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Abstract

In this work, two separate aspects of ideal MHD theory are considered. In the

first part, analytic solutions to the Grad-Shafranov equation (GSE) are presented, for

two families of source functions: functions which are linear in the flux function T ,
and functions which are quadratic in T. The solutions are both simple and very

versatile, since they describe equilibria in standard tokamaks, spherical tokamaks,
spheromaks, and field reversed configurations. They allow arbitrary aspect ratio,
elongation, and triangularity as well as a plasma surface that can be smooth or

possess a double or single null divertor X-point. The solutions can also be used to

evaluate the equilibrium beta limit in a tokamak and spherical tokamak in which a

separatrix moves onto the inner surface of the plasma.

In the second part, the reliability of the ideal MHD energy principle in fusion

grade plasmas is assessed. Six models are introduced, which are constructed to better

describe plasma collisonality regimes for which the approximations of ideal MHD are

not justified. General 3-D quadratic energy relations are derived for each of these six

models, and compared with the ideal MHD energy principle. Stability comparison

theorems are presented. The main conclusion can be summarized in two points. (1) In

systems with ergodic magnetic field lines, ideal MHD accurately predicts marginal

stability, even in fusion grade plasmas. (2) In closed field line geometries, however,
the ideal MHD predictions must be modified. Indeed, it is found that in collisionless

plasmas, the marginal stability condition for MHD modes is inherently incompressible

for ion distribution functions that depend only on total energy. The absence of

compressibility stabilization is then due to wave particle resonances. An illustration of

the vanishing of plasma compressibility stabilization in closed line systems is given by

studying the particular case of the hard-core Z-pinch.
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Chapter 1

Introduction

The ideal MHD model is perhaps the simplest description of neutral plasmas

one can think of. It is defined by the following set of equations:

OP !1.(P )-
-V-(pv) =0

at
dv

p -= JxB- Vp
dt

d p = 0 (1.1)
di p

V x B= ptJ

Vx vx B)
at

In eq. (1.1), p is the mass density of the plasma, v its velocity, and p its pressure.

J is the current flowing in the plasma, and B the magnetic field. Because of its

simplicity, and its somewhat surprising ability to accurately predict the macroscopic

behavior of plasmas, ideal MHD is the model most commonly used in the early stages

of the design of a magnetic fusion experiment. This early design phase is usually

subdivided in the following two steps, which correspond to the two fundamental
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missions of ideal MHD theory for magnetic fusion applications. First, one determines

an equilibrium state consistent with the steady-state version of eq. (1.1). Then, one

analyzes the perturbations around that equilibrium state, which are either stable

waves or instabilities. Among other considerations, the desirable equilibria are those

where the plasma is confined at a high pressure, and where major instabilities,

potentially leading to the eventual loss of plasma confinement, cannot be excited.

In this thesis, we look separately at each of the two cornerstones of ideal MHD

theory. In the first part, we calculate plasma equilibria in toroidally axisymmetric

magnetic configurations with analytic solutions of the ideal MHD equilibrium

equations. In the second part, we evaluate the validity of the set of equations (1.1)

and the robustness of the ideal MHD linear stability predictions in fusion grade

plasmas.

Part 1: Static MHD equilibria and analytic solutions to the Grad-

Shafranov equation

The equilibria of most plasmas of fusion interest are well described by the

steady-state, zero flow version of eq. (1.1):

JxB = Vp

VB=0 (1.2)

V x B = p J
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Now, with the notable exception of the stellarator, all the plasma confinement

concepts which show promise as future fusion reactors have toroidal axisymmetry.

For toroidally axisymmetric configuration, the set of seven equations for seven

unknowns given in (1.2) reduces to a single two-dimensional, nonlinear, elliptic

partial differential equation, whose solution contains all the information necessary to

fully determine the nature of the equilibrium. This equation is usually known as the

Grad-Shafranov equation (GS equation), and can be written as follows

R 1 Ojf 02qf R dp -dF(13R- -- + =-po2 F(1.3)
OR R OR) OZ2 0dqW dxF

In Eq. (1.3), (R,<4,Z) is the usual coordinate system associated with the toroidal

symmetry, 27r (R, Z) is the poloidal flux, which is the unknown, p (x) is the plasma

pressure, and 27rF (IF) = -I, (I) is the net poloidal current flowing in the plasma and

the toroidal field coils.

In general, the GS equation has to be solved numerically. Several excellent

accurate and fast numerical Grad-Shafranov solvers are available nowadays.

Nevertheless, analytic solutions are always desirable from a theoretical point of view.

They usually give more insights into the properties of a given equilibrium than

numerical solvers do, for instance when used to derive scalings with the different
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geometric parameters (aspect ratio, elongation, triangularity). They can also be the

basis of analytic stability and transport calculations. Finally, they can be used to test

the numerical solvers.

In several confinement concepts of fusion interest, such as the tokamak and

the stellarator for instance, the inverse aspect ratio is a small number which can be

used as an expansion parameter in eq. (1.3). Analytic solutions are obtained by

expanding (1.3) order by order, as one usually does in asymptotic calculations. This

method has led to a wealth of results, and a very deep analytic understanding of

static equilibrium in tokamaks.

The problem, of course, is that asymptotic expansions break down in other

confinement concepts of fusion interest, such as spherical tokamaks (STs),

spheromaks, or Field Reverse Configurations (FRCs), in which the inverse aspect

ratio is close to 1. For these configurations, one can therefore ask ourselves the

following questions: are there specific forms for the forcing terms

dp dF
-p R2 and F- such that analytic solutions of eq. (1.3) can only be found?

dWf d T

In Part I of this thesis, corresponding to Chapter 2, we show that the answer

to this question is yes, and we propose new, improved analytic solutions to the GS

equation for two families of specially chosen pressure and current profiles. The first

profiles of interest are usually known as the Solov'ev profiles, and have the following

general form:
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dp dF'= K and F = K, K, K constants (1.4)
dIId 2 2

With these profiles, the GS equation takes a particularly simple form, and the

solutions are polynomials (or polynomial-like, with logarithms). We construct a

solution with more degrees of freedom than any of the solutions previously proposed

by Solov'ev and others, and associate to this solution new boundary constraints on

the plasma surface, to determine all the free coefficients in our generic polynomial

solution. With our choice of boundary constraints, the same solution can be used for

the calculation of tokamak, ST, spheromak, and FRC equilibria, with or without up-

down symmetry, with or without X-points, for arbitrary plasma 3, inverse aspect

ratio E, elongation r, and triangularity 6. Furthermore, the calculation of any

equilibrium only involves the numerical solution of a linear algebraic system of a very

limited number of equations (7 equations for up-down symmetric equilibria, 12

otherwise). This is a trivial numerical problem.

Unfortunately, the Solov'ev profiles (1.4) correspond to a somewhat unrealistic

situation from an experimental point of view, since the toroidal current density has a

jump at the plasma edge. For this reason, we demonstrate in the remainder of

Chapter 2 that the procedure we developed for the Solov'ev profiles can be applied as

successfully for more realistic profiles, given by:

p (0)= pOV2 and F2 = R 02B (1 - '2) (1.5)
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In (1.5), B is the vacuum magnetic field, a represents the plasma diamagnetism

(a > 0) or paramagnetism (a < 0), and p, is defined such that the pressure at the

magnetic axis is Paxis = P0 as

The solution of the GS equation which we find for the profiles (1.5) is more

complicated than in the Solov'ev case. Instead of a polynomial expansion, we now

have an expansion in Whittaker functions. Most importantly, some of the

undetermined constants now appear nonlinearly in the solution, namely in the

argument of Whittaker functions. However, the procedure to determine the free

constants which we presented in the Solov'ev case can be applied in exactly the same

way. The only difference is that the system of algebraic equations for the boundary

constraints is now nonlinear. Solving this system is a less trivial numerical problem

than in the previous case, and convergence issues may be encountered if the chosen

geometric and plasma parameters are too extreme. Nevertheless, in most cases the

system can readily be solved by calling a built-in nonlinear solver in any scientific

computing program. We have been able to compute very plausible tokamak and ST

equilibria with this procedure, for a wide range of parameters, and with or without

up-down symmetry.
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Part 2: MHD comparison theorems, and the vanishing of plasma
compressibility

One of the most important criteria in the design of a magnetic fusion

experiment is the stability of the plasma to the fast macroscopic modes known as

MHD modes. These modes are known experimentally to considerably degrade the

plasma properties, and can actually cause the termination of the plasma discharge.

MHD instabilities are usually studied using the ideal MHD model, because of

the relative simplicity of this model, and of its particular mathematical properties. In

ideal MHD, the problem of linear stability in any 3D configuration can be cast in a

very convenient form known as the ideal MHD energy principle. It can be stated as

follows:

A static ideal MHD equilibrium is stable if and only if

6WMHD >0 (1.6)

for all allowable displacements (.

In eq. (1.6), ( is the plasma displacement, and 6W(*, ) is the potential energy

associated with the displacement (. The energy principle (1.6) can be refined, and a

more specific form can be given for the different families of magnetic configurations:
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e In ergodic systems (tokamaks, stellarators, STs, etc.), or closed field line

systems with modes which do not conserve the closed-line symmetry, a static

ideal MHD equilibrium is linearly stable if and only if

_W * 0 (1.7)

for all allowable displacements .

In eq. (1.7), 8W (* ,() is the potential energy associated with incompressible

displacements. In other words, ideal MHD stability, for this first family of

modes and magnetic geometries, in inherently incompressible.

* For closed field line systems (Z-pinch, Dipole, FRC, etc.), and modes which

conserve the closed-line symmetry, a static ideal MHD equilibrium is linearly

stable if and only if

6W *= SW+( *,) + f p (V.- )}2 dr 0 (1.8)

for all allowable displacements .

In eq. (1.8), ( ) represents the flux-tube averaging operation. 6W , the

compressible piece of 6WMHD ( is present in the stability criterion, unlike

the previous case. Since it is clear that 6W (*, ) 0, the contribution from

this term is stabilizing. This is what is known as MHD compressibility
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stabilization. Some closed field line devices, such as the Levitated Dipole

eXperiment (LDX), rely explicitly on MHD compressibility to stabilize their

most dangerous MHD modes.

The ideal MHD model relies on the assumption that both the electrons and the

ions are collisional on the MHD time scale. In this approximation, the plasma is

isotropic, and kinetic effects are absent. In most modern magnetic confinement

experiments and in future fusion reactors, this assumption is not justified, at least for

the ions. Fusion grade plasmas behave in a fundamentally anisotropic manner, and

kinetic effects are ubiquitous. One can therefore wonder how robust the ideal MHD

stability analyses and the ideal MHD energy principle are in plasmas of fusion

interest. For example, a question of interest for closed line systems such as the LDX

is the reliability of the criterion (1.8). The factor y in 6W comes from the ideal

MHD equation of state d / dt(p / p = 0. Since this equation is derived assuming

that the plasma behaves as an isotropic fluid, one may have doubts about the

robustness of (1.8), and about the existence of MHD compressibility stabilization.

In Chapter 3 of this thesis, we assess the reliability of the ideal MHD energy

principles for both ergodic and closed line systems. We introduce six models which

more accurately describe the plasmas in the different collisionality regimes of fusion

interest. Some of these models are new, while some others have already been used
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extensively. They are presented in Table 1, in which they are organized according to

the collisionality regime they are associated with, and to whether or not they allow

for finite krL , where k, is the perpendicular wave number of the modes of interest,

and rL is the ion Larmor radius.

kL r = 0 k r finite

Collisional electrons and
Two-Temperature MHD

Collisional ions

Collisional electrons and - CGL - Fluid MHD

Vlasov - Fluid
Collisionless ions - Kinetic - Fluid MHD

Collisionless electrons - CGL

and collisionless ions - Kinetic MHD

Table 1.1 The six models which are compared to the ideal MHD model

For each of the models shown in Table 1, we derive new expressions for the

potential energy of the plasma displacement, and new quadratic energy relations,

valid in arbitrary 3-D configuration, which we compare with 6WMHD and with the

ideal MHD energy principle. The results can be summarized as follows.
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The stability boundaries predicted by ideal MHD are more conservative than

those predicted by any of the models in Table 1.1 assuming krL = 0. In other words,

ideal MHD linear stability implies linear stability in any of these models. The

situation is different, however, when ideal MHD is compared with the Vlasov-Fluid

(VF) model, a model which is constructed specifically to allow finite k1 rL , and which

assumes that the equilibrium ion distribution function depends only on the total

energy (so that there is no equilibrium ion flow, as in ideal MHD). Indeed, in this

thesis we prove the following statement:

For both ergodic and closed line magnetic geometries, the condition for the

marginal stability in the VF model is:

6W 1 = 0 (1.9)

Two important consequences can be deduced from (1.9). First, note that for

ergodic systems, the condition (1.9) is identical to the condition (1.7). In other words,

for ergodic systems, the ideal MHD energy principle for incompressible displacements

accurately predicts the linear stability boundaries. It is not a conservative estimate

as has been thought in the past, but corresponds to the actual stability boundary.

Second, plasma compressibility is absent from the criterion (1.9). Thus,

according to the VF model, in closed line systems, the linear stability boundaries

determined with the ideal MHD model are not the most conservative. A plasma can

VF unstable to an MHD mode, and yet found to be ideal MHD stable.
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Physically, we find that for the equilibria under consideration in the VF

model, in which the ions are electrostatically confined, kinetic effects associated with

the drift of the particles perpendicular to the magnetic field lines are responsible for

the vanishing of plasma compressibility. Of all the models shown in Table 1, only the

VF model can treat resonant particle effects perpendicular to the field lines. In fluid

models, kinetic effects are obviously absent, and in the other kinetic models, which

assume rL = 0, particles do not drift off the flux tubes they are attached to. This

explains why the result given in (1.9) is new. Until now, there was a shared belief,

supported by a large number of studies with the CGL and Kinetic MHD models, that

ideal MHD stability boundaries were always the most conservative, both in ergodic

and closed line systems.

Our new result may be most important for closed line configurations, such as

the levitated dipole and the FRC, where MHD compressibility stabilization plays an

important role in predicted plasma performance. Therefore, in Chapter 4 we illustrate

its implications by studying the case of the hard-core Z-pinch, a closed line

configuration which is the large aspect ratio limit of the levitated dipole.

Ideal MHD stability theory shows that in a hard-core Z-pinch, the most

unstable mode is the compressible interchange mode. This mode is driven unstable by

the pressure gradient in the unfavorable curvature of the field lines. However, for
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small enough pressure gradients, the mode is stabilized by plasma compressibility. In

low 3 plasmas, the condition on the pressure gradient is

r dp '
< 2-= 10 / 3 for ideal MHD stability (1.10)

p dr

Based on our analysis in the previous section, we expect this condition to be

violated in the VF model, and the instability to persist beyond the ideal MHD

stability limit, once resonant particle effects perpendicular to the field lines are taken

into account. Therefore, we derive the eigenvalue equation for the interchange mode

in the VF model, and solve this equation numerically. The VF criterion for stability

we obtain from our numerical analysis is the following:

r dp < 0 for Vlasov-fluid stability (1.11)
p dr

Eq. (1.11) proves the absence of plasma compressibility stabilization in the VF

model, which applies to the particular class of hard-core Z-pinch equilibria in which

the ions are electrostatically confined. Thus, when ion kinetic effects perpendicular to

the field lines are included, the instability persists beyond the ideal MHD limit, and

only non-decaying pressure profiles are linearly stable. Such profiles are obviously not

desirable for magnetic fusion concepts.

When k r is small, the growth rate of the instability is small in the ideal

MHD stable regime. This is expected, since the instability is only due to a few

resonant ions in the tail of the distribution function. However, the growth rate
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becomes larger as k, gets larger, and may be comparable to ideal MHD growth rates

when kr ~1.

Additionally, our VF numerical studies show that to fully account for the

resonant ion effects, it is crucial to solve the full eigenvalue equation. Often, this

equation is simplified by assuming that the mode has scale lengths which are much

shorter than those of the equilibrium quantities. This is the so-called local

approximation. However, the results we obtain in this approximation are

qualitatively different from the results we obtain solving the global eigenvalue

equation, even when the approximation is justified. The reasons for this discrepancy

are two-folds: 1) The details of the profiles (pressure, magnetic field) explicitly appear

in the resonant denominators; 2) The real frequency of the mode given by the global

eigenvalue equation is different from the one obtained by solving the equation at a

given location, which modifies the resonance condition.

We conclude this thesis by discussing the experimental relevance of the VF

results, and by suggesting ways to verify the robustness of these results with models

allowing more general and more realistic ion equilibria.
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Chapter 2

Static MHD equilibria and analytic solutions to the
Grad-Shafranov equation

We focus, in this chapter, on one aspect of ideal MHD equilibrium theory,

namely the calculation of analytic self-consistent MHD equilibria. What exactly do

we mean by analytic equilibria? We will show in the first part of this chapter that for

toroidally axisymmetric confinement concepts (i.e. almost all the magnetic

confinement machines which show promise as future fusion reactors, except for the

notable exception of the stellarator), the equation describing the equilibrium of the

plasma can be cast in the form of a two-dimensional, nonlinear, elliptic partial

differential equation called the Grad-Shafranov equation (GS equation). The solution

of the GS equation, with its associated boundary conditions, fully determines the

equilibrium. (Section 2.1). In general, the GS equation has to be solved numerically

[1]. However, for particular, somewhat idealized equilibrium pressure and current

profiles, analytic solutions to the GS equation can be obtained. This is what we mean

by analytic equilibria. These analytic solutions are clearly desirable from a theoretical
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point of view: we can use them to develop our intuition about a particular

confinement concept, to perform analytic calculations of the stability and transport

properties of that concept, or to benchmark numerical solvers of the GS equation.

Our new analytic solutions to the GS equation are presented in the second and

third parts of this chapter. We first present new analytic solutions of the GS equation

for the pressure and current profiles known as Solov'ev profiles [2], simple profiles

which still retain most of the crucial physics involved in the theory of MHD equilibria

in toroidally axisymmetric devices. The attractiveness of the solutions we propose lies

in their simplicity, and versatility. Indeed, we show that by using a single,

streamlined procedure, these solutions can be used to calculate MHD equilibria of

tokamaks, spherical tokamaks (STs), spheromaks and field reversed configurations

(FRCs), and we give examples for each configuration. (Section 2.2)

The difficulty with the Solov'ev profiles is that they are partially unrealistic

experimentally, since they correspond to a situation where the pressure gradient and

the current profiles have a jump at the plasma edge. The purpose of the third part of

this chapter is to demonstrate that the procedure described in Section 2.2 can in fact

be generalized to more realistic profiles. We find analytic solutions to the GS

equation for profiles characterized by the vanishing of the pressure gradient and of

the current at the plasma surface. These analytic solutions have the same number of

degrees of freedom as the ones we propose in the Solov'ev case, so that the

undetermined constants can be determined in exactly the same way as in Section 2.2.
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With these solutions, we calculate tokamak and ST equilibria, with and without up-

down symmetry.

2.1 Confined plasma equilibrium and Grad-Shafranov equation

2.1.1 Equilibrium equations in fusion plasmas

We start with the ideal MHD momentum equation:

dv
p =_ JxB-Vp

dt
(2.1)

An equilibrium is defined by the fact that all the quantities involved in eq. (2.1) are

time-independent, - = 0. In these conditions, eq. (2.1) becomes
at

pv- Vv J x B - Vp (2.2)

Furthermore, comparing the inertial term and the pressure gradient term, we have

the following scaling:

pv.-Vv v2 2
~ ~l - - m2

Vp
(2.3)

2
v T

where we have assumed that the ion and electron temperatures are comparable (a

very good assumption in fusion grade plasmas), and where we have introduced the

ion Mach number Mi as the ratio of the plasma velocity to the ion thermal velocity.

In toroidally axisymmetric geometries, one usually distinguishes the poloidal velocity,

which is in the plane parallel to the axis of symmetry, and the toroidal velocity, in

27



the plane perpendicular to the axis of symmetry. Consequently, one often separates

the poloidal Mach number M, and the toroidal Mach number, MT. In magnetic

fusion experiments, we typically have M, < M T (e.g. [3]), so that the ordering in

(2.3), and the question of keeping or neglecting the inertial term in eq. (2.2)

essentially depends on MT.

In the absence of external momentum input, in particular from neutral beam

injection systems, the upper bound MT < 0.15 is usually found in modern fusion

experiments (e.g. [4] for the DIII-D tokamak [5] and [6] in the Alcator C-Mod

tokamak [7]), so that the inequality M2 <1 is very well satisfied. In the presence of

auxiliary torque input, through neutral beams for instance, as in the DIII-D tokamak

and the NSTX spherical tokamak (ST) [8], the plasma flows can be larger. Still, the

values typically observed are of the order MT, 0.5 ([9], [10]), so that the ordering

M, < 1 is still somewhat acceptable. It will most likely be even more acceptable in

the ITER tokamak [11], where the momentum input from the neutral beam system is

expected to be smaller, because of the large machine size, and the higher densities.

In conclusion, we can say that for almost all situations of fusion interest,

neglecting the inertial term is justified, and we can focus on static equilibria, v = 0,

for which the equilibrium momentum equation takes the form:

(2.4)J xB = Vp
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which is the well-known equation expressing the balance between the magnetic force

J x B and the pressure gradient force.

The three components of Eq. (2.4) represent three equations for seven unknowns:

p, the three components of J and the three components of B. This is obviously not

sufficient to fully determine the equilibrium. The remaining equations are obtained

from the low-frequency version of Maxwell's equations, consistent with the ideal

MHD ordering: V -B = 0, and V x B = ptJ. Thus, ideal MHD equilibria are

calculated from the following system of equations

V -B = 0

V x B =btpJ (2.5)

J x B Vp

and we now indeed have seven equations for seven unknown, so that the problem is

well-posed. In Section 2.1.2, we show that for toroidally axisymmetric plasmas, all the

information contained in the seven equations given by eq. (2.5) can be expressed in a

single equation for one variable: the Grad-Shafranov equation. This is our next task.

Before doing so, however, it is worth mentioning that although we derived eq.

(2.5) from the set of equations defining the ideal MHD model, and although the

computation of plasma equilibria in magnetic confinement concepts is usually
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considered a part of ideal MHD theory, the equilibrium described by eq. (2.5) is in

fact consistent with descriptions of the plasma which are more accurate than ideal

MHD, and valid in regimes where ideal MHD is not, in particular in regimes of fusion

interest, where the plasma ions are collisionless (cf. Chapter 3). This is shown as

follows.

First, V -B = 0 and V x B = ptJ are the equations of magnetostatics, the

steady-state version of Maxwell's equations for the magnetic field. They are obviously

exact equations when -= 0, independently from any consideration about the
1t

collisionality of the plasma.

The discussion about the momentum equation is more subtle. Taking the

exact second order moment of the electrons' and ions' Maxwell-Boltzmann equations,

and adding them, we obtain the exacti momentum equation for the whole plasma:

dv
p-+V -(H + 1) J x B- Vp (2.6)

dt

For the same reasons as the ones previously presented, we can neglect the inertial

term in eq. (2.6): - 0 in steady-state, and for flows which are subsonic. We also
dt

know that the viscosity tensors H and H, vanish identically if the ion and electronZe

to be more precise, we made an assumption to obtain eq. (2.6), namely that the
electron inertia is negligible compared to the ion inertia, so that the plasma inertia
can be identified to the ion inertia.
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equilibrium distribution functions are exact Maxwell-Boltzmann distributions. The

question about the validity of eq. (2.5) in collisionality regimes of fusion interest is

then the following: what is the condition on the ion and electron collisionality for the

distribution functions to be Maxwellian in equilibrium? In particular, can we assume

that the ions are in thermal equilibrium (i.e. are well-represented by a Maxwell-

Boltzmann distribution) when we know that ions are essentially collisionless in fusion

grade plasmas?

The answer, perhaps surprisingly, is yes. The main reason is that, by

definition, equilibrium equations describe the steady-state behavior of the plasma, or,

in other words, its evolution on very long time scales. And on these long time scales,

even weak collisions eventually Maxwellianize the plasma, and drive it towards

thermal equilibrium [12]. Using an entropy production argument, it can be shown [13]

that the condition for the ion and electron distribution functions to be Maxwellian to

lowest order only relies on the fact that in magnetic confinement systems, the

particles' Larmor radius is much smaller than the typical macroscopic size of the

system. In fusion grade plasmas we therefore have H - 0, H, ~ 0 in equilibrium, and

J x B ~ Vp.

The bottom line of all this discussion is that eq. (2.5) is valid far beyond the

limits of ideal MHD, and in particular reliably represents equilibria of fusion grade

plasmas, at least when neutral beam heating and current drive systems are turned

off.
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2.1.2 Equilibrium in toroidally axisymmetric plasmas: the Grad-Shafranov equation

As announced in the previous section, we now show how the set of seven

equations for seven unknowns given in (2.5) reduces, for toroidally axisymmetric

configuration, to a single two-dimensional, nonlinear, elliptic partial differential

equation, whose solution contains all the information necessary to fully determine the

nature of the equilibrium. This was first discovered by Lnst and Schlniter, Grad and

Rubin, and Shafranov in the years 1957 to 1959 [14], [15], [16]. In this section, we

rederive this equation, now known as the Grad-Shafranov equation (GS equation),

following the presentation given in [17].

For toroidally axisymmetric geometries, the natural coordinates are the (R,#,Z)

cylindrical coordinates, where # is the ignorable coordinate, i.e. &/o# = 0 for all the

quantities. This is illustrated in Fig. 2.1, where for the example, we chose a torus

with circular cross section.

We start with the first equation in (2.5): V -B - 0. Of course, because of the

toroidal axisymmetry, this equation does not give us any information about B,, the

# component of the magnetic field, which is usually called toroidal magnetic field.

However, it gives us a very convenient way of writing the poloidal magnetic field, B,,
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Cross section

Z

0
z

R

Fig. 2.1. Geometry for toroidally axisymmetric equilibria and cylindrical coordinates

which is the field in the (R, Z) plane. Indeed, V -B = 0 implies that B can be

written as B = V x A , where A is the vector potential. And with the axisymmetry,

only A, appears in the expressions for BR and Bz

B- -
R&Z R OZ

1 a(RA)

z R OR
(2.7)

As is often done in fluid dynamics, it is then very convenient to introduce a stream

function T , defined by T = RA, , to write

1
B =- Be + - VT x e (2.8)

where e. is the unit vector in the # direction, e, = RV#.
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The physical interpretation of the stream function T is straightforward: it is the

poloidal flux TP normalized by dividing by a factor 27. This is shown as follows.

The poloidal flux is defined by T, = f B, -dS, where dS is an infinitesimal surface

element. If we choose to calculate the poloidal flux through the area of a washer

shaped surface in the plane Z = 0, extending from the magnetic axis, located at

R = Ra, to an arbitrary T contour, at R = Rb, we find:

2 Rb 2r 1 a
P,=fdofSdRRBz(R,Z 0) d fdSfdR2

411. R (2.9)
0 -Ka

T W = 27r WT(R,, 0) - T(R a,0)1

0 1f

As we can see from eq. (2.7), P is defined to within an arbitrary integration

constant. Choosing this arbitrary constant so that (R,0) 02, eq. (2.9) becomes:

T, = 27w (2.10)

which proves our statement.

The next step in the derivation of the GS equation is to use the low-frequency

version of Ampere's law, V x B= pJ, to obtain an expression of J in terms of the

stream function IV. Ampere's law is formally identical to the equation linking the

magnetic field and the vector potential, so that we immediately obtain, for the

poloidal current,

2 Note that we will choose the arbitrary constant in a different way in Section 2.2,
where it will be more convenient to choose it such that T = 0 on the plasma surface
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poJp = - V (RB,) x e,

The toroidal current is

BR B
tiJaz OR

1 0 'rl04''
-R R +
R OR R OR,

R

where, as usually done in MHD equilibrium theory, we have introduced the elliptic

operator A- , given by

A*X = R2V. ]
R 2,

(2.13)
R I1 OX' 2X

R -- - +_
OR R OR, OZ2

We are now ready for the last three steps in the derivation of the GS equation, which

consists in projecting the momentum equation J x B = Vp onto the three vectors B,

J, and VTI.

0 Projection onto B

It is clear that the left-hand side of the momentum equation is orthogonal to B.

Because of the axisymmetry, Vp has only R and Z components, so that the

result of the projection is

e,).Vp = 0 e, -VWxVp = 0 (2.14)

Now, VT x Vp only has a # component. Therefore, eq. (2.14) implies that

VT x Vp = 0Op = p (WV) (2.15)
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p depends on T only, it is a surface quantity.

Projection onto J

From the formal equivalence of the role played by B and J in the momentum

equation, it is clear that the projection onto J leads to the following equation:

.Vp= 0 e -V(RB) xVp 0

* e, -V(RB )xVW = 0

In the second line of eq. (2.16), we used the fact that p = p(A) . We now are in

the same situation as in eq. (2.14), and in the same way, we conclude that

RB, = F (T) (2.17)

The quantity RB, depends on I' only, and is a surface quantity like p. As with

T , there is a physical interpretation for the quantity F: it is the net poloidal

current flowing in the plasma and the toroidal field coils normalized by dividing

by a factor -27r. To prove this, we calculate the flux of the poloidal current

density through a disk-shaped surface lying in the Z = 0 plane, extending from

R = 0 to an arbitrary 4 contour at R = R6 . We find:

27r

I, = f J, -dS -J d# dRRJz
0 0

(R, Z

which proves our point. In (2.18), the

0 0

sign comes from the fact that the element

of surface dS is oriented in the +Z direction.

0 Projection onto VP
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27r 
=-wFOF

=.0) =f d#f dR = - -27rF(T) (2.18)



We are now ready to calculate J x B = (J e + J x (Be, + B).

product between the two toroidal components obviously vanishes. Furthermore,

J x B = 0 since VT x e, -e, = 0 , and VT x e -VT = 0. Therefore, the only

contributions come from the cross terms between poloidal and toroidal

components.

calculate that

Using the so-called "BAC-CAB" vector identity, it is easily to

J
J 0e 0x B =LL VT -

R

1
J xBe =- F

p 1 40

1 A*qfVq
(2.19)

dFVVi

For toroidally axisymmetric geometries, the momentum equation can therefore be

written as

1 A*
- AIVp

pu0R2

1_ dF

-oRV2 d
(2.20)dp

d T

We see here that the only non trivial information in the equilibrium force balance

equation is contained in the VT component, as expected. Eq. (2.20) is usually

written in the form

A*ip = --poR 2
-P- F F (2.21)

This second-order, nonlinear, elliptic partial differential equation is the Grad

Shafranov equation (GS equation). Once the two free functions p and F are chosen,
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and the boundary conditions fixed, the GS equation can be solved, and the solution

T fully determines the nature of the equilibrium. In the next two sections (Sections

2.2 and 2.3), we focus on particular profiles for p and F, profiles for which we will

be able to find analytic solutions to the GS equation.

2.2 Analytic solutions of the Grad-Shafranov equation with

Solov'ev profiles3

2.2.1 Analytic solutions of the Grad-Shafranov equation

In general, the GS equation has to be solved numerically, and since the late

1950s and the first derivation of the equation, several excellent accurate and fast

numerical Grad-Shafranov solvers have been proposed (see for instance [18] and

references therein). Nevertheless, analytic solutions are always desirable from a

theoretical point of view. They usually give more insights into the properties of a

given equilibrium than numerical solvers do, for instance when used to derive scalings

with the different geometric parameters (aspect ratio, elongation, triangularity). They

can also be the basis of analytic stability and transport calculations. Finally, they can

be used to test the numerical solvers.

In several confinement concepts of fusion interest, such as the tokamak and

the stellarator for instance, the inverse aspect ratio is a small number which can be

used as an expansion parameter in eq. (2.21). Analytic solutions are obtained by

3 A significant portion of Section 2.2 can be found in A.J. Cerfon and J.P. Freidberg,
Phys. Plasmas 17, 032502 (2010).
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expanding (2.21) order by order, as one usually does in asymptotic calculations. This

method has led to a wealth of results, and a very deep analytic understanding of

static equilibrium in tokamaks (See for instance [17] and [19]).

The problem, of course, is that asymptotic expansions break down in other

confinement concepts of fusion interest, such as spherical tokamaks (STs),

spheromaks, or Field Reverse Configurations (FRCs), in which the inverse aspect

ratio is close to 1. In this case, of course, analytic solutions can only be found for

specific, cleverly chosen profiles for the functions p and F. In 1968, Solov'ev [2]

proposed simple pressure and poloidal current profiles which convert the GS equation

into a linear, inhomogeneous partial differential equation, much simpler to solve

analytically. Despite their simplicity, and the fact that the current density is finite,

not zero, at the plasma edge, these profiles still retain much of the crucial physics

that describes each configuration of interest, and have, therefore, been extensively

studied, particularly for spherical tokamaks [17], [20], [21], [22]. The analytic solutions

of the GS equation investigated in these papers have been used in the study of

plasma shaping effects on equilibrium [23] and transport [24], [25] properties.

A general property of these analytic solutions is that they contain only a very

few terms, thereby making them attractive from a theoretical analysis point of view.

One down side is that while the solutions exactly satisfy the GS equation, one is not

free to specify a desired shape for the plasma surface on which to impose boundary

conditions. One simply has to take whatever the surface turns out to be after
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optimizing over the small number of terms kept in the solution. Specifically, this

mini-optimization results in limits on the class of equilibria that can be accurately

described. For instance, reference [17] focuses solely on low-0 equilibria, where the

toroidal field is a vacuum field. It thus cannot describe the equilibrium 3 limit. The

solution presented in [20] can describe the equilibrium # limit but only for small

triangularities. It is ill behaved for moderate to large triangularities. In references [21]

and [22], the solutions allow for an inboard separatrix for a wider range of

triangularities, but appear to be over constrained in that the shape of the plasma

(elongation and triangularity) depends on the choice of the location of the poloidal

field null. Often trial and error is required to choose certain free coefficients that

appear in the optimization in order to obtain an equilibrium with certain desired

qualitative properties. Rarely, if ever, are non-tokamak configurations considered.

The goal of this section and of this chapter as a whole is to present a new,

extended analytic solution to the GS equation with Solov'ev profiles which possesses

sufficient freedom to describe a variety of magnetic configurations: the standard

tokamak, the spherical tokamak, the spheromak, and the field reversed configuration.

This new solution possesses a finite number of terms but includes several additional

terms not contained in previous analyses. Our solution is valid for arbitrary aspect

ratio, elongation, and triangularity. It is also allows a wide range of 3: (1) # = 0

force free equilibria, (2) 3, ~1 equilibria where the toroidal field is a vacuum field
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that could have the value zero, and (3) high 3 equilibria where a separatrix moves

onto the inner plasma surface. Lastly, the solution allows the plasma surface to be

either smooth or to possess a double or single null divertor X-point. Most

importantly, no trial and error hunting is required. A simple, direct, non-iterative,

one-pass methodology always yields the desired equilibrium solution.

In the remainder of this section, we describe how to derive the new extended

solution (section 2.2.2), explain the procedure we use to systematically calculate the

free coefficients in our solution (section 2.2.3), and use the solution to calculate

equilibria and figures of merit in all the geometries of interest and for all the beta

regimes mentioned previously (section 2.2.4 to section 2.2.9).

2.2.2 The Grad-Shafranov equation with Solov'ev profiles

The GS equation (eq. (2.21)) can be put in a non-dimensional form through

the normalization R = Rox , Z = Roy, and I = Too, where Ro is the major radius of

the plasma, and Weis an arbitrary constant:

8 0p 2p R14 dp Res dF
x+ -o R _F (2.22)

Ox x Ox, Oy2 0 42 d$ qj 2 do
00

The choices for p and F corresponding to the Solov'ev profiles are given by [2]

R dp
"P q12 dop

2 0 
(2.23)

R2 dF
0
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where A and C are constants. Since To is an arbitrary constant, one can, without

loss in generality, choose it such that A + C - 14. This is formally equivalent to the

rescaling To' -- (A + C)T'. Under these conditions, the GS equation with Solov'ev

profiles can be written in the following dimensionless form

a 1__ 8@'
x + 1±

Dx z\ Dz y2

The choice of A defines the

= (1 - A)x 2 + A

# regime of interest for the configuration

consideration. In the following sections, we will calculate equilibria in various

magnetic geometries for particular values of A corresponding to a range of 3 values.

The solution to eq. (2.24) is of the form (x,y) = , (X, y) + @)H (X, y) where V,

is the particular solution and @b is the homogeneous solution. The particular

solution can be written as

4

8 A -X2 Inx- -4
2 8

(2.25)

The homogeneous solution satisfies

z- - VH + H
aX X (9X , y2

(2.26)

4 The special case A + C = 0 cannot occur for physical equilibria since it corresponds
to a situation beyond the equilibrium limit where the separatrix moves onto the inner
plasma surface.
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A general arbitrary degree polynomial-like solution to this equation for

plasmas with up-down symmetry has been derived by Zheng et. al. in [20]. We

present here the details of this derivation.

Given the form of eq. (2.26), and the fact that we look for solutions which are

even in the variable y (up-down symmetry), we assume that there exists a general

solution of the form of the expansion

n/2

OH (XIY) >Z >G(n, k, )yn-2k (2.27)
n=0,2,... k=0

where, the expansion can stop at any desired n, and where G is a function which is

not yet determined, but which we expect to have a similar form as the particular

solution @,, namely either a power of x, or a power of x multiplying ln x. Now, if

(2.27) is a solution, it obviously has to satisfy the equation (2.26). Inserting (2.27)

into (2.26), and identifying the terms where y has the same exponents for a given n,

we obtain the following recurrence relations on the index k, for a given n:

,_ 1 1B0G(n, 0,x)=0

(2.28)

Xn-2k.1)n-2k+2 G(n,k -1,x) k - 0
09x X OX
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As can be seen by focusing for instance on the case k = 0, there are two types

of solutions to eq. (2.28) (In the case k =0, they are G1(n, 0, x) =1 and

G2(n,0,x)= x 2 ). Thus, we write

G(n, k, x) c1 G (n, k, x) + c 2 G2 (n, k, x) (2.29)

where the cni and c 2 are free constants. With a proof by induction, it is then easy to

show that if G1 and G2 take the following general forms:

G1(n,0,x) = 1

G1(I,k> 0,z) (-1)k ni! 1 22 21nx±+ 2 j (2.30)
(n - 2k) ! 22 k!(k - 1)! k j

G2(n,k, z) = ~ (- 1 X 2k+2

(n - 2k ! 22'k! !(k + 1)!

they satisfy the recurrence relation (2.28), so that the solution assumed in (2.27) does

indeed solve the differential equation (2.26).

The solutions given by the form in GI are what we call the polynomial-like

solutions (since they involve ln x), while the solutions obtained from G2 are

obviously the polynomial solutions. Eq. (2.30) is extremely convenient, since we can

use it to calculate solutions to the GS equation with Solov'ev profiles in the form of

polynomials (and polynomial-like terms) of arbitrary degree. For our purposes we

need only a finite number of terms in the possible infinite sum of polynomials and

polynomial-like terms. We truncate the series such that the highest degree

polynomials appearing are R6 and Z 6 . Previous studies have truncated the series at
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R 4 and Z4 . The full solution for up-down symmetric V) including the most general

polynomial and polynomial-like solution for 'bH satisfying eq. (2.26) and consistent

with our truncation criterion is given by

4

' 1(X, Y) =X
8

+ A - 2 Inx - -- +]cii + c2' 2 + c,' 3 + c 49)4 + c5 ' 5 + c6 6 + c 72 8)

'3 = Y2 -- X2 In X4 2 2x

'4 _X - 4x 2 y

2y 4 - 9y 2 X2 + 3x 4 In x - 12x 2y 2 In x

6 X6 -12X 4y 2 +8x2y 4

8y6 - 140y 4x2 + 75y2X4 - 15x 6 In x + 180x 4y 2 in x - 120x2Y4 ln x

Equation (2.31) is the desired exact solution to the G-S equation

describes all the configurations of interest that possess up-down symmetry.

(2.31)

that

The

unknown constants c are determined from as yet unspecified boundary constraints

on 0. We note that the formulation can be extended to configurations which are up-

down asymmetric. This formulation is described in Section 2.2.9. However, for

simplicity the immediate discussion and examples are focused on the up-down

symmetric case. Thus, our next task is to determine the unknown c appearing in eq.

(2.31).
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2.2.3 The boundary constraints

Assume for the moment that the constant A is specified (we show shortly how

to choose A for various configurations). There are then seven unknown c to be

determined. Note that, as stated, with a finite number of free constants it is not

possible to specify the entire continuous shape of the desired plasma boundary. This

would require an infinite number of free constants. We can only match seven

properties of the surface since that is the number of free constants available.

Consider first the case where the plasma surface is smooth. A good choice for

these properties is to match the function and its first and second derivative at three

test points: the inner equatorial point, the outer equatorial point, and the high point

(see Fig. 2.2 for the geometry). While this might appear to require nine free constants

(i.e. three conditions at each of the three points), two are redundant because of the

up-down symmetry.

Although it is intuitively clear how to specify the function and its first

derivative at each test point, the choice for the second derivative is less obvious. To

specify the second derivatives we make use of a well-known analytic model for a

smooth, elongated, "D" shaped cross section, which accurately describes all the

configurations of interest [26]. The boundary of this cross-section is given by the

parametric equations

X = 1+ Ecos(T+ asinT) (2.32)
y = er sin(T)
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where T is a parameter covering the range 0< T < 27r. Also, E= a / R. is the

inverse aspect ratio, K is the elongation, and sin a = 6 is the triangularity. These

three parameters have been geometrically defined in Fig. 2.2. For convex plasma

surfaces the triangularity is limited to the range 6 <sin(1) ~ 0.841. The idea is

simple: we match the curvature of the plasma surface determined by our solution

with the curvature of the model surface (2.32) at each test point. We now show how

this is done in practice.

R/R0

Fig. 2.2. Geometry of the problem and definition of the normalized geometric
parameters E, tK, and 6
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Along the surface of constant @;, we have, by definition,

d@= @ 0dx+@,dy = 0 (2.33)

The first step is to use this equality to obtain expressions for the curvature at each

point in terms of the partial derivatives of #b at these points. For the inner and outer

equatorial points, we write

(since dx / dy = 0 at the two points)

(since 0 = 0 at the two points)

Similarly, at the top point, we find

dXy
dx2

y

The second step is to
d 2X

compute dy2 and for
dx 2

the model surface (2.32), so that we

can indeed match the curvatures. After some mindless algebra starting from (2.32),

we have

d2 X - 1 sin Tsin(
dy2 E 2 cos 3 T

+ asin r)( 2acosT + 1) + (I + acosr) cosr cos(r + asinT)I

d2y .sin T sin (T
dx 2

+ a sin -r) + (1+ a cos T) cos T cos ( + a sin T)

(1 + acosT ) sins (T + a sin r)

At the three points of interest, these expressions simplify substantially:
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dy 2

d '0
dy KJ

d2X

dy 2

Byy

Ox
= - 11 (2.34)

(2.35)
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d2x (1+ a) N
dy 2 12

2

d2x (1-a) N
dy 2 

-T=7 2 2

d 2  
-- - N

dx2 ecos2 a

outer equatorial point

inner equatorial point

high point

where we have named the three different curvatures N,, N2 and N3
to simplify the

expressions which will come later in this section.

We are now ready to introduce the seven geometric constraints, assuming that

the free additive constant associated with the flux function is chosen so that @ = 0

on the plasma surface (this implies that 7P

?P(1 + E, 0) = 0

(1 -- E0) = 0

4'(1 - 6E, KE) = 0

(1 - 6E, KE) = 0

< 0 in the plasma):

outer equatorial point

inner equatorial point

high point

high point maximum

7P (1 + e, 0) = -N4' (1 + E, 0) outer equatorial point curvature

V) (1 - E, 0) = -N 20x (1 - E,0) inner equatorial point curvature

O'X (1 - 6, te) = -N 3 ', (1- 6E, re) high point curvature

For a given value of A the conditions given by eq. (2.38) reduce to a set of

seven linear inhomogeneous algebraic equations for the unknown c . This is a trivial

numerical problem. We have found that even with only three test points the outer

flux surface resulting from our analytic solution for 7P is smooth and remarkably

close to the surface given by eq. (2.32) over the entire range of geometric parameters.
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A similar formulation applies to the situation where the plasma surface has a

double null divertor X-point. Here, we can imagine that the smooth model surface

actually corresponds to the 95% flux surface. The location of the X-point usually

occurs slightly higher and slightly closer to the inboard side of the plasma.

Specifically we assume a 10% shift so that xsep 1-1.16E and y = 1.1iE. In terms

of the boundary constraints, there is effectively only one change. At the X-point we

can no longer impose the second derivative curvature constraint but instead require

that both the tangential and normal magnetic field vanish. The conditions at the

inboard and outboard equatorial points are left unchanged. The end result is that if

one seeks an equilibrium solution where the plasma surface corresponds to a double

null divertor and the 95% surface has an approximate elongation r, and triangularity

6 then the constraint conditions determining the c are given by

7/(1 + E, 0) 0 outer equatorial point

(1 - e,0) 0 inner equatorial point

)(Xsep I Ysep) 0 high point

(X e ,y )=0 B = 0 at the high point (2.39)

e (X'se,) = 0 B = 0 at the high point

) /(1 + E, 0) = -N,,(1 + E, 0) outer equatorial point curvature

) (1 - E, 0) = -N 2 9'(1 - E, 0) inner equatorial point curvature

Hereafter, we assume that the c have been determined. The next step in the

analysis is to evaluate the critical figures of merit describing the plasma equilibrium.

This is the goal of section 2.2.4.
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2.2.4 The plasma figures of merit

There are four figures of merit that are often used to describe

properties of Solov'ev MHD equilibria. These are d

Total plasma beta #

Toroidal plasma beta #

Poloidal plasma beta 13

Kink safety factor q,

The parameter BO is the vacuum toroidal field at

efined as follows.

2p, (p)

B 2 + B2

0 p

2p (p)

B 2

0

2po (p)
= _
P B

EB

B
P

R = R. The quantity

average poloidal magnetic field on the plasma surface

S B, dl
dl,

f pOJds, _

f dl,

PO,
R0C,

where C is the normalized poloidal circumference of the plasma surface

CP -'fJP

0O

= 2f 1

Lastly, (P) is the volume averaged pressure

( f p dr
() f dr-
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(2.40)

5 is the
p

(2.41)

+±(dy / dx)211/2 (2.42)

(2.43)



The goal now is to derive explicit expressions for the figures of merit in terms

of 4@, A, and the geometric parameters e, r-, and 6. To do this we need the

quantities p and F 2 = R 2B2 which are obtained by integrating eq. (2.23) and using

the fact that V; = 0 on the plasma surface.

p(x, y) = - 1- A)@O

R 2
B (x, y)= R2 BO

(2.44)
21F2

4 0 AV)
-0 A#

When evaluating the figures of merit the normalized quantity To / aR0 B often

appears in the results. It is convenient to replace this quantity with an equivalent

quantity q,, which, after a short calculation, can be written as

1 1 ' ]Idx dy[AlA)rL R0 0  - [A + (1 - A)2
q, aROBo, C, P x

(2.45)

The implication is that when describing MHD equilibria there are certain natural

combinations of the figures of merit that appear which then depend only on the

geometry and the for now free parameter A. This is convenient for determining

general scaling relations.

Using this insight the desired form of the figures of merit are given by

52



O E, s,6, A) =-2(1 -- A) z i~dzdy df dyA + (1I ~

#=2

q,

q3 + 2 3

V = I f
27rR

dr =f xdxdy

is the normalized plasma volume.

The analysis is now complete and ready to be applied to the magnetic

configurations of interest.

2.2.5 ITER

A relatively simple case, which serves as a point of reference, is the

International Thermonuclear Experimental Reactor (ITER) tokamak [11]. The

baseline design [27] has the following parameters: E = 0.32, K = 1.7, and 6 = 0.33.

The vacuum toroidal magnetic field at R = R is BO = 5.3 T while the plasma

current is I = 15 MA. Using the model surface given by eq. (2.32) yields a

normalized circumference C = 2.79 and a normalized volume V = 0.53. These are
p

approximate values used to estimate a value for q. = 1.57. When evaluating the

figures of merit the actual values of C, and V from our Solov'ev equilibrium are

53

where

(2.46)

(2.47)



used. A wide range of beta values is possible for ITER. Choosing A = -0.155 yields

0.05 which is the baseline value.

The flux surfaces for the ITER example, assuming the smooth boundary

constraints, are illustrated in Fig. 2.3. Observe that the shape of the surfaces and the

magnetic axis shift are quite plausible as compared to full numerical solutions to the

Grad-Shafranov equation.

0.6-

0.4

0.2-/

0

-0.2-

-0.4

-0.6

-1.5 -1 -0.5 0 0.5 1 1.5
R/R0

Fig. 2.3. ITER-like equilibrium with Solov'ev profiles E 0.32, = 1.7,6 = 0.33

2.2.6 The spherical tokamak

The spherical tokamak (ST) is a much more challenging configuration to

model because of the finite aspect ratio. It is in such a configuration that we best

understand why our analytic solutions are useful. To show the range of possible ST

equilibria we consider the flux surfaces for three qualitatively different regimes of
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operation. These different regimes are characterized by different values of the free

constant A.

The first regime corresponds to force free equilibria which, by definition, is

equivalent to zero pressure. From eq. (2.23) this requires A = 1. In the second regime

of interest we assume that B,, even with plasma, remains a vacuum toroidal field:

that is, the free function F(@) = ROBO= const. This regime is usually referred to as

the 'low-beta' regime. Again, referring to eq. (2.23) we see that this requires A = 0.

The last regime to consider corresponds to the equilibrium beta limit where a

separatrix moves onto the inner plasma surface. In this case A is determined by the

condition

1 - E, 0) = 0 (2.48)

Equation (2.48) is to be added to the geometric boundary constraints given by eq.

(2.38). The problem now requires the solution of eight (rather than seven) linear

algebraic equations with the unknowns corresponding to the seven c plus A, still a

trivial computational problem.

The flux surfaces for these three cases, assuming the smooth boundary

constraints, are illustrated in Figs. 2.4 (a), (b), and (c), and for typical parameters

corresponding to NSTX [28]: E = 0.78, r- = 2, 6 = 0.35, and q,, = 2. Again, the

surfaces appear quite plausible with the magnetic axis moving further out as beta
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increases. This outward shift is known as the Shafranov shift [29]. For these three

cases the figures of merit are summarized in Table 2.1.

Force Free Vacuum B Equilibrium Limit

OP 0 1.07 4.20

p 0 0.16 0.64

0 0.14 0.55
Axis Shift: A / a 0.11 0.34 0.43

Table 2.1. Figures of merit for spherical tokamak equilibria

1.5

IF

0.5

0

-0.5

-1

-1.5

-2 -1.5 -1 -0.5 0
R/R

0.5 1 1.5 2

Fig. 2.4. (a) Force-free NSTX-like equilibrium (e = 0.78,n = 2,6 = 0.35)
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R/R 0

Fig. 2.4. (b) Low 3 NSTX-

0.5

0

-0.5

-1

-1.5

like equilibrium (E = 0.78,n = 2,6 = 0.35)

-1.5 -1 -0.5 0 0.5 1 1.5
R/R

0

Fig. 2.4. (c) Equilibrium 0 limit NSTX-like equilibrium (E = 0.78,r, = 2,6 = 0.35).
Note the separatrix on the inner surface of the plasma
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Before calculating equilibria for other geometric configurations, we show how

our analytic solution can be used to study equilibrium properties of the ST and get

insights into the optimization of the design of a machine, perhaps before performing

more computationally intensive numerical studies. It is for instance of interest to

further examine the properties of the ST at the equilibrium limit. There are many

ways to do this and one possible example is as follows. Consider an ST in which the

inverse aspect ratio is fixed. For NSTX this value is E = 0.78. The triangularity, for

the sake of simplicity, is also held fixed at a typical NSTX value: 6 = 0.35. The kink

safety factor is set to q, = 2 to provide MHD stability against external kink modes.

The goal now is to see how the value of beta at the equilibrium limit varies with the

elongation s.

Using the expressions (2.45) and (2.46), it is straightforward to use the

analytic solution to plot a curve of f vs. ,. This curve is illustrated in Fig. 2.5. At

r=1 the critical beta is 0 = 0.38, and this value increases with increasing i, to

reach # = 0.55 for n = 2, a typical elongation in NSTX. From this particular point

of view, the larger the elongation is, the better the equilibrium is. Of course, many

other aspects have to be taken into consideration, both from an equilibrium and a

stability point of view, and many such studies have to be performed during the

process of optimization of a design.
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0.55

0.5

0.45

0.4

0.35
1 1.5 2 2.5 3

K

Fig. 2.5. Q vs r at the equilibrium beta limit, with E, 6, and q, held fixed

(E = 0.78,6 = 0.35 and q, 2)

The last example of interest for the up-down symmetric spherical tokamak

demonstrates that the analytical solution can be used to create a double null divertor.

In this case we redo the intermediate case where A = 0 using the divertor constraints

given by eq. (2.39). The resulting flux surfaces are illustrated in Fig. 2.6. Note that

the solution has no difficulty generating a reasonable double null divertor

equilibrium.
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Fig. 2.6. Low # NSTX-like equilibrium with double null divertor.
S 0.78,,= 2, 6 = 0.35

2.2.7 The spheromak

The calculation of the spheromak [30] flux surfaces closely parallels that of the

ST. What is different is the evaluation of the figures of merit. Consider first the flux

surfaces. Two interesting cases to consider are as follows. First, according to Taylor's

theory of relaxation [16] the plasma should naturally evolve to a low beta force free

state corresponding to A = 1. A set of flux surfaces for this case using the smooth

surface constraints is illustrated in Fig. 2.7 (a) for typical spheromak parameters:

E = 0.95, s = 1, and 6 = 0.2. They look reasonable, and obviously 3 = 0 since the

plasma is force free.
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The second case of interest recognizes that theoretically the spheromak also

exhibits an equilibrium beta limit when the separatrix moves onto the inner plasma

surface. This would not violate Taylor's theory since the plasma beta can be finite if

it is externally heated. As for the ST the value of A for this case is determined by

requiring that (1 - e, 0) = 0. In terms of the corresponding figures of merit note

that by definition B. = 0 on the plasma surface since there is no toroidal field

magnet. This implies that q, = 0 for a spheromak. The conclusion is that the critical

beta at the equilibrium limit can be written as

3 -- 2(1 - A) Pfbx d d dxd [A + (1 - A)} (2.49)

The flux surfaces for this case are illustrated in Fig. 2.7 (b) again assuming

E = 0.95, K = 1, and 6 = 0.2. Note the larger shift of the magnetic axis as compared

to the force free case. The value of beta at the equilibrium limit is given by

/ = 2.20.

2.2.8 The field reversed configuration

The final configuration of interest corresponds to the field reversed

configuration (FRC) [31]. Here the plasma is very elongated (i.e. K - 10) and has

zero toroidal field implying that A = 0 and B = 0 . Therefore, q, = 0 and / =3.

Ideally an FRC has e =1 and 6 = 1.
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Fig. 2.7. (a)

0.5

0

-0.5

-1-

Force-free spheromak equilibrium (E = 0.95,rs = 1,6 = 0.2 and 0 = 0)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

R/R 0

Fig. 2.7. (b) Equilibrium # limit spheromak equilibrium

=0.95, = 1,6 = 0.2, and /3 = , = 2.2). Note the separatrix on the inner surface

of the plasma.

There are two ways to calculate the flux surfaces. The first method makes use

of the solution already derived using the smooth surface constraints and
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approximates the ideal FRC by choosing E = 0.99 and 6 = 0.7. We cannot push the

triangularity much higher, since the model surface we use comes with the

requirement 6 < 0.841 for a convex plasma surface. The flux surfaces for the highly

elongated case r, 10 are illustrated in Fig. 2.8 (a). Observe that this is a reasonably

good representation of an FRC. The value of beta is found to be # = 1.20.

The second way to calculate the flux surfaces is to explicitly make the plasma

surface a separatrix. In this case R - 0 is the center line of the plasma thereby

guaranteeing that e =1 and 6 =1. To do this we must replace the model surface

given by eq. (2.32) with one that is compatible with a separatrix. A convenient choice

is a half-ellipse:

x 2 cos(T) 
(2.50)

y = sin(T)

with -7r/2< T<r/2.

The solution for the flux surfaces is again given by eq. (2.31) but in this case

certain coefficients are automatically zero in order for R = 0 to correspond to the

inner boundary of the flux surface: 0(0, y) = 0. Specifically, c3 = C5 = c = 0 . The

remaining non trivial surface constraints are now given by

?P(2,0) = 0 outer equatorial point

(0, r) = 0 high point

V (2, 0) = -N 10,(2,0) outer equatorial point curvature (2.51)

?/)(0, K) = -N 3,,(0, ii) high point curvature

For a half-ellipse the parameters N, and N are easily evaluated
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The flux

The separatrix

# = 1.05 which

N

N, - -2/ ,2

N = -K / 4

surfaces for the second method are plotted in Fig. 2.8 (b) for r,

bounding the plasma is apparent. The value of beta is found

is not too different from that obtained using the first method.
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-2 0 2 -2 0 2

(a) R/R 0  (b) R/R 0

Fig. 2.8. (a) FRC equilibrium obtained with the first method,
E = 0.99, K = 10,6 = 0.7. (b) FRC equilibrium obtained with the second method,

E = 1,' = 10,6 = 1.
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2.2.9 Up-down asymmetric formulation

Most of the modern fusion experiments operate with up-down asymmetric

plasmas, with a single separatrix, or single 'null', and so will most of future

experiments. In this section we show how the up-down symmetric formulation can be

easily generalized to include the up-down asymmetric case, and in relation with the

experiments, we will focus on cases with a single-null.

For up-down asymmetric configurations we once again assume that the

reference surface of interest can be modeled parametrically as follows: x = z(r),

y = y(r). In normalized units the inner and outer equatorial points are still located

at x = 1 - E, y = 0 and x 1+ E, y = 0 respectively. The upper portion of the

surface is smooth and has a maximum at x = 1 - 6E, y = rE. The lower portion of

the surface is assumed to have a single null X-point located at = x

and y = ye < 0. The model surface can be specified either analytically or

numerically. Under these assumptions the appropriate analytic solution to the Grad-

Shafranov equation is now given by

4 1

V(X, Y) = - + A -X2 In z 8+ ,@ + C02~ + C3@3 + C4@4 + C505 + C606 + C7 (2538 8 9 9(2153)

+ - c848 + C94'9 + C10410 + C114'11 + C21
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The terms on the first line have already been defined in eq. (2.31). The new terms on

the second line have odd symmetry in y thereby allowing up-down asymmetric

solutions. These terms can be written as

4~y

y1 - 3yx 2 In x (2.54)

3yx 4 - 4y 3x 2

8y 5 - 45yX 4 - 80y 3x 2 In x + 60yx 4 In x

There are now 12 unknown coefficients. Following the procedure presented in the up-

down symmetric case, there are 12 constraint relations (keeping in mind that the up-

down symmetry conditions right at the inner and outer equatorial points no longer

automatically apply). A good choice for the boundary constraints corresponding to a

single null divertor are given by

0(1 + E, 0) = 0 outer equatorial point

(1 - E, 0) = 0 inner equatorial point

0(1 - 6E, KE) = 0 upper high point

(x Sy) = 0 lower X-point

(1+ Ej 0) = 0 outer equatorial point up-down symmetry

i(1 - E,0) = 0 inner equatorial point up-down symmetry

(1 - 6E,rE) = 0 upper high point maximum (2.55)

', (X se y,)= 0 B = 0 at lower X-point

'iP(z, y,,,) 0 B = 0 at lower X-point

On (1 + e,0)= -N@ (1 + E, 0) outer equatorial point curvature

'iy (1 - E, 0) = -N 2 9 (1 - e,0) inner equatorial point curvature

(1 - 6E, KE)= --N 3i<(1 - 6E, KE) high point curvature
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A simple practical choice for the N that works well is based on the model surface

described by eq. (2.32). We assume initially that the configuration is up-down

symmetric with i and 6 corresponding to the smooth upper portion of the surface.

This assumption then leads to values for the N given by eq. (2.37). The location of

the lower X-point is then chosen, as in section 2.2.3 : xSep = 1-1.16E and

y, =-11 .ySep

The calculation of the unknown c is still a linear algebraic problem. Although

it now involves 12 unknowns, it remains trivial computationally. Equations (2.53) -

(2.55) represent the formulation of the up-down asymmetric problem.

To illustrate the procedure we show results for two examples. The first

corresponds to ITER which is characterized by the following parameters: e = 0.32,

r = 1.7, 6 = 0.33, X = 0.88, ysep = -0.60 , and q, = 1.57. The value of A is

chosen as A = -0.155 which leads to a value of beta given by #, = 0.05. The second

example corresponds to a high beta spherical tokamak. Here, we use NSTX values

for the geometry: E = 0.78, , = 2, 6 = 0.35, x = 0.70, y, = -1.71, and q, = 2.

For this case A is chosen to correspond to a high value of beta but still below the

equilibrium limit. Specifically we choose A = -(1 - E)2 / e(2 - F) = -0.05 which is the

condition for the toroidal current density to vanish at the inner midplane, and leads

to / = 0.16. The flux surfaces for these two examples are illustrated in Fig. 2.9 (a)
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Observe that the surfaces for both examples appear quite

reasonable, thereby demonstrating the effectiveness of the procedure to model single

null divertor configurations.
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Fig. 2.9. (a) Lower single null ITER-like equilibrium (E = 0.32,K = 1.7,6 = 0.33)
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Fig. 2.9. (b) Lower single null NSTX-like equilibrium (E = 0.78, i = 2,6 = 0.35)
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2.3 Extension: Analytic solutions of the Grad-Shafranov
equation with quadratic profiles

2.3.1 Solov'ev profiles and the discontinuity of the toroidal current density

The main problem with the Solov'ev profiles is that they correspond to the

unrealistic situation where the toroidal current density has a jump at the plasma

edge. Indeed, in eq. (2.12) we showed that the toroidal current density is given by

poRJO = -*q = poR2 dp + F dF
d T dT

(2.56)

Normalizing eq. (2.56) as before, and using the Solov'ev profiles introduced in (2.23),

we obtain

=0 (A -1) - -A

JO X
(2.57)

where JO = (pR) 'I. Using eq. (2.57), it is easy to see that for a given A, J,

vanishes at the point x which solves the equation

2
3;-

A

A -1
(2.58)

Of course, eq. (2.58) can not be satisfied at the inboard location (xnboard = 1- E) and

the outboard location (zobd 1 + E) simultaneously, and in general, it is satisfied

at neither point, as illustrated in Figure 2.10, obtained for A = 0.1 and e 0.78.
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Fig. 2.10. Toroidal current density discontinuity for a Solov'ev equilibrium with

A = 0.1 and E = 0.78

In Fig. 2.10, the discontinuity of the toroidal current density appears clearly. Such a

current profile is physically unrealistic.

Note that aside from the previous point, there is another problem with the

current density calculated from Solov'ev profiles, which can be seen in eq. (2.57): J,

does not depend on the variable y , or, in other words, on the coordinate Z in the

original coordinate system (R,# , Z).

For these reasons, our next task is to apply the strategy developed for Solov'ev

type profiles in Section 2.2 to the more realistic case where p and F 2 are quadratic

in the flux function T'.
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2.3.2 Analytic solution of the Grad-Shafranov equation with quadratic profiles

We start from the normalized version of the GS equation, eq. (2.22), and consider

profiles which are quadratic in the normalized flux function 4@. Specifically, we write

F 2 = R"B" (1 - a@b2), and p (4) - po@2 . BO is the vacuum magnetic field, a represents

the plasma diamagnetism (a > 0) or paramagnetism (a < 0), and p0 is defined such

that the pressure at the magnetic axis is p.,, - p0 . Defining the quantities

2poR pU = 0 and
R 4 B2

V = a 0 0
q' 2

0

equation (2.22) becomes

a 19 @'
Ox x OxJ

+ (Ux2 -V) = 0

In all the regimes of interest, we have U - V > 0. Defining

k 2 =UV=
R0B 2pop_

B 0
and b 1

U -V

equation (2.60) can be written in its final, desired form :

a 100@' 82
X-- + 2L+

OX X 9X, Oy2

In eq. (2.62)

k2 1 + b(x2 -1)1' 0 (2.62)

k is treated as an unknown constant, which is determined from the

boundary conditions, while b is chosen according to the 3 regime of operation (for

example, b =1 - 0 = 0 , b = 0 -- OP, ~1, b = -1/ 2E - EO ~- 1).
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aB2
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We solve eq. (2.62) by separation

4'(x,y) = 1 (x) cos(kyy)+ 42 (x) sin(ky), with k 2<k
2 an undetermined separation

constant. The first term corresponds to up-down symmetric solutions, while the

second term corresponds to up-down asymmetric solutions. Also, for k, = 0 , sin (kyy)

has to be replaced by y , the simplest up-down asymmetric solution. Inserting this

expression for V) (x, y) into eq. (2.62) leads to the same ordinary differential equation

for 0i,(x) and b2(x):

x - -- + k 2(1- b)
dx x dx ,

-k 2 +k2bx2 =0

The general solution to eq. (2.63) is:

x cW

2

(ikx2) +dM 1

where W and M are the Whittaker functions, and A = i (4kVf) 1 [k2 (1 - b) - k 2

(2.64)

The

free constants c and d are determined from the boundary conditions. Theoretically,

specifying the entire continuous shape of the plasma boundary would require an

infinite number of free constants c , d , and k,. This is the reason why the approach

chosen by Atanasiu et al. [32] for the same problem (in fact, they allow p and F 2 to

vary both linearly and quadratically with V), thereby combining the solutions

presented in Sections 2.2 and 2.3) is to construct the analytic equilibrium by summing

a large number of solutions of the form (2.64), and by determining the many free
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constants c , d, and ky from the minimization of the difference between the

calculated plasma shape and the expected one. This approach is useful when trying to

compare with experimental data, since it provides good accuracy and flexibility.

However, the large number of terms retained make the equilibrium hard to use in

practice for analytical stability or transport studies.

Fortunately, Guazzotto et al. [33] have shown that the following reduced,

simpler expansion

±(,y) = W +CM + (c2 W + c cos (ky)+(c4W + cM cos(k 2 y)
AO 1 AO A 5 A2 ) 2Y) (2.65)

+ (c6W +c 7M y + cW +cM )sin (ky)+ c W +c M sin(k2y)

leads to a very good match between a desired plasma shape and the actual shape

obtained by solving for the finite number of unknown free constants using a

corresponding number of boundary constraints. Eq. (2.65) is much more convenient

for analytic equilibrium, stability and transport studies than the solution proposed in

[32]. In eq. (2.65) the subscript 0 corresponds to k, = 0 , the subscript I to ky = k,

and the subscript 2 to 0 < ky < k.

The last task is to define the 13 boundary constraints required to determine

the 13 free constants c1 - c11, k. and k . A point of particular interest is the

determination of the constants k, and k. In Reference [33], they were determined

empirically. We show in the next two sections that by applying the procedure

presented in Section 2.2 to this problem, ky and k no longer have to be guessed, but
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are calculated from the appropriate boundary constraints, along with the coefficients

c1 - c .This simplifies the calculation of equilibria considerably.

2.3.3 Up-down symmetric solutions

The up-down symmetry automatically implies c = c = c= c= c = CI = 0. The

solution reduces to:

x,y) = W + c M + c2W + c M cos (ky)+ (c4W, + c5M cos (k2y) (2.66)

There are 7 unknowns: c1 - c5,k, k2 . In our study of Solov'ev equilibria, we presented 7

natural boundary constraints, for plasma equilibria with a limiter in eq. (2.38), or

with a double-null divertor in eq. (2.39). We can directly reuse these 7 boundary

constraints, which give us a system of 7 equations for the 7 unknowns. Such a system

is easily solved numerically using typical nonlinear root solvers, provided one starts

with an acceptable initial guess. The Whittaker functions are in the libraries of most

commercial computational software programs.

In Fig 2.11, we show two double-null divertor equilibria calculated with this

method. The first equilibrium corresponds to an ITER-like geometry, while the

second corresponds to an NSTX-like geometry. Both are computed for a high plasma

/ corresponding to the vanishing of the toroidal current density gradient at the

inboard midplane (i.e. for b = 1 /e(2 - E)), and the location of the X-points is given

by x, = 1 -1.0 5 6E, y, = 1.056.
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Fig. 2.12. a) ITER-like double-null equilibrium (E = 0.32, n 1.7,6 = 0.33). b) NSTX-
like double-null equilibrium (e =0.78,, = 2.2,6 = 0.2). In both cases, b is chosen

such that the toroidal current density gradient vanishes at the inboard midplane, and

xsep = 1 -1.0 5 6 , Yse = 1.05KE
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2.3.4 Up-down asymmetric solutions

For up-down asymmetric equilibria, the solution is given by eq. (2.65). We

now have to solve for 13 unknowns: c, to c11, k and k2 . In the equivalent Solov'ev

case, we have 12 boundary constraints, given by eq. (2.55). We thus need a 13th

boundary constraint. We found that a simple choice, which gives good results, is to

fix the location of a fifth point, aside from the outboard, inboard, top, and X points.

If (X(), y ()) is the model surface (2.32), we thus impose, for the 13th boundary

condition:

gp (x(T= 37r / 4), y (T 37r / 4)) = 0 (2.67)

The value 3-r / 4 is explicitly chosen because it lies between two points

already fixed in the boundary constraints: the top and inboard points. We thus

improve the sampling of the model surface, and optimize the match with our

calculated solution.

In Fig. 2.12, we show two single-null divertor equilibria calculated with this

method. The first equilibrium corresponds to an ITER-like geometry, while the

second corresponds to an NSTX-like geometry. Both were computed for a low 3

plasma, 3 ~ 0, corresponding to b = 1. Also, the most realistic shapes were found for

the following location of the lower X point: x,, 1 - 1.056E, y,ep -- 1.05rE for the

ITER-like case, and x ep 0.6,y, = -1.05'e for the NSTX-like case.
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Note once more that the equilibria calculated in Fig. 2.11 and Fig. 2.12 appear

quite plausible. Before closing this section, however, it is worthwhile to highlight the

cost one pays for making the pressure and current profiles more realistic in Section

2.3 as compared to Section 2.2. It is found in the nature of the systems of equations

one has to solve to determine the unknown constants.

In the solutions of the GS equation in Section 2.2, either (2.31) or (2.53), the

unknown constants all appear linearly, so that the system of equations one has to

solve to determinc the coefficients is a linear system. Numerically, that means that

the coefficients are simply obtained through a matrix inversion, and the system of

equations always has solutions, very quickly calculated by any scientific computing

program. There is no convergence issues. For extreme, unrealistic geometric

parameters, these coefficients may lead to an unacceptable equilibrium, which may

have to be ruled out, but in any case, the unknown constants can always be

calculated.

The situation is different in the case of the quadratic profiles introduced in

this section. Indeed, two of the unknowns, k and k2 appear in a nonlinear way, inside

the Whittaker function. In general, that does not cause any problem, and the same

numerical solver can be called to solve the now nonlinear system of equations.

However, as the parameters become more extreme (higher E or 6, smaller K),

convergence issues may appear. We were for instance not able to compute acceptable

equilibria which had e > 0.78 while r, = 1.
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Fig. 2.12. a) ITER-like lower single-null equilibrium

= 0.32, , 1.7,6 = 0.33), x, = 1 - 1.056E, y, = 1.05rE . b) NSTX-like lower single

null equilibrium (E = 0.78, n = 2,6 = 0.2), xsep = .6, y = -1.05rE. In both cases,

b = 1.
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2.4 Summary

In this chapter, we considered analytic solutions of the Grad-Shafranov

equation for two types of pressure and current profiles: profiles which are linear in

the flux function 7P, usually referred to as Solov'ev profiles, and profiles which are

quadratic in $.

In the case of the Solov'ev profiles, we extended the previously known

solutions by including additional terms in the usual polynomial expansion. These

additional terms give additional degrees of freedom to our solution, which allow us to

satisfy a correspondingly larger set of fitting boundary conditions. As a result, we can

calculate analytic equilibria for a wider range of geometric parameters (E, , and 6)

figures of merit (P and q,), and magnetic field line topologies. By choosing the

boundary constraints according to the configuration of interest, we showed that with

the same solution we can model equilibria for the standard tokamak and the ST

(with or without up-down asymmetry), the spheromak and the FRC. To compute the

equilibrium flux contours for all these configurations, one only has to solve the linear

system formed by the equations for the boundary constraints. Since this system only

consists of 7 equations in up-down symmetric geometries, and 12 otherwise, it is a

trivial numerical problem.

The Solov'ev profiles unfortunately correspond to the unrealistic situation

where the pressure gradient and the toroidal current density have a jump at the

plasma surface. For this reason, we also calculated analytic solutions to the GS
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equation for more realistic profiles, such that p and F 2 depend on V quadratically.

These profiles are characterized by the vanishing of the pressure gradient and of the

current at the plasma surface.

The solution of the GS equation which we find in this case is more complicated

than the polynomial expansion of the Solov'ev case. Some of the undetermined

constants now appear nonlinearly in the solution, namely in the argument of

Whittaker functions. However, the procedure to determine the free constants which

we presented in the Solov'ev case can be applied in exactly the same way. The only

difference is that the system of equations for the boundary constraints is now

nonlinear. Solving this system is a less trivial numerical problem than in the previous

case, and convergence issues may be encountered if the chosen geometric and plasma

parameters are too extreme. Nevertheless, in most cases the system can readily be

solved by calling a built-in nonlinear solver in any scientific computing program. We

have been able to compute very plausible tokamak and ST equilibria with this

procedure, for a wide range of parameters.
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Chapter 3

Are fusion plasmas compressible?

A new look at MHD comparison theorems

One of the key steps in the design of a new fusion experiment is the study of

the stability of the confined plasma to the fast, macroscopic modes known as MHD

modes. MHD instabilities are indeed experimentally known for considerably

degrading the plasma properties, and can cause the termination of the plasma

discharge. They have to be avoided.

By fast, we mean that the typical scale for the plasma velocity is the ion

thermal velocity, vT ; by macroscopic we mean that the typical scale for the

amplitude of the mode is the characteristic size of the confinement experiment, which

we call a in the rest of this chapter. Unsurprisingly, the ideal MHD model is

constructed so as to be relevant on these velocity and length scales, and their

associated time scale rMHD = a / v T . Because of its simplicity and its very particular

mathematical properties, it is the model most often used for macroscopic stability
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analyses. Specifically, in ideal MHD, the problem of linear stability in any 3D

magnetic configuration can be cast in a convenient form known as the MHD energy

principle (Section 3.1 and 3.2), which is very commonly used to predict and

understand stability boundaries in fusion systems.

The difficulty with using the ideal MHD model and its energy principle for the

design of modern fusion experiments is that it relies on the assumption that both the

ions and the electrons are very collisional on the MHD time scale TMHD. At the

plasma temperatures and densities of fusion interest, this assumption is not justified,

at least not for the ions (Section 3.3). One then naturally wonders how reliable the

ideal MHD predictions are for the stability of fusion grade plasmas. The goal of this

chapter is to answer this question by introducing six models which more accurately

describe the plasmas in the different collisionality regimes of fusion interest (Sections

3.4 to Section 3.10). For each of these six models, we derive quadratic energy

relations, which we compare with the ideal MHD energy principle. Those energy

relations allow us to determine the stability boundaries in the six models of interest,

and compare them to the ideal MHD boundaries. Using these comparison, we assess

the reliability of the ideal MHD results on the time scale TMHD , in any 3-D

configuration. The end result is a hierarchy between the models, from the most

conservative to the least conservative. And the perhaps most important conclusions

can be summarized in two points: (1) In ergodic systems, or closed line systems with

modes which break the closed-line symmetry, ideal MHD is indeed the most
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conservative model, even when the plasma is collisionless; (2) In closed line systems

with modes which conserve the closed-line symmetry, the ideal MHD result is not the

most conservative results, because it relies on plasma compressibility, which in fact

vanishes in fusion grade plasmas.

3.1 Ideal MHD linear stability and the ideal MHD energy
principle

3.1.1 Ideal MHD linear stability

All the stability analyses we will perform in Chapters 3 and 4, and the energy

relations and comparison theorems we will derive, are solely concerned with the

question of linear stability. By linear stability, we mean the stability of a given

plasma equilibrium to small displacements of the plasma about this equilibrium. By

restricting our work to small displacements and linear theory, we obviously leave

aside the important topics of MHD turbulence and nonlinear evolution and saturation

of MHD instabilities. While these topics are of great interest (see for instance [1]), in

particular in astrophysical objects, our focus on linear stability is to be understood

within the context of fusion research.

In magnetic confinement experiments and future fusion reactors, the

macroscopic, fast and virulent ideal MHD instabilities can lead to significant plasma

losses, major disruptions, and threaten the physical integrity of the fusion reactor.

Therefore, one is not as much interested in the behavior of these instabilities on long
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time scales, as in looking into ways to avoid them. In other words, the primary goal

of ideal MHD stability studies for fusion applications is to determine the operational

limits beyond which dangerous instabilities will be triggered. Such will be our goal in

Chapters 3 and 4 as well, and in this context, linear stability theory is justified, even

more so as it comes with an elegant and powerful mathematical formalism which we

now describe, following the presentation given in [2].

We start with a static plasma equilibrium, to which we will add perturbations.

As discussed in Chapter 2, the equilibrium equations are

J0 x BO = Vp0

V x BO = p0 JO (3.1)

V -BO = 0

and B(r), J0 (r), and p0(r) are time-independent quantities. We add small

perturbations as follows:

v(r, t) = v(r, t)

p(r, t) = p0 (r) + p(r, t)

B(r, t) = B0 (r) + 5(r, t)
p(r, t) = p(r) + p(r, t)

where for each quantity A , we have IA(r, t) / A.(r) < 1. Inserting the expressions in

(3.2) into the ideal MHD equations and keeping only the zeroth and first order terms,

we find the following first order equations for the perturbations:
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p -=JxB+Jx5-Vp
at

-+iV-Vp+7-YpV -i

at (3.3)

at

In (3.3), we suppressed the 0 subscript for the equilibrium quantities, to simplify the

notation. We will keep this notation for the rest of the chapter.

The first equation, i.e. the momentum equation, is the one we need to solve to

describe the evolution of the perturbed velocity i. Once this is done, we can

substitute i into the other equations to determine the evolution of the other

quantities. Bernstein et al [3] were the first ones to use this fact to show that the set

of equations (3.3) can be reduced to a very convenient form by introducing the small

Lagrangian displacement ( associated with the plasma perturbation, defined as

(3.4)
at

Indeed, substituting i in terms of ( into the equations for p, B, and # and

integrating each equation over time, we obtain

- -( -Vp - 'pV -.

B = Vx( xB) (3.5)

(the equation V B 0 has been dropped, since it now is redundant), and we can

now use these expressions in the momentum equation, to find
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p2 = - (VxB)x Vx((xBl + 1-Vx Vx((xB) xB+V( -Vp+7 pV-() (368t2 MoN (3.6)

= F( )

As expected, eq. (3.6) only involves ( and the equilibrium quantities. This equation,

along with the initial conditions ( (r, 0) =,24 = v(r,O) and appropriate boundary
at -

conditions constitute the formulation of the general linearized stability equations. By

solving this equation, and using the solution ((r,t) into eq. (3.5), we can determine

everything we need to know about a given perturbation.

As we already discussed, however, what one is usually most interested in when

performing MHD stability calculations is whether a given geometric configuration is

stable to the most dangerous instabilities or not. The details of the time evolution of

the instability may not matter as much. In these conditions, we can ask ourselves if

solving the general initial value problem is the most efficient way, from a

computational perspective, to determine if a given perturbation is stable or not. The

answer is no. Indeed, there exists an elegant and powerful variational procedure,

known as the ideal MHD energy principle [3] which is much more effective and

convenient for testing ideal MHD stability in arbitrary three-dimensional geometries.

We present and discuss this procedure in the next section.
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3.1.2 Ideal MHD variational formulation

The first step in the derivation the variational formulation and the energy

principle in the next section is to show that the force operator F is self-adjoint with

respect to the scalar product defined by

(a, b) = f a -b dr (3.7)

where dr is an infinitesimal element of volume, and the integral is over the whole

plasma volume. This self-adjointness property will be needed several times in the

derivation. There are many different ways to do prove it, all of them requiring

substantial amounts of algebra and integrations by parts. A nice and detailed

derivation can for instance be found in Appendix A of reference [4], where the

following expression is derived for any two vectors q and ( satisfying the boundary

conditions (in this case l -n = (-n = 0 at the plasma surface, where n is the unit

vector perpendicular to the surface; however the result can be generalized to other

boundary conditions):

f1- F( )dr=- dr IB -V( -(B -V?_ +7-p (V-(V

B 2

+ - (V-+ 21 - v -n + 201-l (3.8)
po

4B2 ' B2

p10 2p-o
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In eq. (3.8), we have introduced several notations. (= -1(b and 7 = ?1+r/b

where b is the unit vector along the equilibrium magnetic field, and the I and

subscripts refer to directions perpendicular and parallel to that equilibrium magnetic

field. Also, K = b -Vb is the curvature vector of the magnetic field line. Eq. (3.8) is

written in such a way that the self-adjointness of F is immediately apparent. Indeed,

the roles of q and are symmetric in the right-hand side of (3.8). Exchanging the

two vectors would therefore not change this expression, which means that

n- F () dr = f -F (7) dr (3.9)

The first place the self-adjointness of F is used is when defining the linearized

potential energy associated with the displacement (, which is one of the two physical

quantities involved in the variational formulation of the eigenvalue problem and the

energy principle. To define the linearized potential energy, we first introduce the

linearized kinetic energy in the plasma

2

6T = f P 0  dr (3.10)
2 at

and calculate

d8T 1fd82 2~ *'=6 - drp 0 0*+ q

dt 2 i9 1 2 t at at 2

(3.11)

-f dr -F( )+ F( *)
2 at at
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In (3.11), we used the fact that ( is a solution of the momentum equation (3.6) to go

from the first line to the second line, and the superscript * indicates the complex

conjugate of a quantity. Now that we have an expression for the time derivative of

the kinetic energy, we can calculate the time derivative of the potential energy

6WMHD using the fact that the ideal MHD model conserves energy (e.g. Chapter 3 in

reference [4]):

d 6WMHD d6Tdr -.F()+ -.F( *)
dt dt 2 at at

1ld [ c- 1i ga 1 __g= I d -F( )dr I+- * -F dr - f F(*)dr (3.12)
2 dt 2 at, 2 at

1 d
= - { F( )dr

2 dt I

where to go from the second line of (3.12) to the third line, we used the fact that the

operator F is self-adjoint. Integrating eq. (3.12) we finally get the desired expression:

6WMHUDt*) = drg* F( ) (3.13)

6 WMHD has the expected form W f F -dl for a potential energy.

The next step in the derivation of the variational principle is to transform the

initial value problem (3.6) into an eigenvalue problem. Since the equilibrium

quantities p(r), p(r), and B(r) in eq. (3.6) are time-independent, we consider solutions

of the equation in the form of normal modes:

(r, t) = ((r)e-"t (3.14)
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a in eq. (3.6), the linearized momentum equation

becomes

-w -F( ) (3.15)

which is the expected eigenvalue equation, for the eigenvalue L2 .

The eigenvalue problem, consisting of eq. (3.15) and boundary conditions on

can now be recast in a variational form. Dotting both sides of eq. (3.15) with *,

integrating over the plasma volume, and multiplying 1 / 2, we indeed find

2 6WMHD

KMHD

M D(* 1 r P 12
2

is proportional to the linearized kinetic energy, and is identified to it.

Eq. (3.16) is the variational formulation of the eigenvalue problem (3.15). To

show this, we let -*(+ 6, and w2 _, W2 + 6w 2 in (3.17). Since WMHD and KMHD

are both bilinear,

2 2
W2 u =

6WMHD ( +*, -i- 6WMHD (6*,) + 6WMHD (1*6{ ) + 6WMHD (6&*6 )

KMHD )+ KMHD (6' )+ KMHD (*,6 ) + KMHD (6 ,86)

(3.18)

For small variations, we can Taylor the numerator and the denominator.

Remembering that 6WMHD ( ' ) _ 2KMHD (' , we have
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(3.16)

(3.17)

and using this expression for



6WMHD (Mo*, I )+ 6WMHD

KMHD ( *, )

2-LL

which, according to the definitions of 6WMHD and KMHD, is:

1f dr og* . F ( ) + wspo*

2

op 6 *}

KMHD
320on

1 f dr{og* -[F+()+w2p$1 + + w 2p+w *

2 KMHD ( ,

To go from the first line to second line, we used the self-adjoint property of F once

again. Now, w2 is an extremum iff for all allowable 6, we have 6Ow2 = 0. Since 6 is

arbitrary, the condition for 6w2 to be zero in eq. (3.20) is

L2p( + F ( ) = 0 (3.21)

In other words, the condition for w2 to be an extremum is that ( is an eigenfunction.

This completes our proof.

The variational formulation (3.16) is particularly useful for the efficient

computation

calculate the

(either analytic or numerical) of the eigenvalue W2 . Indeed, if we

2 WMHDrr)
quotient A2 = , where

K MHD

ri = ( + o is a trial function which

differs from the actual eigenfunction ( by 6(, then A2 will only differ from the

actual eigenvalue w 2 by (6o) (see for instance Chapter 8 in reference [4]).
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KMHD ( *Y)
(3.19)
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However useful this variational formulation is, there are cases when it provides

us with more information than we actually need. Given the short time scales on

which ideal MHD instabilities develop, and given their dramatic effect on the plasma,

the actual value of the growth rate of instabilities can sometimes only be a secondary

concern, the central question being: is the system stable or not, and how can we

design it to be stable? And to answer this question, the variational formulation can

be further simplified, leading to a powerful principle, known as the Ideal MHD energy

principle [3]. This is discussed in the next section.

3.1.3 Ideal MHD energy principle

The ideal MHD energy principle is summarized in the following statement,

first proposed by Bernstein et al. [3], and Hain et al. [5]

An ideal MHD equilibrium is stable if and only if

6W > 0 (3.22)

for all allowable displacements (.

Intuition about why the energy principle is true can be gained by following the

partly incomplete proof of it given by Bernstein et al. [3]. We assume that the force

operator F only allows for discrete eigenvalues and discrete normal modes. Since F is

self-adjoint, the eigenfunctions ( associated with the eigenvalues wn can be chosen
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so as to form an orthonormal basis, and any arbitrary displacement can be written

as

= c ( (3.23)

122

In these conditions, 6WMHD can be calculated in terms of the c and L :

2( if 2F(U)d 2n m (3.24)

where to go from the first line to the second line, we used the fact that the functions

n are orthonormal, i.e. perpendicular to each other, and with norm 1. The energy

principle can be understood in the light of eq. (3.23). Indeed, there exists a

displacement ( such that 6 WMHD () < 0 if and only if there exists an eigenvalue

such that W < 0 , i.e. if and only if the eigenmode ( is exponentially unstable, and

thus the system unstable.

If this proof helps us to intuitively understand why the energy principle may

be true, it is not entirely complete. Indeed, as was unknown at the time of Bernstein

et al.'s article, the spectrum of F, also known as the ideal MHD spectrum, does not

consist solely of discrete eigenvalues. The operator F also has a continuous spectrum

(see for instance Chapter 6 in reference [2]), which makes the expansion in normal

modes in (3.23) improper.
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Fortunately, a correct proof of both necessity and sufficiency has been given

by Laval et al. [6]. Their proof is elegantly based on the conservation of energy in the

ideal MHD model, and carried out in the time domain, thereby avoiding any

difficulty associated with the subtleties of the ideal MHD spectrum.

There are several advantages to the energy principle formulation of the ideal

MHD stability problem. First, as we will see in the next sections for the particular

case of plasma compressibility, the different terms in 6 WMHD can be recast in more

intuitive forms, highlighting the different physical roles they play. By looking at their

sign, we can identify the physical mechanisms which are stabilizing, and those which

are destabilizing, and get additional physical insight into the behavior of MHD

instabilities. A second advantage, related to this, is that based on physical intuition,

we may be able to construct a trial function which makes 6WMHD negative. According

to the energy principle, this would be a sufficient proof that the system is unstable to

certain types of perturbations. This method has been successfully used to derive

necessary conditions for stability, such as Suydam's criterion, for instance [7]. Finally,

if one is interested in studying the stability of a system more systematically, one may

investigate the sign of 6WMHD by exploiting a complete set of trial functions, in order

to obtain necessary and sufficient conditions for stability.

In the remainder of Chapter 3, we illustrate another aspect of the power of

the energy principle approach. We use it to compare the stability boundaries
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predicted by several different models, including ideal MHD, in order to investigate

the reliability of ideal MHD predictions in fusion grade plasmas. Since particular

attention will be given to the role of plasma compressibility, we now discuss its role

in the ideal MHD energy principle.

3.2 Ideal MHD plasma compressibility

In order to see where plasma compressibility enters in the energy principle, we

integrate by parts the last term in 6WMHD ,( Focusing our attention on internal

modes', i.e. modes such that n -( = 0, where n is the unit vector normal to the

plasma boundary, and S, is the plasma boundary, we have, using the divergence

theorem,

V (VpV dr = -f p IV. dr (3.25)

The term on the right hand side of (3.25), involving the divergence of the

displacement, represents the energy required to compress the plasma. It is the

expected plasma compressibility term. Using (3.25), the potential energy can be

rewritten as

6WMIID(*,) 6W (*,, 1 ) + 6WC(00)

6W = {*(J x B + J x ) + V( -Vp)]dr (3.26)

SWc f p V. -1 fdr

5 In the remaining of Chapter 3, we focus on internal modes to keep the expressions
relatively simple, without the extra boundary terms. However, it is important to note
that all the results derived here can be generalized to cover external modes as well.
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We remind the reader that the perturbed magnetic field and current density are

given by the relations (see previous section) B = V x (4, x B), pxl = V x V x (4, x B)

and involve ( only. Key features to observe from eq. (3.26) then are that 3W,

depends only on (, and that the only appearance of &I is in the V - stabilizing

plasma compression term in 6We.

The energy principle states that a mode is stable iff bWMHD > 0 for all allowable

plasma displacements. Therefore, stability is determined by minimizing &WMHD with

respect to ( , and then calculating the value of 6WMHD for the minimizing 4. If

6 WMHD > 0 the plasma is stable whereas if 6WMHD < 0 the plasma is unstable. Now,

since (il appears only in the plasma compressibility term, it is convenient to first

perform a universal minimization with respect to (ii. The variation of 8WHD with

respect to (g is:

6 (6WMHD) = f'yp V BV -*±+ V KB V - dr (3.27)

Since B -n = 0 , and B -Vp = 0, the divergence theorem can be used to rewrite (3.27)

as

6(6WMHD) p B -V (V. + B -V (V- dr (3.28)
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6WMHD is minimized with respect to

According to eq. (3.28), this requires

( if 6(6WMHD) 0 for any arbitrary

B.V(V-) = 0

6'11.

(3.29)

To solve this equation, two different cases have to be distinguished: (1) systems

where B -V :; 0 which include ergodic field line geometries as well as closed line

systems undergoing perturbations that break the closed line symmetry, and (2) closed

line systems undergoing perturbations that do not break the closed line symmetry.

e Case 1 : Ergodic systems, or closed field lines systems with modes which do not

conserve the closed-line symmetry

For this first case, B -V is not singular, so that the equation B -V(V -) 0 is

trivially solved, yielding V 0. The minimization with respect to 1 thus implies

that

6WMHD( ,*)= (41,*) (3.30)

Ideal MHD stability for ergodic systems is incompressible: SWc = 0

e Case 2 : Closed field lines systems, and modes which conserve the closed-line

symmetry

For this second case, there is a periodicity constraint 4(l) = ±( + L), where I is

any point along the arc length of the field line and L is the length of the line. This
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periodicity constraint can only be satisfied by adding a homogeneous solution to the

solution V -( = 0 of eq. (3.29):

V -. = G(p) (3.31)

(G is indeed a solution, since B -Vp = 0). The periodicity constraint determines the

function G. Indeed, eq. (3.31) can be rewritten as

G(p) - B - =Ol B
(3.32)

where the notation 0 / 01 indicates a derivative along the magnetic

Dividing eq. (3.32) by B and integrating the equation over the entire length of a

closed field line, we see that the second term on the left-hand side vanishes because of

the periodicity constraint. Thus, we find:

dl

B
(3.33)

and the minimizing condition (3.31) is

dl/1f d
(3.34)

Minimizing with respect to ( thus leads to the following expression for

compressibility contribution:

6W- f7 P 1 ' 12 dr = fp l (V. - 12 dr

where Q indicates the field line average of the quantity Q:
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(3.35)

V -( = fV. -(

Gpfdl -
B f



Q dl

fB

(3.36)

For this case the plasma compressibility term must be maintained and included in

the final minimization with respect to 4. And since clearly 3Wc >0 , 6Wc makes a

positive contribution to 6 WMHD : plasma compressibility is stabilizing. Several closed

field line configurations, such as the field-reversed configuration [8] and the levitated

dipole [9] explicitly rely on this term to stabilize some of their potentially most

violent modes.

The difficulty with these fusion concepts relying on plasma compressibility to

stabilize macroscopic instabilities is that the compressibility term is obtained from

the ideal MHD equation for energy conservation

d p _dp= 0
dt ~p ,

(3.37)

as indicated by the presence of the ratio of the specific heats y in (3.35). Eq. (3.37)

relies on two critical assumptions: 1) that energy equilibration occurs on a faster time

scale then the typical time scale of the instability, so that the ion and electron

temperatures are identical during the evolution of the instability: T = T; 2) that we
e (

can neglect the heat flux normally on the right-hand side of eq. (3.37), and in
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particular the electron parallel heat flux, which has the largest contribution. Both

assumptions are justified if the following ordering is satisfied

, . 1/2 vTI iI .11/2

S«1> w T <1 (3.38)
m a m

where mi and me are the ion and electron masses, vT is the ion thermal speed, TF is

the typical ion-ion collision time, and a is the characteristic size of the magnetic

confinement device. w vT / a is the typical MHD time scale, as explained in

Chapter 1. The ordering (3.38) requires the ions to be very collisional on the fast

MHD time scale. This is never satisfied in the high-temperature, fusion-grade

plasmas, as we will quantitatively show in the next section. We can therefore wonder

about the validity of the plasma compressibility stabilization prediction.

Our task in the remainder of this chapter will be to introduce several models

which are more accurate than ideal MHD in the different regimes relevant to nuclear

fusion, and derive energy relations, which will be compared to the ideal MHD energy

principle. Through these comparisons, we will be able to assess the reliability of the

compressibility stabilization.

We start by discussing the different collisionality regimes of fusion interest,

and by introducing these different new models in this context.
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3.3 Collisionality regimes in plasmas of fusion interest and

alternate MHD models

From the MHD stability point of view, there are four different characteristic

collisionality regimes to consider when assessing the reliability of the ideal MHD

predictions.

The first regime corresponds to the ordering

oT <1
eq (3.39)

where o vT / a is the typical MHD frequency, and Teq is the characteristic

temperature equilibration time. As discussed at the end of the previous section, if

(3.39) is satisfied, the equations of ideal MHD are well justified, including the ideal

MHD conservation of energy equation, eq. (3.37) included. In these conditions, there

is indeed compressibility stabilization, as already discussed.

The second regime of interest corresponds to the case where the electron-ion

and electron-electron characteristic collision times (T ei and T respectively), and the

ion-ion characteristic collision time (T ) are much shorter than the MHD time scale,

but the temperature equilibration time is longer than the MHD time scale.

Mathematically, this is

oT ~ r < T1« < 1 < wr =oJT.ee et U eq i (Regime 2)
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If the ordering (3.40) is satisfied, both ions and electrons essentially behave as fluids,

and the whole plasma dynamics is well described by the first two equations of ideal

MHD: conservation of mass, and conservation of momentum. However, the ideal

MHD equation of state is not justified anymore, and we must allow the temperatures

of the ions and electrons to evolve according to separate equations. The appropriate

model then is what we call Two- Temperature MHD, a model which we describe in

detail in Sec. 3.5, and for which we will derive quadratic energy forms which will be

compared to the ideal MHD energy principle.

The third regime corresponds to the case where the characteristic ion collision

time T_ is also longer than the MHD time scale, while the electron collision times

remain much shorter:

T WT < 1 < WT.. < WT =WT (Regime 3) (3.41)

In regime 3, the electrons keep their fluid behavior, while the ions do not undergo

enough collisions to maintain the behavior of an isotropic fluid. A kinetic description

of the ions is then necessary. We will consider three such descriptions. The first two

make use of the fact that in usual. magnetic confinement concepts, the ion Larmor

radius is much smaller than the typical size of the device, which is also the typical

wavelength of the MHD instability: 61 = r /a <1, where r is the ion Larmor

radius. The first model, the simplest, takes the 61 - 0 limit of the Vlasov equation
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for the ions, and neglects the ion heat fluxes. Fluid-like equations are then obtained

for the ions, allowing for non-isotropic evolution, unlike the Two-Temperature MHD

model. This is the so-called Chew-Goldberger-Low [10] description for the ions, and

we therefore call the full model, with CGL ions and MHD electrons the CGL - Fluid

MHD model. It is perhaps the simplest model one can think of for collisionless ions

and collision dominated electrons.

The CGL - Fluid MHD model is simple, but unfortunately unsatisfactory,

since there is no justification for neglecting the ion heat fluxes. In the second model,

known as Kinetic MHD [11], the quantities of interest for the ions are calculated by

solving the Vlasov equation in the limit 61 -* 0 and taking the appropriate moments.

No assumption is made concerning the heat fluxes, so that the equations do not

reduce to fluid-like equations. What one loses in simplicity as compared to the CGL

model, one gains in accuracy: the Kinetic MHD model is an exact description for

collisionless ions, in the limit of infinite magnetic field, i.e. in the limit 61 - 0. We

call this model, with Kinetic MHD ions and MHD electrons the Kinetic - Fluid MHD

model.

For certain fusion configurations (most often closed line configurations and

when compressibility plays a critical role), the most unstable MHD modes have very

short wavelengths, with the perpendicular wave number k1 of the order k r ~1.

When this is the case, taking the limit 6, -+ 0 is not a good approximation. The
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approach we then choose is to calculate the ion quantities of interest by solving the

exact Vlasov equation. The full model, with the MHD electrons, is then called

Vlasov-Fluid model [12]. Of course, the Vlasov equation is too complex to be solved

in the most general case. As we will see, the price we will pay for solving this

equation which is exact for arbitrary 67 is that we will have to restrict the class of

equilibria we allow ourselves to study. Fortunately, the static ideal MHD equilibrium

belongs to the class of equilibria which are tractable.

The last collisionality regime of interest, regime 4, corresponds to the case

where even the electrons are collisionless on the MHD time scale:

1< WT -~ T < WT, < WT = or (Regime 4) (3.42)

In that case, both species have to be treated kinetically. In this chapter, we will

consider two models. In the first model, both species are described by the simple, yet

ill-justified CGL equations. This is the original CGL model [10]. In the second model,

both species are described by the Kinetic MHD equations. This is the original Kinetic

MHD model [11], which is exact whenever the approximation 67 < 1 is well justified.

Ideally, we would want a fully collisionless model which treats the case

k1 r - 1 accurately, in other word a full Vlasov model, to study plasma

compressibility in this regime. However, none are satisfactory. The first reason for

this is practical: we have not been able to derive, for a full Vlasov model, the same
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energy relations which we have derived with the other models, and which can be

compared to the ideal MHD energy principle. The second reason is more

fundamental: if both species are described by the Vlasov equation, and k is allowed

to be large, the plasma is not tied to the magnetic field lines. Since this a critical

characteristic of an MHD mode, we could wonder whether any instability that is

found is indeed an MHD instability.

Now that we have introduced the 4 collisionality regimes of interest, and the

six models we will study in detail in the next sections, it is interesting to see which of

them are relevant for fusion grade plasmas. The two physical parameters which

determine the collisionality regime of a plasma are the plasma temperature and the

plasma density. In his classic paper, Braginskii [13] calculates the following

expressions for the different collisional time scales of interest:

3/2 2 
1/ 2 T 3/ 2  T3 / 2

T =3(27r = 1.09 x 10-4 k
* ne4 In A ln A

2m.
TT ree (3.43)

m

T M T
eq 2m ee

e

In (3.43), me and mi are the electron and ion mass, respectively, &E is the vacuum

permittivity, e is the charge of the proton, n is the density in m 3 units, n 20 is the

density in 1020 m- 3 units, T is the temperature in eV, and T the temperature in
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keV. In A is the Coulomb logarithm [14], a quantity which weakly depends on

temperature and density, and typically has values between 10 and 20. Setting the

Coulomb logarithm to ln A = 19 and the ion mass to that of deuterium, and

multiplying all the expressions in (3.43) by = vT / a, we obtain the following

dependences on n2 and T, for the collisionality boundaries:

T 2
wr - 3.3 x 10 3 I

eqa
2 0

T 2
w =1.5 x 102 k

an
20

T 2

=1.8 2
eeam 20

(3.44)

Using (3.44), we

parameter space,

can now represent the collisionality boundaries in n 0 - T

and see where they stand with respect to the rectangle

{1018 m-3 < n < 102 2 m-3 ;0.5 keV < T < 50 keV} corresponding to the region of

fusion interest. This is shown below, in Fig. 3.1, obtained for a = 1.

As can be seen in Fig. 3.1, on the MHD time scale, the ions are essentially

collisionless in fusion grade plasmas. Several conclusions can be drawn. First, it is

clear that the ideal MHD equation of state, requiring rWT <1, is not a good

approximation in regimes relevant to nuclear fusion. Second, when the approximation

6- <1 is justified, the Kinetic MHD and Kinetic - Fluid MHD models appear to be

relevant models for MHD stability studies. When k, becomes large, the Vlasov-Fluid
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model is required in the region between the green and the red curve which is crossing

the "Fusion grade plasmas" rectangle. As discussed, another model would be

desirable for large k, in the region of this rectangle where the electrons are also

collisionless, but we could not find any which was satisfactory.

10 4

102

10

10

10 0 10 103

Regime IV:
- CGL
- Kinetic MHD

Regime III:
- CGL- Fluid MHD
- Kinetic-Fluid MHD
- Vlasov-Fluid MHD

Regime 11:
Two-Temp.
MHD

Regime I:
Ideal MHD

102 1 ~ 0 10 1 102 103 104 10
n (10 2m )

Fig. 3.1. Collisionality regimes in fusion grade plasmas

One could wonder why we choose to derive results for the Two-Temperature

MHD, CGL Fluid MHD, and CGL models. Indeed, according to Fig. 9.1 the Two-

Temperature MHD model is hardly relevant in fusion plasmas, or perhaps only at

very high densities and very low temperatures, and while the CGL - Fluid MHD and
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CGL models describe more relevant regimes, they do it inaccurately. The answer to

this question is that these models allow us to work our way gradually from ideal

MHD to more relevant models. With the Two-Temperature MHD model, we allow

the ion and electron temperatures to evolve separately. With the CGL - Fluid MHD

model, we allow the ions to be collisionless, on our way to the Kinetic - Fluid MHD

and the Vlasov-fluid models. With the CGL model, we treat the plasma as fully

collisionless, on our way to the Kinetic MHD model.

The structure for the remainder of this chapter is as follows. Since the Vlasov-

Fluid model is fundamentally different from the other five models in that it allows for

finite 61, we will clearly separate our treatment of these two classes of models. From

Section 3.4 to Section 3.9 we introduce the five models which assume 61 - 0 , and

derive energy relations for each of them. Then, in Section 3.10 we introduce the

Vlasov-Fluid model, and also derive an energy relation in this model. Based on all the

energy relations, we will be able to reach conclusions about the reliability of ideal

MHD stability analyses in fusion systems, and the existence - or not of plasma

compressibility stabilization.
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3.4 Five models, one general formulation

With the exception of the Vlasov-Fluid model, each of the other plasma

models has the same starting point, which consists of an identical form of the mass

and momentum moments of the Boltzmann-Maxwell equations, which are coupled to

the low frequency, quasi neutral form of Maxwell's equations. Recalling that all the

five models are defined in the limit 6. - 0 , the starting point is written as follows:

- + V - ny = 0
at

dt
aBV x (v x B) (3.45)
at
V -B = 0

V x B = pOJ

n el= n, = n

Note that to derive the first two equations in (3.45), the only approximation made is

to assume that the center of mass inertia can be identified with the ion inertia,

because of the large mass difference between electrons and ions. The assumption

61. - 0 is not necessary. Likewise, the last two equations only depend on the

following requirements

-< c and vT, vT < C (neglect displacement current in Ampere's law)
k

(3.46)

W < W ,, a > AD, DA < 1 (Charge neutrality condition)
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where Wpe = (ne2 / Em e is the electron plasma frequency, and AD VT /pe is

the Debye length. The orderings in (3.46) are very well satisfied for fusion plasmas

over a wide range of densities and temperatures. And obviously, V -B = 0 is

always true. Thus, the only place where the limit of small 61 is taken is in the

third equation, the so-called frozen-in law. This equation is derived in the

following way. Neglecting electron inertia, the exact electron momentum equation

is

(3.47)E+vxB=- (JxB-V.P +R,)
en

where R represents the momentum loss of the electrons due to collisions with the

ions. The largest contribution to the pressure tensor P e comes from its diagonal,

isotropic piece, and we have the ordering

1 JxB I V-P ex n x

em vxB en vxB
(3.48)

Furthermore, according to Braginskii [13],

1 R

en vxB

m 1
e 62 <1

m, OT.
I it

(3.49)

Therefore, in the limit 61 - 0 , we have E + v x B = 0 , ideal Ohm's law. Substituting

ideal Ohm's law into Faraday's law results in the simple form given in (3.45). This
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form of Faraday's law guarantees that the magnetic field lines are frozen into the

plasma [4], the basic condition for ideal MHD behavior.

The set of equations in (3.45) has more unknowns than equations. We need

additional information to determine the pressure tensors P and P. This is what is

known as a closure problem, and where the differences between the five models are

found.

3.5 Two-Temperature MHD energy principle

As described in Section 3.3, the Two-Temperature MHD model aims at

describing collisionality regimes such that &rT ~ Te < OT.. 1 < T = r,. Both

the electrons and the ions still behave as fluids, so that we can use the Braginskii [13]

transport coefficients to evaluate the ordering of each term in the exact energy

equations, and obtain closure from the simplified energy equations.

According to Braginskii, we have

v - . V .I
~7i r -; 17 ~ e Or (3.50)

Vp, Vp (.0

where for both ions and electrons H is the anisotropic part of the pressure tensor P,

and p is the isotropic part, H = P - pI. From (3.50) and our ordering, we conclude

that we can assume that the pressure tensors of both species are isotropic. The next

step is to find an expression for p, and p, in terms of the lower moments. This is
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done separately for the ions and for the electrons because the electron parallel heat

flux is so dominant in the electron energy equation.

3.5.1 Electron energy equation

Taking the energy moment of the Boltzmann equation for electrons, we have:

d Pe

dt n"r

y-1
= e (3.51)JH ! pQ - - -H:V v-- +-J-v e

e e e en) en ,n'r,

In (3.51), Qe = fdwm w2C is the heat generated due to collisions,

he = f mw 2 wfjdw is the heat flux due to random motion, C, being the electron-

ion collision operator, f the electron distribution function, and w the relative

velocity. We evaluate the orders of magnitude of the different terms in (3.51), from

the right to the left. First, according to Braginskii [13],

J -Vnp p2
e <

enwp enBa2wpe

H :VJ nTrv
e ~ __ e___T

eoIp eBna3
L

H : Vv He r'

WPe pe

6, JT «

L(.JT<Ce
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Now, neglecting Joule heating (which is the same condition as neglecting the R / en

term in the electron momentum equation), the main contribution to Q, is electron

and ion energy equilibration. We have

Qe nT 1-- ~. e ~ < 1
WLP e T eq W4P e LOT eq

(3.53)

Therefore, on the right hand side of equation (3.51) we only have to keep the heat

flux h,. The largest contribution to h comes from the parallel conductivity, so that

in the end, we write

__ V VT 'V 1
dt YHeHe n

where

(3.54)

is the parallel thermal conductivity. Now, from Braginskii's transport

theory [13], we know that e ~nTT / me. Comparing the left and right hand side

of (3.54) then leads to:

V. - VT)11 I lie 11 e

Lop M ee eqm

Thus, the heat flux tends to dominate the electron energy equation. It is tempting to

write it as V -(Il 11VT) = 0. As we will now see, the correct form for eq. (3.54) in

fact depends on the field line geometry.
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e Case 1 : Ergodic systems, or closed-field line systems with modes which do not

conserve the closed-line symmetry

In this case, the right-hand side of eq. (3.54) does not naturally cancel. Since r, is so

large, it dominates the entire equation:

VI -(-eVT)= 0 (3.56)

which we write in a more convenient way :

B -V 'B-VT =0
B2 e

(3.57)

If we introduce a general coordinate system (1,x,@4) where I is the coordinate along a

given field line, the general solution of eq. (3.57) can be written as

* B e = G(x,#')
B 2 al

(3.58)

where G is an unknown function for the moment. Now, multiplying both sides of eq.

(3.58) by B 2 / KI and integrating along a given flux tube (f dl / B), we obtain

OT

f dl e
ol1

G(x,O)f dl B
Kle

(3.59)

Now, the term on the left-hand side of eq. (3.59) is bounded : it is simply the

difference between the temperatures at two different points along the flux tube. For

ergodic field lines, however, the term on the right-hand side of (3.59) is unbounded,

since it includes the infinite integral of a definite positive term which does not
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converge to zero. Consequently, for (3.59) to hold, we must have G(X, 4)= 0. And

we conclude that the proper equation of state for electrons in ergodic systems is

B-VT = 0 (3.60)

This is the equation of state we will use for the fluid electrons in ergodic systems.

e Case 2 : Closed field lines systems, and modes which conserve the closed-line

symmetry

In this case, eq. (3.59) still holds, and because of the closed-line symmetry, the left-

hand side of the equation is identically zero if one integrates along the full length of a

given flux tube. As a consequence, we have G(x, )) = 0 once again, and B -V T = 0.
e

The difference with the previous case, however, is that taking the flux tube average

of eq. (3.54), we have the additional constraint

(3.61)

Taking the partial derivative with respect to time of B -V T = 0, we can write:e

at n
B.V k oe =0

8tn
(3.62)

Using the frozen-in law, &B / at = V x (v x B), and simple vector algebra formulas,

eq. (3.62) can be rewritten as

(3.63)
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Combining the equation for the conservation of mass with eq. (3.63), we finally

get

1rdp
B-V- +p V- vI =0

n dt

The general solution of eq. (3.64) is

(3.64)

1 dpe

n dt
+P"vV] H(X, @)

where H is an unknown function of the two coordinates x and @b

(3.65)

which is

determined from the constraint given in eq. (3.61). Indeed, taking the flux tube

average of eq. (3.65), we find

dp,Kdt+ Pe -v = H(X, @) (n) (3.66)

and according to (3.61),

Kp de
dt

+ ( P V -V =0 (3.67)

Therefore, (3.66) implies

)(P e VV)

(n~) (3.68)

Substituting this expression for H into (3.65), we have our equation of state for the

case of closed-field line symmetry :

dp" + peV -V + (7
dt

- 1) ) (PeV -v) = 0
(n)

(3.69)
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This is the expression we will use for the fluid electrons in closed line systems, and

concludes our derivation of approximate equations of state for the fluid electrons.

3.5.2 Ion energy equation

2m v2
Taking the 2 moment of

2

energy equation for the ions

/r \d p,
dt n" ,

Based on

the ion Boltzmann equation, we find the following exact

Y. -1 (Q - V -hi - H : Vv)
n% *

Braginskii's transport coefficients

(3.70)

[13], we can compare the orders

magnitude of the terms in (3.70):

H : Vv
WT. <1

uWpi

Q 1
eq

Therefore, what is left on the right-hand side of (3.70)

(3.71)

is the heat flux term,

dominated by the parallel heat flux:

d p,

dt-He]i
7y -1 v1* -r 1vT) (3.72)

The ion parallel thermal conductivity is smaller than the electron thermal

conductivity by the ratio (m, / mi 1. Comparing both sides of eq. (3.72), we find
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(1/2

1 -P V T1 m
~p -e- wT ~ wTr < 1<

eq t

Consequently, the equation of state to use for fluid ions, in both ergodic and closed-

line systems is:

d p.

dt ni
(3.74)

3.5.3 Two-Temperature MHD static equilibrium

In order to compare the Two-Temperature MHD stability predictions with

those of static ideal MHD, we focus on the same class of equilibria: 1) static, i.e.

v = 0 , and 2) isotropic, so that P I, P = PIe, with p= p0 + p60 . With these

choices, the non-trivial equilibrium equations in eq. (3.45) take the form:

Jo x Bo = Vp0
V -B = 0 (3.75)
V x Bo = poJ0

These three equations are exactly identical to those of static ideal MHD, as expected.

We are indeed comparing stability for the same class of equilibria.
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3.5.4 Two-Temperature MHD stability and energy principle

As in ideal MHD, we introduce the displacement defined by -iw= v and

write the linearized momentum equation in terms of (:

-mnw2 ( = J x 3+ J x B - Vfi (3.76)

The linearized version of the equations of state derived in 3.5.3 and 3.5.4 is

A - -- Vp - YpjV - (ions) (3.77)

and

= -- VP - PeV -

- ' VP, - PeV.'4-e -1 (v.Ye

(electrons, ergodic systems)

(electrons, closed line systems)

It is clear that the only terms in eq. (3.76) which differ from the ideal MHD case are

the terms in (3.77) and (3.78) involving the compressibility, i.e. and V - .

Therefore, we can readily write

2 _W_ ,_

KMHD(~,~
(3.79)

where 6WTT((*, ) 6W, (*,4) + 6W ( *,) is the potential energy associated with

the displacement . 6W,*,4_) is exactly identical to the incompressible part of

6WMHD( 1)
defined previously. The exact form of og(4*,W s 1 depends on the

electron and ion equations of state, and therefore on the magnetic geometry.
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e Case 1: Ergodic systems or closed line systems undergoing symmetry breaking

perturbations

In this case, the electron and ion equations of state lead to

6Wt(,*) = (p + e) I V. - 2 dr (3.80)

We notice that 6WTT(4*, g) has exactly the same mathematical properties as

6WMHD(4*,*). Using the same mathematical tools as in section 3.1.2 and 3.1.3, we

could in particular prove that:

A system is stable in the Two-Temperature MHD model iff 6WT,(T*,() > 0 for all

allowable displacement 4 .

The most unstable modes are therefore found by minimizing 6WTT (*,4). Since

only appears 6Wt(4*, 4), we first perform the minimization with respect to ( in this

term. The form of 6W,(4*,4) is similar to that of 6Wc(4*, 4) in ideal MHD. Therefore,

following the same analysis, we find that the minimizing condition is V -(= 0. In

other words, the worst modes in ergodic systems in the Two-Temperature MHD

model are incompressible modes. Modes are stable iff 6W (4* 1,4) > 0, which is

equivalent to the following very powerful statement:
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In ergodic systems or closed line systems undergoing symmetry breaking

perturbations, a plasma is Two-Temperature MHD stable iff it is ideal

MHD stable.

This completes our study of Two-Temperature MHD linear stability in ergodic

systems.

e Case 2 : Closed field lines systems, and modes which conserve the closed-line

symmetry

Here, the ion and electron equations of state yield

61W(4,*) = f7P + P)|I V4 -12 dr + f(y -1)p, V ) 2 dr (3.81)

As in the previous case, the mathematical properties of WTT(4',4*) are identical to

those of SWMHD(4, ), so that the necessary and sufficient condition for stability is

8W,,(4();> 0. only appears in the first term of 8W((,() and following the

ideal MHD treatment, we know that in closed line systems with modes which keep

the closed line symmetry, the minimizing condition on ( is

(3.82)

Consequently,

W(,*) = 7p + Yep )I(V. 2 dr
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and for -Y, =y, 5/3 (adiabatic isotropic compression), (3.83) implies

6 WTT (",*) = 6WMHD(4,( , which once again proves the statement:

In closed-line magnetic geometries, modes which conserve the closed-line

symmetry are Two- Temperature MHD stable iff they are ideal MHD

stable.

Returning to the question of compressibility, we conclude from the study of Case 2

that the Two-Temperature MHD model agrees with the ideal MHD predictions: in

closed-line systems the plasma is compressible, and compressibility is stabilizing.

This concludes our study of the collisionality regime which we called Regime 2.

We now look into Regime 3, with two models for collisionless ions and collisional

electrons: the simple, fluid-like, but ill justified CGL - Fluid MHD model, and the

more complex Kinetic - Fluid MHD model.

3.6 CGL - Fluid MHD energy principle

3.6.1 CGL - Fluid MHD closure

The collisionality regime which we called Regime 3 is defined by the ordering

WT - WT < 1 < W < Wr = o t . In these conditions, the electrons still behave
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as an isotropic fluid, P, = pI and since all the orderings calculated in Section 3.5.1

still hold, the equations of state for the evolution of p, in the CGL - Fluid MHD

model are the same as in the previous model.

The ions, however, are not collisional anymore. The consequence of this is that

without collisions, there is no physical mechanism to drive the ion pressure tensor

towards an isotropic state. The first simplification made by the CGL description of

the ions is to assume 61 - 0. This implies that the off-diagonal components of the

pressure tensor are negligible as compared to the diagonal components, since they are

smaller by 6. [11]. The ion pressure tensor is written as

Pi = p1 (I - bb) + p bb (3.84)

Furthermore, Chew, Goldberger, and Low [10] noticed that by taking the

perpendicular and parallel energy moments of the Boltzmann equation for the ions,

and neglecting the heat fluxes (besides neglecting the temperature equilibration term

because wreq >> 1 and the off-diagonal components of the pressure tensor, for the

reasons mentioned above), fluid-like expressions could be found for the evolution of

p and pa:

d = 0 and " = 0 (3.85)
dt n' dt nB
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Note that there is no real justification for neglecting the heat fluxes when rT >> 1.

The CGL model is commonly used nevertheless, since it is the simplest description of

a collisionless, anisotropic plasma. Indeed, all the equations are fluid-like, unlike the

next model we will treat, Kinetic MHD, which chooses accuracy at the expense of

simplicity.

3.6.2 CGL - Fluid MHD static equilibrium

Once again, we can only compare the CGL - Fluid MHD predictions with

those of ideal MHD if we focus on the same class of equilibria: 1) static, i.e. vo = 0 ,

and 2) isotropic, so that P. = Ip, P -pI, with p0 = p, + p,0 . With these choices,

the non-trivial equilibrium equations in eq. (3.45) take the form:

Jo x Bo = Vp0

V -B =0 (3.86)

V x Bo = pJ0

These three equations are exactly identical to those of static ideal MHD, as expected.

We are indeed comparing stability for the same class of equilibria.

Focusing on isotropic equilibria does not contradict our desire to study the

behavior of essentially collisionless, anisotropic ions, which is the whole purpose of

the CGL model. The basic idea behind our stability studies in Regime 3 of

collisionality is the following: on the long equilibrium time scale, the ions undergo

enough collisions to make their equilibrium pressure isotropic. However, on the fast
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MHD time scale during which perturbations develop, the ions are collisionless, so that

their behavior is essentially anisotropic.

3.6.3 CGL Fluid MHD stability and energy principle

Following the usual procedure, we first introduce the displacement ( such

that V = -iw, and write the linearized momentum equation:

-o2min = J x b+ j x BV - VP - (i - P - bB -V

Linearizing the equations of state (3.85), we find:

P= -l Vp, - pV -2pbb: V4

and

S--Vp, - 2pV + pbb: V4

B
(3.87)

(3.88)

(3.89)

P, is given by the same equations as in the Two-Temperature MHD case, and

depends on the geometry under consideration. Dotting eq. (3.87) with

integrating over the plasma volume, we find the variational form

2 6 WCF )
KMHD

(3.90)

where 6WCF(*, 6W ,(* ) ± 6Wc(f*, ) is the potential energy associated with

the displacement 4. 6W((*,4) is exactly identical to the incompressible part of

defined previously. The exact form of AWf (*, ) depends on the

electron and ion equations of state, and therefore on the magnetic geometry.
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e Case 1: Ergodic systems or closed line systems undergoing symmetry breaking

perturbations

Using (3.78) for the electrons, and (3.88), and (3.89) for the ions, we find the

following expression for 6Wf((* ,), after using the divergence theorem a few times:

f dr (pe + 2p V. + f drp (V - 3bb : V)*-K

- fdrp (bb : V )V - * + fdrp (3bb : V4 - V -()b

Now, since * = b -V - bb : V4*, natural cancellations occur in (3.91):

f dr (p + 2p) V. +3f drp bb : V 2

- fdrpV . ((bb

5
Writing 2p, -pi3

1 *

+ -pi 6W,(&1&) can
3

: V*) - fdrp V -4* (bb : V4)

finally be written in desired form:

fdr p + p V. 12 +3f drp I -V- bb: Vg

The CGL equations conserve energy, and the CGL force operator is self-adjoint [3].

Consequently, we can reuse all the ideal MHD machinery to derive the CGL

MHD energy principle, and state:
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A system is stable in the CGL - Fluid MHD model iff SWcF(g*,) > Ofor all allowable

displacement .

Note that (1, which appears only in 6 Wl4 ((*, ), does so in a more complicated way

than in ideal MHD. Therefore, the minimization with respect to (9 does not lead to

an immediate condition on V -4. Instead, it is a complicated integro-differential

equation, which we do not need to derive here. Indeed, the point is that we are not

interested in the exact details of the CGL - Fluid MHD stability thresholds. We just

want to verify that ideal MHD, the simpler model, leads to conservative estimates as

compared to CGL - Fluid MHD, which allows for the anisotropic behavior of the

ions. And this is very easily done, using the CGL - Fluid MHD energy principle just

stated.

The first step is to notice that 6Wf((*,() > 0 , as obviously shown by eq.

(3.93). Therefore,

SWCF( (*,7) > 6WL(4 *,1) (3.94)

The next step is to assume that the ergodic system is ideal MHD stable. According to

the ideal MHD energy principle for ergodic magnetic geometries, this means that

6W(*,) > 0 for any (. And using eq. (3.94), this implies:

For any 4, SWCF((,() > 0 (3.95)
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According to the CGL - Fluid MHD energy principle, this means that the system is

CGL - Fluid MHD stable. Thus, we just proved the following powerful result:

In ergodic systems or closed line systems undergoing symmetry breaking

perturbations, if a plasma is ideal MHD stable, it is CGL Fluid MHD

stable.

e Case 2 : Closed field lines systems, and modes which conserve the closed-line

symmetry

In this case, we can reuse most of the results from Case 1, and simply change the

electron term, since in closed-line systems, with modes which keep the closed-line

symmetry, the electron equation of state takes a different form. We find:

W,f f dr p + 3 V -1p dr + 3fdrp3 V - bb : V4

(3.96)

Now, from Schwarz's inequality, fdr P. + P V dr p + 5 P(V )2 so

that

*W (&*,4) 3 2

The second term on the right-hand side of eq. (3.97) is clearly positive definite.

Furthermore, for isotropic electrons, 7,e=5 / 3, so eq. (3.97) implies
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6W(*,) > 6Wc (1,1), and 6WCF( *) WMHD(1). Hence, using the same

arguments as in Case 1, we can formulate the following statement:

In closed-line magnetic geometries, if modes which conserve the closed-

line symmetry are ideal MHD stable, they are CGL - Fluid MHD stable.

And as far as compressibility is concerned, the CGL - Fluid MHD predictions

confirm the ideal MHD predictions: there is compressibility stabilization, even when

the ions are collisionless.

Of course, as mentioned in the beginning of Section 3.6, the CGL - Fluid

MHD results are at least as suspicious as the ideal MHD results, since the CGL

equations of state for the ions are poorly justified when the ions are collisionless. It is

for this reason that we now turn to a more accurate model: the Kinetic - Fluid MHD

model.

3.7 Kinetic - Fluid MHD energy principle

3.7.1 Kinetic - Fluid MHD closure

In the Kinetic - Fluid MHD model, the electrons behave as a collision

dominated fluid, so that the electron equations of state derived for the previous

models in Section 3.5 and 3.6 still hold. For the collisionless ions, however, the
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closure is quite different than that of the CGL model. We still study the plasma in

the limit 61 -> 0 , so that the ion pressure tensor can be written as

P = p1 (I - bb) + pl bb (3.98)

but the difference with the previous model is that instead of calculating p, and p

from approximate, fluid-like equations of state, we calculate these quantities from the

drift-kinetic equation [15] with large E x B flow (i.e. vExB VT as in ideal MHD) and

in the limit 6. -- 0. Namely,

mw = 21
/

2 rB
il~ 2 m 3 2 I

IuB -f dE dy
p B)

1

mwfdw=2/27 B 1/2

Pil = mw f d = / f e - B fd7

where E = (m/2)(wI + w2) and y mW' / 2B are the basic velocity variables

describing the distribution function f (r, E, g, t), which is the solution of the equation

+(v+W b + =0 (3.100)
at f -e

with

E=qwE -
dv

mwb--

2mw2

2

(2
m 1

2
-(b-V)v (3.101)

In eqs. (3.99), (3.100), and (3.101), w is the random component of the particle

velocity while v = v(r,t) is the macroscopic plasma velocity (in this ordering, it

consists of two pieces : the parallel velocity and the E x B velocity). A very good
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derivation of equations (3.100) and (3.101) can be found in [11]. There are two things

to note: 1) Eq. (3.100) is an exact consequence of the Vlasov equation in the

mentioned limit, i.e. ,. -+ 0 and vExB T ; 2) Although E1 / E1 - 61 as seen from

the ideal Ohm's law E + v x B= 0 + 0(6), it enters in eq. (3.101). It is calculated

from the parallel component of the electron momentum equation. Indeed, neglecting

the terms which are small in the electron mass, and all the terms in the friction force,

the electron momentum equation takes the form E + ve x B+ VP = 0 ,so that
en

El = -(b -Vp,) / en (3.102)

3.7.2 Kinetic Fluid MHD equilibrium

The equilibria of interest are static (i.e. v = 0) with isotropic pressure. This

corresponds to requiring the ion distribution function to be of the form fi = fj(v, E).

For these choices, P0  Po (4) I, and the equilibrium equations take the form:

J0 x B0 = Vp0
V* -B0 = 0

V x B0 = p1 J0

(3.103)

The first equation in (3.103)

have peO =eO (4). Using eq.

implies p0 = p0 (0). Since pm0

(3.102) we conclude that E,,

Pio (7p), we necessarily

0. Furthermore, from

the ideal Ohm's law with v = 0 , we know that E. = 0. Consequently, E0 = 0 , and

the class of equilibria described by (3.103) is identical to that of static ideal MHD.
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3.7.3 Kinetic - Fluid MHD energy principle

What the Kinetic - Fluid MHD model gains in accuracy as compared to the

CGL-MHD model, it obviously loses in simplicity. The kinetic effects associated with

the kinetic treatment of the ions indeed make the analysis much more complicated.

For the clarity of the presentation, we focus here solely on the key results of the

derivation. The details of the calculation can be found in Appendix B.

Since the electron equation of state takes a different form in ergodic and closed

line systems, and since the ion trajectories also have different periodicity properties in

the two systems, we need to distinguish the two geometries once again.

e Case 1: Ergodic systems or closed line systems undergoing symmetry breaking

perturbations

For ergodic systems, we find the following energy relation

I2 6WJ( (*)+SW ,
2 * k(3.104)

Here, ( is the plasma displacement, -iwo =v V, K-( , p14 dr is the

perpendicular kinetic energy, and 6W is the contribution to the potential energy

associated with the ion kinetic effects. For any ion distribution function satisfying

Of ,< 0 , 6W is given by:
aE k
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6W(* wf !(U + U,)
n

2 2

U. = f dwf sLf dw - f l dw (3.105)
BE aE' iBE*

2

LJ~ 1 - of~zd

where T p, n/ and

-- ffzdw>O
T n aE

2 '2 (3.106)

s(E,p[, r, t)= V -(+ V .4 -1 TV -re''t
o2 z2

The quantity T(O) has the dimensions of temperature and is indeed equal to the

temperature for the case of a local Maxwellian distribution function.

Using Schwarz's inequality in eq. (3.105), we clearly see that SWkf > 0. We

can then deduce two conclusions from the energy relation. First ideal MHD stability

implies kinetic MHD-fluid stability. Indeed, for an ergodic system which is ideal

MHD stable, we have the inequality

6WKF 6 4W + Wf > WL(4* KF 1KF ) ; 8W(4* MHD,1MHD '(107)

The quantity (lKF is the exact eigenfunction for the hybrid model, and the next to

last inequality in eq. (3.107) holds because by definition &_MHD minimizes 8W_ in
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ergodic systems. Eq. (3.107) leads to a contradiction in eq. (3.104), which can only be

resolved by recognizing that the assumption Im(w) > 0 made when integrating back

to t' - -oc in the orbit integrals to derive eq. (3.105) is incorrect. Therefore, we

must have Im(w) < 0 , which implies stability. We just proved the following result:

In ergodic systems or closed line systems undergoing symmetry breaking

perturbations, if a plasma is ideal MHD stable, it is Kinetic - Fluid

MHD stable.

The second conclusion involves the limit w2 = 0 which we assume corresponds to

marginal stability. In this limit 8 Wkf = 0 for a straight cylinder and is positive in a

torus because of trapped particle compressibility stabilization; that is, 6Wlf > 0 .

This can be demonstrated explicitly by examining the parallel motion in the

trajectory integral in eq. (3.106). Qualitatively, since eq. (3.100) is a zero gyroradius

approximation of the Vlasov equation, the integrand is proportional to

exp[-iwt + ik l(t')] where 1(t') is the parallel trajectory of a particle. For a passing

particle l(t') ~ wt' and the trajectory integral s oc 1 /(w - k w ) which is finite in the

limit of W2 --> 0.

6 It has been proven [16] that w2 = 0 indeed corresponds to the marginal stability
boundary in the Kinetic MHD model, which we treat in Section 3.9. We assume here
that this result holds for the Kinetic - Fluid MHD model.
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However, for a trapped particle l(t') ~ le cos(WBLt) where wB(E'p,r) is the bounce

frequency of the orbit. The integrand in eq. (3.106) can therefore be expanded in a

Fourier series and the zeroth harmonic yields a contribution proportional to 1 / W

[17]. Specifically, as w2 0 the orbit integral reduces to

S
w'B

2 2 (3.108)
+ ., W

T
2 miI-+r&~ +T~V-dt'

Here, rB 27 / WB is the bounce period. The 1/ w factor in the denominator leads

to a finite value for 6W given by

- dr
6W 2 = f (U- +Uh)

7r n

2 2

Of af;O 2 Of
U=T Ldw wB dw - z B. dw (3.109)

2

U = | w T dwUh Tf _gB

where the subscript T on the integrals denotes integration over the region of velocity

space corresponding to trapped particles.

Thus, the second conclusion is that a toroidal kinetic MHD system is positively

stable when the ideal MHD system is marginally stable. This behavior corresponds to

trapped particle compressibility stabilization [18], an effect obviously not present in a

straight cylinder. The results for ergodic Kinetic - Fluid MHD systems at w2 = 0 can

be conveniently summarized as follows.
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6WKF = 6WL= 6WMHD

6WKF = 6WL + 6Wk, > 6WMHD

straight cylinder

torus

e Case 2 : Closed field lines systems, and modes which conserve the closed-line

symmetry

The analysis presented in Case 1 also applies to this case but is not directly useful

for determining MHD stability comparison theorems. The reason is that for closed

line systems 5WMHD 6W- +6Wc and there is no way to show whether 6W in its

present form is bigger or smaller than the MHD compression stabilization term 6Wc.

What is needed is a quantitative estimate of 6W, and not just a determination of its

sign. This requires a substantial amount of analysis, which is given in Appendix B.

The bottom line is that in the limit 0 -0, a lower bound for 6W 4 can be

calculated analytically. We can write

6WKF = 6W + 6W (3.111)

where (for -y = 5/3)

W ;> 6Wc = p (V. ) dr (3.112)

Therefore, for a closed-line system which is ideal MHD stable, we have the inequality

6WKF 6 WL + 6Wk,- WMHD (4KF 1KF) ;> 6WMH(D MHD L4MHD) > 0 (3.113)

In other words,
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In closed-line magnetic geometries, if modes which conserve the closed-

line symmetry are ideal MHD stable, they are Kinetic - Fluid MHD

stable.

As far as plasma compressibility is concerned, the Kinetic - Fluid MHD model

thus confirms the ideal MHD result in that it also finds compressibility stabilization

for models with closed-line symmetry.

The issue with the Kinetic - Fluid MHD results on plasma compressibility

stabilization is that they rely on the exact periodicity of the particles' motion - the

trapped particles in ergodic systems, and both passing and trapped particles in

closed-line geometries for modes which conserve this symmetry. In the limit 61 -+ 0,

the particles' motion is indeed exactly periodic. But this is not true anymore for finite

61 since the particles' precession motion due to their drifts off flux tubes then has to

be taken into account. For most MHD instabilities, the neglect of these drifts is

justified, since k w > k v d where vd is the drift velocity. However, in ideal MHD,

the compressible modes are often the most unstable in the limit ki -+ c, so that

klvd may compete with kv 11 even if vd / w1~ 6 . Another case where the neglect of

the drifts may not be justified corresponds to modes which have k11 = 0, such as the

compressible interchange modes in a Z-pinch for instance.
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Thus, it is crucial to look into the MHD compressibility stabilization result in

the Regime 3 of collisionality with a model which allows for finite krL . This is the

purpose of the Vlasov-Fluid model, which we study in Section 3.10. Before doing so,

we finish our study of the models described by eq. (3.45), by looking into the

collisionality regime which we called Regime 4.

3.8 CGL energy principle

3.8.1 CGL closure

The collisionality regime which we called Regime 4 is defined by the ordering

1 < r ~ w < wr < Wr =LOr . In these conditions, neither the electrons nor
ee ec ZZ eq te

the ions are collisional. The CGL model [10] is a simple, fluid-like model constructed

to describe such a collisionality regime. It takes the limit 61 -> 0, so that the total

plasma pressure is gyrotropic [11]:

P = p (I - bb)+ pbb (3.114)

where P=P+P, ,p 1 = p 1 +p 1 , and p9 pil + p. Furthermore, it neglects the

heat fluxes and the temperature equilibration term in the second-order moment of the

Boltzmann equation for the ions and for the electrons. Adding these two equations,

one finds that p, and p11 are linked to lower order moments through simple equations

of state:
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-- = 2 0 and d 1  0 (3.115)
dt n J dt nB

Note that there is no real justification for neglecting the heat fluxes when

WT > > WT > 1. The CGL model is commonly used nevertheless, since it is the

simplest description of a collisionless, anisotropic plasma. In Section 3.9, we will have

a better idea of the accuracy of the CGL model by deriving energy relations for the

more exact Kinetic MHD model.

3.8.2 CGL static equilibrium

As always in this work, we focus on the same class of equilibria

MHD, namely static, i.e. vo = 0, and isotropic equilibria,

i0 = PilO, eO = peI with p0 =

equilibrium equations in eq. (3.45)

p0 + p 0 . With these choices, the

take the form:

J. x BO = Vp0

* -BO 0
* x BO = pJO

as in ideal

so that

non-trivial

(3.116)

These three equations are indeed exactly identical to those of static ideal MHD.

Recall here that while we study isotropic equilibria, the plasma is not forced to

behave in an isotropic manner as the perturbation develops. As emphasized

previously, one of the strengths of the CGL model is that it allows the collisionless

plasma to have an anisotropic behavior.
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3.8.3 CGL stability and energy principle

Introducing the displacement ( such that V = -iw, the linearized CGL

momentum equation is:

-w2min4 = J x B+ J x B- VP - -p - bBVI B (3.117)

where the evolution of P is once again given by the linearized CGL equations of

state:

A = -4 -Vp - pV - - 2pbb : V (3.118)

and

P = - -Vp - 2pV - -+ pbb : V (3.119)

Given the similarity between the CGL equations and the CGL Fluid MHD

equations, the results for the CGL model are readily obtained from Section 3.6 by

replacing the ion pressure with the total plasma pressure, and setting the electron

terms to zero. Dotting eq. (3.117) with (, and integrating over the plasma volume,

we thus find the variational form

2 = 6WCGL(W

K MHD ( )
(3.120)

where 6W*GL((*,()= 4W((*,(1)+8W1 ((*,) is the potential energy associated with

the displacement 4. 8W,(4* 1 _) is exactly identical to the incompressible part of

6WMHD(, 1) defined previously, and 6W (4*, 4) has the following form:
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Wg(*,() =fp V- dr+3fdrp V - bb:VC (3.121)

The CGL force operator is self-adjoint [3], and using the fact that there is

conservation of energy in this model, one can derive an energy principle that is

similar to that of ideal MHD:

A system is stable in the CGL model iff 6WCGL((*,() Ofor all allowable displacement

Now, for the same reasons as the ones already discussed in Section 3.6, it is clear

from eq. (3.121) that we have

6W 1 ((*,5) 1 (W((*,) 0 (3.122)

and consequently, for both ergodic and closed-line systems,

For all 4, 6WCGL (4*, ) > 6WMHD(4* ) (3.123)

Using the CGL energy principle just stated, and the same reasoning as in the

previous sections, it is then easy to see that eq. (3.123) implies the following sufficient

condition for stability in the CGL model:
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In both ergodic and closed-line magnetic geometries, if a plasma is ideal

MHD stable, it is CGL stable.

With regards to compressibility, this result shows that collisionless plasmas in the

CGL approximation are indeed compressible, and that compressibility is stabilizing.

3.9 Kinetic MHD energy principle

3.9.1 The Kinetic MHD closure

Instead of arbitrarily assuming that the heat fluxes vanish, as it is done in the

CGL model, the idea in the Kinetic MHD model is to calculate the ion and electron

pressure tensors from the solution of the Vlasov equation in the limit 8. -* 0 and

with strong electric field (vExB vT ). This equation, already presented in Section 3.7

for the ions, is repeated here for convenience: the ion and electron distribution

functions, f (r, E, t, t) and f, (r, , , t) are solutions of the equation

Of -Of
t (Vw b)-Vf =O

(3.124)

with

22
dv Mw ' L

i = qw1 E 11-mnib. - -IV-v+m
Sdi 2 2

'
_W b-(b -V)v (3.125)
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and where we have kept the same notations as in Section 3.7. In particular, w is the

random component of particle velocity while v = v(r, t) is the macroscopic plasma

velocity (which consists of the parallel flow and the E x B drift). The charge q and

the mass m in eq. (3.125) obviously depend on whether we solve for the ion or the

electron distribution function. The pressure tensors are given by

P = p I - bb) + p bb

1 /2 rB 1  B f de d (3.126)

P1 m3/f (E - pB)1/

P-2 3/2 7 B 1/2f Ed-
P i = 3/2 f -

Note once again that the parallel electric field El appears in eq. (3.125) even though

it scales as E 6E 1 . It is calculated from the parallel electron momentum equation

0 1 B -(V -P )E -b -V# - a - B e (3.127)
ot enB

or, when it is more convenient, from the charge neutrality condition n = n, where

the densities are calculated from the distribution functions:

n = f dw = 2'/2 jI f dEddp (3.128)
m3/f (E - pB)1/

The set of equations (3.45), (3.124), (3.125), (3.126), (3.127), and (3.128) define what

is usually called the Kinetic MHD model [11],[19], or the 'beads on a wire'

approximation [20], since it is a kinetic model restricting the motion of the particles

to that of beads 'sliding' along the magnetic field lines of force. The first kinetic
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comparison theorems [21], [22] were derived using this model, albeit assuming Ell 0.

Later works have generalized these comparison theorems, by using the same Kinetic

MHD model but allowing for electrostatic perturbations: E = -b -VO [20], [23], [16].

As we will see in Section 3.9.3, we generalize all these results one step further, by

allowing for electromagnetic perturbations: E= -b -VO+ iwo.

3.9.2 Kinetic MHD static equilibrium

Consider now equilibrium in the kinetic MHD model. In order to compare

macroscopic stability thresholds with those of ideal MHD we choose equilibrium

distribution functions that are independent of the adiabatic invariant yp; that is both

the electron and ion equilibrium distribution functions are of the form

f0(r, eI,) -* f0(@, E) where @/(r) is the usual flux function satisfying b -V@ = 0.

equilibrium pressure tensor is then isotropic: pQ($) = P110() = p,()

equilibrium (i.e. v = 0) the plasma momentum equation therefore becomes

J0 x BO = Vp0

V-B0 = 0

V x BO= 1 0J0

Furthermore, since E = -B -(V -P,) / enB. = -B -Vp, / enB it follows that

Similarly for static equilbria E. 0
=0, since vxB=O. The conclusion is

that the equilibria of interest are identical to those in ideal MHD.
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3.9.3 Kinetic MHD energy principle

As in Section 3.7, we leave the details of the derivation of the energy relations to

Appendix A, and for the clarity of the presentation just focus on the main results in

this section. Some of the results presented here have been originally derived in [161,

[20], [21], [22], [23]. We bring two new elements to this well-studied problem: 1) we

generalize the derivation of the energy relations by allowing a non-zero value for the

perturbed parallel vector potential, Z , representing electromagnetic effects; 2) we

explicitly distinguish between ergodic and closed-line systems, and identify the

differences in stability criteria that arise between these two families.

e Case 1: Ergodic systems or closed line systems undergoing symmetry breaking

perturbations

In this case the energy relation can be written as

L2 (3.130)

where 8W,(41,4*) is identical to that corresponding to ideal MHD and K (, ,)

has already been defined in Section 3.7.

The modification to the potential energy 6 Wk is evaluated for arbitrary equilibrium

distribution functions f(E, V)) that need only satisfy the constraint:

-O< 0 (3.131)asE
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for both species. The result is a complicated expression which has the form

6Wk() = w Jd(UZ+Ue+U,)n
2

u. f 2dwf Lf, dw-U - 9 0dw I dw f

U-Tf f dwf f
9Ed "E

(3.132)2 2

sdw- f"edW

2

U T f sdw+tf *dw
e

where t(o') and the orbit integral 9 for each species are given by

1 =- -dw >0
nf OE

22
t 2

- 2 +M 2 W

(3.133)
- +q W eiwt dtI

Note that unlike the Kinetic - Fluid MHD case, the trajectory integrals do not only

involve the plasma displacement (, but also the unknowns / and 41. In fact, these

two quantities can be expressed in terms of the plasma displacement 4, although the

relations involve a set of coupled integral equations (see Appendix A). Fortunately,

these complicated relations are not required for the analysis, as we show next.

A simple application of Schwarz's inequality implies that 6Wk > 0. This allows us

to draw two conclusions. First, assume that the system is ideal MHD stable:

(3.134)
6WMHD = 6WL(4LMHD14 IMHD)>O

where (LMHD is the ideal MHD eigenfunction. It immediately follows that
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6WKK =6W+6W ;> SWI4(*KKLKK) ;> WI( *MHD LMHD) > 0 (3.135)

Here, {LKK is the kinetic MHD eigenfunction and the last inequality holds because of

the minimizing energy principle associated with the ideal MHD potential energy.

Equation (3.135), however, leads to a contradiction in eq. (3.130): Iw2 < 0. This is

exactly the same contradiction as the one already encountered in Section 3.7, coming

from the fact that we assumed Im(w) > 0 to derive eq. (3.132) (see Appendix A). The

resolution of the problem is that Im(w) < 0 which implies that the system is linearly

stable. We have just proved the following result:

In ergodic systems or closed line systems undergoing symmetry breaking

perturbations, if a plasma is ideal MHD stable, it is Kinetic MHD stable.

The second conclusion comes from taking the limit w2 - 0 in eq. (3.132), a

limit which as we know [16] corresponds to the marginal stability boundary. Using, as

in the Kinetic-Fluid MHD case, the periodicity of the trapped particles' motion in

toroidal devices, we can Fourier expand the integrand in the orbit integrals, and

evaluate these integrals in the limit a
2 - 0. As in Section 3.7, we find that while

6WUk vanishes in the limit w2 - 0 in cylindrical systems, it is finite in the same limit

in toroidal systems, and given by
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4 d
6W (*) = 2 j (U + U + Uh)

7r n
2 2

U. = f ( L d w 1 dw - J -w . dw
2 OE T& Bi i TE B Z

2 2 (3.136)
OfdOf Of

Ue d Le Be e JT -- Bee

2

~~af
U- 1 TI tw. dw.T I eW s dw

h i T '96 Bi L 0 Be eIS ~ B eJ O . e

where the subscript T on the integrals denotes integration over the region of velocity

space corresponding to trapped particles.

Thus, the second conclusion is that a toroidal Kinetic MHD system is positively

stable when the ideal MHD system is marginally stable. This behavior corresponds to

trapped particle compressibility stabilization ([24, [25]), an effect obviously not

present in a straight cylinder. The results for ergodic Kinetic MHD systems at

W2 =0 can be conveniently summarized as follows.

6WKK = SWL = 6WMHD straight cylinder (3.137)
6WKK = 6WL + 6Wkk > 6WMHD torus

e Case 2 : Closed field lines systems, and modes which conserve the closed-line

symmetry

Here, we need to compare 6 Wk with 6Wo, the compressible piece of 6 WMHD . Even

though eq. (3.132) is valid for closed field lines systems and modes which conserve the
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closed-line symmetry, the form of 6Wkk in this equation is not directly useful for

comparing it to 8Wc. Indeed, knowing the sign of 6WU is not sufficient, and we now

need a quantitative estimate for 6W. The calculation of this estimate can be done

analytically only in the limit w2 - 0 . It consists of several complicated steps, and the

details of the derivation are left to Appendix A. The end result is an inequality

expression for 6WKK, valid in the limit of marginal stability w2 - 0.

with

6WKK 6WI (41 ,*4)+ 6W (4,1*)

6W ;> p 5 (V. ) 2 dr

(3.138)

(3.139)

For a system that is ideal MHD stable, 6 WHD 6W + 8Wo > 0. It then follows

from eqs. (3.138) and (3.139) that

8W -W + 8W > 6WMHD 8KK 4 KK) > 6WMHD (4MHD 1 MHD) 0 140)

This proves the following statement about Kinetic MHD linear stability in closed line

systems:

In closed-line magnetic geometries, if modes which conserve the closed-

line symmetry are ideal MHD stable, they are Kinetic MHD stable.
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From this result, we conclude that there is indeed plasma compressibility

stabilization in the Kinetic MHD model. In fact, eq. (3.139) indicates that Kinetic

MHD predicts additional sources of compressibility as compared to ideal MHD.

As in the Kinetic - Fluid MHD model, the plasma compressibility stabilization

is due to the exact periodicity of the particles' motion in closed-line systems. This is

only true in the 'beads on a wire' description of the motion. Only the parallel motion

is accounted for. One then naturally wonders what would happen to the

compressibility stabilization prediction if finite k, terms were kept, so that the

particles are allowed to drift off their flux tubes.

Unfortunately, we have not found a model in which both ions and electrons

could be described by a kinetic equation which allows for finite k1 , and which would

allow us to derive MHD comparison theorems. The main difficulty comes from the

fact that in such a model, neither the ions nor the electrons are tied to the magnetic

field lines. It then becomes difficult to define what one means by an MHD mode.

Thus, our only way to study the effects on MHD stability of particle drifts off flux

tubes is through a hybrid model, with ions described by the exact Vlasov equation,

and electrons described as a fluid. This is the purpose of the next section.
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3.10 Energy relations for comparison theorems: Vlasov ions,
fluid electrons

The last model of interest is a hybrid model with Vlasov ions and fluid electrons.

The motivation for using the Vlasov equation for the ions is to allow us to consider

stability for arbitrary k, including both kia ~1 and k r~ 1. The regime k r ~ 1

is important for closed line systems such as the levitated dipole and the field reversed

configuration as well as ballooning modes in ergodic systems. The crucial feature

included in the Vlasov, but not the kinetic MHD, description is the possibility of

particle resonances with the perpendicular guiding center velocity as well as the

parallel velocity. Specifically the resonance condition changes from W - k w = 0 to

w - k11w1 - k, -v = 0 where vd includes the E x B, curvature, and grad-B guiding

center drifts.

Ideally we would like to be able to treat the electrons with the Vlasov equation

but this becomes too complicated mathematically. The basic difficulty is that a dual

Vlasov model contains far more physics than just MHD behavior. Thus some

simplifications are needed to restrict the physical content of the overall model such

that attention can be focused on MHD phenomena. A fluid model for electrons meets

this purpose. It is also possible to treat the electrons as collisionless by using the

simpler kinetic MHD description. This, however, is deceptive and corresponds to an

155



inconsistent mathematical ordering. The reason is that even in the limit m, -* 0 the

perpendicular guiding center drifts of the electrons (for T, ~ T ) are important when

k ~ 0 and k r ~ 1.

In carrying out the analysis there are three issues that arise that are worth noting.

First, a simplified energy equation must be used for the electrons in order to focus on

MHD modes which are defined as modes in which the magnetic field is frozen into the

plasma. Second, a special choice must be made for the form of the equilibrium ion

distribution function in order to guarantee zero macroscopic fluid velocity,

corresponding to static equilibrium. This choice also has the feature of making the

analysis valid for arbitrary 3-D geometries. Third, the analysis is carried out using a

procedure which is traditionally and wisely thought to be highly inefficient and

mathematically complex when applied to models that make use of a gyro radius

expansion (e.g. gyrokinetics [26],[27] and kinetic MHD). The "forbidden" approach

that we use directly calculates the perpendicular ion current from the distribution

function rather than using moments. There is no problem doing this with the Vlasov

equation since no gyro radius expansion is used and, as is shown, leads to a simplified

analysis if attention is focused solely on obtaining an energy integral. Each of these

points is discussed in more detail as the analysis progresses.
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3.10.1 The electron model

The electrons are treated as a massless isotropic fluid. The mass and momentum

equations are written as follows:

On

at (nB± Vp) (3.141)

E+v, x B+ "~ =0
en

where v is the electron fluid velocity, and where we have neglected all the terms due

to friction in the momentum equation. While the set of equations (3.141) is the same

as in the Kinetic MHD-Fluid model, the electron energy equations has to be changed.

This can be seen by substituting the momentum equation into Faraday's law.

OB Vp
-= V x ve xB+ e (3.142)

19t "en

In order to focus on MHD modes, we require by definition, that the magnetic field

be frozen into the plasma. This requires that the V x (Vp, / ene) term be zero or

small. However, when k rL 1, the term is comparable in magnitude to the other

terms. We could assume an intermediate ordering such as krL < 1 < k1L but this

leaves us in the awkward position of making a gyro radius expansion in Faraday's

law but not the ion Vlasov equation.

Our approach is to postulate an alternative energy equation which must have

three desirable properties: (1) it must be mathematically simple, (2) it must include
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electron plasma compressibility effects, and (3) it must guarantee that the magnetic

field is tied to the electron fluid. A model which has these features is as follows.

p = Kn, (3.143)
e e

Our model looks very similar to the usual adiabatic energy relation but there is

one important difference. In our model both the equilibrium and perturbed pressure

satisfy the same relation. In the usual adiabatic relation, d(Pe / n)/ dt = 0 the

equilibrium pressure and density profiles are independent of each other and it is only

the perturbations that are non-trivially governed by eq. (3.143). Thus, our model is a

special case of the more general adiabatic relation. The main consequence of eq.

(3.143) is that in the stability analysis only the pressure gradient can drive

instabilities. In contrast, for the general adiabatic relation the parameter

lie =d ln T / d ln ne also appears which can drive instabilities such as the entropy

mode. Specifically, when -y, = 5/3, our model implies that r1, = 2/3 and for this

value the entropy mode is always stable, as shown in cylindrical and point-dipole

magnetic geometries in references [281, and [29]. Thus, choosing eq. (3.143) as the

energy relation for electrons allows us to focus on MHD modes, which is the topic of

interest.

3.10.2 The Vlasov-Fluid model

The basic equations describing the Vlasov-Fluid model are obtained by evaluating

the quantity J x B with the electron current calculated from ve and the ion current
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by the usually inefficient process of integrating over the distribution function. A short

calculation leads to the following model.

JxB= Vp +ef (E+uxB)f du

an

at (e -0

p - Kn'e e

Bt V x (v x B) (3.144)at*
V x B - O
V x B = p0

El = -(b -Vp,) / en

n, - n - n
Z e

Here, u represents the total (not random) particle velocity.

3.10.3 Vlasov-Fluid Equilibrium

An exact analytic equilibrium satisfying the Vlasov-Fluid equations can be found

that is valid for arbitrary 3-D geometries. The key point to recognize is that our

primary interest is in static equilibria. The motivation for focusing on static equilibria

is to enable a mathematically consistent comparison with static ideal MHD equilibria

which is the usual "gold" standard for macroscopic stability analyses. We emphasize

that equilibria with flow are possible and often necessary when comparing with

detailed experimental data. However, when comparing with other theoretical models

it is necessary to focus on the identical class of equilibria - those that have zero

equilibrium flow.
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The condition of identically zero macroscopic equilibrium flow implies that the

equilibrium ion distribution function be of the form

ft = f(s)
2

mu + e#(r)
2

(3.145)

where #(r) is the electrostatic potential. From eq. (3.145) it follows that the ions are

electrostatically confined and that the ion pressure is isotropic. A short calculation

also shows that the pressure and density are related by

2

P0 f 0 d
3 1A

n#) =1 dpio
e d#

Now, since there is no equilibrium ion flow,

Jo x B0 = Vp 0 + enE 0 = VP -- enV50
(3.147)

Here, we have set ne, = n - no. Substituting eq. (3.146) into eq. (3.147) then yields

Jo x Bo = Vp0
(3.148)

where PO = peo + pi .

since p = Kn = K[n(#0 )] , the total pressure also has the form

The condition B0 -Vp 0 = (dpo / doo) Bo .VO, = -(dpo / doo)Bo -Eo = 0

then implies that E1 = 0 in equilibrium. The overall conclusion is that the choice

f, = fo(E) leads to Vlasov-Fluid equilibria that are identical to ideal MHD equilibria.
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3.10.4 Vlasov-Fluid Stability

Linear stability in the Vlasov-Fluid model is carried out in terms of the electron

displacement vector 4 . The relationship between j, and 4 in a system in which

there is an equilibrium flow v e is given by ,e = -io4+ v - V4-4 - Vv [30]. Using

this definition it follows that most of the perturbed quantities can be easily expressed

in terms of 4.

h- Vn-nV-

Pe *VJ -YePe V.4 (3.149)5 Vx( 1 x B)

E i& xB-V (& -Vp -ypV-4)/e n

The remaining unknown is the perturbed distribution function which, as shown in

Appendix C, can be written as

f = -(41 -Vpi - 7YpeV -4)+ ; 9
n OE (3.150)

S= f [e(E + u x B) -- (p, / n)V -4 dt'

where p = pi + pe.

As for the other models, an energy integral can be obtained for the Vlasov-Fluid

model. The details are presented in Appendix C. A critical point regarding this

energy integral is that unlike for the other models, there is no need to distinguish

between ergodic and closed field line geometries for the VF equilibria, which assume

that the ion equilibrium distribution function only depends on the total energy. The

reason is that the orbit integral 9 does not have any terms that are proportional to
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1/w. It is the 1/w terms in § that yield a finite contribution in the product iws,

giving rise to trapped particle compressibility stabilization and closed line periodicity

stabilization.

The 1/w terms are absent because the resonant denominator arising from the

trajectory integral is modified from its kinetic MHD form w - kqw9 to its Vlasov-Fluid

form w - k1 w11 - k1 -vd where vd is the guiding center drift velocity comprised of the

grad-B, curvature, and E x B drifts. Thus, even when k9 = 0 the resonant

denominator in the Vlasov-Fluid model does not vanish as w -+ 0 because there is

always a non-zero precession drift.

This behavior can be seen explicitly by examining the Vlasov-Fluid energy integral

2 6W

KVF
(3.151)

where

KVF fdr I (1+)
n

V,= f fdw f K112
B9E 9E

2

dw- f f'dw
09E

2

V2 =e f 'idw
7Ap 4- 1 e O

and ,7 () = d ln p / d ln n . Clearly, KVF > 0 by Schwarz's inequality.
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A sufficient condition for instability can now easily be obtained. Assume the

plasma, for any type of geometry, is ideal MHD stable for incompressible

displacements: 6W, > 0. Then, eq. (3.151) is a contradiction, similar to that derived

for the other models, which can only be resolved by recognizing that the original

assumption Im(w) > 0 is violated. In other words the system is linearly stable. This

conclusion makes use of the fact that KVF remains finite as w -+ 0. Therefore,

incompressible stability in ideal MHD implies stability in the Vlasov-Fluid model for

any type of geometry.

Consider next unstable behavior corresponding to 6W, < 0 for ideal MHD. Since

the Vlasov-Fluid operator is not self-adjoint it is not possible to rigorously conclude

that the plasma is also unstable in this model. However, there is strong motivation to

conjecture that this is indeed the case. The reason is that the ideal MHD

incompressible eigenfunction at marginal stability is also an exact eigenfunction of the

Vlasov-Fluid model. Then, once any plasma parameter, for example Q, is changed,

the presence of resonant particles strongly suggests that the resulting eigenvalue will

be complex. Changing 3 in the appropriate direction (presumably by increasing it)

should then produce a positive growth rate. Assuming the conjecture to be correct,

then the stability results as - 0 can be summarized as follows

6WVF = 6W(* MHD)41MHD) 6WMHDIMHD,1 MHD ) eTrgodiC systems
(3.153)

SWVF= 6,({ MH L HD )<; WMH MH LMD ) closed line systems
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In other words, the Vlasov-Fluid model, which applies to equilibria for which the

equilibrium ion distribution function only depends on the total energy, does not

exhibit any form of compressibility stabilization. The absence of compressibility

stabilization is likely to be more important for closed line configurations such as the

levitated dipole and the field reversed configuration which depend on this effect for

good plasma performance. For these geometries, our Vlasov-Fluid results motivate

further investigations in two different areas. First, it would be interesting to see if the

absence of compressibility stabilization for MHD modes persists for more general

equilibria than the ones allowed in the VF model, in particular equilibria in which the

ions are magnetically confined, instead of electrostatically confined. Second, we point

out. that the nonlinear effects may be very important since modifications to the

distribution function may lead to stabilization without the severe consequences

usually associated with ideal MHD. Even if so, it is still very worthwhile to

understand the predictions of linear stability as is contained in each of the models

under consideration.

3.11 Summary

We have derived a series of MHD stability comparison theorems corresponding to

different plasma physics models, varying from collisional to collisionless in their

physical content. Some of the results are generalizations and clarifications of existing

results. Other results involve the introduction of new models and the derivation of
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new comparison theorems. In general we have shown that it is necessary to

distinguish between ergodic systems and closed line systems. Also, cylindrical systems

must sometimes be distinguished from toroidal systems.

Below, we summarize in the form of four tables the results of our analysis.

Specifically, we present the comparison results for each energy relation valid in the

marginal stability limit 2 - 0. The first two tables correspond to ergodic systems

including closed line systems undergoing symmetry breaking perturbations, first for

models with fluid electrons, and then for models with kinetic electrons (except, of

course, for ideal MHD). The last two tables correspond to closed line systems

undergoing perturbations that maintain the closed line symmetry, once again first for

fluid electrons, and then for kinetic electrons (except for ideal MHD). In all tables

the entries are arranged in ascending order with the most conservative model

appearing first. The comparisons for ergodic systems are made against the reference

model corresponding to the ideal MHD potential energy for incompressible

displacements 6W 1 . For closed line systems the comparisons are made with respect to

the compressible ideal MHD potential energy SWMHD - 8W_ SWc. Note that the

comparisons between the CGL model and the Kinetic MHD model (and between the

CGL-Fluid MHD and Kinetic-Fluid MHD models) are not derived in this chapter,

but can be found in reference [22].
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Comparison Theorem

Ideal MHD 6WMHD -6W

Vlasov-Fluid 6WVF =WI

Two-Temperature MHD SWTT = 6W

6WKF =6WL cylindrical

Kinetic -Fluid MHD

6WKF > 6W toroidal

CGL-Fluid MHD 6WCF > 6WKF > 6W1

Table 3.1. Summary of comparison theorems for ergodic systems and for models with
fluid electrons.

Model Comparison Theorem

Ideal MHD 6WMHD = 6WL

6WKK = 6W cylindrical

Kinetic MHD
6WKK > 6W, toroidal

CGL 6 WCGL > 6WKK > 6WL

Table 3.2. Summary of comparison theorems for ergodic systems and for models with
kinetic electrons (except for ideal MHD).
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Comparison Theorem

Vlasov-Fluid 6WVF = 6W

Ideal MHD SW =6W +6WC
MHD L C

Two Temperature MHD 6W,, = SWMHD + SWC

SWKF > SWMHD cylindrical

Kinetic - Fluid MHD

SWKF > SWMHD toroidal

CGL-Fluid MHD 6WCF > 6WKF > SWMHD > SWVF

Table 3.3. Summary of comparison theorems for closed line systems and for models
with fluid electrons

Model Comparison Theorem

Ideal MHD SWMHD =8W± + WC

SWKK > 8WMHD cylindrical
Kinetic MHD

SWKK > SWMHD toroidal

CGL 6WCGL > 6WKK > 6WMHD

Table 3.4. Summary of comparison theorems for closed line systems and for models
with kinetic electrons (except for ideal MHD).

The overall conclusions are as follows. For ergodic systems stability boundaries are

accurately predicted by the ideal MHD energy principle for incompressible

displacements: 6WL = 0. The trapped particle compressibility stabilization arising in

the kinetic MHD model may be an artifact since the more accurate (in terms of gyro
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radius approximations) Vlasov-Fluid model also predicts marginal stability when

6W O0

For closed line systems, however, the usual statement that ideal MHD represents

the most conservative stability estimate even in collisionless plasmas does not hold in

every situation. While the statement is true for any equilibrium in the Kinetic MHD

models, it is incorrect in the Vlasov-Fluid model, which allows finite k, r , and

assumes that the ions are electrostatically confined in equilibrium. In this model

resonant particles moving with the perpendicular precession drift velocity eliminate

all compressibility stabilization effects so that the stability boundary is again given

by 6W =0.

The results presented here may be more important for closed line configurations

such as the levitated dipole and the field reversed configuration where compressibility

stabilization plays an important role in predicted plasma performance. Even so, it is

important to recognize the limitations of the VF result and of its experimental

relevance. First, in plasma equilibria of fusion interest, the ions are typically

magnetically confined, and not electrostatically confined as they are in VF equilibria.

Second, the comparisons theorems only apply to linear stability and the nonlinear

MHD behavior may not be catastrophic, particularly for modes driven by a small

class of resonant particles. These limitations should motivate further theoretical

studies in closed field line systems, with kinetic models allowing more general
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equilibria. If the vanishing of compressibility stabilization is confirmed in these

studies, it will be very interesting to look at the nonlinear behavior of the instability

responsible for the absence of plasma compressibility, in order to determine its

experimentally observable characteristics, and understand if it can lead to a major

loss of plasma confinement, as incompressible MHD instabilities tend to do in ergodic

systems.
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Chapter 4

The vanishing of MHD compressibility

stabilization: illustration in the hard-core Z-pinch

The energy relation (3.151) derived for the Vlasov-fluid (VF) model in

Chapter 3 suggests that in plasmas with electrostatically confined collisionless ions,

MHD compressibility stabilization vanishes in closed field line magnetic

configurations. Eq. (3.151) cannot be considered as a rigorous proof, however, since

the VF force operator is not self-adjoint, and we are not able to prove that marginal

stability in the VF model implies w2 = 0.

The purpose of Chapter 4 is to give a rigorous proof of the vanishing of

compressibility stabilization in a specific magnetic geometry: the hardcore Z-pinch.

Using the VF equations, we derive the eigenvalue differential equation for the m = 0

interchange mode, which is the compressible mode in ideal MHD. We will show that

this eigenvalue equation is very similar to the equivalent one in ideal MHD, and the

role of the resonant particles, which are absent in ideal MHD, appears clearly.

Solving this eigenvalue equation, we determine the VF stability boundaries for this
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particular geometry, compare them to the ideal MHD stability boundaries, and draw

new conclusions about MHD plasma compressibility.

There are two reasons why we choose to study the hard-core Z-pinch in

particular. First, the Z-pinch is perhaps the simplest closed field line magnetic

geometry one can think of. The equilibrium quantities only depend on the radial

variable, making the problem 1-D. This makes the comparison with the ideal MHD

results particularly easy.

The second reason is that the hard-core Z-pinch can be considered to be a

large aspect ratio approximation to the Levitated Dipole Experiment (LDX), an

innovative plasma confinement experiment jointly undertaken by the Massachusetts

Institute of Technology and Columbia University [1]. A large body of theoretical

studies (e.g. [2], [3], [4], [5], [6]) have successfully used the Z-pinch approximation to

improve our understanding of the levitated dipole. In fact, recent gyrokinetic

simulations [7] have shown that the transport properties of the plasma are both

qualitatively and quantitatively similar in a hard-core Z-pinch and ring-dipole

geometry, suggesting that the physics is very similar in both configurations. This is

what one would intuitively expect, since in a dipole, the trapped particles do not

have banana orbits, and do not have large departures from their flux surfaces, unlike

in tokamaks for instance.
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The structure of this chapter is as follows. In Section 4.1 we briefly present

LDX, and introduce the hard-core Z-pinch as its large aspect ratio approximation. In

the next section (Section 4.2), we focus on the mode of interest in the Z-pinch, the

only compressible mode in this geometry: the m = 0 interchange mode. We look into

the ideal MHD eigenvalue equation for this mode, and use this differential equation

to determine the stability picture of the mode in the ideal MHD model. In the last

section (Section 4.3), we derive the eigenvalue equation for that same mode in the VF

model, and solve it. Comparing the VF and the ideal MHD results, we are able to

understand the role of the resonant ions on plasma compressibility (or on the absence

it).

4.1 LDX and the hard-core Z-pinch

4.1.1 The Levitated Dipole experiment (LDX)

The motivation behind the Levitated Dipole experiment is the discovery,

starting in 1958 with the Van Allen radiation belts around the earth, of well-confined

plasmas within the magnetospheres of planets and other astrophysical objects.

Inspired by these observations, Akira Hasegawa suggested, in 1987, the idea of a

dipole fusion reactor, where the dipolar magnetic field would be produced by a single,

levitated current ring [8]. The design of the LDX is remarkably close to Hasegawa's

concept. The goal of the machine is to demonstrated the feasibility of the
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confinement of a stable, long-lasting plasma in a dipole field in a laboratory size

experiment.

The construction of the experiment was completed in 2004, and the first

plasma obtained in August of that year [9). For these first plasma experiments, the

central current ring was not levitated, but supported. This is not a desirable situation

from a fusion perspective. Indeed, when the plasma particles hit the supports, they

deposit their energy onto them, which heats them, and more importantly, cools the

plasma down. The first levitated experiments took place in the fall 2007, and several

successful experimental campaigns have been conducted since then [10]. When the

central coil is levitated, the LDX configuration is as shown in Fig. 4.1.

What are the possible advantages of a dipole configuration as compared to a

tokamak? The most fundamental and least controversial ones are related to the

toroidal current.

In tokamaks, the toroidal current has to be driven in the plasma. Since the

available methods for external non-inductive (i.e. steady-state) current drive are not

very efficient when converting power to current, one would like to rely as much as

possible on the naturally occurring transport driven current known as the 'bootstrap

current'. In principle, this current can indeed represent a very large fraction of the

total toroidal current in the plasma. However, the amount of bootstrap current is

highly dependent on the details of the pressure profile, and unfortunately, to achieve

a large enough fraction of bootstrap current for a favorable power balance for the
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tokamak as a fusion reactor, the required plasma pressure is such that MHD stability

limits are crossed if the wall surrounding the plasma is not perfectly conducting but

instead has a finite resistivity (as realistic walls do). These MHD instabilities which

are stabilized by a perfectly conducting wall surrounding the plasma but unstable for

resistive walls are known as resistive wall modes [11]. Their growth times tend to be

long (typically of the order of a few milliseconds), and on these slow time scales,

feedback stabilization may be possible [12]. Thus, ultimately, in a tokamak, achieving

steady-state operation with a favorable power balance involves the demonstration of

the feasibility of accurate profile control (for instance to optimize the bootstrap

fraction) and feedback stabilization. This remains to be done experimentally, and

raises physics issues which have not been fully understood yet, either theoretically or

experimentally. It certainly adds to the physics complexity of the tokamak concept.

In LDX, there is no such problem. The experiment is inherently steady-state, since

the magnetic field is due to the superconducting floating coil. Of course, levitating a

superconducting coil in a hot plasma in which nuclear reactions occur involves serious

engineering challenges, some of which will be mentioned later in this chapter. Still, as

compared to the tokamak, the LDX shifts the constraint of steady-state operation

from a physics issue to an engineering issue.

Furthermore, in the Levitated Dipole configuration, the toroidal current is

always perpendicular to the magnetic field lines: J = 0. According to ideal MHD

theory [13], it means that there is no drive for the external and internal kink
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instabilities, which are known to be responsible for violent disruptions in tokamaks.

One can therefore expect disruption-free operations in the LDX.

Fig. 4.1. Schematic of LDX showing a vertical cross-section of the experiment. In the
left half of the figure, the launcher-catcher is supporting the floating coil; on the right

half, it is removed: the floating coil is levitating.

The other advantages of the Levitated Dipole are more disputed. The first one

is associated with the transport properties of the dipole configuration. With the

magnetic field solely in the poloidal direction, the direction of the particles' drifts is
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entirely in the toroidal direction. This implies that trapped particles do not follow

banana orbits, or, to say it differently, that the bananas in a dipole configuration are

infinitely thin. Consequently, there are no neoclassical effects on transport in a dipole,

because there are no radial drifts off flux surfaces. This would indeed be an

advantage, if it were true that tokamak transport was well described by neo-classical

theory. However, we know that transport in a tokamak is largely dominated by what

is known as 'anomalous' transport, and one may expect that such is the case the

Levitated Dipole as well. And the question would then become: Is anomalous

transport in a dipole more favorable than in a tokamak? The answer is not clear, and

requires additional theoretical and experimental work.

The second argument in favor of the dipole is the ideal MHD prediction that a

plasma ) of the order / ~ 50% could be reached in stable operation, where 13 is

defined as the ratio of plasma pressure to magnetic pressure: = 2pop / B2 . This

value can be compared with the tokamak regime of stable operation: / - 5%. Thus,

according to ideal MHD theory, the comparison is very favorable for the dipole.

However, this result has to be taken with a grain of salt. As discussed in [11], the

instability setting the limit on the maximum # in a levitated dipole is the m = 0

interchange mode, a compressible mode. In Chapter 3, we showed that the ideal

MHD predictions may not be reliable for compressible modes when the plasma does

not behave as a fluid. One of the purposes of this chapter thus is to reevaluate the

theoretical / limit for the MHD interchange mode.
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Along with these possible advantages over the tokamak, which is the most

promising confinement concept, the dipole concept also comes with drawbacks which

have to be taken into account. The main challenge comes from the fact that the D-T

fusion reaction is not an acceptable choice for the Levitated Dipole. Indeed, this

reaction produces an energetic 14.1 MeV neutron which is not trapped magnetically,

and which can therefore penetrate the superconducting coil, heat it and damage it.

The coil would then surely lose its super conductivity. Unfortunately, the D-T

reaction is the fusion reaction which has by far the highest cross-section.

The next fusion reaction of interest, in decreasing order of the size of the cross-

section, is the D-3He reaction. This reaction has the advantage of producing an

energetic proton instead of a neutron, which is kept off the floating coil by the

magnetic field. However, it is not a valid option for a fusion reactor, since 'He is only

present in very small quantities on earth.

Thus, the only fusion reaction really acceptable for the Levitated Dipole

concept is the D-D reaction, which has a smaller cross-section than the D-3 He

reaction, much smaller than that of the D-T reaction. This is a serious drawback for

dipoles. It means that the energy confinement time in such a device has to be much

longer than in tokamaks. This remains to be proven experimentally.

Aside from this physics issue, there also is an engineering issue of the highest

importance: how to thermally insulate the inner core of the floating coil from the

surrounding hot plasma, so that the coil remains superconducting? The positive
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results obtained during the operation of the LDX [14] are promising, but it remains

to be seen whether they can be easily reproduced with the much hotter fusion grade

plasmas, and in a nuclear environment.

In conclusion of this discussion, the Levitated Dipole is an innovative concept

which may offer advantages as a fusion reactor as compared to the most promising

concept: the tokamak. However, it also comes with serious drawbacks. In order to

better assess the potential of the dipole configuration, we need to look in more detail

at each of the advantages one by one. One of the purposes of this chapter is to have a

closer look at one of the assumed strong points of the dipole, namely the ideal MHD

prediction that stable plasmas with a /3 an order of magnitude larger than typical

tokamak # limits may be confined in a Levitated Dipole. We will do so in a

simplified geometry, corresponding to the large aspect ratio limit of the Levitated

Dipole: the hard-core Z-pinch. We introduce this magnetic configuration in the next

section.

4.1.2 The hard-core Z-pinch

In a Levitated Dipole, the axisymmetry implies that the equilibrium quantities

are independent of C, the azimuthal coordinate. The equilibrium is essentially two-

dimensional. Theoretical studies in dipole configurations can be greatly simplified by

working in the very large aspect ratio, cylindrical limit. In this limit, the equilibrium
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becomes one-dimensional, and the magnetic configuration is known as the hard-core

Z-pinch (see Fig. 4.2).

r -,wall

plasma

C hardcore

Fig. 4.2. Vertical cross-section (i.e. at fixed z, where z is the coordinate along the
axis of the cylinder) of a hard-core Z-pinch. (Figure taken from [2])

The fact that in the hard-core Z-pinch the equilibrium quantities depend solely on r ,

the radial coordinate, greatly simplifies the calculations. The Z-pinch limit of the

dipole has therefore been used in a large number of theoretical studies (e.g. [2], [3],

[4], [5], [6]). Interestingly, numerical transport calculations in the dipole [7] have

given results which were both qualitatively and quantitatively similar to the same

calculations in a hard-core Z-pinch [6], suggesting that the latter indeed represents a

good approximation of the physics in a dipole, and that toroidal effects are not

crucial. In the rest of this chapter, we consequently focus on the hard-core Z-pinch

geometry for our study of the stability of MHD modes.
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According to ideal MHD stability theory [15], a simple Z-pinch without an

equilibrium flow is potentially unstable to two modes: the m = 1 helical mode, and

the m = 0 interchange mode (also known as the sausage instability). Here, m is the

number of oscillations of the mode along the magnetic field line (i.e. in the 0

direction). These two modes are illustrated in Fig. 4.3.

WEAKER 8

STRONGER B9

a)

SMALLER
B

0j

LARGER
B

b)

Fig. 4.3. a) Physical mechanism of the m = 1 instability in a pure Z-pinch. b)
Physical mechanism of the m = 0 instability in a pure Z-pinch. (Illustrations from

reference [13])
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Freidberg has shown in [11] that in the hard-core Z-pinch, the m =1 mode is

always stable when the m = 0 mode is stable, so that the ideal MHD stability limit

is set by the m = 0 mode. Moreover, the m - mode is incompressible, and does not

conserve the closed-line symmetry. As shown in the previous chapter, this implies

that the ideal MHD limit for the m =1 mode is more conservative than the limits

calculated with models which are more relevant in fusion grade plasmas. For these

two reasons, we only need to verify the reliability of the ideal MHD result for the

m = 0 mode. This mode indeed has the characteristics which make the ideal MHD

result suspicious: it is a compressible mode, which conserves the closed-line symmetry

(since the perturbation has no variation in the 0 direction, i.e. along the magnetic

field line).

In the next section (Section 4.2), we give a short review of the ideal MHD

stability picture for the m = 0 mode. This will facilitate the comparison with the

Vlasov-fluid calculation for the same mode, which we present in the last section of

the chapter (section 4.3).

4.2 Ideal MHD stability of the interchange mode in the hard-
core Z-pinch

In this section, we review the eigenvalue equation one obtains with the ideal

MHD model for the m = 0 interchange mode in a Z-pinch geometry. We then apply
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it to the particular case of the hard-core Z-pinch, with typical LDX density and

pressure profiles.

Starting from the full eigenmode equation for the general screw pinch and static

equilibria [16], setting m = 0 and B = 0, and taking the low 0 limit, it easy to find

the eigenvalue equation for the m 0 ideal MHD interchange mode in a Z-pinch:

w2  pr -r2pr2 - 2pK]- = 0 (4.1)
k dr dr r, r,

In eq. (4.1), r is the radial coordinate in the natural cylindrical coordinate system

associated with the Z-pinch geometry, p = p(r) is the ion mass density, p = p(r) is

r dpthe plasma pressure, and K(r) = r + 2-y is the Kadomtsev function [15] in the low
p dr

# limit, with 7 5 / 3 the ratio of specific heats. is the radial component of the

plasma displacement (, defined by = 8=N / at , where i is the plasma flow due to

the perturbation. In the derivation of eq. (4.1), the plasma displacement ( is Fourier

expanded in both space and time: ((r, t) = ((r)e,'(kz+me-wt). Thus, o is the (complex)

mode frequency, k1 is the wave number in the z-direction (the z axis being the axis of

the cylinder). It is well known [15] that if the pressure profile is such that the

Kadomtsev function becomes negative at some location in the plasma, the ideal MHD

interchange mode will be unstable. Ideal MHD stability thus sets a limit on the

acceptable pressure profiles in Z-pinch geometries; they must be such that the

pressure gradient at any point in the plasma satisfies the inequality
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r dp _10

< 27 = - (4.2)
p dr 3

We illustrate this requirement with the following example, inspired by LDX. A

simple choice for the pressure and density profiles that captures the essential physics

of the levitated dipole is given by

2 -2

p(r) 1+. K2 P(r) p max l 2] K](43
1+

C) C)

where r is the outer radius of the floating coil, and v/ is unspecified for the moment.

With these profiles, it is easy to see that the Kadomtsev function is a continuously

decreasing function of r. This is illustrated in Fig. 4.4, for the particular case v = 4.

Therefore, the minimum value of the Kadomtsev function over the whole plasma

profile will be reached on the outside, at large r. Taking the limit r -+ o, one easily

finds a condition on the exponent v for the pressure profile to be MHD stable.

Indeed, K(r) - 4 - 2v + 2-y, so the condition expressed in eq. (4.3) becomes

v <2+-=11/3~ 3.67.

This condition can be verified by solving the eigenvalue equation (4.1)

numerically. Using a shooting method, and the profiles introduced in eq. (4.3), we

solved eq. (4.1) for values of v ranging from 6 to 2. The reason we stop at v = 2 is

that this value corresponds to a flat, non-decaying pressure profile at large radii. The
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results are plotted in Figure 4.5, in which we show the normalized ideal MHD growth

rate w, / WMHD Vmax / Pmax WI as a function of v , for the case k r = 2.5. In the

simulations, we assumed that the wall facing the plasma was at a location r such

that r / r = 13, in agreement with the typical situation in LDX.

1

A 24 6 8 10 12
x = r/r

Hard core edge

Fig. 4.4. Profile of the Kadomtsev function for the typical LDX pressure profiles

given in eq. (4.3). Here v = 4. Note that the Kadomtsev function is a decreasing

function of radius.

The numerical simulation confirms our analytic result. In the ideal MHD model, the

pressure profile given in eq. (4.3) is stable to the m= 0 mode if v <11/3. This

range of allowable pressure profiles is due to the stabilizing role of MHD plasma
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compressibility, as the presence of 7y indicates in the criterion (4.2). This is the

standard situation with which the Vlasov-fluid results will be compared.

0.61

2.5 3 3.5 4 4.5 5 5.5 6
V

Fig. 4.5. Normalized ideal MHD growth rate w / WMHD pmax / m cr I

function of v as defined in eq. (4.3). k r = 2.5 and r / r = 13.

4.3 Vlasov-Fluid stability of the interchange mode in the hard-
core Z-pinch

4.3.1 Previous kinetic studies of the interchange mode in Z-pinch and point dipole
geometries

The construction of the LDX generated new interest in the stability of plasmas

in closed line magnetic geometries, and in particular in the Z-pinch and dipole

configurations. The weaknesses of the MHD model in such geometries (which we

188

0.5

0.4

3 0.3

0.2

0.1

as a



described in Chapter 3) being well known, the most recent stability studies used

kinetic descriptions of the plasma, and focused on the most unstable mode: the

interchange mode.

Simakov, Catto and Hastie used the gyrokinetic equations to study the

interchange mode in both a point dipole and a Z-pinch configuration, in a collisional

regime where the collision frequency is smaller than transit or bounce frequencies, but

larger than the mode, magnetic drift and diamagnetic frequencies, both in the

electrostatic limit [17], and allowing for electromagnetic perturbations [18]. They

found that the interchange mode had a different character in the high-frequency (i.e.

MHD) and low-frequency (i.e. drift wave) regime. In the high-frequency regime, the

mode has the same characteristics as the ideal MHD sausage mode, and Simakov et

al. obtained the same stability criterion as eq. (4.2). As the frequency of the mode

decreases, and as one gets closer and closer to ideal MHD marginal stability, there is

a coupling of this branch of the mode with the low-frequency branch, corresponding

to the entropy mode. And because of the entropy mode, ideal MHD stability criterion

can be violated: ideal MHD stable pressure gradients are found to be unstable.

Kesner and Hastie [19] also used the gyrokinetic equations to study the

interchange mode in a dipole geometry, in a more realistic collisionality regime for

the LDX experiment, corresponding to collisionless ions and collisional electrons (the

collision frequcncy being smaller than the transit and bounce frequencies, but larger

than the mode frequency, and the drift and diamagnetic frequencies). They did not
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consider the MHD branch of the interchange mode, and only focused on the low-

frequency entropy mode. The results they obtained were quantitatively different but

qualitatively similar to those obtained by Simakov et al. for a more collisional

plasma: the Kadomtsev criterion can be violated, and ideal MHD stable pressure

profiles are unstable because of the entropy mode.

Finally, Ricci, Rogers, Dorland, and Barnes [6] used the code GS2 [20], [21] to

solve the gyrokinetic system and evaluate the linear growth rates of the interchange

modes in a Z-pinch geometry. They considered various collisionality regimes,

including a regime in which both species are collisionless. The results are qualitatively

similar to those obtained by Simakov et al. [17], [18] and Kesner et al. [19]: the

entropy mode is unstable for pressure gradients which are lower than the marginal

stability of the ideal mode. Furthermore, their work showed that kinetic effects were

critical, since they found a stability threshold for the pressure gradient which is two

times lower than the threshold obtained from fluid theories.

Since virtually all the collisionality regimes of interest are considered in the

kinetic studies described in the previous paragraphs, one may wonder about the

usefulness of the VF calculation presented in the next section. There are three

different aspects to the answer.

First, remember that the goal of the VF analysis is to determine the reliability

of the ideal MHD model for the stability of fast, macroscopic modes, where the

plasma is tied to the magnetic field lines. In the gyrokinetic model and in the drift
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ordering of the entropy mode, the magnetic field lines are not 'frozen in'. The VF

calculation is the only calculation allowing us to study the role of kinetic effects and

resonant particles while still focusing entirely on MHD modes, since the electron fluid

is tied to the field lines in this model.

Second, as Kesner and Hastie [19] looked into the collisionality regime

corresponding to the LDX, with collisional electrons and collisionless ions, they

ignored the term in their dispersion relation for the interchange mode which

corresponds to the high frequency, MHD branch, in order to focus on the entropy

mode. With the VF model, we will be able to focus on the MHD branch of the

interchange mode in the collisionality regime of greatest interest for LDX.

Lastly, all the kinetic studies described previously investigated the local

behavior of the interchange mode, and effectively used the so-called local

approximation [6], which turns the global eigenvalue equation into a local algebraic

equation for the mode frequency w. As we will see, one of the advantages of the

calculation presented here is that one naturally obtains a global eigenvalue equation

for w , which can be directly compared with the ideal MHD eigenvalue equation, eq.

(4.1). The similarity between the ideal MHD and VF formulations facilitates the

interpretation of the VF results, and the identification of the role of the kinetic

effects. Additionally, by taking the local approximation of the VF global eigenvalue

equation, and comparing the local results with the global results, we can analyze the

potential differences between the two approaches.
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4.3.2 Vlasov-fluid stability analysis

We now derive the dispersion relation for the m = 0 interchange mode in the

VF model. As discussed in Chapter 3, the VF model is mostly appropriate for a

plasma with collisionless ions and collisional electrons. This is exactly the

collisionality regime of interest for the LDX [19].

Based on the general energy relation derived for the VF model in Section 3.10

of Chapter 3, we expect the stability criterion to differ from the ideal MHD criterion

because of wave-particle resonances in the collisionless ions. Therefore, we will give

particular attention to the plasma compressibility term and to the ion resonant

denominators.

We start with the general momentum equation for the VF plasma, obtained by

adding the ion and electron momentum equations together:

dv.
mn dz = JxB-Vp - V -P (4.4)

dt

In (4.4) m is the ion mass,v. is the ion fluid flow, defined by ny f uf du, and

P. is the ion pressure tensor, defined by P. = mf uuf du .f is the ion distribution

function, and u represents the total particle velocity. For the derivation, we consider

the same static equilibrium (v. = 0) as in Section 3.10 of Chapter 3. We repeat it

here for convenience:
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JO x BO = Vp0

PO = pio + Pe,0 with p, =

I 2

fM f du
3 '

and pe = Knri,

2

with E + ee,0 (r)
2

(4.5)

n =:ffodu---1 dp, 0
e d5

E0  -V$

In the remainder of the calculation, we will drop the 0 subscripts for the equilibrium

quantities, in order to simplify the notations. The momentum equation for the linear

perturbation about the static equilibrium (4.5) is then given by:

(4.6)

where the sign A refers to the linear perturbation of the quantity A.

We follow here the usual normal mode procedure, in which the perturbation A is

expanded as A(r,t)= A(r) e-,iwt with w is the complex mode frequency. As in

Chapter 3, we introduce the electron fluid displacement according to

V = -i4 + V e V4 - 4 -Vve . All the perturbed quantities can be expressed in terms

on , and equilibrium quantities only. In Chapter 3, we have already obtained

h, - -4_, -7n - n7 -4

p = -Vp, - 7,p,(V4

V x ( xB)

iw&xB-V~&
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and J is immediately calculated from B through Ampere's law. The last perturbed

quantity we need to express in terms of ( and the equilibrium quantities is f , the

ion perturbed distribution function, which we need in order to calculate j? and P.

Assuming that f(t = --oo) = 0 , and using eqs. (C.2), and (4.7), f can be rewritten

as, after some algebra

f=ef{ .

=f, e-E

E- Ie V -+iw
en

- Ve V. - +i Ufdt' mg
00

du -YP -
dt n

In eq. (4.8), the time integral is taken along the ions' orbits, and f = Of/ OE is the

partial derivative of the ion equilibrium distribution function with respect to the total

energy. Integrating the first term in the integrand by parts, we find

=: feg - E - eV- +im -u
n

(4.9)

with 9 iw f dt' iwm
00

-u - mu -(u -V ) - e e -
V. (4.10)

The first three terms in eq. (4.9) are fluid-like. Their contributions to V. and are

readily evaluated by using the following equalities:
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effudu d(ffudu)=0

em Jf uuJd u dp
emmf.fau=1 mS 1(4.11)

ef fnuudu d±(ffuidu) 0

In eq. (4.11), I is the identity matrix. Combining eqs. (4.6), (4.7), (4.9), (4.11), the

linearized momentum equation becomes

pw2= ix B+Jx5+V(.Vp)+m(iwf fudu-V.f fuudu) (4.12)

where we have introduced the quantity p = mn as in section 4.2. So far, we did not

choose any ordering, and did not have to make any approximations other than those

included in the equations for the electron fluid. Furthermore, eq. (4.12) is valid for

any 3-D geometry, and arbitrary 0.

We now evaluate this equation for the particular case of the m = 0 mode in a

hard-core Z-pinch. In the remainder of this section, all the quantities will therefore be

evaluated in the appropriate cylindrical coordinates (r,0,z). For the m = 0 mode, the

perturbed quantities have no dependence on 0. We Fourier expand them in the z

coordinate, so that a Fourier mode is written A = A(r)e" "' , as we have already

seen in section 4.2 for the ideal MHD case. Finally, we adopt the following ordering:

v T
W w'. L H - - < wO (4.13)

a
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In eq. (4.13), v =2T / m is the ion thermal velocity, and a is the typical radius

of the plasma. In the hard-core Z-pinch, the ion velocity is written as

u = u -e + u1 e + u e , where (e, e, e,) is the natural orthonormal basis of our

coordinate system, u, = u sin(owt + o) and u, = u. cos(W t + P)+ v C .

w = eB (r) / m is the ion cyclotron frequency, (p is the phase depending on the ion's

trajectory initial conditions, Vd = ExB/B2 - UI /2w VBxB/B 2 - u / LO wcxB/B

is the sum of th

curvature vector.

E x B, VB, and curvature drifts respectively,

Note that in a Z-pinch geometry, we have vd

and ic is the

v de,. The ion

trajectories are readily integrated:

r(t) = - I cos [w(t - to) + p]+ r(t0 )
W

(4.14)0(t) (tt)+0

z(t) = -sin[w(t - to) + p] + vd(t - to) + z(tO)

This is all the information we need to evaluate the trajectory integrals in the

quantities nV i kin = f 9fu du and P kin m §f un du. For the analytic evaluation of

these two quantities, we assume that k r kv 7 < 1, and only keep the terms to
C

lowest order in the parameter A = ku / W. After some long but mindless algebra,

we find, using the fact that w < w
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ny' = 0

P 0 0 P 0 0
2 (4.15)

P. =rmrW 0 P 0 0 P 0
1, kin || 1

0 OP 0 O P

with

+00+00 +00+00 2 2

PL + _L )ff f UL du2 1du + (b f ULu du2 du
o 0 4(w - kLv d) r + 0 5 2 (o - kvd) )

+oo +o 2
17 P + U 2

Se e 2fff - Udl

m n 0 2(w-kv)

+Do +00 2 2 + 1 rp0u4

H ± ik zff L 2 ( k 11J J2

o -00 I (L _vd' - 0 -00 I _ d 1 1

I -P +00)+00 U2 U
+! e ev. 4fff 1- d dulu

(4.16)

In eq. (4.16) and for the remainder of this section, the symbol Bw represents a

derivative of the quantity B with respect to r, is the component of the electron

displacement 4 in the r direction, and !5 its component in the z direction. Using

the low- /3 form of the magnetic drifts and eq. (4.5) we express klvd as follows:

kLvd I T (4.17)

The pressure gradient in (4.17) comes from the E x B drift term, which can be

written in this form by using the equilibrium relations (4.5). We now choose f to be
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Maxwellian: f =n,(m/27rT) exp(-mu 2 /2T). Note that while this choice may

seem natural, it has important implications on the type of equilibrium profiles which

can be considered in our analysis of the m = 0 in the hard-core Z-pinch. Remember

from eq. (4.5) that in the VF model, the equilibrium ion distribution function only

mu 2
depends on the energy, m +e#(r), and that the only space dependence in the

energy is in the electrostatic potential #. If the Maxwellian distribution function is to

satisfy this condition, T cannot depend on the space coordinates. In other words, by

choosing a Maxwellian distribution function to evaluate the velocity integrals, we

restrict ourselves to flat, isothermal equilibrium ion temperature profiles. One of the

advantages of the gyrokinetic approach [22] is that there is no such constraint on the

equilibrium Maxwellian distribution. The ion temperature can be a function of the

radial coordinate.

With our choice for the ion distribution function, and the normalizations

Is = UI / v, = u / v T, and Q =rww / (k v ), the kinetic contribution to the

pressure tensor is

P 0 0 P 0 0

P. -piQ 0 P 0 -YP Q 0 fP 0 (4.18)1 kin IIe e eli

0 0O 0 0 P

where
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+00 +0

( ' + ik 1 )
P 1

2

'4=

-2 -

UIC

u1

22

--2-2U 11 C

U1 -2
_ + 21+

2 2

+00+00

dudii. + 2 -f f

0 00

+00+00
du 2 d;F1 + 2ff

"1 0 000
rP

-2-2 2-2 'a 2e
-2I U 1

2
2

-2 12
11 2

+00+00

e f0 - oo

2 +00+00

o -00

2 - 2-2'Ule

- I - + ± r P2 2 p,

2 - -2-2 ~u 11eC

1

2
r p 1 1

Biglari et al. [23] presented a very convenient method for calculating all the velocity

integrals in the previous expressions. Defining
- 1

S -- rp1 / p and the function
2

F '1/2 f 2 -{ - 2 
F O(Q) = i7r- 2 dr f dEl dii exp -au -1 # ir - -2

P, P and P become
i- il e-L ell
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(+ + f
0 -oo

du 2 dai

I n '

dii2 dii1U

diT o

-2'LH (4.19)
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P = 2 Fii 3 a =1,/=

P F 20 2
| a/ a,3 a=1,#=1

V- + (2 02 F
1 ao a,0 a=1,0=1

+ 4a2F F', 
\ a a, a=1,3=1

-0 2F -
, a =1,0=1 /

-2a2 FCeo a, =, #= /

(4.20)
P =-F VeL #3 a,#3 a=1,=1

Nl

The advantage of this procedure is that Biglari et al. [23] have been able to evaluate

the function F _3 and its partial derivatives involved in eq. (4.20). They found

F
a L=1,#=1

=Y 2

(9 F
a a , 11

9 F13 a,# =1 =1

- 1
=1-QF - F

1,1 2 0 a,# a=1,3=1

+- FI - 2Q2Y+1
2 1'

02 F1 -2F + /F,
'3 a=1/3=1 a 2 ' 1/3-1 + 2F - 8Q 2Y +6

82 F- 1 F2
Oa/3 F - 1 -QO F ) -F F

a, a=13=1 / a,=1 =1,3 =1 4 ,3 a=1,#=1

Y(Q) = exp(- ) -i7ri/2 + f dzz-1/ 2 exp(z)]
0

-iF1/2 exp(-Q) 1 -1/2+ erf (iZ)

Note that our definition of Y is slightly different from the one given by Biglari et al.

[23]; the one proposed here was found to be slightly more convenient. Since we

evaluated all the components of the tensor P , we can now write down the radialzkin

dispersion relation for the m = 0 mode. The 0 component of eq. (4.12) is ( = 0 ,
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-20 F V. -Ce a,0 a1,3=1

=-2 Q



which is what we physically expect for the m = 0 mode. The z component of eq.

(4.12) can be written under the following form:

B53 =p'- P,
- V

k

(4.22)
r

Using this expression for B5 in the r component of eq. (4.12), we find, after some

algebra:

2 r3
- 2r2p + 2rp'(

P and P involve two components of the displacement (: ( and V . Fortunately,

for low- 0 plasmas, there exists a simple expression for V - in terms of (, which

greatly simplifies (4.23). We start by calculating Be, = V x ((Be, - (,Be ):

(4.24)=B -, B'- BV -

,BIn low-#3 plasmas, B' ~- and B ~ 0, so that
r

V -4 ~- 2( / r (4.25)

and with the expressions from eqs. (4.20) and (4.21), we finally find the following

eigenvalue equation for the m = 0 mode:
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k r P 22 -2rp'-4(Fp -1)1

with (4.26)

eQ =1e(QY2 _1)

F =0 QQy2 _g _ 1

We now clearly see the advantage of both not making the local approximation

at the beginning of the derivation as it is often done, and of following the moment

procedure presented here. Indeed, in this calculation the global eigenvalue equation

for the mode frequency w comes as the natural consequence of the projection of the

momentum equation on the three vectors of the basis (e,,e,,e) , and the very strong

similarity between the ideal MHD eigenvalue equation, eq. (4.1), and the VF

equation, eq. (4.26) allows for the direct comparison between the two models. This

similarity is even more explicit in the limit where the MHD mode is very unstable,

i.e. when Q > 1. In this limit, we have

2 1 1 7 1
Y- - + + (4.27)

Q Q Q

so that, when Q > 1, eq. (4.26) becomes

L2 r 3 - w2pr 2 -2rp'-4 +iepp+- + =0 (4.28)
k 2 r4
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Eq. (4.28) would be exactly identical to the ideal MHD equation (4.1) if the factor

7/4 multiplying p, was replaced by 5/3, and if we assumed p, = p, = p / 2. We

obtained 7/4 instead of 5/3 because the ions are collisionless instead of being collision

dominated as in ideal MHD. In fact, it is easy to show [24] that eq. (4.28) is the

eigenvalue equation one would obtain for the m = 0 mode in a Z-pinch in a hybrid

model where the electron pressure is given by the MHD equation of state, and the ion

pressure by the Chew-Golberger-Low double adiabatic equations of state [25].

By comparing eq. (4.1) and eq. (4.26), we can identify the role of the kinetic

effects associated with the ion drift resonance on MHD plasma compressibility. While

the functions F and Fe containing these kinetic effects, are almost purely real when

the MHD mode is very unstable, their imaginary parts become more and more

important as the MHD growth rate decreases, and as one nears ideal MHD marginal

stability. And because of the imaginary parts of Fi and r,, the interchange

instability persists beyond the ideal MHD limit for the equilibria under consideration

in the VF model, in which the ions are electrostatically confined. In the next section,

we show that kinetic effects are indeed responsible for the vanishing of MHD

compressibility stabilization by numerically solving eq. (4.26).

4.3.3 The vanishing of MHD compressibility stabilization: a numerical example

In order to demonstrate the role of the kinetic effects in the persistence of the

interchange instability beyond the ideal MHD limit, and the vanishing of
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compressibility stabilization, we solve eq. (4.26) numerically, using a shooting

method.

Unfortunately, we cannot directly use the model density and pressure profiles

which we used in the ideal MHD case (eq. (4.3)) to solve eq. (4.26). The difficulty

comes from our choice of a Maxwellian distribution function for the ions (which was

solely motivated by our desire to calculate the velocity integrals analytically, and is

not a requirement of the VF model), and from the special form of the electron

equation of state. First, as we already discussed, by choosing to calculate the velocity

integrals using a Maxwellian distribution function, we restricted our analysis to

isothermal equilibrium profiles for the ion temperature: T = cst in the plasma. Since

p, = nT, this means that the density and pressure profiles are now correlated, unlike

the profiles in eq. (4.3). In ideal MHD, the details of the density profile have little

impact on the stability picture, which almost entirely depends on the details of the

pressure profile, as we have shown in Section 4.2. For this reason, for our numerical

example we choose to solve eq. (4.26) for model pressure profiles in eq. (4.3), which

we repeat here for convenience:

2 2

p(r) p lmax(- 2 Jv (4.29)
,max 4 y th 2r'lt 2

c ,

and we let the density profiles be given by the relation
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n - p, / T (4.30)

with T, the ion temperature, a simple normalizing constant.

The second difficulty comes from the fact that the equilibrium electron

pressure is given by the electron equation of state: p, = Kn , K being a normalizing

constant. Now, with n given by n = p, / T as discussed in the previous paragraph,

and -, = 5 / 3, we obtain very steep electron pressure profiles, which are always ideal

MHD unstable. This is clearly not a regime of interest to us, since we would like to

focus on the region where MHD plasma compressibility stabilizes the ideal mode. For

this reason, we consider only cold electrons in our numerical example, with the

equation of state given by:

T =0 (4.31)

Eqs. (4.30) and (4.31) clearly limit the experimental relevance of the VF

results as far as the LDX is concerned. Indeed, in the LDX, the equilibrium ion

temperature is not a constant across the plasma, and electrons tend to have a higher

equilibrium temperature than ions. Therefore, the numerical results we present below

are not a theoretical prediction of the stability limits in the LDX, and should not be

seen as such. Instead, they are an illustration in a practical case of the limitations of

the ideal MHD model, and of the role of resonant particles on MHD modes in

collisionless plasmas. Our focus thus is mostly theoretical: we highlight some of the

flaws of ideal MHD in fusion grade plasmas with a model which has its own
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limitations, and with special equilibrium profiles which make the mathematical

analysis more tractable.

Once the density and pressure profiles are chosen, we can readily solve eq. (4.26)

using a shooting method, as in the ideal MHD case. In Figure 4.6, we show the

normalized growth rate w, / WMHD of the Vlasov-Fluid interchange mode as a function

of V , and, for comparison, the normalized ideal MHD growth rate, which we obtained

with the same profiles. For this numerical calculation, we had k=rL 0.1, kr = 5

and r /r = 13.

We can draw two important conclusions from our numerical calculations.

First, we proved that it is crucial, in plasmas in which the ions are essentially

collisionless, to properly treat the ion kinetic effects. As exemplified in Fig. 4.6, when

the ion resonance w - kLvd is taken into account in the calculation, the m = 0

instability in a hard-core Z-pinch persists well beyond the ideal MHD stability limit.

For the equilibria which we considered, in which the ions are electrostatically

confined, the mode is only stable for v < 2, i.e. for non-decaying pressure profiles:

there is no plasma compressibility stabilization! Since the hard-core Z-pinch

represents the large aspect ratio limit of the levitated dipole, and since the physics of

the ion wave-particle resonance is not fundamentally different in both configurations,

we expect this result to hold for the same equilibria in the dipole geometry. As an
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extension to this work, it may be interesting to verify this hypothesis, and derive the

equivalent of the dispersion relation (4.26) in the dipole geometry.

0.9

0.8

0.7

3

0.1

2.5 3 3.5 4 4.5 5 5.5
V

6

Fig. 4.6. Normalized Vlasov-fluid and ideal MHD growth rates

WI / WMHD - Pmax PmaxrW1 of the interchange mode as a function of v as defined in

eq. (4.3). krL = 0.1, k r = 5 and r / r = 13.

More importantly, it would be interesting to look at the nonlinear evolution of

the instability, and to investigate the behavior and the characteristics of the

instability in its fully developed stage. Indeed, in its ideal MHD stable regime, the

interchange instability is driven by a rather small class of resonant ions. It is not
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clear whether such an instability can lead to the same kind of dramatic loss of plasma

confinement, as purely fluid MHD instability tend to do.

Note that for k rL «1 and kr -1, the growth rate of the instability is

small, as can be seen in Fig. 4.6. This is to be expected, since for small k1 , the wave

particle resonance w - klvd only affects ions with very large velocities. When the ion

distribution function is a Maxwellian, the ions with such velocities only represent a

small fraction of the whole ion population.

As k1 gets larger, however, the wave-particle resonance affects a larger

fraction of the ion population, and we expect the growth rate of the instability to be

larger. This is confirmed by the results shown in Fig. 4.7, in which we plot the VF

growth rate as a function of P for two different values of k_: krL = 0.1 and

k=rL 0.2 (with all the other quantities fixed: r = 13 and r / rL 50). We see

that the growth rate of the instability is indeed larger for the larger k1 .

It is well-known (e.g. [11]) that the largest growth rates of the ideal MHD

interchange mode are found for large k1 , such that ka > 1. Thus, one would expect

the kinetic effects observed in Fig. 4.6 to become very important in this limit, and

the growth rate of the instability to be of the same order as the ideal MHD growth

rate, even in the ideal MHD stable region. Unfortunately, we have not been able to

verify this hypothesis, and did not explore the VF interchange instability in this
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regime, for two reasons. First, eq. (4.26) is only valid in the regime krL <1, since

we have only kept the terms to lowest order in k r . To go into the regime k r ~ 1,

we would need to include a lot more terms in the derivation of eq. (4.26). For

example, we have ignored the off-diagonal elements of the ion pressure tensor, which

become important as one approaches k r~ 1.

The second reason is numerical: it is extremely hard obtain proper convergence

beyond kjr ~ 10 with the shooting method we use to solve eq. (4.26).

I

0.I

2

.. VF, k r =01

..... VF, k r =0.2

2.5 3 3.5 4 4.5 5 5.5 6
V

Fig. 4.7. Normalized Vlasov-fluid growth rate of the interchange instability as a

function of v as defined in eq. (4.3) and as a function of the perpendicular wave

number kj. (r / r = 13 and r / r =50).
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The second point of interest in our numerical example is that at the stability

boundary, w, = 0, v = 2 , p'(r - 00) = 0, we also obtained wR = 0 in our numerical

calculation. In other words, the marginal stability condition is w2 = 0, or, according

to the general energy relation (3.151) in Chapter 3, W1 = 0. Thus, for equilibria such

that the ion distribution function is only a function of the total energy, f = f (),

marginal stability is indeed inherently incompressible in a closed-line system such as

the hard-core Z-pinch, and the conjecture which we proposed for general 3-D

geometries in Section 3.10 of Chapter 3 is verified in this particular example. This

gives us confidence that our conjecture may be true in any closed-line system.

4.3.4 Local approximation vs. global eigenvalue equation

When the perpendicular wave number k is such that k «r<1 < < kr (as in

the numerical examples in the previous section for instance), the second term in eq.

(4.26) is much larger than the first term, so that the latter can be neglected. With

this approximation, known as the local approximation, eq. (4.26) becomes

L
2 pr 2 - 2rp' - 4 (F p + Fp) = 0 (4.32)

Eq. (4.32) is fundamentally different from eq. (4.26). In eq. (4.26), O is the

eigenvalue associated with the eigenfunction (, and does therefore not depend on the

radial coordinate r. In eq. (4.32), however, o is the solution of an algebraic

equation, which depends on the radial location r, and on the local values of p' (r),
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pe (7 p (r), and p (r). What is usually done, once the local approximation leading to

(4.32) is made, is to look at a given location r in the plasma, and to consider p' (7),

pe (7I p (r), and p (r) as parameters, which one can freely vary to determine the

stability boundaries from (4.32). These inputs can indeed take any value locally, since

one does not need to make them agree with global profiles in eq. (4.32), the equation

being local itself.

In order to compare the results from the local approximation with those

obtained with the eigenvalue equation (4.26), we solved eq. (4.32) for the case we

considered in the previous section: isothermal equilibrium for the ions, T = cst, and

zero temperature electrons, p r)= 0, p'(r)= p r). The results are shown in Figure

4.8, for k 0.1. In the local approximation, the growth rate is normalized by

WMHD = v / r , where r is the generic location at which we solve eq. (4.32). Note

that since in the local approximation we do not consider global profiles, it would be

1 rp
more natural to plot the growth rate versus -rp' / p, instead of v = 2 2 ' . This is

2 p

indeed what is generally done. Nevertheless, we chose to plot our curves versus v to

facilitate the comparison with the previous figures.
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Fig. 4.8. Normalized Vlasov-fluid and ideal MHD growth rates of the interchange

11.5

instability in the local approximation as a function of v = 2 - Iri. (k r o.1).

'-4T

2 p

Comparing Fig. 4.6 and Fig. 4.8, we see that in the ideal MHD unstable regime, the

local and global VF growth rates have the same qualitative behavior. However, this

not remain the case in the ideal MHD stable regime. While in the global case, the

instability persists all the way to v = 2 because of the ion resonant effects, in the

local case the VF interchange mode is stable for v < 3.3 (the exact boundary depends

on the value of k_ rL) In other words, the resonant particle effects are not entirely

captured in the local approximation. The reason for the discrepancy is that the

resonance condition,

212



2 rw p rw 2
1 kLV2. rp' kLV2,_ (4.33)

which requires that

W - k v 0 (4.34)

2 r p

depends on the details of the equilibrium profiles in two different ways. The first way

these details enter in (4.34) is explicit, namely through the quantity rp' / p,, which

varies across the plasma. The second way it enters is somewhat more implicit: when

we solve the global eigenvalue equation, the value of w also depends on the details of

the equilibrium profiles. For instance, when we solve the global ideal MHD global

eigenvalue equation, the growth rate in the ideal MHD unstable regime is smaller

than that from the local approximation, because in the global calculation, there are

parts of the pressure profile which are not as steep, and therefore not ideal MHD

unstable.

The discrepancy between the global and the local approaches within the VF

model suggests that it may be interesting to go beyond the local approximation when

a kinetic equation other than the VF equation is used to study the stability properties

of Z-pinches and levitated dipoles. To further motivate the need for global kinetic

studies, we show that in the limit k r <1, the VF and gyrokinetic local

approximations agree.
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For this comparison, we consider a more standard case for the VF equilibrium:

p p = p / 2, T = T T, T' = 0, p' ='p. Electrons can now have a finite

temperature without causing difficulties because the analysis is local, and we do not

have to worry about the consistency of the global profiles.

We obtain the gyrokinetic equivalent of the VF equation by following the

derivation by Kesner and Hastie [19] for collisionless ions and collisional electrons,

with two modifications: 1) we consider the hard-core Z-pinch geometry instead of a

dipole configuration 2) we keep the Finite Larmor Radius (FLR) terms which are

responsible for the MHD mode (Kesner and Hastie neglect them, as they focus on the

entropy mode). In order to compare identical equilibria, we choose 2, = 0 and

77e =7e -1, where for both species rj is defined by j= dlnT /dlnn. In these

conditions, the gyrokinetic analysis leads to the following local dispersion relation:

Q2 _Q i

2 p,
2- Q+ 1rp' F(Q)

2 p.,

k2 r2

+ 2LOF (Q) -
2 '

7 1 rP j - -1 7
3J 2 p, 3~e

Q2 ±+Q10 5
3 3

We solve eq. (4.32) and eq. (4.35), and plot the interchange growth rate in each

model as a function of v = 2 1 rp'. The results are illustrated in Figure 4.9, for
2 p

k r = 0.05. They confirm the agreement between the local VF and gyrokinetic

equations in the limit k r < 1.
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Fig. 4.9. Normalized Vlasov-fluid, gyrokinetics and ideal MHD growth rates of the

1 rp
interchange instability in the local approximation as a function of v = 2 - .

2 p

(k r = 0.05 ).

4.4 Conclusion

We have demonstrated rigorously, in the hard-core Z-pinch geometry, the

result which we had conjectured for general 3-D geometries in Chapter 3: even in a

closed field line system, the stability boundary in the Vlasov-Fluid model is given by

the incompressible condition 8WI = 0. We found that the m = 0 interchange

instability, which is stabilized by plasma compressibility in the ideal MHD model,

persists beyond the ideal MHD stability limit in the VF model. The absence of
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plasma compressibility in the VF model is due to the wave-particle resonance

associated with the perpendicular precession drift motion of the ions (i.e. the E x B

drift and magnetic drifts). Consequently, the Vlasov-Fluid interchange mode, which

is associated with equilibria for which the ion equilibrium distribution function only

depends on the total energy, is only stable for pressure profiles which do not decay.

Such profiles do not correspond to confined equilibria.

Since the hard-core Z-pinch represents the large aspect ratio limit of the

levitated dipole, we expect that a similar calculation with the VF model, for the same

class of allowable equilibria, in which the ions are electrostatically confined, would

find that the VF interchange instability also persists beyond the ideal MHD limit in

the dipole geometry.

In order to know if an instability of this nature could be observed in the LDX,

and if the possible absence of plasma compressibility could negatively affect the

behavior of the plasma in the experiment, further theoretical investigation is

necessary, in two directions.

First, the role of resonant particles on the interchange mode has to be studied

with models which describe more general ion distribution functions than the VF

model, such as a gyrokinetics model for instance. With such models, equilibria which

are experimentally relevant to LDX could be considered, in particular equilibria in

which the ions are magnetically confined. As Section 4.3.4 shows, however, it will be
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crucial in these new kinetic calculations to look at the global behavior of the

interchange mode. Indeed, with the VF model, the persistence of the instability for

any decaying pressure profile was observed by solving the global eigenvalue equation,

but not found in the solution of the local approximation of this eigenvalue equation.

Finally, it is important to keep in mind that in all our discussions, we were

only concerned with the question of linear stability. As an extension of our work, it

would be interesting to look into the nonlinear evolution of the VF interchange

instability (or its equivalent in a more experimentally relevant kinetic model), in

order to better understand its behavior and its characteristics (thereby facilitating its

experimental observation), and to determine if it can lead to catastrophic MHD

behavior, and the loss of plasma confinement.
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Chapter 5

Summary and Conclusions

In the first part of this thesis, we presented new analytic solutions of the

Grad-Shafranov equation with source functions which are linear in the flux function

T and with source functions which are quadratic in IF. These solutions have several

degrees of freedom, in the form of free constants which are to be determined from the

boundary constraints on the plasma surface. Depending on the choice of the

boundary constraints, our solutions can be used to calculate equilibria in standard

tokamaks and spherical tokamaks, with or without up-down asymmetry, for plasma

surfaces which can be smooth or have divertor X-points, and for arbitrary aspect

ratio, elongation, and triangularity.

In the case of source functions which are linear in T , the so-called Solov'ev

case, the same solutions can even be used to calculate spheromak and FRC equilibria.

The more complex solutions obtained for source functions which are quadratic in T

are more realistic, but do not always converge for the extreme geometric parameters

associated with spheromaks and FRCs (very large inverse aspect ratio for

spheromaks, and very large elongation for FRCs).
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Importantly, the versatility of our solutions does not come at the expense of

computational complexity. Indeed, the determination of the free constants only

involves the numerical resolution of a system of at most 13 algebraic equations, and

most of the constants appear linearly in the solutions, as multiplying coefficients. In

the worst case, only two constants appear nonlinearly in the system of equations.

This is a trivial computational problem, which is easily solved with any built-in root

solver.

In the second part of this thesis, we showed with the Vlasov-Fluid model that

in both ergodic and closed field line magnetic geometries, the marginal stability

condition for MHD modes in plasmas with electrostatically confined collisionless ions

is given by 6W, = 0, where 6W, is the ideal MHD potential energy associated with

incompressible displacements. This condition is exactly identical to the ideal MHD

condition for marginal stability in ergodic systems. In other words, in ergodic

systems, ideal MHD linear stability theory accurately predicts the behavior of

macroscopic modes. Given the relative simplicity of the ideal MHD model as

compared to the models constructed to describe collisionless plasmas, this result

speaks in favor of the continued use of ideal MHD for the study of large scale modes

and instabilities in such configurations as the tokamaks and spherical tokamaks.

In closed line systems, the VF result means that the ideal MHD marginal

stability criterion can be inaccurate and optimistic, since it predicts extra stability
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coming from plasma compressibility, which is entirely absent in the Vlasov-Fluid

criterion. Both criteria can be directly compared because the VF criterion is derived

assuming that the ion equilibrium distribution function only depends on the total

energy, so that the ions are in static equilibrium, as in ideal MHD. The absence of

plasma compressibility in the VF equilibria, which describe electrostatically confined

ions, is associated with ion kinetic effects perpendicular to the magnetic field lines,

and is noteworthy for two reasons. First, it may affect the plasma performance in

closed line configurations such as the levitated dipole, which explicitly rely on plasma

compressibility by design. Second, from a theoretical point of view, it highlights the

fact that drift resonances play a crucial role, which implies that kinetic models only

allowing resonances parallel to the magnetic field lines, such as kinetic MHD, give an

incomplete picture of MHD stability.

Our Vlasov-Fluid study of the hard-core Z-pinch, a closed line configuration,

confirmed these results, which we had first derived for general 3-D geometries. While

in ideal MHD plasma compressibility stabilizes the interchange mode, allowing stable

and well confined equilibria with steep pressure profiles, in the Vlasov-Fluid model,

which applies to equilibria with electrostatically confined ions, the interchange

instability persists for any decaying pressure profile. When the wavelength of the

mode is large, kIrL <1, the growth rate of the instability in the ideal MHD stable

regime is exponentially small. However, the growth rate increases with increasing k1 ,
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and for k r, ~1, it may be comparable with the ideal MHD growth rate, even in the

ideal MHD stable regime. Since interchange modes typically have short wavelengths,

this instability may be observed in closed line confinement experiments, provided

that the plasma is hot enough for the ions to be collisionless, and that the ions are in

electrostatic equilibrium. It would therefore be interesting to study the nonlinear,

fully developed stage of the instability, in order to better characterize it, and

facilitate its experimental identification.

Ideally, such a nonlinear study would be performed using the gyrokinetic

equation, and gyrokinetic codes, since the gyrokinetic model allows for plasma

equilibria which are more general than the Vlasov-Fluid equilibria, and contains more

physics than the VF model (which explains its relative complexity). However, a word

of caution is necessary. When we make the same local approximation in the Vlasov-

Fluid model as is usually made in kinetic calculations, the linear stability picture we

find is qualitatively different from the picture obtained without the approximation.

Specifically, in the local approximation, the wave-particle resonances are not

accurately captured, and extra regions of stability are found. Thus, our results seem

to call for a non-local gyrokinetic study of the stability properties of the LDX. As far

as we know, this remains to be done.
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Appendix A

Kinetic MHD Energy Relation

In this appendix, we rederive and extend the Kinetic MHD stability results derived in

references [16], [20], [21], [22], [23] of Chapter 3.

General formulation

The desired energy relation is formulated in terms of the familiar perturbed fluid

displacement 4 defined by -V =8 / &t = -iWo. The analysis is carried out by (1)

linearizing the momentum equation, (2) solving for the perturbed kinetic MHD

distribution function, (3) forming an energy integral, and (4) rewriting the energy

integral in a form from which it is possible to deduce a comparison theorem.

0 The linearized momentum equation

The linearized form of the momentum equation is straightforward to derive from

eq. (3.45), and is given by

-W2p4 = J x 5 + j x B

where Z

zv15J (A.1)

indicates a sum over the two species, and for each species
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V-P - V +±(filP j r, +±b B -V '1PPI I (A.2)

* The perturbed distribution function

Consider next the perturbed distribution function which satisfies the linearized

form of the kinetic MHD equation (eqs. (3.124) and (3.125)).

-iWf+w b-Vf -iw 1 .Vf+w bVf+ Of
- = 0

B9E
(A.3)

Remember that w is the random component of particle velocity while v = v(r, t) is

the macroscopic plasma velocity (which consists of the parallel flow and the E x B

drift). Also, the velocity variables used in the Kinetic MHD equation are E and yp,

mws
defined by e = and y =

2

the total time derivative

mw2
2B . Eq. (A.3) is simplified as follows.
2B

First, note that

along the unperturbed orbit for any

g(r, E, yI, t) = (r, , p) exp(-iwt) is defined by

d t + w b-V g= -i)+ wY -V g
dt Ot|

quantity

(A.4)

Second, using the linearized form of Faraday's law it can easily be shown that

b -V@ = b -V(V4' -(j . Third, the linearized quantity E can be written as

= E+ z m -zwI

2

+ I w,] (b -& .i~)
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Now, keeping in mind that that the basic velocity variables are E, p it follows that

S(w / 2B) b -VB. Thus, after grouping all the

(9 terms together, we can rewrite eq. (A.5) as

~ ~ d d
1--1w + - iomw9( +iom

2W
_L V

2

'2

- !+ L -2 I ) (A.6)

The last step is to introduce scalar and vector potentials into the expression for E

5ll = -b - V<~0 + iw. Combining the results from all of these sub-steps leads to the

following equation for f .

+ Of
( -Vf~iwmE

SOf.
- Oq5 I+q# +

The desired expression for f is obtained by integrating along the unperturbed orbits

assuming that Im(w) > 0,

f(r,E,Pit)= F + K

fF -4 Vf - iwMW

KOff-2W

Of
9Eg

~Of+ q#- 9 (A.8)

where

- q(w 1 -A) +
2 

2

2 ( n m -
2 2
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dt

2

(A.7)
Of 0
B9E

w2 ( ,) dt' (A.9)

dwe / dt =- td (2/ mn)(E - pB)1/ / di

2

+m M !L
2

w 2 r-)



represent the fluidfF and fK

respectively.

* The energy integral

To begin, observe that the fluid contributions to the density and pressure are

given by

f fdw~ - 7n

PFI- f 2 fFdw -VP

P1f mw 1,fFdw =-4- . Vp

We now derive an energy relation by forming the dot product of eq. (A. 1) with

and integrating over the plasma volume.

w2K = 6 WI + Qkk

K, = p 2 dr

6WL -f * -(I x B + J x 5 V
(A.11)

-)()(- .X7p)]dr

6Qkk =-L [ KLV L+ (fKL PK|) L,)1dr

where p(@) = p,() + p,(0) and we have used a simple integration by parts to obtain

the terms containing V -*_. The quantity 6W represents the ideal MHD potential

(A.10)

energy for incompressible displacements while 6Qkk is the kinetic contribution in

which every term contains the trajectory integral 9. To keep the analysis relatively
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concise we focus on internal modes which simplifies the boundary conditions although

it is straightforward to generalize the results to include external modes.

The task now is to simplify the expression for 6Qk in order to be able to deduce

an MHD comparison theorem. We begin by substituting for the definitions of PK

and PKII in 6Qk.

Q =iZ f -+-) 2-dwdr (A.12)6Q2 2 8

To proceed further we must at this point distinguish between the two different

classes of magnetic geometry of interest: (1) either ergodic systems or closed line

systems undergoing symmetry breaking perturbations and (2) closed line systems

undergoing perturbations that maintain the closed line symmetry. The reason for the

separation is that for case (1) the ideal MHD potential energy at marginal stability

corresponds to incompressible displacements. This makes it relatively straightforward

to deduce a stability comparison theorem since all that is needed is a determination

of the sign of 6QU . For case (2) however, ideal MHD at marginal stability includes a

stabilizing contribution from the plasma compressibility. In this case we must work

considerably harder to estimate the magnitude as well as the sign of 8 Qkk to deduce

the stability comparison theorem.
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. Case (1) Ergodic systems

We proceed by adding and subtracting the quantity

integrand in 6 Q,, in eq. (A.12), recognizing that

ds* %,* + w b -V§*
dt

2 2
-mm 1 , _mm

The expression for 6 Qkk reduces to

=k iwZ f dt - q(w
3 dt

~ Of
q$) ed d (A. 14)

The term containing 1 vanishes because of the definition of the random velocity:

I wf dw = 0. To see this, examine the parallel component of this relation and make

use of eq. (A.8). The linearized form for each species simplifies to

0 = qf wjdw=iw qlf emw 1r Odw +qfw4 i dw

(A.15)
- iw -qn 1 + qf w1. 2- dw

OE

Invoking charge neutrality then leads to the desired conclusion

q> w19 L dw

Equation (A.14) now can be written as
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(A.13)
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= (1e (n, - n') 0 (A.16)



6Qkk iw f ddt
(A.17)+q* 1 g9Edwdr

De

In a similar way we can simplify the term containing q* by making use of the

charge neutrality condition. We again make use of eq. (A.8) to calculate the

perturbed density for each species.

=- - -V - n - s dw
TBe

4- -- f dw
T n aE

(A.18)

Here T has the dimensions of temperature and is indeed equal to the temperature for

a Maxwellian distribution function. We now set q,5, + qii = 0 which yields the

following relation.

- iw* TTf
<i e f q "dw

e2n T +Te
(A.19)

To derive the comparison theorem we substitute the expression for * in terms of

the trajectory integrals from eq. (A.19) into eq. (A.17). A short calculation leads to a

somewhat complicated expression given by

6Q 6Q1 + 6Q2 + Q3

- f dwdr
401 E gi,0I

±iZ f wj, b Bf'f >~dw dr
(9E

2

2 f 2

4 ,3Oef

(A.20)

- ^

e n(T +T)
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The middle term can be simplified by writing = , + isi and expressing the velocity

integral explicitly in terms of e, y

6Q2 = 27riw f V {r 2 ]B dEdp dr

(A.21)

+27rwZ f [,(b- Vs.)-b - V, 2 dedyi dr
m JE

The first term vanishes by virtue of the divergence theorem when integrating over

the plasma volume while the second term is of the form wR where R is a real

quantity. Thus, 6Q2 = wR.

The terms in the sum 6Q1 + 6Q3 can also be simplified by a simple algebraic

rearrangement. This leads to a convenient form for 6Qk that can be written as

6Qkk wR +6W

2
If2 fdr f2 9f fW

6Wkkn e fe aE fI iE0e

2fdr of f 2f 1f (A.22)
fn e aEe aEe

2
L02 f dr - of +f
n(T+T 'f ' e e,IU e

Clearly 6W is real, and by Schwarz's inequality satisfies 6 Wk > 0.

The last step in the analysis is to combine the results leading to the following

expression for the energy integral.

w2K1 = 6W+Wk +wR (A.23)
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Observe that K1 , 8W1 , 6W,,, and R are all real quantities. We now write

U = w, + iw and set the real and imaginary parts of Eq. (A.23) to zero. The

imaginary part yields an expression for R.

R = 2w,Ki (A.24)

This is substituted into the real part leading to

Iw2  6W + Wkk (A.25)
K1

Equation (A.25) is the desired form of the energy relation used in the main body of

the text.

* Case (2) Closed line systems

Consider now the case of a closed line configuration undergoing a perturbation

that maintains the closed line symmetry. We begin by writing down several

coordinate transformations that appear frequently in the analysis. First, we focus on

the integration over velocity space converting from w -> E, yp.

f g(r, w-,, w,)dw 27rf ".w_ dw "f dw g

21/2,rB oo E|B d 1 + g (A.26)

ms3/2 f0 def (E- pB)1/2 (g++g_

where g, = g(r,w ,+ I ).

The next transformation involves integration over the combined physical space,

velocity space. This can be conveniently carried out by writing the magnetic field in

Clebsch coordinates B = V@ x VX and choosing the third coordinates as I the arc
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length along a magnetic field line. Noting that dr = d4dxdl / B we find after a short

calculation

f g(r, wdr dw = 2 fd dxdcfdlfd -e/E dY (gB + g)
W-L 3/2fo ( -[tB) 112

2 1
/27 f d dXdEf lnu dttf 2 dl

S 3/2 d - B) 11 2
(+ +g)

(A.27)

In the first form L = L(V, x) is the length of a given magnetic line and it is assumed

that 1 = 0 corresponds to the location of the field maximum: B(l = 0) = B . In the

second form we have switched the order of the I and y integrations. Here Bemi is the

minimum value of the field and 11, 12 are the beginning and end points of the orbit.

The values depend on whether the particle is passing or trapped. Specifically, 1, = 0

and 12= L(@, x) for a passing particle characterized by E / p > B_ . For a trapped

particle satisfying B. < E / p < Ba, l,,,[,),l 2 (bX, ,[t) correspond to the two

turning points of the orbit: E/ = B(,y, 7) = B(,7 X1,x2).

Lastly, we define two averages that appear in the analysis, one over the field line

and the other over the unperturbed orbit.

rL dl
f 9-g =JL B

() 0 B

g g dt
b

field line average

(A.28)

orbit average
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where Tb is the period of the orbit for passing particles and the half period of the

bounce orbit for trapped particles

Tb =f 0 b dt f12 dt= dl
'1 dl

- s1/2
2 f 2

L21

dl
(A.29)

The framework has now been set to obtain a useful bound on 6QU as defined in

eq. (A.12). We make use of eq. (A.16) and write 8QU 6Qa + R where

6Q, =iw Sfrdwn-fdft dt
j8 -xE

6Qb =iwLEf dr dw f q dt' (A.30)

mw 2  2
2W

Next, we make use of the fact that the orbits of all particles (both passing and

trapped) in a closed line system are periodic, thus allowing a Fourier decomposition

in the trajectory integral. Writing 1(t')= eiwti(t' - t) e i''f(r), the periodicity of

the particles' motion implies that i(r) is periodic with a period (or half period for

trapped particles) equal to T. The Fourier representation can be written as

I(t') = eI-' i(r) = e I me"l-r

I = 1 f
Tb

(A.31)
I r)e t

f~
T dT

It then follows that

I(t')dt' = 0
iwt I I

n L) -nLLb (A.32)
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As the system approaches marginal stability (i.e. w2 - 0) the n = 0 term dominates,

leading to

t ')
_ O (' (A.33)dt' -* = ( 

wA - )

A similar argument applies to the integral involving q$ Thus in the limit w2 - 0,

the contributions to 6Qkk reduce to

6Q, =-f drdwL1*(I)

6Qb = fdrdw I(q)

(A.34)

and are finite.

We now focus on 6Q and obtain a simple lower bound. Utilizing the second form

in eq. (A.27) allows us to write

6Q, = - d dxde G(pxE)m2B

2]
G= fSEB dp T b 12 ±

A simple lower bound follows from an application of Schwarz's inequality.

G ;> EB d uTb + 2 E/B

f mnT b d'M f/B 

21

db (I- )b
(A-36)

This form is useful because after again reversing the order of integration between y

and 1, we can analytically carry out the p integrations. For example, the

denominator integral reduces to
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fE|B dd

1/2
L d EB if1/

2 -0 -pB)

( )12 , 1/ 2 fL
(2,m B

Similarly, we find

fe/Bmi b k0b d=

(1/2
M 0L EI/B

1 ~

1/2

2

(E -tB1/2

dl L

B o

These results are substituted back into eqs. (A.35) and (A.36).

integration by parts the E integrals can be evaluated analytically in terms of n and

p. The end result is the desired estimate of 6Q given by

Q ;> f3p V .) 2 dr+ZI 3eA)2 dr
J 4

Observe that the first term on the right hand side is just the ideal MHD 3Wc -

The electromagnetic term also appears to be stabilizing although in actual fact its

value is equal to zero. This can be seen by utilizing eq. (A.16). We multiply by Z*

and integrate over the plasma volume which after a short calculation leads to

0=-iw~qfiiswdwdr

i 1 2E

H =dlB g i
0

SddxdE H
j Tn OE(A.40)

We now add and subtract a term from the function H as follows
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(A.37)

(A.38)
dl

|B

After an

(A.39)

4E3/2 f

3 0



H f/B. di f 12 eA dl

b 12 12 (A.41)
fd b ifd I e~ldl - If diif eik dl + If ditf eAl dl j(.1

In the last term the order of the I and yi integrations is reversed. The term can now

be analytically integrated over Ay after which the entire expression is substituted into

eq. (A.40), yielding

zfj I(e1)12 dr

= I f
fST b p

= 4r d xd OfJ

T.

(A.42)

en, dl {

Since J > 0 by Schwarz's inequality it follows that for Of / OE < 0

>f~ (3n ) dr < 0 (A.43)

which is a contradiction that can only be resolved if (eA) = 0. Thus, the overall

conclusion from eq. (A.39) is that

Q, > fp V (. 1
2 dr = 6Wc (A.44)

The last step in the analysis is to evaluate 6 Qb in the limit W2 -> 0 and show that

it is positive. Following the procedure used to simplify 6Q, we rewrite 6Qb as follows.

6Qb= Zf (q)(Ii +I dwdr (A.45)
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This expression can be simplified by using the charge neutrality relation. A short

calculation yields

e 25ZJ 'fdw = ULE fq- dw

= e2J dw )dw
= d9- Ly f1(f

IJ O

Next, we take the complex conjugate of eq. (A.46), multiply the result by /

integrate over the plasma volume. A straightforward calculation then leads to

e2Lff Of (11 ) J b121 dw dr
SOEg

- Zf (q )
J9

-6Qb

b, ('2 + !* dw dr

From Schwarz's inequality it follows that

6Qb 2 ff07 - ( )b 2Vwdr > 0

We can now combine these results to obtain a quantitative bound on 6 WKK

(A.48)

in the

limit w 2 -* 0. Since 6W14 = 6QU in this limit, we can write

6WKK = 6WI + 6Wkk

> 6WL + 6Wc + 6Qb ;> WMHD

(A.49)

Equation (A.49) shows that ideal MHD stability implies kinetic MHD stability in

closed line systems.
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Appendix B

Kinetic MHD Ions, Fluid Electrons Energy
Relation

The derivation of the hybrid kinetic-fluid model energy relation is very similar to

that presented in Appendix A for the fully kinetic MHD model. Thus it is only

necessary to highlight the changes in the important relations. The starting point is

the energy relation equivalent to eq. (A.11)

2 KI = 6W + 6 Qk = 6 W+ 6Q

K 1 =fP 1 2 dr

6W =- f*(~JxB

6Q = -KL

Here, p() = pe(@) + pj(4)

+Jx5)-(V *)(4_ -Vp) dr

+ (AKI - PiK|1) ( Y '] dr

and the perturbed ion distribution function needed to

calculate the ion density and pressure tensor, equivalent to eq. (A.8), is given by

(r,E,yA, t) =F + K

fF A Vf+ 1 (fie +4-
1

9f4
fK

2

Tn. fL-- -4

VP') - OfWI1Of

(B.2)

2

2
-w] 2 - (Pe

n2
+4 .,-Vp,) dt'
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PiKl' iKI| are the kinetic contributions to

(proportional to the trajectory integral 9).

iKI 2 Kdw

PiKII mwI fKdw

(B.3)

The equations for the perturbed electron pressure have already been derived in

Section 3.5 in the main text, and take the form given in eq. (3.78). Since P, + ( 1 -VP

has a different form for ergodic and closed line systems we treat each case separately

when deriving the stability comparison theorems.

* Case (1) Ergodic systems

The treatment here closely follows that presented in Appendix A. The critical

relations that are modified by the different treatment of electrons are eqs. (A.14) and

(A.18). For the hybrid model eq. (A.14) becomes

ds 3f _f

6Q = iw f 2 2 dw dr - io (T V - * 9. L dw dr
f'dt ae e ' 0E

(B.4)

while eq. (A.18) can be written as

ofd
iof 9 '.L dw

89E

T + T
= Z nV -(
T

(B.5)
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We use eq. (B.5) to eliminate V. - in eq. (B.4). Then, following the analysis for the

fully kinetic MHD model we obtain the desired energy relation for the hybrid model.

2 6WI +6W
-- I k

K7-fl
(B.6)

I

where

6W , =

U.=

2f d(U

f Lf
dw

+ Uh)

f dw -
OE , I Of

- S.

2

dw (B.7)

2

Uh f1 af'fZdWUt = Td

These are the expressions used in the main body of the text.

0 Case (2) Closed line systems

For the case of closed line systems undergoing perturbations that maintain the

closed line symmetry the starting point is eq. (B.1), repeated here for convenience.

w2K1 =6W +6Q

Q-f -PiKl V -1 + (PiKI

r Of w2

=io drd m V-4L +m

( 2* - ) dr

'2
W

2
(B.8)

W 1 - S

Our task is to derive an estimate for this quantity that can be compared with the

ideal MHD compressibility term 6Wc. As in the Kinetic MHD case derived in
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Appendix A, this can only be done analytically in the limit w2 -> 0. It is helpful to

separate 6Q, into two parts:

6Q,=6Q,+ 6Qb

Of ds*
6Qa ZWj drdw - s

DE dt

dr fi ds* t 1I
6Qb wf E dd '-x n (f

2 (2
W + m W

2 2

+ .VP,)dt'

'2 K

In the limit w2 - 0 the evaluation of 6Q, is identical to that presented for the

pure kinetic MHD case in Appendix A. For the present case we find

6Qaf~5f Ki
3

G =

9, 2 _

_)1 r-27r f od f "
m 2 OE

T g+dpI 2 d< (B.10)2 2

2
W

2

Clearly G > 0 by virtue of Schwarz's inequality implying that the second integral in

Q is positive.

To determine Qb we first need to evaluate the charge neutrality condition. A

short calculation yields, in the limit w2 - 0,

+~ *- Vp) -f ~f. (I* -Vp) +f dw
09E dt
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dt

(B.9)

(B.11)

r b U

L + m , W 2



The next step is to multiply this equation by (, +, -Vp) / n and integrate over

the plasma volume. Recognizing that by exchanging the order of integration between

the velocity and space integrals 6Qb can be written as

6Qb = fdr fdwf' , (,f n it VP (B.12)

in the limit W2 -+ 0, another short calculation involving some more exchanges of the

order of integration between velocity integrals and integrals over space coordinates

leads to the desired expression:

Qb = 7 , drp V ( )2 + fdr{ V1 (7 4_L)- 2

dr dw 'f[
n 2 O, E + -p

(B.13)
2

- (+ -Vpe)2]

Schwarz's inequality implies that the second and third integrals are positive.

Combining the expressions for 6Q and 6Q, and setting -y 5 / 3 leads to the

desired result, since 6Wkf = 6Q, in the limit w2 - 0:

2

6 W~~+ ~fepi) (V _)I dr

-dopdxdE a G
9E

+f drp IV -41 - IV . -_ 1

(B.14)

V P ) b 12+ 4_L . VPe 12 _ &

or using the inequality relations
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n 09E



6W > 6W (B.15)

This is the key result that shows that the hybrid model predicts greater stability

than ideal MHD for closed line systems.
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Appendix C

Vlasov-Fluid Energy Relation

The derivation of the energy integral for the Vlasov-Fluid (VF) model begins with

the linearized form of the force balance relation given by the first equation in eq.

(3.144) in Chapter 3 of the main text.

Jx 5+J x B-Vp, - en = ef (E +u x B) du (C.1)

Linearized forms of fi, f,,B, and E have been given in terms of the electron

displacement 4 by eq. (3.149). We also need the perturbed distribution function

which satisfies the linearized Vlasov equation. For equilibria characterized

f f (E) it follows that

(C.2)

where the trajectory integral is calculated along the exact (i.e. not gyro expanded)

orbit, and we have assumed that Im() > 0, so that (t -oo) =0

Using the expression for E given in eq. (3.149) and the VF equilibrium relations

we find after a short calculation that f can be rewritten as
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fi= -e 1f u -E, dt'
OE -



-Vpi - 7epv -4) + Ofiws a
0e

I = e(E + u x B) -6 - (}ep, / n)V .-] dt'

Substituting (C.3) and the expressions in eq. (3.149) in eq. (C.1), we obtain, after

some more algebra, the desired expression for the linearized force balance equation:

J x 5+ x B+ V(4- Vp) - iweng x B - iwe f)f(E + uxB)s du

where p=p, + p

The next step is to form the dot product of eq. (C.5) with 4* and then integrate

over the plasma volume. The resulting equation is simplified as follows. The first

three terms combine to form the incompressible contribution to the ideal MHD

potential energy.

- J x 5 ±J x B+ V (4, Vp) dr = -6W

The fourth term in eq. (C.5) reduces to

~zwerif~* *~j~ x Bdr = -iwen f * _x -Bdr = wR

where R, is a real quantity, since *x is purely imaginary.

The fifth and last term to evaluate involves the trajectory integral. This term can

be simplified by noting that
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(C.4)

(C.5)

(C.6)

(C.7)



d§s* . *~, D9*
= s+

dt Dt
= e(E + u x B) -(Y / n)V -

Here,

D lu.V+- (E+uxB).V
Dt m

The fifth term can now be rewritten as

-iwe L(E +u x B)-g* dudr

Of ,- Dt
=-i * iwu§ s +-+

09e Dt

The middle contribution simplifies by writing 9 = s, + isi.

Off D* d-iwo s 9dudr
OE Dt

f D s Ds
&-it ' D + s. D
OE Dt 2 *Dt

Ds
-s I dudr

'Dt

Of Ds
OE Dt

= WR 2

Ds
-s z dudr

'Dt
(C.11)

where R2 is a real quantity and the integral involving S2 + S2 vanishes by the use of

Gauss's theorem, once over real space and once over velocity space.

Combining these results leads to the following form of the energy integral

W 1=w 112 dudr+w(R+R
2)

-iwf 0 ' T
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(C.9)

"eV-( sdudr
n

(C.10)

V .( du dr
(C.12)



The final step in the derivation is to simplify the last term in eq. (C.12), which is

accomplished by the use of the charge neutrality condition n, = n,. A straightforward

calculation yields

e do
__s duf 'ed (C.13)

The expression for V - is substituted into the last term in eq. (C.12). Making use of

the relation

du
1 dn

e dop
(C.14)

leads to the following form of the energy relation.

8W 1 LL2 1 f 2 dudr + w(R, + R)

2

Of

dr
f duOf

Here, 7,,i(o) = dlnpi /dlnn.

We now write w = wr + iw . Setting the imaginary part of eq. (C.15) to zero

requires that R1 + R2 = 0. The remaining real part yields the desired VF energy

relation

2 6WL

KVF
(C.16)
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(C.15)

1 dp



2

1 Of Of 2 Of
where K =- dr f du +1 du- C7du

"YePe±+iPd f du

OE

Although complicated, this expression is positive by virtue of Schwarz's inequality

when Of / OE <0. Equation (C.17) is the one used in the main body of the text.

eZ+ p fd
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