually yield large blank areas on the image. Without sufficient events

on the entire array, it is difficult to determine the exact location of the sparse signals in the array,

and therefore cannot correlate the functional profile to individual cells.

To solve these problems and better adapt microengraving to detect cytokine secretion for

immunological research, in this work, we first optimized the concentration of capture antibodies

and conditions for antibody immobilization. Then, we expanded the technology to multiplexed

assay and created an additional fluorescent channel that registers the entire array to aid data

analysis.

3.2 Optimization of antibody immobilization

Standard 3 x 1 inch glass slides are good substrates to support antibodies in our assay

system: 1) They are flat and rigid enough to resist light pressure during microengraving; 2) The

standard shape and size is well adapted to many conventional instruments, e.g. microscope, slide

washer, and microarray holder; 3) There are multiple choices of surface modification available;

4) They are easy to obtain and cost efficient. There are several types of surface chemistry that

are commonly used for immobilizing proteins on the glass surface: epoxy, amine (-NH 2),

aldehyde (-CHO), thiol (-SH), etc. In the original protocol of microengraving, epoxy group

modified surface (Arrayit) was incubated with 100 pg/mL capture antibody in borate buffer at

pH=9 (85). Epoxy groups immobilize proteins by covalently reacting with primary amine on the

surface of proteins, which results permanent bond to the antibodies on the surface. Previous

studies had shown that borate buffer gives the best result on epoxy slides. However,

commercialized epoxy slides are relatively expensive for large numbers of measurements.

Alternatively, ploy-lysine coated slides are easy to make in the lab and the cost is low. To

compare the quality of immobilization of these two types of surface, we titrated the

concentration of capture antibody onto glass slides and measured IL-4 using a spot assay (Figure

3.1A). The results showed a higher signal-to-noise ratio when using poly-lysine slides and the

concentration of capture antibody can be reduced to as low as 10 ptg/mL on this surface.

Although borate buffer at pH=9 was validated for epoxy slides, here, it also shows very good
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results on poly-lysine slides. The binding between poly-lysine slides and protein is through

electrostatic force. For pH=9, the antibody is positive charged (pI of antibody is ~7); while poly-

lysine is still negative charged (pI of lysine is ~10). Therefore, borate buffer is also a good

choice for poly-lysine slides. By using poly-lysine slides, the concentration of capture antibody

can be decreased up to 10 times. To balance the cost of antibody and detection sensitivity, in the

modified protocol, we use 25 pg/mL of capture antibody for single-cytokine assay and 10 p1g/mL

for each antibody in a multiplexed format (see section 3.3). We also tested several temperatures

at which slides were coated: 4 'C, 25 'C, and 37 'C (Figure 3.1B). Higher temperature and

longer incubation time were generally better for immobilization. For convenience in the

operation, we coated our slide either at 25 'C for 1 h or 4 'C overnight. We also tested two

different blocking buffers: 0.5% BSA solution and 3% non-fat milk. The result shows that

blocking with milk is slightly better than BSA. This result may be because that milk powder is a

mixture of proteins with diverse molecular weight and properties.

3.3 Multiplexed analysis of secreted cytokines

3.3.1 Experimental approach

The analysis of multiple cytokines concurrently is important for distinguishing different

functional responses among lymphocytes and for realizing robust clinical assays where samples

are limited in size. In conventional protein microarrays, multiplexed analysis is achieved by

spotting different types of capture antibody separately at different locations on slides. Then, a

sample is applied to a relative large area, such that all the spotted antibodies have access to the

same sample simultaneously. The quantities of different proteins in the sample are identified by

the spatial locations of spot on the array. However, in the format of microengraving, it is not

feasible to spot different antibodies separately within each sample area, 50 im x 50 prm, because

of the limitation of protein microarrayers and the resolution of scanner. Instead of using spatial

information, we use different fluorescent labeling on the detection antibody to distinguish

different secretions. Therefore, in our multiplexed detection format, a mixture of capture

antibodies is immobilized on the glass surface to capture multiple cytokines. After
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microengraving, a mixture of detection antibodies is applied and each of these detection

antibodies is conjugated with a different fluorophore (Figure 3.2).

By mixing the capture antibodies, all antibodies distribute on the glass surface uniformly.

Therefore, the surface density of each capture antibody is diluted by a factor of N, where N is the

total number of antibodies, and has lower binding capacity than that of single-cytokine format.

However, in most of the cases, where cytokine secretion is not extremely high, this diluted

density does not affect the capture efficiency. A detailed quantitative analysis will be discussed

in Chapter 4.

3.3.2 Choice of fluorophores

The limitation of the maximal number of cytokines that can be measured in a single assay

is the number of fluorophores that match all the combinations of laser and filters in the scanner.

Fluorophores that exhibit significant bleed-through of signal into other channels should be

avoided. To balance the number of fluorophores and the separation of spectra, we chose five

fluorescent dyes (Alexa Fluor 488, 555, 594, 647, and 700) that could be used together in one

array (Figure 3.3A).

Meanwhile, implementation of our assay also benefits from resolving different

phenotypes of cells in the sample. Most of the cell types are classified by the expression of

different sets of surface markers. For surface staining of cells, we chose four dyes (Alexa Fluor

405, 488, 568, 660) that could be used on epifluorescence microscopes simultaneously (Figure

3.3B).

These dyes show minimal bleed-through between each other. However, when one

fluorescent signal is very strong, some level of bleed-through can still be observed in

neighboring channels. When this happens, we can apply compensation of signals on these

channels to correct the bleed-through - a process routinely used in other assays such as flow

cytometry. As a result, our system has the capacity of measuring five cytokines and four surface

markers from individual cells in a single assay. The multiplicity of cytokine detection can be

further extended by perform several microengraving processes consecutively.

42



Chapter 3. A single-cell technology for multiplexed cytokine analysis

3.3.3 Validation of antibody pairs

Besides the bleed-through between fluorophores, the cross reaction between antibody

pairs is another potential cause of nonspecific detection. Therefore, in our assay, antibody pairs

must have both high sensitivity and specificity. To find appropriate antibodies for our assay, we

tested antibody pairs from several vendors and chose the ones that are most sensitive and specific

(Table 3.1). We also measured the cross reactivity among these antibody pairs and generated

three panels for different purposes: 1) T cell panel: IL-17, IFNy, IL-10, IL-4; 2) ThI panel: IFNy,

IL-2, TNFa; 3) Th2 panel: IL-4, IL-5, IL-9, IL-13.

Figure 3.4 shows the standard curves for a panel of T-cell-specific cytokines as an

example. These antibodies have lower limit of detection of 100~500 pg/mL in our platform and

exhibited no significant (< 3%) cross-reactivity at the concentrations of cytokines relevant for

microengraving (-10 ng/mL).

3.4 Generation of background images for array registration

Cytokine-secreting cells generally comprise a very small fraction of total PBMCs,

especially under antigen-specific stimulation (less than 1%). With such sparse number of events,

it is hard to accurately correlate positive spots to the corresponding wells on the array. If we add

some known cells in the sample population, e.g. some hybridoma cells, they may affect the

function of the target cells and also decrease the number of single-cell wells. Therefore, we

sought to highlight the outline of the array while minimally disturbing the function of cells. One

solution was to include a small amount of human IgG in the assay media (~ 100 ng/mL) and

meanwhile include anti-human IgG antibody pair in our microengraving process as an extra

channel besides cytokines. When the array is sealed by a glass surface, the media above the

array will be pushed away, while the media inside well is retained. As a result, the area on the

glass surface that faces the wells has access to more media (a depth of 50 pm per area), and

therefore, could capture more IgG, resulting a higher intensity of fluorescence on the image

(Figure 3.5). In this way, the structure of the whole array on the chip is highlighted by the IgG

signal. Since the same media is applied across the whole array, the intensity of this background

channel is uniform and independent of the presence and functions of cells in wells. Therefore,
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this background image not only helps the localization of array, but also serves as a quality

control for the assay.

Addition of human IgG in the printing media does not affect the cell function and

cytokine detection. Most of our assays apply to human samples. Human IgG has a very high

concentration (~10 mg/mL) in human serum and also exists in the culture media when human

serum is added as supplement. Therefore, we don't expect that this small amount of human IgG

in the assay media will affect the function of human cells. The total amount of IgG in each

nanowell is about the same order of magnitude of the total amount of secreted cytokines, so that

it can be considered as an extra analyte in the multiplexed format. Quantitative analysis in

Chapter 4 shows that adding one more analyte does not affect the detection sensitivity.

3.5 Detection of four cytokines from primary human samples

To demonstrate the ability to multiplex measurements from single cells, we measured the

breadth of cytokine responses of IL-17, IFNy, IL-2, and TNFa from human PBMCs after

stimulation with PMA and ionomycin. Cells were stimulated in bulk for 6 h and then loaded on

the array to measure the secretion of all four cytokines simultaneously. After measurement, cells

were stained in situ for viability and imaged. Figure 3.6 shows several representative images of

the cells and corresponding cytokine secreting information. Single live cells in the array exhibit

a range of functional profiles comprising one, two, or three cytokines. Fluorescent images from

single secretors also demonstrate that different cytokines can be detected separately and

distinguished clearly. With the quantitative tool we developed, these fluorescent signals can be

further converted to the rate of secretion for individual cells. The method of quantification will

be discussed in Chapter 4.

3.6 Recovery of single cells after measurements

Microengraving is a nondestructive process so individual cells remain viable and can be

retrieved afterwards from the nanowells. To demonstrate this, we first measured IL- 17 and IFNy

secretion from single cells, then retrieved cells secreting either IL-17 or IFNy from 50-pm wells

after microengraving and cultured them. After two weeks, most of the retrieved cells had
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proliferated (>80 % efficiency). The cytokine profiles of these clones were then analyzed by

intracellular staining for IL-17 and IFNy. After expansion, the majority of cells in each

population retained their original profiles of cytokine production (Figure 3.7). These results

demonstrate that incubation of primary T cells in closed nanowells for a short time (~1-2 h) does

not change their viability, and that those cells can be specifically retrieved for expansion and for

subsequent characterization by other analytical methods. This is helpful in screening certain

functional cells and retrieving interested cells from clinical samples.

3.7 Discussion

3.7.1 Detection sensitivity

In microengraving, analytes are detected by pairs of antibodies on a solid substrate,

which is similar to sandwich ELISA. One major advantage of microengraving compared with

ELISA is that cells are confined in a small volume (0.125 nL per well), which results higher (-8

times) density of cell in nanowell than bulk culture (- 106 cell/mL). In fact, not all the cells in

culture are secreting at a given period of time, and therefore the actually concentration of active

cells in bulk culture will be even lower. By confining cells in a small volume, the concentration

of cytokine can reach pg/mL-ng/mL within 1-2 h, while, the concentration in bulk culture is very

dilute highly depending on how many cells in the population actually secrete. However, unlike

enzyme amplification in ELISA, direct labeling of fluorophore in microengraving does not

amplify signal, which decreases the sensitivity in the detection step. As a result, the overall

detection sensitivity is a trade-off between the concentration of analytes and the limit of signal

detection.

Although direct labeling lacks sensitivity, it has advantages in quantification. Without

amplification, fluorescent signal can vary linearly with the amount of molecules, which allows

direct calculation of the amount of detection antibody from the fluorescent intensity (will discuss

in Chapter 4). If the quantification of molecules is not necessary, there are still ways to amplify

signals in the microengraving system. For instance, Choi et al. applied a hybridization chain

reaction to amplify signals and improved the limits of detection and sensitivity by an average of

200-fold (86).
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3.7.2 Loading efficiency

In the current protocol for microengraving, cells settle into wells randomly. The number

of cells per well follows a Poisson distribution. In theory, the highest efficiency of single-cell

loading by Poisson distribution is 36.8% and multiple loadings do not help increase this ratio. In

our assay, by using an optimal cell concentration and loading time, we could achieve -36%

single-cell wells in a total of -84,000 wells, which results -30,000 single-cell loading (Figure

3.8). In order to get more single-cell events, an alternative way is to use wells with smaller

diameter, such as 30 or 20 pm, to increase the total number of wells on the array. In experiments

that require more cells per well, increasing the loading concentration of cells, allows us to

selectively obtain more wells with multiple cells.

3.7.3 Alternative ways to increase multiplicity

The advantages for current strategy are: 1) Capture antibodies are uniformly immobilized

across the slide so that there is no restriction on the alignment of array to the slide; 2) Signals

from all fluorescent channels are at the same location and with the same shape, which makes

analysis easy. However, the disadvantages are that the multiplicity is limited by the type and

spectra of fluorescent dyes and the capability of instruments available.

To further increase the multiplicity, there are several ways that can be considered: 1)

Using a combination of both shape and fluorescence to create more diverse coding for different

analytes; 2) Using cleavable or reversible labeling to process the detection steps multiple times;

3) Using advanced instrument that has more choices of laser and filters to increase the number of

fluorophore that can be used simultaneously.
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3.8 Figures
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Figure 3.1 Optimization of conditions in immobilization of capture antibody. (A) A gradient of IL-

4 capture antibody was spotted on the surface of glass slides (either poly-lysine or epoxy

surface), 2 pL/spot. After incubation at 25 *C for 2 hours, the slides were blocked with either

1% BSA or 3% non fat dry milk in PBS for 30 min. Standard IL-4 (500 pg/mL) were added to

each spot and incubated for 1 h at 37 0C. Then, 1 pg /mL of IL-4 detection antibody conjugated

with fluorescent dye was applied as detection reagent. For the control (background), no IL-4

standard was added. (B) Capture antibody of IL-4 (25 pg/mL) was spotted on poly-lysine glass

slides and incubated at 40C, 25 *C, and 37 *C for several incubation periods. Slides were then

blocked with 3 % non fat milk, incubated with 500 pg/mL IL-4 standard for 1 h at 37 0C, and

detected by 1 pg/mL detection antibody.
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Figure 3.2. Strategy of multiplexed detection of cytokines. A mixture of capture antibodies is

immobilized on poly-lysine slide with equal concentration so that different secretory analytes can

be captured simultaneously during incubation. After microengraving, all detection antibodies
are applied on the slide at one time, where each type of detection antibody is conjugated with a
different fluorophore. Images are acquired and analyzed in all fluorescent channels separately.
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Figure 3.3 Emission spectra of fluorophores and filter sets. (A) Five Alexa Fluor dyes was

chosen for different filter sets in microarray scanner. Alexa Fluor 488, 555, and 594 was excited

by laser at 488 nm, 532 nm, 594 nm, respectively. Alexa Fluor 647 and 700 are excited by the

same laser 635 nm, but the emission signals are acquired through different filters. (B) Four

Alexa Fluor dyes are used for microscope and each of them was excited by separate lasers.
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Figure 3.4 Sensitivity and specificity of four cytokines from T cell panel. Mixture of four capture

antibodies (IL-17, IFNy, IL-10, and IL-4) were spotted on poly-lysine glass, 25 ug/mL per
antibody, 1 pL per spot. For each standard curve, gradient of single cytokine standard was
added. Then a mixture of detection antibody was applied to all curves, where each detection
antibody was labeled by different fluorescent dye. For each curve, fluorescence signals from all
the four channels were recorded and plotted in the same graph, e.g. slide using IL-17 standard
was scanned at IL-17 channel shows the standard curve (blue curve in IL-17 panel), while IL-17
signals from other channel show the noise of IL-17 in other cytokine detection (blue curves in
other three panels).
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Figure 3.5 Generating background of the entire array. (A) Human IgG is included in the printing

media to create an outline of array. (B) Amount of IgG captured on the glass slide was scanned

using a separate channel from cytokine signals. By merging two images, the location of positive

secretion spot was highlighted on the background grid.

51

&**eese
a ee
aaee



Chapter 3. A single-cell technology for multiplexed cytokine analysis
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Figure 3.6 Multiplexed detection of cytokine secretion from PBMCs. Human PBMCs were

stimulated with PMA and ionomycin for 6 h, followed by microengraving for 2 h. Representative

images of individual cells in microwells matched with micrographs from the corresponding

microarray of cytokines (arranged in rows) are shown. The first column shows composite

micrographs of microwells (phase contrast) and viable cells (Calcein AM). The remaining four

columns are micrographs extracted from the matching location on the printed microarray for

each of four cytokines (IL-17, blue; IFNy, green; IL-2, yellow; TNFa, red). Orange boxes outside

the images indicate the positive spots in each row (MFl > background + 3SD).
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Figure 3.7 Recovery and expansion of T cell lines selected by their cytokine profiles. T cells

were stimulated with LPS-activated monocytes and anti-CD3 for 3 days, and then their cytokine

profiles were determined by microengraving (2 h). The cells were cultured in the microwells for

48 h after microengraving, and then recovered by micromanipulation. The selected cells were

expanded on irradiated PBMCs for 2 weeks, and then characterized by flow cytometry and

intracellular staining. Fluorescent micrographs (top panels) indicate the cytokine profile

measured by microengraving for (A) IL-17 secreting cells and (B) IFNy-secreting cells. The

number of cells present in both wells at the time of retrieval was four. The scatter plots (bottom

panels) show the results of intracellular cytokine staining detected by flow cytometry. The

expanded cells were stimulated with PMA/ionomycin in the presence of monensin, then fixed,

permeabilized, and stained with antibodies against IFNy (labeled with phycoerythrin (PE)) and

IL-17 (labeled with allophycocyanin (APC)). Cytometry data were plotted in the graph according

to the fluorescence intensities measured from both channels.
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Figure 3.8 Distribution of cells in nanowells. By controlling cell density and loading time,

normally -30,000 single-cell wells can be achieved on one array. Data were collected from 5

independent experiments.
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Cytokine Clone Vendor Cytokine Clone Vendor

IL-2 Cap. 5355 R&D IL-10 Cap. 127107 R&D
Det. Polyclonal R&D Det. Polyclonal R&D

IL-4 Cap. 8D4-8 BD, Biolegend Cap. JES3-19F1 BD
Det. MP4-25D2 BD, Biolegend Cap. JES3-9D7 BD

Det. JES3-12G8 BD, Biolegend
IL-5 Cap. JES1-39D10 BD

Det. JES1-5A10 Biolegend IL-13 Cap. 32116 R&D
Det. Polyclonal R&D

Cap. TRFK5 Mabtech
Det. 5A10 Mabtech IL-17 Cap. eBio64CAP17 eBioscience

Det. eBio64DEC17 eBioscience

IL-6 Cap. 6708 R&D
Det. Polyclonal R&D IFNy Cap. 1-DIK Mabtech

Det. 7-B6-1 Mabtech
Cap. MQ2-13A5 BD
Det. MQ2-39C3 Biolegend TNFa Cap. MAb1 BD, Biolegend

Det. MAb 11 BD, Biolegend

IL-9 Cap. MH9A4 BD
Det. MH9A3 Biolegend

Table 3.1 Antibody pairs used in microengraving.
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Chapter 4. Analytical characterization of microengraving process

4.1 Numerical simulation of system with single analyte

4.1.1 Model

To understand the dynamic distribution of secreted analytes in a nanowell during

microengraving, we developed a numerical model that accounts for the secretion of proteins

from cells, the diffusion of those proteins in a confined volume, and the binding of those proteins

onto a surface bearing antibodies with specific affinities for the secreted analytes. The geometry

of this model derives from one well in the array: a single cell is confined in a cubic container (50

pm in each linear dimension) that comprises a bottom and four sidewalls manufactured in

poly(dimethylsiloxane) (PDMS) and a top defined by a glass surface. In the simplest

embodiment of the model, the cell only secretes one type of protein and top surface of the reactor

only supports capture antibodies specific for this analyte (Figure 4.1 A).

We made three assumptions that simplified the model and subsequent numerical

simulations. First, the transport of analytes in the media results only from diffusion, because

there is no active flow or exchange of fluids in the sealed nanowells during incubation. Second,

PDMS surface is impermeable to analyte and the adsorption of analyte on these surfaces is

negligible. In microengraving, the array is typically treated with a buffered solution containing

bovine serum albumin (BSA) or culture media with 10% bovine serum prior to depositing cells

into the wells. These treatments may not eliminate nonspecific adsorption completely, but

nonspecific capture on BSA/serum-treated PDMS should be significantly lower than the specific

capture on the glass slide. We, therefore, considered this nonspecific interaction to be negligible

in the model. Finally, we assumed that proteins were secreted from the cell at a constant rate (K).

The total quantity of protein released from the cell in the volume of the reactor, therefore,

increases monotonically with time:

Ntotal=Kt
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where Ntotai is the total number of molecules secreted from the cell, K is the rate of secretion, and

t is the incubation time. The rate of secretion for a live cell likely fluctuates in time depending

on extrinsic factors such as the quality of its environment as well as intrinsic factors such as its

secretory capacity and its state in the cell cycle (87). Nevertheless, the assumption of a constant

rate in this model is useful for first understanding the relationship between the amount of protein

secreted and the amount captured on the glass surface at any point in time.

The model comprises two equations that describe the diffusion of proteins from the

secreting cell and their capture onto the functionalized surface, respectively. The equation for

the diffusion of protein inside the volume of a closed well is:

aCa-DV 2 C =0
at

where C is the concentration of analyte in the media and D is the diffusion coefficient of analyte.

The reaction of the secreted analyte with the capture antibody supported on the glass surface is

described by a reversible process:

Analyte+Ab , "" Analyte -Ab
koff

The boundary condition describing the dynamics of adsorption and desorption of the proteins on

the glass surface, therefore, is:

=-kon -C -(00 -C,) + ko -C,at

where kon is the rate of association, koff is the rate of dissociation, C, is the concentration of

analyte-antibody complex on the glass surface, 0o is the density of total binding sites on the

surface. 60-C, describes the density of remaining binding sites available on the surface. In the

experimental protocols for microengraving, the surface of the nanowells containing cells is

rinsed with fresh media immediately before sealing the array with the glass slide. This process
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dilutes the preexisting analytes in well by more than 105-fold. Therefore, we assume the

concentrations of analyte both in solution and on the surface are initially negligible (C=0, Cs=0,

and 6-Oo at t=0).

The parameters describing the biophysical properties of the cells and the analytes of

interest were determined from typical values reported in the literature. Lymphocytes range in

diameter from -5 ptm to 20 pm. Cytokines (~15-45 kDa) and antibodies (~150 kDa) exhibit

diffusion coefficients (D) on the order of 10-9101 m2/s (88, 89). In this model, we fixed the

diameter of the cell and the diffusion coefficient of the analyte to 10 pm and 10-140 m2 /s,

respectively. For the binding affinity of the antibody and the rate of secretion, we tested a range

of different values in the model based on similar values reported previously in the literature (88,

90, 91). The values of parameters used in the simulations described here are listed in Table 4.1.

4.1.2 Results

COMSOL Multiphysics 3.3 (COMSOL Inc., Stockholm, Sweden) was used to solve the

partial differential equations relating the secretion, diffusion, and binding of analytes with a

specific capture antibody. The calculation provided the spatial concentration profile of analyte in

the confined volume as a function of time. For each time point, we integrated the total quantity

of analytes in the media and on the glass surface, respectively (Figure 4.1B). The results suggest

that the entire process involves three characteristic temporal regimes. Immediately after sealing

the cell inside a well, the quantity of analytes in solution exceeds that present on the surface.

After a short time (~30 min for a cell secreting 10 molecules/s), a steady-state distribution of

analyte is reached in solution, varying from a high concentration around the cell to a low

concentration at the surface of the glass. This steady-state distribution is reached at

approximately the same point in time regardless of the change of diffusion coefficient for the

analyte (10-9-10-11 m2/s). In the ensuing period of time, the analyte accumulates predominantly

on the surface rather than in solution. The quantity of analytes captured on the surface increases

at a rate reflecting the rate of secretion from the cell (dNsurface/dt-K), while the concentration of

analytes in the media remains nearly constant (~pM). Eventually, the quantity of analytes on the

surface approaches the total number of available binding sites on the surface (Cs~00). At this
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point (>27 h), the rate of capture at the surface decreases, and the concentration of analytes in the

media increases, rapidly approaching the total concentration of analytes secreted.

4.2 Effects of system parameters on the efficiency of capture

The simulations indicate that the intermediate temporal regime (t~30 min to 27 h)

represents the ideal period to measure the average rates of secretion for each cell in the array.

The viability of mammalian cells in the sealed nanowells, particularly primary cells, declines

significantly after 4-6 h; this constraint establishes a practical upper bound on the length of time

that is feasible for microengraving to less than 4 h (77, 78). Within this range of time, we used

our model to understand how some of the system parameters influence the efficiency of surface

capture in the intermediate regime.

For antibodies with high affinity, e.g. KD~100 pM, the amount of protein captured on the

surface closely approximates the total amount of protein secreted during the incubation

(Nsurface~95-99% Ntotai). However, decreasing the binding affinity could significantly affect the

total quantity of bound proteins, especially when KD is higher than 10 nM (Figure 4.2A). The

commercial antibodies used in this work have KD~10-100 pM from ELISA measurements

provided by the manufacturers. For these antibodies with high quality, we could reasonably

assume that variation of affinity will not introduce significant error to the assumption

Nsurface~Ntotal in quantification.

The number of binding sites available on the surface (0o) also determines how fast the

capture occurs. The calculations show that increasing Oo improves the accuracy of the

quantification (Figure 4.2B). The optimal range of Oo (~10-9-10-8 mol/m2) is consistent with the

typical saturating densities of antibodies immobilized on hydrophilic surfaces (glass) from

buffered solutions measured by optical reflectometry (92, 93), surface plasmon resonance (94),
and spectroscopic ellipsometry (95). Our own measurements indicate that 0o on the poly-L-

lysine slides is also in the order of 10-9-10-8 mol/m 2.

For a cell secreting at a constant rate, the model predicts that the accumulated signal on

the binding surface increases linearly with the time. This trend implies that the total amount of
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analyte captured by microengraving for a given cell over a fixed period of time is a measure of

its average rate of secretion. Simulations for the number of analytes accumulated on the surface

after a fixed time (2 h) suggest that poor binding affinity of the capture antibody could lead to an

underestimation of the absolute rate of secretion by approximately two fold (Figure 4.2C).

Together, these calculations imply that there is a relatively large range of the operating

parameters that give an accurate estimation of rates of secretion in our system. In the case when

some parameters are out of the optimal range, the rough estimation still yields a result with an

error no more than two to three fold. However, if values of these parameters are known, it is also

feasible to use this model to calculate a coefficient to correct the deviations.

Geometric parameters, such as the size and shape of the well and even the position of the

cell in the well, could also impact the distribution of secreted analytes. The design and

fabrication of the microarray by replica molding determines the physical geometry of the wells,

but the position of the cell in each well can vary. Through experimental observation, cells

usually settle randomly on the bottom of each well, but they occasionally adhere to the sidewalls.

Therefore, in other models, we placed the cell at different locations in the well. The calculations

suggest that the position of the cell within the well influences the rate at which a steady-state

distribution of analytes is reached in solution during the initial stages of the process, but that it

does not affect the predicted range of time for the quantitative capture on the surface (Figure

4.2D). This result implies that the location of the cell inside the well is not important, and that

the signals detected from different wells across the same array are comparable. These results

also indicate that changing only the depth of the nanowell within the same order of magnitude

does not significantly alter the sensitivity of the assay. Changing the surface area exposed to the

confined volume, namely the area of the across section of the well, does not affect the initial rate

of binding, however, it changes the total number of binding sites per well, thus alters the time to

saturation. For a fixed time of incubation, decreasing the exposed surface area increases the

density of captured molecules on the surface and therefore improves the signal-to-noise ratio of

spots. For lower secreting proteins, therefore, using wells with smaller cross-sectional area will

increase the detection sensitivity.
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4.3 Numerical simulation of multiplexed system

The basic model discussed above provides systematic characteristics of analyte capture in

the nanowell. In reality, however, the system is more complicated: cells may secrete multiple

proteins at different rates and multiple antibodies may be immobilized on the glass surface. To

characterize the influence on quantitative analysis by nonspecific binding, in this section, we

discuss three expanded models: 1) multiple cytokines vs. single capture antibody, 2) single

cytokine vs. multiple capture antibodies, and 3) two cytokines vs. two antibodies. The

combinations of these models could cover all experimental scenarios.

In the first model, more than one secreted protein exists in the media while only one type

of antibody is immobilized on the glass surface (Figure 4.3A). The nontargeted molecules can

be either secreted cytokines that are not of interest in the experiments, metabolic molecules from

the cells, or even components in the culture media. For all those nonspecific molecules that may

potentially influence our assay, we considered them together as secreted irrelevant molecules to

simplify the model. Nonspecific binding might compete with the target analyte for binding on

the surface, especially when the quantity of nonspecific molecules is much higher than the target

analyte. Here, we first kept the rate of both specific and nonspecific secretion the same and

tested a range of KD for nonspecific binding. The calculations show that when the KD of

nonspecific binding is more than two orders of magnitude higher than the specific ones,

nonspecific binding does not affect the specific binding within the practical time window (Figure

4.3B). The nonspecific KD for most antibodies is in the order of Ip.M- 10 piM. Within this range,

increased nonspecific secretion does not affect the specific binding either, although the total

nonspecific binding increases with the increase of nonspecific secretion (Figure 4.3C). Together,

when the binding sites are sufficient on the surface, specific and nonspecific binding are

independent, and the quantity of specific binding in most cases is more than two orders of

magnitude higher than that of the nonspecific binding. In the detection step, detection antibodies

selectively bind to target analytes, which further lower several orders of magnitude of the noisy

signal from nonspecific bound molecules. Therefore, in this case, the nonspecific binding is

negligible.
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In the second model, there is only one type of secreted analyte in the media while several

types of capture antibodies are immobilized on the surface. Different from the first model,

nonspecific binding is defined here as the binding of the target analytes to nonspecific capture

antibodies. Once the analytes bind on the surface, no matter whether they are through specific or

nonspecific binding, they will be detected by the detection antibody and contribute to the final

intensity of fluorescent signal. For good antibodies, e.g. KD=100 pM, the nonspecific binding

normally does not cause large error: <2%, even when only 1/10 of the area is coated with

specific antibodies (Figure 4.4A). For antibodies with low affinity, e.g. KD=10 nM, when

nonspecific binding affinity is less than 1000-fold lower, there is a significant increase of the

nonspecific binding. Therefore, in this model, when there are both specific and nonspecific

antibodies on the surface, analytes prefer to bind on the specific antibody first because of the

higher reaction rates. When more types of antibodies are coated, the nonspecific reaction starts

to increase significantly because of the increased density of nonspecific antibodies on the surface.

Nevertheless, if there is only one type of analyte in the system, the nonspecific binding does not

cause significant error in the final quantification, since the sum of specific and nonspecific

binding is the same as if there is only specific capture antibody. Therefore, as long as the

specific binding sites are not saturated, the total amount of analytes captured is approximately

equal to the total secretion. However, nonspecific bound analytes may dissociate from the

surface in the later steps of the process, thus still brings error in the quantification.

In the third model, cells secrete two types of cytokines simultaneously and both of the

corresponding antibodies are immobilized on the surface. In this case, nonspecific binding

possibly exists for both cytokines. However, the calculation shows that the chance of

nonspecific binding is very small, even when the secretion rate is 100 times different between the

two analytes (Figure 4.4B).

In summary, our calculations indicate that when highly sensitive and specific capture

antibodies are used, the nonspecific binding from multiplexed detection is negligible. Most of

the time, these criteria for antibodies are easy to be satisfied if selected antibodies are already

qualified for quantitative analysis in the basic model. Therefore, all the characteristics of
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diffusion and surface binding of single analyte in the basic model also apply to multiplexed

format and the rate of secretion for each cytokine can be quantified independently.

4.4 Validation of computational results by experiments

Our model suggested that the amount of proteins from individual cells captured on a

binding surface should increase monotonically with the time during microengraving. To validate

this conclusion experimentally, we measured the quantities of IL-6 released from individual

PBMCs after stimulation with a Toll-like receptor agonist, LPS, for 48 h. PBMCs from the same

stimulated population were loaded onto three arrays, and then the secretion of IL-6 was

measured by microengraving for 1, 2, and 3 h, respectively. Although the MFI of IL-6 secretion

captured from individual cells varies largely within each time point, the overall median values of

the MFI showed significant and linear increase with time (Figure 4.5). This result matches the

response predicted by the numerical simulations.

The simulations also indicate that variations in intensity measured at a fixed period of

time for microengraving should increase monotonically with increased rates of secretion. To test

this result, we used a mouse hybridoma cell line, which secretes mouse IgG with relatively small

heterogeneity among individual cells compared with primary PBMCs. The secretion of IgG was

measured by microengraving at three different periods of incubation: 15, 30, and 45 min. For

each fixed period, we analyzed the quantity of total captured IgG from wells that contained 1, 2,
or 3 cells to mimic the situation where cells from different wells have different rates of secretion.

The results were consistent with the prediction that MFI increases linearly as the number of cells

increase in the wells (Figure 4.6). The slope of the linear regression also increases as the

incubation time increases from 15 min to 45 min, which is again consistent with the previous

conclusion that the quantity of captured protein increases with the incubation time. These data

demonstrate that the variations in MFI of captured protein at a fixed time point reflect the

variations in the amounts of protein secreted by individual cells, and, therefore, in the average

rates of secretion per cell.
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4.5 Calculation of the rate of secretion from single cells

4.5.1 Identification of positive signals

After microengraving, the background image generated by IgG was first used to align the

template of array to determine the locations of wells. Then, the MFI of each fluorescent channel

corresponding to cytokine secretion was extracted. Positive spots in individual channels were

required to match the following criteria, applied serially: diameter of spots within 100-250% of

well size, no saturation pixel (%Sat.=0), degree of foreground covariance (FCV) below 60,

signal-to-noise ratio (SNR) above 2, and foreground intensity at least 50% chance greater than 2

standard deviations above the local background around each well (%B+2std). These criteria-

analogous to those used in high-throughput screening-flagged wells where one of the channels

had signal distinct from the local background that were also uniform in appearance on a scale of

~50 pm x 50 pm.

We also established a second, self-consistent reference for the background MFI of wells

in the array with no secretion. Features on the images were flagged as background spots when

they met the following criteria: %Sat. =0, FCV < 45, SNR<1, and %B+2std<25%. These wells

exhibited no distinct differences from the background signal, and provided a reference

independent of regional variations that may have resulted from contact between the PDMS and

glass. The mean MFI of all background wells was subtracted from positive spots, and these

background-corrected values were used to calculate the rates of secretion (Figure 4.7).

4.5.2 Calculation of the rate of secretion

To convert MFI into a rate of secretion, we used a reference slide comprising known

amounts of fluorescent detection antibody to produce a standard curve, which related the MFI to

the surface density of each detection antibody. Then, background-corrected MFI of positive

spots were converted to the amount of detection antibody on each spot using the standard curve

(Figure 4.8). Based on the estimated density of binding sites on the surface, if each capture

antibody only binds one cytokine, the average distance between cytokines is ~36 nm, more than

twice of the size of IgG (~15 nm). For short periods of incubation (30 min-4 h), the model

suggests that the fraction of binding sites occupied with cytokines (K= 10 molecules/s) is less than
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10%. This low occupancy makes it reasonable to assume that, under the typical experimental

conditions employed for microengraving, the distance between bound cytokines will be large

enough to only allow each detection antibody to bind to one cytokine. Therefore, the molar ratio

of captured proteins to labeled monoclonal detection antibodies is approximately 1:1, and the

total number of cytokine captured on the surface is equal to the number of detection antibody.

Dividing this number of molecules by the time of incubation yields the average rate of secretion

from a single cell, with a unit of molecules/s.

4.6 Detection limit

The values and variation of the MFI of the non-secreting background spots determine the

limit for identifying positive spots from the image. Here, we set our threshold equal to the mean

value of the non-secreting wells plus 1~3 standard deviations, depending on how stringent the

threshold needs to be in different experiments. This additional cut-off provides a more stringent

reference for defining the lower limit of detection for each cytokine. The limits of detection for

several cytokines that we have measured in our system normally range from 0.5-4 molecules/s

(Table 4.2). These values are at least 10 times lower than those previously calculated for

artificial receptor assays, and in most cases, are lower than those for encapsulation assays. Since

the detection limit is determined by the distribution of the MFI of the background spots, it

largely depends on the quality of the antibody pairs as well as the experimental operation.

Therefore, this limit is highly experiment-dependent. Intensities of background spots and other

nonspecific staining on the image are unlikely to change with the incubation time. Increasing the

time of incubation will help increase the positive signals while keep the background unchanged,

which erodes the detection limits. This strategy is important for measurement of proteins with

extremely low rate of secretion.

4.7 Discussion

4.7.1 Dynamic capture vs. equilibrium capture

Microengraving is a dynamic capturing process where analytes are fluxing into the

system from cell membrane. The concentration of analytes in the media reaches steady-state at

some point based on our simulation, but it never reaches equilibrium. This characteristic
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contrasts other assay, e.g. ELISA, where the total amount of analytes is usually unchanged in the

system. After sufficient time of incubation, the distribution of analytes in the media and on the

surface will reach equilibrium, governed by the KD and 0. After incubation for 2.8 h (stimulated

for 10000 s), 98.99% of the total secreted proteins is captured in microengraving from the model.

For the same amount of total analytes, if we convert all of them to an initial concentration in the

volume of a nanowell, remove cell from the system, and let the process of capture reach

equilibrium, then the maximal binding of protein will be 99.47%, which is the theoretical upper

limit of total binding. Although it is never possible for the capture to reach equilibrium in the

nanowell because the cell is alive and keeps secreting, these calculations show that the dynamic

capture is actually very efficient and the error is only 0.48% compared with equilibrium process,

which is below the variations of background fluorescence (~1%).

If this small difference is tolerable in the quantification, theoretically, we could generate

a standard curve using equilibrium measurement (similar as the standard curve in ELISA) for

quantification of the secretion. The advantage of this method is that all the slides and steps are

processed under the same conditions that could minimize any systematic errors. However, the

challenge for this method is the scale of the system. In order to directly compare signals between

standard curve and samples, it requires that standard curve is made in a setting where the volume

of media per unit capture area is the same as that in microengraving, e.g. 50 pm of height per

area. Different volume to surface ratio could bring large difference in the status of equilibrium

and cause the data incomparable. Because of the difficulty in making comparable equilibrium

standard curve, in this study, alternatively, we chose a direct way to estimate the number of

bound molecules.

4.7.2 Error of estimation

The overall error in direct estimation of the rate is contributed by both approximations

from our simulation and the uncertainties of measurements in the experiment. In the calculation

discussed in section 4.5, the rate of secretion is proportional to a combination of several

measurable parameters in the system:
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MFluE x Ar8E X C,,E x V d

x t x MF,,, x Area,

MFIE and MFIstd are the mean fluorescence intensity of spots from microengraving and

the reference slide, respectively. The uncertainty is -1.5%, which is determined by the

performance of the microarray scanner.

AreapE is the area of spots identified in microengraving. The resolution of our scanner is

5 pm, and the typical measured width of each spot is -60 pim (slightly bigger than that of design).

This yields a relative uncertainty of 8% in one dimension and 16% in area. Areastd is the area of

the spot on reference slide. The diameter of each spot is -2 mm, which yields an error of 2.5%

in diameter and 5 % in area.

Cstd is the concentration of fluorescent detection antibody spotted on the reference slide.

The uncertainty of measurement is 2% based on the accuracy of the spectrometer (Nanodrop).

Vstd is the volume of the fluorescent detection antibody spotted on the reference slide.

The uncertainty of measurement is 2.7% based on the accuracy of the pipette.

Asimulation is a constant from simulation. Based on our calculation, the total molecules

binding on the surface is approximate to the total molecules secreted from cells (>95%).

Therefore, the relative error from the approximation is 5%.

t is the incubation time. The error is about 1% (1-2 min variation in time during

operation for 1-2 h incubation).

All these uncertainties of parameters were either estimated by our own measurements or

provided by the manufacturers. Based on the rule of error propagation, the uncertainty for the

rate of secretion measured from a given cell is about 18%. The uncertainty of the area of

individual spots on the microarray (16%) was the dominant source of error. The spatial

resolution of the scanner employed (5 [tm) significantly limits the precision of this measure.
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4.7.3 Optimal incubation time for microengraving

Considering all the calculations through this chapter, we produced a graph describing the

upper and lower limits of detection in the system that could guide the design of experiment. The

steric crowding of cytokines and antibodies on the capture surface at high occupancy (~95% Oo)

establishes an upper bound of binding capacity, while the minimal detectable density of captured

analytes determines the lower limit of detection. Larger cross sectional area per well provides

more binding sites, and therefore it takes longer to saturate the surface. For a specific design of

well, the total binding site is fixed. Therefore, higher rate of secretion takes less time to saturate

the surface. The lower limit is basically determined by the detectable noise of background spots

by the scanner, e.g. 3 SD of background signals. Assuming that the detection limit is equal to the

amount of cytokines that bind to 50 im x 50 ptm area for 2 h at a rate of 0.5 molecules/s (typical

order of magnitude for most cytokines we measured), then we can generate a line for lower limit,

where the minimum time required for detection is inverse proportional to the rate of secretion

(Figure 4.9). Taken together, the calculations discussed here indicate a more general rule to

design a given experiment. The optimal incubation time should consider the rate of secretion of

both lower and higher secretors in the population. The incubation time should be longer than the

time when the signal acquired from the lowest secretor is above the detection limit, while shorter

than the time when the highest secretor saturates the surface. From this graph, for a given

experimental time, the dynamic range of rates of secretion that could be detected spans around

two orders of magnitude, which indicates that this system is very robust to measure highly

heterogeneous populations.

4.7.4 Capture efficiency in different systems

Using simulation tools, we compared the capture efficiency across several formats of

assay: 1) closed well with one capture surface, 2) open well with one capture surface, and 3)

open well with three capture surfaces (Figure 4.10). Under the same condition, closed system

confines all the analytes in the volume and has the highest capture efficiency (98.5%). In both

open systems, the large amount of bulk media outside the well forms a constant gradient of

concentration that drives the diffusion of analytes away from the well and competes with the
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surface capture. Open system with one capture surface on the bottom is a model analogous to

ELISpot. In this case, only 73% of the analytes bind to the surface and the rest of them diffuse

away (Table 4.3). Increasing the area of capture surface, e.g. coating all three surfaces inside the

well with capture antibodies, could largely improve the capture efficiency to 90%. However,

increased area of capture surface decreases the density of captured analytes. Therefore,

compared with a closed system, an open system with three capture surfaces has lower signal per

area, which may decrease the sensitivity of detection. In sum, from the calculation, a closed

system as used in microengraving is more effective in capturing analytes and this assay format

also eliminates the cross-contamination of detection between different wells.

4.7.5 Profile of concentration in the microenvironment

Regarding the microenvironments surrounding cells, microengraving is also a process to

deplete the secretory proteins from individual cells. To evaluate how significantly the cell

environment is changed during microengraving, we compared the concentration of proteins in

the media during microengraving and single-cell culture (Figure 4.1 1A). For a short time of

incubation, e.g. 10 min, there is a similar concentration profile around the cell in both cases.

After this short period of time, proteins are predominantly captured by the surface or diffuse into

bulk media (>96%). The depletion of secretory proteins by surface antibodies is relative faster

than that by passive diffusion of proteins outside the well. Therefore, the concentration of

analytes remaining inside the well for 2 h of cell culture is 2-3 folds higher than that during the

microengraving. However, in both cases, the absolute concentration is very low (< pM), which

is less than effective dosage of most cytokines (-1-100 pM). At this low concentration,

switching the same array between microengraving and single-cell culture probably will not cause

too much disturbance of the microenvironment around cells. Although we did not include

autocrine capture in the model, however, if the autocrine signal exists, it will have the same level

of effect in both scenarios and the relative concentration profile will not change between

microengraving and single-cell culture. These results provide an evidence that in serial

microengraving, where the same array undergoes several cycles of detection and culture,
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individual cells are surrounded by relatively stable microenvironments and the kinetic responses

of cells are mostly from stimulation rather than environmental perturbation.

Since the majority of the secreted proteins diffuse outside the well during cell culture in

the array, these diffused proteins may influence the function of other cells in surrounding wells.

To evaluate the cross contamination of secretory proteins between wells by diffusion, we

calculated the concentration profile of proteins in a larger scale of culture environment (Figure

4.1 iB). To get a maximal estimation of possible contamination, we chose a high rate of

secretion of 50 molecules/s and calculated the cumulative concentration in the media for 24 h

(suppose that media can be changed once a day). Through natural diffusion, proteins form a

gradient from the cell to the bulk media and surrounding wells. The concentration of protein at

the bottom corner of the well containing cell is -30 pM, while the concentration at the bottom of

the next wells is reduced for ~50%. For most cytokines, this concentration is around the same

order of magnitude of their ED5o (e.g. IL-2, IFNy, and IL-4). Therefore, for cytokines that have

high rates of secretion, it is possible to have certain level of crosstalk between cells in neighbor

wells during long-time culture. However, cells most likely do not constantly secrete at this high

level for a long time. By increasing the amount of bulk culture media or the frequency of

refreshing media, the cross contamination could be minimized.
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Figure 4.1 Analysis of mass transfer and surface capture of analytes during microengraving

using numerical model. (A) Schematic of the configuration of one nanowell containing a single

cell. (B) Plot of the calculated quantity of analytes accumulated in the media (o) and on the

surface of the glass (e) during microengraving when the cell secretes at a constant rate of 10

molecules/s. The solid line indicates the cumulative quantity of analytes secreted by the cell

over time. In this simulation, the affinity of capture antibody was KD=100 pM, and the density of

binding sites on the surface was 60=1 0-9 mol/m 2.
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Figure 4.2 Effects of model parameters on the efficiency of surface capture in the linear regime.

The number of analytes captured on the glass surface decreases with the increase of (A) the

dissociation constant of capture antibody or (B) the decrease of the density of binding sites on

the surface. (C) The number of analytes captured on the glass surface for a fixed time period

increase linearly with the rate of secretion. (D) Variation of the positions of the cell within the

nanowell (relative to the glass) only affects the early stage of capture. Solid lines in all four

panels represent the total quantity of analytes secreted with time.
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Figure 4.3 Effects of nonspecific capture of molecules secreted from the cell on the detection of
target analytes. (A) Schematic illustration of the competition between specific and nonspecific
binding to the capture antibodies. (B) Plots of the calculated number of molecules captured in
the linear regime for a series of affinities assigned to nonspecific binding (KDo*). For these
calculations, the affinity for specific binding was fixed to 100 pM. Open symbols represent the
amount of nonspecific binding at the different affinities used in the calculations. The closed

circles represent the amount of specific binding when KDnon = 10 nM. The rates of secretion
used for both molecules were 100 molecules/s. (C) Plots of the calculated number of molecules
captured at different ratios of the rates of secretion of the nonspecific and specific molecules

(Noon:Ns). The affinities for specific and nonspecific binding were 100 pM and 10 [LM,
respectively. The rate of secretion of target analyte was fixed to K=100 molecules/s. Open
symbols represent the amount of nonspecific binding at the different ratios of secretion indicated.
Closed circles represent the amount of specific binding at Noon: Nspecific =10:1. The solid lines in
both (B) and (C) represent total quantity of analytes secreted.
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Figure 4.4 Effect of nonspecific binding in models with multiple analytes. (A) Schematic for a

single analyte binding to a surface supporting two different capture antibodies (top). Plots of the

calculated percentage of nonspecific binding as a function of the number of capture antibodies

(bottom). The rate of secretion was 100 molecules/s. The total density of binding sites on the

surface was eo=1 0~ mol/m 2, which is equally divided to each type of antibodies in the calculation.

(B) Schematic of two analytes binding simultaneously to a surface supporting two different

capture antibodies (top). Plots of the calculated percentage of nonspecific binding as a function

of the ratio between two analytes (bottom). The affinity of specific and nonspecific binding was

10 nM and 10 [M, respectively, for both antibodies. The rate of secretion of analyte 1 was fixed

to 100 molecules/s. The total density of binding sites on the surface was e0 =10~9 mol/m 2 and

shared equally by these two antibodies.
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Figure 4.5 IL-6 secretions from individual human PBMCs. Box plots follow Tukey's convention,

with the center line representing the median, and the upper and lower edges of the box

representing the values of the upper and lower quartiles. Whiskers extending from each end of

the box represent the most extreme values within 1.5 times the interquartile range. Relative

MFl of captured IL-6 increases linearly and significantly as a function of incubation time. n is the

number of single-cell events in each box plots. The solid line was fit by linear regression of the

median values of MFI at each time (central bar in each box). Statistics were determined by a

two-tailed Student's t-test.
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Figure 4.6 Measurement of the secretion of antibodies from mouse hybridoma cells. The

relative MFI of the signals were plotted as a function of the number of cells in each well for three

different incubation time (15, 30, and 45 min). Solid lines were fit by linear regression. n is the

number of events in each box.
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Figure 4.7 The distribution of MFI of background spots and positive spots from the same slide.

An representative example from one slide is shown here. The red triangle represents the mean

value of the background spots, whereas three red dots represent values that are 1, 2, and 3

standard deviations above the mean value.
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Figure 4.8 Micrograph of a standard reference slide (top) and a sample calibration curve

(bottom) used to calculate the rate of secretion from cells. A series of diluted, fluorescently

labeled detection antibody was spotted on the glass (1 ptL/spot) at the concentrations indicated,

and the mean fluorescence intensity of each spot was plotted to generate the calibration curve

(solid line).
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Figure 4.9 Diagram showing the optimal experimental windows for 50 [rm (blue) and 30 [rm (red)

nanowells. For a fixed time period of incubation, the lower limit of detection is the minimal rate
of secretion that provides signal above backgound+3SD. This line is determined experimentally

and might vary with different antibody pairs and fluorophores. An average result from IL-2
measurement is presented in this graph. The upper limit of linear detection is defined as the
rates of secretion at which 95% of the binding sites are occupied by the analytes. Region

between lower and upper limits is the dynamical range of rate for quantification. The lower and
upper limits of several time points (0.5, 1, 2, and 3 h) are indicated in open circle on the graph
along with the corresponding rates of secretion.
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Figure 4.10 Three two-dimensional models were constructed to compare the capture efficiency

in closed and open systems. Left, closed system with one capture surface on the top (black

thick line). Middle, open system with one capture surface on the bottom (grey thick line). Right,

open system with three capture surfaces on the bottom and two side walls (grey thick lines). All

the physical parameters used in simulation are the same as those in Figure 4.1 and the total

incubation time is 2 h. For the open system, the media outside the nanowell is 1 mm high.

Color map shows the concentration gradient in the media.
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Figure 4.11 Concentration profile of cytokine in the nanowell during microengraving and cell
culture. (A) Two-dimensional models were used to compare the change of concentration with or
without microengraving. The model of closed well is analogous to the process of
microengraving, where the top surface is coated with capture antibodies. In the model with
open well, there is no capture surface and only secretion and diffusion of analytes were
considered. This model is analogous to the process of single-cell culture in the array. All the
parameters for calculation are the same as Figure 4.1 and the bulk median above well was set
to 1 mm for simulation. Paired comparison between both models at 10 min, 20 min, and 2 h are
shown as examples. (B) Concentration profile of cytokine in bulk media during single-cell
culture was calculated using an expanded two dimensional model. The bulk media above wells
is 1 mm. The result shows the concentration of secretion in median after 24 h of incubation with
a rate of secretion of 50 molecules/s.
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4.9 Tables

Parameter

Well size

Cell diameter

Diffusion coefficient (D)

Association rate constant (ko)

Dissociation rate constant (km)

Rate of secretion (K)

Density of total binding sites (60)

Value

50 pmx50 pmx50 pm

10 pm

10.10 me/s

101-10, MIs1

10- 104 s1

1-100 molecules/s

10 -1040 mol/m2

Table 4.1 Values of parameters used in simulation.

Cytokine Fluorophore Limit of detection
(molecules/s)

IL-6 Alexa Fluor 488 0.5-0.7

IL-17 Alexa Fluor 488 0.5-0.6

IFNy Alexa Fluor 555 3.8-4.1

IL-2 Alexa Fluor 594 0.8-3.1

TNFa Alexa Fluor 700 1.8-2.0

Table 4.2 Experimental limits of detection for cytokines.
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Capture Media Media
surface inside well outside well

Closed system 98.5% 2.5% -----
One capture surface

Open system 73% 1.2% 25.8%
One capture surface

Open system 90.1% 0.4% 9.5%Three capture surface

Table 4.3 Comparison of distribution of analytes in closed and open systems.
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Chapter 5. Comparison of microengraving to other technologies

There are several existing tools for measuring cytokine expression from human T cells.

ELISpot and ICS are commonly used for measuring the frequency of cytokine secreting cells

because of their single-cell resolution. ELISA or Luminex are used for measuring the bulk

concentration of cytokines in the supernatant. qPCR is used to measure cytokine gene

expression rather than protein production. All these technologies have different mechanisms and

characterize different aspects of cytokine production. In this section, we present a have side-by-

side comparisons of microengraving to these existing tools to highlight the advantages of

microengraving.

5.1 Microengraving vs. qPCR

To compare the kinetics of protein secretion and gene expression, we measured IL-6

production by microengraving and qPCR. PBMCs were stimulated with a toll-like receptor

agonist, LPS, for three intervals of stimulation (3, 6, and 12 h), then applied for both assays. In

microengraving, the secretion of IL-6 from individual cells was measured for 2 h and scored for

both the frequency (number of-secreting cells within the total population) and rates of secretion

of IL-6-secreting cells (Figure 5.1A). The results were presented as histograms showing the

distribution of the rates at each time point of stimulation. The area under the curve presents the

total cell number that had positive secretions. From the distribution, most cells secreted IL-6 at

rates below 10 molecules/s, and a few high secretors could secret up to 5 0-60 molecules/s. The

distribution slightly shifts towards higher rates over time: the median rate increased

monotonically from 6.5±3.2 (3 h) to 10.6±7.1 (12 h). This range of values is consistent with that

estimated by ELISA (using the supernatants from the stimulated cells), and reported values in the

literature for cytokine release from primary cells (96). The frequency of secreting cells increased

significantly with time, especially from 3 h to 6 h.

To assess whether the most productive cells were derived from a particular subset of cells

within the PBMCs, the cells were labeled and then imaged in situ after microengraving. Most of

the cells secreting IL-6 were CDllb+CD14- (45%, 10±8.4 molecules/s) and CDllb+CD14+
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(27%, 10±7.4 molecules/s), while a small population of cells were CD3+ (4.7%, 12.5±9.4

molecules/s) (Figure 5.1A insert). Since CD1lb and CD14 are markers predominantly

associated with monocytes, this result is consistent with previous reports that show LPS strongly

mediates monocyte responses (97, 98). The median rates of secretion for each class of cells,

however, did not differ significantly (two-tailed, unpaired Student's t-test), suggesting the

magnitudes of responses to the applied stimulus of LPS for these different lineages of cells are

all similar.

The expression of total mRNA encoding IL-6, however, had different kinetics as protein

secretion (peaked at 6 h) (Figure 5.1B). This observation indicates, as expected, that the timing

of transcription does not necessarily correlate with the timing for secretion of a protein. Besides

the kinetics, the amount of mRNA in cells does not necessarily correlate with the amount of final

protein product, because the mRNAs and new synthesized proteins sometimes may undergo

degradation intracellularly. Because cytokines are extracellular signaling molecules, the actual

secretion is more meaningful for the function of cells than gene expression. Therefore, direct

measurement of the secretion is useful to assess the responses of samples.

In terms of protein production, the frequency of secretion changed much more

dramatically with time than rates of secretion (Figure 5.2B). Similar phenomena has also been

observed by studies on antigen-specific CD4+ memory T cells. Waldrop et al. found that certain

noncognate costimuli are capable of augmenting the absolute frequency of cytokine-producing

CD4+ memory T cells in CMV antigen-stimulated PBMC cultures, but have no significant effect

on the amount of cytokine synthesized per responding cell (99). Together with the our

observation that different lineages of cells have similar distribution of rates, these results suggest

that under the same stimulation condition, the overall cytokine response is regulated primarily by

changing the frequency of active cells in the population rather than changing the rates of

individual cells.
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5.2 Microengraving vs. ELISpot

The major difference between these two technologies is that ELISpot requires longer

times of incubation, normally 24 h, and microengraving requires only 1-2 h. Therefore, ELISpot

measures integrated signals from a longer period, and cannot tell the kinetics information on

when the cells secrete. However, microengraving gives a snapshot of the status of secretion, and

reveals whether the cells secrete in this short window of time but may miss other time points

when cells are active. To get a parallel comparison of frequency of secretion, we used the same

clones of antibodies in both technologies to avoid issues of sensitivity brought by antibodies. In

general, microengraving measured higher frequencies of all four cytokines than ELISpot. The

relative frequencies of IFNy, IL-17, and IL-4 secretion were consistent and comparable in both

methods. However, frequency of IL-10 is quite different. One possible explanation would be

that IL-10 antibody used in microengraving is not suitable for ELISpot or the secretion of IL-10

is too low so that the signal cannot reach the detection limit of ELISpot.

Form our calculations in Chapter 4 (secretion 4.8.4), the efficiency of capture in an open

system (ELISpot) is much lower than that in a closed system (microengraving). Therefore,

ELISpot only captures part of the secreted proteins on the membrane (70% or less). In addition,

in ELISpot, secreted proteins diffuse around the cell and are captured on the surface without a

confined area. This type of capture yields a smeared boundary between signal and background,

and therefore, to some extent, decreases the signal-to-noise ratio, diluting the signal intensity.

The radius of a spot depends on the rate of secretion and the shape of spots may not be ideally

round if several cells are close together on the surface. Therefore, the spots are not uniform on

the final image, and may contribute to errors in counting. All these technical issues may partially

explain the lower sensitivity of ELISpot. Operationally, ELISpot also requires for 2-3 days for

the whole process in a standard protocol, while microengraving can be finished within one day.

More importantly, ELISpot cannot measure multiple analytes at the same time and cannot

retrieve cells after the assay. These aspects are disadvantages when clinical samples are precious

and further analysis of interested cells is required.
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5.3 Microengraving vs. intracellular staining (ICS)/Luminex

T cells from the same donor were evaluated in parallel by ICS and Luminex to measure

the frequency and concentration of cytokine in the supernatant, respectively. For ICS, T cells

were stimulated in bulk (2x 106/ml) with PMA and ionomycin for 3, 7, and 11 h. Brefeldin A

was added at 0 h to inhibit the secretion of cytokines extracellularly. Expression of IFNy, IL-2,

and TNFa by individual cells was determined by permeabilizing and staining the cells with

fluorescence antibodies; the number of secreting cells were evaluated by flow cytometry. In

parallel, another fraction of the T cells (2 x10 6/ml) was stimulated under the same conditions as

that in ICS except no Brefeldin A was added. Culture supernatants were collected at the end of

the stimulation. The concentration of the three cytokines (IFNy, IL-2, and TNFa) in the

supernatants was measured by Luminex. We then estimated the average rates of secretion of

each cytokine using the following expression:

_CV

pNt

where K is the average rate of secretion, C is the concentration of cytokine in the

supernatant (measured by Luminex), V is the total volume of the culture media, p is the

percentage of cytokine secreting cells (measured by ICS), N is the total number of cells being

stimulated, and t is the time of stimulation.

For microengraving, T cells from the same donor were stimulated at the same condition

and measured for 1 h at the end the stimulations. The mean rates of secretion measured for each

cytokine by microengraving were consistent with those estimated from a combination of ICS and

Luminex (Figure 5.3A). The rates calculated from ICS and Luminex stand for an average rate in

the entire stimulation, while rate measured by microengraving is the average from the last one

hour of stimulation. Although the meaning of these two measurements is not exactly the same,

however, this is the most closed comparison so far. These results demonstrate that the way we

estimate the rate of secretion in microengraving (discussed in Chapter 4) gives comparable

results as other methods.
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The frequency of secretion measured from ICS is consistently higher than that from

microengraving, which is expected because that ICS integrates signal for a longer time than

microengraving. In addition, ICS also counts cells that have synthesized cytokine intracellularly

but not yet start to secrete. Theses data together well demonstrated that microengraving can get

consistent results compared with ICS and Luminex. Most importantly, such multidimensional

information is obtained in a single assay.

5.4 Both frequency and rate of secretion improve the characterization of cell responses

Through the comparison above between different technologies, a significant advantage of

microengraving is that it provides both the frequency of responding cells and the distributions in

their rates of secretion. The combination of both data should facilitate distinguishing differences

in the magnitude of functional immune responses after stimulation. To test that, we measured

IL-6 secretion from PBMCs after exposing to three different stimuli and also compared these

responses between two donors (Figure 5.4). The responses of cells from the same donor

exhibited strong variations in both frequency and magnitude (rates) depending on the stimulation,

and this combination of responses was unique to the individuals. Both donors exhibited similar

frequencies of responding cells when stimulated with PHA, but the distributions in the rates of

secretion were quite different. Kolmogorov-Smirnov statistical tests of the distributions

indicated that only two conditions of stimulation (LPS and PHA for Donor 2) were similar

(p=0.8622). These results demonstrate that assays that distinguish immune responsiveness based

on multiple, independent measures (frequencies and rates) may be more robust than those relying

on single-parameter measures (frequencies). Considering the results from section 5.1, these

results suggested that the distribution of the rate of secretion reflects the signature of response to

specific stimulation, while the frequency of secreting cells reflects the strength of the responses.

89



Chapter 5. Comparison of microengraving to other technologies
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Figure 5.1 Production of IL-6 by human PBMCs following stimulation with LPS for 3, 6, or 12 h.

(A) Distributions of rates of secretion of IL-6 measured by microengraving (2 h) was shown as a

function of the time allowed for stimulation (3 h, green; 6 h, red; 12 h, blue). Insert: A plot of the

specific rates of secretion determined for different subsets of cells within the array after 6 h

stimulation. Horizontal bars indicate the mean value for each group. (B) mRNA levels of IL-6

expression from the same population of stimulated cells in (A) was measured by quantitative

PCR (bar graph). Relative level of median rates of secretion (blue curve) and frequency (red

curve) of IL-6 measured from microengraving are plotted for comparison.
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Figure 5.2 Comparison of the frequency of cytokine secretion between microengraving and

ELISpot. PBMCs from healthy donor were stimulated by PHA for xx h, then the secretion of four

cytokines were measured by multiplexed microengraving for 2 h. For comparison, same

PBMCs were loaded in to 96-well plate for ELISpot assay. In each of the well on ELISpot plate,
only one type of capture antibody is coated. Therefore four cytokines were detected separately

from multiple wells. Cells were stimulated by PHA in the well for 24 h before process the

membrane. The frequency of secreting cells was normalized to 100,000 cells for comparison.
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Figure 5.3 Comparison of rates and frequency of cytokine secretion measured by

microengraving and intracellular staining (ICS)/Luminex. T cells isolated from the same donor

were stimulated in bulk with 10 ng/ml PMA and 1 pg/ml ionomycin for 3, 7, or 11 h. The

production of IFN-y, IL-2, and TNFa cytokines were measured by microengraving, ICS, and

Luminex in parallel. For microengraving, cytokine secretion from individual cells was captured

only during the last hour of stimulation. For ICS, secretion was blocked during stimulation and

intracellular cytokines were stained at the end of each time period. For Luminex, cells were

stimulated without secretion inhibitor and culture supernatants were taken at the end of each

stimulation period. (A) The average rates of cytokine secretion for microengraving (gray bars)

are compared with those estimated from ICS/Luminex (black bars). The average rates from

ICS/Luminex were determined by dividing the total amount of cytokine measured in the

supernatant (Luminex) by the total number of secreting T cells (ICS) and the time of stimulation.

The limits of detection for this set of experiments were as follows: 0.5 ± 0.1 IFNy molecule per s

per cell, 1.1 ± 0.2 IL-2 molecules per s per cell, and 0.7 ± 0.1 TNFa molecule per s per cell. (B)

The frequency of cells secreting cytokines after the 7-h stimulation was determined

independently for each cytokine, regardless of co-expression. The number of active cells

resulting from each experiment is reported relative to 10,000 cells.
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Figure 5.4 IL-6 secretions under different stimulation conditions

microengraving. PBMCs from two donors were processed in parallel.

with LPS, PHA or PWM for 24 h, then loaded on the array and measured

2 h. The values n are the normalized frequencies of responding cells

Histograms show the distribution of rates of secretion.

were measured by
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by microengraving for

under each condition.
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Chapter 6. Dynamic functional responses from single T cells

6.1 Generation of kinetic secretory profiles from single T cells

Functional behaviors of T cells, such as secretion of cytokines, are known to yield

complex dynamics following activation, but characterization of the breadth and magnitude of

these responses among single cells has been restricted to time-integrated, end-point measures.

Serial microengraving, however, provides a non-destructive way to investigate the dynamic

cytokine responses of individual T cells. In this work, we applied this technology to measure the

secretion kinetics of three Thl-associated cytokines (IFNy, IL-2, and TNFa) from individual

primary CD3* T cells following polyclonal stimulations. These three cytokines are major and

most widely tested functions that define a vaccine-elicited responses against specific infections

that require T cells for protection. The heterogeneous secretion patterns of these three cytokines,

e.g. single-functional and polyfunctional, bring more complicate problems to our knowledge of

T-cell functions, and many studies have been done trying to correlate different secretion profiles

with the quality of T cells (1). With our multidimensional technology, we aim to characterize the

time-dependent production of these three cytokines, thus expanding our understanding about the

polyfunctionality of T cells.

A combination of image cytometry and serial microengraving were used in our assay

(Figure 6.1A). First, CD3+ T cells were enriched from healthy donors and stained for their

viability (Calcein) and differentiated state (classified by CD8, CD45RA, and CCR7) in bulk.

After distributing cells into the array, we imaged each well by automated fluorescence

microscopy to determine the occupancy and phenotype of cells in each well. The cells in the

array were then activated by PMA and ionomycin on chip at single-cell level. These stimuli

bypass cell surface receptors and activate T cells independent of accessory cells or IL-2 (100).

lonomycin induces an increase in [Ca2+] in treated cells by increasing their ability to transport

Ca2+ across cell membranes, and together with PMA synergistically enhances the activation of

protein kinase C, which results in the phosphorylation of a number of cellular proteins (101).

Both stimuli are soluble in culture media, and therefore create uniform strength of stimulation
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across the array, which minimizes the variation of stimulation between cells. We chose this

TCR-independent stimulation as our first model system to probe a broad range of responses

independent of the heterogeneous thresholds of T cell population. Cytokine secretions were then

measured after 2 h of activation by serial microengraving, in which eight cycles of

microengraving were performed consecutively. In each cycle, secretion was measured for 1 h

and followed by another hour of cell culture on chip. Stimuli were included in all media used

throughout the entire process, providing constant stimulation to cells during both culture and

measurement. After all these cycles, cells in the array were stained for viability and imaged

again. At the end, up to 30 data points were generated per cell over 16 h to describe the temporal

release of cytokines from individual cells (Figures 6.1B). Using three surface markers, image

cytometry classified total T cells into eight distinct subsets (Figure 6.2). Quantitative analysis of

microarray images from microengraving provided rates of secretion for all three cytokines at

eight time points (Figure 6.3).

Combining cell phenotype and secretion profile, we generated a heatmap showing the

kinetic profile of cytokine secretion from activated, viable single cells (Figure 6.4). The

secretions of cytokine were dynamic and highly diverse among individual cells. Aggregation of

the responses showed that the number of cells secreting IL-2 and IFNy increased over time,

while those secreting TNFa diminished (Figure 6.5A and B). The secretion of IL-2 was also

more prevalent among CD8 T cells than CD8' T cells. These basic trends including the order

and timing of cytokine responses were consistent with those determined by bulk analysis using

ICS and ELISA (29, 33). To confirm that the secretory activity on-chip was not influenced by

isolated activation, we also measured secretions from cells stimulated in a bulk culture. The total

frequency of secreting cells was consistent when measured by microengraving between 6-7 h

after stimulation either in bulk (10.7%) or on-chip -(13.6%).

6.2 Initial release of cytokines varies temporally among activated T cells

One interesting observation was that new cohorts of T cells sharply transitioned into

active secretion states during each sampling period. These asynchronous, apparently stochastic,

events were biphasic, concentrated at ~2-6 h and 12-16 h (Figure 6.5C). Interestingly, there was
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no statistical association between the timing of initiation and specific subsets, although memory

T cells (CD45RA~) tended to respond most often during the first burst of activity (Table 6.1). To

test whether such variation of observed timing of initial release came from the diversity of cells

in primary human samples, we also measured the kinetics of secretion from an in vitro-expanded

human T-cell clone (Figure 6.6). These cells exhibited similar asynchronous release of cytokines

under persistent stimulation. Therefore, these observed temporal distributions of initial release

implies TCR-independent thresholds for cytokine release by individual cells, which may be

influenced by variability in the expression levels of kinases, transcription factors, and other

signaling proteins (ERK, NFAT, SHP-1) (102, 103), along with slow epigenetic events such as

chromatin remodeling near transcription factor binding sites that promote production of

cytokines (104, 105).

6.3 Simultaneous release of multiple cytokines is transient

Although ICS enumerates cells that produce multiple cytokines over a fixed time period,

it cannot reveal the lifetime, persistence, or concomitance of these productions. Our experiments

here demonstrated that most cells (-90%) first initiate secretion in a monofunctional manner,

releasing only a single cytokine. Further, the frequency of multifunctional cells during any

single sampling period was significantly lower than that seen by integrating these data across

time (Figure 6.7). These observations suggest T cells are more likely to secrete multiple

cytokines sequentially rather than simultaneously.

We found that cells secreting multiple cytokines simultaneously were more likely to

change their functional states than those releasing individual cytokines (Figure 6.8A). Only cells

that secreted IFNy or IL-2 showed significant persistence of their functional states. The average

lifetimes of states in which two or more cytokines were secreted simultaneously were 1.5- to 2-

fold shorter than those of IFNy or IL-2 alone (Figure 6.8B). TNFa single producing state was

short-lived but with relatively higher preservation of function within 16 h. This is consistent

with the observation that some cells started to secrete TNFa early after stimulation and then

quickly turn off. Unlike TNFa single-functional state, multifunctional states were short-lived

and not functional persistence. These results implied that the simultaneous secretion of two or
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more Thl -associated cytokines likely occurs as a transition between states, and that the secretory

responses by T cells evolve dynamically during sustained, TCR-independent activation. Cells

that initiated secretions within four hours of stimulation were more likely to produce multiple

cytokines in total, either simultaneously or sequentially (Figure 6.9), indicating a lower threshold

of activation for polyfunctional cells.

6.4 Transitions between functional states

The transient nature of multifunctional states brought up a question regarding the

directions of transitions between states. To identify the most common transitions among

functional states, we quantified the likelihood that a cell in a secretory state at time tN would

transition to another state 2 h later, tN+2h (Figure 6.1 OA). The most probable outcomes observed

here were that cells either retained the current state (diagonal positions) or downgraded the

number of cytokines secreted (upper triangle area). Secretion of TNFa was found more likely to

be lost in the downgradation of multifunctional states, which implies a direction of functional

evolution from TNFa to other cytokines. For example, the release of TNFa in combination with

either IFNy or IL-2 commonly resolved to the secretion of IFNy or IL-2 alone. These analyses

further confirm that cytokine secretion by individual cells occurs in a predominantly sequential

manner, with multifunctional release arising as a transient state.

To statistically evaluate the significance of these transitions, we then computed the

corresponding Z scores for these state transitions relative to randomly-permuted datasets to

evaluate whether certain transitions occurred more or less commonly than expected by chance

(Figure 6.10B). As anticipated, persistence of individual secretory states was significant,

confirming that cells actively sustain specific functional states. Some transitions were

significantly underrepresented. For instance, observed transitions between IFNy and IL-2 single

producing states occurred less frequently than expected by chance. This result is consistent with

observations that IFNy expression, controlled by the transcription factor Tbet, suppresses the

bulk production of IL-2 by lymphoma cells activated by PMA/ionomycin (106). We anticipate

that identifying dominant individual-cell secretory transitions may offer new insights on the

regulation of cytokine signaling and provide a way to predict T-cell responses.
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6.5 T cells exhibit programmatic trajectories of cytokine secretion

The global transition matrices suggested that the trajectories of secretory states among

cells evolve with identifiable, deterministic programs, rather than stochastic or idiosyncratic

courses. That is, the set of trajectories observed is small relative to the number of all possible

trajectories for the three cytokines (>107). To test this hypothesis, we investigated the cytokine

trajectories derived from the first three time-aligned data points by self organizing maps (SOMs)

(Figure 6.11). For each CD8~ T-cell subset, the optimal number of clusters was determined by

evaluating the explained variance using elbow criterion (107) (Figure 6.12). Metaclusters were

then determined by further SOMs and qualitative alignment of similar clusters (Figures 6.13 and

6.14).

The dominant trajectories exhibited either persistent secretion of individual cytokines

(e.g., IL-2, IFNy) or a transition from a single functional state to another (e.g., TNFa-+ IL-2;

TNFa-- IFNy). Memory T cells (CD45RA ) used the most diverse sets of states, with a small,

but significant, bias toward TNFa-secreting states among the effector memory (CCRT) cells,

whereas CD45RA* cells predominantly exhibited a short burst of IFNy. These results support

models for T-cell differentiation where T cells maintain transient memory for gene expression

resulting from chromatin remodeling (105), and also suggest that some subsets of T cells from all

differentiated populations can release limited bursts of IFNy within 2 h of initial activation.

6.6 Classification of T-cell subsets using dynamic profile

We next considered whether the observed sequential cytokine trajectories could

distinguish different subsets of cells (effector memory, central memory, effector, and naive)

more effectively than time-integrated data, which may fail to resolve differences in how

multifunctional responses are reached. Using principal component analysis (PCA), in

combination with feature selection, we identified unique subspaces that best segregated subsets

in specified training data. These subspaces were subsequently used to classify cells based on

their dynamic cytokine profiles. Using raw CD8- T-cell data, we could discriminate among the

four subsets more accurately (41 ± 1%, percent correct classification) than random assignment

(25%) (Figure 6.15A). Integrating the data over 6 h (i.e., approximating ICS) reduced the
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accuracy of classification to 33 ± 1%. Remarkably, aligning the trajectories of individual cells

according to the initial time of cytokine release dramatically improved the accuracy of

classification to 58 ± 4%. We also found that classification using time-aligned data improved

monotonically with the temporal length of the trajectories, especially for naive and effector cells

(Figure 6.15B and 6.16). Sensitivity analysis for the binary classification of subsets (based on

receiver operating characteristic curves) confirmed that effector memory and central memory

cells were challenging to discriminate based on their functional profiles (Figure 6.17), suggesting

that there are limited differences between the ranges of dynamic cytokine responses for these two

subsets, and that local microenvironments along with receptor-mediated signaling likely

modulate context-specific responses. Further resolution of the phenotypic diversity within

memory cells may also improve their classification (10).

6.7 TCR-dependent activation induces similar programed responses

Whereas the stimulation of T cells in a TCR-independent manner provided a view of the

accessible trajectories of secretory states, activation of T cells in vivo occurs through the

engagement of TCRs with cognate antigens presented in class I or II major histocompatibility

complexes (MHC) and costimulatory molecules such as CD28 (108). To determine whether the

dynamics of cytokine secretion after PMA/ionomycin stimulation were consistent with TCR-

dependent stimulation, we compared the responses of primary T cells subjected to each condition

during the period in which all functional states and transitions were most prevalent (2-10 h). We

coincubated CD3* T cells with beads bearing anti-CD3 and anti-CD28 antibodies as a

homogeneous surrogate for antigen-presenting cells (APCs) and monitored the dynamic

evolution of their secretory states. These beads partially mimics APCs to across link TCR on the

cell surfaces by surface bound anti-CD3 antibody, and also provides CD28 costimulatory signals

that facilitate the initiation of T-cell responses and help sustain proliferation (3). Therefore, this

stimulation provides a more physiologically relevant mechanism of activating T cells than

PMA/ionomycin. To compare the cytokine responses between two stimuli directly, we

monitored the cytokine secretion from T cells isolated from the same subjects. Qualitatively, the

responses measured from TCR-dependent stimulation were similar to those observed during
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TCR-independent stimulation (Figure 6.18A). Different subsets of cells again initiated secretion

stochastically throughout the period of observation, and most cells did not begin in a

multifunctional state.

Since stimulation beads were randomly loaded into each well and might not initially

contact with cells, this TCR-dependent stimulation cannot provide perfect uniform strength of

stimulation to individual cells as soluble stimuli did. Using video imaging to monitor cell

behavior in nanowells, we observed that T cells were able to move around the well and most of

the time they contacted beads within 1 h. Once contacted, most of the cells maintained contact

throughout the measurements. Therefore, although the timing of initial contact was not

absolutely synchronized at the beginning of our assay, the variations of the delay for cells

contacting beads were shorter than the time scale of functional responses (> 4 h for most of the

secretion). To confirm that on-chip beads stimulation was as efficient as bulk stimulation to

activate cells, in another parallel experiment, we stimulated T cells in bulk with the anti-

CD3/CD28 beads for 6 h and then loaded them on chip to measure the same cytokines. The

results showed that 3.2% and 2.6% of cells were secreting after bulk and on-chip stimulation,

respectively. We also scored the number of beads in wells where cells initiated secretion at

different time points, and found there was not specific correlation showing the more beads in

well the faster of activation (Table 6.2). These data suggest that the activation of T cells is more

determined by intrinsic thresholds than the extracellular availability of the beads.

Detailed analysis further revealed that TCR-dependent stimulation induced more cells

secreting IL-2, and fewer secreting TNFa, than those stimulated with PMA/ionomycin (Figure

6.18B). TCR-dependent activation also favored fast, limited bursts of secretion rather than

sustained release, despite under persistent stimulation (Figure 6.18C). This response is

qualitatively consistent with the finite temporal persistence of phosphorylated ERK observed by

flow cytometry in mouse T cells after activation (109). Regulation of persistent TCR-dependent

signals to allow only transient release of cytokines suggests another mechanism for limiting the

effects of indiscriminate activation and supports in vivo observations that multiple serial

encounters are often required to induce activation (110).
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For both stimulations, cells secreting a single cytokine were more likely to preserve that

functional response than cells releasing multiple cytokines (Figure 6.18D). The number of cells

preserving functions was generally higher after TCR-dependent stimulation and may be a

consequence of the limited bursts of activity (Figure 6.18E). Surprisingly, both stimuli induced

similar trajectories, differing only in the frequencies of observed states (Figure 6.18F). Although

stimulation via the TCR appears to alter the timing and persistence of specific secretory states,

the programmatic trajectories of secretory states after activation do not appear to depend strongly

on TCR-mediated signaling.

6.8 Correlation of cell proliferation with cytokine profile

Effective stimulation does not only induce cytokine secretion at early time but also

induce proliferation of T cells, which is important in the immune defense to generate more

effector cells and memory cells. Proliferation of T cells however takes longer time (normally 2-3

day) to be observed. By culturing T cells on-chip with anti CD3/CD28 beads, we have

previously observed cell proliferation after 3 days. However, how this late time proliferation

correlates with early cytokine profile, specifically with dynamic profile, at single-cell level is not

clear. Here, we cultured single cells in nanowell array after serial microengraving with TCR-

stimulation, and then evaluated their proliferation after 3 days. Although there were many cells

proliferated, surprisingly, there was little correlation between the cytokine activity within 11 h

after stimulation and proliferation after 3 days. Among the population of cells that showed

cytokine secretion, only a small fraction proliferated, and this observation was not selective to

specific cell types (Figure 6.19A). However, cells with proliferation did bias, although not

largely, to earlier initiation of secretion and more IL-2 production (Figure 6.19B).

6.9 Discussion

6.9.1 Effect of activation strength on the secretion profile

TCR can detect subtle differences in the strength of interaction with pMHC ligand and

transmit this information to influence downstream events in T cell responses. The strength of

signal can be manipulated by changing the amount, density, and potency of pMHC ligands, and

also influenced by the duration of interactions between T cell and APCs (111). Any changes
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relate to the quality and quantity of pMHC ligands might induce distinct cytokine profiles of T

cells. The MHC binding affinity of antigenic determinants, leading to differential interactions at

the T cell-APC interface, can be crucial for the differential development of cytokine patterns in T

cells (112). Chaturvedi et al. reported that cells primed with high-affinity peptide are committed

to differentiate into Thl irrespective of the priming dose and affinity of challenge antigen; while

the differentiation of cells primed with low-affinity peptide depends upon the dose of

immunization and binding affinity of the challenge antigen for MHC (113). The hierarchical

organization of TCR signaling thresholds exists in individual cells, and the strength of

stimulation could induce distinct cytokine responses, e.g. more TCR signaling is needed to elicit

IL-2 than to evoke IFN-y synthesis (114). Antigen-specific memory CD4* T cells also vary in

their costimulatory requirements. Under different thresholds, the secretion frequency may vary

not necessarily proportionally with the increase of co-stimulation. For instance, in response to

CMV, IL-2 synthesis is relatively more dependent on co-stimulation as compared with IFNy (99).

Therefore, even for the same set of cells, different strength of stimulation might result different

functional profiles.

In this study, we applied both TCR-specific and nonspecific stimulation in this study and

showed some commonality and specificity in cytokine profiles of T cells. We found that most of

these profiles commonly existed in different stimulations but biases differently. Although

engagement of TCR with anti-CD3/CD28 antibody stimulates T cells much gently compared

with PMA/ionomycin, however, it is still orders of magnitude stronger than cognate recognition

of pMHC and therefore is limited to absolutely mimic physiological TCR stimulation through

peptide ligands presented by MHC (111). To better characterize physiologically responses of T

cell activation, surface modification of the nanowell with pMHC would be an alternative way to

create an APC-free stimulation environment (115). It will be promising to apply this

multidimensional tool to resolve different profiles for various stimulation strengths and

understand the downstream signaling pathways.
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6.9.2 Evolution of functional states of T cells

Sequential acquisition of TNFa, IFNy, and IL-2 function in subpopulations of T cells has

been observed from previous studies at the population level. ICS studies following T cell

stimulation revealed that expression of TNFa alone was the dominant function at 1 h of

stimulation. Coexpression of IFNy and TNFa rapidly became the most prevalent phenotype,

followed by IL-2, IFNy, and TNFa triple expression at later time points (33). However, because

of the limitation of technology, for multifunctional states with low frequency, it is unclear

whether they are developed from existing active states in early time or recently generated from a

new subpopulation at later time. In this work, we followed the functional profile from the same

single cells over time, and got directly evidence showing that single cells was capable of

functional transition within short period of time (<16 h) and that multifunctional states were

transient. More importantly, because of the time resolution, we observed how these functional

states transitioned between each other and clustered multiple transition patterns. The dynamic

responses also initiated at different time of stimulation, which added in one more parameter for

the T-cell population to adjust systematically the overall functional strength. These

asynchronous, dynamic responses may shed light on our understanding of the way that immune

system uses to regulate the functional networks.

Our findings also raise a question on how to appropriately name the function of a T cell.

Since the function of single cells may change over time, it may be a single producer at one time

but become a double producer at another time. Therefore, it is not comprehensive to define a

cell's function only based on the function at one time point and it also hard to decide which time

point should be set as the standard reference time. In the end-point measurement, such as ICS,
integrated cytokine production for a longer period of time, so that 'multifunctional states' cannot

distinguish whether these cytokines have been secreted simultaneously or sequentially. Further

more, the longer of the time of integration, the more frequent of multifunctional cells will be

(Figure 6.7). Even in our kinetic assay, the secretion was not measured absolutely in a real-time

fashion and the measurement only lasted 16 h. There may be more features of T-cell functions
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existing beyond the scope of our measurements. Nevertheless, this study discloses some novel

characteristics of multifunctional T cells that may guide more research on these questions.

6.9.3 Correlation of cytokine secretion

For multifunctional cells, the correlation between cytokines is normally defined by a

static view of the function. The magnitude of IFNy secretion was found to associate with the

number of cytokines produced by a T cell, e.g. IFNy showed higher MFI in ICS when it was

coexpressed with IL-2 and/or TNFa than when it was single-expressed (25, 27). Therefore, it

was proposed that MFI of IFNy could be used as a first approximation of the quality of a T cell

response when multiplexed analysis was limited (1). Here, our kinetic data provided some

mechanistic interpretation of this observation. We found that the rates of IFNy secretion

increased with time once the cell was initially activated, no matter whether IFNy was secreted

alone or together with other cytokines (Figure 6.20). The rates were very consistent in IFNy

single-producers and double/triple-producers if they have been activated for the same length of

period. In this aspect, MFI was not informative to indicate the state of function. However,

single-functional state existed more frequently at early time points after stimulation while

multifunctional states were prevalent at later time point, therefore the average or apparent rates

of secretion, which considered both the frequency and rates of single cells, showed differences

between single-functional and polyfunctional populations. In conventional single-cell

measurement, the temporal information for when individual cells have been activated is

unavailable; therefore, it cannot reveal this underlying phenomenon.

Sequential release of different cytokines from multifunctional cells implies that the

correlation of multiple cytokines may be dynamic. At the transcriptional level, different

cytokines may be activated through different pathways or have different thresholds for TCR

signaling or co-stimulation, therefore they may have different kinetics of mRNA expression. If

some cytokines share the same transcriptional pathway and their genes are highly linked, the

expression of mRNA may have higher chance to be correlated, for example, the Th2 cytokine

genes (IL4, IL5 and IL13) (116). Besides the stimulation signaling, autocrine or paracrine

signals from cytokines may bring feedbacks to the cell, thus results in a more complex and
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dynamic correlation. For instance, IL-2 production in T helper cells is high at the early time of

stimulation and then is limited by a negative feedback of itself or in collaboration with other

common y chain (IL-4 and IL-7) and IL-6/IL-12 family cytokines that is mediated by several

signal transducer and activator of transcription (STAT) family transcription factors (117).

Secretory pathways of proteins may add additional spatial and temporal control to

regulate the release of cytokines. In the classic canonical secretion pathway, cytokines or its

subunits are synthesized in cytoplasm and pass through endoplasmic reticulum (ER) and Golgi.

Some cytokines are released through non-canonical pathway in which they do not pass ER and

Golgi (118). IL-2 is secreted through conventional ER and Golgi routes and no major additional

secretion-regulatory check-points have so far been defined, therefore it is considered as a

transcriptionally-regulated cytokine (118). TNFa is secreted through a different model of

canonical pathway. It first moves through Golgi to the cells membrane, and then is cleaved by

tumor necrosis factor-a converting enzyme (TACE) (119). In mouse T helper cells, IFNy and

IL-2 are secreted into immunological synapse sharing similar pathway, while TNFa is released

multidirectionally (120).

Due to these multiple levels of the regulation, a better way to describe the correlation of

cytokine functions should consider the relationship of multiple cytokines dynamically rather than

simply consider which two or three cytokines are coexpressed at one time point. In this work,

we characterized the correlation of functions using a transition matrix for adjacent time points

and using trajectories of function at three consecutive time points. This kind of visualization

may not be the best for such complex dynamic data, however, conceptually it provides a new

way to view the correlations.

6.9.4 New tool to classify T cell groups

In our analysis, we first predefined several groups of cells based on surface markers that

corresponding to the antigen-engagement history and homing capacity, then compared the

cytokine function among these groups. The huge diversity of functional trajectories within each

subset indicated much more classes of T-cell populations than what had been classified by three
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surface markers. Limited surface makers available in T cell study may not be sufficient to

classify every population or T-cell subsets classified by those markers may not necessarily

consistent with distinct functional profiles. Instead of from phenotype to function, our approach

for classification using dynamic secretion data suggests an alternatively way to group cells only

based on their functions, especially by time-aligned profiles. From the function-based groups,

we then could go back to characterize other properties of those cells, such as genomic

information, surface markers, cytolytic actively, etc. This classification can be very sensitivity

when more time points are included, however, the extent of classification can be flexible and

adjustable by choosing appropriate time length, depending on how complex the function profiles

are. This function-oriented approach is very useful and straight forward for screening cells with

novel or different secretory functions when there is no particular knowledge a priori of their

phenotype or genotype.

6.9.5 Proliferation vs. cytokine activity

IL-2 is a T cell growth factor, principally produced by CD4* T cells (121). It plays a

central role in the expansion and differentiation of CD4' and CD8* effector T cells both in vivo

and in vitro (122, 123). IL-2 signal at early time point is important for proliferation. Bulk

experiment found that after stimulation IL-2 responses was peaked during the first 24 h of

culture, then the secretion declined gradually at later days and most of the cells proliferated (117).

However, our proliferation assay following cytokine measurement showed little correlation of

cytokine secretion, especially IL-2, with cell growth. These results seemed inconsistent with

other studies on the biology of IL-2.

Although high concentrations and chronic exposure to IL-2 can negatively impact T-cell

stimulation by sensitizing T cells to activation-induced cell death and tolerance induction (124-

127), our quantitative model suggests that in our single-cell culture system, the concentration of

IL-2 normally does not maintain at a high level over a few days (Chapter 4). Therefore, the

proliferation is unlikely inhibited by too much IL-2 in the culture media. One notable difference

in our assay is that cells were isolated on the array. There is work showing that paracrine

delivery of IL-2 through synaptic contact region increase proliferation of CD8* T cells in vitro
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much higher than observed with equivalent amount of bulk IL-2 (128). We speculate that the

low correlation of proliferation with IL-2 and other cytokine secretion in this work may be

caused by the lack of cell-cell contact.
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6.9 Figures
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Figure 6.1 Kinetics of cytokine secretions were measured by serial microengraving. (A)

Illustration of serial microengraving to monitor cytokine secretion by viable single T cells in time.

(B) Representative micrographs of data evaluating viability (Calcein and SYTOX); phenotype

(CD8, CD45RA, and CCR7); and TNFa (blue), IL-2 (red), and IFNy (green) secretion. Blue

squares outline positive events.
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Figure 6.2 Classification of T-cell differentiations by imaging cytometry. Representative scatter
plots and corresponding histograms of total individual viable CD3* T cells in nanowells (A) and
individual viable CD3* T cells with cytokine secretion (B). T cells were stained with fluorescent
surface markers: CD8, CD45RA, and CCR7. Raw fluorescence intensities acquired from
individual cells were processed by logical transformation with a cofactor of 5 before analysis
using FLAME within GenePattern (Broad Institute). Thresholds for positive events were set
based on the distribution of data from the histograms of each fluorescence channel.
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Figure 6.3 Distributions of rates of secretion of individual cytokines from CD8* (upper) and CD8*

(lower) T cells. All nonzero secretion rates of each cytokine (positive secretion based on our

criteria) were included. The total number of events (n) in each histogram was indicated in the

graph. Mean and mean ±1 SD of each distribution are indicated on the x axis by triangles and

dots, respectively. In this set of kinetic measurements, the average limits of detection were 3.2

± 0.6 IFNy molecules per s per cell, 1.8 ± 0.9 IL-2 molecules per s per cell, and 0.8 ± 0.3 TNFa

molecule per s per cell.
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Figure 6.4 Cytokine secretion kinetics of 3,015 viable T cells. Each row within each block
reflects the dynamic activity of an individual T cell over time. The color wheel illustrates the type
and relative magnitude of secreted cytokines; inactivity is black. Block columns and block rows
organize cytokine profiles by initial time of activity and differentiated cell types, respectively.
Kinetic profiles are ordered within each block according to cytokine function. These data are
representative from three independent experiments.
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Figure 6.5 Temporal distribution of secretory states

stimulation with PMA/ionomycin. Histograms of the

(A) and their corresponding normalized frequencies
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subset population, n, is indicated below each plot.

of activated T-cell subsets during constant
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are shown as a function of time (B). The
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(C) Histograms of the percentage of cells

that initiate secretion and their corresponding secretory states are shown as a function of time.

Early and late responses are observed in both cytokine activity and initiation (A and C,

respectively). Black solid lines superimposed on the bar graphs reflect fitted Gaussian curves.
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Figure 6.6 Cytokine secretion dynamics for individual cells of a T-cell clone upon activation. T
cells expanded from an individual IFNy-secreting cell were used to measure the functional
variation from isogenic cells. Cytokine secretion was measured under the same protocol as
Figure 6.1. The heat map illustrates the dynamic cytokine secretion profiles from 1,165 viable

single cells. The limits of detection for this set of experiments were 1.0 ± 0.2 IFNy molecule per
s per cell, 0.4 ± 0.2 IL-2 molecule per s per cell, and 0.9 ± 0.3 TNFa molecule per s per cell.
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Figure 6.7 Bar graphs representing the integrated cytokine profile of T cells. Cytokine

secretions from individual cells were integrated over 2-6 h (left) and 2-16 h (right). This

integration yields one aggregate state for each cell. The relative frequency of functional states

is normalized with a given subtype of cells.
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Figure 6.8 Stabilities of functional states. (A) Bar graph of the probability that a given cell

preserves its functional state in 16 h. The secretory states for cells at 4, 6, and 8 h were used

as independent reference points. Error bars indicate SD. (B) Heatmap indicating lifetime of

secretory states. Solid orange lines reflect mean lifetime; orange dots reflect the mean plus 1

SD; white dashed line reflects the lower limit of detection, 2 h. All subtypes of T cells were

included.
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Figure 6.9 Multifunctionality correlates with early initiation of cytokine activity. The bar graph

indicates the frequency of cells that produced two (light gray) or three (dark gray) cytokines

within 10 h of initiating cytokine secretion. The total number of cells in each bar corresponds to

those in Figure 6.3, and the analysis includes all subtypes. The solid red line marks the basal

percentage of cells that initiated with multifunctional activity.
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Figure 6.10 (A) Transition matrices for CD8- and CD8* T cells. Frequencies of transitions were

normalized across each row to show the likelihood that a cell in any given state would transition

to a new state in the next sampling period. The adjacent gray scale bar reflects the relative

frequency of each state over 16 h. (B) Z scores highlight transitions that occur with significantly

more/less frequency than expected by chance. Z scores indicate significant transitions (>2, red;

<2, blue); insignificant values (within ±2) are white.
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Figure 6.11 Illustration showing the procedure for time-aligning kinetic profiles. The length of

individual time-aligned profiles varied with different analyses. If the time length after cell

initiation was shorter than the desired length of time, that cell is not included in the analysis. For

instance, in a three-point time aligned dataset, cells that initiated secretion at the seventh or

eighth time points are not included.
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Figure 6.12 Clustering of cytokine trajectories within CD3*CD8- T-cell subsets. The first three

time-aligned data points specific to each subset were clustered, independently, by self-
organizing maps (SOM). The optimal number of clusters for each subset was determined by
the elbow criterion, where the marginal increase of the variance began to level. The explained

variance for the clustering of each subset was plotted as a function of the number of clusters

(left). The average rates of secretion in each cluster were plotted separately, ordered by the

number of cells clustered in each pattern. The cytokines are indicated by color: IFNy (green),

TNFa (blue), and IL-2 (red). Error bars indicate SE. We use the following abbreviations for cell
subtypes: EM: effector memory, CD45RA-CCR7~; CM: central memory, CD45RA-CCR7*; E:
effector, CD45RA*CCR7~; N: naive, CD45RA*CCR7*. The number of cells in each cluster is

reported in the upper right corner of the plot.
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Figure 6.13 Metaclustering of similar trajectories across subsets was determined by a second

round of SOM. The number of combined clusters across all subsets was selected for 95% of

the variance explained (12 combined clusters). Qualitative alignment of clusters from each

subset of T cells are highlighted and grouped according to the dashed boxes.
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Figure 6.14 Common time-aligned cytokine secretion profiles of CD8~ T cells (determined by
SOM) and their relative percent distribution within each differentiated subset of T cells.
Colorimetric representation of cytokine states is consistent with Figure 6.3.
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Figure 6.15 T cells can be classified by their dynamical functional profiles. (A) Matrices

depicting the accuracy of classification of CD8~T-cell subtypes based on dynamic secretion

profiles. These "confusion matrices" quantify the percent of accurately classified cell types

(defined by surface cell markers) computed by PCA relative to the true subtypes (identified by

their cell surface markers). The color bar reflects the percentage of cells classified as a certain

subtype; uniform random assignment (25%) and below is denoted in black and gray scale,

respectively. (B) Average percent correct classification (PCC) of CD3*CD8- T-cell subtypes

over 10 independent, randomly sampled iterations as a function of the length of dynamic

trajectory. Error bars indicate SD.
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Figure 6.16 Classification of each binary combination of cell subtypes. The reported percent

reflects the mean over 10 iterations of the classification algorithm as a function of the length of

time course for integrated, raw, and time-aligned data.
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Figure 6.17 The receiver operating characteristic (ROC) curves for each binary combination of

classification corresponding to the full 16-h time course. Each line (blue) corresponds to an

independent iteration of the algorithm. The first block of 16 ROC curves corresponds to

integrated data, the second to raw data, and the third to time-aligned data. A steep step-like

curve indicates accurate and sensitive classification.
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Figure 6.18 T-cell receptor-dependent stimulation and corresponding dynamic T-cell responses.
(A) Temporal cytokine profiles from viable T cells stimulated over 10 h with PMA/ionomycin and
anti-CD3/CD28. (B) Comparison of the frequencies of cytokine-secreting cells from the same
subject stimulated with PMA/ionomycin (left) and anti-CD3/CD28 (right). (C) Bar graph of the
normalized average distributions of sustained (>2 h) or burst-like (2 h) secretions by activated T
cells as a function of stimulation. Error bars indicate SD. (D) Bar graph depicting the probability
that a given cell preserves its functional state in the 10-h period upon stimulation with
PMA/ionomycin (filled bars) and anti-CD3/CD28 (open bars). Error bars indicate SD. (E) Matrix
reflecting the differential normalized probabilities of T-cell state transitions upon PMA/ionomycin
(red, P) and anti-CD3/CD28 (blue, T) stimulation. Cells were randomly sampled from each
dataset to compare equal population sizes (n=797). Gray scale bars reflect the relative
frequencies of states within each dataset. (F) Common trajectories that are accessed by
PMA/ionomycin and TCR-dependent stimulated T cells. An equal number of cells (n=478) were
randomly sampled from each population, combined, and used for SOM clustered. The
distributions of accessibility for cells to these trajectories are shown in adjacent histograms.
Data are representative from experiments for three different donors. All T-cell subtypes were
included in A-E; only CD3*CD8 T cells were included in F.
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Figure 6.19 Cytokine secretion at early time point after secretion does not correlate with cell

proliferation. (A) Only a small population of cells that secreted cytokine within 10 h after TCR-

specific stimulation finally proliferated after 3 days. (B) Cells that proliferated have higher

potential to secretion IL-2 as the initial functional state after stimulation.
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Figure 6.20 Comparison of IFNy secretion between single producers and multifunctional cells.

(A) Multifunctional cells have higher secretion level of IFNy than single producers. (B)

Distribution of cytokine state as a function of time length after initiation. (C) Mean fluorescence

intensity of IFNy secretion from different cytokine states as a function of time length after

initiation. In B and C, x, presents any secretory states and 1 presents specific functional state

as indicated in the legend. The order of x and 1 is counted after initial secretion. For example,
x1 ... in white bar means single-IFNy state was observed at the second time point after initial

activation.
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6.10 Tables

Initial secretion of cytokines

Subtype CD8 CD45RA CCR7 t1  t2 A1/A2

CD8- EM - - - 4.2 14.0 3.27

CD8- CM - - + 4.6 14.2 2.10

CD8- E - + - 2.8 14.0 1.48

CD8- Naive - + + 4.6 14.0 0.56

CD8+ EM + - - 3.0 13.4 1.92

CD8+ CM + - + 4.4 13.2 1.17

CD8+ E + + - 4.2 14.0 0.89

CD8+ Naive + + + 5.0 20.0 0.95

Total activity of cytokine-secreting cells

Subtype CD8 CD45RA CCR7 t1 t2  A1/A2

CD8- EM - - - 6.2 15.2 0.77

CD8- CM - - + 6.4 15.0 0.68

CD8- E - + - 5.6 14.6 0.45

CD8- Naive - + + 6.0 15.0 0.45

CD8+ EM + - - 6.0 15.0 0.60

CD8+ CM + - + 6.4 15.2 0.46

CD8+ E + + - 6.2 15.2 0.38

CD8+ Naive + + + 6.6 16.8 0.47

t1, mean time of the first peak; t2 , mean time of the second peak;

A1/A2, ratio of the height of the first peak to the second one; EM,
effector memory cells (CD45RA-CCR7-); CM, central memory
cells(CD45RA-CCR7+); E, effector cells(CD45RA+CCR7-); Naive,
naive cells(CD45RA+CCR7+).

Table 6.1 Fitting parameters calculated for Gaussian distributions.

129



Chapter 6. Dynamic functional responses from single T cells

Time of initial secretion 4 h 6 h 8 h 10 h No secretion

Number of wells 1389 907 496 486 31928

Number of beads per well 3.8±1.9 3.9±1.9 3.9±1.8 3.9±1.9 3.9±2.0

Table 6.2 Average number of anti-CD3/CD28 beads per well in TCR-specific stimulation.
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Chapter 7. Conclusions

In this work, we optimized and expanded microengraving technology to a sensitive,

multiplexed, quantitative, and high-throughput single-cell assay for characterizing functional

diversity of heterogeneous cell populations. In a single assay, 105-106 single cells can be

measured for their secretory functions simultaneously, such as cytokine secretion from T cells

and antibody secretion from B cells. Confining secreting cells in small volumes significantly

reduces the time required to detect specific analytes and enhances the sensitivity of the assay.

Numerical simulations of the microengraving process indicate an operating regime between 30

min-4 h that permits quantitative analysis of the rates of secretion. In the multiplexed assays,

both theoretical calculations and experiments demonstrated that up to four different analytes

could be detected simultaneously and quantified independently from individual viable primary

immune cells. The limits of detection for several cytokines that we have measured in our system

range from 0.5-4 molecules/s, which are at least 10 times lower than those previously calculated

for artificial receptor assays, and in most cases, are lower than those for encapsulation assays.

Meanwhile, the array with isolated cells is compatible with imaging system, so that phenotype

and viability of individual cells can also be measured by image cytometry. Therefore, in a

typical functional measurement, populations of viable cells are categorized on the basis of three

independent attributes: 1) surface-expressed markers indicating their immunophenotypes, 2) the

frequencies of cells with secretion, and 3) the rates of secretion of secretory products.

Multidimensional analysis by microengraving provides higher resolution and greater

sensitivity to characterize cell responses than conventional single-parameter assays. We showed

that cells from different donors exhibited distinct responses based on both the frequency and

magnitude of cytokine secretion when stimulated under different activating conditions. These

results imply potential application of multidimensional profile to evaluate vaccine responses and

understand the pathology of chronic diseases. Besides, array of nanowells makes the approach

especially well suited for characterization of clinical samples where the number of cells available
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may not be sufficient for analysis by independent conventional methods (e.g., infants, tissue

biopsies).

The results from the analytical model, confirmed by experimental data, also emphasize a

technical advantage associated with temporarily confining cells into small volumes that contain

appropriate capture reagents for one or more analytes of interest. In contrast to ELISpot and

related adaptations of these conventional immunoassays implemented in open arrays of

microwells, the closed system improves capture efficiency and decreases cross contamination of

analytes between individual wells.

The nondestructive nature of microengraving makes it suitable for integrative single-cell

analysis that is not possible by conventional ELISpot or ICS. Primary T cells can be identified

and recovered based on their functional attributes for subsequent expansion in vitro, which

enables further evaluation of the heterogeneities among various clonotypes.

Integration of multiple cycles of microengraving (serial microengraving) could explore

the dynamics of cell response; especially resolve the evolution of functions in multifunctional T

cells. For the first time, we reported a detailed characterization of dynamic secretions of three

Th1 cytokines (IFNy, IL-2, TNFa) from individual human primary T cells. The data showed that

the timing of initial activation and the kinetics of secretion after that were highly diverse among

T cells. Asynchronous release of cytokines under persistent stimulation was observed in both

primary T cells and T-cell clones, which is independent of the differentiation states of cells and

the type of stimulation. The release of individual cytokines from single cells could be burst-like

or sustained; the release of multiple cytokines could be simultaneously or sequential.

Multifunctional cells are normally believed to indicate higher effector functions; however, our

data showed that multifunctional states were normally short-lived and occurred as transitions

between states.

Computational analysis of these dynamical data indicated that the transitions between

different functional states were not stochastic. In the adjacent time points, the most probable

outcomes observed were that cells either retained the current state or downgraded the number of
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cytokines secreted. Time-aligned data showed that there were limited types of trajectories of

cellular responses and the accessibility of certain trajectories varied among differentiated subsets.

These results suggested that the evolution of functions in a single cell was programmatic and

differentiation-dependent. We further showed that sequential trajectories of secretions,

especially time-aligned trajectories, distinguished different subsets of cells more effectively than

time-integrated data. Together, this work highlights how incorporating kinetic timing within

multidimensional data enhances the resolution of phenotypic and functional diversity among T

cells and suggests new approaches to define functional signatures of immune responses

associated with specific clinical conditions.

Implication for future directions

Our preliminary work comparing cytokine secretions from the same population of T cells

under single-cell and bulk stimulation indicated that cell-cell interaction influenced cytokine

secretion. For example, IFNy secretion was inhibited when cells were isolated, while TNFa was

promoted when cells were cultured in bulk. These interactions are probably from paracrine

signals between T cells. The transitions between two functional states observed in the dynamics

study also imply certain connections between the regulatory pathways of different cytokines.

Therefore, perturbation experiments could be designed to investigate how autocrine and

paracrine signals affect the kinetic expression of other cytokines and cytokine receptors on the

cell surfaces, as well as the trajectories of function. These studies may inform models on the

intracellular regulatory networks of cytokines.

Although PMA/ionomycin stimulation is artificial and may not provide the true responses

of cells, the timing to add it and its strength can be easily controlled in the assay. In this work,

we only focused on cytokine dynamics under constant stimulation. Analogous to the way

commonly used in control theory, it will be interesting to give individual cells (system) different

types of stimulation (input), such as pulse or ramp signal, and analyze how cell-response (output)

changes. Using mathematical methods, we may be able to identify types of regulation machinery

of cytokine expression in T cells.
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The multiplexed assay system we established in this work has broad application

potentials in various cell-based assays. Similar kinetics measurements could be applied on other

functional subsets of T cells, such as Th2, Thl7 cells, to reveal a broader view of the way that

different cytokine functions are regulated. Incorporating APCs in a single-cell co-culture system

would further refine our dynamic single-cell measures to reveal the effects of both antigen-

specificity and cell-cell interactions on the evolution of paracrine responses. Apply

multidimensional analysis on immune cells from clinical samples could help identify signatures

of immune responses associated with certain diseases, such as allergy, autoimmune disease, HIV

infection etc. The dynamic single-cell analysis of cellular functional responses should also help

evaluate the nature and evolution of intercellular interactions present in other biological systems

such as tumor microenvironments and stromal niches for stem cells.
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