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Abstract

Model-based design is becoming more prevalent in industry due to increasing complexities in technology
while schedules shorten and budgets tighten. Model-based design is a means to substantiate good design
under these circumstances. Despite this, organizations often have a lack of confidence in the use of models to
make critical decisions. As a consequence they often invest heavily in expensive test activities that may not
yield substantially new or better information. On the other hand, models are often used beyond the bounds
within which they had been previously calibrated and validated and their predictions in the new regime may
be substantially in error and this can add substantial risk to a program. This thesis seeks to identify factors
that cause either of these behaviors.

Eight factors emerged as the key variables to misaligned model confidence. These were found by studying
three case studies to setup the problem space. This was followed by a review of the literature with emphasis
on model validation and assessment processes to identify remaining gaps. These gaps include proper model
validation processes, limited rescarch from the perspective of the decision-maker, and lack of understanding
of the impact of contextual variables surrounding a decision. The impact these eight factors have on model
confidence and credibility was tested using a web-based experiment that included a simple model of a
catapult and varying contextual details representing the factors. In total 252 respondents interacted with the
model and made a binary decision on a design problem to provide a measure for model confidence.

Results from the testing showed several factors proved to cause an outright change in model confidence.
One factor, a representation of model uncertainty, did not result in any differences to model confidence
despite support from the literature suggesting otherwise. Findings such as these were used to gain additional
insights and recommendations to address the problem of misaligned model confidence.

Recommendations included system-level approaches, improved quality of communication, and use of
decision analysis techniques. Applying focus in these areas can help to alleviate pressures from the contextual
factors involved in the decision-making process. This will allow models to be used more effectively thereby
supporting model-based design efforts.
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1 INTRODUCTION

11 MOTIVATION

Model-based design is becoming more prevalent in industry due to increasing complexities in technology
while schedules shorten and budgets tighten. Model-based design is a means to substantiate good design
under these circumstances as it uses models and simulations of a real system to quickly test many options
within a design space. It allows decision-makers choose an optimum solution before the system can be
physically tested (Hosagrahara & Smith, 2005). Despite this, however, organizations often have a lack of
confidence in using models to make critical decisions. As a consequence they often invest heavily in
expensive test activities that may not yield substantially new or better information than what the models

already in their possession could have predicted.

On the other hand it is also true that models are
often used beyond the bounds within which they
gond 1 Il

have been previously calibrated and validated and

produce predictions that are substantially in error

and this can add substantial risk to a program.

This phenomenon can be explained using a

poor 111 \Y

simple four-box model shown in Figure 1. The x-

Decision Maker's Perceived Model Quality

axis of this figure portrays the actual quality of a

model relative to the problem for which it is being

poor good
used. Two general levels are shown for simplicity of Actual Model Quality

either good or poor; good actual model quality is Figure 1: Four-box model of a representing the
decision-maker’s perception of a model’s quality
versus the actual quality of the model relative to
the problem being addressed.

defined as the model being a sufficient
representation of the real system it represents
within some a priori modeling error tolerance and therefore an appropriate tool to model that system
whereas poor quality indicates that the model may have serious flaws modeling the real system and may
produce answers that fall outside the modeling error tolerance band over all or some significant portion of
the design or decision space. However, “there can be no proof of the absolute correctness with which a
model represents reality” and therefore “confidence is the proper criterion” (Forrester & Senge, 1980). The
y-axis of the four-box model represents the confidence, or the perception of a model’s quality from the
perspective of the decision-maker for the problem. Again, this is rated as either good or poor depending on

if the decision-maker trusts the model and uses it to make decisions.



As shown in Figure 1, quadrants 11 and 11l indicate appropriate alignment between the perception of a
model and its actual quality for the intended purpose. In quadrants Il and 1, a decision-maker is able to
properly distinguish whether a model is appropriate to use for the problem or not. Quadrants | and 1V,
however, represent where issues can arise in implementing model-based design. Quadrant I shows the case
where a decision-maker believes a model to be good for a problem, however, the model is not in fact
appropriate to use for the problem and may lead the decision-maker astray. This is in contrast to quadrant 1V,
where the model would be a good tool to help solve a problem; however, the decision-maker does not agree

and continues without input from the model, effectively dismissing its predictions.

For model-based design to be effective in organizations, the optimum is to operate in quadrant II, where
mature, high quality models are available and the organization takes advantage of those models. This results
in better designs and higher efficiencies (Smith, Prabhu, & Friedman, 2007). Achieving models that are
indeed valid and mature and aligning the organization to have confidence in these models may require
substantial investment of capital and human effort. But how does an organization know if the models being
used are trustworthy to make critical decisions? If an organization were to act on a poor-quality model, as
depicted by quadrant I (perceived good, actually poor), the consequences could be severe. For risk-averse
organizations, this may shift behavior to quadrant IV (perceived poor quality, actually good quality), where a
model may exist and provide appropriate answers, but it may be less of a risk to seek additional sources of
input such as results from other models or physical experimentation. For industries that have the option of
physical testing of their systems, this can lead to excess resources being used, but with added confidence in

the final decision.

1.2 THESIS OBJECTIVES AND APPROACH

The objective of this thesis is to understand the factors that cause perception of model quality to differ
from the actual quality of the model. Thus the focus is on quadrants I and IV. Three case studies, drawn
from the public domain and industry, will be examined as representative of quadrants [ and IV in the four-

box model in Figure 1.

Reviews of these case studies will setup the problem space and motivation behind this thesis. This will be
followed by diving into better understanding the possible causes of the problems by means of a literature
review resulting in the root cause to the problem. From this will emerge a set of factors that describe some

of the reasoning as to why model perception drifts from the actual quality of the model.

These factors are then tested in an experimental setting with users from industry to illustrate the effect of
these factors on perception of model credibility. The experiment was carried out on the internet, using the

model of a simple catapult system that propels a ball through a ballistic trajectory with the horizontal impact
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distance as the output and the pullback angle, launch angle, type of ball and number of rubber bands
powering the catapult as input variables. In this testing, a model’s quality was changed from good to poor by
asking a subset of the respondents to use the model outside its range of validity. The model and validating
data were made available to the 252 test subjects along with varying details surrounding the model that may
affect a user’s perception of the model either positively or negatively. The subjects were asked to grade the
credibility of the model using the framework presented. Success was measured by whether the model was

rated appropriately given the known quality of the model.

The results from this experiment reveal not only whether the factors had an impact on the decision-
making process, but also suggest methods for how they can be better managed to promote proper alignment
between perception and actual quality in more complex decision-making situations in industry and in other
settings. This will therefore provide some guidelines organizations can follow to help them adopt an

effective model-based design initiative.

1.3 THESIS STRUCTURE

Following this introduction in chapter 1, chapter 2 of this thesis will present the three case study reviews.
Each case study will include background of pertinent events followed by a summary of the underlying

problems that impacted model usage in those cases.

Chapter 3 will then analyze the problems raised in section 2 further to determine the root cause behind
them. It will begin with a statement of the problem and continue with a discussion from the literature that
will provide further definition to the problem and also present work that has been done to address these

problems thus far. Finally, this section will conclude with a proposal for the root cause of model misuse.

Chapter 4 will discuss the framework that emerged from the research. Eight factors will be presented; for
each one, a definition will be provided, a discussion of how that factor impacts the decision-making process

via the four-box model (Figure 1), and then examples from the case studies to illustrate the points.

Chapter 5 then discusses the details of the experiment that was conducted to test these factors. It begins
by stating the hypothesis, then reviews how the experiment was setup and implemented, and concludes with

a discussion of the results relative to each factor.

Finally, Chapter 6 presents the overall conclusions gained from this research including not only
recommendations to help address issues with model-based design, but also areas uncovered for future

research.



2 CASE STUDY REVIEW

The four-box model presented in Figure 1 represents two domains of the problem space: one of actual
model quality and one of perceived model quality. For model-based design to be effective in organizations,
there are two key activities. The first is to get the actual quality of the model to be good; the second is to
then get the perception of that model to match, represented by quadrant II in the four-box model. In this
section to follow, three case studies will be presented that are examples of misalignment between
perception and actual model quality to demonstrate the problem space. First, a case will be presented from
industry that shows the resulting behavior when model-based design is not internalized within an
organization, as the models are good, but the confidence to accept their results is lacking. Following this
example, a highly publicized case study will follow from the Eyjafjallajokull 2010 volcanic eruption that
closed much of European airspace. In this case, there again emerged perception issues of the models. This
case also presents the concern of potential risks of making decisions in the absence of a model. The final case
is from the space shuttle Columbia accident in 2003. This example demonstrates the potential hazards that

result from quadrant I (perceived good, actually poor) model behavior.

21 EGR MEASUREMENT VENTURI AND THE LACK OF
MODEL-BASED DESIGN

The first case to review is one from industry based on experience from the author. It is cases such as these
that present frustration in organizations trying to integrate model-based design within their processes.
Models may be well done and executed; yet design decisions are made based not on the correct model
results, but it is decided instead to go forward with physical testing resulting in unnecessary prototype costs
and extended development time in order to confirm what the model has already predicted. As the details of
this case are not in the public domain, this section will begin with some background and will further discuss

the elements of the model and decision-making that ensued.

2.1 BACKGROUND

This case comes from a company that manufactures and sells heavy-duty diesel engines for use in
industrial off-highway applications and is based on a real design problem that occurred in the 2008
timeframe. Industrial off-highway diesel engines are regulated by the Environmental Protection Agency
(EPA) with respect to harmful substances they can emit during operation (emissions) - of particular concern
being Nitrogen Oxides (NOx) and particulate matter (PM). The levels of these emissions are measured in a
laboratory where an engine is running a series of tests and the engine speed and load are either steady state
or highly transient. The EPA also prescribes the duty cycle and test profile the engine has to be subjected to

during testing.
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Beginning in 2011, diesel ines with g
SRag T » ciesel engines with power EPA Emissions Standard History by NOx and PM

outputs greater than 37 kW (50 HP) were required Off-Highway Engines 130 - 560 kW (174 - 750 HP)
VT e

to meet a new emissions standard called interim

Tier 4 (EPA, 2011). This emission standard o
required a 50% reduction in NOx and 90%

reduction in PM as compared to the prior Tier 3 S

emission standard (Figure 2). In addition to reduced 20

Nitrogen Oxide (NOx) [g/kW-hr]|

emissions, the transient test requirement came into - -
0.02 ; .54

effect in addition to the existing steady state test

Particulate Matter [g/kW-hr]

protocol. The transient test consisted of 1,239  Figure 2: Evolution of EPA Emissions Standards for
heavy-duty off-highway diesel engines. The x-axis
shows the PM standard level and the y-axis shows
intervals, thereby resulting in a 20-minute test the NOx standard level. To be in compliance, the

engines must have composite emissions within the
procedure (right chart in Figure 3). The transient poundaries of their respective tier level [adapted
from (EPA, 2011)].

engine speed and torque conditions run at 1-second

test shown below is plotted over the steady state
points from the left chart but has included a point at each speed and torque condition from the test

procedure with lines connecting these points to show the movement in speed and torque throughout the test.

Steady-State Test
3 E
£ =
% 1 go : o Qé-
; 1 (] o p.
I2 1@’0 l2 5,
_1@0 1@0 v _‘a\,
Engine Speed (rpm) Engine Speed (rpm)

Figure 3: EPA prescribed test protocol for engine certification of emissions. The left chart shows the
steady state test procedure where emissions from eight points (yellow dots) with constant speed and
load are combined into a single composite emissions level. On the right, the transient test procedure
shows the steady state points as a reference, but is actually the green dots connected by a line to
represent the order they must run [adapted from (EPA, 2011)]

The new tier 4 emissions standard applies to new engines and does not require retrofitting of the existing
vehicle fleet. Each of the new requirements drove complexities on the engines. New technology was needed
to reduce the emissions from the engine (Figure 2), but also had to be capable of controlling those emission
levels through transient operation (Figure 3). The dominant design architecture to control NOx emissions

used in similar industries was a system that recirculated exhaust gas to the engine’s intake (EGR). The
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amount of EGR flowing through the engine is inversely proportional to the resulting engine’s NOx output,
Precisely controlling this EGR flow during transient operation is challenging. The dominant solution for
measuring and controlling the flow of exhaust gas was to use a measurement venturi with a delta pressure
sensor across the venturi (Figure 4). This highly responsive delta pressure reading was then used, along with
other measurements, to calculate the desired flow of EGR being returned to the engine intake manifold in

both steady state and transient operation.

As mentioned, this technology was the dominant design in similar markets — of most interest was the on-
highway heavy-duty diesel engine market. These engines were similarly sized and operated and thereby
comparably regulated by the EPA, However, the on-highway market generally precedes the off-highway
regulations by two to four years. Therefore, because the EGR system with measurement venturi was the
dominant design on products in the onvhighwa)' market that were already in production, very little upfront
analysis was done to validate this technology or the design parameters prior to its implementation within the
off-highway engine system. The design revolved primarily around packaging constraints from other
hardware and ultimately fitting the engine into various off-highway vehicles. Therefore, there was also a lack

of requirements generated for this sub-system that could adequately guide its design at the component level,

_| FreshAir/

J

Intake Manifold

=
L
S Measurement 5 Engine
3 Venturi B [~
% Control Unit Englne
I Exhaust Manifold I
EGR Valve
EGR Cooler j=

xhaust, .
Gas %

Turbine

Figure 4: Air System Diagram for heavy-duty diesel engine. Air enters the system at the compressor
and enters the engine by way of an aftercooler, fresh air / EGR mixer, and intake manifold. The air
leaving the engine will either exit the system through the turbine or will recirculate back through the
engine, re-entering at the fresh air / EGR mixer [adapted from Baert, Beckman & Veen 1999]

With this system, there are two models used in the design process that must be clarified. The first is a
model that is embedded in the engine control unit (ECU). This is the model that transforms the real-time

measurements from the delta pressure sensor along with other sensors to calculate real-time exhaust gas



flow being returned to the engine and is then issued as an opening/closing control input signal to the EGR

valve. This model is critical to real-time engine opcration.

During the engine’s product development process, this embedded model must be calibrated to actual
performance. This can be done either by running a physical engine in a test cell or using a model to predict
the engine’s behavior. This off-line engine cycle simulation is the second model of interest. It runs on a
computer-based model of the engine and estimates the crank-angle resolved parameters for the engine. This
model is able to run many more scenarios and in a much shorter period of time as compared to running the

engine in a test cell. It is this engine cycle simulation that will serve as the primary focus for this case study.

The engine cycle simulation used in this case was a simulation that was used regularly by the company. In
fact, it had been used to make other design decisions on similar engines in the past. It had been validated
various times against physical test data. The model was robust to changes as it was a physics-based model (as
opposed to empirical), and the engineers running the model had a long history of using it and were highly
qualified. Its primary fault was the lack of quantification of uncertainty bounds on the model outputs. The
measures of uncertainty in the model were not aligned with outputs related to program requirements; what
the program needed to understand was the impact of the EGR flow measurement on NOx levels, where the
simulation provided uncertainty only in the flow of EGR itself. Although EGR flow is a leading indicator of
NOx, the correlation is not fully understood and therefore adds uncertainty. The question was how does

predicted EGR mass flow uncertainty propagate through the model to bound NOx emissions uncertainty.

This engine cycle simulation was of particular

importance during the development program of
an engine for the interim tier 4 emissions standard
using the design architecture in Figure 4. At the

start of the program, initial design and analysis

Flow [kg/hr]

activities lead to the first set of prototype engines

that could be tested in a test cell to verify the

design. During these initial analysis activities, the

Crank Angle [deg]

engine cycle simulation was showing an anomaly
Figure 5: Mass flow of air by engine crank angle. A

positive flow indicates the EGR is moving in the with regard to the amount of air exiting the fresh
intended path whereas negative flow indicates the

EGR is flowing backwards air / EGR mixer. The first prototypes were tested

for the phenomenon and high-speed data
collection confirmed that fresh air in the mixer was flowing backwards into the EGR measurement venturi

during favorable conditions through the engine’s rotation (Figure 5). This impacts the delta pressure reading



across the venturi, as it is no longer representative of forward flow through the venturi. Thus the model

predicted bi-directional flow through the measurement venturi which is undesirable.

The ECU embedded model used for engine operation uses the delta pressure reading across the venturi
to predict EGR flow, however because of the reverse flow phenomenon, predicted by the physics-based

model, the embedded model would not function

ECU Embedded Model Inputs
to Estimate EGR Flow

properly. This resulted in a lack of controllability

for the EGR flow and therefore for NOx emissions

control. The effect is portrayed in Figure 6 showing
the physics-based relationship using Bernoulli’s
principle used to predict flow. An indicator of
number  and

Reynolds resulting  discharge

coefficient are plotted for a series of data points

Discharge Coefficient

collected from a physical test. For

engine

Indicator of Reynolds Number

Figure 6: Effect of backflow on critical inputs to
ECU embedded model. Bernoulli’s principle
assumes an incompressible fluid, which is
represented by the region circled with the dashed
line. As air begins to flow backwards through the
venturi, the Reynolds number indicator shows the
assumptions for Bernoulli’s principle is no longer
valid and an empirical regression relationship

Bernoulli’s principles to be valid, the fluid must be
assumed as incompressible which is the region
circled with a dashed line in Figure 6. However, as
the data moves left on the x-axis, the relationship
becomes invalid and can no longer be used. This

area is shown by the circle with the solid line and is

must be used. the region where back flow is occurring in the

venturi. The embedded model operating in this region, therefore, cannot use the physics-based calculations
and instead relies on an empirical regression relationship to determine EGR flow from the inputs. Although
an approximate linear relationship can be established from Figure 6, the empirical model loses robustness as
compared to physics-based models. For instance, if later design changes were to be made to the air system
for improved performance or reliability, the empirical relationship would have to be recalibrated, requiring
significant effort. Imagine, also, over the life cycle of the engine as component features in the air system

change with time, this model would progressively drift away from optimal.

Once this was discovered, it became a design problem: how to redesign the EGR system to eliminate this
backflow effect, thereby making the ECU embedded model more robust. Because this issue was detected
relatively late during engine development, crucial real estate surrounding the engine was not available to
provide a lot of flexibility in potential redesign options. However, as the engine cycle simulation had found
this problem initially, the model was changed to investigate different geometries and layouts that might

improve the situation within the constraints of the design. Of note, of the designs that were ultimately tested,
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the drive cycle simulation indicated that simply adding length between the mixer and measurement venturi
appeared to give the best results, Although the backflow phenomenon was not eliminated with this change,
it was rare that air made it to the venturi to affect its measurement. The decision became whether to move
forward with the design change as reccommended by the model, or run further physical testing at the risk of

making a significant design change even later in the program,

At this stage in the program, there was only one additional build remaining before production started.
The decision makers had the following options, as depicted by the decision tree in Figure 7: they could
proceed based on the physics-based model results alone. However, there was a chance that the model
prediction could be incorrect, and in this case, the final prototype build would have a sub-standard design
and there would be no opportunity to conduct another build before the tier 4 regulations would take effect.
This would correspond to the situation in quadrant I behavior from the four-box model. The model would
be believed to be of good quality but the predictions would ultimately turn out to be in error. However, if
the decision makers chose to delay the decision until physical test results were available that would either
support or refute/correct the earlier predictions made by the physics-based model, they would definitely
lose several months in the schedule but could still make getting the new design on a portion of the final

prototype build in order to gain experience before production.

Four-Box Model
Representation

¥
| v

Proceed based on Model Prediction
Model
Recommendation

i
s

1w

Incorrect

Design Decision

. Project Delay:
Mode;:l Pred‘lctmn Testing to ensure 1 Il
orrect good design m | ef
Delay until Physical .
Test Results i Pnl))ect Delay: 1 1
Available 1 esting to ensure
neorrect good design v

Figure 7: EGR System Design Decision Tree. There were two options for the decision, whether to
proceed or to wait and pursue additional testing. In both cases, there was the possibility of the model
being correct or not resulting in different outcomes shown. Each outcome is shown relative to the
quadrant in the four-box model it represents.

For some industries, the prospect of physical testing is not an option, or is at most as uncertain as the

model. In the diesel engine industry, however, testing is not technically difficult to do but it is costly and
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time-consuming. The test cells with dynamometers create fairly representative conditions to what the
engine might experience in the field. However, with increasing prototype costs, fuel costs, increased
instrumentation along with a larger number of tests required to qualify the growing complexity in the engine
system, it is becoming more difficult to do extensive testing within the schedule and budget constraints of an
engine development program. Despite the drive for increased model-based design, there still is a bias that

decision-makers have in this industry towards physical testing.

In the end, the decision maker chose to physically test the design options, pursuing the third decision path
shown in Figure 7. The physical test results matched what the physics-based model had already predicted.
On the one hand the physical testing confirmed what had already been predicted by the model and this
confirmation can be viewed as a positive in having reduced perceived risks to the program, on the other hand
the physical testing did not generate substantially new information and can be viewed as a waste of resources
and project schedule by introducing redundancy between model-based predictions and physical testing.
Interestingly, another engine program followed this first case with a later regulation date. As it was similar
hardware to the first, the design team, armed with these experiences, did early design analysis using the
engine cycle simulation to determine the optimal design configuration to limit backflow. The design was
accepted without testing and was found to be successful in preventing backflow once prototype engines were

built. Thus, in the later engine program the situation moved from quadrant IV to quadrant II.

212 SUMMARY

The engine cycle simulation used in this case was shown with respect to the four-box model in Figure 8.
The problem in this case was that of perception of model quality. The model is deemed as good; it has not
been changed as a result of this incident, it predicted the right answer, and was specifically designed for these
types of air system problems. However, due to pressures that affected how people perceived the model and

the potential consequences of model error, its

results were questioned and the program chose to

run physical tests to confirm the proposed design 5 Bood
=
decision, accepting a guaranteed program delay and &
T
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lessons learned on how to move to the upper right quadrant — how to know and have confidence that a
model is good and act on its results; not doing so cost the program significant prototype and testing costs

plus several months in the development schedule.

2.2 EYJAFJALLAJOKULL VOLCANO ERUPTION

The next casc stu(ly is, as before, an example of quadrant IV in the four-box model illustrating another
example of a model providing an adequate representation of its underlying physical system, but still coming
under heavy scrutiny. Besides showing another example in quadrant 1V, however, this case also introduces
the potential risks of quadrant I behavior where model results are used in a decision where the model is not
in fact appropriate. This case is based on the Eyjafjallajokull volcanic eruption in Iceland in 2010 that closed
much of European airspace when the ash cloud it emitted had spread across the continent. This case has
some common features compared to the previous one, primarily in how model perception can be affected by

Signiﬁcant exogen()us PI‘E‘SSUI‘ES .

2.21 BACKGROUND

In April of 2010, the Eyjafjallajokull volcano in Iceland erupted. Although volcanic cruptions in lceland
are not rare, due to unfavorable atmospheric conditions, the eruption caused northern European airspace to
close, affecting the major European hub airports (Boli¢ & Siv€ev, 2011). Policy makers in Europe faced a
decision that would ecither risk lives and equipment by continuing to fly in the ash where history had shown
this to be detrimental to planes in flight (Aviation Week and Space Technology, 1990; Guffanti, Casadevall,
& Budding, 2010), or to close airspace with the consequences being billions of dollars of lost revenue by the
airline companies in cancellations and rerouting logistics besides the personal strife felt by the many
passengers who were stranded for the wecks affected by the volcano (Ragona, Hansstein, & Mazzocchi,
2011; Ulfarsson & Unger, 2011). Due to European application of the precautionary principle (Alemanno,

2011b), guidance to policy makers was actually quite clear:

“The recommended procedure in the case of volcanic ash is exactly the same as
with low-level wind shear, regardless of ash concentration - AVOID AVOID
AVOID.” (ICAO, 2007)

There were two models in this case that helped to determine the areas to avoid. The first is an
atmospheric model, NAME, that uses input about the eruption and meteorological data to forecast the
movement of the cloud of ash from the volcano. Any region where the model said there was a concentration
of ash greater than 0.2 milligrams per cubic meter (mg/mi), the region was determined to be a no-fly zone
(ICAQ, 2007). This model was developed in 1986 as a result of the Chernobyl tragedy (Alemanno, 2011b)
and had “evolved into an all-purpose dispersion model” (ICAO, 2007, pp. I-3-16). Although ash cloud
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propagation does not match the original purpose of this model, thereby bringing it into question, it had been
validated against other models used by other Volcanic Ash Advisory Centers (VAAC), satellite readings, as
well as physical instrumented test flights to show that it was fairly successful (Brooker, 2010) in predicting
ash concentrations emitted from a point source. The model had been used regularly and was used by

qualified personnel.

Despite this validation, there were still many uncertainties in this model. First, there were large
uncertainties in the model’s inputs. Information required about volcanic eruptions relies largely on
observations which are not exact (Stohl et al., 2011). Meteorological forecasts are another primary input to
the model that are notoriously uncertain. All of these inputs are translated to the model outputs by a set of
complex calculations and simulations, where predictions become less reliable and less certain than the

uncertainties on the input data.

The second source of uncertainty in the atmospheric model is validation against the real system. Large-
scale distributed physical measurements of the ash cloud are not feasible. Satellite imagery is used to estimate
it, but as imagery is not optimized for ash cloud observation, there are numerous uncertainties in that
measurement as well (ICAO, 2007). As such, validating the model to the real system is difficult within close

precision.

In the days following the eruption, as pressures mounted to reopen airspace, airline companies began
running test flights through the regions impacted by the ash cloud. Upon their return, airlines reported no
damage to the aircraft or the engines. This began to raise many questions as to the validity of the atmospheric
models (Ulfarsson & Unger, 2011) and the damage threshold that was assumed to be the correct one for

purposes of defining the no-fly zone.

The other model that plays a large role in this

[ c: catastrophic toss of human life

case is that of the level of ash concentration that stausticaity
Expected

aircraft engines can fly through without JRimaee

B: Unacceptabie aircraft damage
experiencing damage. This model, at the time of =~ [~===-----=7==============

I A: Tolerable damage limit '

based. In theory, the model would look something — >
Ash Concentration or
Ash Concentration x Time Exposed

the eruption, was conceptual as opposed to data-

like what is shown in Figure 9, but as such, does not
Figure 9: Ideal model of effect of ash concentration
exist, or at least not in the public domain (Brooker, on aircraft engines. The desire is to know at what

2010). The absence of this model has been leve:l of ash cortcemrauon (?&-axls) the aircraft
engine reaches different severity levels of damage

recognized for some time (Brooker, 2010). against its operation (y-axis). (Brooker, 2010)

Although some testing has been done to understand
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the effect of ash and dust on jet engines (Ulfarsson & Unger, 2011), the data does not support the critical

specification as to the max tolerable limit (shown as “A” in Figure 9).

Despite this, five days following the initial eruption, after much coordination between European officials,
airlines, and engine manufacturers, the guidance for airspace closure was modified to a tiered approach
(Johnson & Jeunemaitre, 2011). Still based on the atmospheric models, an ash concentration up to 2 mg/nf
was deemed safe. High ash concentration levels remained a no-fly zone; however, a new intermediary zone
was added where it remained within the individual countries’ discretion to allow flight operations. This new
tiered approach allowed much of the European air space to reopen, thereby allowing some return of
normalcy, however accepting some residual risk in the intermediate regime. This approach was based

heavily on the conceptual model of aircraft engine’s resilience to ash.

Although loss of life was avoided in this case, the financial impact to airlines and passengers alike was
significant. In essence the tradeoff to be made from a financial perspective was between short-term loss of
revenue due to suspended flight operations versus longer term costs due to increased engine maintenance
and repair. This put a lot of pressure as to the validity of the atmospheric models being used to forecast the
movement of the ash cloud and understand what portion of air space was to be closed (Alemanno, 2011b;

Stohl, et al., 2011).

The disruption due to the days of airspace
closure is portrayed well in Figure 10, where the
number of ﬂights one week prior to the eruption is

compared to the week following the eruption. In

THU FRI  SAT SUN MON TUE WED  the end, estimates showed that US$1.7 billion was
Day of Week

lost by airlines in revenue with 10 million
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Figure 10: Comparing airline traffic in the week of passengers affected (Ragana, et al., 2011).. On the

the eruption and the week preceding. The number ,ther hand no flight accidents occurred that were
of flights following the eruption dropped to as

little as 20% of normal. (Boli¢ & Siv¥ev, 2011) directly attributable to volcanic ash.

222 SUMMARY

The two models used in this case present good examples of two different quadrants behavior and risks
from the four-box model (Figure 11). Quadrant IV was examined in the previous case where cost and
schedule were impacted negatively as a result of not sufficiently believing in the model without additional
testing. Quadrant IV behavior was also reflected in the application of the atmospheric model in the days
following the initial volcanic eruption. The model has a long use history and validation background, but

came under heav)’ scrutiny as airlines began investing its validity using physica] test ﬂights which undermined
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some of the model predictions. This became a
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Figure 11: Four-box model of Eyjafjallajokull gl : : y

volcano eruption case. Atmospheric model in conceptual in nature, very little is still understood
quadrant 1V, engine damage model in quadrant I.

about it. This is a problem of model validation: how
do decision makers know the model is good? The potential consequences, if this model is in fact wrong, are

much greater than that of quadrant IV behavior. Although there is no evidence to this effect it becomes a

concern for future events.

In this case, model-based decision-making was effective in the beginning although fraught with serious
consequences. The perception issues that emerged with the atmospheric model had the potential to limit the
effectiveness that models can have in this kind of scenario. The validation issues that come into question on
the engine damage models raise serious questions as to the capability of the new legislation, based heavily on

these models, to act appropriately in the event of a future incident.

The conceptual model of the effect of ash on engine deterioration is the second model used in this case.
For the purposes of classification within the 4-box model, it was rated as a poor quality model; since it is
uncertain that these models exist and if they do, what the credibility of their own validation or input data
looks like. However, it was the introduction of this conceptual model that turned around the crisis and
brought European airspace back to normal. Therefore, despite their uncertain validation, the aircraft engine
damage models were perceived well enough by policy makers to redefine policy guidance. In part this may

have been influenced by the short-term financial pressures to quickly return to full flight operations.

23 SPACE SHUTTLE COLUMBIA TRAGEDY

The first two cases demonstrated the consequences of quadrant IV (perceived poor model quality,
actually good model quality) behavior. In these cases, there was cost and schedule issues, but the
consequences were not as traumatic as quadrant 1 (perceived good model quality, actually poor model
quality) behavior could be. The Eyjafjallajokull volcano hints at the potential risks of using only conceptual

models for major policy decisions but it remains to be seen if the engine models will be validated in time to
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prevent possible catastrophe in the future. The third and final case from the space shuttle Columbia accident
will illustrate the real consequences of quadrant 1 behavior and will put more details behind the problem of
validation. It is conscquences such as these that make it a challenge to implement model-based design in

support of good decision-making.
PP g £

2.31 BACKGROUND

On February 1, 2003, the Columbia space shuttle reentered the Earth’s atmosphere as it was returning
from orbit upon completion of the STS-107 mission. During reentry, a hole in its wing caused by foam
debris impact during its launch 15 days earlier caused the heat of reentry to breach the wing and destroy the
structure. The space shuttle broke up during reentry, leaving only a trail of debris across the western half of

the United States (CAIB, 2003).

Following this tragedy, the Columbia Accident Investigation Board (CAIB) was commissioned to
investigate the details behind the accident and provide guidance to the National Aeronautics and Space
Administration (NASA) as to the cause and preventive actions that could be taken to promote safe shuttle
missions in the future. The CAIB produced a report seven months later that provided a comprehensive
review of the history of the space shuttle program, the events leading up to Columbia’s demise, and review
of the organization and culture at NASA culminating in a series of recommendations. This report is the

primary source of information for this case study review (CAIB, 2003).

Following the launch of the Columbia shuttle on January 16, 2003, the Intercenter Photo Working
Group reviewed tapes of the launch and noticed debris hitting the space shuttle 81.7 seconds after launch. It
was later determined the debris was a piece of insulating foam from the external tank that struck the leading
edge of the left wing of the shuttle penetrating the structure. A series of requests were made by this working
group to obtain photos of the shuttle in orbit to inspect the potential damage, but none of the requests were
granted. Therefore, the Debris Assessment Team turned to models to understand potential location, type

and size of damage stemming from the impact.

Many models have been used in post-analysis of the Columbia accident; however, the models of interest
for this report are those used while Columbia was still in orbit - primarily the Crater model used to
calculate penetration due to impact of debris on the thermal protection tiles on the shuttle. There was an
additional model referred to as a Crater-like algorithm that was designed to do the same analysis with ice
impacts on reinforced carbon-carbon (RCC) panels which line the leading edge of the shuttle’s wing. The
Crater model was developed during the Apollo program and updated for the shuttle program through 1985.
The Crater-like algorithm was developed in 1984 when testing was done using ice impacts on the RCC

panels (CAIB, 2003).
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The primary issue with regard to Crater and the Crater-like algorithms is the difference between the
empirical data used to calibrate the model as compared to the use case in the case of the Columbia shuttle.
Two tables are shown in Figure 12 that show the difference between the values used to develop the Crater
algorithm and its parameters limits next to those values being used to test the Columbia scenario, Emphasis

has been added to show where the Columbia scenario was outside the validated region of the models.

Crater Parameters used during development of experimental test data versus
STS-107 analysis:

Volume Up to 3 cu.in
Length Uptolin
Cylinder Dimensions < 3/8" dia x 3"
Projectile Block Dimensions|< 3" x 1" x 1"
Tile Material LI-900 Tile
Projectile Shape Cylinder

Figure 12: Comparing Crater model to Columbia STS-107 Analysis. Several parameters of the model
are shown with their tested values for typical operation on the left and the values used during the
analysis during the STS-107 mission on the right side [adapted from (CAIB, 2003)).

The two models were clearly used well outside their original purpose. In fact, the Crater-like algorithm
for the RCC panels was designed to determine necessary thickness of RCC to withstand ice impact, not to
determine penetration depth (CAIB, 2003). The teams performing the analysis recognized this, but due to
the lack of photographic evidence requested and absence of other certified models that were suitable for this

level of analysis, it was the only scenario that could be exercised to understand the potential damage.

Despite the models being used well outside their intended region, the Crater model predicted full
penetration through the thermal protection tiles due to foam impact. The Crater-like algorithm predicted
that RCC penetration would occur with debris impact angles greater than 15 degrees where further analysis
showed the potential for a 21-degree impact to the RCC panels causing a breach. Engineering judgment was
then applied to these results to correct for the known errors in their initial usage. Although this was the first
time this team was performing the analysis, it was generally known that the Crater algorithm was a
“conservative” judge of tile penetration. Since it assumed constant material properties of the tile, and in
reality there is increasing density of the material deeper in the structure that may hold up to impact better.
These two reasons caused the Debris Assessment Team to discount the results from the Crater model.
Regarding the Crater-like model for the RCC panels, a “qualitative extrapolation” was done to determine
that an impact angle of 21 degrees would not cause penetration of the panel. To put it simply, the
indications from the models were that a full RCC panel penetration had likely occurred, but due to the high
modeling uncertainty outside the validated range, these engineering predictions were not believed and
management eventually took the position that a full breach had likely not occurred and that reentry should

be attempted.
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Given the region the analysis was conducted relative to the calibrated inputs to the model, uncertainty
became a large question. It was not understood how good the model was at predicting so far outside its
validated region, but any implicit or explicit model assumptions or known uncertainties were not conveyed
to the management team. And “management focused on the answer - that analysis proved there was no
safety-of-flight issues - rather than concerns about the large uncertainties that may have undermined the

analysis that provided that answer” (CAIB, 2003).

As management weighed the decision of what to do about the foam impact, there were several factors at
play. First and foremost was the fate of the space shuttle program as a whole. After heavy budget cuts, the
program had strict schedule milestones related to the International Space Station (ISS) that, if missed, could
result in further budget cuts or program termination. Many of the internal communications while Columbia
was still in orbit were focused more on schedule delays as a result of return-to-flight maintenance issue from

damaged tiles rather than the possibility of loss of the shuttle during reentry (CAIB, 2003).

Besides the schedule pressure impacting management, tile damage due to foam shedding during launch
was not a new issue. Nearly every shuttle launch experienced this as confirmed by either imagery during
launch or by divots found in the tiles upon the shuttle’s return, and about 10% of missions experienced
shedding of the foam around the left bipod ramp of the external tank which was the source of debris on STS-
107. After successful completion of a shuttle mission, concerns found from that mission are noted as In-
Flight Anomalies, in some cases, the next shuttle launch cannot occur until concerns are addressed before
the Flight Readiness Review. There were many instances in space shuttle history where foam shedding
during launch had been made a concern, preventing flight of the next mission until resolved (Figures 6.1-6
and 6.1-7 in the CAIB report review these in detail). However, the many changes made to reduce exposure

were enough to continue with the next mission, but not enough to eliminate the issue altogether.

The space shuttle Atlantis flew mission STS-112 that was the latest launch to experience significant foam
loss prior to STS-107, and it was from the same location and preceded by only 3.5 months. The damage
from the foam loss was significant, but this was the first time the incident was deemed an “action” as opposed
to an In-Flight Anomaly. This then allowed the following shuttles to launch without steps being taken to
solve the foam shedding issuc. The CAIB report states “this decision ... is among the most directly linked to
the STS-107 accident. Had the foam loss during STS-112 been classified as a more serious threat, managers
might have responded differently when they heard about the foam strike on STS-107” (CAIB, 2003). As

stated by Woods (2005), they were using “past success as a reason for confidence” (p. 9).

First, it was not believed that foam could ever penetrate an RCC panel entirely; to the point that the

CAIB had to “prove or disprove the impression” which “prompted the investigation to develop computer

27



models for foam impacts and undertake an impact-testing program” (p. 78) in the post-accident analysis.
When STS-107 was still in flight, this same sentiment was noted by the CAIB: “Analysts on the Debris
Assessment Team were in the unenviable position of wanting images to more accurately assess damage while
simultaneously needing to prove to Program managers, as a result of their assessment, that there was a need
for images in the first place” (p. 157). The management team could not or did not want to believe that full
RCC panel penetration could occur as a result of foam loss, and therefore because of their inherent bias
tended to reduce their perception of quality of analysis despite the fact that the engineering community

stated otherwise.

232 SUMMARY

The events surrounding the Columbia space shuttle’s final flight can be used to show how issues with
model validation can impact the quality of information available to make decisions, and how factors affecting

perception of quality can further impact the decision making process.

It is interesting to plot this case study on the four-

E
: s Poor Model:
box model presented earlier and shown again here i Fgres] oty
N A good People Qualifications /
(Figure 13). In this case study example, there are M&S Management / Use History
Good Perception:
Used to continue with analysis

potentially two ways to plot it depending on the

point in time of this case. Quadrant I indicates the

Perceived Model Quality
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situation while the shuttle was in orbit: a poor model

that was perceived well. There are numerous

examples of how the actual quality of the models 7 ]
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Figure 13: Space Shuttle Columbia Accident
from the NASA-STD-7009): Input pedigree, plotted on four-box model

used in this example are poor (using the language

Uncertainty, People Qualifications, M&S Management, Use History. However, as a result of overriding
factors related to people’s perception of quality, such as the pressure from schedule deadlines, the potential
consequences of the decision, or the lack of consistent communication across the organization, the model
was deemed good enough to pursue reentry. This is particularly interesting when taken in context with
other models being available at that time that could better address these validation concerns with the model,

but were not certified by NASA for use.

Using the benefit of hindsight, as actual model quality is rarely if ever known ahead of time, this case
could also be classified in Quadrant IV where the quality of the model is good, i.e. it correctly predicted full
RCC panel penetration, but it was perceived poorly. Despite the various issues with the models used, the

resulting prediction it gave was in fact representative of reality where full penetration was achieved. Despite
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this, the management team’s perception of the model was to discount its findings due to incvitable model

uncertainty, not based on the model’s quality itself.

3 ANALYSIS OF THE PROBLEM

31 PROBLEM STATEMENT

For model-based design to be effective, it is necessary for models to be validated and appropriate for their
use and for the decision makers to trust the results. The previous case studies demonstrated the
consequences if either of these two criteria are not met. In the first and second cases, decision makers sought
other sources of information from which to make a decision usually costing time and money. In the last case
study, there is potential for dire consequences upon making the wrong decision from misleading model

results.

In the case study review, where there is the benefit of hindsight, it was clear where there was a problem
of perception in the first cases where models were actually providing appropriate information but decision
makers required more confidence before acting or did not like the outputs of the models because it
contradicted their pre-conceived notions and biases. In the final case, there was a clear problem of validation
where a model was used that misled decision makers, resulting in tragedy. Given these consequences, for
model-based design to work successfully in organizations (i.e. resulting in most or all cases that reside in
quadrants 11 and 1Il), decision makers need to know whether to believe the model results as the

consequences otherwise are too great.

- - - - — - Visualizing the problem space will help to distinguish

! : where these problems originate. Figure 14 shows a generic
/ MOdel i decision support system (DSS) whereby a model and data

| | become a DSS that interacts with a user or set of users,

User | : generally the decision maker (Bonczek, et al., 1980). In this
'\:\ i system, the user will “[search] for information about the

i Data : current and desired state of affairs, [invent] possible courses

of action, and [explore] the impact of each possible course of
Computer Based

Decision Support System action” (Brennan & Elam, 1986, p. 49) with the help of the

model and associated data. It is the interfaces in this system
Figure 14: Interfaces in a Decision Support
System. [Adapted from(Bonczek,

Holsapple, & Whinston, 1980)] model and data within the DSS, there is the problem of

where the problems originate. In the interface between

validation whereas the interface between the user and model
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introduces the problem of perception. Before a solution to these interface problems can be provided, the
potential underlying causes must first be uncovered. The following sections will seck to do so by first
ensuring a definitive ‘undcrstanding of the aspects related to model-based design. This includes identifying
what defines a model and which models are relevant to this thesis. In addition, attention will be given to
defining model validation and how it is different from other similar terms often used such as verification,

assessment, and confidence.

Following these definitions, the problem of validation will be further investigated by first understanding
some of the challenges to validating models. This will be followed by some prescriptive techniques available
in the literature to help address the problem of validation. The problem of perception will also be analyzed
further by first understanding factors that can influence the perception process specifically as it relates to

model quality, which will illustrate how perceived quality may differ from actual quality.

3.2 DEFINITIONS RELATED TO MODELS AND SIMULATIONS

Confusion in the problem space can originate by what is meant by model, simulation, verification, or
validation (Brugnach, Tagg, Keil, & de Lange, 2007; Oreskes, Shrader-Frechette, & Belitz, 1994). This
section will review some of the definitions from the literature to both define the scope of this thesis in the

case of models and simulations, and to present the varied field that is verification and validation.

The concept of a model can be quite varied. The exhibit “Making Models” at the Museum of Science in
Boston illustrates the vast definitions of models. They can be physical, conceptual, mathematical, computer
simulations (Boston Museum of Science, 2001) and more. The exhibit has fundamental concepts it intends to
teach its clientele about models: that a model is not the real system, but can be used to learn more about it,
that models can be effective communication tools, and that the usefulness of a model can be determined by

comparing its predictions to actual observations (AAAS, 1993).

3.2.1 DEFINITION AND SCOPE OF MODELS AND SIMULATIONS

Although the number and types of models are diverse, the definition of a model is concise and can be used
to describe any model. Highland (1973) summarized many definitions into simply “a model may be defined
as a replication of a real world entity” (p. 11) and 'describing further “no model is a complete and true
representation when we attempt to model a real world entity ... at best it is a simplified version of the real

world” (p. 12).

Some try to further define models beyond this broad definition. In many cases, this becomes a model
classification to be discussed later in this section. However, Refsgaard and Henriksen (2004) recognize the
importance in distinguishing between the concept of a model encapsulating the governing theories, the code

that implements the model in a software package, and finally the “site-specific” model which is generally

30



what most consider to be the final product. Although this definition is more confined to a class of models
that are computerized and mathematical, it is helpful to recognize these distinctions when we define

processes that add to a model’s credibility.

A simulation is defined by Forrester (1961) as the “process of conducting experiments on a model instead
of attempting the experiments with the real system” (p. 18). Simulations allow for better understanding of
the problem being addressed and the full design space. They can run “what-if” scenarios to explore system

responses in cases where it is prohibitive or impossible to do on the real system (Banks, 1998).

By the definitions described here, the model would be considered the operand or instrument and the
simulation the operation or process. However, throughout the literature as well as this thesis, the term
“model” is often used in place of “simulation.” In many cases, rather than provide a distinction, the terms are

lumped into a single abbreviation: M&S.

This thesis cannot purport to be applicable to any model or simulation. This difficulty of defining scope
was realized by Bertch, Zang, and Steele (2008) during development of their model validation standard.
They noted that there are numerous types of models and simulations in use at NASA and validation efforts
were in place that were specific to individual types of models. However, they were tasked with providing a
broad enough approach to encapsulate all models and simulations used at NASA. Their work on developing a
NASA-wide standard for validation and credibility of models and simulations, which resulted in NASA-STD-

7009, was a direct outgrowth from the CAIB final report.

Gass and Thompson (1980) scoped the problem well: “The types of models considered as the primary
basis for developing these guidelines have the following general characteristics: (1) they are models that are
developed to assist the policy analyst or decision-maker in selecting or evaluating various policies regarding
governmental issues and programs ... (2) they are mathematical models of a complex system and have been
computerized; and (3) they are large scale models.” The applicability of this thesis follows similar guidelines

as above.

It is most important to remember that models and simulations are simplifications of reality. They are
tools used to support decisions required for the real systems they represent. However, as they are simply a
representation of real systems, they are all, in effect, wrong (Box, 1979). Whether or not models are in fact
wrong or not depends on whether the predictions and recommendations flowing from these predictions
would lead a rational decision maker to take a course of action that was — in hindsight — judged to be right or
wrong. This of course is fraught with difficulty since even with hindsight different stakeholders ~ presented
with the same facts and outcomes — may evaluate the decision that was actually taken quite differently. The
key is to determine which models are useful by means of processes to enhance and understand their

credibility.
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3.3 MODEL VALIDATION AND RELATED TERMINOLOGY

A common expression in any realm that works with models is that “all models are wrong, but some are
useful” (Box, 1979). The processes of verification and validation describe the activities that move a model
from the first part of Box's statement, to the latter part. What makes a model useful, however, is a fuzzy
proposition making the verification and validation processes difficult to define and execute with a consistent
result in the end. Yet these processes are the means by which credibility is attributed to a model and
therefore a critical component to impacting the perception of a model’s quality. Therefore, this section will
discuss in detail what is actually meant by verification, validation and related terminology, as there are some

important distinctions as well as some debate on the subject.

It is helpful to see details of the modeling process to better understand how the processes of verification

and validation come into play. Sargent (2001)

presents a descriptive paradigm of the modeling o EXPERMENTING SYSTEM L“_ 51;:'5%??:
process (Figure 15) that has enough detail to show womb T

the intricacies that distinguish the verification and i

validation processes. In this paradigm, he shows two (TESTS) NEEDED

realms: the real world and the simulation world. The

SIMULATION
sers EXPERIMENT
OBJECTIVES

real world shows the actual system and its results in
physical reality while the simulation world shows the
various processes and stages required to convert a
real system into a model or simulation. These include
abstracting a system in the real world into system
theories that serve as the interface between the two

realms. Using these theories, a modeler generates a Figure 15: Sargent's detailed paradigm of the
) modeling process including the simulation world
conceptual model of the system, which is then ,pq how it interfaces to the real world. (Robert G.

converted into a specification illustrau'ng how the Sargent, 2001)

conceptual model is to be implemented. At which point, the model is implemented into computer code

where it can then be used and repeatedly exercised to generate data that reflect back to the real system.

Verification is the process to understand “did I build the thing right?” (INCOSE, 2011; Pace, 2004). It is
generally accepted that to verify a model, is to confirm that the model, as implemented generally in software
code, correctly instantiates the originating conceptual model (Balci, 2004; Banks, 1998; Gass & Thompson,
1980; Refsgaard & Henriksen, 2004; Robert G. Sargent, 2001; SCS, 1979). In this more detailed paradigm
in Figure 15, verification is done in two steps. First, by verifying the specification for a model to the

conceptual model, then by verifying the model to its specification.
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It is common in publications and particularly in industry that verification and validation are used
interchangeably (Naylor, Finger, McKenney, Schrank, & Holt, 1967; Refsgaard & Henriksen, 2004). In
what is a minor change in wording from above, validation is the process to understand “did 1 build the right
thing?” (INCOSE, 2011; Pace, 2004) which is a significantly different proposition. The difference is
illustrated in Figure 15 where the model is being checked against reality in three different manners: the
governing system theories to the system behavior, the conceptual model to the system theories, and finally,
the simulation results to the real system behavior. In this point of reference, much of the literature describes
validation as a behavioral assessment of the model to the real system (Balci, 2003; Lewandowski, 1981;
Romero, 2007). Banks (1998) goes on to say “whether the conceptual model can be substituted for the real

system for the purposes of experimentation.”

Although the paradigm from Sargent helps to define the verification and validation processes, there is still
some debate over what these processes mean. Oreskes et al. (1994) disagree with the common definition of
verification used in the modeling community. In their opinion, verification “is to say that its truth has been
demonstrated, which implies its reliability as a basis for decision-making,” Further in their discussion, no
open system can ever demonstrate truth in this manner as the cause and effect to a variable is not strictly
dependent on other known variables. Refsgaard and Henriksen (2004) discuss the issues in defining
verification as presented by Oreskes and others and tried to address the issue by separating the model’s
computerized code from the model itself. In so doing, they have created a closed system between the
requirements created by the concept to those implemented in the code. With this distinction, there is no
assurance given by the verification process that the model represents reality, only that it correctly represents

the abstraction of reality embodied in the conceptual model.

Oreskes et al (1994) also warn against the common use of validation by stating that substituting a model
for the real system may mislead what people believe is reality. They define validation as a process to ensure
the absence of flaws in the model. Many of the processes defined by others to complete validation - those of
comparing model outputs to reality - are further criticized by Oreskes, stating that “congruence between a
numerical and an analytical solution entails nothing about the correspondence of either one to material

reality.”

Under this premise, how can one determine if the model truly corresponds to the system it intends to
represent? Oreskes suggests confirmation of the model whereby “if a model fails to reproduce observed data,
then we know that the model is faulty in some way, but the reverse is never the case.” Forrester and Senge
(1980) further claborate this concept as building confidence, which “accumulates gradually as the model

passes more tests and as new points of correspondence between the model and empirical reality are
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identified.” Therefore, successful validation processes result not in a model that mimics reality, but rather

one that builds confidence that the model is an appropriate tool to use with the real system,

Confidence is not an inherent attribute of the model, but rather an attribute of the user or decision maker
(Gass & Joel, 1981). Therefore, it is necessary to distinguish between credibility and confidence. Confidence
is a measure of whether the model should be believed. Gass and Joel define confidence as “the user’s total
attitude toward the mode] and of the willingness to employ its results in making decisions” and “is expressed
by the influence the model’s outputs had in the decision” (p. 341). Credibility is developing the potential to
build confidence in the model (Robert G. Sargent, 2005). Under these definitions then, the validation
process builds model credibility. This in turn may improve the confidence of the decision maker in the
model and increase the probability that the model will indeed be used to influence real decisions. However,
as will be shown later in this thesis there are factors such as time pressure to make a decision or
consequences from an erroneous decisions that can influence a user’s confidence in a model, even though the

attributes and credibility of the underlying model may be invariant to these exogenous factors.

The final terms that are used often in the literature are accreditation and certification describing a formal
process that results in a recorded approval that a certain model is indeed fit for use. Generally, accreditation
refers to the result that the model meets a set of acceptability criteria (Balci, 2004; Pace, 2004; Robert G.
Sargent, 2001). However, Sargent discusses some arguments in this definition where accreditation may be
taken to mean the procedure to give a third party the ability to certify models. Here, then, certification
becomes the official documentation that a model meets its criteria. This distinction becomes important as
the literature describes the importance of using a third party to validate models in order to enhance their
credibility (Robert G. Sargent, 2001). In general, however, there is terminology in use to describe the

documentation of a model meeting its specifications.

Having a solid understanding of the terminology related to the modeling process is key, and a summary of
definitions is shown in Table 1. This will help to introduce the idea of confidence, a key element required to

model perception.

Terminology: Definition:

Verification The model meets its specifications
Validation The model represents the real system

Credibility Potential to build confidence in the model
Accreditation Model meets given acceptability criteria

. . Documentation of completed model verification,
Certification 1. .

validation, and accreditation process

Table 1: Summary of terminology related to model-based design
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3.4 MODEL AND SIMULATION CREDIBILITY ASSESSMENT

In Sargent’s illustration of the modeling process (Figure 15), the validation processes are shown relative
to their integration within the process but with no guidance as to how to complete those validation processes
and how to do them in such a way as to build the needed credibility in the model. This section will describe
first what the assessment or validation process is and why it is important. This will be followed by discussion
on the importance of model classification in assessment processes finishing with some example assessment

frameworks from the literature.

Forrester and Senge (1980) noted that the decision-makers using the modcls are within the system
boundary. Therefore, “validation includes the communication process in which the model builder ... must
communicate the bases for confidence in a model to a target audience. Unless the modeler’s confidence in a
model can be transferred, the potential of a model to enhance understanding and lead to more effective

»

policies will not be realized

Brugnach et al (2007) noted the resulting issues that arise as a result of this lack of communication
including “policy makers do not understand models,” “lack of certainty or validation of the models,” “lack of
integration of policy makers and modellers,” and a “lack of stakeholder involvement in the whole modelling
process.” Yet despite these issues being known, modelers believe they are not being listened to, while the
decision makers “do not hear much they want to listen to” (Clark & Majone, 1985; Lindblom & Cohen,

1979; Weiss & Bucuvalas, 1977).

The assessment process has been established to provide “a practice intended to enhance societal
understanding of the broad implications of science and technology and, thereby, to improve decision-making”
(Sclove, 2010). It is meant to be a vehicle with which modelers can input pertinent information regarding

the model and decision makers will have the necessary information with which to make decisions.

Therefore, it is important to remember in the following section that a key aspect to assessment processes
is communication. In the following sections, several frameworks will be presented that will describe
technical aspects of model validation, but if the resulting credibility of the model does not get communicated

well to the decision maker, then the process loses value or breaks down entirely.

3.4.1 VALIDATION DEPENDENCE ON MODEL CLASSIFICATION

Classifying models is important from various aspects. First, it can help to organize a field that is incredibly
diverse. Second, frameworks to verify and validate models and simulations can be defined differently
depending on how the model is classified (Lewandowski, 1981; Oren, 1981). The potential options in

model classification are vast (Highland, 1973), and therefore a list of examples shown below is not complete.
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However, it is mecant to demonstrate the breadth of scope used to classify models to help understand how

validation techniques might vary among classifications.

Oren (1977) introduces a concept that is more a taxonomy of model classifications as compared to a
taxonomy of models themselves. However, it illustrates the potentially numerous ways that models can be
classified. Each of these methods may require a different framework for validation of the models within it as

it values different characteristics of the models differently.

*  Goal of experimentation or the model’s purpose

*  Type of application area

*  Type of system

* Nature of the model

¢ Nature of the relationships

* Time set of the model

* Ratio of simulated to real time

® How the state of the model is updated

* Device used to do the experimentation

*  Way of accessing the computer in computerized simulation

* Simulation executive (time structure of the simulating software)

3.4.1.1 Classification based on System Behavior

Forrester utilized a model classification in order

Modets
to identify the current state of modeling and T~
illustrate gaps in the field. In so doing, he identified e / .
a segment of models that most closely represented o Sic Oynme ™ e
. N
~. 3 e
organizational behavior, but was not captured by T . e
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dynamics modeling (Forrester, 1961). (comsuagg) S wposve) S oneaten S
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Forrester used a hierarchy of fundamental B ‘\ ,/
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> 3 . . ,
attributes of a model’s behavior. He was interested sty < Teaent sm,(m ( m } S

in using models to describe how systems respond Figure 16: Forrester's Model Taxonomy. A
hierarchy of attributes can be used to describe

and therefore emphasis was placed on clas51fymg the model behavior (Forrester, 1961)

outputs of the models as opposed to its inputs or its

attributes. The structure of his resulting taxonomy is shown in Figure 16.

3.4.1.2  Classification Based on Model Architecture
Highland (1973) begins his discussion of model taxonomy with a review of existing classifications at the
time of his publication. From this review, which included Forrester above, he proposed a new taxonomy

that would provide a set of identifying features for improved communication of the model. The result is a
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system of classifications that is based on a hierarchical architecture of the model, beginning at the highest

level of abstraction and dccomposing down to the variables of the model.

He first identifies the broad classification to start similar to how Forrester had done. He then diverges to
classif)‘ing the purpose or function of the model. This is followed by a classification by relationships of the
modules within the model to gain an understanding of complexity. Finally at the lowest level of abstraction,

the system variables are classified by their attributes.

3.4.1.3  Model Classification for Validation
In Lewandowski's (1981) discussion on issues in model validation, he pointed out the importance of
specifying a model in regards to attributes that are most relevant to validation of that model. He identified
three attributes each with two contrasting levels that could best describe a model in ways that could best
prescribe the method for validation required.
*  Model Background

o Natural
© Behavioral

* Logical Type of the Model
o Causal
0 Descriptive
* Interpretative Type
©  Probabilistic
0 Deterministic

3.4.1.4 Validation dependence on model classification

The validation processes available can depend on the way a model is classified. Each of the above
examples of model classification presents its own challenges to validation. Kleindorfer and Ganeshan (1993)
discuss two primary segmentations of models (with a third as a mix of the first two), each with their own
method of validation. Justificationism describes the belief that a model has a firm grounding to
experimentation or sound theories. Therefore, validation of such models is tying the experimentation to the
models. In contrast, antijustificationism is the belief that judgment is required, that empirical validation, as is
done with the first theory, is not possible with models. In this case, validation “consists of persuading
someone that one’s model falls into a well-accepted way of seeing a problem.” Another perspective is to
validate by forcing “the system that it describes to act like the model.” As seen from their work, validation

techniques can vary significantly based on how the model is viewed.

Much of the work above was inspired and developed from some of the original work by Naylor et al
(1967). They identified three ways of viewing models: Rationalism, Empiricism, and Positive Economics. In
the first case, rationalism is a model comprised of logical deductions. Therefore, validation in this case is

dependent upon aligning the model with first principle theories. In the case of empiricism, the models are
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data based as opposed to theory based, and therefore validation is a matter of aligning the data from the
model to the real system. The final case, positive economics, describes the model’s ability to predict future
behavior of the system. This focuses validation on matching output behaviors as opposed to theories and data

as in the first two cases.

Voas (1998) introduces another perspective to approaching validation; in this case, the interest is in
certification. They decompose the problem into three segments: Product, Process, and Personnel. With
each segment, the way in which certification is done is different, Although their paper focuses more on
certification, the ties to validation have been made by Balci (2004) who presents quality indicators for each
of the segments. These indicators are used then to provide an assessment for the model, its processes, and its

developers and users. More on Balci’s framework will be discussed in the next section.

Another presentation of validation techniques is based on the purpose of the model. This technique is
particularly interesting as general validation theory suggests that validation is done as to the purpose of the
model. Therefore, it is important to understand how the validation may change as the purpose does.

Lewandowski (1981) provides four potential purposes, each with varying validation challenges.

The first purpose is to gain understanding of the real system on which a model is based. In this case, the
primary challenge is “the relationship between the structure of the process and the structure of the model.”
The importance of understanding the impact of model assumptions is stressed as a primary goal to be sure

P g P P p Y g

the model is an appropriate representation for understanding.

The next purpose may be for prediction or forecasting. Lewandowski describes this purpose being “the
most frequent situations, and probably the most difficult ... from the point of view of validation approach.”
It is described that even if a model can be validated well against its reference data, it is difficult to assume
that the model will behave well outside the validated region as there may enter in new parameters that were

not a factor before. This was clearly the case in the Columbia space shuttle case study,

Similar to prediction, models can be used for scenario analysis. For this case, a model is used to view
future system behavior, but based on predetermined scenarios. According to Lewandowski, “the

methodology for validation of scenario models does, as yet, not exist.”

The final purposc presented by Lewandowski is using models for optimization. As discussed, there are
several variations of optimization, but in all cases, an objective function is developed to describe the system,
and the validation of that function is most essential, Proposals are made to use data, if available, or possibly

subject matter experts who have a better understanding of the system behavior.

The Department of Defense, in its Verification, Validation, and Accreditation guidelines (DoD, 2006)

provides one final purpose on which validation may be dependent. In many of their cases, training is an
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important purposc of a model. In this case, validation is based on activity being trained and the accuracy

required for that activity.

This section has illustrated the vast field of model validation. Defining a fixed process is difficult as the
model type or purpose for which it is used is different (Bertch, et al., 2008; Kleindorfer & Geneshan, 1993;
Lewandowski, 1981; Naylor, et al., 1967). Add to this the complexity surrounding the definition of model
validation, and a large, varied field emerges in attempting to understand how to validate models in order to

boost their usefulness in the decision making process.

3.4.2 EXISTING FRAMEWORKS

A number of different ways to validate models have been presented in the above sections. This section
will describe some specific assessment frameworks from the literature. In most of these cases, some of the
techniques described above are simply a subset of the validation process which typically can include more
activities. For example, Figure 17 shows the Problem Solving Process published in the Department of
Defense (DoD) in the Recommended Practices Guide (RPG) (DoD, 2006). This process represents the
system of activities relating to using models and simulations, including a section that addresses the
Verification and Validation processes. Other cases include more aspects of the problem solving process than
just focusing on the model development. The frameworks presented in this section will begin with
fundamental model validation steps followed by examples that increase the detail against which models are
judged in order to demonstrate the potential breadth of simple model validation. However, as mentioned
above, a critical step to the assessment process includes communicating with the decision makers; two
frameworks will be presented that introduce attributes of the communication process within their model
assessment process. To conclude, three additional frameworks will be discussed that further attempt to build
upon the communication process by introducing a numerical rating of models that results from the

assessment pTOCCSS.

3.4.2.1 Fundamental Model Validation Steps

Naylor et al (1967) present a “multi-stage” process to validation. It consists of three steps:

1. Formulate hypotheses describing system behavior
2. Using statistics, validate these hypotheses to the system (recognizing the challenge in some cases to
have data available with which to do this)

3. Test the ability of the model to predict system behavior

This framework demonstrates the fundamental model validation process. It provides a generic roadmap,

but does not give much guidance as to the details required for each step.
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Figure 17: DoD Problem Solving Process including Verification and Validation steps (DoD, 2006). This
process illustrates the series of activities around problem solving of which verification and validation
is a part. It is a large part of the accreditation process but also overlaps with model and simulation
development and use processes.

Oren (1981) presents a much more detailed process of model validation. He identifies a matrix (Figure
18) of required assessment linking the aspects of the model to be validated and the criteria to which it should
be validated against. The checkmarks indicate that an aspect of the model should be judged against the
criteria along the top. For example, the data from the real system should be judged against the goal of the

study as well as the norms of experimentation technique likely used to collect data from the system.

For each of the aspects of the model, a series of deeper criteria are provided for each of the intersections

in the matrix. These criteria are meant to be at levels that are individually assessable.

Although Oren’s framework is much more descriptive than that shown by Naylor et al, it remains at a

relatively abstract level related to model validation.,

Balci (2004) presented an extensive framework for model quality assessment. The framework was
developed around Voas’ (1998) segmentation of the modeling environment which involves discerning

between the model product, the modeling process, and the project.
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Figure 18: Oren's Model Validation Framework (Oren, 1981). The rows of the table show the attributes
of the problem where the columns across represent measures by which the attributes can be tested.

The product quality framework presented by Balci recommends creating a hierarchy of quality indicators
related to the product. Similar to Oren, the indicators are decomposed to a level that is assessable. He

presents an example including the following high-level indicators:

¢ Dependability
*  Functionality
*  Performance
*  Supportability
*  Usability

Balci next proposes indicators to evaluate the modeling process:

¢ Acceptability

*  Maintainability

*  Quality of the methodology used to execute the process
*  Quality of the way the methodology is applied

*  Rapidity

¢ Reliability

* Robustness

*  Supportability

*  Understandability

*  Visibility

Finally, the project indicators are proposed where the maturity of an organization is graded. For this,

Balci borrows from CMMI (2012).
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Balci, like Oren, provides a very thorough framework for model assessment with respect to verification,
validation, and quality assessment particularly as Balci has done for the three aspects of the modeling
environment as defined by Voas. What these frameworks lack is inclusion of the communication process

amongst the various roles in the modeling process without which makes the assessment process incomplete.

3.4.2.2 Assessment Frameworks with Communication

The importance of the communication process is recognized and accounted for in other frameworks; two
examples are presented in this section to discuss the means used to improve communication. Sargent (2001)
introduces a recommended framework for model validation that begins to include elements critical to

communication between the modelers and decision makers.

1. First agreement between the modelers, sponsors, and users on the validation approach and minimum
techniques to be used

2. Specify the level of accuracy required for the problem

3. Test assumptions and theories of the model

4. Continually validate the conceptual model throughout development

5. Explore the model’s behavior throughout development

Compare model behavior to system behavior in at least the last revision

Develop documentation of the validation process

o« N o

Propose a schedule to periodically review the model’s validity

Sargent provides much less detail compared to the earlier frameworks as to some of the specific validation
procedures to conduct. Although early agreements regarding model assessment may have been achieved,
later documentation and scheduling are critical to communication between the modelers and decision
makers. Extensive model validation may be of little use if the results of the model validation, including a
clear recording of the model’s limitations, are not subsequently communicated orally and in writing or in

electronic form to subsequent users and consumers of the information produced by the models.

A framework presented by Gass and Thompson (1980) (Figure 19) is very similar to Sargent’s above.
There is emphasis placed on documentation, maintainability, and usability. However, more guidance is given

to the documentation, validation and verification aspects.
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rA. DOCUMENTATIOfN The documentation of the model is called out first and the
B. VALIDITY

Theoretical Validit
Data V;lidity 1ty describe two kinds of documentation: descriptive of the

Operational Validity

connotation is diffcrent from the above. Gass and Thompson

assumptions and theories behind the model, and technical

C. COMPUTER MODEL VERIFICATION

D. MAINTAINABILITY description of the modeling methods and its software
gpd.ating implementation. Although this does not callout gaining
eview

E. USABILITY agreement at the start, it specifies details that need to be

Figure 19: Gass & Thompson's Validation agreed upon in the early stages of model development.
Framework (Gass & Thompson, 1980)
The validity and verification sections also provide more

guidance; not to the detail of Oren or Balci, but they provide the modcler with a better sense of the

segmentation of steps required in these expansive disciplines of verification and validation.

3.4.2.3 Assessment Processes with Numeric Ratings

Several frameworks have been presented thus far that show varying levels of detail in model validation
-and begin to introduce the communication aspect necessary for assessment processes. The following three
frameworks introduce the idea of assigning a numeric rating to the model at the conclusion of the assessment.

Gass (1993) presents four advantages when using a numeric scale during the model assessment process:

1. Decision-makers going through the process of determining weighting for the evaluated criteria
require additional attention to those criteria and their value to ensure the right measures are being
used

2. Sensitivity analyses can be done to understand the effect of criteria weightings to the final score

3. Similarly, sensitivity analyses can be done to understand the effect of the criteria on the final score

4. The rating objectifies the results that are presented in the model documentation to limit potential

interpretation issues

However, Sargent (2001) disagrees with the valuc of a numeric rating system in improving
communication indicating that it can lead to misinterpretation of the model:
A model may receive a passing score and yet have a defect that needs to be corrected

The subjectiveness of this approach tends to be hidden and thus this approach appears to be objective

The passing scores must be decided in some (usually) subjective way

el ol

The score(s) may cause over confidence in a model or be used to argue that one model is better than another. (p.

107)

It is most important to remember that “the accreditation score has no meaning by itself, it has to be
combined with a written report, along with related sensitivity studies, so that the user can make a better

judgment call as to whether to accredit the model” (Gass, 1993, p. 252).
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Jain and McLean (2009) present the idea of a rating scale for attributes related to model confidence. They

first present attributes related to increasing model confidence similar to those described earlier:

®  Software engineering practices/ software reliabilit
g g P Ly

®  Modeling practice

®  Model confidence/ verjﬁ‘cation, validation, and accreditation

®  Standards

¢ Interoperability

®  User friendliness and accessibility
®*  Performance

®  Innovation

Within the model confidence / verification, validation, and accreditation attribute, Jain and McLean do

not offer their own take on an assessment process, but rather offer other frameworks presented by other

authors, some of which discussed here. In addition, however, they present the predictive capability maturity

model (PCMM) (Oberkampf, Pilch, & Trucano, 2007). This model presents a zero to three scale to judge

six elements as to their level of assessment completed, the objectiveness of the reviewers (internal or

external) and level of documentation. The six elements are:

* Representation and Geometric Fidelity
®  Physics and Material Model Fidelity

* Code Verification

*  Solution Verification

*  Model Validation

®  Uncertainty Quantification and Sensitivity Analysis

This scale presents an easy communication
vehicle to quickly portray the rigor used in the

verification and validation process.

Gass and Joel (1981) introduce an assessment
framework with a numeric rating scale and highlight
the visualization that can be achieved. The
framework itself is similar to that of Gass and
Thompson presented earlier, but the resulting bar
graph (Figure 20) shows an example of how a rating

is applied to cach criterion represented by the hash

bar, which is easily compared to the minimum
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Figure 20: Example of Criterion Rating Matrix
where the criteria are listed and a black box shows
the minimum threshold required for each
criterion for the problem being addressed. A bar is
then drawn that compares the actual model rating
to the acceptance threshold. [Adapted from (Gass
& Joel, 1981)]



threshold required in order to confidently use the model results (black boxes). From this example, it can be
quickly secn that although the model plotted in this example has a high quality pedigree, it lacks data and
validation efforts. This allows modelers to know what to build upon to create a better model and tells the

decision maker what to watch out for when using this model.

The final framework presented is a best practice with regard to the various issues noted above. It provides
detailed guidance for building confidence against modeling criteria, documentation guidelines, and a rating

scale to improve the objectivity of the model review.

Following the accident with the Columbia space shuttle in 2003, NASA requested the development of a

Model and Simulation (M&S$) standard {that] would:

1. Include a standard method to assess the credibility of the M&S presented to the decision maker when
making critical decisions ... using results from M&S.

2. Assure that the credibility of M&S meets the project requirements.

3. Establish M&S requirements and recommendations that will form a strong foundation for disciplined
(structure, management, control) development, validation and use of M&S within NASA and its
contractor community.

(Bertch, et al., 2008; NASA, 2008; Thomas, Joiner, Lin, Lowry, & Pressburger, 2010)

Therc arc two primary parts to the resulting standard: NASA-STD-7009. The first gives a series of
requirements for the documentation process for the model or simulation. The second introduces a

credibi]ity assessment and scale with which to evaluate models and simulations.

There are forty-nine requirements for documentation which are summarized into eight sections (Bertch,

et al., 2008; NASA, 2008)

The credibility assessment scale introduced in the second part of the standard (Figure 21) contains eight

factors grouped into three categories:

a. M&S Development
(1) Verification: Were the models implemented correctly, and what was
the numerical error/uncertainty?
(2) Validation: Did the M&S results compare favorably to the reference
data, and how close is the reference to the real-world system?
b. M&S Operations
(1) Input Pedigree: How confident are we of the current input data?
(2) Results Uncertainty: What is the uncertainty in the current M&S
results?
(3) Results Robustness: How thoroughly are the sensitivities of the

current M&S results known?
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¢. Supporting Evidence

(1) Use History: Have the current M&S been used successfully before?

(2) M&S Management: How well managed were the M&S processes?

(3) People Qualifications: How qualified were the personnel?

(NASA, 2008)

Requirement Sections:

Description:

Programmatics This section links the model to the program or
project being addressed by it. It includes the
objective of the M&S, risk assessments, acceptability
criteria etc.

Models The details of the models such as data, structure,

assumptions etc. are maintained in this section.

Simulation and Analyses

This section begins with documenting whether the
simulation was performed within the limitations of
the model and continues with including data used for
the simulation, errors obtained, processes used, etc.

Verification, Validation, and Uncertainty
Quantification

This section includes documentation of verification
and validation techniques used and resulting data. Of
particular interest is the uncertainty quantification
that shows the processes and results for evaluating
uncertainty not only from the model, but from the
real system being explored.

Identification and Use of Recommended Practices

In many cases, there are more detailed practices to
model verification, validation, etc. that are specific
to a certain type of model. Those practices are
documented in this section to go above and beyond
what the NASA standard is intended to cover.

Training

This section discusses necessary training for the
M&S, but also the level of training required for the
various roles related to the model.

Assessing the credibility of M&S Results

This section provides the detail of the credibility
assessment scale covered in the second part of the
standard.

Reporting Results to Decision Makers

This is more of an executive summary — pulling out
the primary concerns, recommendations and results
that decision makers need to focus on.

Table 2: Summary of eight sections of documentation requirements per the NASA standard NASA-

STD-7009. (NASA, 2008)

Each of the eight factors is given a rating from zero to four depending on its level of credibility where

zero is generally insufficient evidence and four represents the best case relative to that factor. The standard

contains a detailed description of the rating for each of the factors and those details have been left out of this

thesis. The rating is generally determined using a short paragraph description of the qualities that are

associated with a given rating and factor. Each description varies by factor.
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Five of the factors contain two sub-ratings. The first is the evidence based on ratings discussed above. The
second factor, technical review, has the same criteria for each of the five categories containing it. It is also a
zero to four scale based on the level of peer review conducted, whether it be internal or external with
supporting documentation. The technical review is weighted up to 30% of the total score for its
corresponding factor with the evidence review being the remaining 70% or more and the addition of the two

then become the score for that factor.

M&S Results Credibility

Input Mfa

I
1
I

s (ot

Figure 21: NASA-STD-7009 Credibility assessment scale showing the eight factors and how they are
categorized into M&S development, operations, and supporting evidence (NASA, 2008)

The final total credibility score given to a model using this assessment is then the minimum value of the
eight factors. This final score can then be compared against the predetermined desired level of credibility to
determine if the model is acceptable to use for this application. Ahn and de Weck (2007) for example
conducted an assessment of a space logistics simulation M&S called SpaceNet using this process and an
interim version of the standard NASA-STD-(I)-7009 using a two round anonymous Delphi process and
arrived at an aggregate mean credibility score of 2.4 and standard deviation of 0.6 in round 1 and a mean
credibility score of 2.2 and standard deviation of 0.3 in round 2 on the 0 to 4 credibility scale. In the interim

standard it was allowed to aggregate the category scores into an overall score.

This M&S standard has many advantages. First, it provides a complete checklist for requirements to be
included in the model’s documentation. This should help achieve more consistent documentation across
models in the organization and is generally more complete. It also places focus on some critical areas that

need improvement. Finally, the final rating representation of the model is the minimum rating as opposed to
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a sum or an average. This places emphasis on the weaknesses in the model’s crcdibility and does not allow

them to be averaged out by the model’s strengths.

3.4.3 CONCLUSIONS OF MODELING ASSESSMENT

The assessment frameworks presented in this section barely scratches the surface of what is available in
the literature on this topic (Balci, 2004). However, it demonstrates some of the breadth in available
frameworks such as (1) the scope of the assessment being intrinsic to the model or including factors in the
modeling environment (2) assessments done with an emphasis on improving the communication between

modeler and decision maker and finally (3) both qualitative and numeric scales.

Besides the quantity and diversity of available frameworks, another observation revolves around the target
audience for these frameworks. They are focused on the modeler and developers and how this demographic
can work to improve communication and build confidence in the users and decision makers. However,

“model confidence [is] not ... an attribute of a model, but of the model user” (Gass & Joel, 1981)
The following questions are raised from the observations above:

1. Given the breadth of available frameworks available to help modelers build credibility in their models,
why is there still a large problem in the field with model misuse as introduced in the case studies?
2. The frameworks focus heavily on providing guidance to the modeler in building a better model, but

little attention is given to the decision maker’s perspective of the model or related processes.

3.5 BUILDING CONFIDENCE IN MODELS

Forrester (1961) differentiates between good and bad managers by their ability to selectively choose
information and by how they convert that information into action. “The manager sets the stage for his
accomplishments by his choice of which information sources to take seriously and which to ignore” (p. 93).
The last section presented frameworks for how modelers can help distinguish their model as one to be taken
seriously. However, Brennan and Elam (1986) indicate that “detail itself makes the decision maker’s task of
pinpointing important model relationships difficult” (p. 50), and also the details may not always be relevant

to bui]ding confidence.

Confidence is an attribute of the decision maker, and not an attribute of the model (Gass, 1993);
therefore, although the frameworks presented earlier do a lot to show whether a model has or does not have
sufficient quality for the task at hand, they do not address building confidence on the part of the decision
maker. Referring back to the decision support system, the interface with the user has not been addressed.

To better understand this problem of perception, it is necessary to define what it means:
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“Perccived product quality is an idiosyncratic value judgment with respect to the fitness for
consumption which is based upon the conscious and/or unconscious processing of quality cues in
relation to relevant quality atrributes within the context of significant personal and situational
variables.”

(Steenkamp, 1990, p. 317)

According to this definition, much of the focus of the assessment frameworks is developing the quality
cues and attributes of the product, or model in this case. The cues include the correctness of the model code
relative to the conceptual model and the accuracy with which the model represents the real system. The
quality attributes include the model’s pedigree and experience in solving similar problems or its robustness
to changing conditions. Each of these was represented in some fashion by the assessment frameworks

presented earlier.

Steenkamp’s definition of quality perception introduces the context within which these model-centric
cues and attributes are interpreted and aggregated by the decision maker. There are personal or situational
factors that can impact the decision maker's perception of the model itself and of the output produced by the
model, even if done so unknowingly. This context was not addressed by the earlier frameworks and may
help to explain situations where model perception does not match its actual quality (quadrants I and 1V).
There are a number of examples of context variables that can be provided from the case studies reviewed
earlier. For example, in the industrial case regarding the EGR measurement venturi implementation on a
diesel engine, the consequences of the situation around the design problem affected how the decision makers
viewed the problem. In other words the risk tolerance of decision makers was such that they were not
comfortable accepting the model’s predictions — despite the model’s solid pedigree — without also obtaining
experimental data that later turned out to be essentially redundant information. Similarly, immense financial
pressure at the § billion level was created during the airspace closure following Eyjafjallajokull’s eruption
and this brought uncertainty to the atmospheric model (that had been extensively validated) lowering its
perceived confidence level while raising confidence in an engine resilience model that was less mature or at
least less accessible but whose results would allow the airspace to approach normal operations again. In the
case of the Columbia tragedy, there were also a number of contextual factors affecting perception. Besides
consequences related to the space shuttle program, there were documented organizational issues in the

hierarchy and a lack of effective safety culture.

Steenkamp further describes the process around quality perception (Figure 22) that shows how these
factors interact for a decision maker. There are three stages of the process; first acquiring data about the
problem, followed by gathering information on attributes such as use history as well as critical aspects
surrounding the problem such as its criticality or deadlines, and finally integrating all the information to

generate a perception of the product.
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Figure 22: Conceptual model of the quality perception process. This process is divided into three
stages that begin with acquiring information about the product, applying belief attributes before
integrating that with external factors before resulting in a perception of quality (Steenkamp, 1990).

3.6 ROOT CAUSE DETERMINATION

There are two open questions after reviewing modeling assessment frameworks. The first relates to the
underlying motivation of the thesis and how, after so much work in the vast field of model validation and
assessment processes, there remain numerous examples of model misuse. The second question revolves

around the focus of model validation lacking from the perspective of the decision maker.

In the previous section, a framework was presented that focuses entirely on the point of view of the
P p ) P
decision maker as opposed to the point of view of the modeler(s) that was discussed earlier. It raised a new
uestion: what are the contextual variables that can impact a decision maker by means of the perception
q P y percep

process?

These questions highlight the root cause of the problems associated with validation and perception. With
regard to validation, there is much guidance in the literature to help modelers demonstrate the validity of a
model. However, what is needed is a means to help the decision makers understand the validation process
and its results for particular models. It is crucial for them to know what the areas of validity and what the
model limitations are as they input the results into their decision making process. In addition to that,
however, there are contextual variables that need to be understood and managed appropriately. These have
the potential of completely undermining the impact of a modeling activity may increase the risk of making a
decision that is based less on data and model outputs of good models and more on the context and instinct

alone.
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4 FRAMEWORK

At this stage, the initial problems uncovered from the case study examples - that of perception and
validation - have been further analyzed in the previous chapter to identify their root causes: 1) ensuring
proper model assessment, 2) understanding the problem from the perspective of the decision maker and 3)
awareness of potential contextual variables that may override the impact of model output on a decision-

making process.

Organizations trying to integrate model-based design within their processes can address these three
problem arcas in order to improve the implementation; organizations can help ensure that models are of
sufficient quality to use for decision making by applying aspects of the assessment frameworks presented
earlier. For instance, the NASA standard for rating model credibility addresses many of the critical areas of a
model’s validation and helps to create documentation for communication across the organization and for

long term traceability. This addresses the first of the root causes, but neglects the second two.

Using lessons from the case studies, the literature, and the author’s experience, a series of factors are
proposed that can potentially help to explain the behavior of decision makers, particularly in quadrants I and
IV. Awareness of these factors during the decision making process can help to better inform the process and
open the possibilities for new solutions that may be best alternatives given all the constraints of the problem

be they design, performance, or contextual environmental variables:

*  Effect of Consequences

*  Effect of Schedule Pressure

®  Availability of Mature Models

*  Purpose of Analysis

*  Uncertainty and its communication

*  Lack of Requirements and their validation

*  Source and transparency of the model

. Fragmented Knowledge in the organization

In this section, these eight factors will be introduced. With each factor, a discussion will be provided that

relates how the factor potentially impacts the four-box model and thus impacts the potential for optimal
model-based design in organizations. Recall from the four-box model, that the optimum operation point is

quadrant 11, having sufficient quality models available and a culture that will place confidence in those models

by using their results to help make good decisions,

41 EFFECT OF CONSEQUENCES

The first factor to consider is the consequences of the decision to be made. Consequences often relate to

financial results such as profits and losses, human health including life or death as well as impact on the
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natural environment. The greater these consequences, the more pressure it will place on the model that is
being used to make or inform a decision. This can cause the model to come under a lot of scrutiny to make
sure there is as little uncertainty as possible in the result before succumbing to the consequences. The
pressure placed on the decision maker in the event of large financial risk or potential loss of life may cause
the decision maker to consider other sources of information as opposed to relying solely on the results of the
model. In contrast, potentially beneficial consequences that are supported by poor models may be given
more credibility as they support a favorable outcome. As shown in Figure 23, the potential impact of this
factor is mainly on perception. The hypothesis is that if the outcome predicted by the model is favorable,
perception is improved thereby risking a poor decision if the model is actually bad (moving from quadrant 11
to quadrant I). On the other hand perception of model quality may be lowered if the predicted consequences

are detrimental, thereby causing decision makers to move from quadrant Il to IV.

Each of these scenarios, both under predicted

beneficial and detrimental consequences, are k>
>
apparent in the case studies reviewed earlier. The o ﬁ ?
— > |
3] o
EGR measurement venturi design problem had o % = e}
v a—
- , = 3 = =
significant  consequences relative to program %; % — E §
schedules. If the model was wrong, the product =g & Er
e &
could not be released to production before the :E ® \ 4
o
mandated regulation dates. This would make the A
product non-compliant and unable to be sold in the Actual Model Quality

domestic market. Similarly, the perception of the Figure 23: Effect of Consequences represented on

) four-box model. Consequences affect perception
quality of the atmospheric model of the ash cloud based on whether they are beneficial or
detrimental. They risk pulling a bad model from
quadrant I into 1 when consequences are
as financial pressures grew. In this same case study, beneficial, or a good model from quadrant II to 1V
if the consequences are detrimental.

ejected from Eyjafjallajokull’s eruption was lowered

the relatively immature model of an engine’s
resilience to ash supported the possibility of reopening much of European airspace sooner, thus adding to its

acceptance or perception despite its non-existence or immaturity.

As decision makers are posed with the problem of dealing with large consequences, they do not have the
freedom to change those consequences and therefore are left only to confront them. This is especially true in
cases where a decision cannot be simply delayed indefinitely. To do so requires first, recognition of the
impact of consequences on the decision making process and second, to understand potential alternative

actions that may optimize the design within the overall program constraints. Flexibility in engineering design
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is a cmerging ficld providing a framework that “enable[s] us to avoid downside risks and exploit

opportunitics” (de Neufville & Scholtes, 2011).

A good example of this in practice is with regard to the final legislation following Eyjafjallajokull’s
eruption. The tiered approach to airspace closure from ash concentration has allowed for the necessary
flexibility for airlines to operate with reduced cost and logistical impacts while still maintaining safety for the
passengers. This relieved much of the pressure from the atmospheric model to where its use continued
despite the scrutiny placed upon it. However, the conceptual model the tiered legislation is based upon

requires proper validation to ensure the continued success of this flexible plan.

Similar strategics might have been taken in the case of the EGR measurement venturi where a number of
potential alternatives could have saved testing efforts and schedule delays while providing added confidence
that the model results were believable. These range from digging further into past validation work of the
model to prove its competence, to running partial physical tests to prove the functionality of the model’s
results in order to move forward more quickly and with less impact to the program budget and schedule.
Alternatively, a flexible design could be implemented immediately, based on guidance from the model.
Doing so would impact the final prototype builds less in the case that the model is ineffective rather than

having to start over.

4.2 EFFECT OF TIME PRESSURE

Time pressure is related to the effect of consequences, as schedule pressure is often a consequence of a
decision itself, as was the case with the Columbia tragedy and the EGR measurement venturi. However, this
factor speaks more to the time limit within which decision makers must act. Consequence and time pressure
are thus somewhat decoupled variables. If schedule delays are a significant risk, that implies that a decision
must be made in even less time to alleviate the schedule and to allow sufficient time for implementation of

the action.

When decision makers are asked to take action in a limited amount of time, we hypothesize that they will
value inputs to the decision process differently. The impact of this time pressure can be uncertain. It could
result in implicit trust in the data from the decision support system, as there is no time to debate and no
other sources of data available, or alternatively it could cause the decision maker to rely more on other

factors such as the consequences, or past experiences, which may or may not be relevant.
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E x-axis in Figure 24, the result to the four-box
.:é) |5 % A ? ] g E‘;"a model is shown. Here, the perception will change
ﬁu; % g K+ g g depending on how the time available influences
‘E _Cz' - § g E §_ + the value of inputs. Time pressure could reinforce
% = § "g :8' gb the positive belief in an already good model, or it
:% a = .E-' [ é Y /| g could raise the credibility of a poor model with
g the reverse situations being true. Options while

Actual Model Quality under time pressure can be limited when it comes

Figure 24: Effect of Time Pressure represented on to providing more understandmg of the details
four-box model. Time pressure affects perception
relative to model-based design based on how the
decision-maker relies on the model in this perceived properly. With regard to the Volcano
situation. If decision-makers use whatever inputs
available, then they are more likely to use a bad
model (quadrant 1). Conversely, if they choose to
use other factors of the problem, the model may
not be used effectively. (Alemanno, 2011a, p. xxii).

around the model to ensure its results are being

case, the question was raised: “is rational decision-

making possible in a situation of emergency?’

When under time pressure the effect of the other factors may be amplified. In the case study examples,
each case demonstrates this where the consequences carry even more weight in the decision-making process.
For both the EGR and volcano cases, a risk-averse strategy was chosen in order to take action quickly.
However, each of those cases, as discussed above with the consequences factors, could have potentially

chosen more flexible solutions that would alleviate some of the risk in the decision.

In the case of the Columbia space shuttle, there was no time to certify a physics-based model that may
have predicted more reliable estimates of damage from the foam projectile at launch; there was little time to
choose any action before the space shuttle would run out of resources while orbiting. There is significant
debate to this day whether it would have been possible to launch a rescue mission with a ot space shuttle

waiting on the ground. Therefore time pressure during the mission became paramount.

43 AVAILABILITY OF MATURE MODELS

Another factor that has an impact on both the validation and perception processes is whether mature
models are available to use for the decision-making process. This factor looks not only for the existence of a
model to use, but whether that model has been used successfully in the past and is robust to varying
conditions. The more of a track record and successful history of use a model has, the more likely it is to be
believed. In general models begin as empirical models (e.g. using regression models, kriging, neural
networks etc...) when the understanding phenomena are poorly understand and gradually become more

sophisticated and credible as the underlying physics and causalities of the problem become better understood.
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The impact to validation from this factor is
related to having more robust models available that
will, over time, gain credibility. With more use,
more validation will be done which will move
models to the upper right in the four-box model
(Figure 25). The eventual impact of this factor is

also on perception. Decision makers will become

more accustomed to using a model-based decision

support system and with experience will come trust.

The example from the Columbia space shuttle
case shows the resulting validation problem from
not having available mature models. The Crater

algorithm had existed for some time, but was based
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Figure 25: Availability of Mature Models
represented on  four-box model. Model

availability will improve model quality over time
drawing from quadrant I to 11 as more robust
models become available. This practice will also
change perceptions from generally risk-averse
behaviors in quadrant 1V to I1.

on empirical data, not on a physics base, thereby it
was not suitable to a problem that required extrapolation beyond its validation region thus resulting in poor

model quality.

The perception effect can be seen from the EGR measurement venturi example where the organization
was not yet accustomed to making decisions based on models, but was instead still heavily oriented towards
physical testing as most problems in the organization did not have models available to use for decision-
making. The prospect of using only a model to make a critical decision was therefore foreign to the decision
makers as they lacked the experiential element, having not in the past made successful model-only based

decisions.

Addressing this factor first takes investment of resources to develop and manage models within the
organization. Impacting the perception from the point of view of the decision maker often takes time before
the value of model-based decision making becomes universally accepted. Insisting on the use of models in as
many problems as possible can accelerate this process. This will not only improve the validation of the model

itself, but will begin to increase the visibility of a model’s value with decision makers.

4.4 PURPOSE OF ANALYSIS

The purpose of analysis is a factor intended to capture if there is alignment between the decision makers
and the model being used to solve a problem. For instance, it determines if the right questions are being
asked to solve the problem at hand, and whether the model can answer those questions. This factor is related

to both validation and perception.
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It was established earlier that model validation is

Modeliné Purpose
< ]

performed around a purpose of the model, in other
words for a specific set of use cases or range of

inputs. Therefore, if the model is not being used for

its intended purpose that may essentially invalidate

Model Quality
Wrong Question
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€

the model (Figure 26). By the same token, if the
model is not addressing the right problem, the

Decision Maker’s Perceived

decision-makers will have less confidence in the

Actual Model Quality
model.

Figure 26: Purpose of Analysis represented in the
four-box model. A different purpose of analysis
may draw good models from quadrant II to I by
using it for problems it was not intended to solve. (Columbia case best describe the validation problem
This factor can also impact perception by taking a

good model and asking the wrong question, related to the purpose of analysis. The algorithms
thereby potentially moving it from quadrant 11 to
1Vv.

The Crater and Crater-like algorithms from the

were not designed to address the problem at hand.
Not only were the models asked to predict RCC
panel damage using parameter values well outside their validated region, they were not originally intended
to answer the question of penetration depth, particularly in the case of the Crater-like algorithm for the

RCC panels. Using the models for this purpose invalidated their results.

The perception effect can be seen from the volcano case related to the atmospheric model. In the days
following the initial airspace closure, the validity of the atmospheric model was called into question when in
reality key stakeholders were asking the wrong question. The problem was not whether the ash cloud was in
one location or another; it was how to get the airspace flyable again with an acceptable level of risk. Once
this greater problem was realized, it was clear that the atmospheric model was not the right (or only) source

of information to find the ultimate solution.

The purpose of the analysis is a critical communication aspect between the modelers and decision makers
in both directions. Without knowing the purpose of the model, decision-makers risk misusing the model as
it was intended. Without knowing the purpose of the question, the modeler risks building or selecting the
wrong model. Some of the assessment frameworks presented carlier seek to address this communication gap
by providing complete documentation of the model’s intended purpose and assumptions. By accepting these
practices in the modeling process, the modeler has a means to make this more known to the decision maker.
However, the problem does not begin with documentation. In fact it begins when the decision maker
communicates the intent of the modeling activity to the modeler. A clear, solution-neutral problem
statement needs to be provided to the modelers that allow for the best model to be selected or created. In

some cases a model developed for a different purpose may indeed — after some extra validation - turn out to
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be adequate for the new purpose, in some cases the model may require adaptation and, finally, in other cases
a model should not be used for the new purpose at all and assuming sufficient time and resources are

available - an entirely new model should be created.

4.5 UNCERTAINTY AND ITS COMMUNICATION

Uncertainty is potentially a very important factor influencing the confidence in a model. Often
uncertainty has a bad connotation in that it implies little is known about the system and the model’s ability to
represent that system. However, knowing the uncertainty allows for a better understanding of the likelihood
that the system falls within a range of performance levels predicted by the model. Often uncertainty is not
generally determined, particularly not at a system level where the value is directly attributable to a
requirement and includes the variability from all pieces of the system it is describing. When uncertainty
information is not available or communicated, decision makers are required to use their own mental
perception of the model and system to judge within what accuracy the predicted model output is. This
concept will vary based on an individual’s experiences, biases, and situational factors and therefore will not

be consistent.

Uncertainty can impact both a model’s < Improved ljncertainty to ]

validated quality as well as its perception (Figure % the Real Systerq |

27). Reducing uncertainty of the model output E E’- . —
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Figure 27: Uncertainty and its communication
the model relative to the real system is known by represented in the four-box model. Uncertainty
has the potential to move models to the optimum
for model-based design: quadrant II. It does so by
the problem, perception will improve, as the improving perception of good models by

indicating its capabilities and limitations. By
decision maker will understand the likelihood of recognizing uncertainty, it can also drive model

perception in different ways. If uncertainty from

the decision maker and is at acceptable levels for

improvement to reduce uncertainty relative to
the real system thereby allowing bad models to
move from quadrant I to I1.

making the right decision.

Besides determining the level of uncertainty, its
communication is perhaps even more critical. As discussed, a decision maker not knowing at all about the
uncertainty inherent in a model may let other perception factors such as past experiences or the state of the
situation dictate what they sense as being the right decision. Just as important as this, however, is that during

the initial problem formulation that the decision maker communicates the level of acceptable uncertainty for
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a problem to be solved or model output to be produced. For example, early in a development program, a
simple answer of the behavioral trend (increasing or decreasing?) may be sufficient without care for the
absolute value until later in the program. A common frustration in organizations implementing model-based
design is that decision makers generate a problem statement and modelers take too long building a model
that has much higher fidelity than is needed for that stage of decision making. As a consequence, decision
makers are often required to make a decision without input from a model, since the model is still under
development. Once the model is ready, its output is no longer needed since the decision has already been

made.

From the case studies there were several discussions about uncertainty that impacted their outcomes. In
the Columbia tragedy, there was a very high level of uncertainty associated with the results produced by the
Crater and Crater-like algorithms because they were being used so far beyond their validated region.
However these uncertainties were not communicated well to the decision makers who were making
engincering judgments based on these models. Had these uncertainties been better communicated, perhaps
the decision makers would have sought other sources of information with which to reduce the uncertainty,

such as the in-orbit pictures of the shuttle that had been requested on numerous occasions.

The atmospheric model used to forecast the ash cloud propagation from Eyjafjallajokull’s eruption was
also impacted by uncertainty. There were many known uncertain inputs to the model from data based on
visual observations and meteorological data. Although these uncertain inputs were recognized, the resulting
impact on model output uncertainty was not communicated and perhaps this provoked increased model

scrutiny as test flights were being conducted.

The key point related to this factor is that uncertainty is not bad per se, but no knowledge of model
uncertainty or lack of communication of it can lead to model misuse. For model-based design to be effective
in organizations, a clear understanding of allowable uncertainty for a problem needs to be established early
and communicated to the modelers, In return, modelers need to provide model uncertainty information that

is aligns well with the requirements of the real system.

4.6 LACK OF REQUIREMENTS AND THEIR VALIDATION

This factor refers to the level of upfront work to a system and model to generate requirements and
validate those requirements against the real system. The stated requirements govern the desired
performance and behavior of the system and therefore it is not possible to judge the quality of a model if the
details of its behavior are unknown or ill defined. Therefore, this factor impacts the model validation and

resulting quality (Figure 28).

58



In the case of the EGR measurement venturi

Specified and Validated
Requirements

. >

example, lacking requirements early in the program

prohibited early system-level modeling and limited

the effectiveness of the engine cycle simulation.

Although high-level requirements for the product

Model Quality

were available as mandates from the various

stakeholders such as emissions limits from the EPA,

Decision Maker’s Perceived

engine perfonnance expectations from the

Actual Model Quality

customers, and sizing constraints from the vehicle

Figure 28: Requirements and their validation
represented in the four-box model. Improving
to subsystems was not determined. For example, requirement specification and validation yields

the opportunity to improve model quality as it is
knowing the allowable error in EGR measurement better defiied.

applications, the applicability of these requirements

as a function of required NOx emissions may have

helped to understand earlier what an optimum design solution might be.

A similar situation can be seen from the Columbia accident. Early space shuttle program requirements
had indicated that the RCC panels would not be subject to impact. As a consequence RCC panels were not
designed specifically to withstand foam impacts during ascent. After numerous impacts during launch did
occur in reality, it became clear that this was a missing requirement. Had this requirement been properly
stated and subsequently validated, it may have helped to develop more mature models to assess foam impact

earlier.

There is much to read in the literature about requirements of engineering processes. As part of systems
engineering implementation, a crucial step is setting up full requirements early and decomposing them to
subsystem and component levels. In addition, they need to be properly managed during the course of thel
program as changes to requirements often occur. Besides generating good requirements, model-based design
applied to systems engineering can help to validate those requirements early while continually developing

models for use later in the program,
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4.7 SOURCE AND TRANSPARENCY OF THE MODEL

The source of a model refers to who created and programmed it or who used it to generate results.
Transparency is similar, but refers to how accessible the concepts, assumptions and governing equations of
the model are to the decision makers. The more trust-worthy the source and the more transparent the
model, the more confidence a decision maker will likely have in it (Figure 29). According to this logic a
“black box” model from an unknown source would result in a low level of confidence. This is not to say that
proprietary models or those from less trust-worthy or unknown sources are wrong, just that they are not

likely to be perceived with as high a level of regard as transparent models from reputable sources.

From the volcano case, the engine model is a

good example of lack of transparency. As the model
does not exist in the public domain and may be held

confidentially by engine manufacturers, it is difficult

to validate its credibility particularly as it is used for

public legislation related to actions during volcanic

Model Quality
juatedsued],
Ay8iy pue a21nos
Ayziomisnag,

1

eruptions that affect the flying public. The effect of

Decision Maker's Perceived

the legal system and availability of “discoverable”

Actual Model Quality information during lawsuits may have a strong

Figure 29: Model Source and Transparency impact on model transparency and willingness to
represented in the four-box model. A trustworthy
source combined with a model that is transparent
will improve how people perceive the model
allowing a good model to potentially move from
quadrant IV to II.

share model details.

The EGR measurement venturi represents an
example of a trusted source gone awry. In this case,
a conceptual model of the measurement venturi was
accepted with few limitations because it was what competitive engines in the on-highway diesel engine
market had already adopted. However, as the designers were in competition with each other, transparency

into the details of their implementation was not available to understand potential difficulties.

It is difficult to overcome personal biases related to a model’s source and transparency. However, as
model-based design initiatives and benchmarking competitions in industry increase, there are more
modeling packages and third-party modeling consultants emerging to help address the level of work and
expertise required. Therefore, this has the potential to become a growing issue in industry. It is important
for decision makers to remain as objective as possible in the face of these concerns and to develop standard
validation plans that will help to ensure that the models, regardless of their origins, are still representative of

the system.
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4.8 FRAGMENTED KNOWLEDGE IN THE ORGANIZATION

It is not possible for every person in an organization to know, in detail, all aspects of every technical
problem. What is critical is making sure the necessary information required to make a decision is properly
communicated and aggregated; lack of this can lead to fragmented knowledge and an information gap
between the decision makers and the modelers. This can happen because of the structure of the organization,
obstacles to communication, or differing levels of technical understanding of the system and model. The
impact of this factor is similar to the purpose of analysis where if the decision maker does not have full
knowledge of the problem and surrounding situation, the perception will be affected more so by other
factors. Similarly, if the modeler does not have sufficient knowledge of the problem, the model may not

meet nceded requirements.

In the case of airspace closure from the T

Eyjafjallajékull volcanic eruption, much has been '% A . 8
documented on the segmentation of knowledge and g_'—-’ E‘ g g Q
responsibilities and how that played a role in the E_’ C% g § .a |
impact the volcano had. Macrae presented the g% g % :"';'
problem in a succinct manner (Figure 31). Here, _E = g' g =
the capability of making a decision is plotted against l§ ® -

the knowledge of the problem. Many of the = M

Actual Model Quality

modelers and scientists had the most knowledge

Figure 30: Fragmented Knowledge represented in
about the problem such as details from the (he four-box model. As decision-makers have a
better understanding of the problem and the
model being used, a good model is more likely to
engine’s resilience to ash at the engine be utilized.

atmospheric model and information about the

manufacturers; but these groups did not make the
decisions. Moving up the decision capability or decision authority axis, knowledge is lost about the details of
the problem. It is imperative that the knowledge the people at the top of the decision chain have is what is

needed for the problem. This is also an acute challenge in the intelligence community.

Model assessment frameworks presented earlier show different documentation techniques for the model
intended to help decision makers become more knowledgeable about the model. However, the contextual
variables suggested in the previous factors are critical to share as well. This forces both modeler and decision
maker to be cognizant of the factors, some of which they cannot control, and can then work to mitigate their

effects in order to get the optimal use out of the model and to ultimately make the best decision.
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Figure 31: Decision-Making and Knowledge Map of Actors in the Volcano Case. The x-axis shows the
degree of knowledge about the case where the y-axis illustrates the capability or authority in the
decision process of the various actors. Engine manufacturers had the most knowledge of the situation,
but no capability in making decisions on airspace. The decision-makers at the top of the chart had
much less knowledge about the models on which to base a decision (Macrae, 2011).

5 TESTING THE FACTORS

The framework presented in chapter 4 included eight factors that help to describe how contextual factors
can impact decisions within an organization trying to implement effective model-based design principles and
decision-making. The factors were formulated based on research, case study analysis, and industry
experience. By drawing from these sources, there are risks that additional complexities in the cases may have
skewed the conclusions. Therefore, it is necessary to test the hypotheses discussed in the last section by
means of an experiment where the complexities can be better controlled. This section will present such an
experiment that used a website with a simple model of a catapult that had been developed by Dr. Troy
Savoie and Dr. Daniel Frey (Savoie & Frey, 2012). People were asked to interact with the model in order to
make a design decision on the catapult. They were asked to provide direction for the design decision, and

then complete a survey based on their experiences,

As part of the experiment, there were different problem details and model descriptions that intended to
alter the contextual factors from the framework and measure how people responded. This data could then
be used to determine the impact of each factor discussed in sections 4.1 through 4.8 and also help inform
methods that may optimize the impact of these factors relative to the four-box model thereby driving

behavior of organizations preferentially towards quadrants IT and 111
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51 HYPOTHESIS

The overall hypothesis of the experiment is that the factors presented in the framework (4.1 through 4.8)
do indeed impact decision-making processes in model-based design. It was also of interest to test each factor
against the four-box model used in the previous section to describe its impact because doing so would help
to identify methods for managing these factors. Therefore, the detailed hypotheses are shown by factor in

Table 3.

Factor Hypothesis

Prediction of beneficial consequences will improve
Effect of Consequences model perception while detrimental consequences
will reduce perception of model quality

Applying time pressure will cause people to use
Effect of Time Pressure whatever inputs are available in the process whether
validated or not

By asking questions of the model for which it was

Purpose of Analysis not originally created, the quality perception of that
model will be reduced

Uncertainty and its Improving information about uncertainty will lead

communication people to better recognize a good or bad model

Source and transparency of the | A more trustworthy model author and transparent
model governing equations will improve model perception

Better knowledge of the entire problem will cause
Fragmented Knowledge ) !
’ the perception of the model to increase

Setting Requirements and

Model Availability Could not be easily tested in this experiment

Table 3: Summary of experimental hypotheses by factor

52 METHODOLOGY

5.2.1 DESIGN PROBLEM

The experiment revolved around a single binary decision related to a simple design problem. The

following text was given to the user describing the objective of the problem:

“Your company is releasing a catapult to the market that will be used for educational purposes... You are
responsible for approving the design before releasing the product. Your team was on track to release the
product until there were some last-minute changes in requirements. You now have to decide whether to
approve the design for release, or delay the product launch to either redesign the catapult or wait until

prototypes have arrived to test the new catapult design based on the new specifications.”
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The changes in requirements involved 1) Changing the ball type, 2)
reducing the number of rubber bands from two to one and 3) addition of a
constraint where the launch and pullback angles together could not be more
than 90 degrees (see Figure 32). The performance objective of the catapult was

unchanged. The catapult had to be able to get a ball into a cup located at a

given distance from the base of the catapult (see Figure 33),

[0}
After interacting with the model for a limited time, the user had to choose Ol =+ '?) = 90

Figure 32: Launch plus
Pullback Angle Design
Constraint

between two options:

®  Proceed with Product Launch: use the current design proposal to

meet requirements

® Delay Product Launch: wait for additional testing with the proposed design with potential for

redesign needed

The user was provided an online model of the

F “ Y - f system to use to help understand if the new design
was going to work and meet its requirements.
Some of the test subjects were also given test data
from the real system to validate if the model was
truly representative. The users were told they

" \L— SRR | l S ti would have limited time to check the model against
! : ' : ‘ : ' the validation data, test the design scenario, and

Figure 33: Performance Objective for the Catapult
make a decision.

5.2.2 DESIGN OF EXPERIMENTS AND FACTORS

The experiment conducted was based on a one factor at a time (OFAT) experiment design. In this
method, a reference case is run, and each factor is changed one at a time while the remaining factors remain
at a reference level (Savoie & Frey, 2012). This design was chosen for the reduced number of experiments
required to test the factors, as there was concern about getting a large enough sample size for each case. The
OFAT method loses the ability to quantify any potential interactions in the factors, but this was not a

primary focus of the experiment.

64



Not all factors presented in the framework in chapter 4 could be experimented on in the context of a
website, therefore the following factors were chosen to vary in this experiment:
*  Effect of Consequences
¢ Effect of Time Pressure
*  Purpose of Analysis
*  Uncertainty
*  Model Source
In order to validate the 4-box model (Figure 1), it was necessary to also run models that were both of
good and poor quality. This resulted in the following test matrix (Table 4) with 12 experiments with each of

the five factors tested with good and bad model quality.

The reference and test cases will be discussed in the following sections specific to each factor, however,
the reference was intended to be run with more realistic settings of the factors, not necessarily the best or
worse case for model perception. A full factorial experiment would have required 276 = 64 test cases and
with approximately 20 test subjects per test case to obtain reliable statistics a total of about 1,280 test
subjects would have been required. With the OFAT design the number of required test subjects was closer

to 240, which was more realistic given the time constraints of this thesis.

After the respondents each completed the experiment by responding with a design decision (go for
production now or wait for additional information), they were directed to a survey to collect additional data
about their thoughts and opinions of the model. The full survey instrument is provided in the Appendix, and
the questions were designed to elicit the respondents’ confidence in the model in cases where that
confidence may have differed from their choice to proceed or not as that decision may have been driven by
factors other than model confidence. In addition, questions were asked in the survey to determine if the test
factors were important to the users in their considerations, and therefore would be effective in their
respective test cases. For example, in the case of model source, the respondents were asked if they
considered the model’s source as important when making their decision. For other factors, like uncertainty,
the respondents were asked to rate the capability of the model and catapult with respect to launch distance
repeatability. In this case, those presented with uncertainty bands from the test case knew the answer to this

question, whereas those without uncertainty bands were left to guess.
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Model Quality | Consequences | Time Pressure P::‘[;T;:i:f Uncertainty Model Source

1 Good Reference Reference Reference Reference Reference
2 Bad Reference Reference Reference Reference Reference
3 Good TEST Reference Reference Reference Reference
4 Bad TEST Reference Reference Reference Reference
5 Good Reference TEST Reference Reference Reference
6 Bad Reference TEST Reference Reference Reference
7 Good Reference Reference TEST Reference Reference
8 Bad Reference Reference TEST Reference Reference
9 Good Reference Reference Reference TEST Reference
10 Bad Reference Reference Reference TEST Reference
11 Good Reference Reference Reference Reference TEST

12 Bad Reference Reference Reference Reference TEST

Table 4: OFAT Design of Experiments. The definitions for “Reference” and “Test” levels for each
factor will be discussed in sections 5.2.3 through 5.2.8.

5.23 MODEL AND VALIDATION DATA

The model used for this experiment was a
simple catapult model based on a physical catapult,
XPULT (Figure 34), used for teaching design of
experiments, six sigma, etc. (Peloton Systems LLC,
2010). The model was a java-based model
developed by Dr. Troy Savoie for use in his own
experimenting (2010). The visual interface was
very realistic and intuitive, showing the catapult, it
launching a ball and a depiction of the ball's
trajectory and impact point. The model allowed

the user to change the same factors as in the real

catapult (Figure 35):

*  Ball (smooth or perforated)

®  Number of Rubber Bands (1 or 2)

Pullback Angle (0 - 120 degrees)

Figure 34: XPULT catapult from Peloton Systems

Launch Angle (0, 15, 30, 45, 60, 75, 90 degrees)

Besides the ability to use the model, some users received a set of validation data. This was data taken

using the physical catapult within a given configuration. Generally, the validation data included runs with a

single ball and rubber band setup and a series of launch angle and pullback angle combinations were run. The

data was presented in both graphical form and tabular form.
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It was necessary to have a good and bad model e —

r — S

for this experiment. Due to complications with [ =
obtaining the source code for the model, it was not
feasible to edit the model in order to break it and
make it intentionally bad. Therefore, the model was
virtually “broken” using the validation data. In the

physical experimentation, it was found that the

smooth ball data correlated well with the model, B

while the perforated (whiffle) ball did not, T Siaimon™ (" Rever

particularly at smaller launch angles. Therefore, in Figure 35: Java-based model of the catapult

the case of the good model (odd experiment (Savoie, 2008)

numbers in Table 4: rows 1,3,5,7,9 and 11), the data from the smooth ball was provided and the test
subjects were asked to evaluate the model using the smooth ball, while in the bad model experiments (even
experiment numbers in Table 4: rows 2,4,6,8,10 and 12) test subjects received validation data from the
perforated ball. The difference between the two cases, besides the ball, was primarily in the performance of
the model at the critical launch and pullback angle points relative to the new performance requirement
(constraint) — or the combination of launch and pullback angles that were equal to 90 degrees. The good
model matched its validation data within the uncertainty bounds (about plus or minus 10 inches) at the
launch and pullback angle combinations of interest (primarily 30 degree launch with 60 degree pullback
angles and 45 degree launch with 45 degree pullback angles). The bad model, however, did not match the
validation data at these same pullback angle / launch angle combination points within the same uncertainty
bounds. The data was modified some from the physical experimentation so that the “good” model data
would be better and the “bad” model data would be worse. The final charts comparing the data between the

model and the validation data provided are given in the Appendix (Figure 39 and Figure 40).

5.2.4 CONSEQUENCES FACTOR

In order to represent the effect of serious consequences on the perception of a model, a scenario was
devised that would place economic pressure on the user. The test subjects were told that there was a
potential reward for early sales contracts if the design was released on time, which would require
proceeding with the design now. The value of these contracts was $1,000,000. However, there was a risk of
$3,000,000 in warranty claims if the design was sent to market early and was unable to meet its
performance objective once deployed. If the user chose to delay the design for further testing, there would

be a cost of §500,000 in testing and redesign efforts. The following table summarized the consequences

factor (Table 5):
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Catapult Design is GOOD Catapu]t Design is BAD

Launch Product $1,000,000 potential for securing first-

$3,000,000 lost in warranty costs
to-market contracts

Delay Launch Lost opportunity for $1,000,000 in Saved from $3,000,000 in warranty
carly contracts costs
Additional $500,000 in testing efforts Additional $500,000 in redesign and
to verify design testing efforts

Table 5: Consequences of Design Problem Decision

The reference case for the Consequences factor was chosen to be representative of reality in which case
the scenario presented in Table 5 was provided to the user. In the test case, the users were told this was
purely an academic exercise. The implication of the test case was that there was no real consequence

whether the test subject made a good or bad decision.

5.2.5 TIME PRESSURE FACTOR

The time pressure factor was implemented by changing the time users were given to spend with the
validation data and when they were supposed to make a decision. When the user went to “run the model”
from the website, the next page included the validation data, a link to download the data, and a summary of
the design problem they were trying to solve. At the top of the page was a timer to remind them how much
time they had left. After the timer expired, they were automatically sent to another page without option to

return and they were forced to make a decision right there and then.

The reference case for the time pressure was not chosen based on what is most common in reality, which
would generally be a short amount of time to make a decision. During pilot testing of the experiment, it was
found that the short time created such significant pressure on the user they were not paying attention to any
other factors in the experiment. Continuing with a short amount of time as a reference may have resulted in
inconclusive results for the remaining factors. Therefore, the reference case was made to be 15 minutes

(long time = little or no time pressure) and the test case was 4 minutes (short time = lots of time pressure).

5.2.6 PURPOSE OF ANALYSIS

For the purpose of analysis factor, the performance objective of the catapult was changed. The model is
very well suited to provide a prediction of the horizontal distance traveled by the ball from the catapult. The
model visually shows the launch and ballistic trajectory of the ball, therefore, it is possible to judge a
maximum vertical height reached by the ball, although this value is not an explicit numerical output from the
model and therefore it requires careful visual split-second inspection while the model is running to

determine it.
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The performance objective of the catapult was to get a ball into a cup (Figure 33). Test subjects in the
reference case were told the cup was located at 48 inches from the base of the catapult. If they could confirm
that the catapult could launch the ball greater than this distance, then it could be configured by the customer

to land in the cup.

The test case used the height as the objective. In this case, users were told the cup was located at a
distance from the base of the catapult. The engincering team had confirmed that the ball could travel far
enough under the new requirements to reach the cup, however, the ball needed to also go high enough in
order to fall into the cup as opposed to hitting the side or rim. Therefore, the ball needed to reach a
minimum height of 14 inches during its travel. The validation data did not change for the case and was still

focused on horizontal distance.

5.2.7 UNCERTAINTY

The uncertainty in this case was communicated via the validation data. Error bars were either presented
or not presented depending on the experiment. The charts shown in Figure 36 show examples of what the
test subjects saw. On the left of Figure 36, the uncertainty information is not available and it was up to the
user to decide how accurate the validation data was. On the right, the error bars were provided showing

approximately plus or minus two standard deviations from the actual measurements.

Launch Angle: 30 degrees Launch Angle: 30 degrees
v 90—
£ 125 . £425 '1
Q Q
€ £ |
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S 50 S 50 |
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Pullback Angle [degrees] Pullback Angle [degrees]

Figure 36: Example Validation without Uncertainty (left) and with Uncertainty (right)

The reference case for uncertainty was to not communicate uncertainty information (no error bars), as

this is typical of reality. The test case presented the error bars in the validation data.

5.2.8 MODEL SOURCE

The model source used in this experiment was meant to provide more or less credibility to the model

based on who developed it and what sort of code was used. This was provided in the description of the
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design problem as well as a reminder when the user was inputting their decision. The reference case was to

be realistic and truthful about the source of the model:

“The model was developed by a PhD student in the Mechanical Engineering department at MIT. This
model uses principles of physics to estimate the landing position of the ball. The PhD student has modified

the model to meet the new design specifications.”
Users with the test case saw the following:

“The base model was found online and was calibrated based on data from the original prototypes. This
model is proprietary and therefore it is unknown how the model is calculating distance. The editable

parameters in the model have been modified to meet the new design specifications.”

5.2.9 REMAINING FACTORS

The remaining factors: Lack of requirements and their validation, availability of models, and fragmented
knowledge were not directly included in this experiment primarily due to the difficulty in testing them in
this environment. However, questions were included in the survey to help collect potential datasets that
could determine patterns based purely on the a priori experiences of the respondents. The survey questions

asked at the end of the experiment are shown in Appendix C section 8.3.1.4,

53 IMPLEMENTING THE EXPERIMENT

The website for this experiment was developed by Spinutech (2012) with direction and content provided
by the author. The website included each of the 12 experiments described in Table 4. As a user went to the
website, they were assigned an experiment 1D number and saw the details related to that experiment.
Subsequent users received the next experiment in the table and so on. So if a test subject started the
experiment and was assigned to row 5, then the next test subject would automatically be assigned to row 6.
After row 12 the table index reset to row 1. There was no need to randomize the runs as the order people
went the website was essentially random. This was also done in an attempt to provide even sample sizes for
each of the experiments. Test subjects were only allowed to do the experiment once so that learning effects

should not be a factor.

The website link was distributed by a variety of means. The intent was to target “students and
professionals in a technical field.” This was a rather broad classification. Emails were sent to several hundred
colleagues both in professional and academic environments. In the email, the recipients were encouraged to
forward the email to their own network, In addition, posts were made to the LinkedIn website (LinkedIn

Corporation, 2012) specifically posting to various technically focused group to which the author belongs.

70



The experiment was open for about four wecks, During that time, there were about 400 hits to the
website. However, only results that were tagged as “completed” were used to analyze as these results
included a final decision on the design problem. There were 252 responses that completed the experiment
and this slightly exceeded the target of 240 that had been set for this OFAT experimental design. The
responses were distributed across the experiment rows as shown in Table 6. By inspection, there was a I‘airly

even distribution of responses by experiment number,

Experiment | Number of Model Conbeatences Time Purpose of Uhcertsiy Model
= Respondents [ Quality 4 Pressure Analysis y Source
1 23 Good Reference Reference | Reference | Reference | Reference
2 22 Rad Reference Reference | Reference | Reference | Reference
3 19 Good TEST Reference | Reference | Reference | Reference
4 23 Bad TEST Reference | Reference | Reference | Reference
5 21 Good Reference TEST Reference | Reference | Reference
6 22 Bad Reference TEST Reference | Reference | Reference
7 20 Good Reference Reference TEST Reference | Reference
8 21 Bad Reference Reference TEST Reference | Reference
9 20 Good Reference Reference | Reference TEST Reference
10 18 Bad Reference Reference | Reference TEST Reference
11 22 Good Reference Reference | Reference | Reference TEST
12 21 Bad Reference Reference | Reference | Reference TEST

Table 6: Number of Respondents by Experiment Number

5.4 RESULTS

5.4.1 STATISTICAL TEST

The data obtained from the experiment required regression analysis in order to determine relationships
between dependent and independent variables. However, the variables collected from this experiment were
non-continuous and usually dichotomous therefore requiring logistic regression as the primary method for
analysis. Logistic regression is similar to the more familiar linear regression but is designed specifically for
use with discrete outcomes by employing the logistic distribution with the logit transformation (Hosmer &
Lemeshow, 1989). Details of the logistic regression derivation will not be covered here. This section will
provide an introduction to some of the types of results taken from the regression analysis used in the data

results and interpretation to follow.

There were two important things to extract from the experimental data being analyzed: first, do
relationships exist between input variables and outputs and second, are those relationships statistically
significant. The resulting relationship from logistic regression following the logit transformation is of the

form of linear regression where:

g(x) = Bo + Pr1x1 + - + Bnxn
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The resulting coefficients (B) are more uscful for independent variables that are continuous in nature.
Therefore, the relationship of interest for discrete independent variables is an odds ratio. If the independent
variable in the model has options A or B, the odds ratio is defined as the odds of A over those of B for a given
outcome (Hosmer & Lemeshow, 1989). The odds ratio (W) is related to the regression coefficients through

the following:

Yy, = eh

For the example where the odds ratio is the odds of A over B, the resulting value can be interpreted by
the following with respect to a given outcome:
y = 1.0 Aisaslikelyas B to produce the outcome
Y<1.0 Ais less likely than B
Y >1.0 A is more likely than B
Based on the above ratio, it is key to understand which level of the independent variable is A and which is

B as provided here to interpret the ratio properly.

Knowing the odds ratio will determine the impact a variable has on an outcome, however, it is important
to understand if the variables in the relationship are statistically significant to the model and therefore are
reasonable predictors of outcomes. As in the case with other regression techniques, the model is compared
against the data when it includes the variable in question, and when it does not (Hosmer & Lemeshow,

1989). A statistic describes this comparison for logistic regression as:

(likelihood without the variable)

G = —2In | lihood with the variable)

The G statistic follows a chi-squared distribution and can be used to determine probabilities. The
resulting p-value is the probability of the G statistic on the chi-squared distribution. This p-value is the
probability of the null hypothesis B=0) being true given it was rejected, therefore it is necessary for the
p-value to be small, or less than a significance level (Rice, 2007). The significance level for this testing was
chosen to be 10% due to the small sample sizes and the nature of testing, Therefore, p-values less than 0.10
would indicate that the independent variable in the modeled relationship would be a significant factor to the

outcome.

In the remaining section, the results from the testing will be discussed in terms of these two ideas: the
odds ratio or how much more or less likely a characteristic may play over another and the p-value to

determine if that ratio is statistically significant.
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5.4.2 OVERALL RESULTS

In the results, there are two outcomes that are indicators of perceived model quality relative to what has
been presented thus far (i.e. the y-axis in the 4-box model of Figure 1). The first is the design problem
decision: whether to proceed with the design or wait for additional testing. This indicates how the
respondents viewed the entire design problem, but did not necessarily speak to model perception,
particularly if the decision was made with little influence from the model. Therefore, model confidence was
another response obtained from the aposteriori survey question that was used to judge simply how the

model, itself, was perceived regardless of the design decision that was made.

With this in mind, the first question of the overall data was whether the testing was effective at allowing
perception factors to influence respondents’ behaviors. If the decision was obvious, then there would be no
influence of other factors like time pressure or consequences. To test this, the decision outcome was
compared against the quality of the model used for the case (Table 7). If the cases were too obviously related
to model quality, then people would always choose to proceed with a good model and to wait with a bad
model. In other words we would expect that all test subjects would only fall into quadrants Il and III. The
results showed close to even distributions between a “proceed” and “wait” decision regardless of model

quality. This shows that respondents were influenced by other factors, like those from the framework, when

making their decisions.
Design Decision Outcome by Model Quality
Odds Ratio (W)
Model Quality Decision Outcome Responses Regression
. " N P-Value p{Proceed)
(Good Model is Baseline) Coefficient v
Proceed Wait p(Wait)
Good Model 43% 57% - - -
Bad Model 51% 49% -0.60 0.170 0.55

Table 7: Distribution of decisions based on good or bad models from the cases. The distribution shows
about even distributions between proceed and wait regardless of model quality indicating the
problem was not obvious.

Knowing that factors contributed to people’s decisions, an overall regression analysis was done comparing
the factor being tested in each case against the reference. The dependent variable in this analysis was the
decision outcome of proceed or wait. The results showed that only the purpose of analysis factor was
effective at significantly changing the design problem decision (Table 8). The data was also analyzed for each
factor’s overall impact on model confidence. Model confidence was rated in the survey on a scale from one
to five (five being the highest level of confidence) and the average is plotted by factor in Figure 37. Other

measures recorded via the survey could be mined in the future to further refine the dataset and understand

73



.

to what extent each of the factors impacted the decision process. The remainder of this section will explore

further each of the factors individually relative to the additional data obtained from the experiments.

For each of the factors, a similar analysis approach is taken. First, the data was analyzed to be sure the
experiment was effective at testing the factor. This was judged using survey questions specifically targeting
each factor. Once confirming the experiment was a successful test, the data was analyzed to understand how

the factor may have impacted the decision or the model confidence.

Design Decision Outcome by Factor Tested

Odds Rati
Decision Outcome Responses Regression EREtio 1)
Factor (Reference is Baseline) P-Value p(Proceed)
Coefficient —_—
Proceed Wait p(Wait)
Reference 60% 40% - - -

Consequences 45% 55% -0.60 0.170 0.55
Purpose of Analysis 39% 61% -0.85 0.054 0.43
Model Source 44% 56% -0.64 0.139 0.53
Time 49% 51% -0.45 0.294 0.64
Uncertainty 45% 55% -0.62 0.167 0.54

Table 8: Analysis of the decision outcome by the factor test case as compared to the reference case. All
factors show no significant difference in the decision outcome as compared to the reference except
for the Purpose of Analysis factor where there is a higher likelihood of choosing to “wait” with this
case as compared to the reference.

Average Model Confidence Measure by Factor Tested
95% CI for the Mean

4.5

4.0+
g
€ 354
8
]
g 3.0

2,54

Refer'ence Conseq'uences Pur;;ose Sot'me Ti;ne Unoer'tainty
Factor

Figure 37: Average of model confidence (dots) plotted against the test factors. Purpose, Source, and
Time factors all show a significant reduction in confidence as compared to the Reference case taking
into account the 95% confidence interval.
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Based on the results it appears that the different factors influenced mean model confidence significantly
but did not clearly bias the actual binary decision one way or the other except for the purpose of analysis.
Another way to say this is to say that of all the factors tested the one most likely to lower confidence in a
model is when decision makers are asked to base a decision on a model that was originally designed for a
different purpose. Not only did this lower confidence in the model, it also made decision makers more risk
averse (i.c. wait 69% versus accept the current design 31%). The next strongest factors influencing model

credibility were the source of the model and the exercising of time pressure.

5.4.3 CONSEQUENCES

Changing whether there was financial risk to the design decision in the experiment tested the effect of
consequences. In the case of the reference test, there was money at stake for early contracts and possible
penalty of warranty for a defective design; whereas in the consequences test case, there were no risks
dependent on the decision. Initial inspection of the full dataset was done by comparing the survey response
asking whether the consequence influenced the decision. The consequences test responses showed a
statistically significant difference from the reference case indicating those faced with higher consequences
and financial downside risk, as in the reference, were more likely to be influenced when making a decision,
all else being equal (Table 9). This result corresponds with many of the comments provided in the survey
where respondents expressed concern for making it to market first or being subject to potential warranty

exposure. This proves that consequences were a contributor to the decision.

Influenced by Consequences by Factor Tested

Influenced by Consequences . Odds Ratio (¥)

Factor (Reference is Baseline) Responses Regre_Sflon P-Value p(Yes)

Coefficient e

Yes No p(Nn)

Reference 79% 21% - - -

Consequences 43% 57% -1.59 0.002 0.20
Purpose of Analysis 84% 16% 0.32 0.592 1.38
Model Source 68% 32% -0.55 0.300 0.58
Time 76% 24% -0.14 0.801 0.87
Uncertainty 78% 22% -0.07 0.910 0.93

Table 9: Analysis of the Test Cases as compared to the Reference for whether the consequences
influenced the ultimate decision for the design problem. The consequences test case was the only
factor that showed a significant difference from the reference. The odds ratio indicates that with

consequences removed, as in the test case, the respondents are 20% less likely to be impacted by the
consequences when making their decision.
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The hypothesis presented in section 4.1 suggested that the perception of the model would be impacted by
consequences depending on whether they were beneficial or detrimental (Figure 23). Because the reference
case had both depending on the decision, it was necessary to determine how the respondents felt was a
stronger consequence to know how their perception would be impacted. To do this, it is necessary to
calculate the expected value (EV) of the decision with consequences as is done in Figure 38. In this
calculation, the probabilities of the model being correct are left unknown and shown as p being the

probability that the model is correct and 1-p being the model is wrong.

Mode! Prediction
Correct + $1 Million in
EV'=+$1 Miflion Early Contracts
Proceed based on p=p
Model Recommendation
EV(millions) = 1p - 3(1 - p) Model Prediction
Incorrect - $3 Million in
Ve S Wawany
Design Problem q=1-p

Decision

Model Prediction

- $1 Million in missed
opportunity + - $0.5

Delay until physical Million in testing

Test results available

EV(millions) = -1.5p + 2.5(1 - p) + $3 Million in saved

Warranty + - $0.5
Million in testing

Figure 38: Decision tree for Reference test case including Expected Value calculations

At 50% probability that the model is correct, the EV of proceeding is -$1 million whereas delaying
would have an EV of +$0.5 million. Knowing nothing else, the best choice would be to choose to delay as it
has a higher EV. However, the respondents knew more about the model than 50/50 odds and its validation
allowed to make a better determination of p and therefore know whether the consequences were more
beneficial or detrimental with the design. The minimum value of p to make the EV of proceeding greater
than waiting can be calculated with the following inequality (Equation 1). Here, if the respondents are more
than 68% confident in the model, they will believe the consequences to be beneficial and may perceive the
model more positively, whereas anything less than 68% would be considered detrimental and may bring

about risk-averse behavior.

EV roceed >EV

pi delay
4p-3>-4p+25
. p>68.75%

Equation 1: Expected Value Inequality
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For this problem, the model confidence was binned in order to align with indicating a probability greater
than 68% or not. Thercfore, model confidences of four and five were made “high” and the rest were “low.”
Only for those that indicated they were impacted by the consequences in their decision for the reference
case, which amounted to about 80% of the respondents, a regression analysis was done to determine the
impact of confidence on the ultimate decision. The results shown in Table 10, indicate that the reference
case showed a significant impact of model confidence on the ultimate decision where the higher the
confidence, the more likely the respondents were to choose to proceed with the design, regardless of model
quality. Although this seems an obvious conclusion, it is more interesting when compared to the
consequences test case analysis. Here, the same test was done and found to be inconclusive, or model
confidence did not impact the ultimate decision because there was no influence from beneficial consequences

in the case of high confidence, or detrimental consequences in the case of low confidence.

Design Decision Outcome by Factor Tested
when Consequences Influenced the Decision

Model Confidence | pecision Outcome Responses | pepression Ocdds Ratio {'F)
Factor (High Confidence P-Value p(Proceed)

: Coefficient e
is Baseline) Proceed Wait p(Wait)

High Confidence 79% 21% - - -

Reference
Low Confidence 18% 82% -2.83 0.003 0.06
High Confidence 43% 57% - - -
Consequences
Low Confidence 33% 67% -0.41 0.697 0.67

Table 10: Analysis results for determining decision outcome against model confidence for the
reference and consequences test cases for those respondents who indicated the consequences
impacted their decisions. The Reference shows a statistically significant impact indicating that as
confidence drops, the respondent is more likely to wait on the design problem regardless of the
model’s quality. This is in contrast to the consequences test cases where decisions were made to
proceed or not regardless of confidence in the model.

Aligning model quality with its perception is highly correlated with the decision being made. The solution,
however, cannot mimic this experiment where the consequences were removed all together. One key to
making model-based design more effective in these situations is to raise the value of p, or the probability the
model is correct, from the perspective of the decision maker. This includes improving the model’s quality
itself, but also ensuring adequate communication of the model and its validation to reduce potential
uncertainties from the decision maker. Using the experiment as an example, for the good model cases, it
was necessary to portray to the user that the model was truly good enough to make a decision to proceed. In
the cases with the bad model, there was no opportunity given to improve the model itself, but proper
validation communication would still be effective because it would have lowered the confidence in the

model, driving people to wait for testing.
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Another option for more effective model-based design is to add flexibility where new decision paths may
allow for improved beneficial consequences. In the experiment, users were given two options: proceed or
wait. However there could be alternatives that would allow for higher EV even in the face of model
uncertainty. A third option could be considered where the design would proceed under conditions where
the model had been proven valid and parallel testing activities would continue to confirm functionality under
the new requirements where the model was less certain. For example, the model provided for the
experiment had been tested and validated with two rubber bands and a specific ball. Could the design be
released in this configuration at elevated product costs? Once confirmation testing had been completed and
valid design was ready, this could be released as a means to lower product costs for the remainder of its life
cycle. In this scenario, the early contracts would be awarded and the potential warranty costs would be

avoided.

The consequences factor proved to be an important variable in how people approached the design
decision. Regardless of a model’s quality, people were influenced by whether they believed the
consequences to be more beneficial or detrimental. This can hinder the implementation of model-based
design in organizations particularly where consequences are large. However, by improving model validation
techniques using some of the methods presented in section 3.4, the decision tree can better align with the
actual quality of the model. More importantly, by using principles of flexible design, the decisions can be
setup to make the best use of scenarios where the model is most certain and still avoid penalties where the

model is less certain.

5.4.4 TIME PRESSURE

Time pressure was tested in this experiment by allowing 15 minutes with the model for the reference
case and only 4 minutes in the high time pressure test cases. Based on initial inspection of the data, the
distinction in time was significant enough to cause a separation between the cases where the time test cases
were five times more likely to respond that there was not enough time to make a decision as compared to
the reference (Table 11). This time pressure did however not impact whether people chose to proceed with
the design or not as compared to the reference and therefore, they did not perceive the problem differently.
However, their confidence in the model was signiﬁcant]y reduced (Figure 37) and further analysis was

needed to understand the impact.
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Enough Time for the Experiment by Factor Tested

. Odds Ratio (W)
Enough Time Responses Regression

Factor (Reference is Baseline) . P-Value p(Yes)

Coefficient =

Yes No P(NO)

Reference 68% 32% - - -

Consequences 64% 36% -0.19 0.689 0.82
Purpose of Analysis 64% 36% -0.20 0.681 0.82
Model Source 65% 35% -0.16 0.744 0.85
Time 31% 69% -1.55 0.002 0.21
Uncertainty 76% 24% 0.37 0.504 1.45

Table 11: Regression analysis on whether the respondents had enough time to make a decision by the
test cases. The Time Pressure test case was the only case where there was a significant difference from
the reference where people were more likely to say that there was not enough time.

The hypothesis presented earlier suggested that time pressure would improve perception when the
respondents trusted whatever inputs were available or would seck other sources if they did not have
confidence in the model. To test this, the confidence was tested against each decision for both test cases. The
same binning used in the previous section was upheld for consistency. For those that chose to wait, there
was no difference between the reference and time pressure cases where in each case lower confidence in the
model generally resulted in a “wait” decision. However, where the respondents chose to proceed with the
design, the impact of model confidence was different between the reference and time pressure (Table 12)
regardless of model quality. This results in the Time Pressure cases to be more likely to choose to proceed
with low model confidence as compared to the reference case. In fact, the results showed that about 85% of
the reference case respondents who chose to proceed had high confidence, where the time pressure case was
about half and half on confidence regardless of model quality. This suggests that when people do not have
time to make a rational decision based on data but are forced to do so, they come out with about the same

odds as the decision itself. In the case of a binary decision this is similar to a coin flip.

Further investigation was done, based on the hypothesis, that other factors would force the decision.
However, there were no ties to a change in the influence of consequences, for example. Therefore, the
hypothesis presented earlier is not fully validated. When there is high confidence in the model, the
perception of the model (or the ultimate decision) does not necessarily follow in the case of high time
pressure. Similarly, other sources were not sought to make the decision such as the impact of consequences.
Instead, people chose a decision and the result came out to about an even number of cases between a

proceed or wait decision.
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Model Confidence by Factor Tested
dependent on Decision as "Proceed" or "Wait"

Factor Model Confidence Responses Regression Odds Ratio (W)
Design Decision (Reference is CoatRaiant P-Value p(High)
Baseline) High Low p(Low)
Reference 87% 13% - - -
Proceed

Time 47% 53% -2.08 0.010 0.13

Reference 33% 67% - - -
Wait
Time 22% 78% -0.56 0.478 0.57

Table 12: Analysis of the impact on confidence by test case dependent upon the design decision made.
When respondents chose to wait, there was no difference in model confidence between the reference
and time pressure cases. However, when they chose to proceed, there was a significant difference in
confidence between the two test cases. Here, the time pressure case was much more likely to have
low confidence in the model yet respondents still choose to proceed.

What was clearly determined, was that under time pressure, model confidence is reduced. Therefore,
under time pressure, the full benefit of model-based design in organizations would not be realized and
decisions would not be data-based but more akin to a random coin flip. Over time, people would not grow
to trust models. This is where flexible design becomes important as discussed in the previous section. There,
the example was given to proceed using a case where the models were validated (i.e. two rubber bands) and
proceeding with confirmation testing as well under the new requirements. Although there are additional
costs for releasing a more expensive product, those can be removed in further iterations and the risk of

warranty cost is reduced and benefits of arriving early to market are realized.

5.4.5 PURPOSE OF ANALYSIS _

The purpose factor required the respondents to evaluate the maximum height of the ball at its apex as
opposed to its horizontal distance. Given that the model did not provide a height output, this was very
difficult to determine; only an image of the ball flying through the air against a background grid could be
used to judge height achieved. In fact, qualitatively, this factor caused the most distress in the respondents.
Several people in this test case expressed frustration in the model’s inability to predict height via emails as
well as comments in the survey. This distress was evident in the overall results from the experiment where
this factor was the only one where a significant difference was noted in the decision outcome as compared to
the reference case (Table 8) where people were more likely to wait on the results of the physical design
testing regardless of model quality. It follows too that the confidence in the model for the purpose test cases
was more likely to be lower as compared to the reference (Figure 37). These findings agree with the
hypothesis that asking questions from a model for which it was not originally intended will generally lower

quality perception of that model.
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What is of most interest, however, is understanding why people chose to proceed anyway with a design
even when the model was clearly not suitable for the problem similar to what was found in the case studies.
Further investigation of the results may help inform why this continues to be a problem in organizations.
Reading through the comments for those that had been selected for the test group and chose to proceed with

the design, there were two common themes that described why people chose to move forward anyway:

*  The consequence of losing first-to-market advantage was too great
¢ Assumed the model was correct and interpreted it as best as they could
The first item was discussed in the earlier section on consequences. The second item, however, highlights
a weakness. People were provided with a measure of height, however subjective that measure was. This was
done in order to improve the fidelity, or the realism of the model where people could pull back the catapult
arm, launch the ball and watch the ball in flight. This improves the experience of the decision maker
(Grogran, Lee, & de Weck, 2011). However, there is a tradeoff that additional information used in a model
should be validated before it is incorporated to protect a model’s credibility. Based on examples from this
experiment, and lessons from the case studies such as in the Columbia accident, decision makers will seck

out any sources of information to better inform themselves on the decision to be made.

5.4.6 UNCERTAINTY

The impact of uncertainty in the experiment was tested by showing error bars on top of the validation
data for the test case whereas the reference case had no error bars. The intent was to allow the respondents
to ascertain whether their validation runs were valid relative to the provided data. Based on the overall
results, there was no overall impact on the decision or model confidence with uncertainty communicated
(Table 8 and Figure 37). To measure the effectiveness of the factor in the experiment, the responses were
compared between the stated capabilities of a catapult against that of the model. The uncertainty test case
respondents knew the catapult’s capability to reproduce its results from the error bars in the validation data
— the data showed the catapult was fairly poor at reproducing distance. Based on the results (Table 13), the
uncertainty test case was more likely to predict poor capabilities for both the catapult and the model as

expected, This indicates the factor was effective in testing.
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Catapult and Model Capability by Factor Tested

Odds Ratio (W)
Catapult or Model Kactor Capability Responses Regression
Capability (Reference is Coefficient P-Value P(Good)
P Baseline) Good Bad n p(Bad)
Reference 75% 25% - - -
Catapult
Uncertainty 45% 55% -1.31 0.015 0.27
Reference 59% 41% - - -
Model
Uncertainty 35% 65% -0.97 0.061 0.38

Table 13: Statistical analysis of stated capabilities of a catapult and the model comparing the
Reference to Uncertainty cases. In both cases, there is a strong correlation between people’s stated
capabilities and the test case.

The hypothesis presented in section 4.5 indicated that with communicated uncertainty, the perception of
a model would improve because by presenting uncertainty information decision makers would gain more
clarity as to the validity bounds of the model. However, it was found that the decisions did not Changc
significantly between the uncertainty and reference test cases. The confidence in the model was compared
between the reference and uncertainty cases to see if the perceived capability of a catapult and model
translated to the confidence in the model (Table 14). Again, the case for uncertainty showed no change in

trend from the reference case.

Based on these results, the hypothesis for uncertainty could not be validated. Therefore, although the
uncertainty was communicated and showed people a reduced level of capability in the model and catapult, it

did not impact their decision and therefore their overall perception of the model as a decision-making tool.

This is a very curious result as much of the literature, as discussed earlier, is clear about the value of
communicating uncertainty and its value on improving the use of models to make decisions. In this example,
data shows that the uncertainty was properly communicated, but made no difference in how people
interpreted that knowledge into their decision. Therefore, more needs to be understood with respect to
uncertainty. For example, what form does uncertainty need to be in for better communication and reception
by the decision makers? In this experiment, the uncertainty was in the distance, but perhaps a better
uncertainty would be in the final decision: there is X% of being correct (p-value from the decision tree in
Figure 38) resulting in Y expected value. This statement is much more intuitive to interpret and puts the

uncertainty in terms that are direct]y applicable to the decision maker.
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Model Confidence by Factor Tested
dependent on Model Quality

Factor Model Confidence Responses | gegression Odds Ra‘tno by
Model Quality (Reference is Coefficient P-Value p(High)
Baseline) High Low piLow)
Overall (all model Reference 66% 34% - - -
uality cases
quality ) Uncertainty 61% 39% -0.22 0.672 0.80
Reference 65% 35% - - -
Good Model Quality
Uncertainty 64% 36% -0.03 0.966 0.97
Reference 67% 33% - - -
Bad Model Quality
Uncertainty 57% 43% -0.41 0.582 0.67

Table 14: Tables comparing model confidence between Reference and Uncertainty test cases.
Confidence is similar for both cases regardless of model quality.

5.4.7 MODEL SOURCE

The final factor that was explicitly tested was the source of the model. In the reference case, the model
was from a PhD student from MIT and was based on physics principles. In the source test cases, the model
was downloaded from the internet and the governing principles in the model were unknown (black box
model). Using survey responses indicating the importance of the model’s source in the decision, the data
was able to determine if this factor was effective in the experiment. However, results showed no difference
in whether the source author made a difference between the reference and source test cases (Table 15).
Interestingly, a few of the other test cases did. The consequences, purpose, and time factors all behaved
differently as compared to the reference. The odds ratio suggests these cases were less likely to be impacted
by the source author. This is likely because the other test factors in these cases overshadowed the model’s

source.

To analyze the case of the model source author further, focus was placed on the datasets that indicated
importance of the source author between the reference and source test cases. About 50% of the cases for
each found the model’s source to be important. The design decision outcome was analyzed based on the
reference or source case as well as the model quality for the experiment. There was an interesting outcome
in this analysis (Table 16). The results showed that when the source of the model was important to the
decision maker, then the source test cases were more likely to choose to wait on the design decision as
compared to the reference with statistical significance. This was true for the good model, and almost
exclusively the case for the bad model. This indicates that the hypothesis presented earlier suggesting that
the perception will change depending on the trustworthiness of the source was able to be validated. In the

source test cases, the model’s source was less trustworthy in having no specified author and no
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understanding of the concepts comprising the model. This created enough uncertainty with the respondents

that they tended to want to wait and not proceed with product launch,

Impact of Source Author by Factor Tested

Importance of Source Author Odds Ratio (W)
Factor (Reference is Baseline) Responses 2::;3::’: P-Value p(Important)
Important | Not Important p(Not Important)
Reference 49% 51% - - -

Consequences 28% 72% 0.88 0.065 2.42
Purpose of Analysis 21% 79% 1.27 0.013 3.56
Model Source 54% 46% -0.21 0.651 0.81
Time 23% 7% 117 0.024 3.21
Uncertainty 45% 55% 0.16 0.751 1.17

Table 15: Analysis results comparing each of the test cases and the impact of the source author on
those cases. The source test case showed no significant difference as compared to the reference
although consequences, purpose, and time did vary from the reference case. In each case, the odds
ratio suggests that these cases were less likely to be impacted by the model source.

To understand this problem further, the model source is broken into two attributes: the trust-worthiness
of the author and the proprietary-nature of the code whether it is open or closed to the model users. This
experiment tested two extremes relative to these attributes. First, the reference case represented a model
from a trustworthy source (MIT PhD in Mechanical Engineering) and an open model (physics-based
principles) and the results showed acceptance of this. In the source test case, the opposite scenario was
presented: an unknown, therefore potentially untrustworthy source combined with a proprietary model
with unknown governing equations. The data showed people’s hesitation to this combination. Evaluating the

other two cases may help to determine possible solutions to model source concerns in decision-makin :
ep P g

The first of these cases is when the model comes from a potentially untrustworthy or unknown source but
its code is open for inspection. In this case, whether a model is used should depend on how the model
performs in validation. Because the source code is open, validation is a step that can be performed well in

order to understand how well the model can support a decision-making process.

The alternate case is when the model is from a trustworthy source, but the code is proprietary. This
happens often in industry where third-party consultants sell models but protect their intellectual property by
locking down the code of the model. In these cases, validation can be done around the known problem space,

but little can be done to understand how well the model can extrapolate to new regions in the space. In this
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case, it is important to review the credibility of the source and the experience behind the model and its

pre\'ious app]icatinns.

From these two scenarios, it is clear that it is important to validate the available information whether it be

the credibility of the source or the validation and transparency of the model or both.

Design Decision Outcome by Factor Tested
when Source Author is Important for Good and Bad Model Quality

Odds Rati
Factor Decision Outcome Responses | pegression & Rutio ['F)
Model Quality (Reference is Coefficient P-Value p(Proceed)
Baseline) Proceed Wait p(Wait)
Reference 73% 27% - - -
Good Model
Source 8% 92% -3.38 0.007 0.03
Reference B7% 13% - - -
Bad Model
Source 44% 56% -2.17 0.086 0.11

Table 16: Design Decision results compared against source cases and model quality where model
source was important. For the source test case, with both the good and bad models, the respondent's
would more likely choose to wait as compared to the reference.

5.4.8 IMPLICIT FACTORS FROM THE EXPERIMENT

Three remaining factors: availability of models, requirements and their validation, and fragmented
knowledge were difficult to test in the experiment form used as they are more dependent upon factors
among organizations as a whole. Survey questions were included to try to understand more about the

population relative to these factors and those will be shared.

Model availability was examined by three survey questions. First, the users were asked if models were
generally available in their organizations, second if those models were designed for the purpose of the
problem and finally, a sense for model availability based on whether the users’ organizations generally did
more physical testing or modeling during their product development activities. The responses for the
population generally indicated that models were available and often for the required purpose (Table 17).
However, whether people had models available or not did not show significant relationships with any
responses such as the decision, model confidence, or capabilities in the model or catapult. This factor
requires testing in a more disciplined manner in an environment specific to an organization where more than

qualitative responses could be used to judge model availability.
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Requirements and their validation was another .
;! Are models available?

. P . this " ¢
difficult factor to test using is experimen Yes No

mcthodology. This factor was surveyed by asking 66% 34%

the respondents to rate their organizations with
Do they match the purpose?

regard to setting requirements and validating them.

Yes No
As before, the responses showed that generally this 77% 23%

practice was done well within organizations and Does your organization depend more on

physical testing? Or modeling?
Physical Testing__| Modeling
other outcomes from the experiment. Similar to the 53% 47%

there was, again, no relationship in this response to

model availability, this factor requires a different Table 17: Survey responses relative to model
availability
survey method with quantitative inputs.

The final implicit factor tested was fragmented knowledge within the organization. Given the
experimental method, it was not feasible to understand how well knowledge was managed within an
organization and attempting to do so would likely lead to results similar to those for the model availability

and requirements. Therefore, the respondents were asked if they:

a.  Were familiar with catapults and the physics-based concepts

b. Were familiar with creating and using mathematical models

Using the responses from the above two questions, four categories were created indicating the level of
knowledge: familiar with models and catapults, neither, or only one or the other. These categories were
then tested against the design decision and model confidence. Table 18 shows there was no impact to the
overall decision as a result of knowledge. Although the case with model famibliarity and without knowledge
of a catapult had response percentages that trended towards more waiting in the decision. However, the
sample size of this group was very small compared to the others which explains the statistical insignificance
of this trend. Table 19 shows the same analysis with model confidence. Here, there is a significant difference
in being familiar with catapults but not models. These cases proved to be more likely to have confidence in
the model as compared to those who either had no knowledge or were more familiar with modeling
practices. This is an interesting result that suggests parallels with MacKenzie’s certainty trough (1990).
Those who are far from the problem (no familiarity) have high levels of uncertainty (indicated by low model
confidence). Similarly, those are very close to the problem (model familiarity) have high levels of
uncertainty as well. Where those familiar with the real system and not models are in the trough, or have

high model confidence.

More testing is required to fully understand the impact of this factor as these preliminary analyses suggest

important findings, but they lack enough detail to make specific recommendations.
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Design Decision Outcome by System Familiarity

% Odds Ratio (V)
System Familiarity Decision Outcome Responses | pagression .
e ee s . ) P-Value p{(Proceed)
(No Familiarity is Baseline) Coefficient T
Proceed Wait p(Wait)
No Familiarity with Cataults or Models 41% 59% - -
Familiar with Catapults
4 .209 .
NOT Models 52% 48% 0.42 0.20 1.53
Familiar with Models
27 ;] 0.301 0.52
NOT Catapults % 73% 065
Familiar with BOTH
4 B i 4
Catapults and Models il =% 015 0.640 1.18

Table 18: Analysis of the design decision by familiarity of the system. This analysis showed no
significant difference between system knowledge levels and the final decision outcome.

Model Confidence by System Familiarity

Odds Ratio (¥)
System Familiarity Model Confidence Responses | pagression ik (High)
(No Familiarity is Baseline) - Coefficient e
High Low p(Low)
No Familiarity 46% 54% - - -
Familiar with Catapuits
NOT Models 61% 39% -0.59 0.084 0.55
Familiar with Models
40 : 0.667 b
NOT Catapults % 60% 0.25 1.28
Familiar with BOTH
Catapults and Models e S ios 0801 1.09

Table 19: Analysis of the model confidence by familiarity of the system. This analysis showed that
familiarity with catapults but not models had significantly higher confidence in the model as
compared to the other cases.

6 CONCLUSIONS

614 SUMMARY

Through the course of this thesis, the goal has been to understand the challenges in model-based design
within organizations as related to model confidence and validation. Using case study analysis from three
different real world cases, two primary challenges emerged: the problems of model validation and model
perception. A thorough literature review further analyzed these problems to uncover the underlying
questions behind these problems: 1) ensuring proper model assessment 2) understanding the problem from
the perspective of the decision-maker and 3) awareness of potential contextual variables that may

overwhelm the input data to a decision-making process.

Much has been done in the literature to address the first question regarding model assessment; NASA's

standard NASA-STD-7009 used to assess model credibility is a good example of an assessment to help ensure
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that models are good for use. However, the latter two issues relate more to the decision-makers and how

they perceive the model, a realm not addressed well by literature.

Using lessons from the case studies, literature, and industry experience, eight factors are proposed that,
when merged with a mature model assessment process, may positively influence decision-makers. By
positively influence we mean that decision makers should be able to recognize bad models and not use their
output during decision-making (quadrant 111) and that they should have confidence in good models and use
them for decision-making (quadrant II). The goal is not to convince them to use a model’s result in every
design problem, but rather to better align their perception with the actual quality of the model result

relative to the design problem.
The 8 factors influencing perception of model quality and potentially decision outcomes are as follows:

®  Effect of a decision’s consequences

*  Effect of time pressure under which to make a decision

*  Availability of mature models to use for design problems

Purpose for which the model is being used relative to its originally intended purpose
*  Uncertainty and its communication

*  Lack of system-level requirements and their validation

*  Model’s source author and transparency

*  Fragmentation of knowledge through organizations.
These factors were tested for their true impact using a simple model in a web-based experiment. Results
from the experiment showed interesting findings that proved that the framework proposed is a good start
toward a further understanding these problems. It illustrated some particular areas of research and suggested

some potential methods that could help alleviate the negative impact these factors might have on a decision-

making process. A summary of the findings from the experiment is shown in Table 20.
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Hypothesis

Factor Hypothesis R Summary of Findings
YP Validated ry g
. The expected value of the options
Prediction of benefidial P ) P
. (based on model confidence) drove
consequences will improve -
) ' the decision when consequences
Effect of model perception while .
) Yes were present. When consequences
Consequences detrimental consequences
] . were removed, model confidence no
will reduce perception of . o
) Ionger impacted the decision
model quality
J outcome.
Applying time pressure will .
PPiyIng let p The threshold of confidence in the
cause people to use )
Effect of Time P P model needed to proceed with the
whatever inputs are Yes ) o
Pressure ) . design was significantly reduced
available in the process h Wine ti essu
. when applying time pressure.
whether validated or not Pplying P
By asking questions of the
model for which it was not This factor significantly changed the
Purpose of Analysis | originally created, the Yes design decision from the reference
quality perception of that to more likely wait.
model will be reduced
Results showed this factor was
Improving information properly tested based on responses
Uncertainty and its about uncertainty will lead N of catapult capability changing from
. . ” . o) ©
communication people to better recognize a the reference, but there was no
good or bad model significant difference in the decision
outcome or the model confidence
For the cases where the source was
A more trustworthy model important to the decision, there was
Source and T o .
author and transparent a significant difference in the
transparency of the . ; . Yes >
del . governing equations will decision outcome where
mode ; :
improve model perception untrustworthy sources caused
reduced confidence.
Initial results showed possible
Better knowledge of the . P
. . connection between knowledge and
Fragmented entire problem will cause . -
. Inconclusive | model confidence however this
Knowledge the perception of the model

to increase

factor requires more testing to
explore this factor further.

Table 20: Summary table of factors tested in the experiment, their hypotheses and a review of the
findings from the experiment results.

6.2

RECOMMENDATIONS

There were some overriding themes that came from the analysis that can serve as recommendations to

organizations looking to improve their model-based design practices. First, ultimately the decision involved

in a design problem can be mapped on a decision tree where the probabilities of model correctness can be

used to provide a quantitative assessment in terms of the expected value of the decision options. This then

allows evaluation of flexible design options where the risks of acting on a bad model can be mitigated with

minimized cost involved in rejecting a good model. Therefore, whatever the consequences of a decision or -
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the scheduled deadline under which a decision must be made, the organization can still take advantage of

model-based dcsign practices with higher confidence and lower risk.

Communication across an organization is another recommendation from the results. This is also covered
in the literature as an important aspect, although few solutions are available and proven to improve this.
However, this thesis illustrates the impact it can have when the purpose of a model is miscommunicated
either from the decision makers in their request for a model or from them modelers in their intended
purpose of a model. Besides model purpose, general understanding of the problem space, either of the real
system itself or the modeling principles, can vary the tendencies of the decision-makers. Therefore it is
necessary to ensure all parties in an organization have the needed background information of the system, not

just the model data, before making a decision.

Communication is also raised as a point in the literature as necessary with regard to model uncertainty
information, This experiment showed that knowledge of model uncertainty provided no benefit to the
decision. However, it also touched on another point that may improve how information is communicated.
The uncertainty in this case was not provided as a probability related to the decision, but as input variables to
the decision. Putting the uncertainty in terms of system-level outcomes may aide in decision-makers

understanding of the impact of uncertainty.

Models can be a useful tool for design and communication. The latter, in particular, is improved through
added fidelity or realism. However, the trade off lies with the added validation work required for all the
parameters in a model. Results showed people would use this information, even if not validated. Therefore,
thought and care needs to go into how information is communicated, whether that information is in the right

form relative to system requirements, and if all pieces of information are properly validated.

lmplementing these recommendations could help alleviate some of the challenges in model-based design

because they were shown, by means of the experiment, to have an impact on model confidence.

63 FUTURE RESEARCH

This thesis highlights a new approach to addressing model-based design challenges by focusing less on the
validation steps and more on how contextual factors can influence decision-makers. There is much more that
can be done under this new analysis technique as new case studies present challenges to the proposed
frameworks and as more confirmation under this new premise is completed. Of particular interest are cases

in quadrants I and 1V,

One area of future research to help address this new approach is to understand the interactions of the
factors in the framework. Due to time constraints, a one-factor-at-a-time DOE was run to learn about the

main effects of the framework, but it was not possible to glean how multiple interacting factors might alter
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behavior. These interactions would be more representative of real product development environments and
could add more fidclity to this model. It is estimated that a full factor experiment might require about 1,280
test subjects, about five times more than the 252 respondents that participated in the experiment presented

in this thesis.

Other areas of future research are based on findings from the experiment conducted. First, improved
communication is highlighted as a strong recommendation, which is consistent with volumes of other
literature. The question then remains, why has this problem not yet been addressed? And what could be

done to improve organizations communication and knowledge management.

The final point is in regards to the findings specific to model uncertainty communication. Literature
continues to highlight the benefit of communicating uncertainty about a model and the design problem.
However, results from the online experiment showed no benefit of it, despite recognition of the uncertainty.
Therefore, more needs to be understood here. First, after numerous recommendations in the literature,
why is uncertainty still a problem? Second, how can uncertainty be better communicated so as not to
overwhelm decision-makers, but rather make it digestible to them? Would referencing uncertainty relative
to system-level outputs as opposed to a single model’s output improve this behavior as suggested in the

recommendations?
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8 APPENDICES

8.1 APPENDIX A: MODEL VALIDATION DATA

Good Model
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Figure 39: Validation Data for the Good Model case. This data used the smooth ball with two rubber
bands. Each plot shows the distance traveled for varying launch and pullback angles. The Red curve
with error bands shows the validation data the user received; the Blue curve shows the results the
model would give for those same conditions. This data was not available to the user, but could be
reproduced using the model.
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Bad Model
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Figure 40: Validation Data for the Bad Model case. This data used the perforated ball with two rubber
bands. Each plot shows the distance traveled for varying launch and pullback angles. The Red curve
with error bards shows the validation data the user received; the Blue curve shows the results the
model would give for those same conditions. This data was not available to the user, but could be
reproduced using the model.



8.2 APPENDIX B: COUHES APPROVAL

LGQ/SDM THESIS METHODOLOGY RELATIVE TO USE OF HUMANS AS
EXPERIMENTAL SUBJECTS

Please answer every question. Mark N/A where the question does not pertain to your internship/thesis. If
you are not sure of the exact data that you will need to complete your thesis, please identify what you
expect 1o be required and revise your submittal when you know more definitively what data will be needed.

1. Basic Information

1. Thesis Title

Key Challenges to Model-Based Design in product Development with Emphasis on
Model Validation

2. Student

Name: Genevieve Flanagan | E-mail: Genevieve.Flanagan@gmail.com
3. Faculty Advisor(s)

Name: Olivier de Weck E-mail: deweck@mit.edu

Name: Noelle Selin E-mail: selin@mit.edu

4. Funding. If the thesis research is funded by an outside sponsor, the investigator's department head
must sign below.

Qutside Sponsor: Contract or Grant Title:

Contract or Grant #: OSP #:

5. Human Subjects Training. A/l students MUST take and pass a training course on human
subjects research. MIT has a web-based course that can be accessed from the main menu of the COUHES
web site. Attach a copy of your Course Completion Notice.

11. Thesis Methodology

A. Types of data that you will be collecting:

Demographic information: Name, Years of experience, Industry, Role (Manager,
Individual Contributor, etc). Note that the name is intended to record to ensure
there are no repeat users as a second attempt may bias the user. This identifier will
be converted to a random ID and the key will be kept separate from the results.
There is little risk to the subjects should they be identified, but this will be done as
comfort to the users.

Users will be interacting with an online model of a catapult and determining if the
model prediction can be trusted. The testing factors will include changing
information about the model such as its source or time limits to do the model
interaction.

There will be a debriefing at the end that will ask for what they thought the purpose
of the model was followed by collecting information on their model usage experience
such as how often they use models in their jobs, and what types of models they are.

B. Methodology for collecting data:
Website
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C. If you plan to interview/survey people, how will those people be identified?

It is preferred to use professionals in a technical field as the subjects. I plan to use
the following recruiting strategy:

e-mails to John Deere employees via our Systems Engineering and Model-based
design communities of practice

e-mails to local INCOSE chapter seeking assistance

e-mails to suppliers we interact with

e-mails to MIT SDM groups

promotion in advisors’ classes

potential to post on linked in groups

D. If you plan to use interviews and/or surveys, outline the types of questions you
will include:

Demographic Questions

Interaction with a model with final questions based on their experience
Understanding the users’ experiences with model usage in the technical field
Understanding the users’ experiences with decision making using models

E. Location of the research:
I am located in Iowa, research is online, therefore could be global

G. Procedures to ensure confidentiality:

Data being collected has minimal risk to the users. However, name information will
be converted to a random identifier and the key will be kept separately from the
rest of the data to ensure confidentiality. Name information is required only to
ensure that there are no repeat runs of the test.

‘Q- Date _2/28/2012

Director, SDM Féllows Program

Signature




8.3 APPENDIX C: SCREENSHOTS FROM THE EXPERIMENT

83.1 COMMON SCREENS TO ALL USERS

8.3.1.1 Introduction

http://thesis spinutech com/

UNDERSTANDING MODEL CREDIBILITY FACTORS
GENEVIEVE FLANAGAN, FELLOW, MIT SYSTEM DESIGN AND MANAGEMENT

PROGRAM
WELCOME!

Your participation in the following research study is greatly appreciated!

This study is being conducted as part of fulfillment for a Master's in System Design and Management from MIT's School of Engineering
and Sloan School of Management. Your participation is inlended to be interesting and educational. The resulis of this study is intended
1o help organizations understand better how lo integrate models and simulations in their decision-making processes

In the following pages, you will be asked to complete the following. it is expected the total time required will be 20 to 30 minutes.

« Introduction
« Read and sign a Consent Form
« Provide basic demographic information
» Read a description of a design problem

« Read through a brief review of how to use the model

» Make a decision for the presented design problem
« Run model and check against validation data
« Run your own set of scenarios to better understand the design problem
» Make a decision on how to proceed with the design

« Survey

« Answer a series of questions about your experiences
= Learn more about the research being conducted

As a part of this experiment, you will be asked to download a model that requires Java to run. If you see a message in a pink box
below, you have Java installed, if not, please click here to download and install the latest version of Java.

(et

Copyright 2012
Contact: gfisnage@mit edy
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8.3.1.2 Consent Form

htip://thesis spinutech com/consent-form aspx

UNDERSTANDING MODEL CREDIBILITY FACTORS
GENEVIEVE FLANAGAN, FELLOW, MIT SYSTEM DESIGN AND MANAGEMENT

PROGRAM
CONSENT FORM

CONSENT TO PARTICIPATE IN
NON-BIOMEDICAL RESEARCH

UNDERSTANDING MODEL CREDIBILITY FACTORS

You are asked fo participate in a ressarch study conducted by Genevieve Flanagan, lrom the Enginearing Systems Division al the Institute of gy (M.LT.)
The results of this study will contribute 1o research papers and master's thesis. You were selected as a possible participant in this study because you are a student or professional in
a technical fieid. You should read the information below. and ask questions about anything you do not understand, bafore deciding whether or not 10 participate. Please e-mail
questions to glanaga®mit.edu

* PARTICIPATION AND WITHDRAWAL

‘rau:mnumhmsm:mwmmﬂmlmhnmmmmnmnnorml.nwuamubmmﬁsm.youmymmymwtmn
at any time without penalty or cor of any kind. The i may withdraw you from this research i circumstances arise which warrant doing so.

« PURPOSE OF THE STUDY

The purpose of this study is to understand how different factors may affect the credibility of a model Further details will be revealed st the end of the survey

+ PROCEDURES
H you volunteer to participate in this sludy. we would ask you 1o do the following things:
« Introduction (less than 10 minutes)
» Read and sign a consent form

+ Provide demographic information including your name and gender, your industry, years of expenience, and current role within your organization This information may be
helpful in analyzing results

* Read a description of & design problem and its mode!

» Read through a brief review of how to use the model

« Make a decision for the pressnted design problem (less than 10 minutes)
+ Run mogdel and check against validation data

« Run your own set of scenarios to better understand the design problem
* Make a decision on how to proceed with the design

» Survey (less than 10 minutes)
» Answer a series of questions regarding your experience with the model

= Answer 8 series of questions regarding your general experiance with models used in dasign

+ Learn more sbout the study being conducted

Your participation in this study should take 20 10 30 minutes 10 complete



http://thesis spinutech com/consent-form aspx

+ POTENTIAL RISKS AND DISCOMFORTS

None

+ POTENTIAL BENEFITS

Your participation in this experiment is intended 1o be interesting and sducational. The results will help crganizations undersiand betler how 10 integrate modeis and simulations in
their decsion-making processes

+ PAYMENT FOR PARTICIPATION

None

« CONFIDENTIALITY

Any information that is obtained in connection with this shudy and thal can ba entified with you will remain confidential and will be disclosed only with your psrmission or as requwerd

by law

The data from this study will be associated with a subject number to repiace your identitying information. This subject number will connect your industry and exparience information
m,m-mmmwarumauemnumm,mmmnmmmwm.m-mmmmmmmmummonmvrnmmem
been used to verity no duplicate participants, this L] ion will be o ped.

The remaining data from this study will be erased from the web server at the conclusion of the experiment (not 1o exceed June 2012} and will be siored on a personal computer for
no more than five years and will then be destroyed. The data will be used in research papers and a master's thesis. but only in the aggregate after analysis.

+ IDENTIFICATION OF INVESTIGATORS

It you have any questions of concems about the ressarch, please fes! iree to contact Genevieve Flanagan who is the principal investigator al glanaga@mit edu or (318) 202-8141

Y CARE AND CO FOR INJURY

If you feel you have sufferad an injury, which may include emotional rauma. as a result of participating in this study. please conlact the person in charge of the study as soon as
possibie

In the event you suffer such an inury, M.LT. may provide itself, or amange for the provision of, emergency Iransport or medical lreatment. including emergency treaiment and
follow-up care, as needed, or reimbursement for such medical services M.LT does not provide any other form of compensation for injury. In any case, neither the offer 1o provide

medical assistance, nor the actual provision of medical services shall be = an - of fault or of hability. Questions regarding this policy may be directed 1o

MIT's Insurance Office, {817) 263-2823 Your insurance carmier may be billed for the cost of transpor of medical . i such services are determined nol 1o be
directly retated Io your pariicipation in his study.

* RIGHTS OF RESEARCH SUBJECTS

You are not waiving any legal claims, righls or remedias because of your participation in this research study. I you leel you have been trealed unfairy, O you have questions

mdnwywrlighuuammyauMwmmlmdmmmmmuwnwm,u.thRoumEzs—Msa.T?
Massachusetts Ave, Cambridge. MA 02139, phone 1-817-253 6787,

SIGNATURE OF INVESTIGATOR

In my judgment the subject is voluntarily and knowingly giving informed consanl and possesses Ihe lagal capacity 10 give informed consent to participale in this research study.

GenevieveFlanagan 14 March2012

Signature of Investigator Dale

SIGNATURE OF RESEARCH SUBJECT OR LEGAL REPRESENTATIVE

] the procedures above. My questions have been answered 10 my satisfaction, and | agree 1o participate in this study. | have been given a copy of this form
(O I understand the procedures described above. My questions have been o my and | agree 10 participate in this study.
Signature: ' Submit and Continue » )

Copyright 2012

Contoct: gflanage@mit edu
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8.3.1.3  Demographics Questionnaire
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hitp://thesis spinutech com/demographic-information aspx

UNDERSTANDING MODEL CREDIBILITY FACTORS

GENEVIEVE FLANAGAN, FELLOW, MIT SYSTEM DESIGN AND MANAGEMENT

PROGRAM
YOUR INFORMATION

Pisase enter the information below. All fielgs are optional. This on is being as it may help in trends in the results.
Gender: == Select One — 9
i
Eovcaton Lol Compited
How many years of full-time technical experiencs do you have?
‘What industry best desscribes your profession? -~ Select One — ] a
ot s e o
Copyright 2012
Contuct: gllanaga@mit.edy



8.3.1.4  Survey Questionnaire

http://thesis spimutech com/survey aspx

UNDERSTANDING MODEL CREDIBILITY FACTORS
GENEVIEVE FLANAGAN, FELLOW, MIT SYSTEM DESIGN AND MANAGEMENT

PROGRAM
SURVEY QUESTIONS

1. What made you choose the decision you did fof this design problem?

z.Tnnmode&mdmﬂuamwwnmmadmwmmmmmwledbylheballnmmnummmmqnalaxmm(w\mﬂmmwmun
tactors. Doyouwtmvmhwwwunqoudwhmhlhmnmmmwngbm?

Oves
ONo

3. In your opinion, how did the mode! impact your decision for this desgn problem?

O The model said the design would work

O The model said the design would NOT work

O The model was invalid and could not be used o make the decision
© | did not use the model

O Other

4. H you used the model 1o make your decision, please rate how confident you were in the model

() 0~ 1 did not question it

O 1 - High Confidence

© 2 - Medium High Confidence

(O 3 -Neutral

O 4 — Medium Low Confidence

O & - Low Confidence

Q) 1 did not use the model 1o make my decision

BANmﬁmlmlmmmmmrmﬂ.mmmmﬁnﬂmmhmmow

© 0~ 18am not comfortable with models
0 1 - Low Confidence

O 2 - Medium Low Confidence

© 3 - Neutral

O 4 - Medium High Confidence

O 5~ High Confidence
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© 1 used the model o make my decision

L R EEEEEE——————————

6. Did you look at and utilize the validation data?

O ves
O No

Hn‘&nwm-mhumammmmm?mmmmumm

O Yes
OMo

?.hmlw‘mmmmmmhmh-mdﬂ-u?

O 0~ Not acceptable

O 1~ Poor; +/ 38 inches or more
O 2 - Nol Good

O 3 - Neutral

O 4-Good

O 5 - Excellent +- 2 inches or less

lmmm‘mmmmmamm--maﬂeﬂ

© 0~ Not acceptable

© 1~ Poor: +/- 36 inches or more
O 2 - Not Good

O 3 - Neutral

QO 4-Good

O 5 - Excellent: +- 2 inches or less

9. Did you have nough time with the model 1o make a decision?

O Yes
O e

I answered "No”, given more time, would you have done things differently?
O Yes
O No

mwmmmmwmwmmmmvh—mmmlwwm.

O Yes
ONo

http://thesis spimutech.com/survey.aspx



htp://thesis spinutech.com/survey aspx

11. How important was the source and author of the moded in knowing whether 1o trust the model?

1 - Not Important

O 2 - Little mportance
) 3 - | considered It

O 4 - Somewhat imporant
O & - Very Important

12. How would you rate your familiarity with physics related o catapults? Concepls such as energy balance, ballistic effects and drag

Q 1 - Minimal

(O 2 - 1 am aware of the conceplts, bul not practiced recantly

(3~ 1 am aware ol the concepts.

© 4 - 1 am familiar with the concepls and | use them often

() 5 - Very tamiliar, | did rough calculations using these concepts Yo check the model

13. How would you rate your familiarity with creating and using mathematical models?

1 - No experience
© 2 - Minimal

© 3~ Occasional

O 4 -0Ohen

O 5-1do il every day

14. What types of models do you have experience with?

() Physics-based analytical modes
() Regression-based models

(0 Visual models

) Physical models

[ System Dynamics models

[ Cost models

[ Excel-basad models

() Matiab modets

(O Specific modeling software package
(0 Other

[ I

|
A

15. Are models generally avalabls in your organization 10 do your work?

O Yes
O No - and we don' use them
© No - 50 we have to build them as needed
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16. Are the modeis available designed 10 meel the purpose of the problem you're trying 1o solve?

O Yes
QNe

17. How would you rate your onganization with regard 1o setting requirements?

O 1 - Few lo no requirements for systems and / or not well validated

O 2 - Some requirements that are not well validated

O 3- Some requirements with some level of validation

O 4 - Many requirements with some level of validation

O § - Completa set of for our systems and ic plans 10 vaidale those

18. How much physical lesting is done in your organization as o

© 1 - Decisions are made with testing only

© 2 - More testing, bul some modeling is done.
O 3- About even

O 4 - More modeling, but some testing is done
10 5 - Decisions are made from models only

http//thesis spinutech.com/survey.aspx

 Gontct gllsmage@mit sdu



8.3.1.5 Conclusion

hitp://thesis spinutech com/thank- you aspx

UNDERSTANDING MODEL CREDIBILITY FACTORS
GENEVIEVE FLANAGAN, FELLOW, MIT SYSTEM DESIGN AND MANAGEMENT

PROGRAM
THANK YOU!

Thank you for your participation in this experiment!

The purpose of this experiment was 1o understand how different factors may influence people's perception of credibility in a
model. These faclors have been found. through research, to change the perception of a model's credibility as compared Lo ils actual
quality. They include things such as time pressure to make a decision, safely or risk in the decision, etc.

The results from this testing will be included in a thesis on the subject to be complete in Spring of 2012. f you would like more
information on this research. please contact Genevieve Flanagan at gflanaga@ mit.edu

| would like 1o thank Dr. Troy Savoie and Dr. Dan Frey from MIT for use of their catapult model

If you would like more information about the actual catapult used in the model, please visit www.xpult.com.

Copyright 2012
Contact: giiansge@mitady



8.3.1.6 Detailed Help Page

http:/fthesis spiutech.com/model-help aspx

UNDERSTANDING MODEL CREDIBILITY FACTORS
GENEVIEVE FLANAGAN, FELLOW, MIT SYSTEM DESIGN AND MANAGEMENT

PROGRAM
MODEL HELP

GUIDE TO USING THE CATAPULT MODEL
Simulation Interface

DESIGN FACTORS:
Type of Ball:

« Smooth (Orange)

» Perforated (Blue with holes)

Number of Rubber Bands:

.1

.2

Launch Angle:
Angle at which the arm stops and releases the ball

e 0°

. 15°
* 30°
» 45°
= 60°
. 75°
« 90°

Pulliback Angle:
Angle at which the arm of the catapult is pulled back prior to launch

= Variable 21° - 120°

ADJUSTING DESIGN FACTORS:

The design factors used in the current set-up are shown in the red box in the upper right corner of the simulation as shown below. The
instructions below describe how to change them for your experimentation.
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http://thesis spinutech com/model- help aspx

Simulation Interface

Changing the Ball:
Place your mouse cursor over the ball in the simulation and wait until you see the dialog box as shown: “Control Factor: Type of Ball.”

Al this point. double-click on the ball to switch between the balls

Comtrol Factor: Type of Bl
Thot 1y f b sy b g by il

e
o ey b v by rgpd chcirg on e ol

TeotBak  mesh
Ho.WRubuBmdr 2
Pulibac hoga v

B
bis
3

Ein Somstatron R

Changing the Number of Rubber Bands:

Place your mouse cursor over the rubber bands in the simulation and wait until you see the dialog box: “Control Factor: No. of Rubber
Bands.”

Al this point, double-click on the rubber bands to change between 1 and 2
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Simulation Interface

Bun Snation et

Changing the Launch Angle:

http://thesis spmutech com/model-help.aspx

Place your mouse cursor over the yellow pin at the base of the catapult and walit until you see the dialog box: “Control Factor: Launch

Angle.”

Al this point, drag the pin around the pivot of the catapult. The catapult arm will move as this pin changes value

Simulation Interface
;100 iy

The imarch argie sy be charged by cicking
vl ragprg P yulow steppe

[SEwr—— Beret

Changing the Pullback Angle:

Place your mouse cursor anywhere over the arm of the catapult and wail until you see the dialog box: “Control Factor: Pullback Angle.”

Al this point, drag the arm back from its launch position to whatever pullback is desired. Note a green area will highlight showing the

pullback region as compared to the launch angle

Note: you must have at least a 21° pullback angle in order to run the simulation.



hup:/fthesis spmutech.com/model- help.aspx

Simulation Interface
g
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Simulation Interface

P T

RUNNING THE SIMULATION:

Once you have sel-up your design factors, the “Run Simulation” button found at the botiom of the simulation will be highlighted in blue
If it is not, most likely you have not sel-up an appropriate pullback angle. Click this bulton to run the simulation. You will see a
countdown timer and then the catapult will launch

Upon completing the simulation. a box will appear at the landing location of the ball. This box will indicate the distance the ball traveled.
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http://thesis spinutech com/model- help aspx

Simulation Interface

s TV

. V)

RESETTING THE SIMULATION TO RUN AGAIN

Once the simulation is complete, the “Reset” button found at the bottom of the simulation will be highlighted in blue. Click on this button
to return to the calapult 1o set-up a new experimenl. The calapult will be in the same conliguration as was previously run with the
exception of the pullback angle.

Simulation Interface
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8.3.2 SCREENS FOR REFERENCE TEST CASE WITH GOOD MODEL
The following screenshots show those related to the reference test case witha good model. The other test
cases have a similar look, but information on each page relative to the case was changcd as what was

described in section 5.2.
8.3.2.1 Experiment Overview Page

http://thesis spinutech com/description aspx

UNDERSTANDING MODEL CREDIBILITY FACTORS
GENEVIEVE FLANAGAN, FELLOW, MIT SYSTEM DESIGN AND MANAGEMENT

PROGRAM
DESCRIPTION OF THE TEST

OBJECTIVE:

Your company is releasing a catapult to the markel that will be used for
educational purposes. A picture of the proposed product 1o release is shown to &
the right. You are responsible for approving the design before releasing the
product. Your leam was on Irack to release the product until there were some
tasl-minute changes in requirements. You now have o decide whether 10
approve the design for release, or delay the product launch to either redesign
the catapult or wait until prototypes have arrived 1o test the new catapull desig
based on the new spacifications

CONSEQUENCES OF THE DECISION:

The marketing team has found that there is a competitor 1o this polential
business and there are large contracts with universities for the first to market. The marketing team estimales that besides the expecled
sales, there is a potential for an additional $1,000,000 for being first to market. If you choose to proceed now, you will beat the
competitors to market

However, engineering has warned that if a catapult is delivered to market without meeting its primary performance requirement, there is
a potential to lose $3,000,000 in warranty.

Should you choose to delay the product launch, there is the lost opportunity of the $1,000,000 early contracts and an additional
$500.000 in redesign efforts and retesting. However, if the design is at risk of being insufficient, then there is a potential savings of
$3.000.000 from the warranty by delaying the product launch

SOURCE OF THE MODEL.:

Fortunately, a model of the catapult exists to use for scenario testing. The model was developed by a PhD student in the Mechanical
Engineering department at MIT. This model uses principles of physics to estimate the landing position of the ball. The PhD student
has modified the model to meel the new design specificalions. You can use this model lo help you decide whether 1o release the
product or delay launch
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DESIGN PROBLEM:
7 TR T R TR T TR R S L s

The original prototypes tested used a SMOOTH ball and 2 rubber e
bands. Due to cost reductions. the ball and number of rubber bands
has been changed. You must now release a catapult that uses a
PERFORATED ball and only 1 rubber band.

In addition, a constraint has been applied such that the Jaunch angle 4
plus pullback angle must not exceed 90 degrees. Customer testing !
found interlerence if the arm of the catapult were 10 pass 90 degrees |
during pullback. (For example, if you were to set a 60 degree launch \ ‘

Nl U
angle, you could pullback only 30 degrees for a lolal of 90 degrees) L e e . e

Due to time constraints, the remaining factors of the catapult such as
the material of the arm, installation set-up, etc are not proposed lo change as these are long lead-time items to acquire and verify.

The primary performance metric for the catapult is unchanged. The catapult must be able to get a ball into a cup located 4 feet (48
inches) from the catapult as shown in the graphic below. It is understood by the design team, that as long as the catapult can achieve
at least 48 inches in distance, it can be set-up by the customer to land in the cup.

VALIDATION DATA:

A series of tests were performed on the actual prototype catapults to create validation data for the model. This validation data will be
available 1o you when you access the model. Although this data does not give results based on the new requirements, you can use this
validation data to help you understand if the model is calibrated well and an appropriate tool to make your design decision.

TIME LIMIT:

Given the time constraints, you will have 15 minutes to make a decision. In that time, you can do the following:

« Download the model from the following page
« Check the model against the validation data
« Run the new design scenarios with the model

Note that atter this period of time, the page with the validation data will go away. Please be sure to enter a decision as soon as this
occurs - or earlier if you are finished with your evaluation.

QUICK MODEL USER GUIDE
Please click on the picture below to see a more detailed description if needed. it will open in a new window.

Simulation Interface

[ Dragback to set R
back An, Double-click here
| Derulbet Ble to change the ball

[ Double-dlickhereto change
| thenumberof rubber bands

| Dragto set the |
| Launch Angle

Lo Thisboxshows
state of all design factors

Clickhere to Run the Simulaticn

(>21 deg Pullback required)
e - | Click here toreset
Run Tawiation e @ | after each run
Go to Experiment »
Copyright 2012



8.3.2.2 Model with Validation Data Page

http://thesis.spinutech com/model .aspx

UNDERSTANDING MODEL CREDIBILITY FACTORS
GENEVIEVE FLANAGAN, FELLOW, MIT SYSTEM DESIGN AND MANAGEMENT

PROGRAM
MODEL

You have a lotal ol 15 minutes and 0 seconds to download the model and view the validation data andior help text (if needed). Once the timer is complele you will be direcied 1o the
decision page of you can click the bution beiow 1o be directed now.

Ciick the link below 10 downioad the model

14 59

Minutes  Seconds
DESIGN PROBLEM:

The following table summarizes the changes in requirements from the early prototypes to the design intended for release

Requirement Original Requirsment New Requirement
Ball Smooth Perforated
Rubber Bands 2 1
Launch + Pullback unconstraned less than or equal 10 90 degrees
Performance 48" Distance 48" Distance

VALIDATION DATA:

The Validation data for the early prototype is shown below. For each run, the catapult was launched 3 times and the average distance is
shown in the following charts and also in a table

Note this data was performed with the SMOOTH ball and 2 Rubber Bands

Launch Angle: 0 degrees Launch Angle: 15 degrees Launch Angle: 30 degrees
= 100 = 150 : = 150
.E I ] 125 é 125 }
e | | g s
,E 50 | é 75 ,,// [ § 7% ,/"'
£ 2 L | &% 1 I 3 0 |
2 ™ 3 2 | 2 2 i
S ol S ol . 3 gl— |
20 40 60 80 100 20 40 60 80 100 20 30 40 50 60 70 B0 90
Pullback Angle [degrees] Pullback Angle [degrees) Pullback Angle [degrees)
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Launch Angle: 45 degrees Launch Angle: 60 degrees
= 175 =200 r
£ 150 i |
£ 125 £ 150 1
2 100 2
8 .. . §1m
£ s % 80
22 { ‘ 2
3 ol C |
20 30 40 50 60 70 B8O 90 20 30 40 50 60 70 80 90
Pullback Angle [degrees] Pullback Angle [degrees]
Experiment | Launch Angle Pullback Angle | Distance Travelied
. (degress) (degrees) (inches)
1 ] 30 207
2 0 45 %5
3 o 80 308
] 0 75 380
5 0 %0 508
6 15 30 343
7 15 45 413
0 15 60 54
9 15 7% 8.1
0 15 %0 X
[ 30 30 455
2 30 45 665
13 30 60 928
14 30 ke 1210
15 45 30 53.8
18 45 45 9.2
17 45 80 1180
18 60 30 512
19 80 45 7.7
20 60 60 147

QUICK MODEL USER GUIDE
Please click on the picture below to see a more detailed description if needed. It will open in a new window.

Simulation Interface

| Drag back to set .

thePullback Angle Double-click here
' ‘ | tochanms the ball

. - i

Double-click heretochange |
| ﬂ\e?ulphc:nf rubber bands

[ Drag-um the |
Launch Angle | |
IU

Clickhere to Run the Simulation [
(>21 deg Pullback required)

Click here toreset
Ron Semton T after each run
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8.3.2.3

Decision Page

UNDERSTANDING MODEL CREDIBILITY FACTORS
GENEVIEVE FLANAGAN, FELLOW, MIT SYSTEM DESIGN AND MANAGEMENT

PROGRAM
DECISION

Given the new requirements and constraints, can the catapull still meet its original requirements?

O Proceed with Product Launch: use the cufrent design proposal to mest requirements
() Delay Product Launch: wall for additional esting with the proposed design with potential for redesign as neaded

RECALL THE FOLLOWING:

« The model used here was a physics-based model developed by a PhD student in the Mechanical Engineering department at MIT

« The following table summarizes the changes in requirements from the early prototypes to the design intended for release:

Requirement Original Requirement New Requiremnent
Ball Smooth Perforated
Rubber Bands 2 L]
Launch + Pullback unconsirained lass than or equal 1o 90 degrees
Performance 48" Distance 48" Distance

+ The following table summarizes the consequences of this decision:

Catapuli Design is GOOD

Catapuh Design Is BAD

Launch | $1.000,000 potential for securing first-
Product to-market contracts

53,000,000 lost in warranty costs

JLost opportunity for $1.000,000 in earyfSaved from $3,000.000 in warranty,

D contracts costs
Launch Ly wtional 8500,000 in lesting effors tof Addiional $500,000 in redesign
verity design and testing efforts
Submit Decision
Copyright 2012
Contact:

http://thesis spinutech convdecision aspx
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8.4 APPENDIX D: DATA FROM EXPERIMENT

Model N Capability of Model
> | Modet quality | Factor Tested| Deci m’:'lfi’:::m fid Va'::;";:; ‘:)'m Capability ‘l’,'i:a"::: Predicting 1 dicting Distance
(Numeric) (binned)
Good Purpose Wait Low No 4 - Good Good
Good Purpose Wait Low No 1 - Poor: +/- 36 inches or more Bad
Good Time Yes High es 4 - Good Good
Bad Uncertainty | Wait Low es - Neutral Bad
Bad Purpose Wit Low es - Neutral Bad
Bad Source Wait Low Yes - Neutral Bad
Bad Uncertainty | Wait Low No 0 - Not acceptable Bad
Bad Consequences| Yes Low No 3- Neutral Bad
9 Bad Time Wait Low 2 Yes 2 - Not Good Bad
1 Good Time Wait ¢ No 3- Neutral Bad
Good Consequences|  Yes High 4 Yes 4 - Good Good
Good Purpose Yes Bigh 4 No 4 - Good Good
Good Purpose Wait High 4 Yes 4 - Good Good
4 Bad Consequences| Yes High 4 Yes 4 - Good Good
Bad Purpose es High 4 No 4 - Good Good
Good Reference Wait
Good Uncertainty | Wait High 4 No 0 - Not acceptable Bad
Good Time Yes M
3 Good Time Wait High 4 No 4 - Good Good
20 Bad Consequences| Wait High 5 es 4 - Good Good
21 Good Time Wait Low No 3 - Neutral Bad
22 Good - Source Wait High 4 es 2 - Not Good Bad
Good Uncertainty | Wait High 4 No 3 - Neutral Bad
Good Conseguences| Wait Low No 1 - Poor: +/- 36 inches or more Bad
Bad Consequences| Wait o 0 - Not acceptable Bad
Good Uncertainty Wait Low o 3 - Neutral Bad
Good Purpose Wait Low o 3 - Neutral Bad
Bad Source Yes High es 4 - Good Good
29 Bad Uncertainty Yes
Bad Consequences| Yes High No 4 - Good Good
Bad Time Wait Low Yes 0 - Not acceptable Bad
Bad Purpose Wait Low Yes 4 - Good Good
Good Purpose Yes Low Yes 2 - Not Good Bad
4 Bad Uncertainty Yes Yes 3 - Neutral Bad
35 Good Source Wait Low 1 Yes 2 - Not Good Bad
Bad Uncertainty | Wait N
Bad Source Yes *
Bad Source Yes High es 4 - Good Good
Bad Reference Yes High es 5 - Excellent: +/- 2 inches or less Good
4 Bad Consequences]| Yes High No 4 - Good Good
4 Good Time Wait Low es 3 - Neutral Bad
42 Good Time es Low es 2 - Not Good Bad
43 Good Consequences| Yes High es 4 - Good Good
14 Good Reference es High No 4 - Good Good
Bad Time es High Yes 3 - Neutral Bad
€ Good Reference es *
Good Consequences | Wait Low es 3 - Neutral Bad
48 Bad Reference es High es 4 - Good Good
49 Good se Wait Low No 3 - Neutral Bad
50 Good Source Wait Low No 3- Neutral Bad
Good Uncertainty | Wait
Good Source Wait High Yes - Neutral Bad
Bad Source Wait Low es - Neutral Bad
Good Time Wait Low No - Neutral Bad
Bad Reference Wait High No 5 - Excellent: +/- 2 inches or less Good
Bad Reference Yes High es 3 - Neutral Bad
Bad Time Wait Low No 3 - Neutral Bad
58 Bad Time Yes Low es 2 - Not Good Bad
59 Bad Purpose Yes
6 Bad Consequences| Yes *
6 Good Reference Wait Low 3 Yes 3 - Neutral Bad
62 Good Purpose Wait High 4 No 3 - Neutral Bad
63 Good Uncertainty | Yes i
64 Good Consequences| Wait Low es 0 - Not acceptable Bad
65 Good Reference Yes Low es 3 . Neutral Bad
66 Good Source Wait High No 4 - Good Good
67 Bad Reference Wait Low es 2 - Not Good Bad
68 Bad Consequences| Wait
6 Good Consequences| Yes *
7 Good Time Yes Low 3 No 3 - Neutral Bad
7 Bad Time Wait Low 3 No 4 - Good Good
Good Source Yes *
Bad Consequences| Wait High No 4 - Good Good
4 Bad Purpose Wait High No 3 - Neutral Bad
Bad Uncertainty | Wait Low es 4 - Good Good
7 Good Uncertaint Wait Low es 0 - Not acceptable Bad
Good Reference Wait High es 4- Good Good
Good Reference Yes High es 4 - Good Good
Good Time Yes es 4 - Good Good
8 Bad Time Wait ’
8 Bad Time Wait High 4 No 4 - Good Good
82 Bad Uncertainty | Wait High 4 es 4 - Good Good
83 Bad Consequences|  Yes Low es 3 - Neutral Bad
84 Good Reference es High 4 es 4 - Good Good
85 Good Reference es High No 4 - Good Good
86 Good Source Wait Low No 3 - Neutral Bad
87 Good Source es High es 2 - Not Good Bad
88 Good Source Wait Hi es 4 - Good Good
89 Good Uncertainty | Yes High 4 Yes 3 - Neutral Bad
90 Good Source Wait Low 1 Yes
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Model Capability of Model
Model Impact of Capability of Model Predicti:
ip Model Quality | Factor Tested | Decision Confidence Confidence Validation Data Distance ng Predicting Distance
(Numeric) (binned)
91 Good Reference es High 5 Yes 5 - Excellent: + /- 2 inches or less Good
92 Bad Consequences | Wait Low 1 Yes 3 - Neutral Bad
3 Bad Time es High 4 Yes 4 - Good Good
94 Good ime es Low 3 Yes 3 - Neutral Bad
35 Bad ime Wait High Yes 3 - Neutral Bad
36 Bad ime Wait Low Yes 2 - Not Good Bad
97 Good Reference es High No 4 - Good Good
). Good Consegquences es Low Yes 3 - Neutral Bad
99 Bad Reference es *
| 100 Bad Uncertainty | Yes Low 3 Yes 3- Neutral Bad
Bad Purpose es Low Yes 4 - Good Good
Bad Purpose es High No 4 - Good Good
Good Reference es High No 3 - Neutrat Bad
104 Good Uncertainty es
10 Bad Purpose Wait Low 3 No 3 - Neutral Bad
| 106 Good Time Wait *
07 Bad Purpose Yes Low 3 No 3 - Neutral Bad
| 108 Bad Consequences| Wait Low 3 Yes 3 - Neutral Bad
0¢ Bad Time Yes *
Good Consequences | Wait High 4 No - Neutral Bad
Bad Source Yes High 4 No, - Neutral Bad
Good Source Wait Low 1 No - Neutral Bad
Good Consequences| Wait High 5 Yes 4 - Good Good
4 Bad Time Yes *
5 Bad Purpose Wait High 4 Yes 4 - Good Good
Good Time Wait *
Bad Time Yes Low 3 Yes 3 - Neutral Bad
Good Consequences{ Yes High No 4 - Good Good
Bad Source Yes wa- No - Neutral Bad
Good Time Wait Low Yes - Neutral Bad
Bad Uncertainty Wait High No - Neutral Bad
Good Reference Yes High 4 es - Neutral Bad
Bad Reference Wait Low es - Neutral Bad
4 Good Conseguences | Wait Low es - Neutral Bad
125 Bad Reference Yes High Yes 4 - Good Good
| 126 Good Consequences | Wait Low. No 3 - Neutral Bad
| 127 Good Reference Wait Low es 2 - Not Good Bad
| 128 Good Time Wait Low es 3 - Neutral Bad
129 Bad Reference Yes High es 3 - Neutral Bad
130 Bad Purpose Wait Low No 5 - Excellent: +/- 2 inches or less Good
131 Bad Source Wait Low Yes 1 - Poor: +/- 36 inches or more Bad
132 Good Consequences| Yes High Yes 4 - Good Goed
Good Uncertainty Yes Low No 3 - Neutral Bad
Good Uncertainty | Wait High_ es 4 - Good Good
Bad Uncertainty Yes High es
Bad Purpose es Low es 2 - Not Good Bad
Bad Source es
| 138 Good Reference es High 5 Yes
39 Bad Time es *
|__ 140 Bad Purpose Wait Low No
41 Bad Uncertain Yes High Yes 4 - Good Good
| 142 Bad Purpose Wait Low Yes 3 - Neutral Bad
| 143 Good Source Wait Low Yes 2 - Not Good Bad
44 Goed Source es d es 4 - Good Good
45 Good Time es High es 3 - Neutral Bad
146 Good Time 'es Low es 2 - Not Good Bad
47 Bad Reference es High es 4 - Good Good
| 148 Good Source Wait High Yes - Neutral Bad
| 149 Bad Consequences | Wait High Yes - Neutral Bad
50 Bad Purpose Yes Low Yes - Neutral Bad
| 151 Good Uncertainty Wait
52 Bad Reference Yes High Yes S - Excellent: +/- 2 inches or less Good
53 Good Purpose Wait Low Yes 2 - Not Good Bad
| 154 Good Consequences | Wait Low No
| 155 Good Consequences | Wait Low Yes 2 - Not Good Bad
| 156 Bad Reference Wait High Yes 5 - Excellent: +/- 2 inches or less Good
57 Bad Time Yes Low es 4 - Good Good
| 158 Bad Reference Wait Low No 4 - Good Good
59 Bad Uncertainty Wait Low es 2 - Not Good Bad
160 Bad Source Yes High 4 es 4 - Good Good
161 Bad Uncertainty Yes Low No 3 - Neutral Bad
162 Good Reference Yes Low es 4- Good
163 Bad Source Wait Low No 3 - Neutral Bad
164 Good Source Wait Low es 4 - Good Good
165 Good Purpose Wait High es 4 - Good Good
166 Bad Source Wait Low es 3 - Neutral Bad
16 Bad Time es Hi, No 4 - Good Good
16¢ Bad Source Wait Low Yes 1 - Poor: +/- 36 inches or more Bad
16¢ Bad Reference es High No 2 - Not Good Bad
171 Good Consequences| Yes High 5 Yes 4- Good
17 Good Time Wait Low 2 Yes 3 - Neutral Bad
17. Good Purpose Yes High 4 Yes 4 - Good Good
17. Good Uncertain Yes *
74 Bad Consequences| Yes High 5 No 4 - Good Good
75 Bad Time Yes High 4 es 4 - Good Good
6 Good Uncertainty Wait High 4 es 4 - Good Good
7 Good Uncertainty Yes High E es 4 - Good Good
| 178 Bad Reference Wait Low 1 Yes 1 - Poor: +/- 36 inches or more Bad
79 Good Reference Wait Low 3 No 4 - Good Good
|__180 Good Reference Yes High 4 Yes 4 - Good Good
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Model Capability of Model
Model Impact of | Capability of Model Predicting
D Model Quality | Factor Tested | Decision Confidence ((::::‘d;l::; Validation Data Distance Predlgi'l:.gn :);;hnce
161 Good Source Wait High 2 No 0 - Not acceptable Bad
| 182 Good Uncertainty | Wait High H Yes 4 - Good Good
| 183 Good Purpose Wait Low Yes 1- Poor: +/- 36 inches or more Bad
B4 Bad Consequences | Wait Low Yes 0- Not acceptable Bad
| 185 Good Purpose Wait Low No 4 - Good Good
| 186 Good Consequences | Wait Low es 3 - Neutral Bad
87 Bad Purpose Wait Low 1 No $ - Excellent: +/- 2 inches or less Good
| 188 Bad Consequences | Wait High S No 3 - Neutral Bad
39 Good Purpose Yes High No 4 - Good Good
30 Bad Source Yes Low es 2 - Not Good Bad
1 Bad Consequences| Yes Low es 4 - Good Good
| 192 Bad Purpose Wait Low No 4 - Good Good
93 Bad Consequences | Wait Low es 2 - Not Good Bad
94 Good Reference Yes
)! Bad Consequences | Wait Low 1 Yes 1 - Poor: +/- 36 inches or more Bad
I Good Purpose Wait Low 1 No 2 - Not Good Bad
Bad Uncertainty Wait High 5 No 4 - Good Good
1 Good Uncertainty Yes High 4 Yes 3 - Neutral Bad
x Good Uncertaint Wait Low 2 No 3 - Neutral Bad
200 Bad Source Yes High No 4 - Good Good
201 Bad Reference Yes Low es 3 - Neutral Bad
202 Bad Source Yes High es 4-Good Good
203 Bad Uncertainty Yes High es 4 - Good Good
204 Good Time Yes Low 1 No 0 - Not acceptable Bad
205 Good Source Yes High 4 No 3 - Neutral Bad
206 Bad Consequences | Yes High 4 No S - Excellent: +/- 2 inches or less Good
207 Good Uncertainty Wait Low 2 Yes 2 - Not Good Bad
208 Bad Reference Wait | High S Yes 4 - Good Good
209 Good Uncertainty Yes >
Bad Reference Wait .
Good Reference Wait Low 3 Yes 2 - Not Good Bad
Good Source Wait High 5 No 4 - Good Good
1 Bad Reference Wait *
14 Good Source Yes High 4 No 4 - Good Good
15 Good Reference Wait High s Yes S - Excellent: +/- 2 inches or less Good
216 Bad Purpose Yes d
17 Bad Reference Yes High es 4 - Good Good
|__218 Good Time Yes High es 4 - Good Good
219 Bad Time Wait Low No - Neutral Bad
220 Good Time Wait Low es - Neutral Bad
221 Good Source Wait Low No 0 - Not acceptable Bad
222 Bad Source es
223 Good Consequences| Yes High es 4 - Good Good
224 Bad Consequences | Wait High 4 es 0 - Not acceptable Bad
225 Bad Source Yes Low es 3 - Neutral Bad
| 226 Bad Time Wait Low es 2 - Not Good Bad
27 Bad Uncertainty es High 4 es 5 - Excellent: +/- 2 inches or less Good
| 228 Bad Time Wait High 4 No 3 - Neutral Bad
[ 229 Bad Purpose es High 3 No 4-Good Good
| 230 Bad Reference es High 5 No 3 - Neutral Bad
31 Bad Uncertain Wait *
32 Bad Source Wait Low 1 No 4 - Good Good
| 233 Bad Consequences | Wait Low 1 Yes 0 - Not acceptable Bad
34 Bad Time Yes hd
|__235 Good Purpose Wait High 4 Yes 4-Good Good
36 Bad Source Yes High 4 es 4 - Good Good
37 Good Source Wait | Low 2 es 2 - Not Good Bad
238 Bad Consequences | _Yes High 4 es 4 - Good Good
239 Bad Uncertainty Wait High es - Neutral Bad
| 240 Good Consequences| Yes High No - Neutral Bad
41 Bad Purpose Yes Low No - Neutral Bad
| 242 Good Uncertainty | Yes High No - Neutral Bad
| 243 Good Purpose Wait High Yes
44 Bad Source Wait Low 2 No 2 - Not Good Bad
| 245 Good Purpose Wait Low. es 4 - Good Good
|__246 Good Reference Yes High es 4 - Good Good
| 247 Good Reference Wait Low es 3 - Neutral Bad
| 248 Good Purpose Wait Low No 3 - Neutral Bad
| 249 Good Source Yes High 4 No 4 - Good Good
250 Bad Purpose Yes i
| 251 Bad Reference Wait Low 3 Yes 3 - Neutral Bad
252 Good Purpose Yes High 4 Yes 4 - Good Good
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Capability of Catapult importance of Source
[ Capability of Catapult Predicting Pr:dlm?u Dlsla:ce Was "‘:’ ;nough é’;::enﬁ::?; Importance of Source Author Author
stance (binned) me °q (binned)
3 - Neutral Bad es Yes 3 - 1 considered it Not Important
1 Poor: +/- 36 inches or more Bad No 2 - Little importance Not important
2 - Not Goed Bad No Yes 3 -1 considered It Not important
4 2 - Not Good Bad No Yes 3 - | considered It Not Important
- Neutral Bad Yes es 2 - Little importance Not important
- Neutral Bad es 4 - Somewhat important Important
- Neutral Bad No es - Not Important Not important
- Neutral Bad Yes No - | considered It Not Important
9 4 - Good Good Yes Yes - | considered It Not Important
10 4 - Good Good No Yes - | considered It Not Important
4 - Good Good es Yes 2- Little importance Not Important
- Neutral Bad es Yes 1 - Not Important Not Important
- Neutral Bad No Yes 2- Little importance Not Important
- Neutral Bad es 1 - Not important Not important
S - Excellent: +/- 2 inches or less Good es Yes 4 - Somewhat important Important
3 - Neutral Bad Yes Yes 4 - Somewhat important Important
1
19 3 - Neutral Bad Yes Yes 2 - Little importance Not important
20 4 - Good Good Yes (es 3 -1 considered it Not Important
21 3 - Neutral Bad No es 2- Little importance Not Important
22 2 - Not Good Bad Yes es 2 - Little importance Not Important
23 3 - Neutral Bad Yes No 3 - | considered It Not Important
24 3 - Neutral Bad Yes Yes 2 - Little importance Not Important
25 0 - Not acceptable Bad Yes No 1 - Not Important Not Important
26 3 - Neutral Bad Yes Yes 5 - Very important Important
27 4 - Good Good Yes Yes 5 - Very important Important
| 28 3 - Neutral Bad Yes Yes 3 - | considered It Not Important
4 - Good Good No Yes 4 - Somewhat important Important
1 - Poor: +/- 36 inches or more Bad es 2. Little importance Not Important
3 - Neutral Bad es Yes 2 - Little importance Not Important
5 - Excellent: +/- 2 inches or less Good es No 3 -1 considered It Not Important
4 3 - Neutral Bad es Yes 2- Little importance Not Important
35 2 - Not Good Bad No 4 - Somewhat important Important
36
37
38 3 - Neutral Bad Yes No 3 - 1 considered It Not Important
39 es Yes 4 - Somewhat important Important
40 5 - Excellent: +/- 2 inches or less Good s No 4 - Somewhat important Important
4 5 - Excellent: +/- 2 inches or less Good es No 4 - Somewhat important Important
42 4 - Good Good No Yes 2 - Little importance Not Important
43 2 - Not Good Bad No 4 - Somewhat important Important
44 4 - Good Good Yes Yes S - Very important Important
45 4 - Good Good No Yes 1 - Not important Not Important
46
47 5 - Excellent: +/- 2 inches or less Good No No 3 -1considered It Not Important
48 4 - Good Good Yes Yes 5 - Very Important Important
49 4 - Good Good Yes Yes 1 - Not Important Not Important
5 3 - Neutral Bad Yes 1 - Not important Not Important
5
52 4 - Good Good es Yes 2 - Little importance Not Important
53 3 - Neutral Bad es Yes 5 - Very Important Important
54 4 - Good Good No es - 1 considered it Not Important
55 4 - Good Good No es - Not important Not Important
56 4 - Good Good Yes es 4 - Somewhat important Important
57 4 - Good Good No es S - Very Important Important
58 2 - Not Good Bad No Yes 3 - 1 considered It Not Important
5 - Excellent: +/- 2 inches or less Good Yes Yes 3 - I considered It Not Important
- Good Good Yes 4 - Somewhat important Important
6
64 2 - Not Good Bad es Yes 1 - Not Important Not Important
65 4 - Good Good No Yes 1 - Not Important Not Important
66 4 - Good Good es No 4 - Somewhat important Important
67 3 - Neutral Bad No No 2 - Little importance. Not Important
68
9
4 - Good Good No No 4 - Somewhat important Important
3 - Neutral Bad No Yes 4 - Somewhat important Important
7. 3 - Neutral Bad Yes No 2 - Litde importance Not Important
7 4 - Good Good es ‘es 3 - 1 considered It Not important
4 - Good Good Yes es S - Very Important Important
7 0 - Not acceptable Bad es es 3 - | considered It Not Important
7 4 - Good Good Yes es 5 - Very Important important
78 4 Good Good Yes No 2 - Little importance Not Important
79 4 - Good Good No es 3 - 1 considered it Not Important
80
4 - Good Good No es 5 - Very Important Important
3 - Neutral Bad Yes es 4 - Somewhat important Important
4 - Good Good Yes es 1 - Not Important Not Important
4 4 - Good Good Yes es 5 - Very Important Important
85 5 - Excellent: +/- 2 inches or less Good Yes No 4 - Somewhat important Important
86 4 - Good Good Yes es 4 - Somewhat important Important
87 S - Excellent: +/- 2 inches or less Good No es 3 - I considered it Not Important
B8 4 - Good Good Yes Yes 4 - Somewhat important Important
B9 3 - Neutral Bad Yes No 3 - I considered It Not Important
90 3 - Neutral Bad Yes Yes 5 - Very Important Impostant
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Capability of Catapult Importance of Source
D Capability %f"n'm" Predicting Pr:dlc'tzm Dmarl:ce Was ﬂ::e;m“gh é:?.;"n;::g Importance of Source Author Author
stance (binned) ) (binned)
5 - Excellent: +/- 2 inches or less Good Yes es 5 - Very Important important
3 - Neutra) Bad No No 5 - Very Important Important
4 - Good Good Yes es 1 - Not Important Not important
4 2 - Not Good Bad No No 2 - Little importance Not Important
9! 4 - Good Good No es 2 - Little importance Not Important
96 4 - Good Good No es 3- | considered It Not Important
97 5 - Excellent; +/- 2 inches or less Good No No 1 - Not Important Not mportant
98 2 - Not Good Bad No es 2 - Little importance Not Important
99
100 4 - Good Good Yes No 2 - Little importance Not Important
101 4 -Good Good No 3 - L considered It Not Important
102 4 - Good Good Yes es 2. Little importance Not Important
103 2 - Not Good Bad No No 4 - Somewhat important Important
104
105 3. Neutral Bad Yes Yes 1 - Not important Not Important
106
107 4 - Good Good Yes Yes 3 - I considered It Not Important
108 3- Neutral Bad Yes No 3 - I considered It Not important
109
[ 3. Neutral Bad No No 1 - Not Important Not Important
4 - Good Good No No 4 - Somewhat important Important
4 - Good Good Yes es S - Very Important Important
4 - Good Good No No 3 -1 considered It Not Important
114
115 S - Excellent: +/- 2 inches or less Good No Yes 4 - Somewhat important Important
116
117 4 -Good Good No Yes 3 - I considered It Not Important
| 118 S - Excellent: +/- 2 inches or less Good Yes No 3 - | considered It Not important
19 - Good Yes No 2 - Little importance Not Important
20 4 - Good Good No es 2 - Little importance Not Important
| 121 3 - Neutral Bad No es 4 - Somewhat important Important
22 5 - Excellent: 4/- 2 inches or less Good Yes es 4 - Somewhat important Important
23 3 - Neutral Bad No es 2 - Little importance Not Important
24 4 - Good Good es No 2 - Little importance Not important
25 3. Neutral Bad es 5 - Very Important Important
| 126 3 - Neutral Bad es es 2 - Little importance Not Important
127 - Excellent: +/- 2 inches or less Good es es 3 - 1 considered It Not Important
| 128 - Excellent: +/- 2 inches orless Good No No - Not important Not Important
129 - Excellent: +/- 2 inches or less Good Yes es - Not Important Not Important
|130 - Excellent: +/- 2 inches or less Good Yes es - Not Important Not Important
4 - Good Good Yes es 2 - Little importance Not Important
2 2 - Not Good Bad Yes No 1 - Not Important Not Important
2 - Not Good Bad es No 3 - I considered It Not Important
| 134 4 - Good Good es 4 - Somewhat important Important
35 4 - Good Good No Yes 4 - Somewhat important important
36 3 Neutral Bad es Yes 2 - Little importance Not Important
37
138 Yes Yes 4 - Somewhat important Important
139
40 2 - Not Good Bad Yes No 3 - I considered It Not Important
4 4 - Good Good Yes Yes S - Very lmportant Important
| 142 1 - Poor: +/- 36 inches or more Bad No Yes 3 - 1 considered It Not [mportant
43 0 - Not acceptable Bad No No 3 -1 considered It Not Important
144 5 - Excellent: +/- 2 inches or less Good Yes No 3 -1considered It Not Important
145 2 - Not Good Bad Yes es S - Very Important Important
146 2 - Not Good Bad Yes No 1 - Not Important Not Important
147 4 - Good Good Yes es 5 - Very Important Important
148 4 - Good Good No Yes 4 - Somewhat important Important
149 2 - Not Good Bad Yes Yes 2 - Little importance Not Important
150 4 - Good Good No No 2 - Little importance Not important
51
152 4 Good Good Yes es 5 - Very important Important
| 153 5 - Excellent: +/- 2 inches or less Good No es 4 - Somewhat important Important
54 4 - Good Good No No 4 - Somewhat important Important
| 155 3 - Neutral Bad Yes No - Not Important Not Important
56 5 - Excellent: /- 2 inches or less Good Yes - Lconsidered It Not Important
157 3 - Neutral Bad No No - 1 considered It Not Important
| 158 2 - Not Good Bad Yes es -1 considered It Not Important
159 4 -Good Good Yes es - I considered It Not important
160 4 - Good Good Yes No 4 - Somewhat important Important
16 4 -Good Good Yes No 5 - Very mportant Important
162 3 - Neutral Bad No No 4 - Somewhat important Important
163 4 -Good Good No es 4 - Somewhat important Important
164 4 - Good Good No es S - Very lmportant Important
65 - Good Good Yes €s 3 - [ considered It Not Important
166 4 - Good Good Yes es S - Very important Important
67 4 - Good Good No No S - Very Important Important
| 168 4 - Good Good Yes es 3 - 1 considered It Not important
69 4 - Good Good No es -1considered It Not Important
¢ 4 - Good Good No es 4 - Somewhat important Important
4 -Good Good No es 2 - Little importance Not important
4 - Good Good No es 4 - Somewhat important Important
4 4 - Good Good Yes No 3 - i considered It Not important
5 4 -Good Good Yes Yes 2 - Little importance Not Important
€ 2 - Not Good Bad No Yes 5 - Very Important Important
4 - Good Good Yes 2 - Little importance Not Important
{: 4 - Good Good No Yes 3 - I considered it Not Important
S 3 - Neutral Bad Yes Yes 4 - Somewhat important Important
|_180 4 - Good Good Yes No 2 - Little importance Not Important
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Capability of Catapult Importance of Source
1] Capability 0:;;‘“3')"“ Predicting Pr:dlngg Dlsu:ce Was !b.:re ;M“‘h (I:nnnenced by Importance of Source Author P Author
stance (binned) ime’ onsequences (binned)
181 5 - Excellent: +/- 2 inches or less Good No Yes § - Very Important Important
182 2 - Not Good Bad Yes Yes 2 - Little importance Not Important
183 4 - Good Good Yes Yes 2 - Little importance Not lmportant
184 4 - Good Good No No 2 - Little importance Not Important
185 5 - Exceilent: +/- 2 inches or less Good Yes Yes 3 - 1 considered It Not Important
186 4 - Good Good Yes No 2 - Little importance Not Important
187 S - Excellent: +/- 2 inches or less Good No Yes 1 - Not Important Not important
| 188 4-Good Good No Yes S - Very Important Important
189 3 - Neutral Bad No Yes 2 - Little importance Not Important
190 3 - Neutral Bad Yes No 4 - Somewhat important Important
4 - Good Good Yes Yes S - Very Important Important
3 - Neutral Bad No Yes 3 - | considered It Not important
3 - Neutral Bad Yes Yes 1 - Not important Not Important
Y
4 - Good Good No Yes 3 - 1 considered It Not Important
)¢ 3 - Neutral Bad Yes Yes 1 - Not Important Not Important
7 4 - Good Good Yes Yes 2 - Little importance Not Important
3 - Neutral Bad es Yes 3 - I considered It Not important
) 4 - Good Good No Yes 2 - Little importance Not Important
20( 4 - Good Good No Yes 3 - [ considered It Not Important
20 4 - Good Good es Yes 4 - Somewhat important Important
202 4 - Good Good Yes No 2 - Little importance Not Important
203 4 - Good Good Yes Yes 4 - Somewhat important Important
204 1 - Poor: +/- 36 inches or more Bad No Yes 1. Not Important Not Important
205 4 - Good Good Yes Yes 3 - 1 considered it Not Important
206 3 - Neutral Bad Yes No 3 - | considered It Not Important
207 4 - Good Good Yes Yes 2 - Little importance Not Important
208 4 - Good Good Yes No 5 - Very lmportant Important
)G
3 - Neutral Bad Yes Yes 2 . Little importance Not Important
4 - Good Good No No 2 - Little importance Not Important
1
14 4 - Good Good Yes Yes 2 - Little importance Not important
21 5 - Excellent: +/- 2 inches or less Good Yes Yes, 5 - Very Important Important
216
17 4 - Good Good No Yes - considered it Not Important
| 218 4 - Good Good Yes Yes - 1 considered It Not Important
219 4 - Good Good No Yes -1 considered It Not Important
220 3 - Neutral Bad Yes Yes - 1 considered It Not Important
221 3 - Neutral Bad No No 5 - Very Important Important
222
223 4 - Good Good No No 5 - Very Important Impertant
224 5 - Excellent: +/- 2 inches or less Good No es 3 - I considered It Not important
225 4 - Good Good No es 5 - Very Important Important
226 3 - Neutral Bad No No 2 - Little importance Not Important
227 4 - Good Good Yes s - Not Important Not Important
228 4 - Good Good Yes es 4 - Somewhat important Important
22 4 - Good Good Yes es -1 considered It Not Important
3 - Neutral Bad Yes Yes 1 - Not important Not Important
3 - Neutral Bad Yes No 2 - Little importance Not Important
S - Excellent: +/- 2 inches or less Good Yes Yes 4 - Somewhat important Important
234
235 4 - Good Good Yes Yes S - Very Important Important
236 4 - Good Good No es 3 - 1 considered It Not Important
237 4 - Good Good Yes es 5 - Very Important Important
| 238 2 - Not Good Bad Yes No 1- Not important Not Important
39 3 - Neutral Bad No No 4 - Somewhat important Important
40 1 - Poor: +/- 36 inches or more Bad es No S - Very Important Important
4 - Neutral Bad es es 4 - Somewhat important Important
4 - Neutral Bad es es 4 - Somewhat important Important
4 - Neutral Bad No. No 2 - Little importance Not Important
44 2 - Not Good Bad Yes ‘es 5 - Very Important Important
| 245 4 - Good Good Yes Yes 1- Not Important Not Important
46 4-Good Good No Yes 2 - Little importance Not Important
47 4- Good Good Yes Yes 1- Not Important Not Important
48 3 - Neutral Bad No No 1 - Not important Not Important
| 249 4-Good Good Yes Yes 5 - Very Important Important
50
[ 251 4 - Good Good No Yes 3 - I considered It Not Important
252 2 - Not Good Bad No Yes 3 - | considered It Not Important
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Familiarity with Famjliarity with
D Familiarity with Catapults Catapults Fambtarity with Models Are Models available at Work?
(binned) (binned)
3 - 1am aware of the concepts Familiar - Occasional Not Familiar No - so we have to build them as needed
3 - f am aware of the concepts Familiar - Occasional Not Familiar Yes
1 - Minimal Not Familiar - Occasional Not Familiar Yes
2 - } am aware of the concepts, but not practiced recently Not Familiar 2 - Minimal Not Familiar No - so we have to build them as needed
1 - Minimal Not Familiar 1 - No experience Not Familiar es
4 - | am familiar with the concepts and | use them often Familiar 4 - Often Familiar es
3-lam aware of the concepts Familiar 2 - Minimal Not Familiar es
[: 2 - 1 am aware of the concepts, but not practiced recently Not Familiar 2 - Minimal Not Familiar es
S 2 - 1 am aware of the concepts, but not practiced recently Not Familiar 1 - No experience Not Familiar No - and we don't use them
4 - | am familiar with the concepts and I use them often Familiar 5-ldoitevery day Familiar Yes
3 - 1am aware of the concepts Familiar - Occasional Not Familiar es
2 - | am aware of the concepts, but not practiced recently Not Familiar - Occasional Not Familiar es
3 - 1am aware of the concepts Familiar - Occasional Not Familiar No - so we have to build them as needed
4 2 - 1 am aware of the concepts, but not practiced recently Not Familiar - Occasional Not Familiar es
2 - 1am aware of the concepts, but not practiced recently Not Familiar 2 - Minimal Not Familiar es
16
17 2 - 1 am aware of the concepts, but not practiced recently Not Familiar 2 - Minimai Not Familiar Yes
18
19 2 - | am aware of the concepts, but not practiced recentl Not Familiar 2 - Minimal Not Familiar es
20 - 1am aware of the concepts amiliar 4 - Often Familiar es
21 - Fam aware of the concepts Familiar 2- Minimal Not Familiar es
22 - 1am aware of the concepts Familiar 5 - 1 do it every day Familiar No - so we have to build them as peeded
23 - 1am aware of the concepts Familiar 4 - Often Familiar No - so we have to build them as needed
4 2 - | am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar No - so we have to build them as needed
5 1 - Minimal Not Familiar 1 - No experience Not Familiar No - and we don't use them
26 3 - 1 am aware of the concepts Famillar 3 - Occasional Not Familiar Yes
27 3 - | am aware of the concepts Familiar 4 - Often Familiar Yes
28 4 - | am famitiar with the concepts and | use them often Familiar 3 - Occasional Not Familiar No - so we have to build them as needed
29
1 - Minimal Not Familiar 4 - Often Familiar No - so we have to build them as needed
1 - Minimal Not Familiar 2 - Minimal Not Familiar No - and we don't use them
3 - 1am aware of the concepts Familiar 3 - Occasional Not Familiay Yes
- | am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar Yes
4 - 1 am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar No - so we have to build them as needed
35 - 1 am aware of the concepts, but not practiced recently Not Familiar 4 - Often Familiar Yes
36
37
38 4 - | am familiar with the concepts and | use them often Familiar 3 - Occasional Not Familiar Yes
39 4 - [ am familiar with the concepts and | use them often Familiar 4 - Often Familiar No - and we don't use them
40 3 - 1 am aware of the concepts amiliar 2 - Minimal Not Familiar Yes
41 4 - [ am familiar with the concepts and I use them often amiliar 4 - Often Familiar No - so we have to build them as needed
42 3 - 1 am aware of the concepts ‘amiliar 3 - Occasional Not Familiar Yes
43 3 - 1am aware of the concepts amiliar 2 - Minimal Not Familiar No - and we don't use them
44 4 - 1 am familiar with the concepts and | use them often ‘amiliar S - 1do it every day Familiar No - so we have to build them as needed
45 3 - 1am aware of the concepts amiliar 2 - Minimal Not Familiar Yes
46
47 3 - 1am aware of the concepts Familiar 4 - Often Familiar Yes
48 3 - 1 am aware of the concepts Familiar 4 - Often Familiar No - so we have to build them as needed
49 1 - Minimal Not Familiar 4 - Often Familiar Yes
50 3 - 1 am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
51
52 3 - | am aware of the concepts amiliar 4 - Often Familfar Yes
53 3 - 1am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
54 4 - | am familiar with the concepts and I use them often Familiar 4 - Often Familiar Yes
55 1 .- Minimat Not Famitiar 2 - Minimal Not Familiar Yes
56 3 - 1 am aware of the concepts Familiar 1 - No experience Not Familiar No - and we don't use them
57 3 - 1am aware of the conce; Familiar 4 - Often Familiar Yes
58 3 - 1am aware of the concepts Familiar 4 - Often Familiar Yes
59
60
61 3 - 1 am aware of the concepts Familiar 4 - Often Familiar Yes
62 3 - 1 am aware of the concepts Familiar 1 - No experience Not Familiar No - and we don't use them
63
o4 3-1am aware of the concepts Familiar 4 - Often Familiar Yes
65 3-1am aware of the concepts Familiar 4 - Often Familiar Yes
66 2 - 1 am aware of the concepts, but not practiced recentl Not Familiar 3 - Occasional Not Familiar Yes
67 1 - Minima} Not Familiar 3 - Occasional Not Familiar No - so we have to build them as needed
68
69
70 2 - I am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar Yes
7 4 - | am familiar with the concepts and | use them often Familiar 4 - Often Familiar Yes
- 1am aware of the concepts Familiar 3 - Occasional Not Familiar es
4 - 1 am aware of the concepts Familiar 4 - Often Familiar ‘es
- 1am aware of the concepts Familiar 3 - Occasional Not Familiar es
- 1am aware of the concepts Familiar 1 - Noexperience Not Familiar No - and we don't use them
2 - 1 am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar es
7 1 - Minimal Not Familiar 3 - Occasional Not Familiar es
79 3-1am aware of the concepts Familiar 4 - Often Familiar es
80
81 3 - 1 am aware of the concepts Familiar 4 - Often Familiar No - so we have to build them as needed
82 2 - 1 am aware of the concepts, but not practiced recently Not Familiar 2 - Minimal Not Familiar Yes
83 3 - 1am aware of the concepts Familiar 4 - Often Familiar Yes
84 3 - 1am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
85 1 - Minimal Not Familiar 2 - Minimai Not Familiar Yes
86 - 1 am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
87 - 1am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
88 - 1 am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
89 1 - Minimal Not Familiar 1 - No experience Not Familiar Yes
90 2 - | am aware of the concepts, but not practiced recently Not Famitiar S-idoitevery day Familiar Yes
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(binned) (binned)
3 - 1 am aware of the concepts Familiar 4 - Often Familiar No - so we have to build them as needed
1 - Minimal Not Familiar 3 - Occasional Not Familiar Yes
4 - | am familiar with the concepts and | use them often Familiar 2 - Minimal Not Familiar Yes
4 1 - Minimat Not Familiar - Occasional Not Familiar Yes
95 2 - | am aware of the concepts, but not practiced recently Not Familiar - Occasional Not Familiar No - so we have to build them as needed
96 2- 1 am aware of the concepts, but not practiced recently Not Familiar - Occasional Not Familiar No - so we have to build them as needed
97 3 - 1 am aware of the concepts Familiar 3 - Occasional Not Familiar No - so we have to build them as needed
98 4 - | am familiar with the concepts and | use them often Familiar 5-1doitevery day Familiar Yes
99
00 §2-1am aware of the concepts, but not practiced recently| Not Familiar 3 - Occasional Not Familiar Yes
01 3 - 1 am aware of the concepts Familiar 2 - Minimal Not Familiar Yes
| 102 1 - Minimal Not Familiar 2 - Minima} Not Familiar No - so we have to build them as needed
103 3 - 1 am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
104
105 J2-1am aware of the concepts, but not practiced recentl Not Familiar 1 - No experience Not Familiar No - so we have to build them as needed
106
107 ]2 -Tam aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar Yes
108 4 - I am familiar with the concepts and | use them often Familiar 4 - Often Familiar No - s0 we have to build them as needed
109
110 2 - 1am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar Yes
1 3 - | am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
1 3 - 1 am aware of the concepts Familiar 4 - Often Familiar Yes
2 - 1am aware of the concepts, but not practiced recently Not Familiar 4 - Often Familiar No - so we have to build them as needed
4
S 4 - | am familiar with the concepts and | use them often Familiar 3 - Occasional Not Familiar Yes
3 - | am aware of the concepts Familiar 4 - Often Familiar Yes
2 -1 am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar Yes
4 - 1 am familiar with the concepts and | use them often Familiar - Minimal Not Familiar No - so we have to build them as needed
2 - 1 am aware of the concepts, but not practiced recently Not Familiar - Minimal Not Familiar No - so we have to build them as needed
2 - 1 am aware of the concepts, but not practiced recently Not Familiar - Minimaf Not Familiar Yes
- 1 am aware of the concepts Familiar 3 - Occasional Not Familiar No - so we have to build them as needed
3 - | am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
4 - 1am aware of the concepts Familiar 4. Often Familiar No - so we have to build them as needed
1 3 -1 am aware of the concepts Familiar 4 - Often Familiar No - so we have to build them as needed
| 126 - 1 am aware of the concepts, but not practiced recently Not Familiar 2 - Minimal Not Familiar No - so we have to build them as needed
127 - 1am aware of the concepts, but not practiced recently Not Familiar 2 - Minimal Not Familiar No - and we don't use them
| 128 - 1 am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar Yes
129 2 - 1 am aware of the concepts, but not practiced recently Not Familiar 2 - Minimal Not Familiar No - so we have to build them as needed
130 §2-1am aware of the concepts, but niot practiced recently Not Familiar 3 - Occasional Not Familiar No - and we don't use them
1 2 -1 am aware of the concepts, but not practiced recently Not Familiar 4 - Often Familiar es
1 3 - 1am aware of the concepts Familiar 4 - Often Familiar es
- 1 am aware of the concepts Familiar S - idoitevery day Familiar es
4 - 1 am aware of the concepts Familiar 3 - Occasional Not Familiar No - so we have to build them as needed
- 1 am aware of the concepts Familiar - Occasional Not Familiar es
- 1am aware of the concepts Familiar 4 - Often Familiar Yes
| 138 4 - | am familiar with the concepts and | use them often Familiar 4 - Often Familiar No - so we have to build them as needed
4 - 1 am aware of the concepts amiliar 4 - Often Familiar Yes
4 -1 am aware of the concepts amiliar - Occasional Not Familiar Yes
| 142 -1 am aware of the concepts ‘amiliar - Occasional Not Familiar Yes
| 143 J2-]am aware of the concepts, but not practiced recently Not Familiar - Occasional Not Familiar No - 50 we have to build them as needed
44 3 - 1 am aware of the concepts Familiar 4 - Often Familiar Yes
4 3 - 1 am aware of the concepts Familiar - Occasional Not Familiar Yes
46 2 - 1am aware of the concepts, but not practiced recentl Not Familiar - Occasional Not Familiar Yes
4 3 - 1 am aware of the concepts Familiar - Occasional Not Familiar No - and we don't use them
4 2 - 1 am aware of the concepts, but not practiced recently ot Familiar - Occasional Not Familiar Yes
| 149 12 -1am aware of the concepts, but not practiced recently Not Familiar - Occasional Not Familiar Yes
150 1 - Minimal ot Familiar 2 - Minimal Not Familiar No - 5o we have to build them as needed
51
[ 152 4 -1 am familiar with the concepts and | use them often Familiar 2 - Minimal Not Familiar Yes
3 4 - | am familiar with the concepts and I use them often Familiar 4 - Often Familiar Yes
4 2 - 1 am aware of the concepts, but not practiced recentl Not Familiar 2 - Minimal Not Familiar es
2 - | am aware of the concepts, but not practiced recently Not Familiar 1 - No experience Not Familiar No - so we have to build them as needed
6 4 - 1 am familiar with the concepts and | use them often Familiar 2 - Minimal Not Familiar No - and we don't use them
| 1 2 - 1 am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar Yes
58 3 - 1am aware of the concepts Famitiar 2 - Minimal Not Familiar No - and we don't use them
159 |2 -1am aware of the concepts, but not practiced recentl Not Familiar 4. Often Familiar No - so we have to build them as needed
160 J2 - 1am aware of the concepts, but not practiced recently Not Familiar 4 - Often Familiar es
161 4 -1 am familiar with the concepts and I use them often Familiar S - 1doitevery day Familiar No - so we have to buiid them as needed
162 - I am aware of the concepts Famitiar 3 - Occasional Not Familiar Yes
6 - 1 am aware of the concepts Familiar 2 - Minimat Not Familiar No - and we don't use them
6 -1 am aware of the concepts Familiar 4 - Often Familiar (2]
6 4 - 1 am familiar with the concepts and | use them often Familiar - Minimai Not Familiar es
6¢ 2 - 1 am aware of the concepts, but not practiced recently Not Familiar - Minimal Not Familiar es
6 2 - 1 am aware of the concepts, but not practiced recently Not Familiar - Minimal Not Familiar ‘es
68 3 - | am aware of the concepts Familiar 4 - Often Familiar Yes
6 3 - 1 am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
17/ 4 - 1 am familiar with the concepts and | use them often Familiar 5-1doitevery day Familiar Yes
17 4 -1 am familiar with the concepts and | use them often Familiar 4 - Often Familiar No - so we have to build them as needed
172 4 - 1 am familiar with the concepts and | use them often Familiar S-ldoitevery day Familiar Yes
173
174 2 - | am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar es
17 4 - { am familiar with the concepts and | use them often Familiar 4 - Often Familiar es
176 3 - | am aware of the concepts Familiar S - I doit every day Familiar No - so we have to build them as needed
7 1 - Minimal Not Familiar 2 - Minimal Not Familiar es
178 2 - 1 am aware of the concepts, but not practiced recently Not Familiar 5 - I doitevery day Familiar Yes
179 3 - 1 am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
180 2 - 1 am aware of the concepts, but not practiced recently Not Familiar 2 - Minimat Not Familiar No - and we don't use them
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(binned) (binned)
181 4 - | am familiar with the concepts and 1 use them often Familiar 3 - Occasional Not Familiar Yes
182 2 - 1am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar No - so we have to build them as needed
183 2- 1am aware of the concepts, but not practiced recently Not Familiar 4 - Often Familiar No - so we have to build them as needed
184 4 - | am familiar with the concepts and ] use them often Familiar 4 - Often Familiar Yes
185 - I am aware of the concepts, but not practiced recent! Not Familiar 4 - Often Familiar Yes
186 - 1am aware of the concepts, but not practiced recently Not Familiar 2 - Minimal Not Familiar No - and we don't use them
187 - 1am aware of the concepts, but not practiced recently Not Familiay 4 - Often Familiar Yes
188 3-1am aware of the concepts Familiar 5 - § do it every day Familiar Yes
189 2 - 1 am aware of the concepts, but not practiced recently Not Familiar 2 - Minimal Not Familiar No - and we don’t use them
1 3 -1am aware of the concepts amiliar 2- Minjmal Not Familiar No - and we don't use them
4 - | am familiar with the concepts and | use them often Familiar 4 - Often Familiar No - so we have to build them as needed
3 - 1am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
2 - 1am aware of the concepts, but not practiced recentl Not Familiar 3 - Occasional Not Familiar Yes
34
- 1am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar No - so we have to build them as needed
- | am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar No - and we don't use them
- | am aware of the concepts, but not practiced recently Not Familiar 2 Minimal Not Familiar Yes
| 198 4 -1 am familiar with the concepts and [ use them often Familiar 4 - Often Familiar Yes
99 2 - | am aware of the concepts, but not practiced recently Not Familiar 2 - Minimal Not Familiar Yes
20¢ 2 - | am aware of the concepts, but not practiced recently Not Familiar - Occasional Not Famillar No - so we have to build them as needed
20 3 - | am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
202 4 - | am familiar with the concepts and [ use them often Familiar S - 1do ft every day Pamiliar Yes
203 3 - 1am aware of the concepts Familiar 4 - Often Familiar Yes
204 1 - Minimal Not Familiar 2 - Minimal Not Familiar No - so we have to build them as needed
208 1 - Minimal Not Familiar - Occasional Not Familiar No - so we have to build them as needed
206 3 - | am aware of the concepts Familiar - Occasfonal Not Familiar Yes
207 |2 -1am aware of the concepts, but not practiced recently Not Familiar - Occasional Not Familiar No - so we have to build them as needed
208 3 - 1am aware of the concepts Familiar 2 - Minimat Not Familiar Yes
20¢
2-1am aware of the concepts, but not practiced recently Not Familiar 2 - Minimat Not Familiar Yes
1 - Minimal Not Familiar 2 - Minimal Not Familiar Yes
4 3 - 1am aware of the concepts Familiar 3 - Occasional Not Familiar No - and we don't use them
1 3 -1 am aware of the concepts Familiar 2 - Minimal Not Familiar Yes
1
1 -1 am aware of the concepts Famlliar 3 - Occasional Not Familiar Yes
1 - 1am aware of the concepts Familiar 2 - Minimal Not Familiar Yes
219 - 1am aware of the concepts Familiar 4 - Often Familiar Yes
220 - I am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
221 2 - | am aware of the concepts, but not practiced recently Not Familiar 3 - Occasfonal Not Familiar Yes
222
223 4 - | am familiar with the concepts and | use them often Familiar 4 - Often Familiar No - and we don't use them
224 4 -t am familiar with the concepts and [ use them often Familiar 3 - Occasfonal Not Familiar Yes
225 3 - 1am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
| 226 J2-1am aware of the concepts, but not practiced recently Not Familiar 2 - Minimal Not Familiar No - so we have to build them as needed
27 3 - | am aware of the concepts Familiar 4 - Often Familiar Yes
| 228 3 - | am aware of the concepts Familiar 2 - Minimal Not Familiar No - so we have to build them as needed
29 1 - Minimal Not Familiar 2 - Minimal Not Familiar Yes
230 3 - | am aware of the concepts Familiar 3 - Occasional Not Familiar Yes
23
2 - 1 am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar Yes
3 - 1 am aware of the conce] Familiar 3 - Occasional Not Familiar Yes
234
| 235 §2-1am aware of the concepts, but not practiced recently Not Familiar 3 - Occasional Not Familiar No - so we have to build them as needed
3 3 - 1 am aware of the concepts Familiar 2 - Minimal Not Familiar No - and we don’t use them
3 3 - 1 am aware of the concepts Famitiar 4 - Often Familiar No - so we have to build them as needed
23! 1- Minimal Not Familiar 3 - Occasional Not Familiar es
23 - 1 am aware of the concepts, but not practiced recentt Not Familiar 4 - Often Famillar es
4 - 1am aware of the concepts, but not practiced recentl Not Familiar - Occasional Not Familiar No - 50 we have to build them as needed
4 -1am aware of the concepts, but not practiced recently Not Familiar - Occasional Not Familiar es
4 3 - | am aware of the concepts Familiar - Occasional Not Familiar No - so we have to build them as needed
4 3 -1 am aware of the concepts Familiar S - 1do it every day Familiar es
44 1 - Minimal Not Familiar - Occasional Not Familiar es
| 245 3 - 1am aware of the concepts Familiar 4 - Often Familiar es
46 §2 -1 am aware of the concepts, but not practiced recently Not Familiar 4 - Often Familiar No - so we have to build them as needed
47 1 - Minimal Not Familiar 3 - Occasional Not Familiar es
|__248 3 -1 am aware of the concepts Familiar 4 - Often Familiar es
49 4 - | am famitiar with the concepts and | use them often Familiar 4 - Often Familiar es
50
251 3 - 1am aware of the concepts Familiar 4 - Often Familiar Yes
252 1 - Minimal Not Familiar 4 - Often Familiar Yes

130




D Ar:::x;:n;.:::;::;ed What are the requirements like in your organization? Does your :e?l:‘::u;:::l:::; e physical
Yes 4 - Many requirements with some level of validation 3 - About even
No 4 - Many requirements with some leve! of validation 2 - More testing but some modeling is done
Yes 4 - Many reguirements with some level of validation - More testing, but some modeling is done
No 4 - Many requirements with some level of validation - More testing, but some modeling is done
Yes 5 - Complete set of requirements for our systems and systematic plans to validate those 3 - About even
Yes 3 - Some requirements with some level of validation 2- More testing, but some modeling is done
Yes 4 - Many requirements with some level of validation | 4 - More modeling, but some testing is done |
Yes 2 - Same requirements that are not well validated 3 - About even
) No - Some requirements with some level of validation 2 - More testing, but some modeling is done
10 Yes 5 - Complete set of requirements for our systems and systematic plans to validate those] 4 - More modeling, but some testing is done
es 5 - Complete set of requirements for our ms and systematic plans to validate those 3 - About even
es 4 - Many requirements with some leve! of validation S - Decisions are made from models only
No 2 - Some requirements that are not well validated 3 - About even
es 2 - Some requirements that are not well validated 2 - More testing, but some modeling is done
1 Yes 4 - Many requirements with some level of validation 3 - About even
16
17 Yes 5 - Complete set of requirements for our systems and systematic plans to validate those| 2 - More testing, but some modeling is done
18
19 es 5 - Complete set of requirements for our systems and systematic plans to validate those[ 4 - More modeling but some testing is done
20 No 3 - Some requirements with some level of validation 2 - More testing, but some modeling is done
21 es 5 . Complete set of requirements for our systems and systematic plans to validate those 3 - About even
22 3 - Some requirements with some level of validation 2 - More testing, but some modeling is done
23 No 2 - Some requirements that are not well validated 1 - Decisfons are made with testing only
4 Yes 5 - Complete set of requirements for our systems and systematic plans to validate those 3 - About even
5 1 - Few to no requirements for systems and / or not well validated 1 - Decisfons are made with testing only
26 No 4 - Many requirements with some level of validation 3 - About even
27 Yes 5 - Complete set of requirements for our systems and systematic plans to validate those 3 - About even
28 Yes 1 - Few to no requirements for systems and / or not well validated 4 - More modeling, but some testing is done
29
30 5 - Complete set of requirements for our systems and systematic plans to validate those | 2 - More testing, but some modeling is done
31 No
32 es 5 - Complete set of requirements for our systems and systematic plans to validate those] 2 - More testing but some modeling is done
33 es S - Complete set of requirements for our systems and systematic plans to validate those] 2 - More testing but some modeling is done
34 No 3 - Some requirements with some level of validation 2 - More testing, but some modeling is done
35 No 4 - Many requirements with some level of validation 1 - Decisions are made with testing only
36
37
38 No 2 - Some requirements that are not well vatidated 1 - Decisions are made with testing only
39 No 2 - Some requirements that are not well validated S - Decisions are made from models only
40 Yes 5 - Complete set of requirements for our systems and systematic plans to validate those| 4 - More modeling, but some testing is done
41 Yes 4 - Many requirements with some level of validation 2 - More testing, but some modeling is done
42 No 3 - Some reguirements with some Jevel of validation 3 - About even
43 4 - Many requirements with some level of validation - More testing but some modeling is done
44 Yes - Some requirements with some level of validation - More testing but some modeling is done
45 Yes 4 - Many requirements with some level of validation - More testing but some modeling is done
46
47 Yes 3 - Some requirements with some level of validation 2 - More testing, but some modeling is done
48 No 5 - Complete set of requirements for our systems and systematic plans to validate those 3 - About even
49 Yes 3 - Some requirements with some level of validation 1 - Decisions are made with testing only
50 Yes 2 - Some requirements that are not well validated S - Decisions are made from models only
51
52 es 1 - Few to no requirements for systems and / or not well validated 2 - More testing, but some modeling is done
53 es . Many requirements with some level of validation 3 - About even
54 No - Some requirements with some level of validation 4 - More modeling, but some testing is done
55 es - Many requirements with some level of validation 3- About even
56 No 5 - Complete set of requirements for our ms and systematic plans to validate those 3 - About even
57 Yes 4 - Many requirements with some level of validation 2 - More testing but some modeling is done
58 Yes S - Complete set of requirements for our systems and systematic plans to validate those | 2 - More testing but some modeling is done
59
6
6 Yes 4 - Many requirements with some level of validation 2 - More testing, but some modeling is done
6 No 2 - Some requirements that are not well validated 1 - Decisions are made with testing only
6
64 Yes 1 - Few to no requirements for systems and / or not well validated 2 - More testing, but some modeling is done
65 Yes - Many requirements with some level of validation 2 - More testing, but some modeling is done.
66 Yes. - Some requirements with some level of validation 3 - About even
67 Yes - Some requirements with some level of validation 2 - More testing, but some modeling is done
68
69
70 Yes 5 . Complete set of requirements for our systems and systematic plans to validate those| 1 - Decisions are made with testing only.
71 Yes 5 - Complete set of requirements for our systems and systematic plans to validate those 3 - About even
72
3 - Many requirements with some level of validation 2 - More testing, but some modeling is done.
4 Yes - Some requirements with some level of validation 2 - More testing, but some modeling is done
Yes - Many requirements with some level of validation 3 - About even
No - Complete set of requirements for our systems and matic plans to validate those! 1 - Decisions are made with testing only
es - Complete set of requirements for our s and systematic plans to validate those | 2 - More testing but some modeling is done
8 es - Complete set of requirements for our ms and matic plans to validate those 3 - About even
79 es 4 - Many requirements with some level of vatidation 3 - About even
80
81 No 4 - Many requirements with some level of validation 2 - More testing, but some modeling is done
82 Yes 4 - Many requirements with some level of validation 2 - More testing, but some modeling is done.
83 Yes - Some requirements with some level of validation 3 - About even
84 Yes - Many requirements with some level of validation 2 - More testing, but some modeling is done
85 Yes S - Complete set of requirements for our systems and matic plans to validate those - About even
86 Yes 4 - Many requirements with some level of validation - About even
87 Yes 4 - Many requirements with some leve! of validation - About even
88 Yes 4 - Many requirements with some level of validation 5 - Decisions are made from models only
89 Yes 4 - Many requirements with some level of validation 2 - More testing, but some modeling is done
%0 Yes 5 - Complete set of requirements for our systems and systematic plans to validate those |2 - More testing, but some modeling is done
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Are the models suited ) Does your o ization do more physical
b for the problem? Whatare the req like in your or tel:?nng or modeling? Y
91 Yes 4 - Many requirements with some level of validation - About even
92 Yes 3 - Some requirements with some level of validation - About even
93 Yes 4 - Many requirements with some level of validation - About even
94 Yes 4 - Many requirements with some level of validation - About even
95 No 5 : Complete set of requirements for our systems and systematic plans to validate those| 1 - Decisions are made with testing only
96 No 3 - About even
97 No 4 - Many requirements with some leve) of validation 3 - About even
98 Yes 4 - Many requirements with some level of validation 2 - More testing, but some modeling is done
29
10 No 3 - Some requirements with some level of validation 3 - About even
101 Yes 4 - Many requirements with some level of validation 3 - About even
102 4 - Many requirements with some level of validation 2 - More testing, but some modeling is done
103 Yes 3 - Some requirements with some level of validation 3 - About even
104
105 No 2 - More testing, but some modeling is done
106
107 Yes 4 - Many requirements with some level of validation 5 - Decisions are made from models only
108 No 2 - Some requirements that are not well validated 2 - More testing, but some modeling is done
109
Yes 2 - Some requirements that are not well validated 3 - About even
Yes 2 - Some requirements that are not well validated 2 - More testing, but some modeling is done
Yes 4 - Many requirements with some level of validation 3 - About even
Yes 4 - Many requirements with some level of validation 3 - About even
4
S Yes 4 - Many requirements with some level of validation 3 - About even
{:
7 Yes 4 - Many requirements with some level of validation 3 - About even
11 Yes 2 - Some requirements that are not well validated 2 - More testing, but some modeling is done
11 No 4 - Many requirements with some jevel of validation 4 - More modeling, but some testing is done
12 Yes 2 - Some requirements that are not well validated 3 - About even
12 Yes 5 - Complete set of requirements for our systems and systematic plans to validate those| 2 - More testing, but some modeling is done
No - Some reguirements with some leve of validation 3 - About even
Yes - Some requirements with some level of validation 3 - About even
4 Yes - Many requirements with some level of validation 4 - More modeling, but some testing is done
| 125 Yes 4 - Many requirements with some level of validation 2 - More testing, but some modeling is done
| 126 Yes - Some requirements with some level of validation 3 - About even
27 5 - Complete set of uirements for our systems and systematic plans to validate those 3 - About even
128 Yes 5 - Complete set of requirements for our systems and systematic plans to validate those | 2 - More testing, but some modeling is done
Yes 4 - Many requirements with some level of validation - More testing, but some modeling is done
No 1 : Few to no requirements for systems and / or not well validated - More testing, but some modeling is done
Yes - Some requirements with some level of validation - More testing, but some modeling is done
1 Yes 4 - Many requirements with some level of validation - More testing, but some modeling is done
No - Man uirements with some level of validation 4 - More modeling, but some testing is done
| 134 Yes - Some requirements with some levei of validation 2 - More testing, but some modeling is done
35 Yes - Man uirements with some level of validation 3 - About even
Yes - Many requirements with some level of validation 3 - About even
Yes 3 - Some requirements with some level of validation 3 - About even
G
4( es 3 - Some requirements with some level of validation 2 - More testing, but some modeling is done
4 Yes 2 - Some requirements that are not well validated 1 - Decisions are made with testing only
4 No 3 - Some requirements with some level of validation - More testing, but some modeling is done
4 Yes 4 - Many requirements with some level of validation - More testing, but some modeling is done
44 Yes 4 - Many requirements with some level of validation - More testing, but some modeling is done
| 145 Yes 4 - Many requirements with some level of validation 1 - Decisfons are made with testing only
46 Yes 5 - Complete set of requirements for our systems and systematic plans to validate those | 2 - More testing, but some modeling is done
47 es 5 - Complete set of requirements for our systems and systematic plans to validate those 3 - About even
| 148 es 3 - Some requirements with some leve} of validation - More testing, but some modeling is done
49 ‘es 4 - Many requirements with some level of validation 4 - More modeling, but some testing is done
es 4 - Many requirements with some level of validation - More testing, but some modeling is done
| 152 No 5 - Complete set of requirements for our ms and systematic plans to validate those 3 - About even
53 Yes 3 - Some requirements with some level of validation S - Decisions are made from models only
54 es 5 - Complete set of requirements for our systems and systematic plans to validate those | 2 - More testing, but some modeling is done
| 155 Yes 4 - Man uirements with some level of validation 2 - More testing, but some modeling is done
56 No 3 - Some requirements with some level of validation 1 - Decisfons are made with testing only
| 157 Yes 3 - About even
58 2 - Some requirements that are not well validated 2 - More testing, but some modeling is done
159 es. 5 - Complete set of requirements for our systems and systematic plans to validate those| 2 - More testing, but some modeling is done
60 ‘es 4 - Many requirements with some level of validation 3 - About even
1 es 3 - Some requirements with some level of validation 2 - More testing, but some modeting is done
es - Complete set of requirements for our systems and systematic plans to validate those | 2 - More testing, but some modeling is done
63 : Complete set of requirements for our systems and systematic plans to validate those| 1 - Decisions are made with testing only
64 Yes - Complete set of requirements for our systems and systematic plans to validate those 3 - About even
65 Yes - Some requirements with some level of validation - More modeling, but some testing is done
166 - Many requirements with some level of validation - More testing, but some modeling is done
167 Yes - Man uirements with some level of validation - More testing, but some modeiing is done
168 Yes - Many requirements with some level of validation 2 - More testing, but some modeling is done
16 Yes - Many requirements with some level of validation 2 - More testing, but some modeling is done
Yes - Some requirements with some leve] of validation 4 - More modeling but some testing is done
Yes S - Complete set of requirements for our ms and systematic plans to validate those 3 - About even
Yes 4 - Many requirements with some level of validation 3 - About even
174 Yes 3 - Some requirements with some level of validation 2 - More testing, but some modeling is done
5 No 4 - Many requirements with some level of validation 1 - Decisions are made with testing only
€ es 2 - Some requiremnents that are not well validated 4 - More modeling, but some testing is done
7 es 3 - Some requirements with some leve] of validation 3 - About even
| 178 es 4 - Many requirements with some level of validation 2 - More testing, but some modeling is done
79 es 3 - Some requirements with some level of validation 2 - More testing, but some modeling is done
180 2 - Some requirements that are not well validated
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18 Yes 5 - Complete set of requirements for our systems and systematic plans to validate those 3 - About even
18. No - Many requirements with some level of validation 2 - More testing but some modeling is done
18 Yes - Some requirements with some level of validation 2 - More testing, but some modeling is done
18 Yes 5 - Complete set of requirements for our systems and systematic plans to validate those 3 - About even
| 185 Yes S - Complete set of reguirements for our systems and systematic plans to validate those 3 - About even
| 186 No 4 - Many requirements with some level of validation 2 - More testing, but some modeling is done
| 187 Yes 5 - Complete set of requirements for our systems and systematic plans to validate those 3 - About even
| 188 Yes 5 - Complete set of requirements for our systems and systematic plans to validate those 3 - About even
189
190 No - Some requirements with some leve} of validation 2 - More testing, but some modeling is done
Yes - Some requirements with some level of validation 3 - About even
No - Some requirements with some level of validation 2 - More testing, but some modeling is done
Yes 2 - Some requirements that are not well validated 2 - More testing, but some modeling is done
No 5 - Complete set of requirements for our systems and systematic plans to validate those | 2 - More testing, but some modeling is done
4 - Many requirements with some level of validation 2 - More testing, but some modeling is done
Yes 3 - Some requirements with some level of validation 1 - Decisions are made with testing only
2 - Some requirements that are not well validated 3 - About even
Yes. 4 - Many requirements with some level of validation 3 - About even
20 Yes 2 - Some requirements that are not well validated 4 - More modeling, but some testing is done
20 Yes 4 - Many requirements with some level of validation 2 - More testing, but some modeling is done
20 Yes 4 - Many requirements with some level of validation 3 - About even
20 Yes - Some requirements with some level of validation 3 - About even
204 No - Many requirements with some level of validation
205 Yes S - Complete set of requirements for our systems and systematic plans to validate those | 2 - More testing, but some modeling is done
206 Yes 4 - Many requirements with some level of validation 3 - About even
207 Yes 4 - Many requirements with some level of validation 2 - More testing, but some modeling is done
208 5 - Complete set of requirements for our systems and systematic plans to validate those | 2 - More testing, but some modeling is done
209
0
Yes 4 - Many requirements with some level of validation 2 - More testing, but some modeling is done
Yes 3 - Some requirements with some levet of validation 2 - More testing, but some modeling is done
Yes 4 - Many requirements with some level of validation 3 - About even
Yes 3 - Some requirements with some level of validation 3 - About even
Yes 3 - Some requirements with some level of validation - More modeting, but some testing is done
21 Yes 2 - Some requirements that are not well validated - More testing, but some modeling is done
220 Yes 4 - Many requirements with some level of validation - More testing, but some modeting is done
221 No 3 - Some requirements with some level of validation 3 - About even
222
22 Yes 2 - Some requirements that are not well validated 2 - More testing, but some modeling is done
224 Yes 4 - Many requirements with some leve! of validation 3 - About even
22 Yes 5 - Complete set of requirements for our systems and systematic plans to validate those| S - Decisions are made from models only
226 Yes 2 - Some requirements that are not well validated 2 - More testing, but some modeling is done
227 Yes 5 - Complete set of requirements for our systems and systematic plans to validate those 3 - About even
228 No - Many requirements with some level of validation 2 - More testing, but some modeling is done
229 Yes - Some requirements with some level of validation 2 - More testing, but some modeling is done
230 Yes - Some requirements with some level of validation 2 - More testing, but some modeling is done
231
232 Yes S - Complete set of requirements for our systems and systematic plans to validate those 3 - About even
233 Yes 5 - Complete set of requirements for our systems and systematic plans to validate those | 2 - More testing, but some modeling is done
234 -
238 No 3 - Some requirements with some level of validation 4 - More modeling, but some testing is done
236 No 3 - Some requirements with some level of validation 2 - More testing, but some modeling is done
237 Yes 2 - Some requirements that are not well validated 2 - More testing, but some modeling is done
i 238 Yes 2 - Some requirements that are not well validated 2 - More testing, but some modeling is done
3 4 - Many requirements with some level of validation 3 - About even
4( No 4 - Many requirements with some level of validation 2 - More testing, but some modeling is done
4 No - Some requirements with some level of validation 4 - More modeling, but some testing is done
4 es - Many requirements with some level of validation 2 - More testing, but some modeling is done
4. Yes - Some requirements with some level of validation 3 - About even
44 Yes 5 - Complete set of requirements for our systems and systematic plans to validate those [ 2 - More testing, but some modeling is done
| 245 Yes - Many requirements with some leve! of validation 3 - About even
46 Yes - Many requirements with some levei of validation 4 - More modeling, but some testing is done
47 Yes - Many requirements with some level of validation - More testing, but some modeling is done
| 248 No - Many requirements with some level of validation 4 - More modeling, but some testing is done
49 Yes 4 - Many requirements with some level of validation 4 - More modeling, but some testing is done
50
251 Yes 3 - Some requirements with some level of validation 2 - More testing, but some modeling is done
252 Yes 3 - Some requirements with some level of validation 2 - More testing, but some modeling is done
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