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Abstract

Model-based design is becoming more prevalent in industry due to increasing complexities in technology

while schedules shorten and budgets tighten. Model-based design is a means to substantiate good design

under these circumstances. Despite this, organizations often have a lack of confidence in the use of models to

make critical decisions. As a consequence they often invest heavily in expensive test activities that may not

yield substantially new or better information. On the other hand, models are often used beyond the bounds

within which they had been previously calibrated and validated and their predictions in the new regime may

be substantially in error and this can add substantial risk to a program. This thesis seeks to identify factors

that cause either of these behaviors.

Eight factors emerged as the key variables to misaligned model confidence. These were found by studying

three case studies to setup the problem space. This was followed by a review of the literature with emphasis

on model validation and assessment processes to identify remaining gaps. These gaps include proper model

validation processes, limited research from the perspective of the decision-maker, and lack of understanding
of the impact of contextual variables surrounding a decision. The impact these eight factors have on model

confidence and credibility was tested using a web-based experiment that included a simple model of a

catapult and varying contextual details representing the factors. In total 252 respondents interacted with the

model and made a binary decision on a design problem to provide a measure for model confidence.

Results from the testing showed several factors proved to cause an outright change in model confidence.

One factor, a representation of model uncertainty, did not result in any differences to model confidence

despite support from the literature suggesting otherwise. Findings such as these were used to gain additional

insights and recommendations to address the problem of misaligned model confidence.

Recommendations included system-level approaches, improved quality of communication, and use of

decision analysis techniques. Applying focus in these areas can help to alleviate pressures from the contextual

factors involved in the decision-making process. This will allow models to be used more effectively thereby

supporting model-based design efforts.
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1 INTRODUCTION

M. MOTIVATION

Model-based design is becoming more prevalent in industry due to increasing complexities in technology

while schedules shorten and budgets tighten. Model-based design is a means to substantiate good design

under these circumstances as it uses models and simulations of a real system to quickly test many options

within a design space. It allows decision-makers choose an optimum solution before the system can be

physically tested (Hosagrahara & Smith, 2005). Despite this, however, organizations often have a lack of

confidence in using models to make critical decisions. As a consequence they often invest heavily in

expensive test activities that may not yield substantially new or better information than what the models

already in their possession could have predicted.

On the other hand it is also true that models are

often used beyond the bounds within which they

have been previously calibrated and validated and goo

produce predictions that are substantially in error

and this can add substantial risk to a program.
0.

This phenomenon can be explained using a

simple four-box model shown in Figure 1. The x- poor IV
axis of this figure portrays the actual quality of a

model relative to the problem for which it is being poor good

used. Two general levels are shown for simplicity of Actual Model Quality

either good or poor; good actual model quality is Figure 1: Four-box model of a representing the
decision-maker's perception of a model's quality

defined as the model being a sufficient versus the actual quality of the model relative to

representation of the real system it represents the problem being addressed.

within some a priori modeling error tolerance and therefore an appropriate tool to model that system

whereas poor quality indicates that the model may have serious flaws modeling the real system and may

produce answers that fall outside the modeling error tolerance band over all or some significant portion of

the design or decision space. However, "there can be no proof of the absolute correctness with which a

model represents reality" and therefore "confidence is the proper criterion" (Forrester & Senge, 1980). The

y-axis of the four-box model represents the confidence, or the perception of a model's quality from the

perspective of the decision-maker for the problem. Again, this is rated as either good or poor depending on

if the decision-maker trusts the model and uses it to make decisions.
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As shown in Figure 1, quadrants II and Ill indicate appropriate alignment between the perception of a

model and its actual quality for the intended purpose. In quadrants II and III, a decision-maker is able to

properly distinguish whether a model is appropriate to use for the problem or not. Quadrants I and IV,

however, represent where issues can arise in implementing model-based design. Quadrant I shows the case

where a decision-maker believes a model to be good for a problem, however, the model is not in fact

appropriate to use for the problem and may lead the decision-maker astray. This is in contrast to quadrant IV,

where the model would be a good tool to help solve a problem; however, the decision-maker does not agree

and continues without input from the model, effectively dismissing its predictions.

For model-based design to be effective in organizations, the optimum is to operate in quadrant II, where

mature, high quality models are available and the organization takes advantage of those models. This results

in better designs and higher efficiencies (Smith, Prabhu, & Friedman, 2007). Achieving models that are

indeed valid and mature and aligning the organization to have confidence in these models may require

substantial investment of capital and human effort. But how does an organization know if the models being

used are trustworthy to make critical decisions? If an organization were to act on a poor-quality model, as

depicted by quadrant I (perceived good, actually poor), the consequences could be severe. For risk-averse

organizations, this may shift behavior to quadrant IV (perceived poor quality, actually good quality), where a

model may exist and provide appropriate answers, but it may be less of a risk to seek additional sources of

input such as results from other models or physical experimentation. For industries that have the option of

physical testing of their systems, this can lead to excess resources being used, but with added confidence in

the final decision.

1.2 THESIS OBJECTIVES AND APPROACH
The objective of this thesis is to understand the factors that cause perception of model quality to differ

from the actual quality of the model. Thus the focus is on quadrants I and IV. Three case studies, drawn

from the public domain and industry, will be examined as representative of quadrants I and IV in the four-

box model in Figure 1.

Reviews of these case studies will setup the problem space and motivation behind this thesis. This will be

followed by diving into better understanding the possible causes of the problems by means of a literature

review resulting in the root cause to the problem. From this will emerge a set of factors that describe some

of the reasoning as to why model perception drifts from the actual quality of the model.

These factors are then tested in an experimental setting with users from industry to illustrate the effect of

these factors on perception of model credibility. The experiment was carried out on the internet, using the

model of a simple catapult system that propels a ball through a ballistic trajectory with the horizontal impact
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distance as the output and the pullback angle, launch angle, type of ball and number of rubber bands

powering the catapult as input variables. In this testing, a model's quality was changed from good to poor by

asking a subset of the respondents to use the model outside its range of validity. The model and validating

data were made available to the 252 test subjects along with varying details surrounding the model that may

affect a user's perception of the model either positively or negatively. The subjects were asked to grade the

credibility of the model using the framework presented. Success was measured by whether the model was

rated appropriately given the known quality of the model.

The results from this experiment reveal not only whether the factors had an impact on the decision-

making process, but also suggest methods for how they can be better managed to promote proper alignment

between perception and actual quality in more complex decision-making situations in industry and in other

settings. This will therefore provide some guidelines organizations can follow to help them adopt an

effective model-based design initiative.

1.3 THESIS STRUCTURE

Following this introduction in chapter I , chapter 2 of this thesis will present the three case study reviews.

Each case study will include background of pertinent events followed by a summary of the underlying

problems that impacted model usage in those cases.

Chapter 3 will then analyze the problems raised in section 2 further to determine the root cause behind

them. It will begin with a statement of the problem and continue with a discussion from the literature that

will provide further definition to the problem and also present work that has been done to address these

problems thus far. Finally, this section will conclude with a proposal for the root cause of model misuse.

Chapter 4 will discuss the framework that emerged from the research. Eight factors will be presented; for

each one, a definition will be provided, a discussion of how that factor impacts the decision-making process

via the four-box model (Figure 1), and then examples from the case studies to illustrate the points.

Chapter 5 then discusses the details of the experiment that was conducted to test these factors. It begins

by stating the hypothesis, then reviews how the experiment was setup and implemented, and concludes with

a discussion of the results relative to each factor.

Finally, Chapter 6 presents the overall conclusions gained from this research including not only

recommendations to help address issues with model-based design, but also areas uncovered for future

research.
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2 CASE STUDY REVIEW
The four-box model presented in Figure 1 represents two domains of the problem space: one of actual

model quality and one of perceived model quality. For model-based design to be effective in organizations,

there are two key activities. The first is to get the actual quality of the model to be good; the second is to

then get the perception of that model to match, represented by quadrant 11 in the four-box model. In this

section to follow, three case studies will be presented that are examples of misalignment between

perception and actual model quality to demonstrate the problem space. First, a case will be presented from

industry that shows the resulting behavior when model-based design is not internalized within an

organization, as the models are good, but the confidence to accept their results is lacking. Following this

example, a highly publicized case study will follow from the Eyjafjallaj6kull 2010 volcanic eruption that

closed much of European airspace. In this case, there again emerged perception issues of the models. This

case also presents the concern of potential risks of making decisions in the absence of a model. The final case

is from the space shuttle Columbia accident in 2003. This example demonstrates the potential hazards that

result from quadrant I (perceived good, actually poor) model behavior.

2.1 EGR MEASUREMENT VENTURI AND THE LACK OF

MODEL-BASED DESIGN

The first case to review is one from industry based on experience from the author. It is cases such as these

that present frustration in organizations trying to integrate model-based design within their processes.

Models may be well done and executed; yet design decisions are made based not on the correct model

results, but it is decided instead to go forward with physical testing resulting in unnecessary prototype costs

and extended development time in order to confirm what the model has already predicted. As the details of

this case are not in the public domain, this section will begin with some background and will further discuss

the elements of the model and decision-making that ensued.

2.1.1 BACKGROUND

This case comes from a company that manufactures and sells heavy-duty diesel engines for use in

industrial off-highway applications and is based on a real design problem that occurred in the 2008

timeframe. Industrial off-highway diesel engines are regulated by the Environmental Protection Agency

(EPA) with respect to harmful substances they can emit during operation (emissions) - of particular concern

being Nitrogen Oxides (NOx) and particulate matter (PM). The levels of these emissions are measured in a

laboratory where an engine is running a series of tests and the engine speed and load are either steady state

or highly transient. The EPA also prescribes the duty cycle and test profile the engine has to be subjected to

during testing.
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Beginning in 2011, diesel engines with power EPA Emissions Standard History by NOx and PM

outputs greater than 37 kW (50 HP) were required Off-Highway Engines 130-560 kW (174- 750 HP)
9.2

to meet a new emissions standard called interim

Tier 4 (EPA, 2011). This emission standard
6.4

required a 50% reduction in NOx and 90%

4.0reduction in PM as compared to the prior Tier 3

emission standard (Figure 2). In addition to reduced 2.0

emissions, the transient test requirement came into
0.02 0.2 0.54

effect in addition to the existing steady state test Particulate Matter [g/kW-hrl

protocol. The transient test consisted of 1,239 Figure 2: Evolution of EPA Emissions Standards for

heavy-duty off-highway diesel engines. The x-axis
engine speed and torque conditions run at I-second shows the PM standard level and the y-axis shows
intervals, thereby resulting in a 20-minute test the NOx standard level. To be in compliance, the

engines must have composite emissions within the
procedure (right chart in Figure 3). The transient boundaries of their respective tier level [adapted

test shown below is plotted over the steady state from (EPA, 2011)].

points from the left chart but has included a point at each speed and torque condition from the test

procedure with lines connecting these points to show the movement in speed and torque throughout the test.

Steady-State Test

E E
z z

&10

a- 1 o66n 4 -

Engine Speed (rpm) Engine Speed (rpm)

Figure 3: EPA prescribed test protocol for engine certification of emissions. The left chart shows the
steady state test procedure where emissions from eight points (yellow dots) with constant speed and
load are combined into a single composite emissions level. On the right, the transient test procedure
shows the steady state points as a reference, but is actually the green dots connected by a line to
represent the order they must run [adapted from (EPA, 2011)]

The new tier 4 emissions standard applies to new engines and does not require retrofitting of the existing

vehicle fleet. Each of the new requirements drove complexities on the engines. New technology was needed

to reduce the emissions from the engine (Figure 2), but also had to be capable of controlling those emission

levels through transient operation (Figure 3). The dominant design architecture to control NOx emissions

used in similar industries was a system that recirculated exhaust gas to the engine's intake (EGR). The
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amount of EGR flowing through the engine is inversely proportional to the resulting engine's NOx output.

Precisely controlling this EGR flow during transient operation is challenging. The dominant solution for

measuring and controlling the flow of exhaust gas was to use a measurement venturi with a delta pressure

sensor across the venturi (Figure 4). This highly responsive delta pressure reading was then used, along with

other measurements, to calculate the desired flow of EGR being returned to the engine intake manifold in

both steady state and transient operation.

As mentioned, this technology was the dominant design in similar markets - of most interest was the on-

highway heavy-duty diesel engine market. These engines were similarly sized and operated and thereby

comparably regulated by the EPA. However, the on-highway market generally precedes the off-highway

regulations by two to four years. Therefore, because the EGR system with measurement venturi was the

dominant design on products in the on-highway market that were already in production, very little upfront

analysis was done to validate this technology or the design parameters prior to its implementation within the

off-highway engine system. The design revolved primarily around packaging constraints from other

hardware and ultimately fitting the engine into various off-highway vehicles. Therefore, there was also a lack

of requirements generated for this sub-system that could adequately guide its design at the component level.

Fresh Air

Delt Prs~srjeIntake Manifold|

Gasrta Pru
nSensor EngneVenturi h - ntr Uni t Engine

Comp essor Exhaust Manifold

Air E GR Valve
EGR Cooler

Axhaust&
-Gas N

Turbine

Figure 4: Air System Diagram for heavy-duty diesel engine. Air enters the system at the compressor
and enters the engine by way of an aftercooler, fresh air / EGR mixer, and intake manifold. The air
leaving the engine will either exit the system through the turbine or will recirculate back through the
engine, re-entering at the fresh air / EGR mixer [adapted from Baert, Beckman & Veen 1999]

With this system, there are two models used in the design process that must be clarified. The first is a

model that is embedded in the engine control unit (ECU). This is the model that transforms the real-time

measurements from the delta pressure sensor along with other sensors to calculate real-time exhaust gas
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flow being returned to the engine and is then issued as an opening/closing control input signal to the EGR

valve. This model is critical to real-time engine operation.

During the engine's product development process, this embedded model must be calibrated to actual

performance. This can be done either by running a physical engine in a test cell or using a model to predict

the engine's behavior. This off-line engine cycle simulation is the second model of interest. It runs on a

computer-based model of the engine and estimates the crank-angle resolved parameters for the engine. This

model is able to run many more scenarios and in a much shorter period of time as compared to running the

engine in a test cell. It is this engine cycle simulation that will serve as the primary focus for this case study.

The engine cycle simulation used in this case was a simulation that was used regularly by the company. In

fact, it had been used to make other design decisions on similar engines in the past. It had been validated

various times against physical test data. The model was robust to changes as it was a physics-based model (as

opposed to empirical), and the engineers running the model had a long history of using it and were highly

qualified. Its primary fault was the lack of quantification of uncertainty bounds on the model outputs. The

measures of uncertainty in the model were not aligned with outputs related to program requirements; what

the program needed to understand was the impact of the EGR flow measurement on NOx levels, where the

simulation provided uncertainty only in the flow of EGR itself. Although EGR flow is a leading indicator of

NOx, the correlation is not fully understood and therefore adds uncertainty. The question was how does

predicted EGR mass flow uncertainty propagate through the model to bound NOx emissions uncertainty.

0
a:

+

0
4
U

0

Crank Angle [deg]

Figure 5: Mass flow of air by engine crank angle. A
positive flow indicates the EGR is moving in the

intended path whereas negative flow indicates the
EGR is flowing backwards.

This engine cycle simulation was of particular

importance during the development program of

an engine for the interim tier 4 emissions standard

using the design architecture in Figure 4. At the

start of the program, initial design and analysis

activities lead to the first set of prototype engines

that could be tested in a test cell to verify the

design. During these initial analysis activities, the

engine cycle simulation was showing an anomaly

with regard to the amount of air exiting the fresh

air / EGR mixer. The first prototypes were tested

for the phenomenon and high-speed data

collection confirmed that fresh air in the mixer was flowing backwards into the EGR measurement venturi

during favorable conditions through the engine's rotation (Figure 5). This impacts the delta pressure reading
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across the venturi, as it is no longer representative of forward flow through the venturi. Thus the model

predicted bi-directional flow through the measurement venturi which is undesirable.

The ECU embedded model used for engine operation uses the delta pressure reading across the venturi

to predict EGR flow, however because of the reverse flow phenomenon, predicted by the physics-based

ECU Embedded Model Inputs model, the embedded model would not function

to Estimate EGR Flow properly. This resulted in a lack of controllability

for the EGR flow and therefore for NOx emissions

control. The effect is portrayed in Figure 6 showing

the physics-based relationship using Bernoulli's
0

principle used to predict flow. An indicator of

Reynolds number and resulting discharge

coefficient are plotted for a series of data points

collected from a physical engine test. For

Indicator of Reynolds Number Bernoulli's principles to be valid, the fluid must be

Figure 6: Effect of backflow on critical inputs to assumed as incompressible which is the region
ECU embedded model. Bernoulli's principle
assumes an incompressible fluid, which is circled with a dashed line in Figure 6. However, as
represented by the region circled with the dashed the data moves left on the x-axis, the relationship
line. As air begins to flow backwards through the
venturi, the Reynolds number indicator shows the becomes invalid and can no longer be used. This
assumptions for Bernoulli's principle is no longer
valid and an empirical regression relationship area is shown by the circle with the solid line and is
must be used. the region where back flow is occurring in the

venturi. The embedded model operating in this region, therefore, cannot use the physics-based calculations

and instead relies on an empirical regression relationship to determine EGR flow from the inputs. Although

an approximate linear relationship can be established from Figure 6, the empirical model loses robustness as

compared to physics-based models. For instance, if later design changes were to be made to the air system

for improved performance or reliability, the empirical relationship would have to be recalibrated, requiring

significant effort. Imagine, also, over the life cycle of the engine as component features in the air system

change with time, this model would progressively drift away from optimal.

Once this was discovered, it became a design problem: how to redesign the EGR system to eliminate this

backflow effect, thereby making the ECU embedded model more robust. Because this issue was detected

relatively late during engine development, crucial real estate surrounding the engine was not available to

provide a lot of flexibility in potential redesign options. However, as the engine cycle simulation had found

this problem initially, the model was changed to investigate different geometries and layouts that might

improve the situation within the constraints of the design. Of note, of the designs that were ultimately tested,
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the drive cycle simulation indicated that simply adding length between the mixer and measurement venturi

appeared to give the best results. Although the backflow phenomenon was not eliminated with this change,

it was rare that air made it to the venturi to affect its measurement. The decision became whether to move

forward with the design change as recommended by the model, or run further physical testing at the risk of

making a significant design change even later in the program.

At this stage in the program, there was only one additional build remaining before production started.

The decision makers had the following options, as depicted by the decision tree in Figure 7: they could

proceed based on the physics-based model results alone. However, there was a chance that the model

prediction could be incorrect, and in this case, the final prototype build would have a sub-standard design

and there would be no opportunity to conduct another build before the tier 4 regulations would take effect.

This would correspond to the situation in quadrant I behavior from the four-box model. The model would

be believed to be of good quality but the predictions would ultimately turn out to be in error. However, if

the decision makers chose to delay the decision until physical test results were available that would either

support or refute/correct the earlier predictions made by the physics-based model, they would definitely

lose several months in the schedule but could still make getting the new design on a portion of the final

prototype build in order to gain experience before production.

Four-Box Model
Representation

Proceed based on Model Prediction
Model Correct Prjc ev ]Recommendation

Model Pedieti o
Incorrect 

I I

EGR System
Design Decision

Mde Pediction .

good design

Delay until Physical
esultsModel Prediction Project Delay: 111

Available orect Testing to ensure
good design lJ I

Figure 7: EGR System Design Decision Tree. There were two options for the decision, whether to
proceed or to wait and pursue additional testing. In both cases, there was the possibility of the model
being correct or not resulting in different outcomes shown. Each outcome is shown relative to the
quadrant in the four-box model it represents.

For some industries, the prospect of physical testing is not an option, or is at most as uncertain as the

model. In the diesel engine industry, however, testing is not technically difficult to do but it is costly and
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time-consuming. The test cells with dynamometers create fairly representative conditions to what the

engine might experience in the field. However, with increasing prototype costs, fuel costs, increased

instrumentation along with a larger number of tests required to qualify the growing complexity in the engine

system, it is becoming more difficult to do extensive testing within the schedule and budget constraints of an

engine development program. Despite the drive for increased model-based design, there still is a bias that

decision-makers have in this industry towards physical testing.

In the end, the decision maker chose to physically test the design options, pursuing the third decision path

shown in Figure 7. The physical test results matched what the physics-based model had already predicted.

On the one hand the physical testing confirmed what had already been predicted by the model and this

confirmation can be viewed as a positive in having reduced perceived risks to the program, on the other hand

the physical testing did not generate substantially new information and can be viewed as a waste of resources

and project schedule by introducing redundancy between model-based predictions and physical testing.

Interestingly, another engine program followed this first case with a later regulation date. As it was similar

hardware to the first, the design team, armed with these experiences, did early design analysis using the

engine cycle simulation to determine the optimal design configuration to limit backflow. The design was

accepted without testing and was found to be successful in preventing backflow once prototype engines were

built. Thus, in the later engine program the situation moved from quadrant IV to quadrant II.

2.1.2 SUMMAR Y

The engine cycle simulation used in this case was shown with respect to the four-box model in Figure 8.

The problem in this case was that of perception of model quality. The model is deemed as good; it has not

been changed as a result of this incident, it predicted the right answer, and was specifically designed for these

types of air system problems. However, due to pressures that affected how people perceived the model and

the potential consequences of model error, its

results were questioned and the program chose to

run physical tests to confirm the proposed design good

decision, accepting a guaranteed program delay and C.

extra costs as a result. This case demonstrates the m I
Good Model:

impacts of quadrant IV where significant Predictions matched reality

expenditures and schedule risk resulted from poor Poor Perception:
Insisted on running physical

misaligned model perception and actual model testing causing delays in

quality. poor good
Actual Model Quality

For model-based design to be effective in this Figure 8: Four-box model of EGR Measurement

organization, there needed to be an assimilation of case
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lessons learned on how to move to the upper right quadrant - how to know and have confidence that a

model is good and act on its results; not doing so cost the program significant prototype and testing costs

plus several months in the development schedule.

2.2 EYJAFJALLAJOKULL VOLCANO ERUPTION

The next case study is, as before, an example of quadrant IV in the four-box model illustrating another

example of a model providing an adequate representation of its underlying physical system, but still coming

under heavy scrutiny. Besides showing another example in quadrant IV, however, this case also introduces

the potential risks of quadrant I behavior where model results are used in a decision where the model is not

in fact appropriate. This case is based on the Eyjafjallajokull volcanic eruption in Iceland in 2010 that closed

much of European airspace when the ash cloud it emitted had spread across the continent. This case has

some common features compared to the previous one, primarily in how model perception can be affected by

significant exogenous pressures.

2.2.1 BACKGROUND

In April of 2010, the Eyjafjallaj6kull volcano in Iceland erupted. Although volcanic eruptions in Iceland

are not rare, due to unfavorable atmospheric conditions, the eruption caused northern European airspace to

close, affecting the major European hub airports (Bolid & Sivev, 2011). Policy makers in Europe faced a

decision that would either risk lives and equipment by continuing to fly in the ash where history had shown

this to be detrimental to planes in flight (Aviation Week and Space Technology, 1990; Guffanti, Casadevall,

& Budding, 2010), or to close airspace with the consequences being billions of dollars of lost revenue by the

airline companies in cancellations and rerouting logistics besides the personal strife felt by the many

passengers who were stranded for the weeks affected by the volcano (Ragona, Hansstein, & Mazzocchi,

2011; Ulfarsson & Unger, 2011). Due to European application of the precautionary principle (Alemanno,

201 1b), guidance to policy makers was actually quite clear:

"The recommended procedure in the case of volcanic ash is exactly the same as

with low-level wind shear, regardless of ash concentration AVOID AVOID

AVOID." (ICAO, 2007)

There were two models in this case that helped to determine the areas to avoid. The first is an

atmospheric model, NAME, that uses input about the eruption and meteorological data to forecast the

movement of the cloud of ash from the volcano. Any region where the model said there was a concentration

of ash greater than 0.2 milligrams per cubic meter (mg/m 3), the region was determined to be a no-fly zone

(ICAO, 2007). This model was developed in 1986 as a result of the Chernobyl tragedy (Alemanno, 201 1b)

and had "evolved into an all-purpose dispersion model" (ICAO, 2007, pp. 1-3-16). Although ash cloud
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propagation does not match the original purpose of this model, thereby bringing it into question, it had been

validated against other models used by other Volcanic Ash Advisory Centers (VAAC), satellite readings, as

well as physical instrumented test flights to show that it was fairly successful (Brooker, 2010) in predicting

ash concentrations emitted from a point source. The model had been used regularly and was used by

qualified personnel.

Despite this validation, there were still many uncertainties in this model. First, there were large

uncertainties in the model's inputs. Information required about volcanic eruptions relies largely on

observations which are not exact (Stohl et al., 2011). Meteorological forecasts are another primary input to

the model that are notoriously uncertain. All of these inputs are translated to the model outputs by a set of

complex calculations and simulations, where predictions become less reliable and less certain than the

uncertainties on the input data.

The second source of uncertainty in the atmospheric model is validation against the real system. Large-

scale distributed physical measurements of the ash cloud are not feasible. Satellite imagery is used to estimate

it, but as imagery is not optimized for ash cloud observation, there are numerous uncertainties in that

measurement as well (ICAO, 2007). As such, validating the model to the real system is difficult within close

precision.

In the days following the eruption, as pressures mounted to reopen airspace, airline companies began

running test flights through the regions impacted by the ash cloud. Upon their return, airlines reported no

damage to the aircraft or the engines. This began to raise many questions as to the validity of the atmospheric

models (Ulfarsson & Unger, 2011) and the damage threshold that was assumed to be the correct one for

purposes of defining the no-fly zone.

The other model that plays a large role in this

case is that of the level of ash concentration that

aircraft engines can fly through without

experiencing damage. This model, at the time of

the eruption, was conceptual as opposed to data-

based. In theory, the model would look something

like what is shown in Figure 9, but as such, does not

exist, or at least not in the public domain (Brooker,

2010). The absence of this model has been

recognized for some time (Brooker, 2010).

Although some testing has been done to understand

c: nt(astrophIc loss of human life

Statistically- ~

Expected
Damage
'Costs'

|: Unacceptable atrreft damge I
-- ------- -- -----

Ash Concentration or
Ash Concentration x Time Exposed

Figure 9: Ideal model of effect of ash concentration
on aircraft engines. The desire is to know at what
level of ash concentration (x-axis) the aircraft
engine reaches different severity levels of damage
against its operation (y-axis). (Brooker, 2010)
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the effect of ash and dust on jet engines (Ulfarsson & Unger, 2011), the data does not support the critical

specification as to the max tolerable limit (shown as "A" in Figure 9).

Despite this, five days following the initial eruption, after much coordination between European officials,

airlines, and engine manufacturers, the guidance for airspace closure was modified to a tiered approach

(Johnson & Jeunemaitre, 2011). Still based on the atmospheric models, an ash concentration up to 2 mg/m 3

was deemed safe. High ash concentration levels remained a no-fly zone; however, a new intermediary zone

was added where it remained within the individual countries' discretion to allow flight operations. This new

tiered approach allowed much of the European air space to reopen, thereby allowing some return of

normalcy, however accepting some residual risk in the intermediate regime. This approach was based

heavily on the conceptual model of aircraft engine's resilience to ash.

Although loss of life was avoided in this case, the financial impact to airlines and passengers alike was

significant. In essence the tradeoff to be made from a financial perspective was between short-term loss of

revenue due to suspended flight operations versus longer term costs due to increased engine maintenance

and repair. This put a lot of pressure as to the validity of the atmospheric models being used to forecast the

movement of the ash cloud and understand what portion of air space was to be closed (Alemanno, 201lb;

Stohl, et al., 2011).
35,000

30,000 The disruption due to the days of airspace
F25,igr-

20,000- closure is portrayed well in Figure 10, where the
*6 15.000-

10,000 - number of flights one week prior to the eruption is

s,0o L i L compared to the week following the eruption. In
0

THU FRI SAT SUN MON TUE WED the end, estimates showed that US$ 1.7 billion was
Day of Week

EW20101s .w 201o16 lost by airlines in revenue with 10 million

Figure 10: Comparing airline traffic in the week of passengers affected (Ragona, et al., 2011). On the

the eruption and the week preceding. The number other hand no flight accidents occurred that were
of flights following the eruption dropped to as
little as 20% of normal. (Bolicd & Siv~ev, 2011) directly attributable to volcanic ash.

2.22 SUMMAR Y

The two models used in this case present good examples of two different quadrants behavior and risks

from the four-box model (Figure 11). Quadrant IV was examined in the previous case where cost and

schedule were impacted negatively as a result of not sufficiently believing in the model without additional

testing. Quadrant IV behavior was also reflected in the application of the atmospheric model in the days

following the initial volcanic eruption. The model has a long use history and validation background, but

came under heavy scrutiny as airlines began investing its validity using physical test flights which undermined
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some of the model predictions. This became a

Poor Model problem of perception, where confidence in the
Highly conceptual miodel ol ash impact to

engines
god Information ot publicly availahle - nooe owae dcsognformationsnsus i eiable-n model began to wane and decision makers needed

Good Perception:
New tiered approach is highty dependent on to act quiCkly.

this concept3

The action taken, however, was based on the
Good Model:

Regulatly validated and used stes fur the
ypeofpredgtionsused on thise second model in this case, supposing the relative

Casmeundereatcrtnthedays resilienCe of engines to ash Clouds. The deCision
followingthe eruption

p makers' concept of this model was enough to create
Actual Model Quality
Figure Fub Model otya a new legislation on it, however, as it is still primarilyFigure 11: Four-box model of Eyjafjallajokull

volcano eruption case. Atmospheric model in conceptual in nature, very little is still understood
quadrant IV, engine damage model in quadrant I.

about it. This is a problem of model validation: how

do decision makers know the model is good? The potential consequences, if this model is in fact wrong, are

much greater than that of quadrant IV behavior. Although there is no evidence to this effect it becomes a

concern for future events.

In this case, model-based decision-making was effective in the beginning although fraught with serious

consequences. The perception issues that emerged with the atmospheric model had the potential to limit the

effectiveness that models can have in this kind of scenario. The validation issues that come into question on

the engine damage models raise serious questions as to the capability of the new legislation, based heavily on

these models, to act appropriately in the event of a future incident.

The conceptual model of the effect of ash on engine deterioration is the second model used in this case.

For the purposes of classification within the 4-box model, it was rated as a poor quality model; since it is

uncertain that these models exist and if they do, what the credibility of their own validation or input data

looks like. However, it was the introduction of this conceptual model that turned around the crisis and

brought European airspace back to normal. Therefore, despite their uncertain validation, the aircraft engine

damage models were perceived well enough by policy makers to redefine policy guidance. In part this may

have been influenced by the short-term financial pressures to quickly return to full flight operations.

2.3 SPACE SHUTTLE COLUMBIA TRAGEDY

The first two cases demonstrated the consequences of quadrant IV (perceived poor model quality,

actually good model quality) behavior. In these cases, there was cost and schedule issues, but the

consequences were not as traumatic as quadrant I (perceived good model quality, actually poor model

quality) behavior could be. The Eyjafjallaj6kull volcano hints at the potential risks of using only conceptual

models for major policy decisions but it remains to be seen if the engine models will be validated in time to
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prevent possible catastrophe in the future. The third and final case from the space shuttle Columbia accident

vill illustrate the real consequences of quadrant I behavior and will put more details behind the problem of

validation. It is consequences such as these that make it a challenge to implement model-based design in

support of good decision -making.

2.3.1 BACKGROUND

On February 1, 2003, the Columbia space shuttle reentered the Earth's atmosphere as it was returning

from orbit upon completion of the STS -107 mission. During reentry, a hole in its wing caused by foam

debris impact during its launch 15 days earlier caused the heat of reentry to breach the wing and destroy the

structure. The space shuttle broke up during reentry, leaving only a trail of debris across the western half of

the United States (CA1B, 2003).

Following this tragedy, the Columbia Accident Investigation Board (CAIB) was commissioned to

investigate the details behind the accident and provide guidance to the National Aeronautics and Space

Administration (NASA) as to the cause and preventive actions that could be taken to promote safe shuttle

missions in the future. The CAIB produced a report seven months later that provided a comprehensive

review of the history of the space shuttle program, the events leading up to Columbia's demise, and review

of the organization and culture at NASA culminating in a series of recommendations. This report is the

primary source of information for this case study review (CAIB, 2003).

Following the launch of the Columbia shuttle on January 16, 2003, the Intercenter Photo Working

Group reviewed tapes of the launch and noticed debris hitting the space shuttle 8 1.7 seconds after launch. It

was later determined the debris was a piece of insulating foam from the external tank that struck the leading

edge of the left wing of the shuttle penetrating the structure. A series of requests were made by this working

group to obtain photos of the shuttle in orbit to inspect the potential damage, but none of the requests were

granted. Therefore, the Debris Assessment Team turned to models to understand potential location, type

and size of damage stemming from the impact.

Many models have been used in post-analysis of the Columbia accident; however, the models of interest

for this report are those used while Columbia was still in orbit - primarily the Crater model used to

calculate penetration due to impact of debris on the thermal protection tiles on the shuttle. There was an

additional model referred to as a Crater-like algorithm that was designed to do the same analysis with ice

impacts on reinforced carbon-carbon (RCC) panels which line the leading edge of the shuttle's wing. The

Crater model was developed during the Apollo program and updated for the shuttle program through 1985.

The Crater-like algorithm was developed in 1984 when testing was (lone using ice impacts on the RCC

panels (CAIB, 2003).
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The primary issue with regard to Crater and the Crater-like algorithms is the difference between the

empirical data used to calibrate the model as compared to the use case in the case of the Columbia shuttle.

Two tables are shown in Figure 12 that show the difference between the values used to develop the Crater

algorithm and its parameters limits next to those values being used to test the Columbia scenario. Emphasis

has been added to show where the Columbia scenario was outside the validated region of the models.

Crater Parameters used during development of experimental test data versus
STS-107 analysis:

Volume Up to 3 cu.in [20c-
Length Up to 1 in 2
Cylinder Dimensions 5 3/8" dia x 3"0
Projectile Block Dimensions :5 3" x 1" x 1"
Tile Material LI-900 Tile
Projectile Shape IC linder IBlock

Figure 12: Comparing Crater model to Columbia STS-107 Analysis. Several parameters of the model
are shown with their tested values for typical operation on the left and the values used during the
analysis during the STS-107 mission on the right side [adapted from (CAIB, 2003)].

The two models were clearly used well outside their original purpose. In fact, the Crater-like algorithm

for the RCC panels was designed to determine necessary thickness of RCC to withstand ice impact, not to

determine penetration depth (CAIB, 2003). The teams performing the analysis recognized this, but due to

the lack of photographic evidence requested and absence of other certified models that were suitable for this

level of analysis, it was the only scenario that could be exercised to understand the potential damage.

Despite the models being used well outside their intended region, the Crater model predicted full

penetration through the thermal protection tiles due to foam impact. The Crater-like algorithm predicted

that RCC penetration would occur with debris impact angles greater than 15 degrees where further analysis

showed the potential for a 21-degree impact to the RCC panels causing a breach. Engineering judgment was

then applied to these results to correct for the known errors in their initial usage. Although this was the first

time this team was performing the analysis, it was generally known that the Crater algorithm was a

"conservative" judge of tile penetration. Since it assumed constant material properties of the tile, and in

reality there is increasing density of the material deeper in the structure that may hold up to impact better.

These two reasons caused the Debris Assessment Team to discount the results from the Crater model.

Regarding the Crater-like model for the RCC panels, a "qualitative extrapolation" was done to determine

that an impact angle of 21 degrees would not cause penetration of the panel. To put it simply, the

indications from the models were that a full RCC panel penetration had likely occurred, but due to the high

modeling uncertainty outside the validated range, these engineering predictions were not believed and

management eventually took the position that a full breach had likely not occurred and that reentry should

be attempted.
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Given the region the analysis was conducted relative to the calibrated inputs to the model, uncertainty

became a large question. It was not understood how good the model was at predicting so far outside its

validated region, but any implicit or explicit model assumptions or known uncertainties were not conveyed

to the management team. And "management focused on the answer that analysis proved there was no

safety-of-flight issues rather than concerns about the large uncertainties that may have undermined the

analysis that provided that answer" (CAIB, 2003).

As management weighed the decision of what to do about the foam impact, there were several factors at

play. First and foremost was the fate of the space shuttle program as a whole. After heavy budget cuts, the

program had strict schedule milestones related to the International Space Station (ISS) that, if missed, could

result in further budget cuts or program termination. Many of the internal communications while Columbia

was still in orbit were focused more on schedule delays as a result of return to- flight maintenance issue from

damaged tiles rather than the possibility of loss of the shuttle during reentry (CAIB, 2003).

Besides the schedule pressure impacting management, tile damage due to foam shedding during launch

was not a new issue. Nearly every shuttle launch experienced this as confirmed by either imagery during

launch or by divots found in the tiles upon the shuttle's return, and about 10% of missions experienced

shedding of the foam around the left bipod ramp of the external tank which was the source of debris on STS-

107. After successful completion of a shuttle mission, concerns found from that mission are noted as In-

Flight Anomalies, in some cases, the next shuttle launch cannot occur until concerns are addressed before

the Flight Readiness Review. There were many instances in space shuttle history where foam shedding

during launch had been made a concern, preventing flight of the next mission until resolved (Figures 6.1-6

and 6.1-7 in the CAIB report review these in detail). However, the many changes made to reduce exposure

were enough to continue with the next mission, but not enough to eliminate the issue altogether.

The space shuttle Atlantis flew mission STS- 112 that was the latest launch to experience significant foam

loss prior to STS- 107, and it was from the same location and preceded by only 3.5 months. The damage

from the foam loss was significant, but this was the first time the incident was deemed an "action" as opposed

to an In-Flight Anomaly. This then allowed the following shuttles to launch without steps being taken to

solve the foam shedding issue. The CAIB report states "this decision ... is among the most directly linked to

the STS- 107 accident. Had the foam loss during STS- 112 been classified as a more serious threat, managers

might have responded differently when they heard about the foam strike on STS- 107" (CAIB, 2003). As

stated by Woods (2005), they were using "past success as a reason for confidence" (p. 9).

First, it was not believed that foam could ever penetrate an RCC panel entirely; to the point that the

CAIB had to "prove or disprove the impression" which "prompted the investigation to develop computer
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models for foam impacts and undertake an impact-testing program" (p. 78) in the post-accident analysis.

When STS-107 was still in flight, this same sentiment was noted by the CAIB: "Analysts on the Debris

Assessment Team were in the unenviable position of wanting images to more accurately assess damage while

simultaneously needing to prove to Program managers, as a result of their assessment, that there was a need

for images in the first place" (p. 157). The management team could not or did not want to believe that full

RCC panel penetration could occur as a result of foam loss, and therefore because of their inherent bias

tended to reduce their perception of quality of analysis despite the fact that the engineering community

stated otherwise.

2.3.2 SUMMAR Y

The events surrounding the Columbia space shuttle's final flight can be used to show how issues with

model validation can impact the quality of information available to make decisions, and how factors affecting

perception of quality can further impact the decision making process.

It is interesting to plot this case study on the four-

box model presented earlier and shown again here , M** e*
here Input Pedigree/ Uncertainty/

good People Qualifications /(Figure 1 3). In this case study example, there are z* M&S Management / Use History

potentially two ways to plot it depending on the Ued Good t ion
Usdto continue with analysis

point in time of this case. Quadrant I indicates the

situation while the shuttle was in orbit: a poor model I poor

that was perceived well. There are numerous

examples of how the actual quality of the models poor good
Actual Model Quality

used in this example are poor (using the language Figure 13: Space Shuttle Columbia Accident

from the NASA-STD-7009): Input pedigree, plotted on four-box model

Uncertainty, People Qualifications, M&S Management, Use History. However, as a result of overriding

factors related to people's perception of quality, such as the pressure from schedule deadlines, the potential

consequences of the decision, or the lack of consistent communication across the organization, the model

was deemed good enough to pursue reentry. This is particularly interesting when taken in context with

other models being available at that time that could better address these validation concerns with the model,

but were not certified by NASA for use.

Using the benefit of hindsight, as actual model quality is rarely if ever known ahead of time, this case

could also be classified in Quadrant IV where the quality of the model is good, i.e. it correctly predicted full

RCC panel penetration, but it was perceived poorly. Despite the various issues with the models used, the

resulting prediction it gave was in fact representative of reality where full penetration was achieved. Despite
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this, the management team's perception of the model was to discount its findings due to inevitable model

uncertainty, not based on the model's quality itself.

3 ANALYSIS OF THE PROBLEM

3.1 PROBLEM STATEMENT

For model-based design to be effective, it is necessary for models to be validated and appropriate for their

use and for the decision makers to trust the results. The previous case studies demonstrated the

consequences if either of these two criteria are not met. In the first and second cases, decision makers sought

other sources of information from which to make a decision usually costing time and money. In the last case

study, there is potential for dire consequences upon making the wrong decision from misleading model

results.

In the case study review, where there is the benefit of hindsight, it was clear where there was a problem

of perception in the first cases where models were actually providing appropriate information but decision

makers required more confidence before acting or did not like the outputs of the models because it

contradicted their pre-conceived notions and biases. In the final case, there was a clear problem of validation

where a model was used that misled decision makers, resulting in tragedy. Given these consequences, for

model-based design to work successfully in organizations (i.e. resulting in most or all cases that reside in

quadrants 11 and 111), decision makers need to know whether to believe the model results as the

consequences otherwise are too great.

Model

User

Data

Computer Based
Decision Support System

Figure 14: Interfaces in a Decision Support
System. [Adapted from(Bonczek,
Holsapple, & Whinston, 1980)]

Visualizing the problem space will help to distinguish

where these problems originate. Figure 14 shows a generic

decision support system (DSS) whereby a model and data

become a DSS that interacts with a user or set of users,

generally the decision maker (Bonczek, et al., 1980). In this

system, the user will "[search] for information about the

current and desired state of affairs, [invent] possible courses

of action, and [explore] the impact of each possible course of

action" (Brennan & Elam, 1986, p. 49) with the help of the

model and associated data. It is the interfaces in this system

where the problems originate. In the interface between

model and data within the DSS, there is the problem of

validation whereas the interface between the user and model

29



introduces the problem of perception. Before a solution to these interface problems can be provided, the

potential underlying causes must first be uncovered. The following sections will seek to do so by first

ensuring a definitive 'understanding of the aspects related to model-based design. This includes identifying

what defines a model and which models are relevant to this thesis. In addition, attention will be given to

defining model validation and how it is different from other similar terms often used such as verification,

assessment, and confidence.

Following these definitions, the problem of validation will be further investigated by first understanding

some of the challenges to validating models. This will be followed by some prescriptive techniques available

in the literature to help address the problem of validation. The problem of perception will also be analyzed

further by first understanding factors that can influence the perception process specifically as it relates to

model quality, which will illustrate how perceived quality may differ from actual quality.

3.2 DEFINITIONS RELATED TO MODELS AND SIMULATIONS
Confusion in the problem space can originate by what is meant by model, simulation, verification, or

validation (Brugnach, Tagg, Keil, & de Lange, 2007; Oreskes, Shrader-Frechette, & Belitz, 1994). This

section will review some of the definitions from the literature to both define the scope of this thesis in the

case of models and simulations, and to present the varied field that is verification and validation.

The concept of a model can be quite varied. The exhibit "Making Models" at the Museum of Science in

Boston illustrates the vast definitions of models. They can be physical, conceptual, mathematical, computer

simulations (Boston Museum of Science, 2001) and more. The exhibit has fundamental concepts it intends to

teach its clientele about models: that a model is not the real system, but can be used to learn more about it,

that models can be effective communication tools, and that the usefulness of a model can be determined by

comparing its predictions to actual observations (AAAS, 1993).

3.2.1 DEFINITION AND SCOPE OF MODELS AND SIMULA TIONS

Although the number and types of models are diverse, the definition of a model is concise and can be used

to describe any model. Highland (1973) summarized many definitions into simply "a model may be defined

as a replication of a real world entity" (p. 11) and describing further "no model is a complete and true

representation when we attempt to model a real world entity ... at best it is a simplified version of the real

world" (p. 12).

Some try to further define models beyond this broad definition. In many cases, this becomes a model

classification to be discussed later in this section. However, Refsgaard and Henriksen (2004) recognize the

importance in distinguishing between the concept of a model encapsulating the governing theories, the code

that implements the model in a software package, and finally the "site- specific" model which is generally
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what most consider to be the final product. Although this definition is more confined to a class of models

that are computerized and mathematical, it is helpful to recognize these distinctions when we define

processes that add to a model's credibility.

A simulation is defined by Forrester (1961 ) as the "process of conducting experiments on a model instead

of attempting the experiments with the real system" (p. 18). Simulations allow for better understanding of

the problem being addressed and the full design space. They can run "what-if' scenarios to explore system

responses in cases where it is prohibitive or impossible to do on the real system (Banks, 1998).

By the definitions described here, the model would be considered the operand or instrument and the

simulation the operation or process. However, throughout the literature as well as this thesis, the term

"'model" is often used in place of "simulation." In many cases, rather than provide a distinction, the terms are

lumped into a single abbreviation: M&S.

This thesis cannot purport to be applicable to any model or simulation. This difficulty of defining scope

was realized by Bertch, Zang, and Steele (2008) during development of their model validation standard.

They noted that there are numerous types of models and simulations in use at NASA and validation efforts

were in place that were specific to individual types of models. However, they were tasked with providing a

broad enough approach to encapsulate all models and simulations used at NASA. Their work on developing a

NASA-wide standard for validation and credibility of models and simulations, which resulted in NASA-STD-

7009, was a direct outgrowth from the CAIB final report.

Gass and Thompson (1980) scoped the problem well: "The types of models considered as the primary

basis for developing these guidelines have the following general characteristics: (1) they are models that are

developed to assist the policy analyst or decision-maker in selecting or evaluating various policies regarding

governmental issues and programs ... (2) they are mathematical models of a complex system and have been

computerized; and (3) they are large scale models." The applicability of this thesis follows similar guidelines

as above.

It is most important to remember that models and simulations are simplifications of reality. They are

tools used to support decisions required for the real systems they represent. However, as they are simply a

representation of real systems, they are all, in effect, wrong (Box, 1979). Whether or not models are in fact

wrong or not depends on whether the predictions and recommendations flowing from these predictions

would lead a rational decision maker to take a course of action that was - in hindsight - judged to be right or

wrong. This of course is fraught with difficulty since even with hindsight different stakeholders - presented

with the same facts and outcomes - may evaluate the decision that was actually taken quite differently. The

key is to determine which models are useful by means of processes to enhance and understand their

credibility.
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3.3 MODEL VALIDATION AND RELATED TERMINOLOGY
A common expression in any realm that works with models is that "all models are wrong, but some are

useful" (Box, 1979). The processes of verification and validation describe the activities that move a model

from the first part of Box's statement, to the latter part. What makes a model useful, however, is a fuzzy

proposition making the verification and validation processes difficult to define and execute with a consistent

result in the end. Yet these processes are the means by which credibility is attributed to a model and

therefore a critical component to impacting the perception of a model's quality. Therefore, this section will

discuss in detail what is actually meant by verification, validation and related terminology, as there are some

important distinctions as well as some debate on the subject.

It is helpful to see details of the modeling process to better understand how the processes of verification

and validation come into play. Sargent (2001)

presents a descriptive paradigm of the modeling rvem E SYSTEM

process (Figure 15) that has enough detail to show
% HWOTHESrm ABSTRACTMG

the intricacies that distinguish the verification and

validation processes. In this paradigm, he shows two (Resuft) - E 

realms: the real world and the simulation world. The

real world shows the actual system and its results in

physical reality while the simulation world shows the

various processes and stages required to convert a

real system into a model or simulation. These include

abstracting a system in the real world into system

theories that serve as the interface between the two

realms. Using these theories, a modeler generates a Figure 15: Sargent's detailed paradigm of the
modeling process including the simulation world

conceptual model of the system, which is then and how it interfaces to the real world. (Robert G.
converted into a specification illustrating how the Sargent, 2001)

conceptual model is to be implemented. At which point, the model is implemented into computer code

where it can then be used and repeatedly exercised to generate data that reflect back to the real system.

Verification is the process to understand "did I build the thing right?" (INCOSE, 2011; Pace, 2004). It is

generally accepted that to verify a model, is to confirm that the model, as implemented generally in software

code, correctly instantiates the originating conceptual model (Balci, 2004; Banks, 1998; Gass & Thompson,

1980; Refsgaard & Henriksen, 2004; Robert G. Sargent, 2001; SCS, 1979). In this more detailed paradigm

in Figure 15, verification is done in two steps. First, by verifying the specification for a model to the

conceptual model, then by verifying the model to its specification.
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It is common in publications and particularly in industry that verification and validation are used

interchangeably (Naylor, Finger, McKenney, Scbrank, & Holt, 1967; Refsgaard & Henriksen, 2004). In

what is a minor change in wording from above, validation is the process to understand "did I build the right

thing?" (INCOSE, 2011; Pace, 2004) which is a significantly different proposition. The difference is

illustrated in Figure 15 where the model is being checked against reality in three different manners: the

governing system theories to the system behavior, the conceptual model to the system theories, and finally,

the simulation results to the real system behavior. In this point of reference, much of the literature describes

validation as a behavioral assessment of the model to the real system (Balci, 2003; Lewandowski, 1981;

Romero, 2007). Banks (1998) goes on to say "whether the conceptual model can be substituted for the real

system for the purposes of experimentation."

Although the paradigm from Sargent helps to define the verification and validation processes, there is still

some debate over what these processes mean. Oreskes et al. (1994) disagree with the common definition of

verification used in the modeling community. In their opinion, verification "is to say that its truth has been

demonstrated, which implies its reliability as a basis for decision-making." Further in their discussion, no

open system can ever demonstrate truth in this manner as the cause and effect to a variable is not strictly

dependent on other known variables. Refsgaard and Henriksen (2004) discuss the issues in defining

verification as presented by Oreskes and others and tried to address the issue by separating the model's

computerized code from the model itself. In so doing, they have created a closed system between the

requirements created by the concept to those implemented in the code. With this distinction, there is no

assurance given by the verification process that the model represents reality, only that it correctly represents

the abstraction of reality embodied in the conceptual model.

Oreskes et al (1994) also warn against the common use of validation by stating that substituting a model

for the real system may mislead what people believe is reality. They define validation as a process to ensure

the absence of flaws in the model. Many of the processes defined by others to complete validation those of

comparing model outputs to reality are further criticized by Oreskes, stating that "congruence between a

numerical and an analytical solution entails nothing about the correspondence of either one to material

reality."

Under this premise, how can one determine if the model truly corresponds to the system it intends to

represent? Oreskes suggests confirmation of the model whereby "if a model fails to reproduce observed data,

then we know that the model is faulty in some way, but the reverse is never the case." Forrester and Senge

(1980) further elaborate this concept as building confidence, which "accumulates gradually as the model

passes more tests and as new points of correspondence between the model and empirical reality are
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identified." Therefore, successful validation processes result not in a model that mimics reality, but rather

one that builds confidence that the model is an appropriate tool to use with the real system.

Confidence is not an inherent attribute of the model, but rather an attribute of the user or decision maker

(Gass & Joel, 1981). Therefore, it is necessary to distinguish between credibility and confidence. Confidence

is a measure of whether the model should be believed. Gass and Joel define confidence as "the user's total

attitude toward the model and of the willingness to employ its results in making decisions" and "is expressed

by the influence the model's outputs had in the decision" (p. 341). Credibility is developing the potential to

build confidence in the model (Robert G. Sargent, 2005). Under these definitions then, the validation

process builds model credibility. This in turn may improve the confidence of the decision maker in the

model and increase the probability that the model will indeed be used to influence real decisions. However,

as will be shown later in this thesis there are factors such as time pressure to make a decision or

consequences from an erroneous decisions that can influence a user's confidence in a model, even though the

attributes and credibility of the underlying model may be invariant to these exogenous factors.

The final terms that are used often in the literature are accreditation and certification describing a formal

process that results in a recorded approval that a certain model is indeed fit for use. Generally, accreditation

refers to the result that the model meets a set of acceptability criteria (Balci, 2004; Pace, 2004; Robert G.

Sargent, 2001). However, Sargent discusses some arguments in this definition where accreditation may be

taken to mean the procedure to give a third party the ability to certify models. Here, then, certification

becomes the official documentation that a model meets its criteria. This distinction becomes important as

the literature describes the importance of using a third party to validate models in order to enhance their

credibility (Robert G. Sargent, 2001). In general, however, there is terminology in use to describe the

documentation of a model meeting its specifications.

Having a solid understanding of the terminology related to the modeling process is key, and a summary of

definitions is shown in Table 1. This will help to introduce the idea of confidence, a key element required to

model perception.
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Terminology: Definition:
Verification The model meets its specifications
Validation The model represents the real system
Credibility Potential to build confidence in the model
Accreditation Model meets given acceptability criteria

Certification Documentation of completed model verification,
validation, and accreditation process

Table 1: Summary of terminology related to model-based design



3.4 MODEL AND SIMULATION CREDIBILITY ASSESSMENT

In Sargent's illustration of the modeling process (Figure 15), the validation processes are shown relative

to their integration within the process but with no guidance as to how to complete those validation processes

and how to do them in such a way as to build the needed credibility in the model. This section will describe

first what the assessment or validation process is and why it is important. This will be followed by discussion

on the importance of model classification in assessment processes finishing with some example assessment

frameworks from the literature.

Forrester and Senge (1980) noted that the decision-makers using the models are within the system

boundary. Therefore, "validation includes the communication process in which the model builder ... must

communicate the bases for confidence in a model to a target audience. Unless the modeler's confidence in a

model can be transferred, the potential of a model to enhance understanding and lead to more effective

policies will not be realized."

Brugnach et al (2007) noted the resulting issues that arise as a result of this lack of communication

including "policy makers do not understand models," "lack of certainty or validation of the models," "lack of

integration of policy makers and modellers," and a "lack of stakeholder involvement in the whole modelling

process." Yet despite these issues being known, modelers believe they are not being listened to, while the

decision makers "do not hear much they want to listen to" (Clark & Majone, 1985; Lindblom & Cohen,

1979; Weiss & Bucuvalas, 1977).

The assessment process has been established to provide "a practice intended to enhance societal

understanding of the broad implications of science and technology and, thereby, to improve decision-making"

(Sclove, 2010). It is meant to be a vehicle with which modelers can input pertinent information regarding

the model and decision makers will have the necessary information with which to make decisions.

Therefore, it is important to remember in the following section that a key aspect to assessment processes

is communication. In the following sections, several frameworks will be presented that will describe

technical aspects of model validation, but if the resulting credibility of the model does not get communicated

well to the decision maker, then the process loses value or breaks down entirely.

3.4.1 VALIDATION DEPENDENCE ON MODEL CLASSIFICA TION

Classifying models is important from various aspects. First, it can help to organize a field that is incredibly

diverse. Second, frameworks to verify and validate models and simulations can be defined differently

depending on how the model is classified (Lewandowski, 1981; Oren, 1981). The potential options in

model classification are vast (Highland, 1973), and therefore a list of examples shown below is not complete.
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However, it is meant to demonstrate the breadth of scope used to classify models to help understand how

validation techniques might vary among classifications.

Oren (1977) introduces a concept that is more a taxonomy of model classifications as compared to a

taxonomy of models themselves. However, it illustrates the potentially numerous ways that models can be

classified. Each of these methods may require a different framework for validation of the models within it as

it values different characteristics of the models differently.

* Goal of experimentation or the model's purpose

* Type of application area

* Type of system

* Nature of the model

* Nature of the relationships

* Time set of the model

* Ratio of simulated to real time

* How the state of the model is updated

* Device used to do the experimentation

* Way of accessing the computer in computerized simulation

* Simulation executive (time structure of the simulating software)

3.4.1.1 Classification based on System Behavior

Forrester utilized a model classification in order

to identify the current state of modeling and

illustrate gaps in the field. In so doing, he identified

a segment of models that most closely represented

organizational behavior, but was not captured by

existing models; hence became the origin of system

dynamics modeling (Forrester, 1961).

Forrester used a hierarchy of fundamental

attributes of a model's behavior. He was interested

in using models to describe how systems respond

and therefore emphasis was placed on classifying the

outputs of the models as opposed to its inputs or its

Models
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Figure 16: Forrester's Model Taxonomy. A
hierarchy of attributes can be used to describe
model behavior (Forrester, 1961)

attributes. The structure of his resulting taxonomy is shown in Figure 16.

3.4.1.2 Classification Based on Model Architecture

Highland (1973) begins his discussion of model taxonomy with a review of existing classifications at the

time of his publication. From this review, which included Forrester above, he proposed a new taxonomy

that would provide a set of identifying features for improved communication of the model. The result is a
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system of classifications that is based on a hierarchical architecture of the model, beginning at the highest

level of abstraction and decomposing down to the variables of the model.

He first identifies the broad classification to start similar to how Forrester had done. ie then diverges to

classifying the purpose or function of the model. This is followed by a classification by relationships of the

modules within the model to gain an understanding of complexity. Finally at the lowest level of abstraction,

the system variables are classified by their attributes.

3.4.1.3 Model Classification for Validation

In Lewvandowski's (1981) discussion on issues in model validation, he pointed out the importance of

specifying a model in regards to attributes that are most relevant to validation of that model. He identified

three attributes each with two contrasting levels that could best describe a model in ways that could best

prescribe the method for validation required.

* Model Background
o Natural
o Behavioral

" Logical Type of the Model

o Causal
o Descriptive

* Interpretative Type

o Probabilistic
o Deterministic

3.4.1.4 Validation dependence on model classification

The validation processes available can depend on the way a model is classified. Each of the above

examples of model classification presents its own challenges to validation. Kleindorfer and Ganeshan (1993)

discuss two primary segmentations of models (with a third as a mix of the first two), each with their own

method of validation. Justificationism describes the belief that a model has a firm grounding to

experimentation or sound theories. Therefore, validation of such models is tying the experimentation to the

models. In contrast, antijustificationism is the belief that judgment is required, that empirical validation, as is

(lone with the first theory, is not possible with models. In this case, validation "consists of persuading

someone that one's model falls into a well-accepted way of seeing a problem." Another perspective is to

validate by forcing "the system that it describes to act like the model." As seen from their work, validation

techniques can vary significantly based on how the model is viewed.

Much of the work above was inspired and developed from some of the original work by Naylor et al

(1967). They identified three ways of viewing models: Rationalism, Empiricism, and Positive Economics. In

the first case, rationalism is a model comprised of logical deductions. Therefore, validation in this case is

dependent upon aligning the model with first principle theories. In the case of empiricism, the models are
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data based as opposed to theory based, and therefore validation is a matter of aligning the data from the

model to the real system. The final case, positive economics, describes the model's ability to predict future

behavior of the system. This focuses validation on matching output behaviors as opposed to theories and data

as in the first two cases.

Voas (1998) introduces another perspective to approaching validation; in this case, the interest is in

certification. They decompose the problem into three segments: Product, Process, and Personnel. With

each segment, the way in which certification is done is different. Although their paper focuses more on

certification, the ties to validation have been made by Balci (2004) who presents quality indicators for each

of the segments. These indicators are used then to provide an assessment for the model, its processes, and its

developers and users. More on Balci's framework will be discussed in the next section.

Another presentation of validation techniques is based on the purpose of the model. This technique is

particularly interesting as general validation theory suggests that validation is done as to the purpose of the

model. Therefore, it is important to understand how the validation may change as the purpose does.

Lewandowski (1981) provides four potential purposes, each with varying validation challenges.

The first purpose is to gain understanding of the real system on which a model is based. In this case, the

primary challenge is "the relationship between the structure of the process and the structure of the model."

The importance of understanding the impact of model assumptions is stressed as a primary goal to be sure

the model is an appropriate representation for understanding.

The next purpose may be for prediction or forecasting. Lewandowski describes this purpose being "the

most frequent situations, and probably the most difficult ... from the point of view of validation approach."

It is described that even if a model can be validated well against its reference data, it is difficult to assume

that the model will behave well outside the validated region as there may enter in new parameters that were

not a factor before. This was clearly the case in the Columbia space shuttle case study.

Similar to prediction, models can be used for scenario analysis. For this case, a model is used to view

future system behavior, but based on predetermined scenarios. According to Lewandowski, "the

methodology for validation of scenario models does, as yet, not exist."

The final purpose presented by Lewandowski is using models for optimization. As discussed, there are

- several variations of optimization, but in all cases, an objective function is developed to describe the system,

and the validation of that function is most essential. Proposals are made to use data, if available, or possibly

subject matter experts who have a better understanding of the system behavior.

The Department of Defense, in its Verification, Validation, and Accreditation guidelines (DoD, 2006)

provides one final purpose on which validation may be dependent. In many of their cases, training is an
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important purpose of a model. In this case, validation is based on activity being trained and the accuracy

required for that activity.

This section has illustrated the vast field of model validation. Defining a fixed process is difficult as the

model type or purpose for which it is used is different (Bertch, et al., 2008; Kleindorfer & Geneshan, 1993;

Lewandowski, 1981; Naylor, et al., 1967). Add to this the complexity surrounding the definition of model

validation, and a large, varied field emerges in attempting to understand how to validate models in order to

boost their usefulness in the decision making process.

3.4.2 EXISTING FRAMEWORKS

A number of different ways to validate models have been presented in the above sections. This section

will describe some specific assessment frameworks from the literature. In most of these cases, some of the

techniques described above are simply a subset of the validation process which typically can include more

activities. For example, Figure 17 shows the Problem Solving Process published in the Department of

Defense (DoD) in the Recommended Practices Guide (RPG) (DoD, 2006). This process represents the

system of activities relating to using models and simulations, including a section that addresses the

Verification and Validation processes. Other cases include more aspects of the problem solving process than

just focusing on the model development. The frameworks presented in this section will begin with

fundamental model validation steps followed by examples that increase the detail against which models are

judged in order to demonstrate the potential breadth of simple model validation. However, as mentioned

above, a critical step to the assessment process includes communicating with the decision makers; two

frameworks will be presented that introduce attributes of the communication process within their model

assessment process. To conclude, three additional frameworks will be discussed that further attempt to build

upon the communication process by introducing a numerical rating of models that results from the

assessment process.

3.4.2.1 Fundamental Model Validation Steps

Naylor et al (1967) present a "multi-stage" process to validation. It consists of three steps:

I. Formulate hypotheses describing system behavior

2. Using statistics, validate these hypotheses to the system (recognizing the challenge in some cases to

have data available with which to do this)

3. Test the ability of the model to predict system behavior

This framework demonstrates the fundamental model validation process. It provides a generic roadmap,

but does not give much guidance as to the details required for each step.
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Figure 17: DoD Problem Solving Process including Verification and Validation steps (DoD, 2006). This
process illustrates the series of activities around problem solving of which verification and validation
is a part. It is a large part of the accreditation process but also overlaps with model and simulation
development and use processes.

Oren (1981) presents a much more detailed process of model validation. He identifies a matrix (Figure

18) of required assessment linking the aspects of the model to be validated and the criteria to which it should

be validated against. The checkmarks indicate that an aspect of the model should be judged against the

criteria along the top. For example, the data from the real system should be judged against the goal of the

study as well as the norms of experimentation technique likely used to collect data from the system.

For each of the aspects of the model, a series of deeper criteria are provided for each of the intersections

in the matrix. These criteria are meant to be at levels that are individually assessable.

Although Oren's framework is much more descriptive than that shown by Naylor et al, it remains at a

relatively abstract level related to model validation.

Balci (2004) presented an extensive framework for model quality assessment. The framework was

developed around Voas' (1998) segmentation of the modeling environment which involves discerning

between the model product, the modeling process, and the project.
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Figure 18: Oren's Model Validation Framework (Oren, 1981). The rows of the table show the attributes

of the problem where the columns across represent measures by which the attributes can be tested.

The product quality framework presented by Balci recommends creating a hierarchy of quality indicators

related to the product. Similar to Oren, the indicators are decomposed to a level that is assessable. He

presents an example including the following high-level indicators:

* Dependability

* Functionality

* Performance

* Supportability

* Usability

Balci next proposes indicators to evaluate the modeling process:

* Acceptability

* Maintainability

* Quality of the methodology used to execute the process

* Quality of the way the methodology is applied

* Rapidity

* Reliability

* Robustness

* Supportability

* Understandability

e Visibility

Finally, the project indicators are proposed where the maturity of an organization is graded. For this,

Balci borrows from CMMI (2012).
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Balci, like Oren, provides a very thorough framework for model assessment with respect to verification,

validation, and quality assessment particularly as Bald has done for the three aspects of the modeling

environment as defined by Voas. What these frameworks lack is inclusion of the communication process

amongst the various roles in the modeling process without which makes the assessment process incomplete.

3.4.2.2 Assessment Frameworks with Communication

The importance of the communication process is recognized an( accounted for in other frameworks; two

examples are presented in this section to discuss the means used to improve communication. Sargent (2001)

introduces a recommended framework for model validation that begins to include elements critical to

communication between the modelers and decision makers.

1. First agreement between the modelers, sponsors, and users on the validation approach and minimum

techniques to be used

2. Specify the level of accuracy required for the problem

3. Test assumptions and theories of the model

4. Continually validate the conceptual model throughout development

5. Explore the model's behavior throughout development

6. Compare model behavior to system behavior in at least the last revision

7. Develop documentation of the validation process

8. Propose a schedule to periodically review the model's validity

Sargent provides much less detail compared to the earlier frameworks as to some of the specific validation

procedures to conduct. Although early agreements regarding model assessment may have been achieved,

later documentation and scheduling are critical to communication between the modelers and decision

makers. Extensive model validation may be of little use if the results of the model validation, including a

clear recording of the model's limitations, are not subsequently communicated orally and in writing or in

electronic form to subsequent users and consumers of the information produced by the models.

A framework presented by Gass and Thompson (1980) (Figure 19) is very similar to Sargent's above.

There is emphasis placed on documentation, maintainability, and usability. However, more guidance is given

to the documentation, validation and verification aspects.
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FA DOCUMENTATION
B. VALIDITY

Theoretical Validity
Data Validity
Operational Validity

C. COMPUTER MODEL VERIFICATION

D. MAINTAINABILITY
Updating
Review

E. USABILITY

Figure 19: Gass & Thompson's Validation
Framework (Gass & Thompson, 1980)

The documentation of the model is called out first and the

connotation is different from the above. Gass and Thompson

describe two kinds of documentation: descriptive of the

assumptions and theories behind the model, and technical

description of the modeling methods and its software

implementation. Although this does not callout gaining

agreement at the start, it specifies details that need to be

agreed upon in the early stages of model development.

The validity and verification sections also provide more

guidance; not to the detail of Oren or Balci, but they provide the modeler with a better sense of the

segmentation of steps required in these expansive disciplines of verification and validation.

3.4.2.3 Assessment Processes with Numeric Ratings

Several frameworks have been presented thus far that show varying levels of detail in model validation

and begin to introduce the communication aspect necessary for assessment processes. The following three

frameworks introduce the idea of assigning a numeric rating to the model at the conclusion of the assessment.

Gass (1993) presents four advantages when using a numeric scale during the model assessment process:

I. Decision-makers going through the process of determining weighting for the evaluated criteria

require additional attention to those criteria and their value to ensure the right measures are being

used

2. Sensitivity analyses can be done to understand the effect of criteria weightings to the final score

3. Similarly, sensitivity analyses can be done to understand the effect of the criteria on the final score

4. The rating objectifies the results that are presented in the model documentation to limit potential

interpretation issues

However, Sargent (2001) disagrees with the value of a numeric rating system in improving

communication indicating that it can lead to misinterpretation of the model:

1. A model may receive a passing score and yet have a defect that needs to be corrected

2. The subjectiveness of this approach tends to be hidden and thus this approach appears to be objective

3. The passing scores must be decided in some (usually) subjective way

4. The score(s) may cause over confidence in a model or be used to argue that one model is better than another. (p.

107)

It is most important to remember that "the accreditation score has no meaning by itself, it has to be

combined with a written report, along with related sensitivity studies, so that the user can make a better

judgment call as to whether to accredit the model" (Gass, 1993, p. 252).
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Jain and McLean (2009) present the idea of a rating scale for attributes related to model confidence. They

first present attributes related to increasing model confidence similar to those described earlier:

Software engineering practices / software reliability

Modeling practice

Model confidence / verification, validation, and accreditation

Standards

Interoperability

Userfriendliness and accessibility

Performance

Innovation

Within the model confidence / verification, validation, and accreditation attribute, Jain and McLean do

not offer their own take on an assessment process, but rather offer other frameworks presented by other

authors, some of which discussed here. In addition, however, they present the predictive capability maturity

model (PCMM) (Oberkampf, Pilch, & Trucano, 2007). This model presents a zero to three scale to judge

six elements as to their level of assessment completed, the objectiveness of the reviewers (internal or

external) and level of documentation. The six elements are:

Representation and Geometric Fidelity

Physics and Material Model Fidelity

Code Verification

Solution Verification

Model Validation

Uncertainty Quantification and Sensitivity Analysis

This scale presents an easy communication

vehicle to quickly portray the rigor used in the

verification and validation process.

Gass and Joel (1981) introduce an assessment

framework with a numeric rating scale and highlight

the visualization that can be achieved. The

framework itself is similar to that of Gass and

Thompson presented earlier, but the resulting bar

graph (Figure 20) shows an example of how a rating

is applied to each criterion represented by the hash

bar, which is easily compared to the minimum

I Threshold Boundaries for the Criteria
Figure 20: Example of Criterion Rating Matrix
where the criteria are listed and a black box shows
the minimum threshold required for each
criterion for the problem being addressed. A bar is
then drawn that compares the actual model rating
to the acceptance threshold. [Adapted from (Gass
& Joel, 1981)]
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threshold require(d in order to confidently use the model results (black boxes). From this example, it can be

quickly seen that although the model plotted in this example has a high quality pedigree, it lacks data and

validation efforts. This allows modelers to know what to build upon to create a better model and tells the

decision maker what to watch out for when using this model.

The final framework presented is a best practice with regard to the various issues noted above. It provides

detailed guidance for building confidence against modeling criteria, documentation guidelines, and a rating

scale to improve the objectivity of the model review.

Following the accident with the Columbia space shuttle in 2003, NASA requested the development of a

Model and Simulation (M&S) standard [that] would:

I. Include a standard method to assess the credibility of the M&S presented to the decision maker when

making critical decisions ... using results from M&S.

2. Assure that the credibility of M&S meets the project requirements.

3. Establish M&S requirements and recommendations that will form a strong foundation for disciplined

(structure, management, control) development, validation and use of M&S within NASA and its

contractor community.

(Bertch, et al., 2008; NASA, 2008; Thomas, Joiner, Lin, Lowry, & Pressburger, 2010)

There are two primary parts to the resulting standard: NASA-STD-7009. The first gives a series of

requirements for the documentation process for the model or simulation. The second introduces a

credibility assessment and scale with which to evaluate models and simulations.

There are forty-nine requirements for documentation which are summarized into eight sections (Bertch,

et al., 2008; NASA, 2008)

The credibility assessment scale introduced in the second part of the standard (Figure 2 1) contains eight

factors grouped into three categories:

a. M&S Development

(1) Verification: Were the models implemented correctly, and what was

the numerical error/uncertainty?

(2) Validation: Did the M&S results compare favorably to the reference

data, and how close is the reference to the real-world system?

b. M&S Operations

(I) Input Pedigree: How confident are we of the current input data?

(2) Results Uncertainty: What is the uncertainty in the current M&S

results?

(3) Results Robustness: How thoroughly are the sensitivities of the

current M&S results known?



c. Supporting Evidence

(1) Use History: Have the current M&S been used successfully before?

(2) M&S Management: How well managed were the M&S processes?

(3) People Qualifications: How qualified were the personnel?

(NASA, 2008)

Requirement Sections: Description:
Programmatics This section links the model to the program or

project being addressed by it. It includes the
objective of the M&S, risk assessments, acceptability
criteria etc.

Models The details of the models such as data, structure,
assumptions etc. are maintained in this section.

Simulation and Analyses This section begins with documenting whether the
simulation was performed within the limitations of
the model and continues with including data used for
the simulation, errors obtained, processes used, etc.

Verification, Validation, and Uncertainty This section includes documentation of verification
Quantification and validation techniques used and resulting data. Of

particular interest is the uncertainty quantification
that shows the processes and results for evaluating
uncertainty not only from the model, but from the
real system being explored.

Identification and Use of Recommended Practices In many cases, there are more detailed practices to
model verification, validation, etc. that are specific
to a certain type of model. Those practices are
documented in this section to go above and beyond
what the NASA standard is intended to cover.

Training This section discusses necessary training for the
M&S, but also the level of training required for the
various roles related to the model.

Assessing the credibility of M&S Results This section provides the detail of the credibility
assessment scale covered in the second part of the
standard.

Reporting Results to Decision Makers This is more of an executive summary - pulling out
the primary concerns, recommendations and results
that decision makers need to focus on.

Table 2: Summary of eight sections of documentation requirements per the NASA standard NASA-
STD-7009. (NASA, 2008)

Each of the eight factors is given a rating from zero to four depending on its level of credibility where

zero is generally insufficient evidence and four represents the best case relative to that factor. The standard

contains a detailed description of the rating for each of the factors and those details have been left out of this

thesis. The rating is generally determined using a short paragraph description of the qualities that are

associated with a given rating and factor. Each description varies by factor.
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Five of the factors contain two sub-ratings. The first is the evidence based on ratings discussed above. The

second factor, technical review, has the same criteria for each of the five categories containing it. It is also a

zero to four scale based on the level of peer review conducted, whether it be internal or external with

supporting documentation. The technical review is weighted up to 30% of the total score for its

corresponding factor with the evidence review being the remaining 70% or more and the addition of the two

then become the score for that factor.

M&S Results Credibility

Figure 21: NASA-STD-7009 Credibility assessment scale showing the eight factors and how they are
categorized into M&S development, operations, and supporting evidence (NASA, 2008)

The final total credibility score given to a model using this assessment is then the minimum value of the

eight factors. This final score can then be compared against the predetermined desired level of credibility to

determine if the model is acceptable to use for this application. Ahn and de Weck (2007) for example

conducted an assessment of a space logistics simulation M&S called SpaceNet using this process and an

interim version of the standard NASA-STD-(l)-7009 using a two round anonymous Delphi process and

arrived at an aggregate mean credibility score of 2.4 and standard deviation of 0.6 in round 1 and a mean

credibility score of 2.2 and standard deviation of 0.3 in round 2 on the 0 to 4 credibility scale. In the interim

standard it was allowed to aggregate the category scores into an overall score.

This M&S standard has many advantages. First, it provides a complete checklist for requirements to be

included in the model's documentation. This should help achieve more consistent documentation across

models in the organization and is generally more complete, It also places focus on some critical areas that

need improvement. Finally, the final rating representation of the model is the minimum rating as opposed to
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a sum or an average. This places emphasis on the weaknesses in the model's credibility and does not allow

them to be averaged out by the model's strengths.

3.4.3 CONCLUSIONS OF MODELING ASSESSMENT

The assessment frameworks presented in this section barely scratches the surface of what is available in

the literature on this topic (Balci, 2004). However, it demonstrates some of the breadth in available

frameworks such as (1) the scope of the assessment being intrinsic to the model or including factors in the

modeling environment (2) assessments done with an emphasis on improving the communication between

modeler and decision maker and finally (3) both qualitative and numeric scales.

Besides the quantity and diversity of available frameworks, another observation revolves around the target

audience for these frameworks. They are focused on the modeler and developers and how this demographic

can work to improve communication and build confidence in the users and decision makers. However,

"model confidence [is] not ... an attribute of a model, but of the model user" (Gass & Joel, 1981)

The following questions are raised from the observations above:

1. Given the breadth of available frameworks available to help modelers build credibility in their models,

why is there still a large problem in the field with model misuse as introduced in the case studies?

2. The frameworks focus heavily on providing guidance to the modeler in building a better model, but

little attention is given to the decision maker's perspective of the model or related processes.

3.5 BUILDING CONFIDENCE IN MODELS

Forrester (1961) differentiates between good and bad managers by their ability to selectively choose

information and by how they convert that information into action. "The manager sets the stage for his

accomplishments by his choice of which information sources to take seriously and which to ignore" (p. 93).

The last section presented frameworks for how modelers can help distinguish their model as one to be taken

seriously. However, Brennan and Elam (1986) indicate that "detail itself makes the decision maker's task of

pinpointing important model relationships difficult" (p. 50), and also the details may not always be relevant

to building confidence.

Confidence is an attribute of the decision maker, and not an attribute of the model (Gass, 1993);

therefore, although the frameworks presented earlier do a lot to show whether a model has or does not have

sufficient quality for the task at hand, they do not address building confidence on the part of the decision

maker. Referring back to the decision support system, the interface with the user has not been addressed.

To better understand this problem of perception, it is necessary to define what it means:
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"Perccived product quality is an idiosyncratic value judgnient with respect to the fitness for

consumption which is based upon the conscious and/or unconscious processing ofqquality cues in

relation to relevant quality attributes within the context of signipcant personal and situational

variables."

(Steenkamp, 1990, p. 317)

According to this definition, much of the focus of the assessment frameworks is developing the quality

cues and attributes of the product, or model in this case. The cues include the correctness of the model code

relative to the conceptual model and the accuracy with which the model represents the real system. The

quality attributes include the model's pedigree and experience in solving similar problems or its robustness

to changing conditions. Each of these was represented in some fashion by the assessment frameworks

presented earlier.

Steenkamp's definition of quality perception introduces the context within which these model-centric

cues and attributes are interpreted and aggregated by the decision maker. There are personal or situational

factors that can impact the decision maker's perception of the model itself and of the output produced by the

model, even if done so unknowingly. This context was not addressed by the earlier frameworks and may

help to explain situations where model perception does not match its actual quality (quadrants I and IV).

There are a number of examples of context variables that can be provided from the case studies reviewed

earlier. For example, in the industrial case regarding the EGR measurement venturi implementation on a

diesel engine, the consequences of the situation around the design problem affected how the decision makers

viewed the problem. In other words the risk tolerance of decision makers was such that they were not

comfortable accepting the model's predictions - despite the model's solid pedigree - without also obtaining

experimental data that later turned out to be essentially redundant information. Similarly, immense financial

pressure at the $ billion level was created during the airspace closure following Eyjafjallaj6kull's eruption

and this brought uncertainty to the atmospheric model (that had been extensively validated) lowering its

perceived confidence level while raising confidence in an engine resilience model that was less mature or at

least less accessible but whose results would allow the airspace to approach normal operations again. In the

case of the Columbia tragedy, there were also a number of contextual factors affecting perception. Besides

consequences related to the space shuttle program, there were documented organizational issues in the

hierarchy and a lack of effective safety culture.

Steenkamp further describes the process around quality perception (Figure 22) that shows how these

factors interact for a decision maker. There are three stages of the process; first acquiring data about the

problem, followed by gathering information on attributes such as use history as well as critical aspects

surrounding the problem such as its criticality or deadlines, and finally integrating all the information to

generate a perception of the product.
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cue acquisition quality attribute integration of
and categorization belief formation quality attribute beliefs

Figure 22: Conceptual model of the quality perception process. This process is divided into three
stages that begin with acquiring information about the product, applying belief attributes before
integrating that with external factors before resulting in a perception of quality (Steenkamp, 1990).

3.6 ROOT CAUSE DETERMINATION

There are two open questions after reviewing modeling assessment frameworks. The first relates to the

underlying motivation of the thesis and how, after so much work in the vast field of model validation and

assessment processes, there remain numerous examples of model misuse. The second question revolves

around the focus of model validation lacking from the perspective of the decision maker.

In the previous section, a framework was presented that focuses entirely on the point of viev of the

decision maker as opposed to the point of view of the modeler(s) that was discussed earlier. It raised a new

question: what are the contextual variables that can impact a decision maker by means of the perception

process?

These questions highlight the root cause of the problems associated with validation and perception. With

regard to validation, there is much guidance in the literature to help modelers demonstrate the validity of a

model. However, what is needed is a means to help the decision makers understand the validation process

and its results for particular models. It is crucial for them to know what the areas of validity and what the

model limitations are as they input the results into their decision making process. In addition to that,

however, there are contextual variables that need to be understood and managed appropriately. These have

the potential of completely undermining the impact of a modeling activity may increase the risk of making a

decision that is based less on data and model outputs of good models and more on the context and instinct

alone.
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4 FRAMEWORK
At this stage, the initial problems uncovered from the case study examples - that of perception and

validation have been further analyzed in the previous chapter to identify their root causes: 1) ensuring

proper model assessment, 2) understanding the problem from the perspective of the decision maker and 3)

awareness of potential contextual variables that may override the impact of model output on a decision-

making process.

Organizations trying to integrate model-based design within their processes can address these three

problem areas in order to improve the implementation; organizations can help ensure that models are of

sufficient quality to use for decision making by applying aspects of the assessment frameworks presented

earlier. For instance, the NASA standard for rating model credibility addresses many of the critical areas of a

model's validation and helps to create documentation for communication across the organization and for

long term traceability. This addresses the first of the root causes, but neglects the second two.

Using lessons from the case studies, the literature, and the author's experience, a series of factors are

proposed that can potentially help to explain the behavior of decision makers, particularly in quadrants I and

IV. Awareness of these factors during the decision making process can help to better inform the process and

open the possibilities for new solutions that may be best alternatives given all the constraints of the problem

be they design, performance, or contextual environmental variables:

* Effect of Consequences

* Effect of Schedule Pressure

* Availability of Mature Models

* Purpose of Analysis

e Uncertainty and its communication

* Lack of Requirements and their validation

* Source and transparency of the model

* Fragmented Knowledge in the organization

In this section, these eight factors will be introduced. With each factor, a discussion will be provided that

relates how the factor potentially impacts the four-box model and thus impacts the potential for optimal

model-based design in organizations. Recall from the four-box model, that the optimum operation point is

quadrant II, having sufficient quality models available and a culture that will place confidence in those models

by using their results to help make good decisions.

4.1 EFFECT OF CONSEQUENCES
The first factor to consider is the consequences of the decision to be made. Consequences often relate to

financial results such as profits and losses, human health including life or death as well as impact on the
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natural environment. The greater these consequences, the more pressure it will place on the model that is

being used to make or inform a decision. This can cause the model to come under a lot of scrutiny to make

sure there is as little uncertainty as possible in the result before succumbing to the consequences. The

pressure placed on the decision maker in the event of large financial risk or potential loss of life may cause

the decision maker to consider other sources of information as opposed to relying solely on the results of the

model. In contrast, potentially beneficial consequences that are supported by poor models may be given

more credibility as they support a favorable outcome. As shown in Figure 23, the potential impact of this

factor is mainly on perception. The hypothesis is that if the outcome predicted by the model is favorable,

perception is improved thereby risking a poor decision if the model is actually bad (moving from quadrant III

to quadrant I). On the other hand perception of model quality may be lowered if the predicted consequences

are detrimental, thereby causing decision makers to move from quadrant I to IV.

Each of these scenarios, both under predicted

beneficial and detrimental consequences, are (

apparent in the case studies reviewed earlier. The 8
EGR measurement venturi design problem had C- =

significant consequences relative to program CU C

schedules. If the model was wrong, the product 0

could not be released to production before the

mandated regulation dates. This would make the

product non-compliant and unable to be sold in the Actual Model Quality
domestic market. Similarly, the perception of the Figure 23: Effect of Consequences represented on

four-box model. Consequences affect perception
quality of the atmospheric model of the ash cloud based on whether they are beneficial or

ejected from Eyjafjallajokull's eruption was lowered detrimental. They risk pulling a bad model from
quadrant III into I when consequences are

as financial pressures grew. In this same case study, beneficial, or a good model from quadrant II to IV

the relatively immature model of an engine's if the consequences are detrimental.

resilience to ash supported the possibility of reopening much of European airspace sooner, thus adding to its

acceptance or perception despite its non-existence or immaturity.

As decision makers are posed with the problem of dealing with large consequences, they do not have the

freedom to change those consequences and therefore are left only to confront them. This is especially true in

cases where a decision cannot be simply delayed indefinitely. To do so requires first, recognition of the

impact of consequences on the decision making process and second, to understand potential alternative

actions that may optimize the design within the overall program constraints. Flexibility in engineering design
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is a emerging field providing a framework that "enablels] us to avoid downside risks and exploit

opportunities" (de Neufville & Scholtes, 2011).

A good example of this in practice is with regard to the final legislation following Eyjafjallaj6kull's

eruption. The tiered approach to airspace closure from ash concentration has allowed for the necessary

flexibility for airlines to operate with reduced cost and logistical impacts while still maintaining safety for the

passengers. This relieved much of the pressure from the atmospheric model to where its use continued

despite the scrutiny placed upon it. However, the conceptual model the tiered legislation is based upon

requires proper validation to ensure the continued success of this flexible plan.

Similar strategies might have been taken in the case of the EGR measurement venturi where a number of

potential alternatives could have saved testing efforts and schedule delays while providing added confidence

that the model results were believable. These range from digging further into past validation work of the

model to prove its competence, to running partial physical tests to prove the functionality of the model's

results in order to move forward more quickly and with less impact to the program budget and schedule.

Alternatively, a flexible design could be implemented immediately, based on guidance from the model.

Doing so would impact the final prototype builds less in the case that the model is ineffective rather than

having to start over.

4.2 EFFECT OF TIME PRESSURE

Time pressure is related to the effect of consequences, as schedule pressure is often a consequence of a

decision itself, as was the case with the Columbia tragedy and the EGR measurement venturi. However, this

factor speaks more to the time limit within which decision makers must act. Consequence and time pressure

are thus somewhat decoupled variables. If schedule delays are a significant risk, that implies that a decision

must be made in even less time to alleviate the schedule and to allow sufficient time for implementation of

the action.

When decision makers are asked to take action in a limited amount of time, we hypothesize that they will

value inputs to the decision process differently. The impact of this time pressure can be uncertain. It could

result in implicit trust in the data from the decision support system, as there is no time to debate and no

other sources of data available, or alternatively it could cause the decision maker to rely more on other

factors such as the consequences, or past experiences, which may or may not be relevant.
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Figure 24: Effect of Time Pressure represented on
four-box model. Time pressure affects perception
relative to model-based design based on how the
decision-maker relies on the model in this
situation. If decision-makers use whatever inputs
available, then they are more likely to use a bad
model (quadrant I). Conversely, if they choose to
use other factors of the problem, the model may
not be used effectively.
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When under time pressure the effect of the other factors may be amplified. In the case study examples,

each case demonstrates this where the consequences carry even more weight in the decision-making process.

For both the EGR and volcano cases, a risk-averse strategy was chosen in order to take action quickly.

However, each of those cases, as discussed above with the consequences factors, could have potentially

chosen more flexible solutions that would alleviate some of the risk in the decision.

In the case of the Columbia space shuttle, there was no time to certify a physics-based model that may

have predicted more reliable estimates of damage from the foam projectile at launch; there was little time to

choose any action before the space shuttle would run out of resources while orbiting. There is significant

debate to this day whether it would have been possible to launch a rescue mission with a 2"d space shuttle

waiting on the ground. Therefore time pressure during the mission became paramount.

4.3 AVAILABILITY OF MATURE MODELS
Another factor that has an impact on both the validation and perception processes is whether mature

models are available to use for the decision-making process. This factor looks not only for the existence of a

model to use, but whether that model has been used successfully in the past and is robust to varying

conditions. The more of a track record and successful history of use a model has, the more likely it is to be

believed. In general models begin as empirical models (e.g. using regression models, kriging, neural

networks etc...) when the understanding phenomena are poorly understand and gradually become more

sophisticated and credible as the underlying physics and causalities of the problem become better understood.
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Depending on where the model belongs on the

x-axis in Figure 24, the result to the four-box

model is shown. Here, the perception will change

depending on how the time available influences

the value of inputs. Time pressure could reinforce

the positive belief in an already good model, or it

could raise the credibility of a poor model with

the reverse situations being true. Options while

under time pressure can be limited when it comes

to providing more understanding of the details

around the model to ensure its results are being

perceived properly. With regard to the Volcano

case, the question was raised: "is rational decision-

making possible in a situation of emergency?"

(Alemanno, 2011 a, p. xxii).



The impact to validation from this factor is

related to having more robust models available that

will, over time, gain credibility. With more use,

more validation will be done which will move

models to the upper right in the four-box model

(Figure 25). The eventual impact of this factor is

also on perception. Decision makers will become

more accustomed to using a model-based decision

support system and with experience will come trust.
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Figure 25: Availability of Mature Models
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The example from the Columbia space shuttle repIete on i Ur-UIx model.
availability will improve model quality over time

case shows the resulting validation problem from drawing from quadrant I to II as more robust
models become available. This practice will also

not having available mature models. The Crater change perceptions from generally risk-averse

algorithm had existed for some time, but was based behaviors in quadrant IV to 11.

on empirical data, not on a physics base, thereby it

was not suitable to a problem that required extrapolation beyond its validation region thus resulting in poor

model quality.

The perception effect can be seen from the EGR measurement venturi example where the organization

was not yet accustomed to making decisions based on models, but was instead still heavily oriented towards

physical testing as most problems in the organization did not have models available to use for decision-

making. The prospect of using only a model to make a critical decision was therefore foreign to the decision

makers as they lacked the experiential element, having not in the past made successful model-only based

decisions.

Addressing this factor first takes investment of resources to develop and manage models within the

organization. Impacting the perception from the point of view of the decision maker often takes time before

the value of model-based decision making becomes universally accepted. Insisting on the use of models in as

many problems as possible can accelerate this process. This will not only improve the validation of the model

itself, but will begin to increase the visibility of a model's value with decision makers.

4.4 PURPOSE OF ANALYSIS

The purpose of analysis is a factor intended to capture if there is alignment between the decision makers

and the model being used to solve a problem. For instance, it determines if the right questions are being

asked to solve the problem at hand, and whether the model can answer those questions. This factor is related

to both validation and perception.
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It was established earlier that model validation is

performed around a purpose of the model, in other

words for a specific set of use cases or range of

inputs. Therefore, if the model is not being used for

its intended purpose that may essentially invalidate

the model (Figure 26). By the same token, if the

model is not addressing the right problem, the

decision-makers will have less confidence in the
Actual Model Quality

model.
Figure 26: Purpose of Analysis represented in the
four-box model. A different purpose of analysis The Crater and Crater-like algorithms from the
may draw good models from quadrant II to I by
using it for problems it was not intended to solve. Columbia case best describe the validation problem
This factor can also impact perception by taking a
good model and asking the wrong question, related to the purpose of analysis. The algorithms
thereby potentially moving it from quadrant 11 to
IV.were not designed to address the problem at hand.

Not only were the models asked to predict RCC

panel damage using parameter values well outside their validated region, they were not originally intended

to answer the question of penetration depth, particularly in the case of the Crater-like algorithm for the

RCC panels. Using the models for this purpose invalidated their results.

The perception effect can be seen from the volcano case related to the atmospheric model. In the days

following the initial airspace closure, the validity of the atmospheric model was called into question when in

reality key stakeholders were asking the wrong question. The problem was not whether the ash cloud was in

one location or another; it was how to get the airspace flyable again with an acceptable level of risk. Once

this greater problem was realized, it was clear that the atmospheric model was not the right (or only) source

of information to find the ultimate solution.

The purpose of the analysis is a critical communication aspect between the modelers and decision makers

in both directions. Without knowing the purpose of the model, decision-makers risk misusing the model as

it was intended. Without knowing the purpose of the question, the modeler risks building or selecting the

wrong model. Some of the assessment frameworks presented earlier seek to address this communication gap

by providing complete documentation of the model's intended purpose and assumptions. By accepting these

practices in the modeling process, the modeler has a means to make this more known to the decision maker.

However, the problem does not begin with documentation. In fact it begins when the decision maker

communicates the intent of the modeling activity to the modeler. A clear, solution-neutral problem

statement needs to be provided to the modelers that allow for the best model to be selected or created. In

some cases a model developed for a different purpose may indeed - after some extra validation - turn out to

56

-o
0.

0

Modelin Purpose

- ICY

0



be adequate for the new purpose, in some cases the model may require adaptation and, finally, in other cases

a model should not be used for the new purpose at all and - assuming sufficient time and resources are

available - an entirely new model should be created.

4.5 UNCERTAINTY AND ITS COMMUNICATION

Uncertainty is potentially a very important factor influencing the confidence in a model. Often

uncertainty has a bad connotation in that it implies little is known about the system and the model's ability to

represent that system. However, knowing the uncertainty allows for a better understanding of the likelihood

that the system falls within a range of performance levels predicted by the model. Often uncertainty is not

generally determined, particularly not at a system level where the value is directly attributable to a

requirement and includes the variability from all pieces of the system it is describing. When uncertainty

information is not available or communicated, decision makers are required to use their own mental

perception of the model and system to judge within what accuracy the predicted model output is. This

concept will vary based on an individual's experiences, biases, and situational factors and therefore will not

be consistent.

Uncertainty can impact both a model's

validated quality as well as its perception (Figure

27). Reducing uncertainty of the model output

against the real system behavior helps the case for

improved model quality, but is not a necessity to

be sufficient for a problem, for all models will

have some level of uncertainty, the key is knowing

what level is acceptable. Uncertainty impacts

perception in different ways. If uncertainty from

the model relative to the real system is known by

the decision maker and is at acceptable levels for

the problem, perception will improve, as the

decision maker will understand the likelihood of

making the right decision.

Besides determining the level of uncertainty, its
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Figure 27: Uncertainty and its communication
represented in the four-box model. Uncertainty
has the potential to move models to the optimum
for model-based design: quadrant II. It does so by
improving perception of good models by
indicating its capabilities and limitations. By
recognizing uncertainty, it can also drive model
improvement to reduce uncertainty relative to
the real system thereby allowing bad models to
move from quadrant I to II.

communication is perhaps even more critical. As discussed, a decision maker not knowing at all about the

uncertainty inherent in a model may let other perception factors such as past experiences or the state of the

situation dictate what they sense as being the right decision. Just as important as this, however, is that during

the initial problem formulation that the decision maker communicates the level of acceptable uncertainty for
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a problem to be solved or model output to be produced. For example, early in a development program, a

simple answer of the behavioral trend (increasing or decreasing?) may be sufficient without care for the

absolute value until later in the program. A common frustration in organizations implementing model-based

design is that decision makers generate a problem statement and modelers take too long building a model

that has much higher fidelity than is needed for that stage of decision making. As a consequence, decision

makers are often required to make a decision without input from a model, since the model is still under

development. Once the model is ready, its output is no longer needed since the decision has already been

made.

From the case studies there were several discussions about uncertainty that impacted their outcomes. In

the Columbia tragedy, there was a very high level of uncertainty associated with the results produced by the

Crater and Crater-like algorithms because they were being used so far beyond their validated region.

However these uncertainties were not communicated well to the decision makers who were making

engineering judgments based on these models. Had these uncertainties been better communicated, perhaps

the decision makers would have sought other sources of information with which to reduce the uncertainty,

such as the in-orbit pictures of the shuttle that had been requested on numerous occasions.

The atmospheric model used to forecast the ash cloud propagation from Eyjafjallaj6kull's eruption was

also impacted by uncertainty. There were many known uncertain inputs to the model from data based on

visual observations and meteorological data. Although these uncertain inputs were recognized, the resulting

impact on model output uncertainty was not communicated and perhaps this provoked increased model

scrutiny as test flights were being conducted.

The key point related to this factor is that uncertainty is not bad per se, but no knowledge of model

uncertainty or lack of communication of it can lead to model misuse. For model-based design to be effective

in organizations, a clear understanding of allowable uncertainty for a problem needs to be established early

and communicated to the modelers. In return, modelers need to provide model uncertainty information that

is aligns well with the requirements of the real system.

4.6 LACK OF REQUIREMENTS AND THEIR VALIDATION

This factor refers to the level of upfront work to a system and model to generate requirements and

validate those requirements against the real system. The stated requirements govern the desired

performance and behavior of the system and therefore it is not possible to judge the quality of a model if the

details of its behavior are unknown or ill defined. Therefore, this factor impacts the model validation and

resulting quality (Figure 28).
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In the case of the EGR measurement venturi -
1=

example, lacking requirements early in the program >

prohibited early system-level modeling and limited

the effectiveness of the engine cycle simulation. I- =
a) c

Although high-level requirements for the product T

were available as mandates from the various c 0

CUstakeholders such as emissions limits from the EPA,

engine performance expectations from the

customers, and sizing constraints from the vehicle

applications, the applicability of these requirements Figure 28: Req
represented in

to subsystems was not determined. For example, requirement spe
the opportunity

knowing the allowable error in EGR measurement better defined.

as a function of required NOx emissions may have

helped to understand earlier what an optimum design solution might be.

Actual Model Quality

uirements and their validation
the four-box model. Improving
cification and validation yields
to improve model quality as it is

A similar situation can be seen from the Columbia accident. Early space shuttle program requirements

had indicated that the RCC panels would not be subject to impact. As a consequence RCC panels were not

designed specifically to withstand foam impacts during ascent. After numerous impacts during launch did

occur in reality, it became clear that this was a missing requirement. Had this requirement been properly

stated and subsequently validated, it may have helped to develop more mature models to assess foam impact

earlier.

There is much to read in the literature about requirements of engineering processes. As part of systems

engineering implementation, a crucial step is setting up full requirements early and decomposing them to

subsystem and component levels. In addition, they need to be properly managed during the course of the

program as changes to requirements often occur. Besides generating good requirements, model-based design

applied to systems engineering can help to validate those requirements early while continually developing

models for use later in the program.
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4.7 SOURCE AND TRANSPARENCY OF THE MODEL

The source of a model refers to who created and programmed it or who used it to generate results.

Transparency is similar, but refers to how accessible the concepts, assumptions and governing equations of

the model are to the decision makers. The more trust-worthy the source and the more transparent the

model, the more confidence a decision maker will likely have in it (Figure 29). According to this logic a

"black box" model from an unknown source would result in a low level of confidence. This is not to say that

proprietary models or those from less trust-worthy or unknown sources are wrong, just that they are not

likely to be perceived with as high a level of regard as transparent models from reputable sources.
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Figure 29: Model Source and Transparency
represented in the four-box model. A trustworthy
source combined with a model that is transparent
will imDrove how Deople Derceive the model

From the volcano case, the engine model is a

good example of lack of transparency. As the model

does not exist in the public domain and may be held

confidentially by engine manufacturers, it is difficult

to validate its credibility particularly as it is used for

public legislation related to actions during volcanic

eruptions that affect the flying public. The effect of

the legal system and availability of "discoverable"

information during lawsuits may have a strong

impact on model transparency and willingness to

share model details.

allowing a good model to potentially move from The EGR measurement venturi represents an

quadrant IV to 11. example of a trusted source gone awry. In this case,

a conceptual model of the measurement venturi was

accepted with few limitations because it was what competitive engines in the on-highway diesel engine

market had already adopted. However, as the designers were in competition with each other, transparency

into the details of their implementation was not available to understand potential difficulties.

It is difficult to overcome personal biases related to a model's source and transparency. However, as

model-based design initiatives and benchmarking competitions in industry increase, there are more

modeling packages and third-party modeling consultants emerging to help address the level of work and

expertise required. Therefore, this has the potential to become a growing issue in industry. It is important

for decision makers to remain as objective as possible in the face of these concerns and to develop standard

validation plans that will help to ensure that the models, regardless of their origins, are still representative of

the system.
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4.8 FRAGMENTED KNOWLEDGE IN THE ORGANIZATION
It is not possible for every person in an organization to know, in detail, all aspects of every technical

problem. What is critical is making sure the necessary information required to make a decision is properly

communicated and aggregated; lack of this can lead to fragmented knowledge and an information gap

between the decision makers and the modelers. This can happen because of the structure of the organization,

obstacles to communication, or differing levels of technical understanding of the system and model. The

impact of this factor is similar to the purpose of analysis where if the decision maker does not have full

knowledge of the problem and surrounding situation, the perception will be affected more so by other

factors. Similarly, if the modeler does not have sufficient knowledge of the problem, the model may not

meet needed requirements.

In the case of airspace closure from the

Eyjafjallajokull volcanic eruption, much has been C C

documented on the segmentation of knowledge and C

responsibilities and how that played a role in the .

impact the volcano had. Macrae presented the cr.

problem in a succinct manner (Figure 31). Here,

the capability of making a decision is plotted against U-

the knowledge of the problem. Many of the
Actual Model Quality

modelers and scientists had the most knowledge
Figure 30: Fragmented Knowledge represented in

about the problem such as details from the the four-box model. As decision-makers have a

atmospheric model and information about the better understanding of the problem and the
model being used, a good model is more likely to

engine's resilience to ash at the engine be utilized.

manufacturers; but these groups did not make the

decisions. Moving up the decision capability or decision authority axis, knowledge is lost about the details of

the problem. It is imperative that the knowledge the people at the top of the decision chain have is what is

needed for the problem. This is also an acute challenge in the intelligence community.

Model assessment frameworks presented earlier show different documentation techniques for the model

intended to help decision makers become more knowledgeable about the model. However, the contextual

variables suggested in the previous factors are critical to share as well. This forces both modeler and decision

maker to be cognizant of the factors, some of which they cannot control, and can then work to mitigate their

effects in order to get the optimal use out of the model and to ultimately make the best decision.
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Figure 31: Decision-Making and Knowledge Map of Actors in the Volcano Case. The x-axis shows the
degree of knowledge about the case where the y-axis illustrates the capability or authority in the
decision process of the various actors. Engine manufacturers had the most knowledge of the situation,
but no capability in making decisions on airspace. The decision-makers at the top of the chart had
much less knowledge about the models on which to base a decision (Macrae, 2011).

5 TESTING THE FACTORS
The framework presented in chapter 4 included eight factors that help to describe how contextual factors

can impact decisions within an organization trying to implement effective model-based design principles and

decision-making. The factors were formulated based on research, case study analysis, and industry

experience. By drawing from these sources, there are risks that additional complexities in the cases may have

skewed the conclusions. Therefore, it is necessary to test the hypotheses discussed in the last section by

means of an experiment where the complexities can be better controlled. This section will present such an

experiment that used a website with a simple model of a catapult that had been developed by Dr. Troy

Savoie and Dr. Daniel Frey (Savoie & Frey, 2012). People were asked to interact with the model in order to

make a design decision on the catapult. They were asked to provide direction for the design decision, and

then complete a survey based on their experiences.

As part of the experiment, there were different problem details and model descriptions that intended to

alter the contextual factors from the framework and measure how people responded. This data could then

be used to determine the impact of each factor discussed in sections 4.1 through 4.8 and also help inform

methods that may optimize the impact of these factors relative to the four-box model thereby driving

behavior of organizations preferentially towards quadrants I and Ill.
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5.1 HYPOTHESIS

The overall hypothesis of the experiment is that the factors presented in the framework (4.1 through 4.8)

do indeed impact decision-making processes in model-based design. It was also of interest to test each factor

against the four-box model used in the previous section to describe its impact because doing so would help

to identify methods for managing these factors. Therefore, the detailed hypotheses are shown by factor in

Table 3.

Factor Hypothesis
Prediction of beneficial consequences will improve

Effect of Consequences model perception while detrimental consequences

will reduce perception of model quality

Applying time pressure will cause people to use

Effect of Time Pressure whatever inputs are available in the process whether

validated or not

By asking questions of the model for which it was

Purpose of Analysis not originally created, the quality perception of that

model will be reduced

Uncertainty and its Improving information about uncertainty will lead

communication people to better recognize a good or bad model

Source and transparency of the A more trustworthy model author and transparent

model governing equations will improve model perception

Better knowledge of the entire problem will cause

the perception of the model to increase

Setting Requirements and Could not be easily tested in this experiment
Model Availability
Table 3: Summary of experimental hypotheses by factor

5.2 METHODOLOGY

5.2.1 DESIGN PROBLEM

The experiment revolved around a single binary decision related to a simple design problem. The

following text was given to the user describing the objective of the problem:

"Your company is releasing a catapult to the market that will be used for educational purposes... You are

responsible for approving the design before releasing the product. Your team was on track to release the

product until there were some last-minute changes in requirements. You now have to decide whether to

approve the design for release, or delay the product launch to either redesign the catapult or wait until

prototypes have arrived to test the new catapult design based on the new specifications."
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The changes in requirements involved 1) Changing the ball type, 2)

reducing the number of rubber bands from two to one and 3) addition of a

constraint where the launch and pullback angles together could not be more

than 90 degrees (see Figure 32). The performance objective of the catapult was

unchanged. The catapult had to be able to get a ball into a cup located at a

given distance from the base of the catapult (see Figure 33).

After interacting with the model for a limited time, the user had to choose

between two options:

* Proceed with Product Launch: use the current design proposal to

meet requirements

* Delay Product Launch: wait for additional testing with the propo

redesign needed

c..

Figure 32: Launch plus
Pullback Angle Design
Constraint

sed design with potential for

Figure 33: Performance Objective for the Catapult

The user was provided an online model of the

system to use to help understand if the new design

was going to work and meet its requirements.

Some of the test subjects were also given test data

from the real system to validate if the model was

truly representative. The users were told they

would have limited time to check the model against

the validation data, test the design scenario, and

make a decision.

5.2.2 DESIGN OF EXPERIMENTS AND FACTORS

The experiment conducted was based on a one factor at a time (OFAT) experiment design. In this

method, a reference case is run, and each factor is changed one at a time while the remaining factors remain

at a reference level (Savoie & Frey, 2012). This design was chosen for the reduced number of experiments

required to test the factors, as there was concern about getting a large enough sample size for each case. The

OFAT method loses the ability to quantify any potential interactions in the factors, but this was not a

primary focus of the experiment.
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Not all factors presented in the framework in chapter 4 could be experimented on in the context of a

website, therefore the following factors were chosen to vary in this experiment:

* Effect of Consequences

* Effect of Time Pressure

* Purpose of Analysis

* Uncertainty

* Model Source

In order to validate the 4-box model (Figure 1), it was necessary to also run models that were both of

good and poor quality. This resulted in the following test matrix (Table 4) with 12 experiments with each of

the five factors tested with good and bad model quality.

The reference and test cases will be discussed in the following sections specific to each factor, however,

the reference was intended to be run with more realistic settings of the factors, not necessarily the best or

worse case for model perception. A full factorial experiment would have required 2^6 = 64 test cases and

with approximately 20 test subjects per test case to obtain reliable statistics a total of about 1,280 test

subjects would have been required. With the OFAT design the number of required test subjects was closer

to 240, which vas more realistic given the time constraints of this thesis.

After the respondents each completed the experiment by responding with a design decision (go for

production now or wait for additional information), they were directed to a survey to collect additional data

about their thoughts and opinions of the model. The full survey instrument is provided in the Appendix, and

the questions were designed to elicit the respondents' confidence in the model in cases where that

confidence may have differed from their choice to proceed or not as that decision may have been driven by

factors other than model confidence. In addition, questions were asked in the survey to determine if the test

factors were important to the users in their considerations, and therefore would be effective in their

respective test cases. For example, in the case of model source, the respondents were asked if they

considered the model's source as important when making their decision. For other factors, like uncertainty,

the respondents were asked to rate the capability of the model and catapult with respect to launch distance

repeatability. In this case, those presented with uncertainty bands from the test case knew the answer to this

question, whereas those without uncertainty bands were left to guess.
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Model Quality Consequences Time Pressure Purpose of Uncertainty Model Source
______Good______ Refeence Refeence ReAnalysise

S Good Reference Reference Reference Reference Reference
2 Bad Reference Reference Reference Reference Reference
3 Good TEST Reference Reference Reference Reference
4 Bad TEST Reference Reference Reference Reference
5 Good Reference TEST Reference Reference Reference
6 Bad Reference TEST Reference Reference Reference

7 Good Reference Reference TEST Reference Reference
8 Bad Reference Reference TEST Reference Reference
9 Good Reference Reference Reference TEST Reference
10 Bad Reference Reference Reference TEST Reference
12 Good Reference Reference Reference Reference TEST
12 Bad Reference Reference Reference Reference TEST -
Table 4: OFAT Design of Experiments. The definitions for "Reference" and "Test" levels for each

factor will be discussed in sections 5.2.3 through 5.2.8.

5.23 MODEL A ND VALIDA TION DA TA

The model used for this experiment was a

simple catapult model based on a physical catapult,

XPULT (Figure 34), used for teaching design of

experiments, six sigma, etc. (Peloton Systems LLC,

2010). The model was a java-based model

developed by Dr. Troy Savoie for use in his own

experimenting (2010). The visual interface was

very realistic and intuitive, showing the catapult, it

launching a ball and a depiction of the ball's

trajectory and impact point. The model allowed
Figure 34: XPULT catapult from Peloton Systems

the user to change the same factors as in the real

catapult (Figure 35):

* Ball (smooth or perforated)

* Number of Rubber Bands (1 or 2)

* Launch Angle (0, 15, 30, 45, 60, 75, 90 degrees)

* Pullback Angle (0 - 120 degrees)

Besides the ability to use the model, some users received a set of validation data. This was data taken

using the physical catapult within a given configuration. Generally, the validation data included runs with a

single ball and rubber band setup and a series of launch angle and pullback angle combinations were run. The

data was presented in both graphical form and tabular form.
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It was necessary to have a good and bad model S
Simulation Interface

for this experiment. Due to complications with

obtaining the source code for the model, it was not

feasible to edit the model in order to break it and

make it intentionally bad. Therefore, the model was A

virtually "broken" using the validation data. In the

physical experimentation, it was found that the

smooth ball data correlated well with the model, i

while the perforated (whiffle) ball did not,

particularly at smaller launch angles. Therefore, in Figure 35: Java-based model of the catapult

the case of the good model (odd experiment (Savoie, 2008)

numbers in Table 4: rows 1,3,5,7,9 and 11), the data from the smooth ball was provided and the test

subjects were asked to evaluate the model using the smooth ball, while in the bad model experiments (even

experiment numbers in Table 4: rows 2,4,6,8,10 and 12) test subjects received validation data from the

perforated ball. The difference between the two cases, besides the ball, was primarily in the performance of

the model at the critical launch and pullback angle points relative to the new performance requirement

(constraint) - or the combination of launch and pullback angles that were equal to 90 degrees. The good

model matched its validation data within the uncertainty bounds (about plus or minus 10 inches) at the

launch and pullback angle combinations of interest (primarily 30 degree launch with 60 degree pullback

angles and 45 degree launch with 45 degree pullback angles). The bad model, however, did not match the

validation data at these same pullback angle / launch angle combination points within the same uncertainty

bounds. The data was modified some from the physical experimentation so that the "good" model data

would be better and the "bad" model data would be worse. The final charts comparing the data between the

model and the validation data provided are given in the Appendix (Figure 39 and Figure 40).

5.2.4 CONSEQUENCES FACTOR

In order to represent the effect of serious consequences on the perception of a model, a scenario was

devised that would place economic pressure on the user. The test subjects were told that there was a

potential reward for early sales contracts if the design was released on time, which would require

proceeding with the design now. The value of these contracts was $1,000,000. However, there was a risk of

$3,000,000 in warranty claims if the design was sent to market early and was unable to meet its

performance objective once deployed. If the user chose to delay the design for further testing, there would

be a cost of $500,000 in testing and redesign efforts. The following table summarized the consequences

factor (Table 5):
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Catapult Design is GOOD Catapult Design is BAD

Launch Product $1 ,000,000 potential for securing first-
to-mrketcontacts$3,000,000 lost in warranty coststo-market contracts

Delay Launch Lost opportunity for $1 ,000,000 in Saved from $3,000,000 in warranty
early contracts costs

Additional $500,000 in testing efforts Additional $500,000 in redesign and
to verify design testing efforts

Table 5: Consequences of Design Problem Decision

The reference case for the Consequences factor was chosen to be representative of reality in which case

the scenario presented in Table 5 was provided to the user. In the test case, the users were told this was

purely an academic exercise. The implication of the test case was that there was no real consequence

whether the test subject made a good or bad decision.

.2S TIME PRESSURE FACTOR

The time pressure factor was implemented by changing the time users were given to spend with the

validation data and when they were supposed to make a decision. When the user went to "run the model"

from the website, the next page included the validation data, a link to download the data, and a summary of

the design problem they were trying to solve. At the top of the page was a timer to remind them how much

time they had left. After the timer expired, they were automatically sent to another page without option to

return and they were forced to make a decision right there and then.

The reference case for the time pressure was not chosen based on what is most common in reality, which

would generally be a short amount of time to make a decision. During pilot testing of the experiment, it was

found that the short time created such significant pressure on the user they were not paying attention to any

other factors in the experiment. Continuing with a short amount of time as a reference may have resulted in

inconclusive results for the remaining factors. Therefore, the reference case was made to be 15 minutes

(long time = little or no time pressure) and the test case was 4 minutes (short time = lots of time pressure).

5.2.6 PURPOSE OF ANAL YSIS

For the purpose of analysis factor, the performance objective of the catapult was changed. The model is

very well suited to provide a prediction of the horizontal distance traveled by the ball from the catapult. The

model visually shows the launch and ballistic trajectory of the ball, therefore, it is possible to judge a

maximum vertical height reached by the ball, although this value is not an explicit numerical output from the

model and therefore it requires careful visual split-second inspection while the model is running to

determine it.
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The performance objective of the catapult was to get a ball into a cup (Figure 33). Test subjects in the

reference case were told the cup was located at 48 inches from the base of the catapult. If they could confirm

that the catapult could launch the ball greater than this distance, then it could be configured by the customer

to land in the cup.

The test case used the height as the objective. In this case, users were told the cup was located at a

distance from the base of the catapult. The engineering team had confirmed that the ball could travel far

enough under the new requirements to reach the cup, however, the ball needed to also go high enough in

order to fall into the cup as opposed to hitting the side or rim. Therefore, the ball needed to reach a

minimum height of 14 inches during its travel. The validation data did not change for the case and was still

focused on horizontal distance.

5.2.7 UNCER TAINTY
The uncertainty in this case was communicated via the validation data. Error bars were either presented

or not presented depending on the experiment. The charts shown in Figure 36 show examples of what the

test subjects saw. On the left of Figure 36, the uncertainty information is not available and it was up to the

user to decide how accurate the validation data was. On the right, the error bars were provided showing

approximately plus or minus two standard deviations from the actual measurements.

Launch Angle: 30 degrees Launch Angle: 30 degrees
150 150

- 125 125
C C

S100 100

q 7 5  75
C Co 50 50

:225 ~25
> 0 > 0

20 30 40 50 60 70 80 90 20 30 40 50 60 70 80 90
Pullback Angle [degrees] Pullback Angle [degrees]

Figure 36: Example Validation without Uncertainty (left) and with Uncertainty (right)

The reference case for uncertainty was to not communicate uncertainty information (no error bars), as

this is typical of reality. The test case presented the error bars in the validation data.

5.2.8 MODEL SOURCE

The model source used in this experiment was meant to provide more or less credibility to the model

based on who developed it and what sort of code was used. This was provided in the description of the

69



design problem as well as a reminder when the user was inputting their decision. The reference case was to

be realistic and truthful about the source of the model:

"The model was developed by a PhD student in the Mechanical Engineering department at MIT. This

model uses principles of physics to estimate the landing position of the ball. The PhD student has modified

the model to meet the new design specifications."

Users with the test case saw the following:

"The base model was found online and was calibrated based on data from the original prototypes. This

model is proprietary and therefore it is unknown how the model is calculating distance. The editable

parameters in the model have been modified to meet the new design specifications."

5.2.9 REMAINING FACTORS

The remaining factors: Lack of requirements and their validation, availability of models, and fragmented

knowledge were not directly included in this experiment primarily due to the difficulty in testing them in

this environment. However, questions were included in the survey to help collect potential datasets that

could determine patterns based purely on the a priori experiences of the respondents. The survey questions

asked at the end of the experiment are shown in Appendix C section 8.3.1.4.

5.3 IMPLEMENTING THE EXPERIMENT
The website for this experiment was developed by Spinutech (2012) with direction and content provided

by the author. The website included each of the 12 experiments described in Table 4. As a user went to the

website, they were assigned an experiment ID number and saw the details related to that experiment.

Subsequent users received the next experiment in the table and so on. So if a test subject started the

experiment and was assigned to row 5, then the next test subject would automatically be assigned to row 6.

After row 12 the table index reset to row 1. There was no need to randomize the runs as the order people

went the website was essentially random. This was also done in an attempt to provide even sample sizes for

each of the experiments. Test subjects were only allowed to do the experiment once so that learning effects

should not be a factor.

The website link was distributed by a variety of means. The intent was to target "students and

professionals in a technical field." This was a rather broad classification. Emails were sent to several hundred

colleagues both in professional and academic environments. In the email, the recipients were encouraged to

forward the email to their own network. In addition, posts were made to the LinkedIn website (LinkedIn

Corporation, 2012) specifically posting to various technically focused group to which the author belongs.
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The experiment was open for about four weeks. During that time, there were about 400 hits to the

website. However, only results that were tagged as "completed" were used to analyze as these results

included a final decision on the design problem. There were 252 responses that completed the experiment

and this slightly exceeded the target of 240 that had been set for this OFAT experimental design. The

responses were distributed across the experiment rows as shown in Table 6. By inspection, there was a fairly

even distribution of responses by experiment number.

Experiment Number of Model Time Purpose of Model
________ RspodetsConsequences Uncertainty Suc# Respondents Quality Pressure Analysis Source

1 23 Good Reference Reference Reference Reference Reference
2 22 Bad Reference Reference Reference Reference Reference
3 19 Good TEST Reference Reference Reference Reference
4 23 Bad TEST Reference Reference Reference Reference
5 21 Good Reference TEST Reference Reference Reference
6 22 Bad Reference TEST Reference Reference Reference
7 20 Good Reference Reference TEST Reference Reference
8 21 Bad Reference Reference TEST Reference Reference
9 20 Good Reference Reference Reference TEST Reference
10 18 Bad Reference Reference Reference TEST Reference
11 22 Good Reference Reference Reference Reference TEST
12 21 Bad Reference Reference Reference Reference TEST

Table 6: Number of Respondents by Experiment Number

5.4 RESULTS

5.4.1 STATISTICAL TEST

The data obtained from the experiment required regression analysis in order to determine relationships

between dependent and independent variables. However, the variables collected from this experiment were

non-continuous and usually dichotomous therefore requiring logistic regression as the primary method for

analysis. Logistic regression is similar to the more familiar linear regression but is designed specifically for

use with discrete outcomes by employing the logistic distribution with the logit transformation (Hosmer &

Lemeshow, 1989). Details of the logistic regression derivation will not be covered here. This section will

provide an introduction to some of the types of results taken from the regression analysis used in the data

results and interpretation to follow.

There were two important things to extract from the experimental data being analyzed: first, do

relationships exist between input variables and outputs and second, are those relationships statistically

significant. The resulting relationship from logistic regression following the logit transformation is of the

form of linear regression where:

9 Wx)=#0o+#lix1i+--+#fn xn
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The resulting coefficients (#l) are more useful for independent variables that are continuous in nature.

Therefore, the relationship of interest for discrete independent variables is an odds ratio. If the independent

variable in the model has options A or B, the odds ratio is defined as the odds of A over those of B for a given

outcome (Hosmer & Lemeshow, 1989). The odds ratio (Y) is related to the regression coefficients through

the following:

Y = e A

For the example where the odds ratio is the odds of A over B, the resulting value can be interpreted by

the following with respect to a given outcome:

w = 1.0 A is as likely as B to produce the outcome

W < 1.0 A is less likely than B
' > 1.0 A is more likely than B

Based on the above ratio, it is key to understand which level of the independent variable is A and which is

B as provided here to interpret the ratio properly.

Knowing the odds ratio will determine the impact a variable has on an outcome, however, it is important

to understand if the variables in the relationship are statistically significant to the model and therefore are

reasonable predictors of outcomes. As in the case with other regression techniques, the model is compared

against the data when it includes the variable in question, and when it does not (Hosmer & Lemeshow,

1989). A statistic describes this comparison for logistic regression as:

G = -2In[(likelihood without the variable)
(likelihood with the variable)

The G statistic follows a chi-squared distribution and can be used to determine probabilities. The

resulting p-value is the probability of the G statistic on the chi-squared distribution. This p-value is the

probability of the null hypothesis (# = 0) being true given it was rejected, therefore it is necessary for the

p-value to be small, or less than a significance level (Rice, 2007). The significance level for this testing was

chosen to be 10% due to the small sample sizes and the nature of testing. Therefore, p-values less than 0.10

would indicate that the independent variable in the modeled relationship would be a significant factor to the

outcome.

In the remaining section, the results from the testing will be discussed in terms of these two ideas: the

odds ratio or how much more or less likely a characteristic may play over another and the p-value to

determine if that ratio is statistically significant.
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5.4.2 OVERALL RESULTS

In the results, there are two outcomes that are indicators of perceived model quality relative to what has

been presented thus far (i.e. the y-axis in the 4-box model of Figure 1). The first is the design problem

decision: whether to proceed with the design or wait for additional testing. This indicates how the

respondents viewed the entire design problem, but did not necessarily speak to model perception,

particularly if the decision was made with little influence from the model. Therefore, model confidence was

another response obtained from the aposteriori survey question that was used to judge simply how the

model, itself, was perceived regardless of the design decision that was made.

With this in mind, the first question of the overall data was whether the testing was effective at allowing

perception factors to influence respondents' behaviors. If the decision was obvious, then there would be no

influence of other factors like time pressure or consequences. To test this, the decision outcome was

compared against the quality of the model used for the case (Table 7). If the cases were too obviously related

to model quality, then people would always choose to proceed with a good model and to wait with a bad

model. In other words we would expect that all test subjects would only fall into quadrants II and III. The

results showed close to even distributions between a "proceed" and "wait" decision regardless of model

quality. This shows that respondents were influenced by other factors, like those from the framework, when

making their decisions.

Design Decision Outcome by Model Quality

Odds Ratio (WI)
Model Quality Decision Outcome Responses Regression

(Good Model is Baseline) P Coefficient P-Value p(Proceed)
Proceed Wait p(Wait)

Good Model 43% 57% - -

Bad Model 51% 49% -0.60 0.170 0.55

Table 7: Distribution of decisions based on good or bad models from the cases. The distribution shows
about even distributions between proceed and wait regardless of model quality indicating the
problem was not obvious.

Knowing that factors contributed to people's decisions, an overall regression analysis was done comparing

the factor being tested in each case against the reference. The dependent variable in this analysis was the

decision outcome of proceed or wait. The results showed that only the purpose of analysis factor was

effective at significantly changing the design problem decision (Table 8). The data was also analyzed for each

factor's overall impact on model confidence. Model confidence was rated in the survey on a scale from one

to five (five being the highest level of confidence) and the average is plotted by factor in Figure 37. Other

measures recorded via the survey could be mined in the future to further refine the dataset and understand
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to what extent each of the factors impacted the decision process. The remainder of this section will explore

further each of the factors individually relative to the additional data obtained from the experiments.

For each of the factors, a similar analysis approach is taken. First, the data was analyzed to be sure the

experiment was effective at testing the factor. This was judged using survey questions specifically targeting

each factor. Once confirming the experiment was a successful test, the data was analyzed to understand how

the factor may have impacted the decision or the model confidence.

Design Decision Outcome by Factor Tested

Decision Outcome Responses Regression Odds Ratio (W)
Factor (Reference is Baseline) Coef t P-Value p(Proceed)

Proceed Walt p(Wait)

Reference 60% 40% - -

Consequences 45% 55% -0.60 0.170 0.55

Purpose of Analysis 39% 61% -0.85 0.054 0.43

Model Source 44% 56% -0.64 0.139 0.53

Time 49% 51% -0.45 0.294 0.64

Uncertainty 45% 55% -0.62 0.167 0.54

Table 8: Analysis of the decision outcome by the factor test case as compared to the reference case. All
factors show no significant difference in the decision outcome as compared to the reference except
for the Purpose of Analysis factor where there is a higher likelihood of choosing to "wait" with this
case as compared to the reference.

Average Model Confidence Measure by Factor Tested
95% CI for the Mean

8
1

4.5-

4.0-

3.5-

3.0-

2.5-

Time UncertaintyReference Consequences Purpose Source
Factor

Figure 37: Average of model confidence (dots) plotted against the test factors. Purpose, Source, and
Time factors all show a significant reduction in confidence as compared to the Reference case taking
into account the 95% confidence interval.
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Based on the results it appears that the different factors influenced mean model confidence significantly

but did not clearly bias the actual binary decision one way or the other except for the purpose of analysis.

Another way to say this is to say that of all the factors tested the one most likely to lower confidence in a

model is when decision makers are asked to base a decision on a model that was originally designed for a

different purpose. Not only did this lower confidence in the model, it also made decision makers more risk

averse (i.e. wait 69% versus accept the current design 3 1%). The next strongest factors influencing model

credibility were the source of the model and the exercising of time pressure.

5.4.3 CONSEQUENCES

Changing whether there was financial risk to the design decision in the experiment tested the effect of

consequences. In the case of the reference test, there was money at stake for early contracts and possible

penalty of warranty for a defective design; whereas in the consequences test case, there were no risks

dependent on the decision. Initial inspection of the full dataset was done by comparing the survey response

asking whether the consequence influenced the decision. The consequences test responses showed a

statistically significant difference from the reference case indicating those faced with higher consequences

and financial downside risk, as in the reference, were more likely to be influenced when making a decision,

all else being equal (Table 9). This result corresponds with many of the comments provided in the survey

where respondents expressed concern for making it to market first or being subject to potential warranty

exposure. This proves that consequences were a contributor to the decision.

Influenced by Consequences by Factor Tested
Influenced by Consequences Odds Ratio (W)

Factor (Reference Is Baseline) Responses Regsson P-Value p(Yes)
Yes No Coefficient p(No)

Reference 79% 21% -

Consequences 43% 57% -1.59 0.002 0.20

Purpose of Analysis 84% 16% 0.32 0.592 1.38

Model Source 68% 32% -0.55 0.300 0.58

Time 76% 24% -0.14 0.801 0.87

Uncertainty 78% 22% -0.07 0.910 0.93

Table 9: Analysis of the Test Cases as compared to the Reference for whether the consequences
influenced the ultimate decision for the design problem. The consequences test case was the only
factor that showed a significant difference from the reference. The odds ratio indicates that with
consequences removed, as in the test case, the respondents are 2 0 % less likely to be impacted by the
consequences when making their decision.
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The hypothesis presented in section 4.1 suggested that the perception of the model would be impacted by

consequences depending on whether they were beneficial or detrimental (Figure 23). Because the reference

case had both depending on the decision, it was necessary to determine how the respondents felt was a

stronger consequence to know how their perception would be impacted. To do this, it is necessary to

calculate the expected value (EV) of the decision with consequences as is done in Figure 38. In this

calculation, the probabilities of the model being correct are left unknown and shown as p being the

probability that the model is correct and I -p being the model is wrong.

Model Prediction
Correct + $1 Million in

EV = + $1 Million Early Contracts
Proceed based on p = p

Model Recommendation

EV(millions) = 1 p - 3(1 - p) Model Prediction
Incorrect - $3 Million in

EV -$3 Million Warranty
Design Problem q = 1 p

Model Prediction S$ Million in missed

- 1.5 ion opportunity + - $0.5
EV =- $15 61 n Million in testingDelay until physical p=pMlini etn

Test results available .c -lpib

EV(millions) = -1.5p + 2.5(1 - p<) Model Prediction
incorrect + $3 Million in saved

V = Million Warranty + - $0.5
= 1 - l n pMillion in testing

Figure 38: Decision tree for Reference test case including Expected Value calculations

At 50% probability that the model is correct, the EV of proceeding is -$1 million whereas delaying

would have an EV of + $0.5 million. Knowing nothing else, the best choice would be to choose to delay as it

has a higher EV. However, the respondents knew more about the model than SO50/ odds and its validation

allowed to make a better determination of p and therefore know whether the consequences were more

beneficial or detrimental with the design. The minimum value of p to make the EV of proceeding greater

than waiting can be calculated with the following inequality (Equation 1). Here, if the respondents are more

than 68% confident in the model, they will believe the consequences to be beneficial and may perceive the

model more positively, whereas anything less than 68% would be considered detrimental and may bring

about risk-averse behavior.

EVa> EVEVproceed >EdeaY

4p - 3> -4p+ 2.5

.'. p > 68.75%

Equation 1: Expected Value Inequality
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For this problem, the model confidence was binned in order to align with indicating a probability greater

than 68% or not. Therefore, model confidences of four and five were made "high" and the rest were "low."

Only for those that indicated they were impacted by the consequences in their decision for the reference

case, which amounted to about 80% of the respondents, a regression analysis was done to determine the

impact of confidence on the ultimate decision. The results shown in Table 10, indicate that the reference

case showed a significant impact of model confidence on the ultimate decision where the higher the

confidence, the more likely the respondents were to choose to proceed with the design, regardless of model

quality. Although this seems an obvious conclusion, it is more interesting when compared to the

consequences test case analysis. Here, the same test was done and found to be inconclusive, or model

confidence did not impact the ultimate decision because there was no influence from beneficial consequences

in the case of high confidence, or detrimental consequences in the case of low confidence.

Design Decision Outcome by Factor Tested
when Consequences Influenced the Decision

Model Confidence Decision Outcome Responses Regression Odds Ratio (')
Factor (High Confidence Coefficient P-Value p(Proceed)

is Baseline) Proceed Wait p(Wait)

High Confidence 79% 21% - -

Reference
Low Confidence 18% 82% -2.83 0.003 0.06

High Confidence 43% 57% -
Consequences

Low Confidence 33% 67% -0.41 0.697 0.67

Table 10: Analysis results for determining decision outcome against model confidence for the
reference and consequences test cases for those respondents who indicated the consequences
impacted their decisions. The Reference shows a statistically significant impact indicating that as
confidence drops, the respondent is more likely to wait on the design problem regardless of the
model's quality. This is in contrast to the consequences test cases where decisions were made to
proceed or not regardless of confidence in the model.

Aligning model quality with its perception is highly correlated with the decision being made. The solution,

however, cannot mimic this experiment where the consequences were removed all together. One key to

making model-based design more effective in these situations is to raise the value of p, or the probability the

model is correct, from the perspective of the decision maker. This includes improving the model's quality

itself, but also ensuring adequate communication of the model and its validation to reduce potential

uncertainties from the decision maker. Using the experiment as an example, for the good model cases, it

was necessary to portray to the user that the model was truly good enough to make a decision to proceed. In

the cases with the bad model, there was no opportunity given to improve the model itself, but proper

validation communication would still be effective because it would have lowered the confidence in the

model, driving people to wait for testing.
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Another option for more effective model-based design is to add flexibility where new decision paths may

allow for improved beneficial consequences. In the experiment, users were given two options: proceed or

wait. However there could be alternatives that would allow for higher EV even in the face of model

uncertainty. A third option could be considered where the design would proceed under conditions where

the model had been proven valid and parallel testing activities would continue to confirm functionality under

the new requirements where the model was less certain. For example, the model provided for the

experiment had been tested and validated with two rubber bands and a specific ball. Could the design be

released in this configuration at elevated product costs? Once confirmation testing had been completed and

valid design was ready, this could be released as a means to lower product costs for the remainder of its life

cycle. In this scenario, the early contracts would be awarded and the potential warranty costs would be

avoided.

The consequences factor proved to be an important variable in how people approached the design

decision. Regardless of a model's quality, people were influenced by whether they believed the

consequences to be more beneficial or detrimental. This can hinder the implementation of model-based

design in organizations particularly where consequences are large. However, by improving model validation

techniques using some of the methods presented in section 3.4, the decision tree can better align with the

actual quality of the model. More importantly, by using principles of flexible design, the decisions can be

setup to make the best use of scenarios where the model is most certain and still avoid penalties where the

model is less certain.

5.4.4 TIME PRESSURE

Time pressure was tested in this experiment by allowing 15 minutes with the model for the reference

case and only 4 minutes in the high time pressure test cases. Based on initial inspection of the data, the

distinction in time was significant enough to cause a separation between the cases where the time test cases

were five times more likely to respond that there was not enough time to make a decision as compared to

the reference (Table 11). This time pressure did however not impact whether people chose to proceed with

the design or not as compared to the reference and therefore, they did not perceive the problem differently.

However, their confidence in the model was significantly reduced (Figure 37) and further analysis was

needed to understand the impact.
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Enough Time for the Experiment by Factor Tested

Odds Ratio ('1)
Enough Time Responses Regression Od ai W

Factor (Reference is Baseline) Coigefin P-Value p(Yes)
Yes No Coefficient p(No)

Reference 68% 32% - - -

Consequences 64% 36% -0.19 0.689 0.82

Purpose of Analysis 64% 36% -0.20 0.681 0.82

Model Source 65% 35% -0.16 0.744 0.85

Time 31% 69% -1.55 0.002 0.21

Uncertainty 76% 24% 0.37 0.504 1.45

Table 11: Regression analysis on whether the respondents had enough time to make a decision by the
test cases. The Time Pressure test case was the only case where there was a significant difference from
the reference where people were more likely to say that there was not enough time.

The hypothesis presented earlier suggested that time pressure would improve perception when the

respondents trusted whatever inputs were available or would seek other sources if they did not have

confidence in the model. To test this, the confidence was tested against each decision for both test cases. The

same binning used in the previous section was upheld for consistency. For those that chose to wait, there

was no difference between the reference and time pressure cases where in each case lower confidence in the

model generally resulted in a "wait" decision. However, where the respondents chose to proceed with the

design, the impact of model confidence was different between the reference and time pressure (Table 12)

regardless of model quality. This results in the Time Pressure cases to be more likely to choose to proceed

with low model confidence as compared to the reference case. In fact, the results showed that about 85% of

the reference case respondents who chose to proceed had high confidence, where the time pressure case was

about half and half on confidence regardless of model quality. This suggests that when people do not have

time to make a rational decision based on data but are forced to do so, they come out with about the same

odds as the decision itself. In the case of a binary decision this is similar to a coin flip.

Further investigation was done, based on the hypothesis, that other factors would force the decision.

However, there were no ties to a change in the influence of consequences, for example. Therefore, the

hypothesis presented earlier is not fully validated. When there is high confidence in the model, the

perception of the model (or the ultimate decision) does not necessarily follow in the case of high time

pressure. Similarly, other sources were not sought to make the decision such as the impact of consequences.

Instead, people chose a decision and the result came out to about an even number of cases between a

proceed or wait decision.
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Model Confidence by Factor Tested
dependent on Decision as "Proceed" or "Wait"

Factor Model confidence Responses Regression Odds Ratio (W)
Design Decision (Reference is Coefficient P-Value p(High)

Baseline) High Low p(Low)

Reference 87% 13% - - -

Proceed
Time 47% 53% -2.08 0.010 0.13

Reference 33% 67% - - -
Wait

Time 22% 78% -0.56 0.478 0.57

Table 12: Analysis of the impact on confidence by test case dependent upon the design decision made.

When respondents chose to wait, there was no difference in model confidence between the reference
and time pressure cases. However, when they chose to proceed, there was a significant difference in

confidence between the two test cases. Here, the time pressure case was much more likely to have
low confidence in the model yet respondents still choose to proceed.

What was clearly determined, was that under time pressure, model confidence is reduced. Therefore,

under time pressure, the full benefit of model-based design in organizations would not be realized and

decisions would not be data-based but more akin to a random coin flip. Over time, people would not grow

to trust models. This is where flexible design becomes important as discussed in the previous section. There,

the example was given to proceed using a case where the models were validated (i.e. two rubber bands) and

proceeding with confirmation testing as well under the new requirements. Although there are additional

costs for releasing a more expensive product, those can be removed in further iterations and the risk of

warranty cost is reduced and benefits of arriving early to market are realized.

5.4.5 PURPOSE OF ANALYSIS

The purpose factor required the respondents to evaluate the maximum height of the ball at its apex as

opposed to its horizontal distance. Given that the model did not provide a height output, this was very

difficult to determine; only an image of the ball flying through the air against a background grid could be

used to judge height achieved. In fact, qualitatively, this factor caused the most distress in the respondents.

Several people in this test case expressed frustration in the model's inability to predict height via emails as

well as comments in the survey. This distress was evident in the overall results from the experiment where

this factor was the only one where a significant difference was noted in the decision outcome as compared to

the reference case (Table 8) where people were more likely to wait on the results of the physical design

testing regardless of model quality. It follows too that the confidence in the model for the purpose test cases

was more likely to be lower as compared to the reference (Figure 37). These findings agree with the

hypothesis that asking questions from a model for which it was not originally intended will generally lower

quality perception of that model.
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What is of most interest, however, is understanding why people chose to proceed anyway with a design

even when the model was clearly not suitable for the problem similar to what was found in the case studies.

Further investigation of the results may help inform why this continues to be a problem in organizations.

Reading through the comments for those that had been selected for the test group and chose to proceed with

the design, there were two common themes that describe( why people chose to move forward anyway:

* The consequence of losing first-to -market advantage was too great

- Assumed the model was correct and interpreted it as best as they could

The first item was discussed in the earlier section on consequences. The second item, however, highlights

a weakness. People were provided with a measure of height, however subjective that measure was. This was

(lone in order to improve the fidelity, or the realism of the model where people could pull back the catapult

arm, launch the ball and watch the ball in flight. This improves the experience of the decision maker

(Grogran, Lee, & de Week, 2011). However, there is a tradeoff that additional information used in a model

should be validated before it is incorporated to protect a model's credibility. Based on examples from this

experiment, and lessons from the case studies such as in the Columbia accident, decision makers will seek

out any sources of information to better inform themselves on the decision to be made.

5.4.6 UNCERTAINTY

The impact of uncertainty in the experiment was tested by showing error bars on top of the validation

data for the test case whereas the reference case had no error bars. The intent was to allow the respondents

to ascertain whether their validation runs were valid relative to the provided data. Based on the overall

results, there was no overall impact on the decision or model confidence with uncertainty communicated

(Table 8 and Figure 37). To measure the effectiveness of the factor in the experiment, the responses were

compared between the stated capabilities of a catapult against that of the model. The uncertainty test case

respondents knew the catapult's capability to reproduce its results from the error bars in the validation data

- the data showed the catapult was fairly poor at reproducing distance. Based on the results (Table 13), the

uncertainty test case was more likely to predict poor capabilities for both the catapult and the model as

expected. This indicates the factor was effective in testing.
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Catapult and Model Capability by Factor Tested

Catapult or Model Factor Capability Responses Regression Odds Ratio (W)
Capability (Reference Is oefficient P-Value p(Good)

Baseline) Good Bad p(Bad)

Reference 75% 25% - -

Catapult
Uncertainty 45% 55% -1.31 0.015 0.27

Reference 59% 41% - -

Model
Uncertainty 35% 65% -0.97 0.061 0.38

Table 13: Statistical analysis of stated capabilities of a catapult and the model comparing the
Reference to Uncertainty cases. In both cases, there is a strong correlation between people's stated
capabilities and the test case.

The hypothesis presented in section 4.5 indicated that with communicated uncertainty, the perception of

a model would improve because by presenting uncertainty information decision makers would gain more

clarity as to the validity bounds of the model. However, it was found that the decisions did not change

significantly between the uncertainty and reference test cases. The confidence in the model was compared

between the reference and uncertainty cases to see if the perceived capability of a catapult and model

translated to the confidence in the model (Table 14). Again, the case for uncertainty showed no change in

trend from the reference case.

Based on these results, the hypothesis for uncertainty could not be validated. Therefore, although the

uncertainty was communicated and showed people a reduced level of capability in the model and catapult, it

did not impact their decision and therefore their overall perception of the model as a decision-making tool.

This is a very curious result as much of the literature, as discussed earlier, is clear about the value of

communicating uncertainty and its value on improving the use of models to make decisions. In this example,

data shows that the uncertainty was properly communicated, but made no difference in how people

interpreted that knowledge into their decision. Therefore, more needs to be understood with respect to

uncertainty. For example, what form does uncertainty need to be in for better communication and reception

by the decision makers? In this experiment, the uncertainty was in the distance, but perhaps a better

uncertainty would be in the final decision: there is X% of being correct (p-value from the decision tree in

Figure 38) resulting in Y expected value. This statement is much more intuitive to interpret and puts the

uncertainty in terms that are directly applicable to the decision maker.
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Model Confidence by Factor Tested

dependent on Model Quality

Factor Model Confidence Responses Regression()

Model Quality (Reference is Coefficient P-Value p(High)

Baseline) High Low p(Low)

Overall (all model Reference 66% 34% - - -

quality cases) Uncertainty 61% 39% -0.22 0.672 0.80

Reference 65% 35% - -

Good Model Quality -- -- -- -_-- -- -_-- -- -_-- -- -_-

Uncertainty 64% 36% -0.03 0.966 0.97

Reference 67% 33% - - -

Bad Model Quality
Uncertainty 57% 43% -0.41 0.582 0.67

Table 14: Tables comparing model confidence between Reference and Uncertainty test cases.

Confidence is similar for both cases regardless of model quality.

5.4.7 MODEL SOURCE

The final factor that was explicitly tested was the source of the model. In the reference case, the model

was from a PhD student from MIT and was based on physics principles. In the source test cases, the model

was downloaded from the internet and the governing principles in the model were unknown (black box

model). Using survey responses indicating the importance of the model's source in the decision, the data

was able to determine if this factor was effective in the experiment. However, results showed no difference

in whether the source author made a difference between the reference and source test cases (Table 15).

Interestingly, a few of the other test cases did. The consequences, purpose, and time factors all behaved

differently as compared to the reference. The odds ratio suggests these cases were less likely to be impacted

by the source author. This is likely because the other test factors in these cases overshadowed the model's

source.

To analyze the case of the model source author further, focus was placed on the datasets that indicated

importance of the source author between the reference and source test cases. About 50% of the cases for

each found the model's source to be important. The design decision outcome was analyzed based on the

reference or source case as well as the model quality for the experiment. There was an interesting outcome

in this analysis (Table 16). The results showed that when the source of the model was important to the

decision maker, then the source test cases were more likely to choose to wait on the design decision as

compared to the reference with statistical significance. This was true for the good model, and almost

exclusively the case for the bad model. This indicates that the hypothesis presented earlier suggesting that

the perception will change depending on the trustworthiness of the source was able to be validated. In the

source test cases, the model's source was less trustworthy in having no specified author and no
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understanding of the concepts comprising the model. This created enough uncertainty with the respondents

that they tended to want to wait and not proceed with product launch.

Impact of Source Author by Factor Tested

Importance of Source Author Odds Ratio (W)

Factor (Reference is Baseline) Responses Regression P-Value p(Important)
Important Not Important p(Not Important)

Reference 49% 51% - -

Consequences 28% 72% 0.88 0.065 2.42

Purpose of Analysis 21% 79% 1.27 0.013 3.56

Model Source 54% 46% -0.21 0.651 0.81

Time 23% 77% 1.17 0.024 3.21

Uncertainty 45% 55% 0.16 0.751 1.17

Table 15: Analysis results comparing each of the test cases and the impact of the source author on

those cases. The source test case showed no significant difference as compared to the reference

although consequences, purpose, and time did vary from the reference case. In each case, the odds
ratio suggests that these cases were less likely to be impacted by the model source.

To understand this problem further, the model source is broken into two attributes: the trust-worthiness

of the author and the proprietary-nature of the code whether it is open or closed to the model users. This

experiment tested two extremes relative to these attributes. First, the reference case represented a model

from a trustworthy source (MIT PhD in Mechanical Engineering) and an open model (physics-based

principles) and the results showed acceptance of this. In the source test case, the opposite scenario was

presented: an unknown, therefore potentially untrustworthy source combined with a proprietary model

with unknown governing equations. The data showed people's hesitation to this combination. Evaluating the

other two cases may help to determine possible solutions to model source concerns in decision-making.

The first of these cases is when the model comes from a potentially untrustworthy or unknown source but

its code is open for inspection. In this case, whether a model is used should depend on how the model

performs in validation. Because the source code is open, validation is a step that can be performed well in

order to understand how well the model can support a decision-making process.

The alternate case is when the model is from a trustworthy source, but the code is proprietary. This

happens often in industry where third-party consultants sell models but protect their intellectual property by

locking down the code of the model. In these cases, validation can be done around the known problem space,

but little can be done to understand how well the model can extrapolate to new regions in the space. In this
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case, it is important to review the credibility of the source and the experience behind the model and its

previous applications.

From these two scenarios, it is clear that it is important to validate the available information whether it be

the credibility of the source or the validation and transparency of the model or both.

Design Decision Outcome by Factor Tested
when Source Author is Important for Good and Bad Model Quality

Factor Decision Outcome Responses Regression Odds Ratio (T)

Model Quality (Reference is Coefficient P-Value p(Proceed)
Baseline) Proceed Wait p(Wait)

Reference 73% 27% - -

Good Model
Source 8% 92% -3.38 0.007 0.03

Reference 87% 13% - - -

Bad Model
Source 44% 56% -2.17 0.086 0.11

Table 16: Design Decision results compared against source cases and model quality where model

source was important. For the source test case, with both the good and bad models, the respondent's

would more likely choose to wait as compared to the reference.

5.4.8 IMPLICIT FACTORS FROM THE EXPERIMENT

Three remaining factors: availability of models, requirements and their validation, and fragmented

knowledge were difficult to test in the experiment form used as they are more dependent upon factors

among organizations as a whole. Survey questions were included to try to understand more about the

population relative to these factors and those will be shared.

Model availability was examined by three survey questions. First, the users were asked if models were

generally available in their organizations, second if those models were designed for the purpose of the

problem and finally, a sense for model availability based on whether the users' organizations generally did

more physical testing or modeling during their product development activities. The responses for the

population generally indicated that models were available and often for the required purpose (Table 17).

However, whether people had models available or not did not show significant relationships with any

responses such as the decision, model confidence, or capabilities in the model or catapult. This factor

requires testing in a more disciplined manner in an environment specific to an organization where more than

qualitative responses could be used to judge model availability.
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Requirements and their validation was another

difficult factor to test using this experiment

methodology. This factor was surveyed by asking

the respondents to rate their organizations with

regard to setting requirements and validating them.

As before, the responses showed that generally this

practice was done well within organizations and

there was, again, no relationship in this response to

other outcomes from the experiment. Similar to the

model availability, this factor requires a different

survey method with quantitative inputs.

Are models available?

Yes No
66% 34%

Do they match the purpose?

Yes No
77% 23%

Does your organization depend more on
physical testing? Or modeling?

Physical Testing Modeling
53% 47%

Table 17: Survey responses relative to model
availability

The final implicit factor tested was fragmented knowledge within the organization. Given the

experimental method, it was not feasible to understand how well knowledge was managed within an

organization and attempting to do so would likely lead to results similar to those for the model availability

and requirements. Therefore, the respondents were asked if they:

a.

b.

Were familiar with catapults and the physics-based concepts

Were familiar with creating and using mathematical models

Using the responses from the above two questions, four categories were created indicating the level of

knowledge: familiar with models and catapults, neither, or only one or the other. These categories were

then tested against the design decision and model confidence. Table 18 shows there was no impact to the

overall decision as a result of knowledge. Although the case with model familiarity and without knowledge

of a catapult had response percentages that trended towards more waiting in the decision. However, the

sample size of this group was very small compared to the others which explains the statistical insignificance

of this trend. Table 19 shows the same analysis with model confidence. Here, there is a significant difference

in being familiar with catapults but not models. These cases proved to be more likely to have confidence in

the model as compared to those who either had no knowledge or were more familiar with modeling

practices. This is an interesting result that suggests parallels with MacKenzie's certainty trough (1990).

Those who are far from the problem (no familiarity) have high levels of uncertainty (indicated by low model

confidence). Similarly, those are very close to the problem (model familiarity) have high levels of

uncertainty as well. Where those familiar with the real system and not models are in the trough, or have

high model confidence.

More testing is required to fully understand the impact of this factor as these preliminary analyses suggest

important findings, but they lack enough detail to make specific recommendations.
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Design Decision Outcome by System Familiarity
Odds Ratio (W)

System Familiarity Decision Outcome Responses Regression
(No Familiarity is Baseline) Proceed Wait Coefficient P-Value p(Proceed)

Proceed___ Wait___ ______ ______ p(Wait)

No Familiarity with Cataults or Models 41% 59% - -

Familiar with Catapults 52% 48% 0.42 0.209 1.53
NOT Models

Familiar with Models 27% 73% -0.65 0.301 0.52
NOT Catapults

Familiar with BOTH 45% 55% 0.16 0.640 1.18
Catapults and Models

Table 18: Analysis of the design decision by familiarity of the system. This analysis showed no

significant difference between system knowledge levels and the final decision outcome.

Model Confidence by System Familiarity

Odds Ratio (11)
System Familiarity Model Confidence Responses Regression

(No Familiarity is Baseline) Coefficient P-Value p(High)
High Low p(Low)

No Familiarity 46% 54% - -

Familiar with Catapults 61% 39% -0.59 0.084 0.55
NOT Models

Familiar with Models 40% 60% 0.25 0.667 1.28
NOT Catapults

Familiar with BOTH 44% 56% 0.09 0.801 1.09
Catapults and Models I 5 0

Table 19: Analysis of the model confidence
familiarity with catapults but not models
compared to the other cases.

by familiarity of the system. This analysis showed that
had significantly higher confidence in the model as

6 CONCLUSIONS

6.1 SUMMARY
Through the course of this thesis, the goal has been to understand the challenges in model-based design

within organizations as related to model confidence and validation. Using case study analysis from three

different real world cases, two primary challenges emerged: the problems of model validation and model

perception. A thorough literature review further analyzed these problems to uncover the underlying

questions behind these problems: 1) ensuring proper model assessment 2) understanding the problem from

the perspective of the decision-maker and 3) awareness of potential contextual variables that may

overwhelm the input data to a decision-making process.

Much has been done in the literature to address the first question regarding model assessment; NASA's

standard NASA-STD-7009 used to assess model credibility is a good example of an assessment to help ensure
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that models are good for use. However, the latter two issues relate more to the decision-makers and how

they perceive the model, a realm not addressed well by literature.

Using lessons from the case studies, literature, and industry experience, eight factors are proposed that,

when merged with a mature model assessment process, may positively influence decision-makers. By

positively influence we mean that decision makers should be able to recognize bad models and not use their

output during decision-making (quadrant 111) and that they should have confidence in good models and use

them for decision-making (quadrant II). The goal is not to convince them to use a model's result in every

design problem, but rather to better align their perception with the actual quality of the model result

relative to the design problem.

The 8 factors influencing perception of model quality and potentially decision outcomes are as follows:

* Effect of a decision's consequences

* Effect of time pressure under which to make a decision

* Availability of mature models to use for design problems

* Purpose for which the model is being used relative to its originally intended purpose

* Uncertainty and its communication

e Lack of system-level requirements and their validation

* Model's source author and transparency

e Fragmentation of knowledge through organizations.

These factors were tested for their true impact using a simple model in a web-based experiment. Results

from the experiment showed interesting findings that proved that the framework proposed is a good start

toward a further understanding these problems. It illustrated some particular areas of research and suggested

some potential methods that could help alleviate the negative impact these factors might have on a decision-

making process. A summary of the findings from the experiment is shown in Table 20.
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* Hypothesis.
Factor Hypothesis Vaidted Summary of Findings

Validated
The expected value of the options

Preediction of il prove (based on model confidence) drove
consqueceswillimpovethe decision when consequences

Effect of model perception -hileYes were present. When consequences

Consequences detrimental consequences were reset. moel conedencen
willredce ercetio ofwere removed, model confidence no

will reducet plonger im pacted the decision
model quality

outcome.

Applying timne pressure v The threshold of confidence in the

Effect of Time Cause people to use model needed to proceed with the

Pressure whatever inputs are Yes design was significantly reduced
available in the process when applying time pressure.
whether validated or not

By asking questions of the
model for which it was not This factor significantly changed the

Purpose of Analysis originally created, the Yes design decision from the reference

quality perception of that to more likely wait.

model will be reduced
Results showed this factor was

Improving information properly tested based on responses

Uncertainty and its about uncertainty will lead No of catapult capability changing from

communication people to better recognize a the reference, but there was no
good or bad model significant difference in the decision

outcome or the model confidence

For the cases where the source was

Source and A more trustworthy model important to the decision, there was

transparency of the author and transparent Yes a significant difference in the

model governing equations will decision outcome where
improve model perception untrustworthy sources caused

reduced confidence.

Better knowledge of the Initial results showed possible
connection between knowledge and

Fragmented entire problem will cause cneto ewe nweg n
Fraenede ete prolepwill cauhed Inconclusive model confidence however this
Knowledge the perception of the modlelfatreqismoeetngo

to increase factor this more testing to

I I Iexplore this factor further.
Table 20: Summary table of factors tested in the
findings from the experiment results.

experiment, their hypotheses and a review of the

6.2 RECOMMENDATIONS

There were some overriding themes that came from the analysis that can serve as recommendations to

organizations looking to improve their model-based design practices. First, ultimately the decision involved

in a design problem can be mapped on a decision tree where the probabilities of model correctness can be

used to provide a quantitative assessment in terms of the expected value of the decision options. This then

allows evaluation of flexible design options where the risks of acting on a bad model can be mitigated with

minimized cost involved in rejecting a good model. Therefore, whatever the consequences of a decision or
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the scheduled deadline under which a decision must be made, the organization can still take advantage of

model-based design practices with higher confidence and lower risk.

Communication across an organization is another recommendation from the results. This is also covered

in the literature as an important aspect, although few solutions are available and proven to improve this.

However, this thesis illustrates the impact it can have when the purpose of a model is miscommunicated

either from the decision makers in their request for a model or from them modelers in their intended

purpose of a model. Besides model purpose, general understanding of the problem space, either of the real

system itself or the modeling principles, can vary the tendencies of the decision-makers. Therefore it is

necessary to ensure all parties in an organization have the needed background information of the system, not

just the model data, before making a decision.

Communication is also raised as a point in the literature as necessary with regard to model uncertainty

information. This experiment showed that knowledge of model uncertainty provided no benefit to the

decision. However, it also touched on another point that may improve how information is communicated.

The uncertainty in this case was not provided as a probability related to the decision, but as input variables to

the decision. Putting the uncertainty in terms of system-level outcomes may aide in decision-makers

understanding of the impact of uncertainty.

Models can be a useful tool for design and communication. The latter, in particular, is improved through

added fidelity or realism. However, the trade off lies with the added validation work required for all the

parameters in a model. Results showed people would use this information, even if not validated. Therefore,

thought and care needs to go into how information is communicated, whether that information is in the right

form relative to system requirements, and if all pieces of information are properly validated.

Implementing these recommendations could help alleviate some of the challenges in model-based design

because they were shown, by means of the experiment, to have an impact on model confidence.

6.3 FUTURE RESEARCH

This thesis highlights a new approach to addressing model-based design challenges by focusing less on the

validation steps and more on how contextual factors can influence decision-makers. There is much more that

can be done under this new analysis technique as new case studies present challenges to the proposed

frameworks and as more confirmation under this new premise is completed. Of particular interest are cases

in quadrants I and IV.

One area of future research to help address this new approach is to understand the interactions of the

factors in the framework. Due to time constraints, a one-factor-at-a-time DOE was run to learn about the

main effects of the framework, but it was not possible to glean how multiple interacting factors might alter
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behavior. These interactions would be more representative of real product development environments and

could add more fidelity to this model. It is estimated that a full factor experiment might require about 1,280

test subjects, about five times more than the 252 respondents that participated in the experiment presented

in this thesis.

Other areas of future research are based on findings from the experiment conducted. First, improved

communication is highlighted as a strong recommendation, which is consistent with volumes of other

literature. The question then remains, why has this problem not yet been addressed? And what could be

done to improve organizations communication and knowledge management.

The final point is in regards to the findings specific to model uncertainty communication. Literature

continues to highlight the benefit of communicating uncertainty about a model and the design problem.

However, results from the online experiment showed no benefit of it, despite recognition of the uncertainty.

Therefore, more needs to be understood here. First, after numerous recommendations in the literature,

wvhv is uncertainty still a problem? Second, how can uncertainty be better communicated so as not to

overwhelm decision-makers, but rather make it digestible to them? Would referencing uncertainty relative

to system-level outputs as opposed to a single model's output improve this behavior as suggested in the

recommendations?
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8 APPENDICES

8.1 APPENDIX A: MODEL VALIDATION DATA
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Figure 39: Validation Data for the Good Model case. This data used the smooth ball with two rubber

bands. Each plot shows the distance traveled for varying launch and pullback angles. The Red curve

with error bands shows the validation data the user received; the Blue curve shows the results the

model would give for those same conditions. This data was not available to the user, but could be

reproduced using the model.
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Figure 40: Validation Data for the Bad Model case. This data used the perforated ball with two rubber
bands. Each plot shows the distance traveled for varying launch and pullback angles. The Red curve
with error bards shows the validation data the user received; the Blue curve shows the results the
model would give for those same conditions. This data was not available to the user, but could be
reproduced using the model.
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8.2 APPENDIX B: COUHES APPROVAL

LGO/SDM THESIS METHODOLOGY RELATIVE TO USE OF HUMANS AS
EXPERIMENTAL SUBJECTS

Please answer every question. Mark N/A where the question does not pertain to your internship/thesis. If
you are not sure of the exact data that you will need to complete your thesis, please identify what you
expect to be required and revise your submittal when you know more definitively what data will be needed.

I. Basic Information

4. Funding. If the thesis research is funded by an outside sponsor, the investigator's department head
must sian below.

Outside Sponsor: Contract or Grant Title:
Contract or Grant #: OSP #:
5. Human Subjects Training. All students MUST take and pass a training course on human
subjects research. AMT has a web-based course that can be accessed from the main menu of the COUHES
web site. Attach a copy of your Comrse Completion Nodmc.

II. Thesis Methodology
A. Types of data that you will be coflecting:
Demographic information: Name, Years of experience, Industry, Role (Manager,
Individual Contributor, etc). Note that the name is intended to record to ensure
there are no repeat users as a second attempt may bias the user. This Identifier will
be converted to a random ID and the key will be kept separate from the results.
There is little risk to the subjects should they be identified, but this will be done as
comfort to the users.

Users will be interacting with an online model of a catapult and determining if the
model prediction can be trusted. The testing factors will Include changing
information about the model such as Its source or time limits to do the model
interaction.

There will be a debriefing at the end that will ask for what they thought the purpose
of the model was followed by collecting information on their model usage experience
such as how often they use models in their jobs, and what types of models they are.

B. Methodology for collecting data:
Website

- 1 -

101

1. Thesis Title
Key Challenges to Model-Based Design in product Development with Emphasis on
Model Validation
2. Student
Name: Genevieve Flanagan E-mail: Genevieve.Flanaganagmail.com
3. Faculty Advisor(s)
Name: Olivier de Weck E-mail: deweck(amit.edu
Name: Noelle Selin E-mail: selinrit.edu



Director, SDM F ffows Program
Date 2/28/2012

-2-
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C. If you plan to Interview/survey people, how will those people be identified?
It Is preferred to use professionals In a technical field as the subjects. I plan to use
the following recruiting strategy:
e-mails to John Deere employees via our Systems Engineering and Model-based
design communities of practice
e-malls to local INCOSE chapter seeking assistance
e-malls to suppliers we interact with
e-malls to MIT SDM groups
promotion In advisors' classes
potential to post on Baked In groups

D. If you plan to use interviews and/or surveys, outline the types of questions you
will Include:
Demographic Questions
Interaction with a model with final questions based on their experience
Understanding the users' experiences with model usage in the technical field
Understanding the users' experiences with decision making using models

E. Location of the research:
I am located in Iowa, research is online, therefore could be global

G. Procedures to ensure confidentiality:
Data being collected has minimal risk to the users. However, name information will
be converted to a random Identifier and the key will be kept separately from the
rest of the data to ensure confidentiality. Name information is required only to
ensure that there are no repeat runs of the test.

Signature
I r)

0z;R". MR41b



8.3 APPENDIX C: SCREENSHOTS FROM THE EXPERIMENT

83.1 COMMON SCREENS TO ALL USERS

8.3.1.1 Introduction

http://thesisspinutech.com/

UNDERSTANDING MODEL CREDIBILITY FACTORS
GENEVIEVE FLANAGAN, FELLOW, MIT SYSTEM DESIGN AND MANAGEMENT

PROGRAM
WELCOME!
Your participation in the following research study is greatly appreciated!

This study is being conducted as part of fulfillment for a Master's in System Design and Management from MIT's School of Engineering
and Sloan School of Management, Your participation is intended to be interesting and educational. The results of this study is intended
to help organizations understand better how to integrate models and simulations in their decision-making processes

In the following pages, you will be asked to complete the following. It is expected the total time required will be 20 to 30 minutes.

Introduction
" Read and sign a Consent Form

" Provide basic demographic information

" Read a description of a design problem

" Read through a brief review of how to use the model

" Make a decision for the presented design problem
" Run model and check against validation data

" Run your own set of scenarios to better understand the design problem

" Make a decision on how to proceed with the design

" Survey

" Answer a series of questions about your experiences

" Learn more about the research being conducted

As a part of this experiment, you will be asked to download a model that requires Java to run. If you see a message in a pink box
below, you have Java installed, if not, please click here to download and install the latest version of Java.

OCqprigt 2012
OotSMMORUIM
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8.3.1.2 Consent Form

http://thesis.spinutech.com/consent-form.aspx

UNDERSTANDING MODEL CREDIBILITY FACTORS
GENEVIEVE FLANAGAN, FELLOW, MIT SYSTEM DESIGN AND MANAGEMENT
PROGRAM
CONSENTFORM

CONSENT TO PARTICIPATE IN
NON-BIOMEDICAL RESEARCH

UNDERSTANDING MODEL CREDIBILITY FACTORS

You are asked to participate in a research study conducted by Genevieve Flanagan. from the Engineering Systems Division at the Massachusetts institute of Technology (MIT).
The results of this study will contribute to research papers and master's thesis. You were selected as a possible participant in this study because you are a student or professional in
a technical field. You should read the infonnation below, and ask questions about anything you do not understand, before deciding whether or not to participale. Please e-mail
quesions to glanaga@mit.edu.

- PARTICIPATION AND WITHDRAWAL

Your participation in this study is completely voluntary and you are free to choose whether to be in it or not. If you choose to be in this study, you may subsequently withdraw from it
at any time without penalty or consequences of any kind. The Investigator may withdreaw you from this research d circurstances arise which warrant doing so.

- PURPOSE OF THE STUDY

The purpose of this study is to understand how different factors may sffect the credibity of a model. Further details all be revealed at the end of the survey

-PROCEDURES

If you volunateer to paticipate in this study, we would ash you to do the following things:

intducton (less than 10 minutes)

* Read and sign a consent form

* Provide demographic Infonnation includig your name and gender, your mdustry years of experience. and current role within your organization This nformation may be
helpful in analyzing results

* Read a description of a design problem and t model

e Read through a bref review of how to use the model

* Make a decision for the presented design problem (less than 10 minutes)

- Run model and check against validation data

R Run your own set of soenarios to better understand the design problem

* Make a decision on how to proceed with the design

* Survey (less than 10 mnues)

* Answer a senes of questions regarding your experience with the model

. Answer a aeries of questions regardng your general experience with models used in design

* Lam more about the study being conducted

Your participation in this study should take 20 to 30 inutdes to complete.
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http://thesis.spinutlech.con/consent- form.aspx

' POTENTIAL RISKS AND DISCOMFORTS

None

- POTENTIAL BENEFITS

Your participation in this experiment is intended to be interesting and educational. The results witl help organizations understand better how to integrate models arid ismutIbons in

their decision-making processes.

-PAYMENT FOR PARTICIPATION

None

- CONFIDENTIALITY

Any information that s obtained in connechon with this saty and that con be identified with you will remain confidential and will be daclosed only with your permission or as reqluired

by taw

The data from this study will be associated with a subfect number to replace your idendfying information. This subject number will connect your industry and experiance inlormation

with your survey responses and model experienco resuls. The subject number is noti inltindec for release, but is intended to add further security to the data. Once the names have

been used to verify no duplicate participants, this dentinyng inlormation will be destroyed.

The remaining data from this study will be erased trom the web earver at dhe conclusion of the experiment (not to exceed June 2012) and will be stored on a personal computer for

no more than five years and will then be destroyed. The data will be used In research papers and a masters thesis. but only in the aggregate after analys.

- IDENTIFICATION OF INVESTIGATORS

O you have any questions or conaems about the research, please feel free to contact Genevreve Flanagan who Is the principal Investigator at gflanagadmiiedu or (319) 292-8141.

-EMERGENCY CARE AND COMPENSATION FOR NJURY

If you feel you have suffered an anury, which may include emotional traumsa an a eisult of paricipatin in this study. please contact the person in charge of the study as soon as

Possible

In the event you suffer such an injuty, M.I.T. may provide itsell. or arrange tor the provision of, emergency transport or medical treatment. Including emergency treatment and

som-up care, as needed, or reimbursement for such medical aervicea M.I.T. does not provide any other torm of cormparnsatin for inury. ti any cae, neither the offer to provide

medical assistance, nor the actual provision of medical services shat be considered an admission of fault or acceptance of liability. Questions regarding dh policy may be directed to

MIT's Insurance Office, (617) 263-2823 Your Insurance carrier may be billed for die coat of emergency transport or medical trealrient. i such services are determined not to be

directly related to your participation In this study,

- RIGHTS OF RESEARCH SUBJECTS

You are not waiving any legal claime, rights or remedies because of your participation in this research study. If you feel you eave been reated unfairly, or you have queshons

regarding your rights as a research subject, you may contact lre Chairman of die Commitlee on the Use of Humana as Experimental Subjects, M.I.T. Room E26-1425 77

Masachusetts Ave, Cambridge, MA 02139, phone 1-617-263 0787.

SIGNATURE OF INVESTIGATOR

In my judgment the subjed is voluntarily aid knowingly giving istormed consent and posseses the legal capacity to give informed consent to participate in this research study.

Genevieve Flancan 14 March 2012

Signature of Investigator Dale

SIGNATURE OF RESEARCH SUBJECT OR LEGAL REPRESENTATIVE

I understand the procedures described above. My questiona have been answered to my saisaction, and I agree to participale In this study I have been given a copy of this form
O I understand the procedures described above. My questions have been answered to my satisfaction, and I agree to participate in this study

Signature Submit Eid COfltifUS a)

Copyrightd2012
cotehb
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8.3.1.3 Demographics Questionnaire

http://thesis.spinutech.com/demographic-information.aspx

UNDERSTANDING MODEL CREDIBILITY FACTORS
GENEVIEVE FLANAGAN, FELLOW, MIT SYSTEM DESIGN AND MANAGEMENT

PROGRAM
YOUR INFORMATION
Please eer e oimenin bebw A bf we opbanal "* #v wmason is be8n mwal*d as N may he% m undesrtnng Sende i Uw resuf

Gender: - Select One -

Ase:( - Select One -
Edumanon Lavl ComplSd: - one-

How many years al hit-m. technical paerimnce do you have? - On -

What idustry beot descries your profession? C-- Select One -

What a dearessa your rte? - Select One-

Cop~g( Nex12
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8.3.1.4 Survey Questionnaire

http://thesis.spiuutech.coin/survey.aspx

UNDERSTANDING MODEL CREDIBILITY FACTORS
GENEVIEVE FLANAGAN, FELLOW, MIT SYSTEM DESIGN AND MANAGEMENT

PROGRAM
SURVEY QUESTIONS
1. What made you choose the decision you did for this design problem?

2. The model used in this experiment was designed to provid Se hdistance traveled by the ball on order to be able to run design of experiment (DOE) testing on catapult design

factors Do you feel that this purpose was a good match with the design problem you were tying to solve?

OYes

ONo

3. in your opinion, how did the model impact your decision lor this design problem?

o The model said the design would work

O The model said the design would NOT work

O The model was invalid and could not be used to make the decision

0 1 did not use it* model

O Other

4.5I you used the model to make your decision, please rate how confident you werelin the model.

0 0 -I did not question

O 1 - High Confidence

0 2 - Medium High Confidence

0 3 - Neutral

0 4 - Medium Low Confidence

0 6 - Low Confidence

Ot did not us the model to make my decsimon

S. f you did not use the model to make your decision, please rate how confident you were In the model.

0 0 -I am not comfodable with models

0 1- Low Confidence

0 2 - Medium Low Confidence

0 3 - Neutral

0 4 - Medium High Confidence

O 5 - High Confidence
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0 I used the model to make my declon

L

6. Did you look at and utslie the validation data?

0 Yes

O No

If Yes, did i mpact your confidence In the modl or the design decsion you made? Please commtnt on how i ripacted you

0 Yes

O No

7. In your opiron. please rate how good you think the model is at predicting diatance?

O 0 - Not acceptable

O t - Poor s36 Wches or more

0 2 - Not Good

0 3-14ta
0 4 - Good

0 5 - Excelent: +/- 2 inchee or lees

S. In your opinion, how good do you thei a physical catapul is at reproducing diatenc?

0 0 - Not acoceptsai

0 1 -Poor +/- 3iches or more

0 2 - Not Good

0 3 - Neutral

04-Good

0 5 - Excegent: +- 2 enches or es

9. Did you hae enough time with the a"de ID oake a deelon?

0 Yes

O No

N aIwered W goen more nir. souh m hem done Vige simreny?
0 Yes

O No

j
10. Did the consequenose of the design problem faclor iNo your timate decison? Please commend on tow ft hIpeced your decision.

0 Yes

0 No
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http://thesis.spinutech.consurvey.aspx

11. How inportant was the source and author of the model in knowoing whether to ttust the model?

o 1 - Not Important

0 2- Litle importance

0 3 -I considered it
0 4 -Somewhat important
o 6 - very important

12. How would you rate your familiarity with physics related to catapufts? Concts such as energy balance, balltic effects and drag

O 1 -Minimal

0 2 -I am aware of the concepts. but not practiced recently

0 3 -I am aware of the concepr

O 4 - I am tamiliar with the concepts and I use them often

O 5 - Ver familiar. I did rough calculations using these concepts to check the model

13. How would you rate your familiarity with creating and using mathematicatl models?

O t - No experience

0 2 - Minimal

0 3 - Occasional

04-Often

O 5 - I do it every day

14. What types of models do you hes experience with?

U Physics-based analytical models

o Regresion-bansd models

O vitual models

O Physical models

0 System Dynamics models

Ocow models

o Excel-based models

OMatab modela
OSpecific modeling software package

1. Are models generally available in your organlzation to do your work?

O Yes

0 No -and we don't use them

C No - so we hae to build them as needed
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1. Are the modelsaalable designed to meet the purpose o the problem youre tryong to solve?

0 Yes

O No

17. How would you rate your organization wth regard to stg requimmeots?

O 1 - Few to no requirements for syatem and or not well vaidaed

0 2 -Some rmquremet that are not well validated

0 3 -Some requiremetts with sme tnet at vabdaton

0 4 - Many requiremt with some level of validaton

0 5 -Complete et of requireemets tor our system and systamatc plans to vaiae those

Il. How much physical leetng is done In your organization as compared to mod"eg?

0 1- Decislon are made with tesing only

0 2- More taeting, but smite modeang is done

0 3 - About even

0 4 - More modelg, ut some tesog is done

5 - Decisions are made from models only

Cqigt 01
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8.3.1.5 Conclusion

htp: //thesis spinitech.com/thank you aspx

UNDERSTANDING MODEL CREDIBILITY FACTORS
GENEVIEVE FLANAGAN, FELLOW, MIT SYSTEM DESIGN AND MANAGEMENT

PROGRAM
THANK YOU!
Thank you for your participation in this experiment!

The purpose of this experiment was to understand how different factors may influence people's perception of credibility in a

model. These factors have been found, through research, to change the perception of a model's credibility as compared to its actual
quality. They include things such as time pressure to make a decision, safety or risk in the decision. etc.

The results from this testing will be included in a thesis on the subject to be complete in Spring of 2012 If you would like more
information on this research. please contact Genevieve Flanagan at gflanagait mi

t 
edu.

I would like to thank Dr. Troy Savoie and Dr. Dan Frey from MIT for use of their catapult model

If you would like more information about the actual catapult used in the model, please visit www xpult.com

OVpyrtg2012
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8.3.1.6 Detailed Help Page

http://thesis.spinutech.com/model-help.aspx

UNDERSTANDING MODEL CREDIBILITY FACTORS
GENEVIEVE FLANAGAN, FELLOW, MIT SYSTEM DESIGN AND MANAGEMENT

PROGRAM
MODEL HELP

GUIDE TO USING THE CATAPULT MODEL
Simultion ntrface

FPS. 1tK.

DESIGN FACTORS:
Type of Ball:

" Smooth (Orange)
" Perforated (Blue with holes)

Number of Rubber Bands:
. 1
.2

Launch Angle:
Angle at which the arm stops and releases the ball

. 0*
* 15'
* 30*

45*
60*

o 75*
0 90"

Pullback Angle:
Angle at which the arm of the catapult is pulled back prior to launch

a Variable 21' - 120*

ADJUSTING DESIGN FACTORS:
The design factors used in the current set-up are shown in the red box in the upper right comer of the simulation as shown below. The
instructions below describe how to change them for your experimentation.
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Simulation Interface

CretDeign, Facto Se.ns Was.Vwr

Changing the Ball:
Place your mouse cursor over the ball in the simulation and wait until you see the dialog box as shown: "Control Factor Type of Ball.

At this point, double-click on the ball to switch between the balls

Simulation Inerface

Changing the Number of Rubber Bands:
Place your mouse cursor over the rubber bands in the simulation and wait until you see the dialog box. "Control Factor: No. of Rubber
Bands."

At this point, double-click on the rubber bands to change between 1 and 2.
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http://thesis.spinutech.com/model- help aspx

Simulation Intrbce

Cnel fto rt of Uubb ".d

Changing the Launch Angle:
Place your mouse cursor over the yellow pin at the base of the catapult and wait until you see the dialog box "Control Factor: Launch
Angle."

At this point, drag the pin around the pivot of the catapult. The catapult arm will move as this pin changes value.

Simulation Intrface

|1 4 v

U

Changing the Pullback Angle:

Place your mouse cursor anywhere over the arm of the catapult and wait until you see the dialog box: "Control Factor: Pullback Angle."

At this point, drag the arm back from its launch position to whatever pullback is desired. Note a green area will highlight showing the
pullback region as compared to the launch angle.

Note: you must have at least a 21* oullback angle in order to run the simulation.
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Simulation Interface
-- -,V .

Simulation Interface

TyAi0 soe

I,,' -

RUNNING THE SIMULATION:

Once you have set-up your design factors, the "Run Simulation" button found at the bottom of the simulation will be highlighted in blue
If it is not, most likely you have not set-up an appropriate pullback angle. Click this button to run the simulation You will see a
countdown timer and then the catapult will launch

Upon completing the simulation. a box will appear at the landing location of the ball This box will indicate the distance the ball traveled.
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Simulation Intice

U

Simulation Interbace

indicaed landing posidon of bael

RESETTING THE SIMULATION TO RUN AGAIN

Once the simulation is complete, the "Reset" button found at the bottom of the simulation will be highlighted in blue. Click on this button
to return to the catapult to set-up a new experiment. The catapult will be in the same configuration as was previously run with the
exception of the pullback angle.

Simulation Interfce

U
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8.3.2 SCREENS FOR REFERENCE TEST CASE WITH GOOD MODEL

The following screenshots show those related to the reference test case with a good model. The other test

cases have a similar look, but information on each page relative to the case was changed as what was

described in section S.2.

8.3.2.1 Experiment Overview Page

http://thesis.spinutech.com/description.aspx

UNDERSTANDING MODEL CREDIBILITY FACTORS
GENEVIEVE FLANAGAN, FELLOW, MIT SYSTEM DESIGN AND MANAGEMENT
PROGRAM
DESCRIPTION OF THE TEST
OBJECTIVE:
Your company is releasing a catapult to the market that will be used for
educational purposes A picture of the proposed product to release is shown to
the right. You are responsible for approving the design before releasing the
product. Your team was on track to release the product until there were some
last-minute changes in requirements. You now have to decide whether to
approve the design for release, or delay the product launch to either redesign
the catapult or wait until prototypes have arrived to test the new catapult desig
based on the new specifications

CONSEQUENCES OF THE DECISION:
The marketing team has found that there is a competitor to this potential
business and there are large contracts with universities for the first to market. The marketing team estimates that besides the expected
sales, there is a potential for an additional $1,000,000 for being first to market. If you choose to proceed now, you will beat the
competitors to market

However, engineering has warned that if a catapult is delivered to market without meeting its primary performance requirement, there is
a potential to lose $3,000,000 in warranty.

Should you choose to delay the product launch, there is the lost opportunity of the $1,000,000 early contracts and an additional
$500,000 in redesign efforts and retesting. However, if the design is at risk of being insufficient, then there is a potential savings of
$3,000,000 from the warranty by delaying the product launch

SOURCE OF THE MODEL:
Fortunately, a model of the catapult exists to use for scenario testing. The model was developed by a PhD student In the Mechanical
Engineering department at MIT. This model uses principles of Physics to estimate the landing position of the ball, The PhD student
has modified the model to meet the new design specifications. You can use this model to help you decide whether to release the
product or delay launch.
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DESIGN PROBLEM:

The original prototypes tested used a SMOOTH ball and 2 rubber V

bonds. Due to cost reductions, the ball and number of rubber bands
has been changed. You must now release a catapult that uses a
PERFORATED ball and only I rubber bend.

In addition, a constraint has been applied such that the launch anale

plus Pullback anale inuet not exceed 90 deoroes. Customer testing
found interference it the arm of the catapult were to pass 90 degrees
during pullback. (For example, if you were to set a 60 degree launch

angle, you could pullback only 30 degrees for a total of 90 degrees) -

Due to time constraints, the remaining factors of the catapult such as
the material of the arm, installation set-up, etc are not proposed to change as these are long lead-time items to acquire and verify.

The primary performance metric for the catapult Is unchanged. The catapult must be able to get a ball into a cup located 4 feet (48
inches) from the catapult as shown in the graphic below. it is understood by the design team, that as long as the catapult can chi
at least 48 inches In dIstance it can be set-up by the customer to land in the cup.

VALIDATION DATA:
A series of tests were performed on the actual prototype catapults to create validation data for the model. This validation data will be
available to you when you access the model. Although this data does not give results based on the new requirements, you can use this

validation data to help you understand if the model is calibrated well and an appropriate tool to make your design decision.

TIME LIMIT:
Given the time constraints, you will have 15 mint to make a decision. In that time, you can do the following:

" Download the model from the following page

" Check the model against the validation data

" Run the new design scenarios with the model

Note that after this period of time, the page with the validation data will go away. Pleas. be sure to enter a decision as soon as this
occurA -or earlier f you are finished with your evaluation.

QUICK MODEL USER GUIDE
Please click on the picture below to see a more detailed description it needed. It will open In a new window.

Simulation Intera

Drag back to set
thePullbackAngle Double-dlickhere

---- -- - -to change the ball

Dou le-Iher tochange
tenumberofrubber band1s

Drag to set the aed

Launch Angle
'Ihisbox shows thecrrn

-- state of all design factors
Clickhere to Run the Simulation .
(21 deg Pullback required)

Sa each run

(Go to Experiment )

Copyight 2012
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8.3.2.2 Model with Validation Data Page

http://thesis.spinutech.comnmodel.aspx

UNDERSTANDING MODEL CREDIBILITY FACTORS
GENEVIEVE FLANAGAN, FELLOW, MIT SYSTEM DESIGN AND MANAGEMENT

PROGRAM
MODEL
You have a otal of 15 minut and 0 seconds to download tie model and view the validation data andor help text (if needed). Once the timer is complele you will be directed to the

decision page or you can click the button below to be dinected now

Clk the link below to download the nodel.

counidown:

14
Minutes

59
Seconds

DESIGN PROBLEM:
The following table summarizes the changes in requirements from the early prototypes to the design intended for release.

Requiremant origitnal Requiremnt NOW Reimn
Sell smooth Perdorated

Rubber Bnds 2 1

Launch + Pullback unconstrained les than or equal to O degrees

Pereonnanca 4W" Distance 4' Distance

VALIDATION DATA:
The Validation data for the early prototype is shown below. For each run, the catapult was launched 3 times and the average distance is
shown in the following charts and also in a table.

Note this data was performed with the SMOOTH bll and2 Rubber Bands

Launch Angle: 0 degrees Launch Angle: 15 degrees Launch Angle: 30 degrees
100 150 -150 -

7 1125 125
75l100 100

050 ~75 ~75
.9 5 50

25 25 2

20 40 60 80 100 20 40 60 80 100 20 3040 50 60 70 80 90
Pullback Angle (degemas] Pullback Angle (degrees] Pullback Angle [degrees]
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Launch Angle: 45 degrees
. 175

150

125

S100

C 75

50

25

> 0
20 30 40 50 0 70 80 90

Pullback Angle [degrees)

Launch Angle: 60 degrees
.- 200 -

150

100

50

>0
20 30 40 50 60 70 80 90

Pullback Angle [degrees]

Experiment Launch Angle Pullbck Angle Distance Taveled

S 0dgree.) (dogsree) (Inche)

1 0 30 20.7

2 0 45 26.5

3 0 s0 30.8

4 0 75 36.0

5 0 .0 508

6 15 30 34.3

7 15 45 41.3

a 15 60 54.3

9 15 75 78.7

10 15 90 99.8

11 30 30 45.5

12 30 45 86.5

13 30 60 92.8

14 30 75 121.0

1 45 30 53.8

16 45 45 79.2

17 45 60 118.0

1 80 30 51,2

19 80 45 78.7

20 80 60 114.7

QUICK MODEL USER GUIDE
Please click on the picture below to see a more detailed description if needed. It will open in a new window.

Simulation Interface

Drag back to set
thePullbackAngle Double-ctlckhere

to change the bat

Double-clickheretochange
thenumberofrubberbands

Dregtesetthe
LaunchAngle

hbis box shows the current
state of all design factors

Clickhere to Run the Simulation
(>21 egPullbackrequired)

Click here toreset
after each run
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8.3.2.3 Decision Page

http://thesis.spinutech.com/decision.aspx

UNDERSTANDING MODEL CREDIBILITY FACTORS
GENEVIEVE FLANAGAN, FELLOW, MIT SYSTEM DESIGN AND MANAGEMENT

PROGRAM
DECISION
Given the new requiretents and constraints, can the catapu st meet is original requirements?

o Proceed with Pmduct Launch: use the curent design poposa to meet reqirenant

o Delay Product Launch: wait ior additional teting wi the proposed desgn with potential tor redesign as needed

RECALL THE FOLLOWING:
" The model used here was a physics-based model developed by a PhD student in the Mechanical Engineering department at MIT

" The following table summarizes the changes in requirements from the early prototypes to the design intended for release:

Requirement Orinl Requirm NO ee

SON Smooth Perlorated

Rubber BWans 2 1

Launch + Puliack unconstrained lesa thaen or qual to 90 degrees

Perfornance 4s Distance 48- Dietance

The following table summarizes the consequences of this decision:

catgpu Daslgn t 0000 Capu Degns s BAD

Launch $1,000,000 pole"nel for securing * 0rt-
$3.000,000 Iost in wrraty costs

Prdu wg nattist contract

Lot oppotunity tor $1,000.000i in howt Savd rm3ODO.0O inwatow

Deycontracts MES
Launch Additione$500000 in testing eions to Addkion $50,000 in mdegn

verity desig I nd testing efforts
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8.4 APPENDIX D: DATA FROM EXPERIMENT

ID Model Quality Factor Tested Decision Confdence onfidence Valiat of Capability o Model Predictingi e
(Numenc) (binned)

1 Good Purpose Wait Low 3 No 4 -Good Good
2 Good Purpose Wait Low 1 No 1 - Poor: +/- 36 inches or more Bad
3 Good Time Yes High 4 Yes 4 -Good Good
4 Bad Uncertainty Wait Low 1 Yes 3 - Neutral Bad
5 Bad Purpose Wait Low 3 Yes 3 - Neutral Bad
6 Bad Source Wait Low 3 Yes 3 - Neutral Bad
7 Bad Uncertainty Wait Low 3 No 0 - Not acceptable Bad
8 Bad Consequences Yes Low 3 No 3 - Neutral Bad
9 Bad Time Wait Low 2 Yes 2 - Not Good Bad
10 Good Time Wait * No 3 - Neutral Bad
11 Good Consequences Yes High 4 Yes 4 - Good Good
12 Good Purpose Yes High 4 No 4 - Good Good
13 Good Purpose Wait High 4 Yes 4 - Good Good
14 Bad Consequences Yes High 4 Yes 4 - Good Good
15 Bad Purpose Yes Hith 4 No 4 - Good Good
16 Good Reference Wait *
17 Good Uncertainty Wait High 4 No 0 - Not acceptable Bad
18 Good Time Yes *
19 Good Time Wait High 4 No 4 - Good Good
20 Bad Consequences Wait High 5 Yes 4 - Good Good
21 Good Time Wait Low 3 No 3 - Neutral Bad
22 Good Source Wait High 4 Yes 2 - Not Good Bad
23 Good Uncertainty Wait High 4 No 3 - Neutral Bad
24 Good Consequences Wait Low 1 No 1 - Poor: 4/- 36 inches or more Bad
25 Bad Consequences Wait * No 0 - Not acceptable Bad
26 Good Uncertainty Wait Low 1 No 3 - Neutral Bad
27 Good Purpose Wait Low 3 No 3 - Neutral Bad
28 Bad Source Yes High 5 Yes 4 - Good Good
29 Bad Uncertainty Yes *
30 Bad Consequences Yes High 4 No 4 - Good Good
31 Bad Time Wait Low 1 Yes 0 - Not acceptable Bad
32 Bad Purpose Wait Low 1 Yes 4 - Good Good
33 Good Purpose Yes Low 1 Yes 2 - Not Good Bad
34 Bad Uncertainty Yes * Yes 3 - Neutral Bad
35 Good Source Wait Low 1 Yes 2 - Not Good Bad
36 Bad Uncertainty Wait *
37 Bad Source Yes *
38 Bad Source Yes High 4 Yes 4 - Good Good
39 Bad Reference Yes High 5 Yes 5 - Excellent: +/- 2 inches or less Good
40 Bad Consequences Yes High 5 No 4 - Good Good
41 Good Time Wait Low 3 Yes 3 - Neutral Bad
42 Good Time Yes Low 3 Yes 2 - Not Good Bad
43 Good Consequences Yes High 5 Yes 4 - Good Good
44 Good Reference Yes High 4 No 4 - Good Good
45 Bad Time Yes High 5 Yes 3 -Neutral Bad
46 Good Reference Yes *
47 Good Consequences Wait Low 2 Yes 3 -Neutral Bad
48 Bad Reference Yes High 5 Yes 4 - Good Good
49 Good Purpose Wait Low 1 No 3 - Neutral Bad
50 Good Source Wait Low 1 No 3 -Neutral Bad
51 Good Uncertainty Wait
52 Good Source Wait High 4 Yes 3 - Neutral Bad
53 Bad Source Wait Low 1 Yes 3 - Neutral Bad
54 Good Time Wait Low 2 No 3 -Neutral Bad
55 Bad Reference Wait High 4 No 5 -Excellent: +/- 2 inches or less Good
56 Bad Reference Yes High 4 Yes 3 - Neutral Bad
57 Bad Time Wait Low 3 No 3 - Neutral Bad
58 Bad Time Yes Low 3 Yes 2 -Not Good Bad
59 Bad Purpose Yes
60 Bad Consequences Yes
61 Good Reference Wait Low 3 Yes 3 - Neutral Bad
62 Good Purpose Wait High 4 No 3-Neutral Bad
63 Good Uncertainty Yes
64 Good Consequences Wait Low 1 Yes 0 - Not acceptable Bad
65 Good Reference Yes Low 3 Yes 3 - Neutral Bad
66 Good Source Wait High1 5 No 4 - Good Good
67 Bad Reference Wait Low 1 Yes 2 - Not Good Bad
68 Bad Consequences Wait
69 Good Consequences Yes
70 Good Time Yes Low 3 No 3 - Neutral Bad
71 Bad Time Wait Low 3 No 4 -Good Good
72 Good Source Yes
73 Bad Consequences Wait High 4 No 4 -Good Good
74 Bad Purpose Wait High 5 No 3 - Neutral Bad
75 Bad Uncertainty Wait Low 1 Yes 4 -Good Good
76 Good Uncertainty Wait Low 1 Yes 0 - Not acceptable Bad
77 Good Reference Wait High 4 Yes 4 -Good Good
78 Good Reference Yes Hilh 5 Yes 4 -Good Good
79 Good Time Yes *_Yes 4 -Good Good
80 Bad Time Wait *
81 Bad Time Wait High 4 No 4 -Good Good
82 Bad Uncertainty Wait High 4 Yes 4 - Good Good
83 Bad Consequences Yes Low 3 Yes 3 - Neutral Bad
84 Good Reference Yes High 4 Yes 4 - Good Good
85 Good Reference Yes High 4 No 4 - Good Good
86 Good Source Wait Low 1 No 3 - Neutral Bad
87 Good Source Yes High 4 Yes 2 - Not Good Bad
88 Good Source Wait HghA 4 Yes 4 - Good Good
89 Good Uncertainty Yes High 4 Yes 3 - Neutral Bad
90 Good Source Wait Low 1 Yes
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Moe oe mato aaiiy of MoePrdcig Capability of Model
ID Model Quality Factor Tested Decision Condece Confidence Valiat on Capabltyof Model Predicting Distace

(Numeric) (binned)

91 Good Reference Yes High 5 Yes 5 - Excellent +/- 2 inches or less Good
92 Bad Consequences Wait Low I Yes 3 - Neutral Bad
93 Bad Time Yes High 4 Yes 4 - Good Good
94 Good Time Yes Low 3 Yes 3 - Neutral Bad
95 Bad Time Wait High 4 Yes 3 - Neutral Bad
96 Bad Time Wait Low 3 Yes 2 - Not Good Bad
97 Good Reference Yes High 5 No 4 - Good Good
98 Good Consequences Yes Low 3 Yes 3 - Neutral Bad
99 Bad Reference Yes I
100 Bad Uncertainty Yes Low 3 Yes 3 - Neutral Bad
101 Bad Purpose Yes Low 1 Yes 4 - Good Good
102 Bad Purpose Yes High 5 No 4 - Good Good
103 Good Reference Yes High 5 No 3 - Neutral Bad
104 Good Uncertainty Yes *
105 Bad Purpose Wait Low 3 No 3 - Neutral Bad
106 Good Time Wait *
107 Bad Purpose Yes Low 3 No 3 - Neutral Bad
108 Bad Consequences Wait Low 3 Yes 3 - Neutral Bad
109 Bad Time Yes
110 Good Consequences Wait High 4 No 3 - Neutral Bad
111 Bad Source Yes High 4 No 3 - Neutral Bad
112 Good Source Wait Low 1 No 3 - Neutral Bad
113 Good Consequences Wait High 5 Yes 4 - Good Good
114 Bad Time Yes
115 Bad Purpose Wait Hg 4 Yes 4 - Good Good
116 Good Time Wait *
117 Bad Time Yes Low 3 Yes 3 - Neutral Bad
118 Good Consequences Yes High 4 No 4 - Good Good
119 Bad Source Yes Low 3 No 3 - Neutral Bad
120 Good Time Walt Low 2 Yes 3 - Neutral Bad
121 Bad Uncertainty Wait High 4 No 3 - Neutral Bad
122 Good Reference Yes High 4 Yes 3 - Neutral Bad
123 Bad Reference Wait Low 1 Yes 3 - Neutral Bad
124 Good Consequences Wait Low 3 Yes 3 - Neutral Bad
125 Bad Reference Yes High 5 Yes 4 -Good Good
126 Good Consequences Wait Low 2 No 3 - Neutral Bad
127 Good Reference Wait Low 2 Yes 2 - Not Good Bad
128 Good Time Wait Low 1 Yes 3 - Neutral Bad
129 Bad Reference Yes High 4 Yes 3 - Neutral Bad
130 Bad Purpose Wait Low 3 No 5 - Excellent: +/- 2 inches or less Good
131 Bad Source Wait Low 1 Yes I - Poor: +/- 36 inches or more Bad
132 Good Consequences Yes High 4 Yes 4 - Good Good
133 Good Uncertainty Yes Low 3 No 3 - Neutral Bad
134 Good Uncertainty Wait High 4 Yes 4 - Good Good
135 Bad Uncertainty Yes High 4 Yes
136 Bad Purpose Yes Low 2 Yes 2 - Not Good Bad
137 Bad Source Yes *
138 Good Reference Yes High 5 Yes
139 Bad Time Yes *

140 Bad Purpose Wait Low 2 No
141 Bad Uncertainty Yes High 5 Yes 4 - Good Good
142 Bad Purpose Wait Low 2 Yes 3 - Neutral Bad
143 Good Source Wait Low 1 Yes 2 - Not Good Bad
144 Good Source Yes * Yes 4 - Good Good
145 Good Time Yes High 4 Yes 3 - Neutral Bad
146 Good Time Yes Low 3 Yes 2 - Not Good Bad
147 Bad Reference Yes High 4 Yes 4 - Good Good
148 Good Source Walt High 4 Yes 3 - Neutral Bad
149 Bad Consequences Wait High 4 Yes 3 - Neutral Bad
150 Bad Purpose Yes Low 1 Yes 3 - Neutral Bad
151 Good Uncertainty Wait *
152 Bad Reference Yes High 5 Yes 5 - Excellent: +/- 2 inches or less Good
153 Good Purpose Wait Low 3 Yes 2 - Not Good Bad
154 Good Consequences Wait Low 3 No
155 Good Consequences Wait Low 1 Yes 2 - Not Good Bad
156 Bad Reference Walt High 5 Yes S - Excellent: +/- 2 inches or less Good
157 Bad Time Yes Low 3 Yes 4 - Good Good
158 Bad Reference Wait Low 2 No 4 - Good Good
159 Bad Uncertainty Wait Low I Yes 2 - Not Good Bad
160 Bad Source Yes High 4 Yes 4 - Good Good
161 Bad Uncertainty Yes Low 3 No 3 - Neutral Bad
162 Good Reference Yes Low 3 Yes 4 - Good Good
163 Bad Source Walt Low 2 No 3 - Neutral Bad
164 Good Source Wait Low 2 Yes 4 - Good Good
165 Good Purpose Wait High 4 Yes 4 - Good Good
166 Bad Source Walt Low 1 Yes 3 - Neutral Bad
167 Bad Time Yes High 5 No 4 - Good Good
168 Bad Source Wait Low 2 Yes I - Poor: +/- 36 inches or more Bad
169 Bad Reference Yes High 4 No 2 - Not Good Bad
170 Good Consequences Yes High 5 Yes 4 - Good Good
171 Good Time Walt Low 2 Yes 3 - Neutral Bad
172 Good Purpose Yes High 4 Yes 4 - Good Good
173 Good Uncertainty Yes *
174 Bad Consequences Yes High 5 No 4 - Good Good
17S Bad Time Yes High 4 Yes 4 - Good Good
176 Good Uncertainty Walt High 4 Yes 4 - Good Good
177 Good Uncertainty Yes High 5 Yes 4 - Good Good
178 Bad Reference Walt Low 1 Yes 1 - Poor: +/- 36 inches or more Bad
179 Good Reference Wait Low 3 No 4 - Good Good
180 Good Reference Yes High 1 4 Yes 4 - Good Good
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Mode l Impact of Capability of Model Prediting CabityoMde
ID Model Quality Factor Tested Decision ode Confidence Vat a t pby e dcConfidence (uei)Validation Data Distance Preicinged)ac(Numeric) (binned)

181 Good Source Wait High 4 No 0 - Not acceptable Bad
182 Good Uncertainty Wait High 5 Yes 4 -Good Good
183 Good Purpose Wait Low I Yes 1 - Poor: +/- 36 inches or more Bad
184 Bad Consequences Wait Low I Yes 0 - Not acceptable Bad
185 Good Purpose Wait Low I No 4 -Good Good
186 Good Consequences Wait Low 3 Yes 3 - Neutral Bad
187 Bad Purpose Wait Low 1 No 5 - Excellent: +/- 2 inches or less Good
188 Bad Consequences Wait High 5 No 3 - Neutral Bad
189 Good Purpose Yes High 5 No 4 -Good Good
190 Bad Source Yes Low 3 Yes 2 - Not Good Bad
191 Bad Consequences Yes Low 3 Yes 4 -Good Good
192 Bad Purpose Wait Low 3 No 4 -Good Good
193 Bad Consequences Wait Low I Yes 2 - Not Good Bad
194 Good Reference Yes *
195 Bad Consequences Wait Low 1 Yes 1 - Poor: +/- 36 inches or more Bad
196 Good Purpose Wait Low 1 No 2 - Not Good Bad
197 Bad Uncertainty Wait High 5 No 4 - Good Good
198 Good Uncertainty Yes High 4 Yes 3 - Neutral Bad
199 Good Uncertainty Wait Low 2 No 3 - Neutral Bad
200 Bad Source Yes High 4 No 4 - Good Good
201 Bad Reference Yes Low 3 Yes 3 - Neutral Bad
202 Bad Source Yes High 5 Yes 4 - Good Good
203 Bad Uncertainty Yes High 5 Yes 4 - Good Good
204 Good Time Yes Low 1 No 0 - Not acceptable Bad
205 Good Source Yes High 4 No 3 - Neutral Bad
206 Bad Consequences Yes High 4 No 5 - Excellent: +/- 2 inches or less Good
207 Good Uncertainty Wait Low 2 Yes 2 - Not Good Bad
208 Bad Reference Wait High 5 Yes 4 - Good Good
209 Good Uncertainty Yes *
210 Bad Reference Wait *
211 Good Reference Wait Low 3 Yes 2 - Not Good Bad
212 Good Source Wait High 5 No 4 - Good Good
213 Bad Reference Wait *
214 Good Source Yes High 4 No 4 - Good Good
215 Good Reference Wait High 5 Yes 5 - Excellent: +/.- 2 inches or less Good
216 Bad Purpose Yes *
217 Bad Reference Yes High 5 Yes 4 - Good Good
218 Good Time Yes High 5 Yes 4 - Good Good
219 Bad Time Wait Low 3 No 3 - Neutral Bad
220 Good Time Wait Low 1 Yes 3 - Neutral Bad
221 Good Source Wait Low 1 No 0 - Not acceptable Bad
222 Bad Source Yes *
223 Good Consequences Yes High 5 Yes 4 - Good Good
224 Bad Consequences Wait High 4 Yes 0 - Not acceptable Bad
225 Bad Source Yes Low 3 Yes 3 - Neutral Bad
226 Bad Time Wait Low 1 Yes 2 - Not Good Bad
227 Bad Uncertainty Yes Hfigh 4 Yes 5 - Excellent: +/- 2 inches or less Good
228 Bad Time Wait High 4 No 3 - Neutral Bad
229 Bad Purpose Yes High 5 No 4 - Good Good
230 Bad Reference Yes High 5 No 3 - Neutral Bad
231 Bad Uncertainty Wait *
232 Bad Source Wait Low 1 No 4 - Good Good
233 Bad Consequences Wait Low 1 Yes 0 - Not acceptable Bad
234 Bad Time Yes *
235 Good Purpose Wait High 4 Yes 4 - Good Good
236 Bad Source Yes High 4 Yes 4 - Good Good
237 Good Source Wait Low 2 Yes 2 -Not Good Bad
238 Bad Consequences Yes High 4 Yes 4 - Good Good
239 Bad Uncertainty Wait High 5 Yes 3 -Neutral Bad
240 Good Consequences Yes High 5 No 3 -Neutral Bad
241 Bad Purpose Yes Low 3 No 3 -Neutral Bad
242 Good Uncertainty Yes High 5 No 3 -Neutral Bad
243 Good Purpose Wait High 4 Yes
244 Bad Source Wait Low 2 No 2 -Not Good Bad
245 Good Purpose Waft Low 1 Yes 4 - Good Good
246 Good Reference Yes High 5 Yes 4 - Good Good
247 Good Reference Wait Low 2 Yes 3 -Neutral Bad
248 Good Purpose Wait Low 3 No 3 -Neutral Bad
249 Good Source Yes High 4 No 4 - Good Good
250 Bad Purpose Yes
251 Bad Reference Wait Low 3 Yes 3 - Neutral Bad
252 Good Purpose Yes High 4 Yes 4-Good Good
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Cap t Dtan Predicting capability of Catapult Wasthereenough Influenced by Author Importance of Source
ID Capability of Catapulte Predicting Distance time? Consequences po urce Author Author

(binned) (binned)

1 3 - Neutral Bad Yes Yes 3 - I considered It Not Important

2 1 Poor: +/- 36 inches or more Bad No 2 -Little importance Not Important

3 2 - Not Good Bad No Yes 3 - I considered It Not Important

4 2 - Not Good Bad No Yes 3 - I considered it Not Important

5 3 - Neutral Bad Yes Yes 2 - Little importance Not Important

6 3 - Neutral Bad Yes 4 - Somewhat important Important

7 3 - Neutral Bad No Yes 1 - Not Important Not Important
8 3 - Neutral Bad Yes No 3 - I considered It Not Important

9 4 - Good Good Yes Yes 3 - I considered It Not Important
10 4 - Good Good No Yes 3 - I considered It Not Important

11 4 - Good Good Yes Yes 2 - Little importance Not Important

12 3 - Neutral Bad Yes Yes 1 - Not Important Not Important
13 3 - Neutral Bad No Yes 2 - Little importance Not Important

14 3 - Neutral Bad Yes 1 - Not Important Not important

15 5 - Excellent: +/- 2 inches or less Good Yes Yes 4 - Somewhat important Important

16
17 3 - Neutral Bad Yes Yes 4 - Somewhat important Important

19 3 - Neutral Bad Yes Yes 2 - Little importance Not Important

20 4 -Good Good Yes Yes 3 - I considered It Not Important

21 3 - Neutral Bad No Yes 2 - Little importance Not Important

22 2 - Not Good Bad Yes Yes 2 - Little importance Not Important
23 3 - Neutral Bad Yes No 3 - I considered It Not Important
24 3 - Neutral Bad Yes Yes 2 - Little importance Not Important
25 0 - Not acceptable Bad Yes No 1 - Not Important Not Important

26 3 - Neutral Bad Yes Yes 5 - Very Important Important
27 4 - Good Good Yes Yes 5 - Very Important Important

28 3 - Neutral Bad Yes Yes 3 - I considered It Not Important
29
30 4 - Good Good No Yes 4 - Somewhat important Important

31 1 - Poor: +/- 36 inches or more Bad Yes 2 - Little importance Not Important
32 3 - Neutral Bad Yes Yes 2 - Little importance Not Important

33 5 - Excellent: +/- 2 inches or less Good Yes No 3 - I considered It Not Important
34 3 -Neutral Bad Yes Yes 2 - Little importance Not Important

35 2 - Not Good Bad No 4 - Somewhat important Important
36
37
38 3 - Neutral Bad Yes No 3 - I considered It Not Important

39 Yes Yes 4 - Somewhat important Important
40 5 - Excellent: +/- 2 inches or less Good Yes No 4 - Somewhat important Important

41 5 - Excellent: +/- 2 inches or less Good Yes No 4 - Somewhat important Important
42 4 -Good Good No Yes 2 - Little importance Not Important
43 2 - Not Good Bad No 4 - Somewhat important Important
44 4 -Good Good Yes Yes S -Very Important Important
4S 4 -Good Good No Yes 1 - Not important Not Important

46
47 5 - Excellent: +/- 2 inches or less Good No No 3 - I considered It Not Important

48 4 - Good Good Yes Yes 5 -Very Important Important
49 4 - Good Good Yes Yes 1 - Not Important Not Important

50 3 - Neutral Bad Yes 1 - Not Important Not Important

51
52 4 - Good Good Yes Yes 2 - Little importance Not Important
53 3 - Neutral Bad Yes Yes 5 - Very Important Important

54 4 - Good Good No Yes 3 - I considered It Not Important
55 4 - Good Good No Yes 1 - Not Important Not Important
56 4 - Good Good Yes Yes 4 -Somewhat important Important
57 4 - Good Good No Yes 5 - Very Important Important

58 2 - Not Good Had No Yes 3 - I considered It Not Important
59
60
61 5 - Excellent: +/- 2 inches or less Good Yes Yes 3 -I considered It Not Important
62 4 - Good Good Yes 4 - Somewhat important Important
63
64 2 - Not Good Bad Yes Yes 1 -Not Important Not Important
65 4 -Good Good No Yes 1 - Not Important Not Important
66 4 - Good Good Yes No 4 - Somewhat important Important
67 3 - Neutral Bad No No 2 - Little importance Not Important
68
69
70 4 - Good Good No No 4 - Somewhat important Important
71 3 - Neutral Bad No Yes 4 - Somewhat important Important
72
73 3 - Neutral Bad Yes No 2 - Little importance Not Important
74 4 - Good Good Yes Yes 3 - I considered It Not Important
75 4 - Good Good Yes Yes 5 -Very Important Important
76 0 - Not acceptable Bad Yes Yes 3 - I considered It Not Important
77 4 - Good Good Yes Yes 5 -Very Important Important
78 4 - Good Good Yes No 2 - Little importance Not Important
79 4 - Good Good No Yes 3 - I considered It Not Important
80 _ _ _ _ _ _ _ _ _

81 4 - Good Good No Yes S - Very Important Important
82 3 - Neutral Bad Yes Yes 4 -Somewhat important Important
83 4 - Good Good Yes Yes 1 - Not Important Not Important
84 4 - Good Good Yes Yes 5 - Very important Important
85 5 - Excellent: +/- 2 Inches or less Good Yes No 4 -Somewhat important Important
86 4 -Good Good Yes Yes 4 - Somewhat important Important
87 5 - Excellent: +/- 2 inches or less Good No Yes 3 - I considered It Not Important
88 4 -Good Good Yes Yes 4 - Somewhat important Important
89 3 - Neutral Bad Yes No 3 - I considered It Not Important
90 3 - Neutral Bad Yes Yes 5 - Very Important Important
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Capability of Catapult Predicting Capability of Catapult ienough Influencedby Importance of Source
ID C i tap e Predicting Distance Wasthere e neuence Importance ofSource Author Author

Distance (binned) time? Consequences (binned)

91 5 -Excellent: +/- 2 inches or less Good Yes Yes 5 - Very important important

92 3 - Neutral Bad No No 5 - Very Important Important
93 4 - Good Good Yes Yes 1 - Not Important Not Important
94 2 - Not Good Bad No No 2 - Little importance Not Important

95 4 - Good Good No Yes 2 - Little importance Not Important
96 4 -Good Good No Yes 3 - I considered It Not Important

97 5 - Excellent: +/- 2 inches or less Good No No 1 - Not Important Not Important
98 2 - Not Good Bad No Yes 2 - Little importance Not Important

99
100 4 - Good Good Yes No 2 - Little importance Not Important

101 4 - Good Good No 3 - I considered it Not Important
102 4 - Good Good Yes Yes 2 - Little Importance Not Important

103 2 - Not Good Bad No No 4 - Somewhat important Important
104
105 3 - Neutral Bad Yes Yes I - Not important Not Important
106
107 4 - Good Good Yes Yes 3 - I considered It Not Important
108 3 - Neutral Bad Yes No 3 - I considered It Not Important
109
110 3 - Neutral Bad No No 1 - Not Important Not Important

111 4 - Good Good No No 4 - Somewhat important Important
112 4 - Good Good Yes Yes 5 - Very Important Important
113 4 -Good Good No No 3 - I considered It Not Important
114
115 5 - Excellent: +/- 2 inches or less Good No Yes 4 - Somewhat important Important
116
117 4 -Good Good No Yes 3 -I considered it Not Important

118 5 -Excellent: +/- 2 inches or less Good Yes No 3 - I considered It Not Important
119 4 -Good Good Yes No 2 - Little importance Not Important
120 4 -Good Good No Yes 2 - Little importance Not Important
121 3 - Neutral Bad No Yes 4 -Somewhat important important
122 5 -Excellent: +/- 2 Inches or less Good Yes Yes 4 - Somewhat important Important
123 3 - Neutral Bad No Yes 2 - Little importance Not Important
124 4 -Good Good Yes No 2 - Little importance Not Important

125 3. Neutral Bad Yes 5 - Very Important Important
126 3 - Neutral Bad Yes Yes 2 - Little importance Not Important
127 5 - Excellent: +/- 2 inches or less Good Yes Yes 3 - I considered It Not Important
128 5 - Excellent:.+- 2 inches or less Good No No 1 - Not Important Not Important
129 5 - Excellent: +/-2 inches or less Good Yes Yes I - Not important Not Important
130 5 - Excellent: +/- 2 inches or less Good Yes Yes 1 -Not Important Not Important
131 4 - Good Good Yes Yes 2 - Little importance Not Important
132 2 - Not Good Bad Yes No 1 - Not Important Not Important

133 2 - Not Good Bad Yes No 3 - I considered it Not Important
134 4 - Good Good Yes 4 - Somewhat important Important
135 4 - Good Good No Yes 4 - Somewhat important important

136 3 -Neutral Bad Yes Yes 2 -Little importance Not Important
137
138 Yes Yes 4 - Somewhat important important
139
140 2 -Not Good Bad Yes No 3 - I considered It Not Important
141 4 - Good Good Yes Yes 5 - Very Important Important
142 1 - Poor: +/- 36 inches or more Bad No Yes 3 - I considered It Not Important
143 0 - Not acceptable Bad No No 3 - I considered it Not Important
144 5 - Excellent: +/- 2 inches or less Good Yes No 3 - I considered it Not Important
145 2 - Not Good Bad Yes Yes 5 - Very Important Important
146 2 - Not Good Bad Yes No 1 - Not Important Not Important
147 4 - Good Good Yes Yes 5 - Very important Important

148 4 -Good Good No Yes 4 - Somewhat important Important
149 2 - Not Good Bad Yes Yes 2 - Little importance Not Important
150 4 -Good Good No No 2 - Little importance Not Important

151
152 4 - Good Good Yes Yes 5 - Very Important important
153 5 - Excellent: +/- 2 Inches or less Good No Yes 4 -Somewhat Important important
154 4 -Good Good No No 4 -Somewhat important Important

155 3 - Neutral Bad Yes No I - Not Important Not Important
156 5 - Excellent: +/- 2 inches or less Good Yes 3 - I considered It Not Important
157 3 - Neutral Bad No No 3 - I considered It Not Important
ISO 2 -Not Good Bad Yes Yes 3 - I considered It Not Important
159 4 - Good Good Yes Yes 3 -I considered It Not Important
160 4 - Good Good Yes No 4 - Somewhat important Important
161 4 - Good Good Yes No 5 - Very Important Important
162 3 - Neutral Bad No No 4 - Somewhat important Important
163 4 - Good Good No Yes 4 - Somewhat important Important
164 4 - Good Good No Yes S - Very important Important
165 4 - Good Good Yes Yes 3 - I considered It Not Important
166 4 - Good Good Yes Yes 5 -Very important Important
167 4 - Good Good No No 5 - Very Important Important
168 4 -Good Good Yes Yes 3 - I considered It Not Important
169 4 - Good Good No Yes 3 - I considered It Not Important
170 4 -Good Good No Yes 4 - Somewhat important important
171 4 -Good Good No Yes 2 - Little importance Not Important
172 4 -Good Good No Yes 4 - Somewhat important Important
173
174 4 -Good Good Yes No 3 - I considered It Not Important
175 4 -Good Good Yes Yes 2 - Little Importance Not Important

2 - Not Good Bad No Yes I mportant
ce Not Important
t Not Important
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177 4 - Good Good Yes 2-
178 4-Good Good No Yes 3
179 3 - Neutral Bad Yes Yes 4 -S
180 4 - Good Good Yes No 2-

n1 |

5 - Very Important
I-
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CpbltofCtplPrdcig Capability oCaputImportance of Source
ID apability of tapult Predicting abic ftap Was there enough influenced by Importance of Source Author Author

Distance (binned)sc time? Consequences (binned)(binned) (ind

181 5 - Excellent +/- 2 inches or less Good No Yes 5 - Very Important Important
182 2 - Not Good Bad Yes Yes 2 - Little importance Not Important
183 4 - Good Good Yes Yes 2 - Little importance Not Important
184 4 - Good Good No No 2 - Little importance Not Important
185 5 - Excellent: +/- 2 inches or less Good Yes Yes 3 - I considered it Not Important
186 4 - Good Good Yes No 2 - Little importance Not Important
187 5 - Excellent: +/- 2 inches or less Good No Yes I - Not Important Not Important
188 4 - Good Good No Yes 5 - Very Important Important
189 3 - Neutral Bad No Yes 2 - Little importance Not Important
190 3 - Neutral Bad Yes No 4 -Somewhat important Important
191 4 - Good Good Yes Yes 5 - Very Important Important
192 3 - Neutral Bad No Yes 3 - I considered It Not Important
193 3 - Neutral Bad Yes Yes 1 - Not Important Not Important
194
195 4 - Good Good No Yes 3 - I considered It Not Important
196 3 - Neutral Bad Yes Yes 1 - Not Important Not Important
197 4 - Good Good Yes Yes 2 - Little importance Not Important
198 3 - Neutral Bad Yes Yes 3 - I considered It Not Important
199 4 - Good Good No Yes 2 - Little importance Not Important
200 4 - Good Good No Yes 3 - I considered It Not Important
201 4 - Good Good Yes Yes 4 - Somewhat important Important
202 4 -Good Good Yes No 2 - Little importance Not Important
203 4 -Good Good Yes Yes 4 - Somewhat important Important
204 1 - Poor: +/- 36 inches or more Bad No Yes 1 -Not Important Not Important
205 4 -Good Good Yes Yes 3 - I considered It Not Important
206 3 - Neutral Bad Yes No 3 -I considered It Not Important
207 4 -Good Good Yes Yes 2 - Little importance Not Important
208 4 -Good Good Yes No 5 -Very Important Important
209
210
211 3 - Neutral Bad Yes Yes 2 -Little importance Not Important
212 4 - Good Good No No 2 -Little importance Not Important
213 1
214 4 - Good Good Yes Yes 2 - Little importance Not Important
215 5 - Excellent: +/- 2 inches or less Good Yes Yes 5 -Very Important Important
216
217 4 - Good Good No Yes 3 - I considered It Not Important
218 4 - Good Good Yes Yes 3 - I considered It Not Important
219 4 - Good Good No Yes 3 - I considered It Not Important
220 3 - Neutral Bad Yes Yes 3 - I considered It Not Important
221 3 - Neutral Bad No No 5 - Very Important Important
222
223 4 - Good Good No No 5 - Very Important Important
224 5 - Excellent: +/- 2 inches or less Good No Yes 3 - I considered It Not Important
225 4 -Good Good No Yes 5 - Very Important Important
226 3 - Neutral Bad No No 2 - Little importance Not Important
227 4 - Good Good Yes Yes 1 - Not Important Not Important
228 4 - Good Good Yes Yes 4 -Somewhat important Important
229 4 - Good Good Yes Yes 3 - I considered It Not Important
230 3 - Neutral Bad Yes Yes I - Not Important Not Important
231
232 3 - Neutral Bad Yes No 2 - Little importance Not Important
233 5 - Excellent: +/- 2 inches or less Good Yes Yes 4 - Somewhat important Important
234
235 4 - Good Good Yes Yes 5 - Very important Important
236 4 - Good Good No Yes 3 -I considered It Not Important
237 4 - Good Good Yes Yes 5 - Very Important Important
238 2 - Not Good Bad Yes No I - Not Important Not Important
239 3 - Neutral Bad No No 4 - Somewhat important Important
240 1 - Poor: +/- 36 inches or more Bad Yes No 5 - Very Important Important
241 3 - Neutral Bad Yes Yes 4 - Somewhat important Important
242 3 - Neutral Bad Yes Yes 4 - Somewhat important Important
243 3 - Neutral Bad No No 2 - Little importance Not Important
244 2 - Not Good Bad Yes Yes 5 -Very Important Important
245 4 - Good Good Yes Yes 1 - Not Important Not Important
246 4 - Good Good No Yes 2 - Little Importance Not Important
247 4 - Good Good Yes Yes 1 - Not Important Not Important
248 3 -Neutral Bad No No 1 - Not Important Not Important
249 4 - Good Good Yes Yes 5 -Very Important Important
250
251 4 - Good Good No Yes 3 - I considered It Not Important
252 2 -Not Good Bad No Yes 3 - I considered It Not Important
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Familiarity with Familiarity with Familiarity with
ID Familiarity with Catapults Catapults Models Models Are Models available at Work?

(binned) (binned}

1 3 - I am aware of the concepts Familiar 3 - Occasional Not Familiar No - so we have to build them as needed
2 3 - I am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
3 1 - Minimal Not Familar 3 - Occasional Not Familiar Yes
4 2 - I am aware of the concepts, but not practiced recently Not Familiar 2 - Minimal Not Familiar No - so we have to build them as needed
S I - Minimal Not Familiar I - No experience Not Familiar Yes
6 4 - I am familiar with the concepts and I use them often Familiar 4 - Often Familiar Yes
7 3 - I am aware of the concepts Familiar 2 - Minimal Not Familiar Yes
8 2 - l am aware of the concepts, but not practiced recently Not Familiar 2 - Minimal Not Familiar Yes
9 2 - I am aware of the concepts, but not practiced recently Not Familiar I - No experience Not Familiar No - and we don't use them
10 4 - I am familiar with the concepts and I use them often Familiar 5 - I do it every day Familiar Yes
11 3 - I am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
12 2 - I am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar Yes
13 3 - l am aware of the concepts Familiar 3 - Occasional Not Familiar No - so we have to build them as needed
14 2 - I am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar Yes
15 2 - I am aware of the concepts, but not practiced recently Not Familiar 2 - Minimal Not Familiar Yes
16
17 2 - I am aware of the concepts, but not practiced recently Not Familiar 2 - Minimal Not Familiar Yes
18
19 2 - I am aware of the concepts, but not practiced recently Not Familiar 2 - Minimal Not Familiar Yes
20 3 -I am aware of the concepts Familiar 4 - Often Familiar Yes
21 3 -I am aware of the concepts Familiar 2 - Minimal Not Familiar Yes
22 3 -I am aware of the concepts Familiar 5 - I do it every day Familiar No - so we have to build them as needed
23 3 -I am aware of the concepts Familiar 4 - Often Familiar No - so we have to build them as needed
24 2 - l am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar No - so we have to build them as needed
25 1 - Minimal Not Familiar 1 -No experience Not Familiar No - and we don't use them
26 3 -l am aware of the concepts Familiar 3 -Occasional Not Familiar Yes
27 3 - I am aware of the concepts Familiar 4 - Often Familiar Yes
28 4 - I am familiar with the concepts and I use them often Familiar 3 - Occasional Not Familiar No - so we have to build them as needed
29
30 1 - Minimal Not Familiar 4 - Often Familiar No - so we have to build them as needed
31 1 - Minimal Not Familiar 2 - Minimal Not Familiar No - and we don't use them
32 3 - I am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
33 2 - I am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar Yes
34 2- l am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar No - so we have to build them as needed
35 2 - I am aware of the concepts, but not practiced recently Not Familiar 4 -Often Familiar Yes
36
37
38 4 - I am familiar with the concepts and I use them often Familiar 3 - Occasional Not Familiar Yes
39 4 - I am familiar with the concepts and I use them often Familiar 4 -Often Familiar No - and we don't use them
40 3 - I am aware of the concepts Familiar 2 - Minimal Not Familiar Yes
41 4 -I am familiar with the concepts and I use them often Familiar 4 -Often Familiar No - so we have to build them as needed
42 3 - l am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
43 3 - I am aware of the concepts Familiar 2 -Minimal Not Familiar No - and we don't use them
44 4 -I am familiar with the concepts and I use them often Familiar 5 -I do it every day Familiar No - so we have to build them as needed
45 3 - I am aware of the concepts Familiar 2 - Minimal Not Familiar Yes
46
47 3 - I am aware of the concepts Familiar 4 -Often Familiar Yes
48 3 - I am aware of the concepts Familiar 4 -Often Familiar No - so we have to build them as needed
49 1 - Minimal Not Familiar 4 -Often Familiar Yes
50 3 - I am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
S1
52 3 - lam aware of the concepts Familiar 4 -Often Familiar Yes
53 3 - I am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
54 4 - I am familiar with the concepts and I use them often Familiar 4 -Often Familiar Yes
55 1 - Minimal Not Familiar 2 -Minimal Not Familiar Yes
56 3 - I am aware of the concepts Familiar 1 - No experience Not Familiar No - and we don't use them
57 3 - l am aware of the concepts Familiar 4 - Often Familiar Yes
58 3 - I am aware of the concepts Familiar 4 -Often Familiar Yes
59
60
61 3 - I am aware of the concepts Familiar 4 - Often Familiar Yes
62 3 - I am aware of the concepts Familiar 1 - No experience Not Familiar No - and we don't use them
63
64 3 - I am aware of the concepts Familiar 4 - Often Familiar Yes
65 3 - I am aware of the concepts Familiar 4 - Often Familiar Yes
66 2 - I am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar Yes
67 1 - Minimal Not Familiar 3 - Occasional Not Familiar No - so we have to build them as needed
68
69
70 2 - I am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar Yes
71 4 - I am familiar with the concepts and I use them often Familiar 4 - Often Familiar Yes
72
73 3 - I am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
74 3 - I am aware of the concepts Familiar 4 - Often Familiar Yes
75 3 - I am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
76 3 - I am aware of the concepts Familiar 1 - No experience Not Familiar No -and we don't use them
77 2 - I am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar Yes
78 1 - Minimal Not Familiar 3 - Occasional Not Familiar Yes
79 3 - I am aware of the concepts Familiar 4 - Often Familiar Yes
80
81 3 - I am aware of the concepts Familiar 4 - Often Familiar No - so we have to build them as needed
82 2 - I am aware of the concepts, but not practiced recently Not Familiar 2 - Minimal Not Familiar Yes
83 3 - I am aware of the concepts Familiar 4 - Often Familiar Yes
84 3 - lam aware of the concepts Familiar 3 - Occasional Not Familiar Yes
85 1 - Minimal Not Familiar 2 - Minimal Not Familiar Yes
86 3 - I am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
87 3 - I am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
88 3 - I am aware of the concepts Familiar 3- Occasional Not Familiar Yes
89 1 - Minimal Not Familiar 1 - No experience Not Familiar Yes
90 2 - I am aware of the concepts, but not practiced recently Not Familiar 5 - I do it every day Familiar Yes
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91 3 - I am aware of the concepts Familiar 4 - Often Familiar No - so we have to build them as needed
92 1 - Minimal Not Familiar 3 - Occasional Not Familiar Yes
93 4 -I am familiar with the concepts and I use them often Familiar 2 - Minimal Not Familtar Yes
94 1 - Minimal Not Familiar 3 - Occasional Not Familiar Yes
95 2 - I am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar No -so we have to build them as needed
96 2 - I am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar No - so we have to build them as needed
97 3 - I am aware of the concepts Familiar 3. Occasional Not Familiar No - so we have to build them as needed
98 4 - I am familiar with the concepts and I use them often Familiar 5 - I do it every day Familiar Yes
99__ _ _ _
100 2 - I am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar Yes
101 3 - l am aware of the concepts Familiar 2 - Minimal Not Familiar Yes
102 1 - Minimal Not Familiar 2 - Minimal Not Familiar No - so we have to build them as needed
103 3 - l am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
104
105 2 - I am aware of the concepts, but not practiced recently Not Familiar 1 - No experience Not Familiar No -so we have to build them as needed
106
107 2 - I am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar Yes
108 4 - I am familiar with the concepts and I use them often Familiar 4 - Often Familiar No -so we have to build them as needed
109
110 2 - I am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar Yes
111 3 - I am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
112 3 - I am aware of the concepts Familiar 4 - Often Familiar Yes
113 2 - I am aware of the concepts, but not practiced recently Not Familiar 4 - Often Familiar No -so we have to build them as needed
114
1iS 4 - I am familiar with the concepts and I use them often Familiar 3 - Occasional Not Familiar Yes
116
117 3 - I am aware of the concepts Familiar 4 - Often Familiar Yes
118 2 - I am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar Yes
119 4 - I am familiar with the concepts and I use them often Familiar 2 - Minimal Not Familiar No -so we have to build them as needed
120 2 - l am aware of the concepts, but not practiced recently Not Familiar 2 - Minimal Not Familiar No -so we have to build them as needed
121 2 - I am aware of the concepts, but not practiced recently Not Familiar 2 - Minimal Not Familiar Yes
122 3 - I am aware of the concepts Familiar 3 - Occasional Not Familiar No -so we have to build them as needed
123 3 - I am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
124 3 - I am aware of the concepts Familiar 4 - Often Familiar No -so we have to build them as needed
125 3 - I am aware of the concepts Familiar 4 - Often Familiar No -so we have to build them as needed
126 2 - I am aware of the concepts, but not practiced recently Not Familiar 2 - Minimal Not Familiar No -so we have to build them as needed
127 2 - I am aware of the concepts, but not practiced recently Not Familiar 2 - Minimal Not Familiar No - and we don't use them
128 2 - I am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar Yes
129 2 - I am aware of the concepts, but not practiced recently Not Familiar 2 - Minimal Not Familiar No -so we have to build them as needed
130 2 - I am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar No - and we don't use them
131 2 - I am aware of the concepts, but not practiced recently Not Familiar 4 - Often Familiar Yes
132 3 - I am aware of the concepts Familiar 4 - Often Familiar Yes
133 3 - I am aware of the concepts Familiar 5 - I do it every day Familiar Yes
134 3 - I am aware of the concepts Familiar 3 - Occasional Not Familiar No -so we have to build them as needed
135 3 - l am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
136 3 - I am aware of the concepts Familiar 4 - Often Familiar Yes
137
138 4 - I am familiar with the concepts and I use them often Familiar 4 - Often Familiar No -so we have to build them as needed
139
140 3 - I am aware of the concepts Familiar 4 - Often Familiar Yes
141 3 - I am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
142 3 - I am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
143 2 - I am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar No - so we have to build them as needed
144 3 - l am aware of the concepts Familiar 4 - Often Familiar Yes
145 3 - l am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
146 2 - I am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar Yes
147 3 - I am aware of the concepts Familiar 3 - Occasional Not Familiar No - and we don't use them
148 2 - I am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar Yes
149 2 - I am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar Yes
150 1 -Minimal Not Familiar 2 - Minimal Not Familiar No -so we have to build them as needed
151
152 4 - I am familiar with the concepts and I use them often Familiar 2 - Minimal Not Familiar Yes
153 4 - I am familiar with the concepts and I use them often Familiar 4 -Often Familiar Yes
154 2 - I am aware of the concepts, but not practiced recently Not Familiar 2 - Minimal Not Familiar Yes
155 2 - I am aware of the concepts, but not practiced recently Not Familiar 1 - No experience Not Familiar No -so we have to build them as needed
156 4 - I am familiar with the concepts and I use them often Familiar 2 - Minimal Not Familiar No - and we don't use them
157 2 - I am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar Yes
158 3 - I am aware of the concepts Familiar 2 - Minimal Not Familiar No - and we don't use them
159 2 - I am aware of the concepts, but not practiced recently Not Familiar 4 - Often Familiar No -so we have to build them as needed
160 2 - I am aware of the concepts, but not practiced recently Not Familiar 4 - Often Familiar Yes
161 4 - I am familiar with the concepts and I use them often Familiar S -I do it every day Familiar No - so we have to build them as needed
162 3 - I am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
163 3 - I am aware of the concepts Familiar 2 - Minimal Not Familiar No - and we don't use them
164 3 - I am aware of the concepts Familiar 4 - Often Familiar Yes
165 4 - I am familiar with the concepts and I use them often Familiar 2 - Minimal Not Familiar Yes
166 2 - I am aware of the concepts, but not practiced recently Not Familiar 2 - Minimal Not Familiar Yes
167 2 - I am aware of the concepts, but not practiced recently Not Familiar 2 - Minimal Not Familiar Yes
168 3 -I am aware of the concepts Familiar 4 - Often Familiar Yes
169 3 -I am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
170 4 - I am familiar with the concepts and l use them often Familiar 5 - I do it every day Familiar Yes
171 4 - I am familiar with the concepts and I use them often Familiar 4 - Often Familiar No -so we have to build them as needed
172 4 - I am familiar with the concepts and I use them often Familiar 5 - I do it every day Familiar Yes
173
174 2 - I am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar Yes
175 4 - I am familiar with the concepts and I use them often Familiar 4 - Often Familiar Yes
176 3 -I am aware of the concepts Familiar 5 - i do it every day Familiar No -so we have to build them as needed
177 1 -Minimal Not Familiar 2 - Minimal Not Familiar Yes
178 2 - I am aware of the concepts, but not practiced recently Not Familiar 5 -I do it every day Familiar Yes
179 3 -I am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
180 2 - I am aware of the concepts, but not practiced recently Not Familiar 2 - Minimal Not Familiar No - and we don't use them
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181 4 - I am familiar with the concepts and I use them often Familiar 3 -Occasional Not Familiar Yes
182 2 - I am aware of the concepts, but not practiced recently Not Familiar 3 -Occasional Not Familiar No - so we have to build them as needed
183 2 - I am aware of the concepts, but not practiced recently Not Familiar 4 -Often Familiar No -so we have to build them as needed
184 4 - I am familiar with the concepts and I use them often Familiar 4 -Often Familiar Yes
185 2 - I am aware of the concepts, but not practiced recently Not Familiar 4 -Often Familiar Yes
186 2 -I am aware of the concepts, but not practiced recently Not Familiar 2- Minimal Not Familiar No - and we don't use them
187 2 - I am aware of the concepts, but not practiced recently Not Familiar 4 -Often Familiar Yes
188 3 - I am aware of the concepts Familiar 5 - I do it every day Familiar Yes
189 2 - l am aware of the concepts, but not practiced recently Not Familiar 2 - Minimal Not Familiar No - and we don't use them
190 3 - I am aware of the concepts Familiar 2 - Minimal Not Familiar No - and we don't use them
191 4 - I am familiar with the concepts and I use them often Familiar 4 - Often Familiar No - so we have to build them as needed
192 3 - I am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
193 2 - I am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar Yes
194
195 2- I am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar No - so we have to build them as needed
196 2 - I am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar No-and we don't use them
197 2 - I am aware of the concepts, but not practiced recently Not Familiar 2 - Minimal Not Familiar Yes
198 4 - I am familiar with the concepts and I use them often Familiar 4 - Often Familiar Yes
199 2 - I am aware of the concepts, but not practiced recently Not Familiar 2 - Minimal Not Familiar Yes
200 2 - I am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar No - so we have to build them as needed
201 3 - I am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
202 4 - I am familiar with the concepts and I use them often Familiar 5 - I do it every day Familiar Yes
203 3 - I am aware of the concepts Familiar 4 -Often Familiar Yes
204 1 - Minimal Not Familiar 2 - Minimal Not Familiar No - so we have to build them as needed
205 1 - Minimal Not Familiar 3 - Occasional Not Familiar No - so we have to build them as needed
206 3 - I am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
207 2 - I am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar No - so we have to build them as needed
208 3 - I am aware of the concepts Familiar 2 - Minimal Not Familiar Yes
209
210
211 2 - I am aware of the concepts, but not practiced recently Not Familiar 2 - Minimal Not Familiar Yes
212 1 - Minimal Not Familiar 2 - Minimal Not Familiar Yes
213
214 3 - Lam aware of the concepts Familiar 3 - Occasional Not Familiar No - and we don't use them
215 3 - I am aware of the concepts Familiar 2 - Minimal Not Familiar Yes
216
217 3 -I am aware of the concepts Familiar 3 -Occasional Not Familiar Yes
218 3 -I am aware of the concepts Familiar 2 - Minimal Not Familiar Yes
219 3 -I am aware of the concepts Familiar 4 - Often Familiar Yes
220 3 - I am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
221 2 - I am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar Yes
222
223 4 -I am familiar with the concepts and I use them often Familiar 4 -Often Familiar No - and we don't use them
224 4 -I am familiar with the concepts and I use them often Familiar 3 - Occasional Not Familiar Yes
225 3 - I am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
226 2 - I am aware of the concepts, but not practiced recently Not Familiar 2 -Minimal Not Familiar No - so we have to build them as needed
227 3 - I am aware of the concepts Familiar 4- Often Familiar Yes
228 3 - I am aware of the concepts Familiar 2 -Minimal Not Familiar No - so we have to build them as needed
229 1 - Minimal Not Familiar 2 -Minimal Not Familiar Yes
230 3 - I am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
231
232 2 - I am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar Yes
233 3 - lam aware of the concepts Familiar 3 - Occasional Not Familiar Yes
234
235 2 - I am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar No - so we have to build them as needed
236 3 - I am aware of the concepts Familiar 2 - Minimal Not Familiar No - and we don't use them
237 3 - I am aware of the concepts Familiar 4 - Often Familiar No - so we have to build them as needed
238 1 - Minimal Not Familiar 3 - Occasional Not Familiar Yes
239 2 - I am aware of the concepts, but not practiced recently Not Familiar 4 - Often Familiar Yes
240 2 - I am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar No - so we have to build them as needed
241 2 - I am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar Yes
242 3 - lam aware of the concepts Familiar 3 - Occasional Not Familiar No - so we have to build them as needed
243 3 - I am aware of the concepts Familiar 5 - I do it every day Familiar Yes
244 1 - Minimal Not Familiar 3 - Occasional Not Familiar Yes
245 3 - I am aware of the concepts Familiar 4 - Often Familiar Yes
246 2 - I am aware of the concepts, but not practiced recently Not Familiar 4 - Often Familiar No - so we have to build them as needed
247 1 - Minimal Not Familiar 3 - Occasional Not Familiar Yes
248 3 - I am aware of the concepts Familiar 4- Often Familiar Yes
249 4 - I am familiar with the concepts and l use them often Familiar 4 - Often Familiar Yes
250
251 3 -I am aware of the concepts Familiar 4 - Often Familiar Yes
252 1 - Minimal Not Familiar 4 - Often Familiar Yes
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ID Are the models suited What are the requirements like in your organization? Does your organization do more physical
for the problem? testing or modeling?

181 Yes 5 - Complete set of requirements for our systems and systematic plans to validate those 3 - About even
182 No 4 - Many requirements with some level of validation 2 - More testing, but some modeling is done

183 Yes 3 - Some requirements with some level of validation 2 - More testing, but some modeling is done
184 Yes 5 - Complete set of requirements for our systems and systematic plans to validate those 3 -About even
185 Yes 5 - Complete set of requirements for our systems and systematic plans to validate those 3 -About even
186 No 4 - Many requirements with some level of validation 2 - More testing, but some modeling is done
187 Yes 5 - Complete set of requirements for our systems and systematic plans to validate those 3 -About even
188 Yes 5 - Complete set of requirements for our systems and systematic plans to validate those 3 - About even
189
190 No 3 - Some requirements with some level of validation 2 - More testing, but some modeling is done
191 Yes 3 - Sone requirements with some level of validation 3 - About even
192 No 3 -Some requirements with some level of validation 2 - More testing, but some modeling is done
193 Yes 2 - Some requirements that are not well validated 2 - More testing, but some modeling is done
194
195 No 5 -Complete set of requirements for our systems and systematic plans to validate those 2 - More testing but some modeling is done
196 4 - Many requirements with some level of validation 2 - More testing but some modeling is done
197 Yes 3 -Some requirements with some level of validation 1 - Decisions are made with testing only
198 2 - Some requirements that are not well validated 3 - About even
199 Yes 4 - Many requirements with some level of validation 3 - About even
200 Yes 2 -Some requirements that are not well validated 4- More modelin% but some testing is done
201 Yes 4 - Many requirements with some level of validation 2 - More testing, but some modeling is done
202 Yes 4 - Many requirements with some level of validation 3 - About even
203 Yes 3 - Some requirements with some level of validation 3 - About even
204 No 4 - Many requirements with some level of validation
205 Yes 5 - Complete set of requirements for our systems and systematic plans to validate those 2 - More testing but some modeling is done
206 Yes 4 - Many requirements with some level of validation 3 - About even
207 Yes 4 - Many requirements with some level of validation 2 - More testing, but some modeling is done
208 5 - Complete set of requirements for our systems and systematic plans to validate those 2 - More testing but some modeling is done
209
210
211 Yes 4 - Many requirements with some level of validation 2 - More testing, but some modeling is done
212 Yes 3 - Some requirements with some level of validation 2 - More testing, but some modeling is done
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