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by

Ming Yang

Submitted to the Department of Chemical Engineering
on June 4, 2012, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Chemical Engineering

Abstract

T cells are orchestrators for adaptive immunity. Antigen recognition by T cells is
mediated by the interactions between T-cell receptors (TCRs) and peptide-MHC
(pMHC) molecules. How T cells can translate stimulatory external cues (e.g., TCR-
pMHC interactions where the peptides are derived from foreign proteins) to functional

responses (e.g., proliferation), while not responding to self-pMHC has been a puzzle
for decades. The ability to discriminate foreign antigens from self antigens demands

extraordinary intricacy for the design and operation of signaling pathways. This prob-

lem is a special challenge since fluctuations at the microscopic level are ubiquitous

in biochemical networks, due to stochastic nature of reactions and uncertainties in

protein expressions. The prevalence of noise imposes further challenges for T cells

to deliver biological functions reliably. The overarching theme of this thesis is to

understand the role of stochasticity in T-cell signaling.

Four problems have been selected for presentation in this thesis:

1. Fluctuation-driven transitions can drive cellular systems out of stable states and

lead to spurious responses. We proposed a theoretical and computational framework

to identify key reactions or species that are responsible for regulating such stochastic

transitions. The identification of these critical components for network stability not

only pinpoints key deleterious protein mutations, but also helps intelligently select

drug targets. The semi-analytical method we derived using large-deviation theory

and calculus of variations agrees well with computational costly brute-force simula-

tions. Additionally, our framework unveils qualitative characteristics of key reactions

regulating stochastic transitions. We believe that we have developed the first method

to carry out fully stochastic sensitivity analyses using analytical calculations.

2. In collaboration with Dr. Jeroen Roose's lab at UCSF, we investigated the roles

of RasGRP and SOS in the activation of ERK and P38 MAP kinase pathways. We

extended established computational models developed in our lab and predicted that

SOS' allosteric pocket is important for the magnitude and bimodal pattern of ERK
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activation, which was confirmed experimentally. The synergy between computational
modeling and experimental studies enabled us to propose mechanistic models that
incorporate features such as co-operativity and non-linearity thresholding to study
P38 activation. These models were consistent with the experimental findings that
SOS is preferentially more important than RasGRP for Rac-P38 activation and SOS'
allosteric pocket has little effect on Rac-P38 pathways, and also generated numerous
experimentally testable hypotheses.

3. While rare events, such as escapes from stable basins, take a long time (waiting
time) to occur, they take little time to complete once they have started. We showed
that for Markov processes characterized by detailed balance, successful transitions,
on average, complete exactly as quickly as transitions in the opposite (non-rare) di-
rection. We first provide a general proof by invoking time reversibility, and then
elaborate the proof by considering two specific dynamics, namely, continuous-time
Markov Chains with detailed balance and one-dimensional Langevin Dynamics. We
employ ideas from measure theory and stochastic calculus. We conclude that rare
events, once they happen, happen quickly, and speculate about extensions to non-
equilibrium systems, such as viral escape.

4. While microscopic fluctuations complicate reliable functioning of biochemical net-
works, stochastic noise also offers enormous information about the underlying network
that generates such noise. We present an effort to exploit the non-random struc-
ture of random noise for network topology identification. In particular, we applied
linear noise approximations to two three-node network motifs, namely, incoherent
feed-forward loop (IFF) and negative feedback loop (NFB), and obtained correlation
functions governing the fluctuations of species copy numbers at steady state. We iden-
tified two signatures that can be used to discriminate IFF from NFB. This endeavor
represents a first step toward understanding how, and to what extent, time-series
data with fine time and length resolutions can be used to infer network structures.

Thesis Supervisor: Arup K. Chakraborty
Title: Robert T. Haslam Professor of Chemical Engineering
Professor of Chemistry and Biological Engineering
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Chapter 1

Introduction

1.1 Background and motivations

T cells are orchestrators of adaptive immunity. They can recognize and eliminate

invading pathogens, and also develop memory against the same types of pathogens

[1]. T cells scan pathogens on the surface of antigen-presenting cells (APCs). Antigen-

presenting cells can internally process self and foreign proteins, cut them into short

peptides, and present those peptides on major histocompatibility complex (MHC)

molecules. T cell recognize antigens through the interaction between T-cell receptor

(TCR), expressed on the T-cell surface, and peptide-MHC (pMHC) presented on the

APC surface.

How T cells translate stimulatory external signals (e.g., TCR-pMHC interactions)

to functional responses (e.g., proliferation, cytokine secretion, or apoptosis) has been

the focus for immunologists for decades. While too modest pathogen-specific im-

mune responses will fail to clear viruses effectively, erroneous functioning of adaptive

immunity will attack self issues and hence lead to autoimmunity. The ability to dif-

ferentiate quantitatively similar signals and result in qualitatively distinct response

demands extraordinary intricacy for signaling pathways responsible for making func-

tional decisions.

Such a stringent requirement is further complicated by the prevalence of stochas-

ticity in signaling networks. Noise or randomness at the microscopic level arises from
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at least two reasons: (1) biological reactions, by nature, are stochastic; (2) cell-to-cell

variability in protein concentrations is ubiquitous. The small copy numbers of reacting

species in any real biochemical network exacerbate stochastic fluctuations. Therefore,

it is crucially important to understand in the face of microscopic fluctuations, how T

cells regulate stochastic noise and deliver biological functions reliably.

The overarching theme of this thesis is to understand the role of stochasticity in

T-cell signaling networks.

1.2 Thesis outline

This thesis consists of four projects which encompass, although not exhaustively, the

extent of my work as a PhD student in the Department of Chemical Engineering at

MIT.

In Chapter 2, in collaboration with Dr. Christopher Govern, a former PhD stu-

dent of the Chakraborty group, I studied stochastic transitions due to microscopic

fluctuations in biochemical networks that are able to drive cellular systems out of

stable states and lead to spurious responses [2, 3]. We proposed a theoretical and

computational framework to identify key reactions and species that are responsible

for regulating such stochastic transitions. We believe such an understanding is im-

portant, because it enables us to identify the weak spot (i.e., reactions or species) in

a given network. The mutation of those weak spots can easily lead to false triggering,

spurious activation, or cancer [4]. On the other hand, the successful identification

of key components that are effective in suppressing noise enables us to intelligently

select potential candidates for drug targets. The semi-analytical method we derived

using large deviation theory and calculus of variations agrees well with computational

costly brute-force simulations, when both are applied to an important T-cell signaling

module. Additionally, our framework reveals qualitative features of key reactions for

network stability.

In Chapter 3, in collaboration with Dr. Jesse Jun and Dr. Jeroen Roose, both

from USCF, we investigated the roles of RasGRP and SOS in the activation of ERK
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and P38 MAP kinase pathways. Previously, by the synergy between computational

modeling and experimental studies, a significant amount of knowledge was gained re-

garding how the interplay of RasGRP and SOS regulates the activation of Ras [5, 6].

However, little was known regarding how RasGRP and SOS regulate MAP kinase sig-

naling cascades, which were reported to be crucial in diverse cellular processes, such as

cell proliferation, differentiation or apoptosis [7]. In this work, I extended established

computational models [6, 8, 9] to study the effect of SOS on ERK activation and

hypothesized that SOS' allosteric pocket is important for the magnitude and pattern

of ERK activation, which was later confirmed by experiments. I implemented the

Hartigan statistical test [10] to confirm bimodality reported in flow cytometry data.

Based on the experimental observation that SOS is preferentially more important

than RasGRP for Rac-P38 activation and the mutation of SOS' allosteric pocket has

little effect on that, I proposed several mechanistic models, incorporating features

such as co-operativity and non-linearity thresholding. These models were able to

explain observed experimental data, and more importantly, generate experimentally

testable hypotheses.

In Chapter 4, in collaboration with Dr. Christopher Govern, instead of focusing

on the average waiting time for a rare event to occur (mean first-passage time, or

MFPT), as we did in Chapter 2, we examined the averaging duration for a rare event

to complete once it has started (conditional mean first-passage time, or CMFPT).

We showed that for Markov processes with detailed balance (such systems at steady

state are known as equilibrium systems), the successful transition, though takes a long

time to wait for its arrival, completes exactly as quickly as a transition in the opposite

(non-rare) direction. We first provided a general proof for equilibrium Markov pro-

cesses by invoking the property of time reversibility. We substantiated this proof to

two specific dynamics, namely, continuous-time Markov Chain with detailed balance

and one-dimensional Langevin Dynamics. In the proof of latter case, we employed

machineries from measure theory and stochastic calculus and verified our results by

numerical calculations. We concluded by extending physical insights obtained from

proving cases in equilibrium systems to non-equilibrium systems (e.g., most real bio-
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chemical networks). We claimed that in general, rare events, once happen, happen

quickly. Suppressing undesirable rare transitions by adding competing forces (e.g.,

mounting immune pressure or administering drug treatment in order to quench viral

escape), while prolongs the waiting time for rare events to occur, actually fastens the

completion of such rare transitions once they have started.

In Chapter 5, I presented an effort of exploiting the non-random underlying struc-

ture of random noise for network topology identification. While the prevalence of

stochasticity at microscopic level of biological systems imposes challenges for reliably

translating external signal cues to biological functions, as seen in Chapter 2, noise

also offers enormous information about the biochemical networks that generate such

fluctuations. In particular, I focused on two important three-node network motifs,

namely, incoherent feedforward loop (IFF) and negative feedback loop (NFB), which

can both achieve adaptation, and posed the question whether one can discriminate

these two by examining time series data of species copy numbers. Specifically, I ap-

plied linear noise approximation (also known as system-size expansion [11]) to both

topologies and obtained correlation functions governing the fluctuations of species

copy numbers at steady state. I identified two signatures that can be used to differ-

entiate IFF from NFB. This endeavor can be the first step to the answer to a broader

question: how or to what extent people can utilize time-series data with fine time

and length resolutions to infer underlying networks.

1.3 References to published work and work out-

side the thesis scope

The work presented in Chapter 2 has been published in Physical Review Letters [12].

The work presented in Chapter 3 is being submitted to Proceedings of the National

Academy of Sciences during the writing of this thesis. The materials presented in

Chapters 4 and 5 are at the final stage of preparation for submission.

Besides the work presented in this thesis, I also participated in the following
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projects during my PhD career:

1. In collaboration with Dr. Ed Palmer at University Hospital Basel, I studied the

role of co-receptor in T-cell receptor triggering and its implications to thymic

maturation. Specifically, a-CPM, a connecting peptide motif on the a-chain of

TCR, is reported to be crucial for the interaction between TCR and co-receptor

CD8 [13]. It has been experimentally observed that, surprisingly, the muta-

tion on a-CPM impairs T-cell maturation more severely than CD8 deletion

[14, 13]. We built computational models to provide a mechanistic explana-

tion for this. We performed finite-state Markov Chain analysis, coupled with

spatially-resolved stochastic simulations, to highlight the importance of rebind-

ing between MHC and co-receptor in enhancing LCK recruitment.

2. In an ongoing collaboration with Dr. Arthur Weiss at UCSF, we built a mecha-

nistic model to understand the regulation of kinase LCK by phosphatase CD45

and kinase CSK. It has been experimentally observed that the activity of LCK

is tuned by the fine balance between CD45 and CSK, and while high level

of CD45 is required for basal TCR signaling, low level of CD45 is preferred

for inducible TCR triggering [15]. Our current computational model, by ex-

amining the steady-state distribution of LCK among its inactive, primed, and

active states, is able to provide mechanistic understanding of such experimen-

tal observation. Through continued synergy between computational modeling

and experimental studies, we hope to gain further insights on CSK regulation

and understand how sensitive TCR triggering is to changes in CSK and CD45

concentrations.

3. I contributed minimally to the work led by a former post-doctoral researcher

of the Chakraborty group, Dr. Jayajit Das, in collaboration with Dr. Jeroen

Roose and Dr. Arthur Weiss, in which SOS-mediated positive feedback was

shown to be the origin of digital signaling in T-cell activation [6]. In this work,

I performed stochastic simulations of receptor-induced Ras activation. The

computational model developed in this work later on served as a basic building
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block for Ras-SOS signaling module, as seen in Chapters 2 and 3.

4. In collaboration with Dr. Jeroen Roose, we adapted the computational model

used in [6] to identify Rasgrpl as a Ras activator contributing to oncogenesis

of T-cell lymphoma. Combining in silico and in vitro approaches, we demon-

strated that Rasgrpl efficiently synergizes with receptor input to simulate the

Akt and NKKB pathways and T-ALL outgrowth in vivo. This work is currently

under the review of Science Signaling.
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Chapter 2

Identifying Dynamical Bottlenecks

of Stochastic Transitions in

Biochemical Networks

In biochemical networks, identifying key proteins and protein-protein reactions that

regulate fluctuation-driven transitions leading to pathological cellular function is an

important challenge. Using large deviation theory, we develop a semi-analytical

method to determine how changes in protein expression and rate parameters of

protein-protein reactions influence the rate of such transitions. Our formulas agree

well with computationally costly direct simulations, and are consistent with exper-

iments. Our approach reveals qualitative features of key reactions that regulate

stochastic transitions.

2.1 Introduction

Biochemical reactions underlie the function of living cells. For example, they translate

stimulatory external cues to functional responses. At the microscopic level, fluctu-

ations in reaction rates and protein concentrations are ubiquitous [16]. Such noise

can drive cells out of stable states (e.g., the "resting" state of unstimulated cells),

leading to spurious responses [2, 3]. Discovering the key mechanisms that are re-
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sponsible for regulating such stochastic fluctuations in cellular reaction networks is

important for uncovering design principles of biological signaling networks [17]. In

particular, understanding how changes in protein concentrations or mutations that

change rate parameters promote fluctuation-driven transitions to pathological cellu-

lar states (e.g., cancer [4]) can help identify key deleterious protein mutations and

inform efforts to manipulate specific proteins (drug targets) that would reverse such

aberrant regulation.

Toward obtaining such mechanistic pictures, we calculate how small changes in

rate parameters and protein concentrations affect the average time it takes for a bio-

logically meaningful stochastic transition to occur - either a (potentially undesirable)

fluctuation out of a stable state to an unstable state with biological significance, or a

stochastic switch between different stable states. Shorter transition times correspond

to more unstable networks.

Determining these sensitivities can be computationally complex for two main

reasons. First, direct simulations to determine transition times can be costly, be-

cause transitions away from a stable state can be rare and therefore hard to sample

[18, 19, 20]. Second, realistic biochemical networks often involve many reaction rates

and concentrations, each of which must be perturbed to determine if it significantly

affects the transition.

Here we develop a semi-analytical technique that aims to overcome these chal-

lenges by exploiting ideas from large deviation theory (LDT) [21, 22, 23, 24, 25, 26,

27, 28, 29, 30]. The semi-analytical expressions reveal qualitative features that char-

acterize the key components that affect network stability. For a nontrivial biological

model, we demonstrate that our technique gives results quantitatively consistent with

trajectory-based simulation results. Computationally, the advantage of our approach

is that it requires only a single deterministic simulation to determine the effect of

perturbing all rate constants and species concentrations, as long as the transitions

are rare and the small perturbations do not lead to phase transitions.
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2.2 Analytical expression of action

Consider a system of Ns different chemical species, whose copy numbers evolve

stochastically according to a reaction network with NR reactions, characterized by a

stoichiometric matrix E (of dimension Ns x NR) and rate constants k (of dimension

NR) according to pre-defined rate laws (e.g., mass action). The system may have

one or more stable steady states for species concentrations, corresponding to different

stable cellular states. We assume that the volume V is sufficiently large to make

large excursions away from any particular fixed point rare relative to relaxation to

the fixed point, and derivatives with respect to copy numbers (or concentrations) are

well defined. In this limit, transitions away from a fixed point, specified by a vector

of concentrations (c"P) to another fixed point cFP or to any other biologically rel-

evant (set of) states, can be described by a single rate K. The percentage change

in K when a rate constant ki is perturbed by a small percentage can be quantified
Bln K

by .ln . Similarly, the percentage change in K when the concentration of species

i at some arbitrary time t, ci(t), is perturbed by adding molecules of species i to
OlnK

the system is lnK. (The absolute change in ci is used because there is no unique
aci

time-independent concentration scale.)

First consider transitions between stable steady states cAj and cB . We describe

a possible transition path by the actual reaction propensities at each time z)(t) (that

is, the number of reactions of each type that occur per volume per time). Given a

starting point c(0) (e.g., cP), c(t) is uniquely defined by 6r(t) through Eq (2.1):

c(t) = c(0) + E j f(t')dt' (2.1)

Suppose a system is evolving according to a particular path P(t) and that the

system is therefore at a particular point c(t) at time t. Over the next differential time

interval [t, t+At), the actual number of reactions of type i that occur is ni = z /(t)VAt.

However, the expected number of reactions of type i is A = viVAt, where vi, the

deterministic propensities, are given by the pre-defined rate law as a function of the

state c(t) and the rate constant ki. The probability of observing ni reactions of type
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i over the differential time At follows a Poisson distribution characterized by A2.

Hence, the probability of observing n = i?(t)VAt reactions is:

NR ni NR(vV )vt
P(n) 1 A e =A eJ (2.2)

ni! (VAt)!

The first equality holds assuming the time interval is sufficiently small so that the

species concentrations do not change significantly over the interval. By Stirling's

approximation and in the continuum limit, the probability density of the path i (t),

not necessarily a transition path connecting the endpoints, with t from 0 to T, is

proportional to exp(-VS(, T)), where

NR

S(P, r) = dt( lnL - i + Vi) (2.3)

S(P, T) serves as the action (or the rate function) of the path P over [0, T]. Eq

(2.3) parses the action of a path in a complex reaction network into contributions from

individual reactions (it has been derived in a different way by Liu [31]). Hence, it can

potentially identify reactions that can most effectively alter rates of rare transitions.

The minimal action S* for the transition, and the corresponding most probable

(least action) transition path P*, can be found by minimizing Eq (2.3) over all the

paths that originate from c and reach c at time T, and then minimizing over r:

S* = min, minV S(P, T) [21, 27].

The transition rate K of a rare event is, from large deviation theory (e.g., WKB

approximation [21, 22]), K = Aexp(-VS*), where A depends sub-exponentially on

the volume and both A and S* depend on the parameters describing the system (e.g.,

k and initial concentrations). In the large-V limit, simple calculation obtains the

sensitivity of K to different parameters to be: lnK -V S* , and 91nK
0In ki a1nk' acj a9c2
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2.3 Perturbation of rate parameters

The perturbation of rate constant ki by Aki changes the minimal action S*. As shown

in the supplement, the action of the new optimal path can be parsed in terms of that

of the original optimal path under the new ki, plus corrections for the fact that the

two optimal paths are different (not only because their endpoints, which are steady

states of the system, change with ki). However, the corrections are of lower order,

O(Ak')(proof in the Supplement, Fig. 2-2). Hence, to compute 9s* , and therefore

,nK, we only have to evaluate the change of action (Eq. (3)) along the unperturbed

optimal path i* when ki changes:

S*(k) *d = k (1 - ) v* d (2.4)
a in k o Ovi 0 In ki . J 0  vi o~ki

where L = i ln ! - if + v. If vi is linear with ki (e.g., mass action), the sensitivities

can be further simplified:

B ln K BvS*(k) *
0__ ~ -V __( = V (i* - vi)dt (2.5)
Blnki lnki - o

For reactions that must occur more frequently than they would have determinis-

tically in order to make the transition occur, RHS of Eq (2.5) is positive, suggesting

that the transition rate K increases with the rate parameters of such reactions. For

rate constants that participate in multiple reactions (e.g., dephosphorylations by the

same phosphatase), the right hand side of Eq (2.5) will contain a summation over all

such reactions.

Eq (2.5) provides a way to calculate the effect of perturbing rate constants on the

transition time given a single input, the unperturbed optimal path z*. This input

path can be determined numerically using the efficient geometric minimal action

method (gMAM; [27]).
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2.4 Perturbation of initial concentrations

Adding molecules of a species not governed by conservation laws does not alter the

rate of rare transitions (e.g., steady states do not change). For species governed by

conservation laws (as specified by E in Eq (2.1)), perturbing concentrations by adding

molecules to the system can change the steady states CF and c , the optimal path

z*, and the deterministic propensities v'* along the optimal path. We show that

ignoring terms of O(Ac2) and higher, the change in minimal action is due to the

change in deterministic propensities evaluated along the unperturbed optimal path

j,* (proof in Supplement and Fig. 2-3). Arguments analogous to the perturbation in

ki lead to

Oin K NR I,*
~ -V j 1 -> ) dt (2.6)

where * can be evaluated at each time point given the rate law. For mass action
oci

. * - *

kinetics, the RHS of Eq (2.6) can be further simplified to be V '7R fT E C" dt.
ci

To study the escape from a stable state to a predefined condition other than a

steady state (e.g., the number of molecules of a particular species acquires a specific

value), Eqs. (2.5) and (2.6) still apply. The only modification is that the optimal

path ,* as the input into Eqs. (2.5) and (2.6) needs a further optimization over all

the possible end states consistent with this condition, as described algorithmically in

[27]. Note that Eq (2.6) does not directly apply, as derived, to the case where the

perturbed species participates in the definition of the specified end condition (see the

Supplement).

2.5 Results and Discussion

To test the accuracy of the methods developed above, we apply them to a biochem-

ical reaction network that is present in several cell-signaling networks. Upon exter-

nal stimulation, in many cell types, Ras proteins are converted from their inactive,
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GDP-bound state to an active GTP-bound state. Active Ras can stimulate several

downstream pathways, and aberrant regulation of Ras activation underlies many can-

cers. We study a particular version of a simple model for Ras activation described

previously [6, 8, 32]. This model has 26 reactions (and associated rate constants),

14 species governed by 5 conservation equations, and in our study has about 400

molecules involved. The copy number of individual species is as small as 10 in our

model studies. The dynamics do not observe detailed balance.

The main feature of the model is that Ras can be activated via two pathways

mediated by proteins called Rasgrp and SOS, and deactivated by RasGAP. The ac-

tivation by SOS is governed by a positive feedback loop: SOS's catalytic activity

increases significantly by the binding of the active form of Ras, RasGTP to its al-

losteric site (denoted by GTP-SOS; in this paper, we use x-SOS (SOS-x) to denote

species x bound to the SOS allosteric (catalytic) pocket, where x = GTP or GDP,

with "Ras" omitted). This enables the system to exhibit bistability when SOS con-

centration is at an intermediate level [6]. Meanwhile, at a low SOS level, only one

stable state exists, characterized by low level of RasGTP. Thus, the model is rich

enough to investigate how cells control stochastic transitions between multiple stable

states (at intermediate SOS level) and suppress fluctuations from a single stable state

(at low SOS level), preventing spurious activation to an undesired state with a high

level of active Ras. We used Eqs. (2.5) and (2.6) to predict the sensitivities of the

transition time for both these situations. To obtain the unperturbed optimal path

0*, we implemented the gMAM [27].

To test the accuracy of Eqs. (2.5) and (2.6), we explicitly calculated the transition

time under the unperturbed parameters and under perturbed values of each parameter

(1% increase in rate constants; 1 molecule increase in each conserved species). We

chose forward flux sampling (FFS; [33]) as the trajectory-based simulation method,

and RasGTP level as its thresholding parameter.

As shown in Fig. 2-1A and B, Eqs. (2.5) and (2.6) predict a correctly ordered list

of key reactions and species that influence the transition time. Additionally, the pre-

dictions are in remarkable quantitative agreement with the direct simulation results.
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Our technique correctly identifies the key reactions for regulating Ras activation to be

RasGAP catalytic activity, GTP-SOS catalytic activity, and Rasgrp catalytic activity.

The most important species are RasGAP, SOS, and Rasgrp, which are, as expected,

associated with these key reactions. These predictions are consistent with recent ex-

perimental results in T-cell cancers[321, where the mutation of Ras that abrogates

RasGAP activity is observed to significantly change active Ras level; i.e., spurious

Ras activation is very sensitive to RasGAP activity. When the SOS level decreases,

the relative importance of Rasgrp increases (compare Fig. 2-1A and B to Fig. 2-4 A

and B). This is consistent with the experimental finding that Rasgrp over-expression

is a major cause for human cancer when little stimulus is present [34].

The quantitative discrepancies between predictions from Eqs. (2.5) and (2.6) and

direct simulations (Fig. 2-1A and B) are due to the finite size of the simulation sys-

tem, the finite change in rate parameters and initial concentrations, and statistical

uncertainties in FFS results. Note that for RasGAP, the species in Fig. 2-1B to

which the transition time is the most sensitive, an increase of one molecule repre-

sents a relatively large (10%) change in concentration, which explains the deviation

between the prediction and the direct simulation. Additional calculations (data not

shown) suggest that for this model, our method can predict the qualitative order of

reactions or species (but not the quantitative values of their sensitivities), even when

larger perturbations are applied, as long as the perturbations do not lead to phase

transitions.

Both direct simulation and our method require one simulation for the unperturbed

transition: for direct simulation, to determine the unperturbed transition rate K,

and for our method, to determine the unperturbed optimal path i*. To compute the

sensitivity, direct simulation requires additional simulations to explore all possible

perturbations of the parameters. For the simple model we studied, this corresponds

to 31 additional simulations. Our method requires no additional simulations.

Furthermore, the semi-analytical forms of Eqs. (2.3) and (2.5) enable us to draw

qualitative conclusions about key reactions responsible for network stability. It might

be expected that the network will be the most sensitive to reactions that require the
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Figure 2-1: (A, B) Quantitative consistency between predictions and direct simula-
tion results at SOS - 50 (intermediate). Fold change in transition rate (i.e., defined
as a larger rate divided by a smaller one) (A) when each rate constant is increased
by 1% and (B) when one molecule of each type is added to the system. Each red dot
represents the perturbation of (A) a different rate constant and (B) a different species
concentration. The direct simulation results are the averages of ten independent FFS
runs, and for each FFS run I0 3 points were stored on each surface. Only the results
for the key reactions, namely RasGAP catalytic activity, GTP-SOS catalytic activity,
and RasGRP catalytic activity are labelled in (A), and only the results for the key
species, namely RasGAP, SOS, and RasGRP are labelled in (B). Similar calculations
are done at SOS = 15 (low) and reported in Fig. 2-4. (C) Reaction action is a domi-
nant but not sole factor for sensitivity. Each dot represents the sensitivity and action
of one reaction at SOS = 50. The rankings of reactions by action and by sensitivity
are similar. However, note that the binding (unbinding) reaction of GTP to (from)

SOS-GDP, indicated by the blue dot, has small action but large sensitivity. Only the
reactions with relatively large sensitivities are labelled.
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rarest fluctuations to drive the transition. Note that a reaction's contribution to the

rarity of the transition is quantified by reaction action S7 = f=J(7jIn -i<< + uf)dt

(as seen from Eq (2.3)). By ranking reactions by their sensitivities and by their

actions, we see that rarity has a dominant effect on sensitivity, but it is not the only

effect (Fig. 2-1C).

Eqs. (2.3) and (2.5) show that (at least) three factors determine the sensitivity to

a particular reaction: (a) the rarity of its required fluctuation, as measured by Si, (b)

the frequency of the reaction as measured by its deterministic propensity vZ, and (c)

the uniformity of the fluctuations distributed over the time course of the transition.

Holding the other two factors constant, the reaction sensitivity increases with each of

these factors.

The importance of (b) can be seen more vividly by noticing that the second-

order approximation of Si yields Sj' fJ' - v) 2/2idt; hence given the same

action Si, the reaction with larger vZ has a larger sensitivity. This explains why

in Fig. 2-1C the binding (unbinding) reaction of RasGTP to (from) the allosteric

pocket of SOS with RasGDP bound to its catalytic pocket (i.e., SOS-GDP) has small

action but relatively large sensitivity, compared to RasGRP activity. Our calculation

shows that the deterministic propensities of these two reactions are about 30 times

bigger than that of RasGRP activity. For (c), note that S* is convex with respect

to iOf/v (a similar functional form also appears in the Boltzmann H-theorem), while

the reaction sensitivity is linear; we can show that by Jensen's inequality, given two

reactions with the same action and the same frequency, the reaction with sustained

modest fluctuations, rather than a short large burst, has a larger sensitivity (proof in

Supplement). The action also vanishes faster than the sensitivity because of the above

difference in scaling. This may be why we see a cluster of reactions with moderate

sensitivities, but small actions, in Fig. 2-1C.

We have applied a LDT method to a finite system to obtain accurate results, which

offers substantial computational advantages compared to direct simulation. It also

provides qualitative insights into the features of biochemical reactions important for

regulating fluctuation-driven transitions. These features should enable studies of real
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biological systems. For example, we could seek to determine how spurious transitions

caused by cancerous mutations may be quenched by drugs that target certain species

involved in key reactions.

We thank Chong Wang for helpful discussions. This work was supported by NCI

(PSOC) and P01 A1091580-01.

2.6 Supplementary Materials

2.6.1 Perturbation of rate parameters

Let c FP and c FP be the steady states under rate parameter k. Let the optimal path

c ct c to c be lAB; let its duration be r_,B; and let the corresponding

minimal action be S*(k) = S(<A*B, rA-B; k), as defined in Eq (2.3) in the main text

(Fig. 2-2A). Note that here we explicitly include k as an argument of S; this reflects

the dependence of S on k through the deterministic propensity v* (which depends

on the rate constants), independent of the path i * and the time T*.

Now perturb k by a small amount Ak such that the perturbed rate parameter

is k' = k + Ak. Let c F and cif be the new steady states under k' and O'*e_,

be the new optimal path from c fP to ciF in time T*,_,,, so that the new minimal

action is S*(k') = S('*_,B,, r*,,B,; k') (Fig. 2-2A). In the following derivation, we

assume the perturbation in k is done by perturbing a single rate constant, ki; the

derivation can be easily generalized to the case of perturbing multiple rate constants

because small perturbations are additive. (Of course, this is no longer true when

the deviations in ki are larger.) Note the use of * to denote an optimal path, time,

or action, and the use of ' to denote quantities calculated under the perturbed rate

constant k'. (The notation '* indicates a quantity optimized under k'.)

As shown in Fig. 2-2A (right), the proof involves the construction of two new

paths: we connect cF to cFP via the optimal path under k', O''*_,A, which takes

time F; also connectc to cF via the optimal path under k', '* which

takes time TB,B,. We refer to these paths as extension paths.
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To compute the sensitivity of the minimal action S* to ki, we express the derivative

as:

OS*(k) S*(k') - S*(k) S(('*A'B' k)
-lim lim

Oki ski-,0 Aki Aki-Ao Aki
(2.7)

We illustrate how the numerator can be approximated and parsed in Figs. 2-2B-F.

We approximate S('*A',B,, T>,B,;k') by S(D*A-+B 7TAB; k') as shown in Figs. 2-2C-

E, by demonstrating that the difference between these two terms is O(Ak2) (Fig.

2-2F):

S('*B ' - A-+-B, TAB; k') = O(Ak2) (2.8)

Eq (2.8) is proved by the following steps:

1. We construct a new path by concatenating three existing paths, the optimal

path under k and the two extension paths: 1 ', B, {'A,MA, A_,B, VBB,},

which takes TA',B' = TIA + TAB + TB' to transition from c o CB -

Note that we now have two paths connecting the same endpoints cF and c F:

the path D'*4,_,B, is the optimal path under k', by definition; the concatenated

path O'A'-_+B is a valid but not optimal path under k'.

The distance between these two paths vanishes when Aki -+ 0, provided that

there is no phase transition (i.e., cAF converges to cFP, )cF to cP, and A+B

to 0A'-B')-

Since the action under k' achieves its minimum at the optimal path 0'A'B',

by calculus of variations, 6S/60' = 0 at 'Al',B, for any t. Further, because

we assume there is no phase transition, BO'/Oki does not diverge at O'+B'*

Hence by the chain rule, we can formally establish the following equation:

S(D A'+B? 7'4B -S()D"A'-,+B', TA'-,B'; /lim S(A+'X/TB/,TB,;k')-
Aki--0 Aki

dt=0
0 wm' hki ,(eAt

where T = max(r*_,B,, rA'-,B' . (Note that TI is introduced because paths
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vD'-,B, and 'A'-,B, take different times to transition from cAF to CB1 (i.e.,

r ,B A'B'. T can be defined as such for the following reason: without

loss of generality, if At = rT*,IB, - T
A-B, > 0, we can extensionally define

fA'-+B, (t) on the time interval [-At, 0] to be the deterministic propensities at

cF, so that the system remains at cF for t E [-At, 0]. This extension in

time does not alter the action of 'A'-+B' since in the extended time actual and

deterministic propensities being equal leads to zero action. We then shift the

time of 1'A1+BI(t) by At, resulting in a path O1A-,B'(t) on t E [0, *,,BI1; note

that S(l'A'-B', 'A-,B'; k') S(zA'-+B', T'-+B ,; k'). Now when we compare

S(' , B,, T'B' ; k') to S(0DA' B',_ rLB,; k'), the following two conditions are

still satisfied, namely at >B1, SS/c' = 0 and 'A-/+ki does not diverge, and

therefore the above functional derivative can be established.) This gives rise to

(Fig. 2-2C):

S('A-B' '+B') S A'-+-B' 'B' ; k') + O(Ak?)

2. Since actions are additive, the action of the concatenated path is just the sum

of the actions of its component paths (Fig. 2-2F):

S(O'A'nB', TAB; k') = A-+A Tj'-A; k)

+S(i-B, TA-BB; U B ) + S( BB'

3. Note that the action under k' of one extension path, '"A,sA, is O(Ak?) (Fig. 2-

2E), for the following reason: under k', the minimal action from steady state c'f

to a neighboring state cA , as shown in [22], can be expressed as S*(rA), where

rA = CA - CA/. By Taylor expansion, S*(rA) = S*(0) + rAOS*(O)/&r + O(r2),

where S*(O) = 0 by definition. Since the minimal action S*(rA) achieves its

minimum at rA= 0, corresponding to the steady state c F, 9S*(0)/&r = 0.

Therefore, S(P'*> ,T*,k') = S*(rA) = O(Ak2), given that rA= 0(Aki)

(we have assumed there is no phase transition).
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Last, the action of the other extension path, i'*BB, is zero, since the optimal

path from cFP to the steady state ciF under k' is a deterministic path, which

has zero action [22, 27](Fig. 2-2E).

This concludes the proof for Eq (2.8) (i.e., Fig. 2-2F). By substituting Eq (2.8)

into Eq (2.7), we see that to compute the sensitivity of minimal action to ki, we

only have to compute S( t *,B, rAB; k') - S(P*,B, TAB; k); that is, to evaluate the

change in action due to the change in ki along the original optimal path i* (Fig.

2-2G). This proves Eq (2.4).

To study the escape from a single stable state to a set of states corresponding to a

predefined condition, the same proof applies, with the only exception that we do not

need to connect the optimal endpoint under k, cop, to the optimal endpoint under

k', c7t. This is because c"t lies on the hyper-surface corresponding to the allowed

end states, and therefore ' =',,-A, VAse} is a legitimate path connecting

cF to the target hyper-surface. Thus, Eq (2.8) still holds.

2.6.2 Perturbation of initial concentrations

Consider perturbing the concentration of species i by Aci. Assume the concentration

of species i is governed by conservation equations. Before perturbation, let cA

and cFP denote the steady states, i'*,B denote the optimal path, and S*(c FP)

S(I* B, rAB; cFP) denote the minimal action. We suppress the dependence of S

on k, since the latter is held constant; we explicitly include the starting point as one

argument, since the deterministic propensity v* depends on the starting point, as seen

in Eq (2.1) of the main text. Because there are conservation equations, any path in

species concentration space c(t) evolves on a subspace C with dimension (Ns - Nc),

where Nc is the number of species conservation equations.

After perturbation, let the steady states be c fP and ci; and let the minimal

action be S*(cf) = S(O'>,B',, I,4,; c+ A). After perturbation, paths c'(t) evolve

on a subspace C'. Similar to the case of perturbation of k, we assume in this sec-
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tion the perturbation in c is done by perturbing a single species, ci, and it can be

easily generalized to the case of perturbing multiple species concentrations by small

amounts.

As illustrated in Fig. 2-3A, first we shift cA7 by Ac, so that its image CA" lands

in the subspace C'. Starting from CA", generate a dynamical path according to

VA0,. Note that although A*,B was optimized on the subspace C, it still describes

a valid sequence of reactions in the subspace C'. Furthermore, the resulting path

in the species concentration space stays in the subspace C', since it starts in this

subspace and evolves according to reactions that obey the conservation laws. Denote

the endpoint of this path in the subspace C' as CB". Note the use of ' to denote

quantities obtained after the perturbation in concentration, and the use of" to denote

quantities of the shifted path.

As we did in the case of perturbing ki, we construct two extension paths: connect

CFP usin optima t C* CFP usingth
CA' to CA using the optimal path 'A*_,A/ in time TA-A/, and C " to FP u the

optimal path O'*B"-+B' in time TI-+B, (Fig. 2-3B).

Now to compute the sensitivity of the minimal action S* to ci, we have:

_S* S*(ciF) - S*(c - SO B,r*B C
=slim = l im

Oci Acia-oc j Acj-+0 Aci
(2.9)

To compute the numerator (illustrated in Fig. 2-3C), we approximate its first

term by S(DA*B, TAB; CA") through the steps illustrated in Figs. 2-3D-F, applying

the same argument for the case of perturbing ki, showing that (i.e., Fig. 2-3G):

S( 'B TK'4BP; C) - S(O -B, TA; C =A) O(Ac2) (2.10)

To compute Eq (2.9), we only have to compute S(DA*B, A-+B; CA")-S(z +Bi TA-+B; cA

Note that these two paths in the species concentration space are parallel and point-

wise different by Aci. To evaluate the change in action, we can simply calculate the

action change due to the shift of the original optimal path. This proves Eq (2.6).

Eq (2.6) can be directly applied to study the escape from a single stable state
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to a predefined set of states, if the perturbed species does not participate in the

definition of the set of endpoints. If the perturbed species specifies the set of allowed

end states, the original endpoint after the parallel shift (i.e., CB") is no longer a

legitimate endpoint of the perturbed system, as it does not lie on the hyper-surface

corresponding to the predefined condition.

2.6.3 Quantitative consistency between predictions and di-

rect simulation results

At SOS = 15, we consider stochastic escape from the stable state to the hyperplane

where 60% of Ras are activated. As seen in Fig. 2-4, the predictions based on

Eqs. (2.5) and (2.6) of the main text are quantitatively consistent with the direct

simulation results.

2.6.4 Fluctuations being uniform increases reaction sensitiv-

ity

With reaction action and deterministic propensity being equal, the reaction with

evenly distributed fluctuations has a larger sensitivity. Note that the reaction action

is S = fj'(4ln - 7i + 1)vi$dt. We define xi(t) as x(t) - g( - 1, which mea-

sures the normalized deviation of the actual propensity from the deterministic one.

Furthermore, we define a function y as y(xi(t)) = (xi + 1) ln(1 + xi) - xi. With these

two new notations, the reaction action can be rewritten as S - f ' y(xi)vidt. If

time t is viewed as a random variable on [0, T*] with probability density v?*/Zi (where

Zi is the normalization factor Zi f i.<*vdt), then S' is exactly Et[y(xj(t))]Zj, i.e.,

the expected value of y(xi(t)) with proper normalization; note here the expectation

is taken with respect to time t. Alternatively, we can treat xi as a random variable,

and express Si as an expectation of y(xi) with respect to x:

Sj* = Et [y (xi(t)) ]Z7i = E,[y (xi)]IZi
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where the probability density of x is formally -Avi/Zi (if there are multiple t that

give the same xi, sum the above quantity over all such t).

Noticing that the function y(xi) is a convex function of xi, we apply Jensen's

inequality to obtain the following:

S = E [y(Xi)]Zi > y(E[Xi]1) Zi (2.11)

where in the second relation the equal sign can be achieved when xi is a constant

(i.e., zero variance). The argument of the function y in the last expression, Ex, [xi]

f 7* xvdt/Zj = fj'Z(D - vi)dt/i. Compared to Eq (2.5), Ex,[xi] is exactly the

sensitivity of reaction i divided by a factor of ZjV.

Now consider two reactions i and j with equal actions (i.e., S7 = Sj) and equal

deterministic propensities (i.e., vi = vj and hence Zi = Zj). Without loss of

generality, assume that reaction i has more uniformly distributed fluctuations (i.e.,

var(xi) < var(xz)). As seen from Eq (2.11), it suggests that y(Ex,[xi]) > y(Exj[xz]).

Since y(x) monotonically increases on x E [0, +oc] and monotonically decreases on

X E (-1, 0], if sensitivities of reactions i and j (i.e., Ex,[xi] and Ex,[zr]) are both

positive or both negative, then E, [xi] is larger in absolute value than Ex,[z]. So,

the reaction with more uniformly distributed fluctuations (var(xi) < var(xj), and so

y(E2[i]) > y(E~j [x])) has a larger absolute sensitivity (Ex, [zi] VZj).
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Figure 2-2: A sketch showing the calculation of the sensitivity to rate constants.
(A) The optimal paths connecting the steady states before (blue) and after (red) the
perturbation in k (left); the extension paths (right). (B) The change in the minimal
action due to the perturbation in k (i.e., the numerator of Eq (2.7)). (C) The action
of the concatenated path is the same as the minimal action after perturbation to the
order of O(Ak2). (D) The action of the concatenated path is the sum of the actions
of its component paths. (E) The actions of the extension paths are O(Aky) and zero.
(F) Therefore, the action, evaluated under k', of the unperturbed optimal path is the
same as the minimal action after the perturbation to the order of O(Ak?). (G) The
change in the minimal action due to the perturbation in k is the change in action due
to the change in k along the original optimal path, to the order of O(Ak2).
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Figure 2-3: A sketch showing the calculation of the sensitivity to species concen-

trations. (A) The optimal paths connecting the steady states before (blue) and af-
ter (red) the perturbation in c; the optimal path before perturbation (blue) shifted
pointwise by Ac (purple). (B) The sketch in (A) with extension paths added. (C)The
change in the minimal action due to the perturbation in c. (D) The action of the
concatenated path is the same as the minimal action after perturbation to the order
of O(Ac?). (E) The action of the concatenated path is the sum of the actions of its
component paths. (F) The actions of the extension paths are O(Ac?) and zero. (G)
Therefore, the action of the shifted path is the same as the minimal action after the
perturbation to the order of O(Acy). (H) The change in the minimal action due to
the perturbation in c is the change in action due to the shift of the original optimal
path, to the order of O(Ac?).
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Figure 2-4: Quantitative consistency between predictions and direct simulation re-

sults at SOS = 15 (low). (A) Fold change in transition rate (i.e., defined as a larger

rate divided by a smaller one) due to 1% increase of rate constants. The transition is

considered as stochastic escape from the stable state to the hyperplane where 60% of

Ras are activated. Each red dot represents the perturbation of a different rate con-

stant. The direct simulation results are the averages of ten independent FFS runs,
and for each FFS run 10 3 points were stored on each surface. Only the results for the

key reactions, namely RasGAP catalytic activity, GTP-SOS catalytic activity, and

RasGRP catalytic activity are labelled. (B) Fold change in transition rate when one

molecule of each type is added to the system. Only the results for the key species,
namely RasGAP, SOS, and RasGRP are labelled.
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Chapter 3

T-cell Receptor Induced Activation

of ERK but not of P38 MAP

Kinase Pathways Requires

Allosteric Activation of SOS

Activation of the small GTPase Ras is a pivotal regulatory point of antigen receptor-

induced MAPK activation in lymphocytes. For Ras regulation, lymphocytes utilize at

least two families of Ras Guanine nucleotide Exchange Factors (RasGEFs), namely,

SOS and RasGRP. Previously, we have found that RasGRP alone induces analog

Ras-ERK activation, while SOS and RasGRP synergize to activate Ras-ERK in a

digital pattern. Here we show that binding of Ras-GTP to SOS1 allosteric pocket

is critical for this synergy by computational modeling and biological experiments.

BCR-induced ERK activation in allosteric pocket mutant SOS1 (W729E)-expressing

DT40 cells resembles that of parental SOS-deficient DT40 B cells, displaying uni-

modal analog ERK activation pattern regardless of dosage and timing of stimulation.

Inhibition of RasGRP1 expression and/or activation have great impact on antigen

receptor-stimulated ERK activation, but P38 activation is only modestly affected.

Optimal activation of P38 requires the presence of SOSI but not its allosteric pocket.
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Redundancy of having two RasGEFs in lymphocytes is important for cells (1) to dis-

play greater flexibility and distinct response thresholds to graded stimuli, and (2) to

ensure correct regulation of other MAPKs such as P38.

3.1 Introduction

MAP kinase (MAPK) signaling cascades are conserved pathways that can be acti-

vated by a wide variety of stimuli and play a role in diverse cellular processes, like

cell proliferation, differentiation, or apoptosis [7]. Early on it was recognized that

activation patterns of MAPK can vary and can have different biological effects [35].

Specifically, stimulation of Rat adrenal pheochromocytoma (PC-12) cells with neu-

ronal growth factor (NGF) results in sustained activation of the MAPK ERK and

differentiation, whereas stimulation with epidermal growth factor (EGF) elicits tran-

sient ERK activation and cell proliferation [35]. Rewiring of the feedback loops in the

NGF- and EGF-ERK networks subsequently alters the cell fate, further demonstrat-

ing a causative link between mode of MAPK activation and cell biological outcome

[36]. Similarly, cooperating feedback loops underlie the conversion of graded input sig-

nal into binary MAPK activation and an all-or-none biological response, maturation,

of the stimulated Xenopus oocytes [37].

In the thymus a stringent selection process ensures the development of functional

T cells, while potentially auto-reactive T cells are deleted [38]. Differential activa-

tion of the ERK-, P38-, and JNK-MAPK pathways appears to correlate with these

opposing cell fates: life of death [38, 39]. The RAF-MEK-ERK signaling cascade

downstream of the activated form of the small GTPase Ras has been extensively

studied, including studies in T lymphocytes and thymocytes [40, 41]. Ras cycles be-

tween GTP-associated active state and GDP-bound inactive state. Active Ras-GTP

recruits and activates Raf kinase, which initiates the sequential phosphorylation cas-

cade of RAF-MEK-ERK. Lymphocytes utilize at least two families of Ras guanine

nucleotide exchange factors (RasGEFs) for immunoreceptor-induced GTP-loading of

Ras, RasGRP and SOS [42]. RasGRP family GEFs are predominantly expressed
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in lymphoid cells and mediate calcium- and/or diacylglycerol-responsive Ras activa-

tion [42]. SOS RasGEFs are recruited to the plasma membrane where Ras resides

via the small adapter molecule Grb2, which binds to phosphorylated tyrosines in

adapter molecules or in receptor tyrosine kinases [42]. In T cells, RasGRP1 plays a

non-redundant role in activation of Ras/ERK pathway and positive selection of devel-

oping T cells and TCR-induced ERK phosphorylation is impaired in Rasgrp1-/- mice

[43]. Similarly, deletion of RasGRP1 and RasGRP3 in the chicken DT40 model B cell

line greatly impairs B cell receptor (BCR)-induced ERK activation [44, 5]. SOS 1 and

SOS2 consist of the second GEF family in lymphocytes. In knockout mice, SOSi is

essential for normal placental development and survival of embryo, while SOS2 is dis-

pensable. Conditional inactivation of SOSI in thymocytes impairs receptor-induced

ERK activation only moderately. By combining cellular and biochemical approaches

with computational models, we established that RasGRP and SOS synergize to ac-

tivate Ras/ERK pathway in lymphocytes. Significantly, we demonstrated that Ras-

GRP activates ERK in a graded, or analog, manner, whereas SOS (with RasGRP)

does so in a digital, or bimodal way [6]. The synergy arises from RasGTP produced

by RasGRP which subsequently can bind to, and allosterically activate, SOS [5, 6].

The allosteric binding pocket for Ras had been previously identified in the crystal

structure of the catalytic domain of SOS1 with Ras [45] and loading of this pocket

by RasGTP induces a conformational switch [46]. The resultant RasGTP-SOS-Ras

positive feedback loop operates in both EGF-stimulated Hela cells 13 that do not

express RasGRP1 [5] and in a very efficient manner in TCR- or BCR-stimulated lym-

phocyte cell lines that are positive for RasGRP1 expression [5, 6]. We hypothesized

that coinciding expression of RasGRP and SOS in lymphocytes offers the capacity to

these cells to signal to ERK in two modes, analog and digital, the latter as a result

from passing a threshold of signal input so that SOS is allosterically activated [47].

It is not know how disruption of the feedback to SOS allosteric pocket might affect

ERK activation.

Activation of the P38 and JNK MAPK pathways is also critical for developing T

cells, but the molecular mechanism of activation in lymphoid cells is largely unknown
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[48, 49]. Analyses of mouse models have provided fascinating evidence suggesting that

different Ras-MAPK pathways might drive positive versus negative selection [50]. In

Grb2 heterozygous mice P38 and JNK activation and negative selection is impaired,

while ERK phosphorylation and positive selection is intact [51]. Conversely, ERK-1

and-2 doubly deficient thymocytes demonstrate impaired positive selection [52], but

negative selection is intact [53]. Most notably, pharmacological inhibition of P38

MAPK bocks negative selection of thymocytes in fetal thymic organ cultures. The

mechanistic details of how upstream signaling molecules might orchestrate coordi-

nate activation of these MAPK pathways are unknown. Here we utilized biochemical

approaches with model cell lines and primary lymphocytes in combination with com-

putational approaches to examine the potential role of allosteric activation of SOS

regulating the quantity and quality of Ras and ERK-, P38-, and JNK-MAPK signal

output.

3.2 Results

3.2.1 Both RasGRP and SOS contribute to optimal ERK

activation

It has been suggested that developing T cells (thymocytes) require lower levels of TCR

signal input to activate ERK kinases and higher levels of TCR stimulation to also

activate P38 and JNK [38, 49, 54]. To test this we isolated thymocytes from mice and

stimulated these with a low or high dose of anti-CD3E crosslinking antibody, which

simulates a TCR stimulus. Whereas ERK phosphorylation was readily induced by low

levels of TCR stimulation, phosphorylation of P38 critically depended on a high dose

of stimulating anti-CD3E antibody. Phosphorylation of JNK was efficiently induced

by sorbitol exposure but was not triggered by high doses of anti-CD3e antibody (Fig.

3-1a). Similarly, wild-type chicken DT40 B cells activate ERK in a very sensitive

manner, following anti-BCR stimulating antibody. Both the presence of RasGRP

or SOS RasGEFs is required for triggering high levels of ERK activation at the
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Jun et. al, Figure 1 MAPK signaling depends on stimuli dosage and SOS

Figure 3-1: MAPK ERK activation pattern depends on stimuli dosage and SOS. (a)
TCR stimulation of total mouse thymocytes results in activation of MAPK ERK
and P38. Note that ERK activation is much more robust. SB indicates 30 min
stimulation with 0.4 M sorbitol as a positive control for phospho-P38. (b) Deficiency
in either RasGRP or SOS leads to impaired ERK activation in DT40 B cells. Wild-
type, RasGRP1-3- and SOS1-2- DT40 B cells were activated with maximal aBCR
stimulation for indicated time. (c) SOS1/2-deficient DT40 B cells do not demonstrate
a bimodal P-ERK pattern (indicated as B) after 3 min BCR stimulation, regardless
of strength of BCR stimulus (range is 1:32,000 to 1:1,000 dilution). Bimodality is
statistically tested by Hartigans analysis [10]. Such analyses indicated that only in
wt DT40 cells bimodal pattern of ERK phosphorylation can be achieved.

population level (Fig. 3-1b). We previously reported that the bimodality in ERK

activation disappears in the absence of SOS1/SOS2, following a time course with

two different doses of BCR-stimulating antibody [6]. Expanding on these findings,

we established that not a single dose or timepoint of BCR stimulation resulted in

bimodal ERK activation when SOS RasGEFs are missing (Fig. 3-1c and data not

shown). We hypothesized that the lack of bimodal ERK activation in SOS deficient

cells is caused by the absence of the allosteric feedback loop to SOS and tested this

hypothesis next.
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Figure 3-2: In silico prediction of ERK activation pattern in cells with wild-type SOSI,
without SOS or with allosteric mutant W729E SOS1 expression. ERK activation is
projected at different time points with three different stimuli levels, namely, (a) weak
stimulation, (b) intermediate stimulation, and (c) strong stimulation.

3.2.2 In Silico modeling: Influece of SOS1 allosteric pocket

on ERK activation

Here we utilized established computational models (Fig. 3-9) that stochastically

simulate the Ras-ERK activation [6, 8, 9] to explore the effect of SOS, in particular,

SOS' allosteric pocket, in ERK activation.

We modeled the ERK activation in cells with wild-type SOS1, without SOS, or

with allosteric-mutant SOS (i.e., W729E) by abrogating the binding of RasGTP to

SOS' allosteric pocket. We investigated ERK activation profiles at different time

points with three different stimuli levels, namely, (a) weak stimulation, (b) interme-

diate stimulation, and (c) strong stimulation (Fig. 3-2). While the bimodal pattern

of ERK activation is observed in cells with wild-type SOS1, bimodality is not seen at

any dosage level and any time points without SOS or without intact SOS' allosteric

pocket.
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3.2.3 An intact allosteric pocket in SOS1 is required for bi-

modal ERK activation

Based on structural analysis of SOS protein, tryptophan residue 729 in SOSI (W729)

was identified as a key residue coordinating Ras binding within allosteric pocket. Sin-

gle amino acid alteration of tryptophan into glutamic acid (W729E) cripples allosteric

activation of nucleotide exchange activity of the isolated catalytic domain of SOSI

[6]. We hypothesize that BCR-induced digital ERK activation requires the synergy

between RasGRP and SOS, and that SOS allosteric pocket enables positive feedback

enhancement of RasGEF activity primed by RasGRP. To directly test this directly,

we stably reconstituted SOS1-2- DT40 cells with either WT or W729E (allosteric

pocket mutant) human SOS1 (hSOS1). Selected stable clones expressed comparable

levels of surface B cell receptor, similar to that on WT DT40 and other DT40 mu-

tants (Fig. 3-3a) and WT- or W729E-hSOS1 was expressed at comparable levels (Fig.

3-3b). We first analyzed Ras- and ERK-activation at the population levels and es-

tablished that WT hSOS1 reconstitution not only rescued the BCR-induced-Ras and

ERK activation defect in SOS1-2- DT40 cells, but also augmented the magnitude of

activation (Fig. 3-3b). By contrast, W729E hSOS 1-reconstituted cells demonstrated

significantly lower levels of activated Ras and ERK compared to the WT hSOS1

stable clone (Fig. 3-3b).

Moreover, BCR stimulation of stably reconstituted SOS1-2- -WT hSOS1 cells re-

sulted in a rescue of the bimodal ERK activation pattern, revealed by dose-responses

and time courses of BCR-induced phospho-ERK flow cytometry and Hartigans anal-

yses of the resulting phospho-ERK histograms (Fig. 3-3c and d) [10]. By contrast,

reminiscent of parental SOS1-2- DT40, bimodal ERK activation was never observed

in SOS1-2- -W729E hSOS1 DT40 cells (Fig. 3-3c and d). Expression of W729E

hSOS1 did not lead to a general impairment of ERK activation as stimulation of cells

with the synthetic analog of DAG (PMA) resulted in very similar ERK activation in

WT DT40, SOS1-2- -WT hSOS1, and SOS1-2- -W729E hSOS1 cells (Supplemental

figure). Likewise, the observed results did not reflect uniquely selected stable clones,
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Figure 3-3: Efficient and bimodal Ras-ERK signaling requires an intact allosteric

pocket in SOSI. (a)Surface BCR levels of various DT40 cell lines. SOS1/2-deficient

DT40 cells stably reconstituted with wildtype or W729E hSOS1 express comparable

surface BCR level to wildtype or other mutant DT40 cells. (b) BCR induced Ras and

ERK activation depends on SOS and on SOS allosteric pocket. Note the decrease in

W729E hSOS1, compared to wt hSOS1. (c/d) Reconstitution of SOS1SOS2 deficient
DT40 B cells with the W729E allosteric pocket mutant does not lead to rescue of

the bimodal pattern, regardless of dose or time course of stimulation. Bimodality

statistically supported by Hartigans analysis is marked as B.

additional WT and W729E hSOS1 stable clones were tested in parallel and exhibited

similar dynamics and patterns of BCR-induced P-ERK (Data not shown).

3.2.4 Optimal P38 activation preferentially requires SOS1

Pharmacological inhibition of P38 MAPK bocks negative selection of thymocytes in

fetal thymic organ cultures. Negative selection and P38 activation has been reported

to be unaffected in Rasgrpl deficient mice [55]. However, these assays were per-

formed with thymocytes that were stimulated with PMA, which robustly activates

the RasGRP pathway but does not engage the SOS pathway. Thus it is difficult to
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make a definitive conclusion based on these assays. In Grb2 heterozygous thymo-

cytes, TCR-induced P38 activation is impaired [51] suggestive of a possible role for

SOS that is recruited by Grb2. However, the effects of targeted deletion of Sos1 in

thymocytes on P38 activation have not been explored [56]. It thus remains to be

determined if and how these RasGEFs might affect the P38 MAPK pathway and

how this compares to their roles on the ERK pathway. To address this question we

determined TCR-induced P38 activation in Jurkat T cells or human CD4+ T cells in

which RasGRP1 or SOSI expression were targeted by siRNA duplexes. In contrast

to the reported more dominant role for RasGRP1 in terms of ERK activation in these

cells compared to SOSI [5], we found the opposite here. TCR-induced activation of

P38 was consistently more impaired by the reduction in SOSI expression than by

the reduction in RasGRP1 expression in both Jurkat T cells and human CD4+ T

cells (Fig. 3-4a and b). Complete absence of RasGRP-1 and -3 or of SOS-1 and -2

in our RasGRP1-3- and SOS1-2- DT40 cell lines illustrated this point more clearly,

the SOS RasGEFs made a larger contribution towards BCR-induced P38 activation

than the RasGRP RasGEFs, whereas the opposite holds true for activation of ERK

MAPK (Fig. 3-4c). Given the differences between RasGRP and SOS in defective

ERK versus P38 activation, one hypothesis would be that activation of ERK and P38

occurs mechanistically different downstream of these RasGEFs. We next set out to

test this hypothesis.

3.2.5 The PLC-y-Rasgrpl axis contributes only minimally to

TCR-induced P38 activation

We next utilized a pharmacological approach to inhibit phospholipase C (PLC) with

U73122, the enzyme that produces the second messengers IP3 and DAG that are es-

sential for RasGRP1 membrane recruitment and activation in thymocytes and T cell

lines [42]. As expected based on the established role of the DAG-RasGRP1-Ras path-

way towards ERK activation, exposure of total mouse thymocytes to U73122 reduced

the level of ERK activation following TCR stimulation, whereas the U73343 inert ana-
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Figure 3-4: Optimal P38 activation preferentially requires SOS1. (a) siRNA-driven
knockdown of SOSI in Jurkat T cells or (b) in human peripheral blood CD4 T cells
results in a reduction of TCR-triggered P38 activation that is more pronounced than
when RasGRP1 expression levels are reduced by siRNA-driven knockdown. Note
these P38 results are diametrically opposite from what we have reported for ERK
activation where RasGRP1 is more dominant. (c/d) Impaired BCR-induced P38
activation in the absence of SOS. Normal BCR-induced P38 activation in the absence
of RasGRP.
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log as a control had no measurable effects (Fig. 3-5a and b). Significantly, U73122

had a much more modest effect of the TCR-induced activation of P38 (Fig. 3-5a and

b). We next took a genetic approach by comparing thymocytes from Rasgrpl- /-

mice with those from #2M/MHC class II doubly deficient mice. In both cases thy-

mocyte development is arrested and thymi typically consist of a rather uniform cell

population of CD4+CD8+ thymocytes 23. In Rasgrpl~/- mice the defect is intrinsic

to the thymocytes, whereas in the #2M/MHC class II doubly deficient mice the defect

lies in the epithelial cells and not in the thymocytes. As previously reported, ERK

activation is severely impaired in TCR-stimulated CD4+CD8+ thymocytes that are

deficient for Rasgrpl [43] (Fig. 3-5c and d). By contrast the modest TCR-induced

P38 activation that can be observed in wild type CD4+CD8+ thymocytes is only

minutely/not significantly affected by the genetic deletion of Rasgrpl (Fig. 3-5c and

d). Thus the mechanism of P38 activation appears to be very different from ERK

activation and occurs mostly independent of Rasgrpl.

3.2.6 SOS1 allosteric pocket is dispensable for BCR-stimulated

P38 activation

We have previously demonstrated that RasGTP produced by RasGRP1 can alloster-

ically activate SOSI to produce more RasGTP, which subsequently leads to a digital

ERK signal downstream [5, 6]. Having observed that RasGRP1 plays only a min-

imal role in antigen receptor-induced P38 activation, we focused on SOS next and

tested if the feedback loop to the allosteric pocket in SOS1 might be involved and

how uncoupling this loop via the W729E point-mutation in SOSI affects the acti-

vation of P38. Under conditions of strong BCR stimulation, the earlier described

defect in P38 activation in SOS1~/-SOS2-/- DT40 B cells was restored by recon-

stitution with WT hSOS1. Unexpectedly, a very similar level of restoration was

obtained in SOS1-/-SOS2-/~ -W729E-hSOS1 cells (Fig. 3-6a). W729E-hSOS1 re-

constituted cells demonstrated P38 activation that was very similar to that in WT

hSOS1 reconstituted cells regardless of the dose or length of the BCR stimulation,
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Figure 3-5: PLCg-RasGRP1 axis contributes only minimally to P38 activation in
thymocytes. (a/b) Pharmacological inhibition of (DAG-producing) PLCy by U73122
results in a modest reduction of P38 activation compared to the reduction in ERK ac-

tivation in TCR-stimulated total thymocytes. U73343, inert analog is used as a treat-
ment control. (c/d) Minute reduction in TCR-induced P38 activation in Rasgrpl-
deficient thymocytes. RasGRP1+/+ thymocytes were obtained from MHCI/II-double

deficient mice.
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demonstrating that the allosteric pocket in SOS1 is dispensable for optimal BCR-

triggered P38 activation (Fig. 3-6b, c, and d). These results were further validated

with transient reconstitution of SOS1-/-SOS2-/~ cells with vector, WT hSOS1, or

W729E-hSOS1. Again, W729E-hSOS1 rescued the P38 activation defect with the

same efficiency as WT hSOS1 (Fig. 3-6e). Importantly, ERK activation was always

lower in W729E-hSOS1 compared to WT hSOS1 expressing cells, reiterating the im-

portance of allosteric activation of SOSI for optimal ERK activation (Figs. 6a-6d).

The transient transfection approach also offered the opportunity to investigate if Ras

exchange activity of SOS1 is required for P38 activation. Despite numerous attempts,

we were unable to generate SOS1-/-SOS2-/- cells stably expression F929A-hSOS1,

the RasGEF mutant form of hSOS1.

3.2.7 SOS1, Rac, and P38 activation

As an initial start to map a pathway from SOS1 towards P38 in lymphoid cells we

first examined activation of the small GTPase Rac. Rac is typically positioned up-

stream of the MKK3/6-P38 MAPK pathway, although most research has been done

in non-lymphoid cell types [48, 54]. In agreement with the impairment in BCR-

induced P38 activation, GTP-loading of Rac induced by BCR stimulation was re-

duced in SOS1-/~SOS2~/- DT40 B cells (Fig. 3-7a). We also detected a Rac acti-

vation defect in RasGRP1-/-RasGRP3~/- cells, but this was more modest than in

the SOS1-/-SOS2~/- DT40 B cells, paralleling the requirements for P38 activation

and contrasting the need for RasGRP or SOS in terms of ERK activation (Fig. 3-

7a). Moreover, stable reconstitution of SOSI-/-SOS2-/- cells with W729E-hSOS1

resulted in a significant'rescue of BCR-induced Rac activation, approximating the

levels obtained in WT hSOS1 reconstituted cells (Fig. 3-7b).
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Jun et. at, Figure 6 SOS1 allosteric pocket is dispensable for optimal P38 activation

Figure 3-6: SOSis allosteric pocket is dispensable for optimal P38 activation. (a/b/d)
W729E hSOS1 and wt hSOS1 similarly rescue the SOS1SOS2 deficient DT40 in terms
of P38 activation regardless of stimuli dosage. Note that ERK activation defect is
only obvious at early time point in response to maximal aBCR stimulation (a). At
lowest aBCR stimulation, ERK activation defect is more evident. (d) P38 activation
is measured in response to two fold serial dilution of BCR antibody at a range of
intermediate dosage. (e) SOS1-2- DT40 cells were transiently transfected with empty
vector, WT hSOS1 or W729E hSOS1 and stimulated as indicated.
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Figure 3-7: BCR-induced RAC activation requires SOS but not allosteric activation
of SOS1. (a) RAC activation in response to high aBCR dosage is measured by
RAC pull-down assay. (b) RAC activation in stably hSOS1-reconstituted DT40s is
measured by RAC pull-down assay. Low aBCR dosage is used for stimulation.

3.2.8 Computational prediction: roles of SOS in Rac-P38

activation

Lastly, we built a coarse-grained computational model to speculate the roles of SOS in

Rac-P38 activation. First, notice the differences in activation profiles of Rac and P38

(Fig. 3-7a): RasGRP1-/-RasGRP3-/- cells had a significant defect in Rae activation

but a fairly robust P38 activation; in contrast, SOS-/ -SOS2~/- cells had even lower

Rae activation and that amount of Rac activation failed to activate P38 effectively. We

hypothesized two possible mechanisms to explain this: (1) Rac activated by RasGRP-

mediated pathways could be localized in a different compartment from that activated

by SOS-mediated pathways, and SOS-activated Rae is more efficient in activating

P38; (2) the amount of active Rae might need to overcome a threshold to effectively

activate P38, and RasGRP1-/-RasGRP3-/- can generate enough active Rac to cross

that threshold, but SOS1/-SOS2-/- cells cannot. While the first hypothesis can be

tested by imaging experiments that track the location of active Rac, the second can be

realized by introducing non-linearity in Rac-P38 activation. We adopted the second
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SOS as RacGEF and Adaptor SOS as Adaptor only SOS as RacGEF only
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WT RasGRtP 3' SOSI2- DH-PH ~ WT RaisGRP 3- 5051-2- DH-PH* WT RasGRP 3- SOS12- DH-PH"

Figure 3-8: Computational predictions for SOS activating Rac-P38 pathway. When
SOS functions as (a) both a RacGEF and an adaptor, (b) an adaptor only, and (c) a
RacGEF only, the activation profile of Rac-P38 for cells with DH-PH domain mutant
SOS is (a) between that for wild-type SOS and that for SOS1-/~SOS2-/-, (b) the
same as wild-type SOS, and (c) the same as SOS1-/-SOS2-/-.

hypothesis in our computational modeling, and a Hill-coefficient of two was sufficient

to produce the thresholding effect observed in Fig. 3-7a.

Second, we investigated whether SOS functioned as a RacGEF, an adaptor (i.e.,

a structural component connecting BCR-generated signals to RacGEF activation),

or both. We speculated that SOS might possess RacGEF activity through its DH-

PH domain [57] and/or help the recruitment and stabilization of RacGEF (such as

Vav) at the LAT signalisome. Furthermore, we assumed that RasGRP facilitates the

stable formation of LAT signalisome by co-operativity [47] and hence regulates Rac

activation via RacGEF (such as Vav) that is recruited to LAT. By computational

modeling, we predicted the Rac-P38 activation profiles for SOS with DH-PH muta-

tions (i.e., abrogating SOS RacGEF activity) under three scenarios (Fig. 3-8): (a)

SOS is both a RacGEF and an adaptor, (b) SOS is only an adaptor, (c) SOS is only
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a RacGEF. For (a), the DH-PH mutation leaves SOS adaptor functionality intact

and hence the Rac-P38 activation profile for DH-PH mutants falls between that for

wild-type and that for SOS1-/-SOS2-/-; for (b), the DH-PH mutation does not alter

SOS functions and the DH-PH mutant has the same Rac-P38 activation profile as

wild-type; for (c), the DH-PH domain mutation completely destroys SOS functions

and the DH-PH mutant is as deleterious as SOS1-/-SOS2-/-. Therefore, by exper-

imentally testing the effect of DH-PH mutation on the Rac-P38 activation, we may

unveil the role of SOS in regulating the Rac-P38 pathway.

3.3 Discussion

In response to gradual increase of stimuli, Ras/MAPK signaling displays a great

flexibility in ERK signaling pattern and dynamics. MAPK cascade is suggested to

be intrinsically capable of showing switch-like highly cooperative activation [58, 59].

Additionally, MAPK cascade-extrinsic mechanisms also contribute to flexible shap-

ing of MAPK signaling outcome. These mechanisms include Ras nano-clusters [60],

dual negative feedback control by SHP1 [61], sub-cellular location of cascade activ-

ity [62], or scaffold-mediated signal quality change [63]. Previously, we also proposed

SOS allosteric pocket-mediated interplay between RasGRP and SOS generates highly

sensitive digital ERK activation in lymphocyte antigen receptor signaling [5, 6].

In the present study, we directly tested our proposed model by both computer-

based simulations and biological experiments involving reconstitution of full-length

human SOS1 (hSOS1) into SOS1-2- DT40 B cells. As experiment readouts, we mea-

sured ERK phosphorylation in both population (Western blot) and in individual cell

level (phospho-flow cytometry). Our results clearly demonstrated that disruption of

allosteric activation of SOS is sufficient to alter the quantity and quality of MAPK

ERK signaling in DT40 B cells. In spite of comparable level of sBCR and transfected

protein expression, W729E mutant SOS1 cells signal to ERK in an analogous man-

ner, much reminiscent of SOS1-2- cells (Fig. 3-3). DT40 B cells expressing SOS1

bearing mutated allosteric pocket did not show robust bimodal ERK activation pat-
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tern regardless of dosage nor the duration of stimulation (Figs. 3-3C and D). Our

independent computer simulation also supports experimental findings (Fig. 3-2).

We and others previously demonstrated RasGTP binding to SOS allosteric pocket

potentiates Ras-ERK pathway signal output [6, 64]. But, our present study shows

for the first time the role of SOS allosteric activation in regulating highly sensitive

(digital) MAPK ERK activation in lymphocytes. Both DT40 B cells and mouse

primary thymocytes show greater dependence on RasGRP1 for robust activation of

ERK [43, 44, 5]. In our tested model, RasGRP activation temporally precedes the

activation of SOS, catalyzing initial RasGTP accumulation priming SOS via allosteric

activation. The W729E mutation within SOSI REM domain disrupts RasGTP bind-

ing to allosteric pocket and uncouples positive feedback loop. However, we cannot

completely rule out factors, other than defective positive feedback loop and subopti-

mal catalytic capability of SOSI, can also contribute to attenuated ERK signal output

in W729E mutant SOS1-expressing DT40 B cells. For example, plasma membrane

Ras nano-clusters have been identified and are suggested to convey analog stimuli in-

put into a given unit of Ras activity, effectively functioning as analog-digital converter

[60, 65]. Impaired binding of Ras at the allosteric pocket of SOSI may destabilize

SOSI at the plasma membrane, perturbing SOS1 interaction with Ras nano-clusters.

Previous studies in non-lymphoid cells anecdotally suggested correlation between

SOS and Rac GEF activity [66, 67, 68]. However, it was not known whether SOS con-

nects antigen receptor to activation of RAC and its downstream MAPK P38. Only

hints came from studies of mouse thymocytes with reduced expression or complete loss

of Grb2, that show impaired P38 and JNK activation [51, 69]. In present study, BCR-

induced Rac and P38 activation in SOS1-2- DT40 cells is severe reduced (Fig. 3-7A).

This was surprising because P38 activation in RasGRP1-3- DT40 cells is relatively

normal in spite of more severe defect in activating ERK (Fig. 3-7A). Similarly, thy-

mocytes deficient of RasGRP1 exhibited comparable CD3-stimulated P38 activation

to RasGRP1+ thymocytes although ERK activation was greatly diminished without

RasGRP1 expression (Fig. 3-5 C&D). Inhibition of RacGTP accumulation correlates

with impaired BCR-induced P38 and JNK activity in DT40 cells [70]. Therefore,
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wildtype-comparable P38 activation in RasGRP1-3- DT40 cells, in spite of reduced

Rac-GTP accumulation, was unexpected (Fig. 3-7). Additionally, allosteric SOS1 ac-

tivation appears to be dispensable for optimal BCR-induced P38 activation although

Rac activation is not fully rescued without intact distal Ras binding pocket (Figs. 3-6

& 3-7B). Based on our results, sub-optimal Rac-GTP level is enough to support full

activation of P38 in response to BCR stimulation as long as full-length SOS1 protein

with intact catalytic Ras binding site is present.

Due to low sensitivity and robustness of P38 activation and difficulty with RNAi

in primary cells, we could not fully examine whether SOS-RAC-P38 connection stays

true only in DT40 B cells. Our finding has to be further validated in SOS-deficient pri-

mary lymphocytes to rule out whether DT40 B cell lines show particular dependence

on SOS for BCR-RAC-P38 pathway. Nevertheless, it is interesting to contemplate

how SOS couples BCR to RAC-P38 pathway. As a mean of unbiased evaluation, we

used computer-based simulations to test three possible scenarios: (1) SOS itself as a

RacGEF, (2) SOS as a structural component, and (3) SOS as both a RacGEF and a

structural component for other RacGEFs.

Structurally SOS has dual GEF potential both as Ras GEF and Rac GEF in which

SOSs atypical Dbl homology domain might perform the exchange reaction of GDP

for GTP [57]. However, purified SOS1 alone has never been shown to catalyze GTP

loading of RAC (personal communication with John Kuriyan). Instead, distinct SOSI

complex in association with EPS8 and E3b1/Abi-1 co-factors was shown to have in

vitro RacGEF activity [67]. To serve as a RacGEF, SOS has to dissociate from Grb2

and form alternate complex with EPS8 and E3b1 [71]. However, to this date it remains

unknown whether such mechanism is also operating in antigen receptor-induced RAC

and MAPK activations in lymphocytes.

Alternatively, SOS effect on Rac could be indirect, through the Rac GEF activity

of another molecule(s) in a SOS-dependent manner. Complex of Grb2 and SOS1 at

2:1 ratio was recently shown to mediate clustering of multiple LATs and associated

proteins in T cells [72]. Attenuation of LAT clustering impairs TCR signaling more

especially at low grade TCR stimulation. Due to negative cooperativity, dual Grb2-
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SOSI complex only forms when Grb2 exists in molar excess compared to SOS1,

therefore molar quantity of Grb2 may serve as a threshold/bottleneck determining

degree of LAT aggregation. It remains to be verified whether Grb2-SOS1 facilitates

similar clustering of LAB in B cells, but failure to promote LAB clustering may lead

to severe impairment in RAC-P38 activation pathway. In this respect, impaired JNK

and P38 activation in Grb2-heterozygote null thymocytes is note-worthy [51].

In the second scenario we modeled, SOS provides a structural role in coupling

upstream antigen receptor signal to downstream activation of RacGEF(s). Candidate

RasGEFs include Tiam1, Vav and Dock2 [73, 74]. First, Tiam1 is so far described

as a RacGEF required for chemokine-induced Rac activation in mouse T cell, and

it remains to be revealed whether Tiam1 is also connected to antigen receptor [75].

However, Tiam1 is unique in that its RacGEF activity is suggested to be directly

stimulated by binding to RasGTP [76]. Allosteric pocket mutant hSOS1 expression

incompletely rescues BCR-stimulated RAC-GTP accumulation in SOS1-2- DT40 B

cells (Fig. 3-7B). We can speculate RacGEF connected to SOS might take inputs

from upstream Ras activity as well. In this regard, Ras activity-sensing RacGEF like

Tiam1 is a good candidate.

Second, Vav family proteins are the best studied Rac-GEF downstream of lympho-

cyte antigen receptor [77]. Unlike Tiam1, Vav is not directly responsive to RasGTP

levels. However, Vavs function relies on membrane-recruitment where it can activate

Rac, and its GEF activity is regulated indirectly by Ras via PI3Kinase [73, 78]. Ad-

ditionally, several studies indicate crosstalk between Vav and RasGRP1 [79, 80, 81].

Third, CDM (Caenorhabditis elegans Ced-5, mammalian DOCK180 and Drosophila

melanogaster myoblast city) family proteins have non classical RhoGTPase GEF ac-

tivity [82]. Dock2 is a member of CDM family highly expressed in lymphocytes [74].

Dock2 is required for TCR-induced Rac activation [83]. Interestingly Dock2 is rapidly

tyrosine phosphorylated following TCR stimulation [84]. These facts taken together

suggests Dock2 is spatially in close proximity to LAT-SLP76 signalosome, making it

a plausible RacGEF connected to SOS through TCR/BCR.

58



3.4 Materials & Methods

3.4.1 Cell lines, mice, stimulations and inhibitor treatment.

Cultures of human Jurkat leukemic T cells, chicken DT40 B cell lines and DT40-

derived lines were maintained as described before [44, 5, 6]. All experimental mice

were used at the age of 6-7 weeks. RasGRP1-deficient mouse was obtained from

James Stone. Age and sex-matched MHCI/I-double deficient (Abb/b2m) mice were

purchased from Taconic (Hudson, NY). For cell stimulation, harvested cells were

rested for 30 minutes in PBS or plain RPMI at 374C. For PLCy inhibition, cells were

preloaded for 20 minutes with U73122 inhibitor (Calbiochem) or its inactive analog

U73343 at 5 pM (Calbiochem). Stimulations of DT40 cells were carried out in PBS

or RPMI at 37"C with the indicated doses of M4 aBCR antibody hybridoma ascites

fluid preparation.

3.4.2 Hartigan's analysis

We previously employed Hartigans analyses of P-ERK histograms to label these as

unimodal or bimodal [6]. Here we used the average of cell counts in the neighboring

five gates to smooth the cell count data in each gate in the pERK flow cytometry

experiment. We re-populated the pERK levels uniformly within each gate to generate

a continuous distribution of pERK expression pattern and applied Hartigans test to

the generated distribution.

3.4.3 Plasmids, Stable & Transient Transfection

Plasmids used in this study were described before [5, 6, 64]. For transient co-

transfection of human SOSI with hCD16/7 fusion construct, 3 0 0 pl of SOS1-2- DT40

B cell suspension at 66 x 106 cells/ml in plain RPMI was electro-transfected with

10pg of each plasmid by using a Biorad electroporator (Biorad) set at square wave,

300V, 10ms single pulse. Transfected cells were cultured for 16-20 hr prior to anti-

hCD16-biotin MACS purifications following manufacturers guideline (Miltenyi Biotec).
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For stable reconstitution of human SOS1, SOS1-2- DT40 B cells were transfected

with 10pg hSOS1 plasmid by electroporation set at exponential decay, 250V, 950pF.

Transfected cells were selected by 10pg/ml final blasticidin S (Fischer Biotech) from

24 hr post-transfection. Single cell-derived clones were isolated from a set of seri-

ally diluted culture on 96-well-plates after 1-2 weeks of seeding. Isolated clones were

screened for hSOS1 and surface BCR (sBCR) expression by Western blot and FACS

respectively.

3.4.4 Western blot analysis of cell lysates

Levels of various proteins were measured by Western blot as previously described [5,

6]. Following antibodies were purchased from Cell Signaling: Phospho-p44/42 MAPK

ERK1/2 (pT204/pY204), total ERK1/2, Phospho-P38 (pT180/pY182, clone 3D7),

total P38, Phospho-PLCyl (pY783) and Phospho-ZAP70 (pY319). Other antibodies

are human SOS1 (BD Transduction Lab.), mRasGRP1 (Clone m199), Grb2 (SC-255,

Santa Cruz Biotech), aTubulin (Sigma), Rac1 (Clone 23A8, Millipore) and Pan-

Ras (Clone Ab-3, Calbiochem) for detection of chicken Ras. Proteins were visualized

using ECL Western blot substrate (Pierce) and LAS-4000 image system (Fujifilm Life

Science). Densitometric analysis was performed using Multi Guage V3.0 (Fujifilm

Life Science). Shown results are representative of minimum two or more independent

experiments.

3.4.5 Intracellular FACS staining for pERK

BCR-induced ERK phosphorylation was measured by intracellular FACS staining as

previously described [6]. In brief, DT40 cells were resuspended/rested in PBS at

2.0 x 106 cells/75 pl (per well of 96 well plate). Cells were stimulated for desired

time by adding 75 pl of 2x stimulation mix and subsequently fixed for 20 minutes

at room temperature by mixing with 150 pl fixation buffer (Cytofix/Cytoperm, BD

Biosciences). Cells were washed and permeabilized for at least 30 minutes with 90%

methanol at -20"C. Fixed/permeabilized cells were stained with anti-Phospho-p44/42
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MAP Kinase (Thr202/Tyr204) antibody at RT in the presence of 2% (v/v) normal

goat serum (Jackson Immunoresearch Laboratories). Subsequently, cells were washed

twice and stained with PE- or APC-conjugated AffiniPure F(ab)2 fragment Donkey

Anti-Rabbit IgG (Jackson Immunoresearch Laboratories). Stained cells were washed

3 times and directly analyzed by FACS.

3.4.6 Ras and Rac activation assays

BCR induced Ras and Rac activation was analyzed by a Ras/RacGTP pull-down

assays according to the manufacturers instructions.

3.5 Supplementary Materials

3.5.1 Computational Models

For Fig. 3-2, we used an established computation model of Ras-activation via receptor

input, as described in Fig. 1A of Riese et al. [8] with the extension of Ras-Raf-MEK-

ERK activation cascade [9], as depicted in Fig. 3-9.

We applied the standard Gillespie algorithm [85] to simulate the described signal-

ing network stochastically. In all stochastic simulations, we used a spatially homoge-

neous simulation box of size V - area (4mm2 ) x height (0.02mm). This choice of the

system size ensures that the system is well-mixed. The initial concentrations and the

rate constants are those in Tables S1-2 and S3-4 of Das et al. [6], Tables 1-2 of Riese

et al. [8], and supplementary materials of Locasale et al. [9], except that we used

36 molecules/(pm2 ) for PIP2 to match their published results [8]. More details of

the simulation technique and choice of parameters can be found in the supplemental

material of Das et al. [6] and Riese et al.. [8].
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Figure 3-9: Coarse-grained model of ERK activation [6, 8, 9]. Ras can be activated

via both DAG-Rasgrp1-mediated and SOS-mediated pathways. The catalytic rate

of SOS depends on the state of its allosteric pocket: empty, bound to RasGDP, or

bound to RasGTP, with increasing level of catalytic activities. In particular, the

catalytic rate of SOS with RasGTP bound to its allosteric pocket is much larger than

that with RasGDP bound to its allosteric pocket. This constitutes a SOS-mediated

positive feedback for Ras activation. Ras can be deactivated by RasGAP, while DAG

can be metabolized by DGK. Activated Ras can trigger the activation cascade of

Ras-Raf-MEK-ERK.
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Chapter 4

Rare Events Happen Suddenly

4.1 Introduction

Many important biological transitions occur rarely, either because the intrinsic dy-

namics of the process are slow relative to the time scales of observation, or because

key intermediate steps, however fast they occur, occur only with low probabilities.

The latter case, generally referred to as "rare events", includes transitions out of a

stable basin (e.g., viral escape) and transitions between stable basins of reaction net-

works (e.g., potentially, in cancer). Abstractly, such transitions can be visualized by

imagining a random walker moving from a stable basin to an unstable peak (en route

to another stable basin). Such transitions are characterized by many unsuccessful

attempts, followed, eventually, by a successful attempt. As a signature of their rarity,

the expected time for the occurrence of such a successful attempt is exponential in the

height of the barrier, and is inversely proportional to the probability of the transition.

A remarkable property of such transitions is that, although the system waits a

long time for an arrival of a successful attempt, the successful attempt itself completes

rapidly. This final excursion takes little time. In particular, we show that for Markov

processes with detailed balance (such processes at steady state are known as at equi-

librium), the successful transition occurs as quickly as the reverse. The successful

excursion is not merely fast relative to the total waiting time for the rare transition,

which is to be expected, but rather it is just as fast as a successful excursion in the
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opposite (non-rare) direction.

One reason this is surprising is that the waiting time for the rare transition is quite

long, much longer than the transition downhill, which occurs successfully rapidly,

with few failed attempts. Perhaps it is easy to confuse the duration of the successful

attempt with the total waiting time. However, the results are surprising for two more

nuanced reasons. First, the transitions uphill are associated with slower intrinsic

dynamics than the transition downhill, which is why they are improbable (i.e., rare).

It seems natural to think that they will take longer to occur, even when successful.

Second, a trajectory going uphill seems more likely to take a step backward en route

to the final destination, since such back-tracking steps are more probable than the

uphill ones. If these steps take the trajectory all the way back to the origin, the

trajectory is unsuccessful and not relevant; however, successful trajectories can step

back as long as they do not go so far as the origin, and these backward steps would

consume time.

This interesting property of rare transition is well-known in a particular context:

in the limit that stochastic fluctuations relative to deterministic drift approach zero,

it has been shown by large-deviation theory that the rare transition undergoes the

deterministic path from the opposite direction in reversed time [26]; as a consequence,

the last excursion times are identical in both directions. We are not aware of a phys-

ical understanding of the generality of this phenomenon. Here we present different

approaches to proving this property in Markov processes with detailed balance, to

gain physical insight and to understand to what extent this property can hold in

non-equilibrium systems, such as viral escape.

4.2 General proof for equilibrium Markov processes

First, we provide a proof for Markov processes at equilibrium in general by invoking

a key property - time reversibility. Consider the trajectory taken from a Markov

process at steady state (i.e., the current state of the system does not depend on the

initial preparation of the system), as shown in Fig. 4-1. The object of computation is
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Figure 4-1: Schematic illustration of a long trajectory oscillating between two states
A and B. The segments w (indexed by k) from A to B without touching either state
in between are as shown in red.

the conditional mean first-passage time (CMFPT) from state A to state B, denoted

by E[TA_,BIA], that is, the expected value of the time from A to B (denoted by rAB)

conditioned on that once the system leaves state A, it does not return to state A before

it reaches state B (the condition denoted by A). To compute E[TAB|IA], one natural

way is to construct a "forward" trajectory ensemble by extracting all segments of

the trajectory that start in A and reach B without touching either state in between

(colored in red); if we label these segments by index k, and assume the segment Wk

leaves A at time tk and arrives at B at tk - Tk, then IE[rAB IA] is simply Zk rk/N,

where N is the total number of such segments. We claim that the "forward" trajectory

ensemble {Wk} is sufficient to compute the CMFPT from B to A, E[rB-AIB]. For

each "forward" trajectory Wk, we can define its time-reversed trajectory Ls by GCk(t) -

Wk(rk - t). Note that such a defined 'k(t) is a valid "backward" trajectory, i.e., it

starts from B and ends at A without touching either state in between. Because the

system is at steady state and the dynamic obeys detail balance by assumption, the

system is time-reversible, that is, the probability of observing wk is the same as that

of observing (Dk. Therefore, the "forward" trajectory ensemble {wk}, constructed as

such, constitutes the "backward" trajectory ensemble. Furthermore, the "backward"
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CMFPT E[TBA B) is rk-i Tk/N as well.

Next, we substantiate this general proof into two specific dynamics, namely,

continuous-time Markov Chain and one-dimensional Langevin dynamics, both of

which are restricted to preserve detailed balance.

4.3 Proof for continuous-time Markov Chain with

detailed balance

Consider a particular path w connecting state A to state B, where the transition from

state i to i + 1 takes time Ti and si = A and sm = B. Given that the waiting time

Ti at state i follows an exponential distribution characterized by the propensity of

leaving state i, ri, we can express the probability density of this path w conditioned

on that it starts from A as follows:

P(wlsi = A) = Psi-+32 Ps2 - 3 exp (-r 272 ) X ... X PSM_1-+S exp (--rM-i) (4.1)

where pos, is the transition probability from si to si+1. The clock starts when the

trajectory exits state A and stops as soon as it enters state B; hence neither the time

spent at state A or that at state B in included.

Next, consider a path C, the time-reversed path of w, which passes through the

same set of states as path w, but in the reverse order, and with the same waiting

times at each each state as path w. The probability density of the path W conditioned

on that it starts from state B is

P(Olsi =B) = PoSM-1P -1-+-2 exp (--r.1) x ... xp82 ~ 1 exp (-r 27 2 ) (4.2)

Since we assume the dynamic obeys detailed balance, it is possible to assign an

energy Ei to each of the states such that:

= exp [-(Ej - E)] (4.3)
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where 13 is an energy scale (i.e., the temperature in a physical system).

Combining Eqs (4.1), (4.2), and (4.3), we can obtain the ratio of the conditional

probability densities of the forward and backward paths:

P -ls A)_
lP~(ws ) = exp [-3(EB - EA)] (4.4)
P(Colsi B)

The probabilities of the transition times cancel because the transition propensity

ri is a function of state i only, and the paths w and C spend the same time at state

i. The energies of intermediate states also cancel as in a telescoping series. The

resulting ratio of the conditional probability densities of the forward and backward

paths is only a function of the energy difference between state A and state B.

This property in Eq (4.4) can be used to prove that the CMFPT from A to B,

E[TABIA], is identical to that from B to A, E[TBAIB]. Applying Baye's rule, we

have the following:

IE[TABIA f{=A-B} dw T(W)lIP(W)(45
ffLA-B druP(w)E[rAMB|A] ~~BdWw (4.5)

where T(w) is the time taken by the path w (i.e., T(w) = Eff ri) and the integrals

include al paths that connect A to B. Since T(W) = T(Lc) and at steady state there is

one-to-one mapping between w and cD, we have from Eqs (4.4) and (4.5) that

ffD-A dC;r(CJ)P(CJ)
IE[TA-*BIA] = fd(DB+A d 'P) = IE[TB.-*AIL31 (4.6)

Note that the energy term in Eq (4.4), which is independent of paths, would

appear in both the numerator and denominator of Eq (4.6), and therefore cancels.
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4.4 Proof for Langevin Dynamics with detailed bal-

ance

Now consider a system governed by one-dimensional Langevin dynamics expressed in

the form of stochastic differential equations (SDEs):

dX = r(X)dt + s(X)dW (4.7)

where X is the state variable describing the position of the system, r(X) is the state-

dependent drift term, s(X) is the state-dependent diffusivity, and W is the standard

Brownian Motion. Note the Langevin Dynamics described by Eq (4.7) is equivalent

to the following form:
dX
d = r(X) + s(X)((t) (4.8)di

where ((t) is a delta-correlated stationary Gaussian process with zero-mean, satisfying

((t)) = 0 and (( (t)( (t')) = 6 (t - t').-

Without loss of generality, we denote state A as X = a and state B as X = b,

where a < b. We define the "forward" CMFPT from A to B as E(r(wAB)JA),

and the "backward" CMFPT from B to A as E(r(WBA)|B), where T(wgj) is the

first-passage time of trajectory w from state i to state j.

The goal here is to show that regardless of the functional forms of r(X) and s(X),

E(T(wA-B) JA) = E(r(WB_,A)IB) (4.9)

In this section, we specialize to the case where the diffusivity is constant:

dX = r(X)dt + sdW (4.10)

The generalization to the state-dependent diffusivity can be found in Chapter 4.7.1.

Furthermore, the above results can be extended to multi-dimensional Langevin dy-

namics with detailed balance, which is presented in Chapter 4.7.2.
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The general machinery used here is change of measure, more specifically, the condi-

tional Girsanov's theorem, adapted from measure theory. An equivalent formulation

can be developed by path integrals. The essence of change of measure is that by

reassigning different weights (i.e., probabilities) to different trajectories, Brownian

motion with drift (such as that in Eq (4.10)) will behave just like Brownian motion

without drift.

Denote the probability measure under which Brownian motion in Eq (4.10) is

defined measure P. Note that the backward CMFPT, E(T(wB-A)IB) governed by Eq

(4.10) is the same as the forward CMFPT governed by the following dynamics:

dX = -r(c - X)dt + sdW (4.11)

where c = a + b to ensure symmetry. Now to prove Eq (4.10), we have to prove

JE( 10 ) (T(WA- B) JA) - IE(11) (T(WA -B) IA) (4.12)

where the superscript is to denote under which equation the system dynamic is de-

fined.

Tilt the probability measure of Eq (4.10) such that dX = sdWQ under measure

Q. By the Girsanove theorem, such a probability measure Q can be obtained by

defining the Radon-Nikodym derivative expressed as follows:

(dP) -expj r(X) dWQ - r2 (X)cif} expj r(X)dX 1 f r2(X t

dQ 7,0 s 2 0 s JO s2 s
(4.13)

where FT is the associated Brownian filtration indexed by the stopping time T (i.e.,

the first-passage time of the trajectory w).

dU~x)
We construct a potential function U(z) such that r(x) - dx (an important

dx

note: for a one-dimensional system, such a construction of potential functions always

exists; this is no longer true for high-dimensional Langevin Dynamics, where addi-

tional constraints on the functional form of the drift vector are needed for such a
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potential landscape construction), then by Ito's calculus,

fT r(X) dX(t) = U(a) - U(b) fT 1 r(X) dt
o s2 2s 2 Jo 2 OX

(4.14)

In Eq (4.14), the emergence of the second term on the RHS is due to the fact that

the integral on the LHS is a stochastic Ito's integral, instead of a Riemann integral.

With this, we can simplify Eq (4.13) and obtain the expression for (,:

U(a) -U(b) 1 f T (r 2 (X)
=exp{ 32 exp{- 2S 2 Jk 5 2

+r(X)
+ DX )dt} (4.15)

Hence the LHS of Eq (4.12) can be evaluated under measure Q:

f,(r2(X) r
50 S2 + OX )dt}|A)EQrA) T eQ( fxP{ -

IEQ E-A) -EQ A) EQ exp - I fr(X)

Note that the denominator term in 4.16 exists to ensure the proper normalization

under the conditional probability. The potential energy term cancels in the same way

as in Eq (4.6).

Likewise, one can tilt the probability measure of Eq (4.11) such that under another

measure Q', dX = sdWQ'. In this case, the Radon-Nikodym derivative of measure P

relative to Q' is

dP 
(dQ'

- exp{ I

= exp{ U(b)

e -r(c - X) dW, 1 fI r 2 (c - X) dt}-exp{f dW2 t
2 s 2 s2

r(c - X)dX - 1- r 2 (c - X) dt}
s 2 0 s2 2

- U(a) 1 f r2 (c - X) Br(c - X)
2 exp - -2 + X )dt
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As a result, the RHS of Eq (4.12) equals

E (T1exp{ , r2(c -X) +r(c - X))dtJ 4)

E4 rexp-- f( +)dt}|A)E(n1) ((A-BJ) _EQ'(' (gI|A) -2 s2 aX

E Er'w(A-+B - fT((c - X) r(c - X)E'exp{-2 f0 ( 2 + aX )dt}|A)
(4.17)

The remaining proof is done by matching trajectories. Let #(t) and #*(t) denote

a dynamical path performed the Brownian walker defined by Eq (4.10) and by Eq

(4.11), respectively. Note that there is a one-to-one correspondence between #(t) with

duration T and #*(t) with the same duration T, and the mapping is simply #*(t) =

c - #(r - t). Furthermore, under the changed measure Q and Q', respectively, both

dynamics originally defined by Eq (4.10) and by Eq (4.11) become unbiased Brownian

motion, which means #(t) and #*(t) = c - #(T - t) occur with equal probabilities

under Q and Q', respectively. With that, the numerator and denominator of Eq 4.16

are equal to those of Eq 4.17, respectively. That concludes the proof.

On a separate note, it is important to include the second term on the right-hand

side of Eq 4.14 [86] . The emerge of this fluctuation correction term is due to Ito's

interpretation. Without this term, the above argument would have been valid when

the sign of the drift is reversed (i.e., from r(X) to -r(X)), and one would have

wrongly concluded that the mean first-passage time from an arbitrary starting point

Xo (a < Xo < b) to x = b conditioned on that it does not reach first X = a is the

same as that with an opposite drift. However, in the presence of this term, such an

argument would work only when r(X)/DX = 0 (i.e., the drift is constant).

4.5 Numerical verification

Our results for the case of one-dimensional Langevin dynamics can be verified nu-

merically. To compute the expected time that a particle governed by Eq 4.7, starting

from X0 reaches X = b before it reaches X = a (denoted by T(Xo)), we first calculate

the splitting probability that this particle reaches X = a before X = b (denoted by
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P(Xo)). P(Xo) is governed by the following ODE:

dP s2 d2p

rdX 2 dX 2 =0 (4.18)

subject to the boundary conditions that P = 0 evaluated at Xo = a and P 1

evaluated at Xo = b [87]. With that, we can obtain T(Xo) by solving the following

ODE:
d(rP) s2 d2(,Tp)r +- +P=0 (4.19)
dX 2 dX 2

subject to the boundary conditions that TP = 0 evaluated at Xo = a or Xo = b [871.

To compute the CMFPT from a to b (or from b to a), we let Xo be infinitesimally

close to a (or b).

We computed the forward and backward CMFPT for two dynamics, namely dX -

mdt + dW and dX = mXdt + dW with a = 0, b = 1, and varying values of m.

From Fig. 4-2A&B, it is clear that the forward and backward CMFPT are identical.

Furthermore, we let X0 = 0.5 and computed the CMPFT starting from Xo under

positive and negative drifts, respectively. From Fig. 4-2C&D, reversing the sign of

drift does not change the CMFPT when the drift and diffusivity are constant, but

it does when the drift is state-dependent. These are consistent with our theoretical

derivations.

4.6 Discussion and Extension to non-equilibrium

systems

The proceeding results demonstrate that the conditional time to go up an energy hill

is equal to the time to go down in equilibrium systems. This precise identity will

not extend in general to Markov systems without detailed balance (i.e., whose steady

states are nonequilibrium). A toy example is to consider a discrete-time Markov

Chain with transition probabilities PA-*B PB-+3 P3-*1 = 1. Due to the presence of

cycles, CMFPT from state A to state B is 1, while that from B to A is 2. However,
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A dX=mdt +dW dX =mXdt +dW

C D,

Figure 4-2: Numerical verifications. (A, B) The ratio between forward and backward
CMFPTs for a particle on the interval [0,1] following (A) dX = mdt + dW or (B)
dX = mXdt + dW with varying m. (C, D) The ratio between CMPFTs for a particle
following (C) dX = mdt + dW or (D) dX = mXdt + dW, starting from X0 = 0.5
reaches X = 1 before X = 0 with positive and negative drifts.

a more general interpretation of the result, that is, rare events occur suddenly, does

extend in general. Consider a particular sequence of states si connecting an energy

well to a peak. One's instinct might be that the expected time to transition following

this sequence of states is Ei 1 /As , where Ass,, is the transition rate from

state i to its next state in sequence. However, a surprising, but well-known fact

from Poisson processes states that the expected time of traversing these sequence of

states is really E(1/ EZ A8 ,,-8 ), where the second summation is over all the states

j accessible from the current state i. Thus, the less probable the required transition

from si to sjz± (i.e., the smaller As,,,+ is relative to Ej A8 ,,+5 ), the shorter the

conditional expected time of the transition is to what might have been assumed.

Alternatively, making a path less probable by adding fast competing transitions to

states along the transition path actually decreases the expected conditional time of

traversing the path. This understanding may have significant implications to non-

equilibrium systems: for example, to quench viral escape, one may consider mounting
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immune pressure or administering drugs to suppress the occurrence of rare events;

however, with these measures implemented, if the virus ever successfully escapes, the

last excursion is even faster than before.

4.7 Supplemental Materials

4.7.1 Generalized 1D Langevin Dynamics

Now we prove the most general case for ID Langevin Dynamics, where both the drift

and the diffusivity are state-dependent, as described by Eq (4.7).

Define Y(X) =f du, where d is a constant and assume such a Y is well-

defined. Also assume that s(u) > 0 Vu E [d, X] such that there is a one-to-one

correspondence between Y and X. Apply Ito's lemma, one has

OY 1 02y )2 Y
dY(X)= dX + 1 (dX )2 dt (4.20)

The last term vanishes since Y is not an explicit function of t. By the construction

of Y(X),

1 1' s'(X)( r(X) _1

dY(X) = dX+-(- S'(X)S2(X)dt= s'(X) dt + dW (4.21)
s(X) 2 s2 (X) s(X) 2

To prove Eq (4.9), we only have to show that the CMFPT from Y(X = a) to Y(X = b)

is the same as the CMFPT from Y(X = b) to Y(X = a). And this has been proven

in Chapter 4.4 since the one-dimensional Langevin Dynamics describing Y has a

constant diffusivity.

4.7.2 Multi-dimensional Langevin Dynamics with detailed

balance

In this last section, we consider the N-dimensional Langevin Dynamics, where the

drift vector can be expressed as the gradient of a well-defined potential energy land-

scape and the diffusivity tensor is diagonal, isotropic and state-independent (note
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that these are required for the Langevin Dynamics to fulfill detailed balance):

dX = r(X)dt + sdW (4.22)

where X is an N-dimensional state variable, W is a standard N-dimensional Brownian

motion, s is an isotropic and state-independent N x N diagonal diffusivity tensor,

and r(X) is an N-dimensional drift vector that satisfies

r(X) = -VU(X) (4.23)

where U(X) is a well-defined N-dimensional potential energy landscape.

We are interested in proving that the CMFPT from X = a to X = b is the same

as the CMFPT from X = b to X = a. One can apply the multidimensional Girsanov

theorem, which states that:

Let 8(t)= {O1(t), 02 (t), ... , ON(t)} be an N-dimensional process that is Ft-measurable

and satisfies the following condition under measure P: E exp( f Z 1  (u)du) <

oc. Define a random process Z(t):

Z(t) = exp { - j O(u)dW(u) - 1 j (u)du

where W(t) = {W 1 (t), W2(t), ... , WN(t)} is a standard N-dimensional Brownian mo-

tion under measure P. Then under measure Q, the following process is a standard

N-dimesional Brownian motion:

W(t) = W(t) + 0(u)du

and the probability measure Q is defined as

dQ = Z(t)
dP /F

The proof in this section is analogous to that in Chapter 4.4. One can define the
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Radon-Nikodym derivative of measure P relative to measure Q as

S = dP(dQ} (exp Oi (u)dW (u) - O0 (u)du

where O8 = ri/s and s is the diagonal entry of the diffusivity tensor. One can recognize

that

exp{

exp{

( 0

(IT0
Oi(u)dW (u) - 0 (u)du

ri (u)dX() -

2J iJ

exp (U(X = A) - U(X = B) exp{ - I 2 (u)du V2U -dXt

And the rest of the proof is done by matching trajectories just as in Chapter 4.4.
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Chapter 5

Applying Linear-Noise

Approximation to Network

Topology Identification

5.1 Introduction

Our understanding of biological systems is limited by the time scale and length scale

of experimental techniques available. The advancement of real-time molecular-level

experimental measurement and the emergence of ample experimental data with fine

time solution provide promises to probe and identify molecular networks, letting them

be gene regulatory networks, protein-protein interaction networks, or signaling trans-

duction networks. At microscopic levels, fluctuations are ubiquitous and significant

due to the low copy numbers of molecules of interest and the stochastic nature of

their interactions [11, 88]. The presence of such noise, on one hand, brings statistical

uncertainty to experimental data observed, and on the other hand, offers enormous

information through the nonrandom underlying structure of the noise, which would

be otherwise ignored at macroscopic levels.

A related but different question is how to meaningfully represent complex bio-

logical networks in lower dimensions by grouping relevant nodes according to their

77



connectivity or better according to their similarities in functionalities. The concept

of network motifs, connectivity-patterns or sub-graphs that occur much more often

than they do in random networks, as advocated by Uri Alon et al. [89], emerges

as an attempt to address this question. These basic building blocks, each carrying

certain topology, functions, and design principles, are found in biological networks

in organisms with different levels of complexities and as well as in social networks.

Besides network motifs, various clustering techniques primarily based on machine

learning have been recently proposed to intellectually coarse-grain biological network

representations.

A B

4 &- .14Incoherent Negative
FeedForward FeedBack

14 (IFF) (NFB) k4O

Figure 5-1: Two three-node network motifs: (A) incoherent feedforward loop (ab-
breviated as IFF) and (B) negative feedback loop (abbreviated as NFB). (A) Node
A activates Node C directly and deactivates Node C mediated via Node B. (B) Node
A activates Node C and Node C forms a negative feedback loop mediated via Node
B. In both (A) and (B), Node B is deactivated by self-decay.

A. B.
PLCy -- + DAG-R&GRP----*Ra PLCy - DAG-R&GRP--*.Ras

C 2+ ___*R&,;AP *-***PLCe
Ca2 -- RhGAP Ca2+ -+ Ra.9GAP

Figure 5-2: Biological examples of IFF and NFB. (A) PLCy regulates Ras activation
by IFF: PLCy activates Ras via DAG-RasGRP-mediated pathway and deactivates
Ras via Ca2+-RasGAP-mediated pathway. (B) PLC1 regulates Ras activation by
NFB: PLCy activates Ras, which in turn deactivate itself via PLCe-Ca2+-RasGAP-
mediated negative feedback loop.

In this work, we focus on two commonly-seen three-node motifs, namely, incoher-

ent feedforward loop (abbreviated as IFF) and negative feedback loop (abbreviated
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as NFB), as depicted in Fig. 5-1, which are the only two three-node topologies that

perform adaptation (i.e., the ability to reset to a new steady state after responding

to a stimulus). We ask the question whether one can differentiate these two from

molecular-level time series data of copy numbers. Such an understanding is impor-

tant to dissect complex reaction networks and pinpoint dominant pathways. For

instance, as depicted in Fig. 5-2, the activation of PLC can activate Ras via DAG-

RasGRP pathway and at the same time deactivate Ras via Ca2+-RasGAP pathway,

which constitutes an IFF (Fig. 5-2A); an alternative is that Ras activated via DAG-

RasGRP pathway activates PLCc and subsequently triggers Ca2+-RasGAP pathway

to deactivate Ras, in which case PLCy regulates Ras activation through an NFB (Fig.

5-2B). The ability to discriminate IFF and NFB will shed light on how exactly Ras

is regulated by Ca2+-RasGAP pathway [90].

Here, we apply the linear noise approximation (abbreviated as LNA, also named

van Kampen's system-size expansion) to explore features in correlation functions of

molecular copy numbers and identify signatures, under certain parameter regions,

that can differentiate IFF from NFB. We hope this endeavor can be the first step

to utilize time-series data with fine time and length resolutions to unveil signaling

network topologies.

5.2 LNA applied to IFF

5.2.1 Problem formulation and preliminary analysis

Here we assume the simplest reaction kinetic model for the IFF topology, as depicted

in Fig. 5-lA. Consider the toy model defined as follows:

Binactive k2 [A] Bactive

c a civ k 2 [B]ac ] e actve
Cactive : 3[lalt Cinactive
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Bactive "k Binactive

Fix the total concentrations of species B and C, respectively (i.e., [B]T = [B]active +

[B]inactive and [C]T = [Clactive + [C]inactive). Assume the amount of species A does

not fluctuate. For the simplicity of notation, we use [B] and [C] to represent [B]active

and [C]active, respectively, and keep track of [B] and [C] throughout the analysis. The

deterministic equations describing the time-evolution of the species concentrations

are
d[B] = k2 [A] ([B]T - [B]) - k 4 [B] (5.1)
dt

d[C]

dt= k[A]([C]T - [C]) - k3 [B] [C] (5.2)

Define the stoichiometric matrix v, where its entry vi j is the stoichiometric coefficient

of species j (for species B, j = 1; for species C, j = 2) in the reaction i. The

stoichiometric matrix v for this model is

0 1

1 0
(5.3)

0 -1

-1 0

It is easy to see that there is only one steady-state solution [B]S, [C]s to the sys-

tem defined by Eqs (5.1) and (5.2). Define the Jacobian matrix A, where its entry

A -( =9V k ) , where 4j represents the concentration of species j, and fk the

propensity of reaction k. The Jacobian matrix A for the toy model is

-k 2 [A] - k4  0 (5.4)

-k 3 [C] -k 1 [A] - k3[B]

The two eigenvalues for this Jacobian matrix A are -k 2 [A] - k 4 and -ki[A] - k3 [B],

both of which are negative at steady state, suggesting that the steady state of the

system is stable.
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5.2.2 System-size expansion applied to IFF

Now we apply the system-size expansion to the system at steady state. The goal is

to obtain correlation functions governing molecular fluctuations of species B and C.

Assume the system has a constant volume Q. Expressing Eqs (5.1) and (5.2) in

terms of numbers of molecules, one has

dnB= Q-Qk2nA[(nB)T - nB] - k4rB (5.5)
dt

d C - -'klnA[(nc)T - nc] - Q-lk3nBnc (5.6)
dt

where n = Qcj (cj is the concentration of species j). Hence, the Master Equation

describing the evolution of probability distribution function P(nB, nc, t) is

dP(rB, rc, t) = Qk 1 (Ej - 1)nA[(nc)T - nc]P + Q -k 3 (Ec - l)nBrcP
dt

+Q-lk2( E- - 1)nA[(nB)T - nBIP + k4 (E1 - 1)nBP

(5.7)

where E is the step operator, which gives Elf(ni) = f(ni + 1) and E- 1f(rni)

f(ni - 1).

One would expect the number of molecules n has the mean scaled with Q and

the standard deviation scaled with Q1/ 2 . Hence, we set nB -Q(t) +1 Q/ 2((t) and

nc = QV(t) + Q1/ 2r7 (t). The dynamics of (#(t), $P(t)) is expected to be governed by

the macroscopic equations (5.1) and (5.2).

We write the probability distribution function P(nB, nc, t) as a function of ((, r/, t):

P(nB, nc, t) = il((, r/, t). Since Elf(nB) f(nB + 1) and therefore Elg(() =

g(( + Q-1/2), one can approximate the step operator El by the Taylor Expansion

El = 1 + Q-1/2 + 1/2Q 1  + ... (5.8)

Similarly, other step operators can be approximated as partial differential operators

E 1 -/ 2  + 1/2Q - +... (5.9)
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9 92
Ec =I + Q-1/2 + 1/2Q-- + .. (5.10)

E-1A1- Q- 1 / 2 ---+1/2Q- + .. (.1
c 09 92

Ec' I - Q1 + 1/2Q-' 2 +. (5.11)

The time derivative in the Master Equation (5.7) is taken with constant nB and nc.

This means that dC/dt = -Qi/2dd/dt and dr/dt = -Q 1/2 d4@/dt. By the definition of

total derivative, the time derivate can be written as

dP(nB,nct) -Oan _, 1 /2 do q39  
1/ 2do0152

dt at di 0( di Oq

With Eqs (5.8) to (5.12), assuming the number of molecule A does not fluctuate, the

Master Equation (5.7) can be expanded as follows

a_ Q/ 2 do #H _ Q/ 2 doal
at dt 0( dt or

= k 1[A](-Q-1/ 2 a +1/2Q- 1 2 )[QT - QO(t) -01/2

(Q12a 
92

+ ( 1k3 (-1/ 2  + 1/2Q- 1  2)(Q(t) + 21/ 2 ()(QV)(t) + Q1/2j)H (5.13)
8 82

+ k2 [A](-Q-1/2 a + 1/2Q-1 92\( - #(t-1/2
9~ l/(QOT - QOT t-

+ k4 (-1/2 + 1/2Q1 2 )(Q#(t) + Q1
i/2

Now collecting the 0(Q1/2) terms, we obtain the following two equations describing

the dynamics of #(t) and 0(t).

d# -= k2[A](#$ - #(t)) - k4#(t) (5.14)
dt

do
Ski[A](4r - @(t)) - k3 #(t)O(t) (5.15)

With no surprise, Eqs (5.14) and (5.15) are the same as Eqs (5.1) and (5.2), the

deterministic description of the reaction network. Given the initial condition, they

can be solved analytically. Let #' and 4s denote the steady-state solution.

Collecting the O(QO) terms, we obtain the following equation describing the time-
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evolution of probability H((, 7, t):

OHl (k2 [A] + k4)-(CU) + (ki[A] + ks3 (t))-(711) + k 3 (t) a((l)
at 0( n2 O2

+ k[A](OT - 7p(t)) + k30(t)O(t)] Ur+ P [k2 [A]($O - $(t)) + k4$(t)] -1

(5.16)

Recognizing that Eq (5.14) is a multivariate linear Fokker-Planck equation, which has

been solved in [11], we can readily write down the following equations describing the

decay of the first moments of the noise

t(() -(k 2 [A] + k 4 )(() (5.17)

t (TI) = k3@()()- (ki[A] + k3#(t))(ij) (5.18)

Since we are interested to study the fluctuations in the linear regime of the steady

state, one can approximate Eqs (5.17) and (5.18) by having 4(t) = 0' and 0(t) = Os.

Notice that Eqs (5.17) and (5.18) are the same as the linearization of the deterministic

equations (5.1) and (5.2) around their steady state, and we can write them in a more

compact Matrix form

&t(c) = A(c) (5.19)

where (c) is the vector of the first moments of the fluctuations, and A is the Jacobian

matrix as defined in (5.4). This shows that the decays of the first moments of the

fluctuations are governed by the Jacobian matrix A derived from the deterministic

analysis, and the time scales associated with the decays are simply the eigenvalues of

A.

In the case of IFF, since the evolution of species B is not influenced by species

C, the A1 2 entry in the Jacobian matrix is zero, and the eigenvalues of A are simply

Al = -(k 2 [A] + k4) and A 2 2  -(ki[A] + k30s). The solution to Eqs (5.17) and

(5.18) is

(( = , ( oAlit (5.20)

(T) = (1)oeA 2 2t + A21 (C)o eAlit - A22t (5.21)
Anl - A 22

83



From Eq (5.13), we can write down equations for the second moments of the fluc-

tuations. Define the diffusivity matrix B as Bk -- ER_1 fiovijVk, where fi is the

propensity of reaction i, and vij is the stoichiometric matrix defined by (5.3). In the

case of this toy model, the diffusivity matrix B is simply

Bn = f2 + f4 = k2[A]($T - $(t)) + k 4$(t) B 12 = 0

B21 = 0 B 22 = fi + f 3 = ki[A](OT - V(t))+ k3$(t)4b(t)J
(5.22)

For the second moments,

at(( 2 ) = 2A 11 ((
2 ) + Bn1  (5.23)

9t(12) 2A 2 1(r() + 2A 2 2 (,q 2 ) + B 2 2  (5.24)

-t /() A21 (( 2) + A 22 (r) + Al (r/() (5.25)

In general, if let 7 be the variance-covariance matrix for the numbers of molecules,

then E(t) is governed by the following dynamics

tB = AB+ EAT+ B (5.26)

To quantify the variance-covariance of the species at the stationary state, we can

simply set OtB = 0 and solve the matrix equation

AB + EAT + B = 0 (5.27)

Notice that the diffusivity matrix B is symmetric by its construction, and it is easy

to convince oneself that E that satisfies Eq (5.27) is symmetric as well, fulfilling the

definition of a variance-covariance matrix.

For this IFF toy model, the "sizes" of the fluctuations at the stationary state,

measured by the variance-covariance matrix, are as follows

((2)s _ _ > 0 (5.28)
2A 11
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A21Bn1
< 0 (5.29)

2(An1 + A 22 )A11

/2s B 2 2 + 2A 2 1(>)3
( - )A= -> 0 (5.30)

2A22

The sign of the covariance (C,)S is worth special attention. The denominator is the

product of two negative terms; in the numerator, Bi 1 is strictly positive by definition,

and A 2 1 , representing the effect of species B on C, is negative. As the result, the

covariance of B and C at the stationary state is negative, regardless of the rate

parameter region. Physically, this is because B negatively regulates C while C has

no effect on B. As one will see later, this can be a signature differentiating an

incoherent feedforward loop from a negative feedback loop, where B and C regulate

each other.

Last but not the least, one can calculate the correlation function matrix. In

general, the time scales governing the decay of correlation functions are the same as

those in Eqs (5.20) and (5.21), namely, the eigenvalues of the Jacobian matrix A. For

example, to compute (Cont) 8,

(Cont)' = E [CoIt ] E[ E [Cont |K0n0]

[Cont |C(o = o C, ] = ]((o = o C,0 I ) d( dyj

J E [nt =o - o - -( ,( o n) dC dq (5.31)

{Cne A22t + A21 (2e }lt-etIP ((o = ,o = 77) d( dyAn - A22

J J {)eA 22t + A 21  ( 
2 )S A A- 

o )

All - A22

The first equality holds because the noise at the stationary state, by definition, has

zero mean; the second equality is by the law of total expectation; the third is by the

definition of the conditional expectation; the fifth is by the substitution of Eq (5.21);

and the final equality is by the definition of variance and covariance.

The rest three correlation functions can be obtained in the similar way.

(Cot) - ((2),Anlt (5.32)
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(71o(t) = - (- se Al t

(007), -- (~ 22t + A21(C Ai)_" A2 (5.34)All - A22

Notice that there is only one time scale involved in the decay of (oct)' and (?oct)",

because there is only time scale governing the decaying of species B. This will not be

the case if species B is coupled with species C, which is another signature different

from a negative feedback loop.

5.3 LNA applied to NFB

A similar analysis is applied to a toy model of Negative FeedBack Loop (NFB), defined

as follows:

Cinactive _[ Cactive

Binactive k2 [Clative Bactive

Cactive -Bactiv) Cinactive

Bactive -% Binactive

The only difference between this NFB model and the IFF model previously studied

is Reaction 2. As a result, the stoichiometric matrix of this NFB model is the same

as that defined in (5.3), and hence the diffusivity matrix B for this NFB model is the

same as that defined in (5.22). The Jacobian matrix A for this NFB model is defined

as follows
-k 2 [C] - k4  k2 ([BIT - [B]) (5.35)

-k 3 [C] -k 1 [A] - k3 [B]

Notably, the entry A 1 2 is positive, due to the fact that species C up-regulates species

B. It is easy to verify that the system has only one physically feasible steady state;

the two eigenvalues A,, A2 are both negative, since the determinant of the Jacobian is

positive while the trace is negative.

Solve Eq (5.27) for the variance-covariance matrix E, notably for the covariance
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term

1n- - BA 21A 22 + B 22A 12A 1 n B 11A 2 1A 22 + B 22A 12An 5
~12 =221 5.6

2(Anl + A2 2 )(AnIA 2 2 - A 12 A2 1 ) 2 trace(A)det(A)

In the case of IFF, A 12 = 0 reduces Eq (5.36) to Eq (5.29). Here, however, while the

denominator is negative, the sign of the numerator is inconclusive: the first term in

the numerator is positive, and the second is negative. The physical intuition is that

while the negative regulation of species C from B gives a negative covariance between

B and C, the positive regulation of species B from C gives a positive covariance; the

final sign of the covariance depends on the relative strengths of these two opposing

effects.

One can solve the correlation function matrix for this NFB system, and all of the

four functions will have two time scales, characterized by A, and A2 . This is different

from the IFF case, where two of the four correlation functions are governed by a single

timescale Eqs (5.32) and (5.33). One can imagine that when correlation functions

become experimentally accessible, this can be another discriminator between IFF

and NFB.

5.4 Conclusion

In this work, by applying linear noise approximations to explore correlation functions

of species copy numbers in two important three-node motifs, which share similar bio-

logical functions, we have successfully identified two signatures that can differentiate

these two network topologies. This endeavor can be viewed as a first step to reverse

engineer network topology by exploiting time series of protein concentrations.
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