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Abstract

Disposal of high-level nuclear waste in deep boreholes drilled into crystalline bedrock (i.e.,
"granite") is an interesting repository alternative of long standing. Work at MIT over the past

two decades, and more recently in collaboration with the Sandia National Laboratory, has

examined a broad spectrum of design aspects associated with this approach. For emplacement,

past reports suggest using steel cables to lower each canister into the borehole. This process

would require many years to complete and precise control to safely lower the canisters thousands

of meters. The current study evaluated a simple, rapid, "passive" procedure for emplacement of

canisters in a deep borehole: free-fall release into a water-flooded borehole. The project involves

both analytic modeling and 115 th scale experiments on a laboratory mockup. Experiments

showed good agreement and validated the model. Depending on the inputs used for the mass and

dimensions of the full scale canister and the viscosity of water, the model predicted terminal

velocities of 2.4-2.6 m/s (4.5-5.8 mph). Further experiments showed that this could be reduced

by 50% by making the surface hydraulically rough. Based on these predictions and a structural

analysis, there seems to be little risk of damage when a canister reaches the bottom of the

borehole or impacts the stack of previously loaded canisters. For reference, dropping the canister

in air from a height of only 0.3 m (1 ft) would result in an impact velocity of 2.44 m/s. Cost

estimates for the conventional drill string based method were developed, and the drop-in method

was concluded to reduce emplacement costs and time by a minimum of 70%, down to $700,000

per borehole. It is concluded that a simple drop-in procedure deserves serious consideration for

adoption as a standard procedure for borehole loading.

Thesis Co-supervisor: Prof. Michael J. Driscoll
Title: Professor Emeritus of Nuclear Science and Engineering

Thesis Co-supervisor: Prof. Jacopo Buongiorno
Title: Associate Professor of Nuclear Science and Engineering

2



Acknowledgments

Professor Driscoll and Professor Buongiorno were ever-present, and their vast knowledge,

continuous support and experience kept me motivated to tackle a wide variety of issues on the

intriguing and crucial research area of waste disposal. Without a fellowship and financial

support from the Nuclear Science and Engineering department, this research would not have

been possible, and for that I am extremely grateful. Dr. Thomas McKrell assisted me with my

initial familiarization with experimental procedures and safety, and was always a source of

positivity and support. Professor Barbara Hughey was instrumental in providing experimental

design advice and sensor hardware. Schlumberger Doll Research Center and Albert Perez have

my appreciation for furnishing free use of their confocal microscope to the Department of

Nuclear Science and Engineering. I'd also like to thank the support that Sandia has given to

deep borehole research at MIT, as it enabled me to travel to conferences to share my research.

Daniela Cako, and my twin brother Richard Bates provided indispensible and dedicated moral

and technical support during the many hours of derivation, experimentation and explanation of

this thesis. Finally, I want to thank my family for raising me in such a supportive and

intellectually stimulating environment, allowing me to attend and truly enjoy my experience at

MIT.

3



Table of Contents

Abstract...................................... .. --------......---.---.................................................................. 2
Acknowledgments.....................------------ . -...-.................................................................. 3
Table of Contents.......................................................................................................................... 4
List of Figures.............................--..-................................................................................ 6
List of Tables...............................................................................................................................10
1. Introduction........................- ........ .......................................................................... 12

1.1. Objective of the Thesis ............................................................................................ 12
1.2. Topic M otivation........................................................................................................ 12

1.2.1. Open Fuel Cycle and DOE Contractual Obligation .................................. 12
1.3. Overview of Deep Borehole W aste Disposal (DBW D) .......................................... 13
1.4. Arrangement of the Thesis...................................................................................... 15

2. Emplacement Issues.............................................................................................................. 17
2.1. Chapter ............................................................................................ 17
2.2. Previously Suggested Emplacement in Shallow M ined Repositories ..................... 17

2.2.1. Yucca M ountain........................................................................................ 17
2.2.2. Discussion and Comparison to Deep Boreholes ...................................... 20

2.3. Previously Suggested Emplacement Methods for DBW D ...................................... 20
2.3.1. SKB Emplacement in Very Deep Holes (VDH) ...................................... 20
2.3.2. M IT Emplacement M ethod Issue- Structural........................................... 26
2.3.3. M IT Emplacement M ethod Issue- Speed............................................... 29

2.4. Chapter Summary ................................................................................................... 33
3. Proposed Emplacement M ethod...................................................................................... 34

3.1. Chapter Introduction................................................................................................... 34
3.2. Drop-in M ethod Description.................................................................................... 34
3.3. Reference Canister Design ...................................................................................... 34
3.4. Suggested Handling Procedure............................................................................... 36
3.5. Chapter Summary ................................................................................................... 39

4. Analytical Modeling of Proposed Emplacement Method ....................... 40
4.1. Chapter Introduction .................................................................. 40
4.2. Assumptions and Equations........................................................................................ 40

4.2.1. Closed Boundary Condition........................................................................ 41
4.2.2. Open Boundary Condition.................................42

4.3. Discussion of Solutions ....... ........................................................................ 44
4.4. Dimensional Analysis ........ .......................................................................... 44
4.5. Chapter Summary l n.. ....................................................................................... 46

5. Experiments ......... ................................................................................................. 47
5.1. Chapter Introduction .................................................................................................. 47
5.2. Design Considerations....................................................................... ........ 47

5.2. 1. Controlled Variables.....................................47
5.2.2. Canister Size................................................................................................47
5.2.3. M aterials and Fluids...................................................................... ..... 50
5.2.4. Instrumentation and Procedure............................................................... 51

5 .3 . R esu lts.........................................................................................................................54
5.3.1. Dimensional Similitude of Experiment.................................................... 54

4



5.3.2. Effect of the Archimedes Number (Ar) on Reynolds Number (Re)......... 55
5.3.3. Analytical M odel Verification ................................................................. 57

5.4. Additional Investigations ......................................................................................... 59
5.4.1. Effect of Drag Inducing Features ............................................................. 59
5.4.2. Effect of Surface Roughness .................................................................... 61

5.5. Chapter Sum m ary .................................................................................................... 64
6. Feasibility of Proposed Em placem ent M ethod ............................................................... 65

6.1. Chapter Introduction ............................................................................................... 65
6.2. Therm al Issues ........................................................................................................ 65
6.3. Structural Issues ...................................................................................................... 69
6.4. Drag Inducing Features at Full Scale....................................................................... 73
6.5. Backfill Process ...................................................................................................... 75
6.6. Econom ics................................................................................................................... 76
6.7. Retrievability............................................................................................................... 78
6.8. Chapter Sum m ary .................................................................................................... 80

7. Sum m ary, Conclusions and Recom m endations ............................................................. 81
7.1. Sum m ary..................................................................................................................... 81
7.2. Conclusions................................................................................................................. 81
7.3. Recom m ended Future W ork .................................................................................... 82

7.3.1. Discounted Economic Analysis of Borehole Construction and Emplacement
82

7.3.2. Comparison of Radiation and Handling Risks with Other Repository
Designs........................................................................................................... 83

References.................................................................................................................................... 85
Appendix A. Derivation of Canister Velocity Solutions .................................................. 89

A .1 Introduction...................................................................................................................... 89
A .2 Force and M om entum Balance ........................................................................................ 89
A .3 Closed Boundary Condition......................................................................................... 91
A .4 Open Boundary Condition ........................................................................................... 94
A .5 Dim ensionless Solution for the Closed Boundary Condition ........................................ 106
A.6 Numerical Integration of Acceleration (Closed Boundary Condition).......................... 108

Appendix B. Experim ental Results..................................................................................... 110
B.1 Introduction .................................................................................................................... 110
B.2 Canister Density and Fluid Temperature Variation (Ar)................................................ 110
B.3 Results of Added Form Loss and Surface Roughness ................................................... 114
B.4 M easurem ent of Surface Roughness .............................................................................. 115
B.5 Error Analysis ................................................................................................................ 116

Appendix C. Thermal Analysis of Canister During Emplacement ................................. 121
C.1. Introduction............................................................................................................... 121
C.2. Surface Temperatures ............................................................................................... 121
C.3. Cylindrical Temperature Distribution....................................................................... 126

5



List of Figures

Figure 1-1. Cross section of the deep borehole concept [12][13]............................................ 14

Figure 2-1. Breakdown of costs for the Yucca Mountain repository (with originally defined

capacity of 70,000 metric tons) in Billions of year 2000 dollars [12]....................................... 17

Figure 2-2. Emplacement equipment and transfer dock to emplacement gantry [20].............. 18

Figure 2-3. Proposed design for the Yucca mountain waste package emplacement gantry[20]. 19

Figure 2-4. MIT depth dependent (MITDD) drilling cost index, adjusted for inflation to year

2003 US $, using the GDP deflator index (1977=100) [24].................................................... 22

Figure 2-5. MIT drilling cost index vs. crude oil and natural gas prices[24]-[28]. Prices and the

drilling index are both adjusted for inflation using the GDP deflator index (1977=100). ........... 23

Figure 2-6. Fitted and extrapolated MITDD drilling cost index based on Eq. (2-1) for a borehole

depth of 4572-5333 m, plotted against the historical MITDD index data given in [24]. ......... 24

Figure 2-7. Schematic of canister emplacement tools described by SKB's engineering feasibility

study[29]. The lower drawing depicts two canisters with longitudinal fins attached to each other.

....................................................................................................................................................... 2 6

Figure 2-8. Cross sectional diagram of a standard drill string threaded connection and finite

element analysis (FEA) model of stress distribution [31]. ...................................................... 27

Figure 2-9. Depiction of mean contact stresses experienced by individual pipe threads. Obtained

by analytical and finite element analysis in ANSYS models of an American Petroleum Institute

(API) 88.9 mm round threaded drillstring connection [34]. .................................................... 28

Figure 2-10. Overview of total emplacement costs ($M) calculated using various assumptions on

the lowering speed and number of canisters connected............................................................. 32

Figure 3-1. Cross sectional view of the proposed emplacement method, based on Hoag's design

for the pipe lining and canister dimensions [12] Not to scale. Note that the gap between the

canister and the lining is an annulus with a thickness of 2.35 cm. ........................................... 35

Figure 3-2. An illustration of the Yucca Mountain waste package closure system, robotically

w elding a w aste package lid in place [41] ................................................................................ 37

Figure 3-3. Diagram of the lifting step of a proposed emplacement method. ......................... 38

Figure 3-4. Diagram of intermediate step of a proposed emplacement method...................... 38

Figure 3-5. Diagram of the final lowering step of a proposed emplacement method.............. 39

6



Figure 4-1. Depiction of gravitational, shear and pressure based forces that act on the canister as

it falls at term inal velocity. ........................................................................................................... 40

Figure 4-2. Diagram of all variables required to calculate the terminal velocity of the canister

falling in a pipe of fluid. Variables are defined in Table 4-1.................................................... 45

Figure 5-1. Materials and relevant dimensions of the initially designed experimental setup..... 49

Figure 5-2. Results of numerical integration of force balance equations for a 14.79 kg canister

with diameter of 0.067 m, length of 0.983 m and lining diameter of 0.07632 m dropped in water.

....................................................................................................................................................... 4 9

Figure 5-3. Log-log plot demonstrating of the effect of fluid choice on Archimedes and

Reynolds numbers (and thus terminal velocity) for the reference, experimental scale canister... 50

Figure 5-4. Photos of the Vernier rotary motion sensor used in the experiments................... 52

Figure 5-5. Conceptual design of the experimental setup........................................................ 53

Figure 5-6. Photo of the attached pulleys, rotary motion sensor and insulated acrylic pipe. ...... 53

Figure 5-7. Experimental results from the first set of experiments on May 14, 2010 using a

14.79 kg canister. Note that run #1 was recorded at 80 hz, run #2 was recorded at 20 hz, and run

#3 w as recorded at 100 hz............................................................................................................. 55

Figure 5-8. Summary of all 62 borehole drop experiments completed to investigate the

relationship between the Reynolds number and Archimedes number for the fluid flow. ............ 56

Figure 5-9. Plot of the experimental drop data demonstrating the underlying relationship of

ln(Ar) vs. ln(Re). Data obtained through a total of 62 drop tests with variation of water

temperature between 22.50 and 920 C, and canister density between 2363 and 4264 kg/m3 . ...... 5 8

Figure 5-10. Drag inducing feature (plug) of the simulated borehole canister, showing the

diameter and the axial distance from the canister................... 59

Figure 5-11. Plot of the experimental drop data demonstrating the underlying relationship of

ln(Ar)vs ln (Re), with the effect of an added form loss. Drag inducing data obtained through 6

drop tests with variation of water temperature between 72.5.5* and 770 C, with a canister density

4 3 3 5 k g/m 3. ................................................................................................................................... 6 0

Figure 5-12. Average particle size and relative roughness (ks/Dh) as a function of sandpaper grit

(ANSI 74 standards), for the experimental scale canister. Particle sizes compiled from [47],[48]

and ks calculated using E q. (5-8)................................................................................................... 62

Figure 5-13. Photo of the canister with attached 60 grit sandpaper and drag inducing plug....... 63

7



Figure 5-14. Experimental result, averaged from 6 drop tests of a 15.025 kg canister with 60 grit

sandpaper and drag inducing plug attached. Note that the sandpaper increased the diameter of

the canister slightly to 6.80 cm . ................................................................................................ 63

Figure 5-15. Experimental result, averaged from 7 drop tests of a 14.963 kg canister with 60 grit

sandpaper attached. Note that the sandpaper increased the diameter of the canister slightly to

6 .8 0 cm .......................................................................................................................................... 6 4

Figure 6-1. Schematic of the geometry and materials for the proposed emplacement radiation

shield (cask), containing the canister and fuel assembly. Not to scale..................................... 66

Figure 6-2. The linear decay heat, maximum fuel centerline temperature, cask surface

temperature and (homogenized) assembly surface temperature as a function of time in years. .. 67

Figure 6-3. Temperature profiles within the assembly, canister and cask for a range of fuel ages

betw een 10 and 40 years............................................................................................................... 68

Figure 6-4. Additional designed safety features of a DOE SNF canister [51].......................... 70

Figure 6-5. Deformed end of a DOE SNF canister after a drop test from 9 meters at an angle of

4 5 d egrees [52 ].............................................................................................................................. 7 1

Figure 6-6. Predicted full scale terminal velocity vs. relative roughness for various commonly

u sed m etals [4 3]............................................................................................................................ 73

Figure 6-7. Predicted full scale terminal velocity vs. relative roughness and form loss coefficient

(k ).................................................................................................................................................. 7 4

Figure 6-8. Depiction of pipes used to grout casings into a borehole [23].............................. 76

Figure 6-9. Overview of total emplacement costs ($M) calculated using various assumptions on

the lowering speed and number of canisters connected, compared to the drop- method. ........ 77

Figure 6-10. Dose rate at one meter from a Westinghouse PWR assembly with 50 GW-d/MTU

burnup, as a function of time discharged from a reactor [58]................................................... 80

Figure 7-1. Estimated number of drops during the loading of a 100 MTHM deep borehole

respository, assuming a binomial distribution of failures and a failure rate of 1 x 10 -5...... 84

Figure A-1. Definition of canister and water velocities and control volume, with a stationary

frame of reference. Vfl, Vp, are the average velocities of the fluid at reference point 1 and 2,
resp ectiv ely . .................................................................................................................................. 9 0

Figure A-2. Velocities in the frame of reference where the constant, terminal velocity is

subtracted from all bodies. The new shifted velocities are denoted with a ('). ........................ 92

8



Figure B-1. Experimental results from 10 drop experiments, completed on September 20, 2010,

using a 8.188 kg, reference sized canister. Velocity recorded at 100 hz. .................................. 111

Figure B-2. Experimental results from 11 drop experiments, completed on October 7 2010,

using a 10.388 kg, reference sized canister................................................................................. 111

Figure B-3. Experimental results from 9 drop experiments, completed on October 10 2010,

using a 12.588 kg, reference sized canister................................................................................. 112

Figure B-4. Confocal microscopic contour plot of 60 grit sandpaper, with height exaggerated.

..................................................................................................................................................... 1 1 5

Figure B-5. Confocal microscopic contour plot of 80 grit sandpaper, with height exaggerated.

..................................................................................................................................................... 1 1 5

Figure B-6. Velocity data obtained from a drop test using 14.396 kg reference geometry

canister into 85.5 C w ater.......................................................................................................... 119

9



List of Tables

Table 2-1. General Requirements imposed on the Yucca Mountain emplacement gantry [22].. 19

Table 2-2. Borehole options investigated by SKB and time requirements of each stage [23]..... 21

Table 2-3. Borehole options investigated by SKB and overall cost requirements of each stage in

1989 dollars, taken from Appendix 4 of [23]. ........................................................................... 21

Table 2-4. Tabulated results of Figure 2-6............................................................................... 24

Table 2-5. Borehole options investigated by SKB and overall cost requirements of each stage in

present dollars, adjusted using an extrapolated MITDD drilling cost index. ........................... 25

Table 2-6. Summary of time and costs included in the SKB engineering study of VDH [29].... 25

Table 2-7. A PI Steel Specifications [35]................................................................................... 28

Table 2-8. Summary of trip times calculated for varying assumptions of the possible lowering

speed of a single canister to an average depth of 3 km............................................................. 29

Table 2-9. Estimated billing rates during the emplacement process, assuming an 8 hr work day.

....................................................................................................................................................... 3 0

Table 2-10. Summary of total loading times and costs for 400 canisters loaded per hole, with an

average value billing rate of $4,852/hr and a 10 minute loading period (with radiation worker

billing rate of $10,500/hr) for each canister............................................................................... 30

Table 2-11. Summary of total loading times and costs for 400 canisters loaded per hole, with 20

canisters connected and lowered together. Assumes the average value billing rate of $4,852/hr

and a 10 minute connection period (with radiation worker billing rate of $10,500/hr) for each

can ister. ......................................................................................................................................... 3 1

Table 3-1. Reference borehole canister components and masses [12]................................... 36

Table 4-1. Definition of all relevant variables and their respective dimensions, where M stands

for Mass, L stands for Length, and T stands for Time. ............................................................. 45

Table 5-1. Summary of independent variables for the borehole emplacement experiment........ 47

Table 5-2. Summary of standard pipes and measured dimensions, (+/- 0.021 cm)................ 48

Table 5-3. Comparison of alternative fluids lower viscosity than the reference case, room

tem perature w ater.......................................................................................................................... 5 1

Table 5-4. Comparison of parameters between the full scale and experimental scale canisters.. 54

Table 5-5. Dynamic similitude of experimental parameters, during tests that varied Ar. ........... 54

10



Table 6-1. Comparison of canister geometry and material properties between a DBWD canister

and a D O E SN F canister [52]. .................................................................................................. 71

Table 6-2. Comparison of impact parameters between a DBWD canister and a DOE SNF

can ister [5 2 ]. ................................................................................................................................. 72

Table 7-1. Summary of various estimates of failure probabilities during handling of spent fuel.

....................................................................................................................................................... 8 3

Table B-1. Canister components for the fully loaded 14.79 kg canister.................................... 110

Table B-2. Summary of drop tests completed to investigate the effect of Ar on Re. ................ 113

Table B-3. Canister components for the canister with added form loss (plug).......................... 114

Table B-4. Summary of experiments that varied form loss and surface roughness................... 114

Table B-5. Summary of roughness parameters produced by the confocal microscope. ............ 116

Table B-6. Rotational motion sensor deviations from origin after 15 drop tests. Analysis

completed for drop tests completed on February 10, 2011......................................................... 117

Table B-7. Measured values for the canister diameter............................................................... 120

Table C-1. Assumed material and thermal parameters for analysis of the shielded canister

temperature distributions[12] and from Table A.3 [64] ............................................................ 125

11



1. Introduction

1.1.Objective of the Thesis

This project develops and experimentally verifies an affordable, expedient and reliable method

of deploying nuclear waste canisters into deep boreholes. An analytical model based on fluid

mechanic first principles aided design of a dimensionally similar experiment, and the results

validate the model. Various methods to further increase drag forces and reduce canister velocity

were also investigated and successfully integrated into an analytical model. Estimates for the

reduction in time and costs associated with the simplified process are made in relation to the

overall feasibility of a vertical borehole repository.

1.2.Topic Motivation

1.2.1. Open Fuel Cycle and DOE Contractual Obligation

The unresolved issues of long term nuclear waste disposal in the United States remain a limiting

factor in the expansion of nuclear power- a proven and carbon free energy source. Work on the

Yucca mountain repository has been suspended, and a Blue Ribbon Commission appointed to

recommend a new path forward. Secretary of Energy, Steven Chu, stated that Yucca Mountain

would not be considered as one of the alternatives [1]. In the meantime, Finland, Sweden, and

Switzerland have successfully pursued repositories in granite, currently scheduled to open in

2020 in Finland and 2025 in Sweden [2].

Despite this change in policy, the truth remains that the U.S government is contractually

responsible for removing spent fuel from reactor sites and disposing all commercial nuclear

waste [3]. Without a solution by 2020, the government (taxpayers) will have to pay an estimated

$12 billion dollars in damages to compensate the utilities for the cost of storing the waste, and

further pay $500 million per year after 2020 [4]. Centralized storage has been suggested as an

interim solution, but without amending the Nuclear Waste Policy Act (NWPA) of 1982, the DOE

cannot legally construct a storage facility until authorization of the final geologic repository.

Additionally, under current law the facility could only contain a maximum of 10,000 metric tons

of spent fuel, a small fraction of the 60,000 metric tons that is already in spent fuel pools at

reactor sites.
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In the longer term, closed-fuel cycles could reduce the quantity of high level waste requiring

disposal; however, recent MIT and Harvard studies[5]-[8] conclude that a closed fuel cycle will

not be economically feasible over the next 50 years or more, and point out that long time scales

are required to change the fuel cycle. An MIT study proposes, "the highest priority in fuel cycle

analysis, research, development, and demonstration, deserving first call on available funds, lies

with efforts that enable robust deployment of the once-through fuel cycle...We believe deep

boreholes, as an alternative to mined repositories, should be aggressively pursued" [8].

Therefore, to deal with the volumes of waste generated from the once-through fuel cycle, the

quick development of the alternative to mined repositories-deep boreholes- is crucial and

justified.

1.3. Overview of Deep Borehole Waste Disposal (DBWD)

DBWD has been proposed as an attractive alternative to shallow mined repositories. The deep

borehole disposal strategy involves drilling and lining a borehole a few kilometers (e.g. 4 km)

down into a region of the Earth's crust which mainly consists of granite. The feasibility of

drilling to such depths has improved over the years with the interest in enhanced geothermal

systems (EGS), which can require boreholes to depths greater than 10 km [9][10]. The current

estimates of costs for drilling a vertical 0.5 m diameter, 4 km deep hole are between 10-20

million dollars [11 ][12]. The metric of drilling cost has typically been considered the driver for

borehole repository economics. However, detailed cost evaluations of the subsequent operations

such as emplacement are quite scarce and not well defined.

Canisters containing spent nuclear fuel are stacked in the lower 2 km of the hole, while

the upper region is sealed off with a multilayer plug (bentonite clay,asphalt, and cement for

example). A schematic of the DBWD concept is shown in Figure 1-1.
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Figure 1-1. Cross section of the deep borehole concept [12][13].

This disposal technique is promising for a number of reasons. Waste in boreholes is significantly

deeper and further away from water sources compared to typical shallow mined repositories.

This naturally results in better isolation of radionuclides from the surface and humans. Deep

granite rock is typically a chemically reducing environment, which reduces radionuclide

solubility and decreases their mobility. These geologic conditions with reduced water flow are

the main component of the added safety of deep boreholes [14]. The average age of these

basement rocks is on the order of billions of years [13]. The performance does not depend as

heavily on engineered barriers, which have greater long term uncertainties associated with them.

Preliminary performance assessments of DBWD have estimated the peak radioactive dose to a

human to be many orders of magnitude less than the internationally recommended limits for

post-closure dose [14]. Furthermore, since solid granite formations are relatively common at

depths of 2-5 km in the United States, DBWD increases the number of potential sites for waste

repositories. Increasing the possible number of sites that can volunteer or spreading the nation's

14



waste inventory over a number of disposal sites may help reduce political tensions associated

with licensing repositories while reducing transportation costs and concerns.

Granite is also being seriously considered as a medium for geologic disposal by several other

nations such as China, Japan, and the U.K. [2]. DBWD is a widely researched alternative to

mined repositories and has had substantial attention from researchers at Sheffield University in

the UK, SKB in Sweden and MIT in collaboration with Sandia National Laboratory[ 11],[15]-

[17] The main areas for improvement to the deep borehole disposal concept are site selection

criteria, borehole fill materials, emplacement details and performance risk assessments. A

discussion of the emplacement facility and systems is needed to demonstrate the viability of

DBWD, but also represent an opportunity for DBWD to make significant savings over shallow

mined repositories such as Yucca mountain[13].

1.4. Arrangement of the Thesis

Chapter 2: Emplacement Issues

This chapter deals with the loading issues associated with the Yucca Mountain repository and

past proposals by SKB and MIT for emplacement methods in deep boreholes. The feasibility,

time, risks and unresolved factors of each study are compared and discussed. The baseline

emplacement scenario (that the proposed method is contrasted against) is investigated in this

chapter.

Chapter 3: Proposed Emplacement Method

In this chapter, a simple drop-in method is proposed and a reference canister and scenario is

defined. Finally, the equipment and facilities required for such an operation are illustrated.

Chapter 4: Analytical Modeling of Proposed Emplacement Method

This chapter details the assumptions and basis for predicting the canister velocity in a flooded

borehole. It also outlines other down-hole conditions that could alter the canister's velocity. A

dimensional analysis is completed on the pertinent variables, and confirms the functional form of

the analytically derived expression for terminal velocity.
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Chapter 5: Experiment

This chapter begins with the approach to experimental design, in which a number of constraints

were established and met. The experimental apparatus, sensors, materials, and procedure are

defined. Discussions of design and results focus heavily on dimensionless variables and frequent

comparison to analytical solutions, and consistency of the results is clearly shown, through

regression of the data. Alternative methods of reducing the canister velocity are tested and

confirmed within the framework of the analytically derived solution.

Chapter 6: Feasibility of Proposed Emplacement Method

The logistical issues of the drop-in method are discussed in this chapter. The primary concerns

are thermal, structural, economic and regulatory. Thermal issues are addressed to ensure that the

previously defined analytical model applies at the elevated temperatures that the canister surface

achieves prior to emplacement. The model and experimental data are used to make velocity

predictions for the full scale canister, and the consequences of impact are analyzed.

Emplacement economics are discussed in comparison to the previously suggested methods using

drilling rigs and strings. The issues of retrievability and its lack of clear definition within current

U.S policy are discussed in relation to its implications for DBWD and repository choice in

general.

Chapter 7: Summary, Conclusions, and Recommendations

In closing, the results from the analytical modeling, experimental work, and feasibility analysis

are presented for the drop-in method. Future topics that will be crucial to an objective and

comprehensive comparison of DBWD to other repository designs are suggested.
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2. Emplacement Issues

2.1. Chapter Introduction

To give perspective and background on the complexity and challenges posed by emplacement of

waste, a discussion of the well documented techniques for emplacement of nuclear waste is

given based on the now suspended Yucca Mountain repository in the U.S. The Swedish (SKB)

feasibility assessments and emplacement operation details for deep boreholes are reviewed and

an analysis is completed to present the cost estimates in current dollars. Finally, the

emplacement methods suggested at MIT are discussed on the basis of structural, time and cost

issues.

2.2.Previously Suggested Emplacement in Shallow Mined Repositories

2.2.1. Yucca Mountain

Emplacement, the act of deploying and fixing the canisters in their final destination is a complex

and crucial process that must be outlined in detail to fully understand the feasibility of a disposal

method. In the case of the Yucca Mountain shallow mined repository, emplacement procedures

constituted the most expensive phase in the entire disposal process. Figure 2-1 shows a

breakdown of costs for the Yucca Mountain repository.

Costs for Yucca Mountain Repository ($B, year 2000)

Closure andDeeomnad
Decommissioning: Development 6and4.04

Monitoring: 6 Licensing: 1.29

Pre-emplacement
Construction: 4.45

Emplacement
Operations: 19.71

Figure 2-1. Breakdown of costs for the Yucca Mountain repository (with originally defined

capacity of 70,000 metric tons) in Billions of year 2000 dollars [12]
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Emplacement in shallow mined repositories is complicated by a number of constraints: presence

of human workers underground with ventilation, radiation and possibly drainage issues, low

visibility in dusty environments, integrity of rails and evacuation routes, spatial, weight and

mobility restrictions for emplacement machines with sufficient lifting capabilities [18] [19].

Transport of the waste package from the surface facility to the emplacement drift requires a

human operated, electrically powered transport locomotive, shown in Figure 2-2.

TRANS ~ ~ 17i [,C---

Figure 2-2. Emplacement equipment and transfer dock to emplacement gantry [20]

The human operated transport locomotive travels at 1.78 m/s (4 mph) [21]. The total distance

traveled by the waste package between the surface facilities and emplacement panel is 3.54 km,

while the distance from the emplacement panel to drift is conservatively approximated to be

1.964 km [21]. Thus, the minimum locomotive time is approximately 3 hours, while the worker

is exposed to a low radiation field (2.5 mrem/hr) for almost 2 hours per round trip.

An emplacement gantry, capable of lifting and lowering an unshielded waste package

must be transported and installed into a drift before the final filling process can occur. After

being installed, the emplacement gantry can receive the waste packages from the shielded

transporter. Remote operation via camera and other sensors during the final emplacement

process prevents further radiation doses but does not eliminate the risk of human error and

accidental drop [22]. Overall, the maximum total individual dose to an emplacement crew
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worker was conservatively estimated to be 1890 mrem/year [21]. Risk of derailing, delivery of

power (battery), loss of vehicle control, contamination of equipment surfaces and loss of rail

integrity (debris on the railways) were also design basis safety issues. Restrictions on the waste

emplacement gantry designed for Yucca Mountain repository are listed in Table 2-1 and a

conceptual design of the gantry is shown in Figure 2-3.

Table 2-1. General Requirements imposed on the Yucca Mountain emplacement gantry [22]

Operational and Environmental Requirement Metric

Maximum weight of waste packages 73.02 metric tons (161,000 lbs)

Maximum traveling length along drift 808 meters (2651 ft)

Drift diameter 4.8768 meters (16 ft)
Maximum speed of equipment 0.76 rn/s (1.7 mph)

Maximum hoist speed of waste package* 0.0305 n/s (6 ft/min)

Maximum ambient temperature (with ventilation) 50 OC (122 OF)

Radiation field at package surface 600.7 rem/hr

Radiation field at bottom lid of package 1290 rem/hr

*Slow hoist speed designated for loads between 70 and 99 tons

BALSRWDRIVE CLUTCH ABTEFRY
BALL SCREW BOX
DRIVE BEARING\

90' BEVEL-.
GEAR BOX

ELCTRONIC AOUIPMENT ----- BALL SCREW

JACKING POINT

PAN/I IL I/ZOOM

CMRAL IH HIGH FAIL-SAFE MOTOR BRAKE

ELECTRICAL CAB1NET-DRVMTR

90* BEVEL GEAR BOX

COOL ING UNIT

TOW HOOK THIRD RAIL COLLECTORS

LIFT FRAME

LIF TNG HOOK ITYP FOR 4)

Figure 2-3. Proposed design for the Yucca mountain waste package emplacement gantry[20].
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The maximum speed of the remote controlled emplacement gantry is quite small (0.76 m/s) and

the maximum distance traveled by the vehicle within the emplacement drift is -800 meters).

Thus, the emplacement gantry movement adds at least another half hour to the loading process.

It should be noted that at the time of repository closure (50 years after emplacement and

ventilated cooling), the entire loading process must be repeated for the titanium drip shields,

which are individually linked together above the waste packages using a similar machine to the

emplacement gantry.

2.2.2. Discussion and Comparison to Deep Boreholes

Overall, including inspections and maintenance it was estimated to take between four and eight

hours to emplace or retrieve a single waste package (21 PWR assemblies) [21]. This is consistent

with a maximum emplacement rate of 600 waste packages per year using two emplacement

crews with four workers each. Therefore an estimate of the average loading time for Yucca

mountain is one assembly every 10-20 minutes.

The single trip distance traveled in Yucca Mountain is slightly greater than the distance that

the waste packages must travel in deep boreholes (3 km). However, 21 (PWR) assemblies are

contained in a single waste package, whereas with DBWD, each assembly is loaded into an

individual canister, which greatly increases the total number of packages to be emplaced.

Another large factor to consider is that emplacement within deep boreholes is a hoisting

process, and therefore would be more accurately described by the 0.0305 m/s vertical speed

designated for heavy loads. Emplacement at an average depth of 3 km at this rate would take 27

hours for a single trip down.

2.3. Previously Suggested Emplacement Methods for DBWD

2.3.1. SKB Emplacement in Very Deep Holes (VDH)

A 1989 SKB feasibility study of the VDH concept estimates the time and costs required to

emplace canisters in various borehole designs [23]. The process involves using the original

drilling rig to force the canister through a viscous "deployment mud". As seen in Table 2-2, the

minimum total drilling and deployment time occurs with a borehole drilled with a diameter of

375 mm to a depth of 4 km, with a deployment zone between 2-4 km.
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Table 2-2. Borehole options investigated by SKB and time requirements of each stage [23].

Option Max. Emplacement Hole Time for Time for Time for Total
depth zone length diameter at drilling of investigation deployment time
(km) (km) emplacement hole of drilled (days) required

zone (mm) (days) hole (days) (days)

A 4 2 800 435 100 365 900

B 5.5 2.5 375 319 100 365 784

C 4 2 375 200 100 365 665

The SKB paper estimated the costs for these options, taking into account rig mobilization,

construction materials, billing rates, engineering contingency funds and fuel costs. The results

are summarized in Table 2-3.

Table 2-3. Borehole options investigated by SKB and overall cost requirements
1989 dollars, taken from Appendix 4 of [23].

of each stage in

Option Daily cost for Daily cost for Total cost for Total Cost for Total
drilling and deployment drilling and deployment cost
investigation period investigation period ($M)
period M($M)

A $77,769 $57,329 41.606 21.925 60.532

B $48,061 $32,563 20.137 11.885 32.023

C $48,061* $32,563* 14.418 11.885 26.304

*The calculations for Option C are not explicitly shown in the reference, but for this table it is assumed that the
daily costs would be the same as for Option B, which is the same diameter.

Adjusting these estimates to present dollars is complex because of the opposing effects of

inflation, drilling technology improvement, and fuel prices on the cost of drilling and lining

boreholes. With the intent to improve the accuracy of predictions based on EGS well costs, MIT

surveyed deep drilling projects (in oil and natural gas fields) and developed a drilling cost index;

however the indices are only reported up to 2003 [24]. The index takes into account the key

metric of depth, and the cost data is smoothed using a 3 year moving average. Figure 2-4 shows

the historical trend of the MIT depth dependent (MITDD) drilling cost indices, adjusted for

inflation.
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Figure 2-4. MIT depth dependent (MITDD) drilling cost index, adjusted for inflation to year

2003 US $, using the GDP deflator index (1977=100) [24].

The price of fossil fuels, which affects the demand and operating cost for rigs, has a strong

correlation with the cost of drilling and emplacement operations, as shown in Figure 2-5.
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Figure 2-5. MIT drilling cost index vs. crude oil and natural gas prices[24]-[28]. Prices and the

drilling index are both adjusted for inflation using the GDP deflator index (1977=100).

The MIT composite drilling cost shown in Figure 2-5 is a composite of all the depth dependent

indices. However, the MITDD index for holes drilled to depths between 4572-5333 meters is the

most relevant index for this deep borehole study. The current drilling cost index was estimated

using a linear correlation between the inflation adjusted crude oil and natural gas prices with the

inflation adjusted drilling index. The MITDD drilling cost index was shown to be well fitted by

the first-order multiple regression shown in Equation (2-1),

MITDD(t) = NG(t) - 2.438 + OIL(t) -4.019 + 13.7429 (2-1)

where MITDD (t) is the inflation adjusted drilling cost index for a given year, NG(t) is the

inflation adjusted (to 1977) price of natural gas at the wellhead in tens of thousands of $/ft3 ,

OIL(t) is the inflation adjusted (to 1977) price of crude oil in $/barrel. The accuracy of the

regression is graphed in Figure 2-6 and tabulated in Table 2-4.
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Figure 2-6. Fitted and extrapolated MITDD drilling cost index based on Eq. (2-1) for a borehole

depth of 4572-5333 m, plotted against the historical MITDD index data given in [24].

Table 2-4. Tabulated results of Figure 2-6.

Year MITDD (4572-5333m) MITDD (4572-5333m), extrapolated using
Eq. (2-1)

1989 81.61713 76.13355
1990 82.78544 84.1852
1991 74.1574 74.97812
1992 63.47384 72.03206
1993 50.08678 69.47312
1994 48.51939 64.00517
1995 53.83501 61.85471
1996 60.08529 73.46802
1997 68.24467 71.27343
1998 69.16327 56.57291
1999 72.41705 65.98714
2000 74.61545 97.21308
2001 90.7573 92.18686
2002 94.18135 81.08706
2003 94.38468 104.2887
2004 123.1865
2005 158.9213
2006 160.0463
2007 162.7703
2008 209.63
2009 123.8824
2010 149.4246
2011 182.2067
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The current (April 2011) price in 2011 $ of crude oil is $106/barrel, while the price of natural

gas is $40.8/ ten thousand ft3, and those prices are expected to stay level or rise over the next

year, due to increasing demand from developing countries and supply shocks resulting from

unrest in Middle East and North African countries[25],[27],[28]. A comparison of the index

between the years of 1989 to 2011 show that the costs for drilling wells deeper than 1000 m have

trended to be much higher. The ratio of the extrapolated MITDD index for 2011 to the MITDD

index for 1989 is 2.23. Using the cost index multiplier, the results from Table 2-3 can be

adjusted to present estimates for the drillings costs, shown in Table 2-5.

Table 2-5. Borehole options investigated by SKB and overall cost requirements of each stage in
present dollars, adjusted using an extrapolated MITDD drilling cost index.

Option Daily cost for Daily cost for Total cost for Total cost for Total
drilling and deployment drilling and deployment cost
investigation period investigation period ($M)
period ($M) ($M)

A $173,424.87 $127,843.67 $92.78 $46.66 $139.45

B $107,176.03 $72,615.49 $44.91 $26.50 $71.41

C $107,176.03 $72,615.49 $32.15 $26.50 $58.66

A more recent SKB engineering study conducted in year 2000 [29] estimates a significantly

lower drilling time and cost for an Option C type borehole to 4 km (with a more than doubled

diameter of 838.2 mm). This discrepancy might result from the fact that it does not include

contingency funds or accurately take into account the fuel costs for operating the rig. The study

assumed a billing rate of 20,500 E (year 2000)/day, which is approximately equal to $20,500/day

(year 2000 $). Adjusting these prices using the MITDD values using Table 2-4 the billing rate

becomes $50,063/day. Table 2-6 presents the cost conclusions of the engineering study [29].

Table 2-6. Summary of time and costs included in the SKB engineering study of VDH [29].

Period Time Required Costs

Drilling (including drill bits, 137 days 4.65 M E, year 2000
foam, casing costs) (11.355 M $, adjusted using MITDD)
Time for logging testing or Not included Not included
pilot hole drilling
Emplacement Not included Not included
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For deployment, the study details a similar technique as previously described by SKB. First

the borehole is drained of the drilling foam (liquid used during the drilling phase to facilitate the

removal of drilled rock and debris). Then the borehole is completely filled with deployment

mud. The deployment mud was described to have as high density as possible so that it functions

as a buffer. Using the original drilling rig, the canisters (with Kevlar or plastic longitudinal fins

attached) are connected to the drill rod and forced through deployment mud until they reach the

4km deep deployment zone. Eight shearing pins, used to ensure that accidental release is

impossible, break when the rig provides the appropriate set down weight of 18 metric tons

thereby releasing the canisters. Special grease is inserted into the canister's fishing neck, to

ensure that retrieval is possible using the same method. This study did not go into the details of

time or cost for this process. Figure 2-7 presents an engineering design drawing of the proposed

canister emplacement mechanisms.

Figure 2-7. Schematic of canister emplacement tools described by SKB's engineering feasibility

study[29]. The lower drawing depicts two canisters with longitudinal fins attached to each other.

2.3.2. MIT Emplacement Method Issue- Structural

Evaluations completed at MIT [12],[17], consistent with oil and natural gas experience and

previous investigations of DBWD [30] , suggested the use of steel cables to lower canisters into

the borehole. The theses assume that all 400 canisters would be connected and lowered as a

single 2 km drill string, and this results in small loading times for each lateral (<50 days),

compared to SKB's estimates for an equivalent length of waste emplacement. Additional

engineering margins and structural issues involved for this technique may be an issue. For

example, assuming the canisters are connected via threaded connections (as drill string sections

typically are) the tensile stresses calculated in Gibb's thesis [17] do not take into account stress
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concentration factors in fittings. Considerable research has been conducted on the stress

concentration profiles resulting in drill string connections, because failure of borehole casings is

extremely risky and costly to the oil industry[3l]-[34]. The studies report that 80% of accidents

and failures occur from the stresses in the threaded region, and highlight it as the weakest point

in oil tubing and casing. The analyses indicate maximum stress concentration factors (SCF)

under axial loading vary within a range of 3.29 to 8.56, depending on the pin or box thread

profile. Figure 2-8 displays the standard thread profiles of interest and depicts the distribution

of stresses.

Pin LET

ZIR

R

Z

Box LET

Figure 2-8. Cross sectional diagram of a standard drill string threaded connection and finite

element analysis (FEA) model of stress distribution [31].

Another variable determining the failure of the threads is the torque sustained by the connection

of pipes, a scenario analyzed in Figure 2-9.
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Figure 2-9. Depiction of mean contact stresses experienced by individual pipe threads. Obtained

by analytical and finite element analysis in ANSYS models of an American Petroleum Institute

(API) 88.9 mm round threaded drillstring connection [34].

Note that at higher thread numbers, the mean contact stress exceeds the minimum yield strength

of the most API steels, resulting in partial deflection of the innermost threads. Table 2-7 presents

the material properties of standardized steels used in oil wells.

Table 2-7. API Steel Specifications [35]

Grade Minimum Yield Strength Minimum Tensile Strength
(MPa) (MPa)

H40 276 414
J55 380 520
K55 380 655
N80 550 690
L80 550 655
C90 620 690
T95 655 725
P110 760 860

Other SCF's to consider result from the welding of lids to the canisters [36][37]. The process of

welding the metal container to maintain a seal is required for any repository canister design, and

furthermore, residual stresses can result from the differential cooling of the welded metals.

Overall, SCF's from joints, welds and additional thermal stresses all contribute to reduce the
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maximum theoretical length of a waste string based on tensile stress. These SCF's on the

threaded connections would also apply when calculating the crushing strength or compression

limits of the waste canister column, a significant and limiting factor in the deep borehole canister

design (it was one of the initial motivations for the Gibb's multi branch design) [17].

2.3.3. MIT Emplacement Method Issue- Speed

Emplacement of canisters requires three steps -loading, lowering and retrieval of the string- each

of which can occur at different speeds. The process of loading a canister is similar to loading or

attaching a drill bit, which could in theory occur quite quickly given the expertise the oil industry

has developed. However, the difficulty of dealing with the radiation fields and heat production

should not be underestimated. Gibbs' thesis on multi-branch boreholes assumes a loading rate of

5 canisters/hour, waste lowering speed of 175 m/hr (0.04861 m/s) and a retrieval speed of 350

m/hr (0.08466 m/s) [17], and serves as a lower bound estimate for the winch speed of waste

deployment. An upper bound estimate for the speed assumes that individual canisters can be

lowered as fast as a high capacity deep ocean winch, which operates at approximately 2 m/s [38].

A summary of estimates for the waste canister trip times based on assumed winch speeds is

shown in Table 2-8, while estimates for the billing rates are shown in Table 2-9.

Table 2-8. Summary of trip times calculated for varying assumptions of the possible lowering
speed of a single canister to an average depth of 3 km.

Assumption Comments Lowering Retrieval Lowering Retrieval Round
Description Speed Speed trip time trip time trip

time
Lower bound Lowering speed 0.04861 m/s 0.0972 m/s 17.14 hrs 8.57 hrs 25.71
on speed of canister string (574 ft/hr) (1148 ft/hr) hrs

assumed in
Gibbs'
multibranch
thesis [17]

Median Lowering speed 0.08466 m/s 0.08466 m/s 9.84 hrs 9.84 hrs 19.68
estimate on of drill string (1000 ft/hr) (1000 ft/hr) hrs
speed segments, used

by Sandia in an
EGS drilling
study [9]

Upper bound Typical Ocean 2.0 m/s 2.0 m/s 0.416 hrs 0.416 hrs 0.833
on speed winch [38] (4.47 mph) (4.47 mph) (25 min) (25 min) hrs

I I_ _I_1_ _1 ( 5 0 m in )
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Table 2-9. Estimated billing rates during the emplacement process, assuming an 8 hr work day.
Source Descriptions Billing rate Billing rate

Multi-branch borehole Billing rate (emplacement) $4,830/hr $38,640/day
emplacement[ 17]
Multi-branch borehole Billing rate (emplacement, $10,500/hr $84,000/day
emplacement[17] while waste is at surface

being loaded and radiation
worker supervision is
required)

SKB 1989 VDH Billing rate of original drill $1,556/hr $12,445/day
assessment[23] rig plus fuel cost. (year 1989 dollars) (year 1989

dollars)
-$3,469/hr*

-$27,750/day*

SKB 2000 VDH Billing rate of rig -$6,257/hr* -$50,063/day*
assessment[29]

*(adjusted to present costs using MITDD, Table 2-4)

Overall, the billing rates lie in the range of $3,469/hr to $6,257/hr for normal emplacement

operations. The average value of the three estimates is $4,852/hr. Gibbs assumes that a billing

rate of $10,500/hr is appropriate during loading of the canister onto the drill string, which

requires additional radiation worker supervision. The total time and cost, combining assumed

loading times, winch speeds and billing rates are shown in Table 2-10.

Table 2-10. Summary of total loading times and costs for 400 canisters loaded per hole, with an
average value billing rate of $4,852/hr and a 10 minute
billing rate of $10500/hr) for each canister.

loading period (with radiation worker

30

,
Assumption Total trip Total time Radiation Total Total cost Cost/kg HM
Description time loading of worker labor Trip Cost (SM) emplaced

canisters loading cost ($M) ($/kg HM)
onto rig

Lower Bound 10268 hrs 66 hrs $700,000 50.237 50.937 $254.68
(of lowering
speed)
Median 7874 hrs 66 hrs $700,000 38.53 39.23 $196.1
estimate
(of lowering
speed)
Upper Bound 333 hrs 66 hrs $700,000 1.94 2.64 $13.20
(of lowering
speed)



With the upper bound winch speed of 2.0 m/s, a one-at-a-time approach could require as little as

400 hours to lower 400 canisters into a single borehole. However, the single canister approach

may also take as long as 10,353 hours, which when divided by 8 hours for a single work day, is

1285 work days. Using the average value billing rate, the operational cost of loading a single

borehole in this fashion is between $2.64 million and $50.9 million. Even with a conservatively

high winch speed, the emplacement cost is still the same order of magnitude as the drilling costs.

Dividing the operation cost by the total waste contained in a borehole, the deployment stage cost

per unit mass is approximately $13-$254/kg of heavy metal (HM). In total, a single crane would

take 11-472 years to stack canisters in all 400 boreholes needed for an 80,000 MTHM capacity

repository.

Alternatively, conservatively assume that 20 waste canisters could be connected and

disregard the structural and handling difficulties associated with a 100 meter tall, 40 metric ton

radioactive column. When lowered as a single drill-string segment (at the lower bound and

median speeds, appropriate for drill strings) the total operational loading cost is still on the order

of millions of dollars, as shown in Table 2-11.

Table 2-11. Summary of total loading times and costs for 400 canisters loaded per hole, with 20
canisters connected and lowered together. Assumes the average value billing rate of $4,852/hr
and a 10 minute connection period (with radiation worker billing rate of $10,500/hr) for each
canister.

Assumption Total trip Total time Radiation Total Total cost Cost/kg HM
Description time loading of worker labor Trip Cost ($M) emplaced

canisters loading cost ($M) ($/kg HM)
onto rig

Lower Bound 514 hrs 66 hrs $700,000 2.49 3.1957 $15.97
(of lowering
speed)
Median 393 hrs 66 hrs $700,000 1.9105 2.6105 $13.05
estimate
(of lowering
speed)

Figure 2-10 compiles the total cost information from Table 2-10 and Table 2-11 and presents it

in bar graph form.
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Figure 2-10. Overview of total emplacement costs ($M) calculated using various assumptions on
the lowering speed and number of canisters connected.

The conclusion from analyzing the various methods is that 2-3 million dollars is a minimum

loading cost for a borehole, using optimistic assumptions for either the lowering speed or

capability to connect canisters. If interconnection of canisters is not feasible, and winch speeds

are typical of current drill rigs, the costs are increased by an order of magnitude. These costs are

similar to those calculated by SKB, which assumed a deployment period of 365 days and a

minimum deployment cost of $11.8 million (1989 $). When this cost is converted to present

dollars using the extrapolated drilling index, it becomes $26.31 million.
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2.4. Chapter Summary

The challenges faced when designing an emplacement method for nuclear waste are exemplified

by the well documented cases of the Yucca mountain repository and SKB's borehole repository,

which are discussed in terms of methods, costs, equipment and logistics. The cost of

emplacement is highly dependent on the billing rate ($/unit time), and a comparison of three

studies is made to obtain an average billing rate of $4,852/hr, for a typical drill rig used during

deep borehole operations. To accurately convert the cost estimates from the comprehensive- but

decades old- SKB feasibility studies on VDH, an extrapolated drilling cost index is developed.

A critical analysis is completed on the structural and time issues inherent in a drill string method

for lowering waste into boreholes. The costs for the drill string method are estimated to be on

the order of millions to tens millions of dollars, the same as drilling costs which have recently

been focused on as a dominating factor borehole repository economics.
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3. Proposed Emplacement Method

3.1. Chapter Introduction

Economics and safety are the two primary driving forces in the nuclear industry. As a result,

it is desirable to reduce the cost, complexity and number of components needed for the

emplacement system to operate reliably. A recent study suggested that the DBWD could provide

a significant cost reduction over currently accepted disposal strategies (mined repositories), from

reduced operation and emplacement costs [13]. This study attempts to improve the expense,

speed and safety of the DBWD program by proposing a much less complex rig and process for

the deployment stage.

3.2. Drop-in Method Description

The suggested alternative is fundamentally simple- fill the borehole with water, line up the

canister above the column of water, and release the canister in a controlled manner. Water is

suggested as a fluid because it is cost effective, abundant, non-toxic, and simple to transport and

dispose. Additionally, it is transparent, which allows for the use of cameras (with a light source)

for down-hole inspections and operations. Overall the method is suited to a vertical, fully-lined

borehole where the diameter and direction of the hole and canister are constant. The certainty in

geometric and hydraulic parameters provides certainty in the passively determined drag forces

and thus velocity. As a precaution, an unfueled/waste-free canister which reports its velocity

and location could be dropped first, to ensure that the borehole has been lined correctly and there

are no unexpected angles or obstructions. This confirmation could also be achieved by lowering

a wired camera, radar or other measurement device to manually inspect the integrity of the

borehole lining. Based on drilling experience, the directional accuracy of the borehole lining is

not expected to be an issue. For example, when the KTB borehole- drilled in Germany- reached

a depth of 7.5 km, the borehole had only deviated from its original axis by 12 meters [39].

3.3. Reference Canister Design

The optimal canister and borehole design is a function of many factors, such as the cost of

drilling, cost of materials, structural factors, corrosion issues, and plug and granite composition

and performance. Although the factors involving cost have been estimated and discussed
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numerous times previously, the remaining issues require significant research for a borehole

design to be finalized. As a starting point upon which to test the feasibility of the drop-in

concept, the canister design for a vertical borehole was taken from Hoag's MIT thesis [12].

Sandia National Lab's (SNL) investigation of deep borehole cost and performance also uses

Hoag's design as a reference [13]. The most relevant properties of the design are depicted in

Figure 3-1.

0.387 m

Canister Properties
D, (outer) = 0.34 m
Thickness= 12.19 mm 5 m
M= 2000 kg
l = 5 m
Material: J55- P110 steel

Figure 3-1. Cross sectional view of the proposed emplacement method, based on Hoag's design
for the pipe lining and canister dimensions [12] Not to scale. Note that the gap between the
canister and the lining is an annulus with a thickness of 2.35 cm.

Hoag's design is based on structural, thermal and other geometric criteria to comply with oil and

nuclear industry standards. Firstly, the diameter of the canister was chosen to be the minimum

diameter standard oil casing that would fit a 303mm diagonally wide, fully intact PWR

assembly. The length is not a limiting factor, and a standard oilfield casing is assumed to be cut

in half to be 5 meters long (to contain a 4.059 m or 4.476 m long PWR or BWR assembly,

respectively). The constituents and their masses are summarized in Table 3-1.
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Table 3-1. Reference borehole canister components and masses [12]

Component Description Mass
Spent Fuel PWR assembly 600-700 kg

(of which 500 kg is heavy metal)
Fill particles Silicon carbide for crushing resistance 600-700 kg
Casing and lids P110 (API) steel 700 kg
Total 2000 kg

To ensure interim retrievability and waste containment within the canister (at least during the

emplacement phase), the structural limits of the canister must be analyzed. The bottom canister

in the 2 km column of waste canisters (800 MT) experiences substantial axial compressive

stresses and hydrostatic pressures. Hoag and Gibbs suggested that filler material such as silicon

carbide particles be inserted into the canister prior to sealing, improving crushing resistance (and

heat transfer), but further investigations would need to experimentally verify this [12],[17]. More

recently, Driscoll has suggested the use of a cast iron insert within the same diameter casing [40].

Although each canister would be significantly heavier (3600 kg, including interstitial sand) the

bottom-most canister would experience an axial compressive stress of 260 MPa, which is a

factor of two to three less than the reported yield and tensile strength of ASTM A339 and A395

steels. Future investigations may continue to modify the canister design because of the tradeoff

that occurs between cost, corrosion resistance and strength of canister materials. In the face of

uncertainty with regards to the final canister design, Hoag's design is used as the reference.

3.4. Suggested Handling Procedure

First, at a centralized facility, assemblies must be unloaded from arriving transportation casks

and loaded individually into DWBD canisters (a process that typically is completed underwater

for radiation protection). The canister would then be filled with interstitial particles (for crush

resistance) and/or a cover gas such as helium to increase heat transfer and reduce corrosion.

Finally the lids are welded shut and inspected through non-destructive evaluation techniques

(NDE) [41]. Overall the initial cask loading process would very similar to that of the Yucca

mountain repository. A depiction of the Yucca mountain canister loading and welding facility is

shown in Figure 3-2.
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Figure 3-2. An illustration of the Yucca Mountain waste package closure system, robotically
welding a waste package lid in place [41]

After sealing and inspection, the waste canister must be transferred into a shielded cask,

for safe transportation from the central facility to the borehole for emplacement. The shielding

cask is further discussed in Section 6.2. Transferring the cask to the borehole requires a remote

controlled truck (preferred) or rail machine, capable of maneuvering a shielded concrete cask.

The design could borrow from the Yucca mountain rail transporter shown in Figure 2-2 or other

vertical emplacement gantries suggested for shallow mined repositories. In this case the cask

will be lighter and easier to handle because it only contains a single assembly (~10 vs. 50 metric

tons). Instead of having a separate emplacement gantry to lower the waste, the two machines can

be integrated to save time and reduce complexity. Compared to the originally proposed drilling

rig, a drop-in concept rig will be relatively simple. One possible truck loading mechanism,

similar to a vertical emplacement method proposed for salt repositories [42], is depicted in

Figure 3-3, Figure 3-4, and Figure 3-5.
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Transport truck

Pivot

Figure 3-3. Diagram of the lifting step of a proposed emplacement method.

Canister

Rotating
supports

Flooded, lined
borehole L

Transport truck

Figure 3-4. Diagram of intermediate step of a proposed emplacement method.
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Figure 3-5. Diagram of the final lowering step of a proposed emplacement method.

As the canister is lifted up from the transporter bed, a safety door beneath the concrete cask

serves as an extra layer of safety preventing accidental release of the canister. After the cask is

fully lifted and lined up above the borehole, the sliding safety door begins to retract, and the

supports that hold the canister within the cask begin to rotate. The rotating support system is

also a redundantly safe system, because if one side of the support fails (releases completely), the

other support maintains the canister within the cask, and is still capable of lowering it in a

controlled fashion.

3.5. Chapter Summary

This study is motivated by a desire to reduce radiation handling requirements and expedite the

repository emplacement process for nuclear waste. A simple drop-in method is proposed, and in

the face of uncertainty regarding the optimal borehole canister design, a reference canister design

is chosen for analysis. Finally, an emplacement mechanism for transporting and releasing the

canisters with shielding is proposed. The design keeps a strong emphasis on redundant or

passively safety features to prevent accidental drops, and is feasible with current technology.

39



4. Analytical Modeling of Proposed Emplacement Method

4.1. Chapter Introduction

A main goal of this study was to demonstrate that the canister will reach a safe terminal velocity

and that the impact will not damage the canister significantly. The nature of the problem (steady

state fluid flow) lends itself to an analytical solution, which allows for much better understanding

of the important variables, compared to numerical modeling. Furthermore an analytical solution

improves the design process of experiments and scalability of additional safety features, such as

drag inducing components. This chapter outlines the approach and simplifying assumptions

made in deriving a closed form solution of the canister velocity.

4.2.Assumptions and Equations

The analytic model is based on solving force balance and momentum equations, assuming steady

state, incompressible fluid flow. A force balance diagram is depicted in Figure 4-1.

I
Figure 4-1. Depiction of gravitational, shear and pressure based forces that act on the canister as

it falls at terminal velocity.

The force balance on the canister can be written as Eq. (4-1)

fV2

P1 - P2 = Pc9l - f -
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where P is the liquid pressure acting on the top surface of the canister, P2 is the liquid pressure

acting on the bottom surface of the canister, pc is the density of the canister, pf is the density of

the fluid, V is the average fluid velocity, g is the gravitational constant,f is the friction factor, I is

the length of the canister and D, is the diameter of the canister. The momentum equation for the

fluid, taking into account form and frictional pressure drops, is written as Eq.(4-2),

P1-P2 (f + Korm) + pfgl (4-2)

where KO,., is the form loss coefficient associated with the flow geometry, Dh is the hydraulic

diameter (equivalent to twice the size of the annular gap).

4.2.1. Closed Boundary Condition

In this expected condition, the volume of the water beneath the canister was assumed to be

constrained (and unable to flow in any direction besides through the annulus). In addition, the

water was considered to be incompressible. Therefore, as the canister moves downwards, the

water volume it displaces will be forced to flow through the annulus. The continuity relation

yields Eq. (4-3) (see Appendix A.3),

Vf Dc2  (4-3)

Vc Dh(2Dc + D) ratio

where Vf and Vc are the magnitudes of the canister and fluid velocities, respectively. For Hoag's

canister design [12], Vatio is approximately 3.4 (the ratio of the average velocity of the fluid in

the annulus to the velocity of the canister is 3.4). However, the fluid travels in the opposite

direction of the canister. The relative velocity of the fluid to the canister surface is greater than

the fluid's velocity in the stationary frame of reference. If the latter were assumed as the velocity

of the water in the gap, it would significantly underestimate the frictional forces on the canister.

To take this into account, the reference frame is shifted by a constant velocity, such that the

velocity of the canister in the new reference frame is zero. This is acceptable because the

standard momentum, continuity and energy equations apply in any frame of reference, as long as
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the frame is not accelerating. The calculation of the friction factor in the annulus will be slightly

overestimated in this frame of reference, because the outer pipe has a small velocity that is in the

same direction as the water flowing in it. No correlation could be found that describes the

friction factor in an annulus with a moving boundary. By intuition, it is postulated that most of

the shearing will occur near the surface of the canister, and thus it is more important to

accurately model that phenomena/region. Furthermore, the experimental data will support or

disprove this simplifying assumption. Eliminating P - P2 from Eqs. (4-1), (4-2) and (4-3), (see

Appendix A.3) the expression for terminal velocity for the canister in this case is Eq. (4-4):

2gl (P"- 1)
VC = Pf+ ) (4-4)

( + )+ Kform] (Vratio + 1)2

Vratio depends only on geometry, and is given by Eq. (4-30). The friction factorf can be

calculated using the Colebrook equation iteratively, but a closed form expression such as the

Swamee-Jain correlation could alternatively be used [43]. Kforn is the loss coefficient for a

sudden contraction and sudden expansion resulting from the bottom and top edges of the

canister, respectively, shown in Eq. (4-5) [44],

Kf orm = Ksudden contraction + Ksudden expansion = 0.5 + 1 = 1.5 (4-5)

4.2.2. Open Boundary Condition

Analysis was completed to address a potential accident scenario of the drop-in concept. This

condition postulates that the bottom of the borehole is not sealed or lined properly. In this case,

the volume of the water beneath the canister is assumed to be free to flow downwards (or into

another volume besides the borehole). Therefore, as the canister moves downwards, the water

displaced by the canister is not forced to flow through the annulus. This scenario is practically

impossible for at least two reasons: (i) a massive rupture of the borehole lining is extremely

unlikely, and (ii) there is no large free volume available for water displacement in granite.

Despite this the scenario was still analyzed as a bounding case. Here, there is no simple
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relationship between Vc and V,. In this situation, analysis of the boundary layer and velocity

distributions are critical to understanding the shear forces on the canister. If the boundary layer

is small compared to the actual gap, then the solution can be approximated by estimating the

canister's velocity in a large pool of water. Under these conditions of external flow, the canister

terminal velocity can be derived by using its coefficient of drag, approximately 1 for this case

[44], and force balance, which gives Eq. (4-6) (see Appendix A.4 for derivation),

V = F2gl ( - 1(46

Plugging in the values from the reference canister design [12], a physically feasible canister

terminal velocity of 18.3 m/s was obtained, with a Reaxial of 6.6 x 106. The maximum size of the

boundary layer is calculated using Eq. (4-7) [43],

S = 0.161(Reaxial)-1/7 = 8.49 cm (4-7)

In this case, the boundary layer is nearly 4 times larger than the actual gap that it is constrained

to fit in. Therefore, the assumption of external flow is not valid, and can only be used to obtain

an upper bound estimate of the canister velocity. In reality, viscous effects in the boundary are

more important because the boundary layer is forced to fit in such a small gap.

The most accurate approach estimated the velocity distribution in the gap using Von

Karman's Universal Law [43]. Using the no-slip boundary condition, the velocity was

constrained to be a maximum (and equal to Ve) at the surface of the canister, and zero at the outer

lining diameter. With this approximate velocity distribution, a friction factor for flow in the

annulus was derived (see Appendix A.4) to be Eq. (4-8),

f 0.86261n(Rej) - 0.588 (4-8)
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Combining Eq. (4-8) with the approximated velocity distribution and force balance expressions,

Eq. (4-1) and Eq. (4-2), gives Eq. (4-9),

2gl ( 1
Vc = (1 + 0.8626J) _ ( + ) + Kform)

-(f +h +D K

4.3. Discussion of Solutions

For the closed boundary condition, substituting the reference canister properties into Eq. (4-4)

and using surface water conditions yielded a modest canister velocity of 2.37 m/s. The friction

factorf was calculated iteratively using the Colebrook correlation [43] to be 1.30 x 102. Koon

was calculated from tables [44] to be 1.5 (as the canister causes a sudden contraction and

expansion of the flowing fluid). Assuming a granite and water temperature of 1200 C at the

bottom of the borehole (hydrostatic pressure prevents boiling), the estimate for the terminal

velocity rises slightly to 2.6 m/s. Overall, this approach is conservative because the friction

factor was calculated assuming the canister and pipe are hydraulically smooth.

For the open boundary condition, using the reference canister design and iteratively solving Eq.

(4-9) gives a canister velocity of 11.51 m/s. The terminal velocity in this extremely conservative

bounding case can be put into perspective by considering the fact that the same velocity would

be achieved if the canister was dropped in air from a height of only 6.75 meters (only 20%

longer than the total length of the canister). In reality, the canisters, which are designed to

withstand very high compressive stresses, will be engineered to sustain such velocities, in case of

accidental drop during transportation (see Section 6.3 for more analysis).

4.4. Dimensional Analysis

Scaling of fluid dynamics phenomena involved in the canister free fall is needed for the design

and interpretation of the experiments described in the next chapter. Scaling must be based on

dimensional analysis to ensure that it simulates the fluid flow of an actual borehole as closely as

possible. The relevant design variables were found from inspection of Eq. (4-4) and Eq. (4-9)

and are presented in Table 4-1 and graphically depicted in Figure 4-2.
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Table 4-1. Definition of all relevant variables and their respective dimensions, where M stands
for Mass L stands for Length. and T stands for Time.

Abbreviation Description of Variable Dimensions
Dc Diameter of Canister L
t Gap Thickness L

Dh Hydraulic Diameter* L
/ Length of Canister L

Pc Density of Canister M/(L')
pf Density of Fluid M/(L )

p Viscosity of Fluid M/(L T)
g Gravitational Constant L/T1
E Surface Roughness L

V Velocity of Fluid L/T
*Note that the Hydraulic Diameter for a concentric annulus is equivalent to 2t.

Dh /

PC

i PfpI1-

Vf 4

w
Figure 4-2. Diagram of all variables required to calculate the terminal velocity of the canister

falling in a pipe of fluid. Variables are defined in Table 4-1.

Since there are 8 independent variables and 3 dimensions, there are 5 dimensionless parameters

that describe the system. They are the Reynolds number (Re), which implicitly represents the

velocity of the canister, and thus is the dependent variable,

(4-10)
Re = pfVf D

p1
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the geometric and material property ratios,

E I Dc (4-11)
Dh 'Dh' Dh

and the Archimedes number (Ar) which captures the buoyancy effects,

A_ = Pf(Pc - pf)gDh (4-12)
P2

Then the Buckingham Pi Theorem ensures the functional dependence captured by Eq. (4-13),

Re=f(Ar, , ,) (4-13)
Ite~kJDft Dh' Dh)

Further manipulation of Eq. (4-4) (see Appendix A.5) yielded a direct confirmation of the

Buckingham Pi Theorem- a dimensionless form of the solution, Eq. (4-14),

Ar (2)
Re= Dft (4-14)

(1+1) +Kform

4.5. Chapter Summary

Direct analytical solutions were obtained for both the expected closed and unlikely open

boundary condition for the fluid. Solution of the open boundary condition involved

approximating the velocity profile for the boundary layer. A dimensional analysis was also

completed and verified, through further manipulation of the analytical solution into a

dimensionless form. Overall the analysis makes few approximations regarding the fluid flow

and reveals a remarkably simple functional form of the canister and fluid properties. The result

is completely consistent with intuition that a greater difference in canister and fluid density

(captured by higher values of the Ar number) increases canister and thus fluid velocity. The

friction factor parameter (which contains surface roughness effects) and form loss coefficients

directly reduce the terminal velocity of the canister.
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5. Experiments

5.1. Chapter Introduction

Experimental design, setup, and execution were a large component of this study and necessary to

demonstrate that the assumptions within the analytical modeling process and predictions for

terminal velocity (summarized in Section 4) do not oversimplify the process. Furthermore,

experiments allow for more complex investigations of drag-inducing and safety features.

5.2. Design Considerations

5.2.1. Controlled Variables

From Eq. (4-14) it is clear that the most important, controlled, independent variable is the

Archimedes number (Ar), which is determined by the specific density of the canister, the

geometric ratios, and the fluid properties. The two simplest ways to vary this are to adjust the

mass of the canister and viscosity or type of the fluid. In addition to the Ar, the friction factor (f)

can be increased by roughening the surface of the canister, and Kform can be increased by adding

form losses to the fluid flow. Table 5-1 presents a summary of the controlled variables and

methods for variation.

Table 5-1. Summary of independent variables for the borehole emplacement experiment.
Independent Variable Dimensionless Group Method of Variation

Density Ratio (Density Ar Change the mass of canister by adding
of Canister/Density of or removing lead pellets.
Fluid)
Viscosity of fill fluid Ar Change the fluid properties via

temperature or by choosing another
fluid.

Roughness of canister f Roughen the outside of the canister by
attaching sandpaper.

Form losses of canister Korm Attach items which restrict fluid flow.

5.2.2. Canister Size

The experiment was initially designed to meet a number of space, cost, safety and time

restrictions. Vertical space constraints (the 3 meter height of a single story of the laboratory)
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were ensured by numerically integrating the force balance and momentum equations (see

Appendix A.6). This gives an estimate for velocity profile and distance traveled of the scaled

canister, as a function of time and verifies the assumption of steady state flow in of Eq. (4-4) and

Eq. (4-14). For the purpose of cost and ease of cutting, the canister and lining was constrained to

standard plastic piping dimensions. Acrylic was chosen as the material for the outer lining to

allow for observation of the canister during the drop test. Since plastic piping was used, lead

particles were chosen to increase the total density of the canister and compensate for the low

density of plastic. The lead pellets were sealed within the plastic canister using an adjustable and

removable rubber plug, so that the same canister could be used multiple times with varying

amounts of lead shot. The mass of the canister had to be low enough such that it was still

possible to safely lift by hand, to expedite modification, removal and transportation of the

canister between tests. This limited the canister mass to approximately 15 kg. Using a total

specific density of approximately 4 (the same specific density of a full scale canister) and

retaining geometric similarity (l/Dc), an estimate of 1 meter was obtained for the appropriate

length of the canister. The closest diameters of standard piping that could be obtained to

conserve the aspect ratio (l/Dh), was a 31/4 inch outer diameter (OD) acrylic pipe to simulate the

outer canister, and a 2 5/8 inch OD plastic pipe to simulate the inner canister. The dimensions of

the standard pipes used are shown Table 5-2 and depicted in Figure 5-1.

Table 5-2. Summary of standard pipes and measured dimensions, (+/- 0.021 cm)

Standard Pipe Measured Outer Measured Inner Thickness
description (nominal) Diameter Diameter
2 5/8 inch (OD) Plastic 6.69* cm 5.662 cm 0.499 cm

Pipe- Canister (2.635 inches) (2.229 inches) (0.203 inches)

3 inch (OD) cast acrylic 8.279 cm 7.6327* cm 0.3175 cm

pipe- Lining (3.2595 inches) (3.0005 inches) (0.125 inches)

*The bolded quantities are the relevant dimensions that affect the velocity of the canister.
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7.63 cm

Scale Canister
Properties

Diameter = 6.67 cm
Mass= 15 kg
Length= 1 m

Shell Material: Plastic
Fill Material: Lead pellets

Water

Cast Acrylic Piping
with 7.63 cm ID

2 m
(6.5 ft)

Figure 5-1. Materials and relevant dimensions of the initially designed experimental setup.

Using the dimensions provided above, an estimate for the vertical distance required was obtained

and is graphed in Figure 5-2.
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Figure 5-2. Results of numerical integration of force balance equations for a 14.79 kg canister
with diameter of 0.067 m, length of 0.983 m and lining diameter of 0.07632 m dropped in water.
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Notice that this canister design reaches terminal velocity quite quickly (within 0.3 seconds) and

within a short distance (0.2 in). Overall, the analysis produced a lower bound on the height

required, because the model assumed a constant friction factor (for ease of computation), steady

state and fully developed flow, which is not the case when the canister is accelerating from rest.

This is because the fluid experiences greater shear forces and higher friction factors in the

developing regions and at lower Reynolds when it is accelerating [44], implying that the model

would produce lower than actual estimates for the height required for terminal velocity. With a

multiplicative safety factor of two applied to the total distance required to reach terminal velocity

(0.4 m) , the experimental design still satisfied the initial space requirements. Overall this

corresponded to an approximate geometric scaling of 5 to 1.

5.2.3. Materials and Fluids

Inspection of the Ar reveals that since a factor five reduction of Dh occurs, the viscosity of the

fluid should be decreased by a factor 11.18 to retain complete dimensional similarity with the

full scale canister. Figure 5-3 confirms that a higher Ar is achieved with lower viscosity fluids,
and presents a comparison of the alternative fluids and their effects on the Ar and Re.

Reynolds Number vs. Archimedes Number (Modeled)
1.OOE+06

1.OOE+05 - -- Olive Oil

* Sucrose (60%)
S1.00E+04 E A Sucrose (40%)
z

1.00E+03 x Sucrose (20%)

1.00 x Water (20 C)>1.OOE+02 ---
* Methanol

1.00E+01 - -
Water (50 C)

1.00E+00 -- Water (80 C)

1.OOE+03 1.OOE+04 1.OOE+05 1.OOE+06 1.OOE+07 1.OOE+08 1.OOE+09 Water (90 C)

Archimedes number

Figure 5-3. Log-log plot demonstrating of the effect of fluid choice on Archimedes and
Reynolds numbers (and thus terminal velocity) for the reference, experimental scale canister.
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Obtaining suitable fluids with much lower viscosities than water is difficult, especially

considering that the viscosity of water can be reduced substantially simply by increasing

temperature. Table 3 summarizes the comparison of fluids with lower viscosities.

Table 5-3. Comparison of alternative fluids lower viscosity than the reference case, room
temperature water.
Fluid Relative Viscosity Pros Cons

(Compared to 250 C water)
600 C 0.475 -Cheap -Use of thermometer
Water -Easy to -Scalding hazard

clean/dispose -Need to insulate pipe
-Plastic melting/swelling

Gasoline 0.46 - Cheap -Inhalation hazard
-Flammability

Methanol 0.65 -Inhalation hazard, skin
hazard
-Flammability
-Highly toxic if ingested
-Dissolves plastics

Water was chosen as the fluid fill, and the difficulty of dealing with higher temperatures was

concluded to be much less than the danger of dealing with toxic or flammable chemicals that

may be incompatible with plastic (which would prevent reuse of the canister and lining).

5.2.4. Instrumentation and Procedure

The mass of the canister was determined by using a Pelouze PE5 2.2 kg capacity (+/- 0.5 g)

digital scale to measure the mass of the components of the canister (each bag of lead shot,

canister, end plugs) and summing them together. Velocity was measured using a light-weight

nylon fishing line attached to the top of the simulated canisters and wound around a Vernier

rotary motion meter's pulley. The rotational velocity of the meter was recorded using Vernier's

Logger proTM software, specifically designed for use with that rotary motion sensor. This

minimized costs and post processing of data (especially compared to a conventional method of

using a high speed camera) and allowed for a very high level of accuracy and repeatability. The

sensor is depicted in Figure 5-4.
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Figure 5-4. Photos of the Vernier rotary motion sensor used in the experiments.

The sensor and software recorded position, velocity and acceleration at a rate up to 100 hertz

(1/second) within 1 degree of rotation. The middle 29 mm groove diameter was used, and this

corresponds to a positional accuracy of 0.253mm.

At the start of the experiment, the canister was lifted to the surface of the water by hand

using the pulley and high strength rope that was tied to the top of the canister. The canister was

held at the surface for a period of 10-20 seconds to minimize the effects of upwardly flowing

water that result from the lifting the canister. The rope was abruptly released and the canister

was allowed to fall freely. Care was taken to ensure that the high strength rope could travel

without obstruction into the pulley, to prevent jamming and reduce friction effects. The terminal

velocity was calculated by determining the time interval over which velocity remained relatively

constant and averaging the velocity values in said interval. Temperature (and thus viscosity) was

varied by adding insulation to the pipe and beginning the experiment with >90' C water. Over

the course of many hours as the temperature fell slowly, the canister was repeatedly dropped and

the temperature and velocities were recorded. The low friction sensor pulley and a series of tests

eliminated nylon string issues from concern (see Appendix B.5). Figure 5-5 presents the

conceptual design diagram of the measurement setup, while Figure 5-6 is a labeled photo of the

actual experimental setup.
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Figure 5-5. Conceptual design of the experimental setup.

Figure 5-6. Photo of the attached pulleys, rotary motion sensor and insulated acrylic pipe.
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5.3. Results

5.3.1. Dimensional Similitude of Experiment

The test facility scaled down all geometric and material parameters approximately by a factor of

5, to fit in the lab space. Table 5-4 presents a comparison of the geometric and mass parameters

of the full and experimental scale canister designs.

Table 5-4. Comparison of parameters between the full scale and experimental scale canisters.

Parameter Full Scale Experiment
Canister Length (m) 5 0.983
Canister Diameter (m) 0.34 6.70 x 10~2
Lining Diameter (m) 0.387 7.63 x 10-2
Hydraulic Diameter (m) 0.047 9.22 x 10-'
Canister Volume (M3) 0.4539 3.465 x 10-3

Canister Mass (kg) 2000 14.79
Canister Density (kg/m 3) 4405 4264
Surface roughness (micrometers) 46* 1.5*
Water Dynamic Viscosity (Pa-s) 1.00 x 10- 1.00 x 10-3

Water Density (kg/m 3) 1000 1000
*Surface roughness parameter from [43], for smooth steel and plastic respectively.

A comparison of the dimensionless parameters is shown in Table 5-5.

Table 5-5. Dynamic similitude of experimental parameters, during tests that varied Ar.

Dimensionless Groups Full Scale Experimental

Ar 3.46 x 109  1.7 x 107 - 2.5 x 10'

9.78 x 1.63 x
Dh

_1 106.4 106.6

Dc_ 7.23 7.26
Dh

Pc 4.4 2.4-4.3

Pf

Re, predicted using Eq. (4-14) 4.24 x 105 2.4 x 104 - 1.1 X 101

*Roughness values for reference,
roughness.

smooth case. Section 5.4.2 discusses the effect of additional
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The similarity of dimensionless parameters is quite good, especially considering the restrictions

on space and pipe size availability that were met. The only dimensionless parameter that is

significantly lower is the Ar, and Section 5.3.2 investigates this relationship to prove that the

analytical results can be extrapolated accurately into that region.

5.3.2. Effect of the Archimedes Number (Ar) on Reynolds Number (Re)

Initial experiments varied Ar by changing the mass of the canister, while using 22.54 C water.

Figure 5-7 presents a comparison of the modeled vs. experimental results for the first

experiments completed using a 14.79 kg reference sized experimental canister on May 26, 2010.
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Figure 5-7. Experimental results from the first set of experiments on May 14, 2010 using a
14.79 kg canister. Note that run #1 was recorded at 80 hz, run #2 was recorded at 20 hz, and run
#3 was recorded at 100 hz.

The runs converge very closely to a predicted terminal velocity of 0.889 m/s, although there is

some oscillation about that value. The sensor was tested at multiple sampling rates (20, 80, 100

hz) to ensure that the sample rate did not have an effect on the accuracy of the sensor reading.

Note that even though there were only 3 separate drop tests, each run constituted multiple

measurements of the terminal velocity. For example with run #3, within the region of terminal
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velocity (between 0.36 seconds and 0.8 seconds), 43 samples are taken. The averaged terminal

velocity over all 93 samples taken in the regions of terminal velocity is 0.89 m/s.

A total of 33 room temperature (22.5* C) drop tests were conducted with canister masses

of 8.19 kg, 10.39, 12.59 and 14.79 kg (see Appendix B.2 for graphs). Furthermore, an additional

29 drop tests occurring in water temperatures between 48* and 920 C, using a 14.40 kg canister,

yielded results over a much broader range of Ar. The results of all the tests are summarized in

Figure 5-8.

1.4 -X 105

1.2 . A Experiments
(22.50 C)

1.0 -
+ Experiments

(48*- 92 0C)
0.8

.----'---- Analytical

S0.6 Prediction
(upper bound)

-0Analytical
.4 Prediction

0.2 - --------- Analytical
Prediction

0.0 ___(lower bound)
0.0- I Ix10

8

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Archimedes Number

Figure 5-8. Summary of all 62 borehole drop experiments completed to investigate the
relationship between the Reynolds number and Archimedes number for the fluid flow.

The error analysis and bounds are described in Appendix B.5. Overall, the model captures the

viscosity dependence of the canister velocity accurately. An identified, but difficult to measure

and quantify source of error is the differential thermal expansion of the canister, which can

change hydraulic diameter -a crucial parameter in the terminal velocity expression. In fact, when

the canister was taken out after extended immersion in the fluid which had reached 48* C, the

diameter had increased by 0.5 mm. However, the inner diameter of the lining within the zone
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exposed to hot water could not be measured to obtain an accurate estimate of the total change in

hydraulic diameter.

5.3.3. Analytical Model Verification

Regression is a common method to analyze and draw out relationships in data. For the series of

runs described in Section 5.3.2, the canister dimensions and form losses stayed constant and Eq.

(4-14) can be simplified in form to Eq. (5-1).

Re = CVA-~ = C(Ar)0 .5  (5-1)

where C is defined by Eq.(5-2).

2-
C ) Dh (5-2)

f + )+ Kform

The friction factor varies slightly with the temperature of the fluid and the speed of the canister,

between 1.7 x 10-2 and 2.2 x 10-2. Substituting the constant experimental canister values of 1, Dh,

Kforon, and relatively constant value off into Eq.(5-2) reveals that C varies between 7.12 and

7.79. Figure 5-9 plots the same experimental data as Figure 5-8, in terms of ln(Ar) vs. ln(Re).
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Figure 5-9. Plot of the experimental drop data demonstrating the underlying relationship of
ln(Ar) vs. In(Re). Data obtained through a total of 62 drop tests with variation of water
temperature between 22.5* and 92* C, and canister density between 2363 and 4264 kg/m 3.

With an R2= 0.997, the graph is fitted by the line described by Eq.(5-3),

ln(Re) = 0. 493 ln(Ar) + 2.0615

ln(Re) = ln(Ar 0 4 9 3 ) + 2.0615 (5-3)

raising both sides by the power of an exponential,

eln(Re) = eln(Aro.
4 9 3 )+2.0615

(5-4)
Re = e2.0 615 Ar 0 4 93

which produces Eq. (5-5)

Re = 7.85 Ar 0 .4 9 3
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These regression parameters are very close to the analytically derived curve parameters, in terms

of the constant (7.85 vs. 7.45) and exponent of the Archimedes number (0.493 vs. 0.5). This

further validates the analytical, dimensionless expression for terminal velocity, Eq. (4-14).

5.4.Additional Investigations

5.4.1. Effect of Drag Inducing Features

Additional experiments were completed to determine the effect of a drag inducing feature (in this

case a rubber disc axially protruding 6.66 cm in front of the canister). The drag inducing feature

is shown in Figure 5-10.

66.6 mm

Figure 5-10. Drag inducing feature (plug) of the simulated borehole canister, showing the

diameter and the axial distance from the canister.

The plug was adjusted to have a diameter as similar as possible to the canister. With the same

diameter as the canister, the plug is modeled with the exact same continuity, velocity ratio, and

momentum relations as the canister. In short, this allows it to be modeled as an additional form

loss to the fluid flow- (see the term "K n,,," in Eq. (4-14)).

Secondly, the plug extended beyond the canister by approximately the diameter of the

canister. It was postulated that this would be an appropriate, yet minimal length that would still

have an effect. An analogy to consider is the situation of a protruding pipe into a pool, which

has a separate entry effect (form loss), if the length that it protrudes is greater than half the
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diameter of the pipe, because of separation of the boundary layer [45]. In practical terms, the

plug protrusion length should be minimized because even 6.66 cm of plug length becomes 0.33

meters when scaled up. When stacked 400 times for each canister, the plugs begin to detract

from valuable vertical space within the borehole. This approximately square symmetry also

allows for the designed form loss to easily be scaled up.

If the disc is modeled as a sudden contraction and expansion it provides an additional

Kf,,, of 0.5 + 1=1.5 [44]. However, the plug provides a gradual expansion, so the second term

would tend to be less than one. Overall this leads to a predicted total Kform in the range of 2 to 3.

In six experiments run at water temperatures between 72'C and 77.5'C, the modified canister's

terminal velocity was more than 10% lower than the unmodified canister velocity in previous

experiments. The results are these tests shown in Figure 5-11, with the data from Figure 5-9 also

shown for reference.

A Experiments
(22.50 C-
92 C), no
drag inducer

* Experiments
(720 C-
77.50 C,
Drag
Inducing)

15 16 17 18 19 20
ln(Archimedes Number)

Figure 5-11. Plot of the experimental drop data demonstrating the underlying relationship of
ln(Ar)vs ln (Re), with the effect of an added form loss. Drag inducing data obtained through 6
drop tests with variation of water temperature between 72.5.50 and 77* C, with a canister density
4335 kg/m3 .

Notice a downward shift in the line resulting from the form loss; however, the slope appears to

be similar. Repeating a similar regression process as in Section 5.3.2, with an R2 = 0.78, the

graph is fitted by the line described by Eq.(5-6),
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ln(Re) = 0. 4924 ln(Ar) + 1.91

to produce Eq. (5-7),

Re = 6.753 Ar 0 .4 9 2 4  (5-7)

Once again, the exponent (which theoretically should be 0.5) is quite accurate. Using a friction

factor of 1.83 x 10~2 and substituting in the canister's properties into Eq. (5-2), Kform is calculated

to be 2.45 (expected to be range of 2 to 3). Therefore, it was concluded that the analytical model

accurately accounts for the effect of additional drag-inducing features, and that a drag-inducing

feature can be effective in reducing the velocity of the canister.

5.4.2. Effect of Surface Roughness

The friction factor has a very strong dependence on the surface roughness. For example, on a

standard Moody diagram, if the relative roughness is great enough (greater than 0.05), the

friction factor is almost solely determined by the relative roughness and is only minimally

affected by the Reynolds number. From this it was postulated that increasing the roughness of

the canister could greatly reduce the terminal velocity. The simplest method to increase the

roughness of the test canister involves using standardized sandpaper. Understanding the surface

roughness of such paper is important in the designing the experiment. The average particle sizes

of various standard sandpapers have been reported [43]. Investigations of the relationships

between the many measures of surface roughness indicate that the roughness value E (also

referred to as ks) can be approximated by the average particle size as in Eq. (5-8) [46],

k5 = 1.23d5 o (5-8)

Figure 5-12. presents the particle size and roughness values across the entire range of

commercially available standard U.S. ANSI 74 sandpaper grits
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Figure 5-12. Average particle size and relative roughness (ks/Dh) as a function of sandpaper grit
(ANSI 74 standards), for the experimental scale canister. Particle sizes compiled from [47],[48]
and ks calculated using Eq. (5-8).

According to Figure 5-12 the "fully rough" relative roughness of 0.05 can be achieved at the

experimental scale using the roughest commercial sandpaper (50 grit). The minimum grit of

adhesive sandpaper that was available for purchase was 60 and 80 grit. According to Figure

5-12, 60 and 80 grit sandpaper have particle sizes of 271 and 195 microns respectively,

corresponding to a predicted relative roughness of 0.0379 and 0.022 respectively. Confocal

microscope analysis (see Appendix B.4) indicated that the surface roughness for the 60 and 80

grit adhesive sandpapers was 412 and 311 microns, respectively. This corresponds to a relative

roughness of 0.049 and 0.038. This is slightly larger than those reported above [43].

The first set of tests involved 60 grit sandpaper attached to the surface of the test canister,

with drag inducing plugs, to provide a dramatic contrast with previous experiments by

maximizing the effects of roughness and form loss combined. A photo of the canister in this

configuration is shown in Figure 5-13.
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Figure 5-13. Photo of the canister with attached 60 grit sandpaper and drag inducing plug.

The results of the drop tests involving this canister setup are summarized in Figure 5-14.

-Model predictions
(with K=2.45)

* Experimental result
(K = 2.45, 60 grit
sandpaper)

A Base case (no
additional form
loss, K=1.5)

0 0.01 0.02 0.03 0.04 0.05
Relative Roughness (k/d)

Figure 5-14. Experimental result, averaged from 6 drop tests of a 15.025 kg canister with 60 grit
sandpaper and drag inducing plug attached. Note that the sandpaper increased the diameter of
the canister slightly to 6.80 cm.

Figure 5-14 conveys that for the experiment, almost a 50% reduction in velocity (from the base

case) can result from the use of a hydraulically rough surface and additional form loss. The

second set of tests involved 80 grit sandpaper attached to the test canister, without the drag

inducing plug. The results are shown in Figure 5-15.

63

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00

GP
0

cj~
-

-

-

-



0.90
0.80
0.70
0.60

0.50
0.40
0.30

- 0.20
0.10

0.00
0.00 0.01 0.02 0.03 0.04 0.05

Relative Roughness (k/d)

Figure 5-15. Experimental result, averaged from 7 drop tests of a 14.963 kg canister with 60 grit
sandpaper attached. Note that the sandpaper increased the diameter of the canister slightly to
6.80 cm.

The results show that the model's use of standard pipe flow equations can accurately take into

account varying levels of increased surface roughness and form loss.

5.5. Chapter Summary

An appropriately sized and low cost experimental setup was designed to validate the analytical

model and investigate form and friction loss effects. The design allowed for easy modification

of the canister, surface, and fluid properties, and tests could be repeated in quick succession. In

total, 81 successful drop tests provided experimental data over a wide range of conditions. The

data confirms the model's ability to take into account changes over a wide range of fluid

properties. Increased form and frictional losses were confirmed as feasible methods of reducing

the canister's velocity, and the analytical model was flexible enough to take these safety options

into account.
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6. Feasibility of Proposed Emplacement Method

6.1. Chapter Introduction

The proposed emplacement method can be analyzed critically in accordance with the same

criteria as the other suggested emplacement methods in Chapter 2. As with many nuclear waste

projects, the most important issues are structural (which determines the integrity of the waste

barrier), time, cost, and equipment requirements. The analytical model and experiments made

assumptions on the state of the canister during emplacement (no heat generation taken into

account), so other conditions such as the temperature profile of the canister during transport and

emplacement are also important to prove that the model is still valid.

6.2. Thermal Issues

Previous analyses at MIT have shown the down-hole temperature profiles of the canister to be

safe, after emplacement and closure of the repository [12][49]. Hoag's analysis is dominated by

heat transfer effects across the gap between the canister and the borehole lining. However,

thermal analysis during canister transport to the hole and during the emplacement may be

important for the drop-in method. For example, if the canister surface temperature exceeds

1000 C, when the canister is initially dropped into a flooded borehole, the surrounding water

would boil. If film boiling occurred (highly unlikely given the low heat flux) this would create a

gas layer around the canister, resulting in an increase in terminal velocity above expected values.

Without film boiling, two phase flow occurs and the pressure drop actually increases, reducing

the terminal velocity of the canister. Another issue is that excessive canister temperatures and

rapid quenching would result in a thermal shock to the structural integrity of the canister. The

decay heat for 60 GW-day/MTU burnup fuel can be described by an inverse power law

relationship as in Eq. (6-1) [12] :

, 2200 (6-1)
q t0.75

where t is years from discharge from the reactor and q' is the linear heat generation in W/m.

The reference, square, 17x17 pin PWR assembly contains 0.5 MTU, is 4.2 m tall and has a
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diagonal width 0.303m [12]. Hoag's thermal analysis yielded a homogenous conductivity and

effective diameter of 0.2417 m for the fuel assembly (with interstitial sand), greatly simplifying

this study's thermal analysis. Outside of the canister, this analysis differs because it introduces

the insulating effects and heat conduction of a radiation shield - assumed to be a 0.5 m thick

concrete cask. For reference, a concrete dry cask storage system which contains 21 PWR

assemblies has cask body walls with a thickness of 0.38 meters [50], so 0.5 meter is a

conservatively high approximation for the thickness required for radiation attenuation. A

diagram of the homogenized assembly, steel casing, and concrete cask configuration is shown in

Figure 6-1.

Concrete

Steel

Assembly

0. 12085 m 0.13295 m 0.63295 m

rassembly |canister rcask

Figure 6-1. Schematic of the geometry and materials for the proposed emplacement radiation

shield (cask), containing the canister and fuel assembly. Not to scale.

Where rassembly is the homogenized fuel assembly effective radius, reanister is the steel canister outer

radius, and rcask is the cask outer radius. Using the assumed material values (see Table C-1) and

solving the heat transfer equations (see Appendix C.2) the surface temperatures for each region

are obtained. Figure 6-2 shows the canister decay heat, surface temperature, and centerline

temperature versus the number of years the fuel assembly has been removed from the reactor.
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Figure 6-2. The linear decay heat, maximum fuel centerline temperature, cask surface

temperature and (homogenized) assembly surface temperature as a function of time in years.

The internal, continuous temperature distributions for various linear heat generation rates

(based on derivations completed in Appendix C.3) are shown in Figure 6-3. The greatest

temperature difference occurs within a 0.5 m concrete cask, which acts as an insulator. The 12

mm (0.5 in) thick steel lining causes a negligible temperature difference (<0.2'C).
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Figure 6-3. Temperature profiles within the assembly, canister and cask for a range of fuel ages

between 10 and 40 years.

The thermal analysis indicates that under expected conditions, the canister will experience safe

assembly surface and centerline temperatures, even with a conservatively thick 0.5 m concrete

shielding. In the case of very young fuel (10 years), the assembly surface temperature will be

108 'C. This may initially cause boiling at the surface when the canister emplaced into the water

filled borehole, but this surface temperature will drop quickly as it transitions to new heat

transfer boundary conditions with larger heat transfer coefficients (forced convection with

water). Secondly, the hydrostatic pressure of the water in the borehole increases the boiling

point of the fluid with depth. By the time the canister reaches the point of impact within the 2-4

km tall column of water, even if it is still at 108' C, the water surrounding it will no longer be at

its boiling point. Lastly, it is expected that by the time a waste repository could be licensed, the

68



vast majority of fuel will be greater than 10 years old. With 30 year old fuel (a more reasonable

estimate for the average age of the fuel), the assembly and canister surface temperature is 61 'C.

Furthermore, if needed, the canister surface could be cooled in a controlled and gradual fashion

by forced convection using a water spray prior to drop in.

The previously described analytical model assumes that the fluid within the borehole is at

rest. Boreholes in deep granite are not expected to have pressurized aquifers or other flow

features that would produce significant upward flow gradients under ambient conditions [13].

Even if flowing conditions could be induced (for example during the initial thermal equilibration

and expansion of the flood water), the upwardly flowing currents would reduce the velocity of

the canister. It is difficult to conceive of a scenario that would cause unexpected downward

currents that may accelerate the canister.

6.3. Structural Issues

The strength of the DBWD canister at impact is one issue, as breach of the canister during

emplacement may cause a leak of radioactive materials to the surface facility and workers. At the

bottom of the borehole, the canister is predicted to be moving at a maximum of speed 2.6 m/s,

which could easily be mitigated with an engineered bumper or other energy absorber. A highly

applicable experience is the Department of Energy (DOE) spent nuclear fuel (SNF) design

process for a waste canister. A substantial amount of analytical and experimental work was

commissioned by the DOE to develop a versatile, standardized, robust canister for the interim

storage, transportation and final disposal of spent nuclear fuel (SNF)[51]-[53]. The studies

combined full scale experimental drop tests and computational (FEA) methods to analyze the

potential damage to the canister. The primary design intent was to have an easy to handle

canister that could accept numerous types of SNF with good corrosion resistance. Although

additional safety functions (such as radiological shielding and long term storage) are intended to

be provided through other components within the storage facilities, the DOE SNF canister is

required independently to provide a containment that maintains integrity even in the event of an

accidental drop. The safety and impact analysis from the DOE SNF canister design are

summarized below, and can be adopted in the finalization of a deep borehole canister design.
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Both Hoag's and the DOE SNF designs use standard casings or piping components for

the canister, and are similar in overall size and mass. However, the DOE design differs by

several factors to improve corrosion resistance, impact absorption and ease of handling:

- 316L stainless steel body constructed of standard SA-312 piping.

- Lower heads comprised of ASME flanged and dished, SA-2401 316 L stainless steel.

-Protruding skirts to provide energy absorption and plastic deformation.

-Lifting rings located within the outer end of each skirt

-Interior impact plates on the top and bottom of the canister

A diagram of the additional safety factors is shown in Figure 6-4.

Figure 6-4. Additional designed safety features of a DOE SNF canister [51].

A comparison of the typical canister geometries and properties is presented in Table 6-1.
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Table 6-1.
and a DOE

Comparison of canister geometry and material properties between a DBWD canister
SNF canister [52].

Canister Canister Outer Inner Wall Length Typical Overall
Design Material Diameter diameter thickness (m) Mass Density

-Dc- (mm) (mm) -t- (mm) (kg) (kg/m3)
Hoag Drill Casings- 339.7 315.32 12.19 5 2000 4400

J55-P110 Steel
DOE SA-312 Pipe- 457 437.9 9.53 4.5 3626 3626
SNF 316L Stainless (nominal)

A total of nine, full scale DOE SNF canisters were dropped from a height of 9m (30 ft) in

various orientations onto an unyielding surface to test the containment integrity of the design.

Pressure and leak testing confirmed that the canister's seal was maintained in all cases. The

orientation that resulted in the maximum peak equivalent plastic strain (on the skirts and lifting

rings) was when the canister was dropped at an offset angle of 6 degrees from vertical. When

the canister dropped in a horizontally flat orientation, the skirt did not provide protection.

However, in this case the impact energy is distributed along entire length of the canister, and

only minimal deformation took place. An image of a deformed skirt is shown in Figure 6-5.

Figure 6-5. Deformed end of a DOE SNF canister after a drop test from 9 meters at an angle of

45 degrees [52].
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The deforming skirt could be incorporated into Hoag's canister design easily, and would provide

an additional level of safety to the canister when it impacts at the bottom of the borehole. The

protruding cup shape also adds a form loss to fluid flow, thereby reducing velocity. Using

scaling arguments and the data from the DOE SNF drop tests, it can be argued that Hoag's

canister will be safe when impacting at the expected velocity of (2.6 m/s). It is postulated that the

primary variables affecting the plastic strain in this case are the wall thickness, skirt diameter and

length, impact energy and material yield strength. These parameters are chosen because they are

similar parameters investigated using the Charpy impact test, a high strain rate test which

determines the amount of energy absorbed by a material during impact and fracture. With the

Charpy impact test, the geometry of the specimens are standardized and kept constant such that

the yield strength and fracture toughness of the material can directly be correlated to the energy

of fracture. In this case, the impact energy is the kinetic energy of the canister at impact, and is a

function of the mass of the canister and the impact velocity. The length of the canister would

seem to be irrelevant because the plastic deformation is locally confined to the skirt. Thus the

length of the skirt is an important parameter. A comparison of the impact parameters of Hoag's

canister and the DOE SNF canister are presented in Table 6-2.

Table 6-2. Comparison of impact parameters between a DBWD canister and a DOE SNF
canister [52].
Canister t/D Drop Impact Mass Impact Skirt Minimum
Design Height velocity (kg) energy Impact Work of

(m) (m/s) (joules) Area Fracture
105 (M) oules/m2)

DOE SNF 2.084 x10-2  9 13.28 3626 2.4 x105  1.36 x 10-2 1.77 x 10/

Hoag 3.629 x 10- n/a 2.6 2000 6.75 x 10' 1.27 x 10-2 5.31 x 105

The DOE SNF canister and skirt never fractured during the nine drop tests completed, and the

results provide an extremely conservative and crude estimate for the minimum work of fracture

or impact strength that the skirt provides in such a high strain rate scenario. The results indicate

that Hoag's canister would provide more than sufficient protection, as the skirt would experience

a lower work of fracture (energy/area) by two orders of magnitude, while having a larger t/De

(the typical parameter of interest in structural, shell geometry situations). One difference is that
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the DBWD canisters will be repeatedly stressed (from successive impacts of canisters above).

However, the energy of these repeated impacts is spread over an increasing number of canisters

and skirts. Therefore the successive impacts result in much lower stresses on the first canister

compared to the stresses it experiences during its initial collision on the unyielding borehole

floor. Furthermore, the number of fatigue cycles (a maximum of 400 from each canister impact)

is not sufficient to significantly reduce the strength of the steel, a process which typically

requires tens of thousands of fatigue cycles.

6.4. Drag Inducing Features at Full Scale

The comprehensive analytical and experimental work described thus far gives a high level of

confidence in the predictions of the full scale canister's velocity. Although the predicted

velocity of 2.4 m/s is not particularly challenging, Section 5.4.2 discussed relatively simple

methods to reduce this further, through increased canister surface roughness. Figure 6-6

summarizes the predictions of the analytical model for the full scale canister with varying

surfaces and levels of roughness.
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metal

x Centrifugally
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A Cast iron

* Corrugated
steel

* Fully rough
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Figure 6-6. Predicted full scale terminal velocity vs. relative roughness for various commonly

used metals [43].
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The results indicate that if the canister surface was fully rough (c/d >0.05), the velocity could be

reduced by almost 50% to 1.26 m/s. However, none of the metals that have been suggested for

the canister are normally that rough. Increasing the roughness of the metal canister's surface

(through machining or sand blasting) leads to an increased surface area exposed to corrosion.

Therefore another method of modifying the canister surface roughness, by using glue or

corrosion resistant epoxy to attach sand particles directly to the surface, may be preferable. In

fact, specialized epoxy coatings are frequently applied to pressure vessels and pipes to increase

chemical resistance. This would result in a very similar approach to Nikuradse's sand grain

tests, proven during his famous investigation of the effect of pipe surface roughness on pressure

drops [54]. Since Dh for the full scale case is 4.73 cm, using Eq. (5-8), the average particle size

would be 1.92 mm.

Another experimentally proven method to reduce the canister's velocity is the use of

drag-inducing features. When combined with increased surface roughness, the canister showed a

dramatic reduction in velocity. Figure 6-7 presents a summary of predictions for the full scale

canister's velocity over a range of increased surface roughness's and form loss.
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Figure 6-7. Predicted full scale terminal velocity vs. relative roughness and form loss coefficient

(k).
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The primary conclusion from Figure 6-7 is that if a fully rough canister surface has been

attained, the additional form losses only make a small difference. A form loss coefficient of 3.5

may be feasible with drag-inducing plugs on the top and bottom of the canister. To achieve a

greater form loss coefficient, it is likely that a parachute or similar apparatus would be required.

The surface roughness approach is preferred, because it has fewer failure modes than the form

loss method (the plugs may break off causing the canister to jam or the parachute may not

deploy). In summary, this analysis shows that even if 2.6 m/s is considered threatening to the

integrity of the canister, the methods of adding form and friction losses are feasible to lower the

speed even further.

6.5. Backfill Process

Although the reference borehole repository design assumes an air gap between the canister and

the lining, other deep borehole designs such as SKB's include buffers such as bentonite clay to

retard the movement of radionuclides. Alternatively for the sake of retrievability, graphite could

be inserted into the annulus to lubricate the movement of the canisters during a retrieval effort.

When considering an emplacement method, it is important to keep these options considered and

open.

If bentonite is desired, one option is to use bentonite as the mud during initial drilling of

the hole. In this case, since the viscosity of a bentonite mud is higher than that of pure water, the

terminal velocity of the canister would be greatly reduced. If the desired composition of

bentonite is too viscous or highly dense for a drop-in method to work, the bentonite slurry could

subsequently be pumped into the annulus, using the same methods that are used to insert cement

and grout into the annulus between the lining and the rock wall. Figure 6-8 illustrates the piping

configuration used during this process.
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Figure 6-8. Depiction of pipes used to grout casings into a borehole [23].

The bentonite slurry could be inserted at the bottom of the borehole, and would displace the

water as it is pumped in. Graphite powder could be inserted in a similar method. To ensure a

uniform annulus over the entire height of stacked canisters, longitudinal centralizing fins can be

attached along the sides the canister. An SKB engineering study suggests that centralizers be

approximately 1 m in length, 15 mm in width, and the outer diameter 15 mm less than the

internal diameter of the casing[29]. The feasibility of this method also depends on the desired

composition of bentonite.

6.6. Economics

The primary economic benefit of the proposed drop-in method is that it does not require the

original rig (with billing rates of $4850/hr). The time and equipment for the lowering and

retrieval stages are essentially eliminated from the emplacement process, leaving only the

loading period. The analysis completed in Section 2.3 assumed that the loading period required

10 minutes per canister, with radiation worker billing rate of $10,500/hr. Assuming that this

time requirement and billing rate are also appropriate for the loading stage of the drop-in method

produces an upper bound estimate on cost, because this method does not require the massive

drilling rig. Therefore, for an entire borehole with 400 canisters, this results in an estimated total

emplacement cost of $700,000, resulting in per kg cost of $3.5/kg HM. The costs compared

graphically with the drill string method estimates in Figure 2-10.
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Figure 6-9. Overview of total emplacement costs ($M) calculated using various assumptions on
the lowering speed and number of canisters connected, compared to the drop- method.

For the drop-in method, cameras could be periodically lowered to ensure that the canisters are

stacking correctly, but this is not expected to be necessary after every single drop. Furthermore,

a camera can be presumably lowered much faster and with less equipment than a 5 ton canister,

so the inspection process should not be overly time consuming or costly.

In conclusion, the minimum cost for the drill string method is $2.31 million, while a drop-in

method is estimated to cost $700,000. Therefore the drop-in method provides an impressive

70% cost reduction over the drill string method, even when using the most optimistic

assumptions for the achievable speed drill string method. An added benefit is that with the drop-

in method, drilling of the next borehole can proceed while canisters are emplaced in the first

borehole, greatly expediting repository construction.
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6.7. Retrievability

The option to retrieve waste emplaced in geological repositories is a long-standing question for

all nuclear waste management programs. The demand for such a feature is primarily political and

social in nature and in many cases has manifested itself in laws and regulations on repository

design. A compelling long term safety case for disposal must be made to a very high level of

confidence (independent of the option of retrieval); however, retrievability still contributes to

confidence in safety [55].

The Nuclear Regulatory Commission's (NRC) definition of retrievability is almost

identical to those outlined in 10 CFR 60.111(b) and 10 CFR 63.111(e): "A repository must be

designed such that any or all of the emplaced waste could be retrieved on a reasonable schedule

starting at any time up to 50 years after the waste emplacement operations are initiated." [56].

Here the key undefined term is "reasonable", because technically any waste emplaced in a

stationary repository could be retrieved - the question is how much money can be "reasonably"

spent. The NRC has specified that waste retrieval is not meant to facilitate economic reuse of

materials, and it is to be exercised only in an unusual event to protect public health and safety

[56] . However, the 1982 Nuclear Waste Policy Act (NWPA) has an expanded definition of

retrievability, with the stipulation that repositories be designed to permit the recovery of the

economically valuable contents of the spent fuel, within an appropriate period, as yet undefined

by the DOE. This brings up the distinction between "readily retrievable" and "retrievable",

where the former implies open access to disposal rooms and the possibility economic recovery of

materials, and the latter allows for backfilling of disposal rooms, possibly resulting in large costs

and time during a retrieval operation.

Overall, it has not yet been clarified whether the repository should be designed to

facilitate retrieval of the disposed waste, or only that no action during emplacement should

obstruct retrieval. With Yucca Mountain, a 50 year retrieval period was not an issue, because of

the ease of keeping drifts open in unsaturated tuff for an extended period. The lack of clarity of

regulations on retrievability is an important issue to deep boreholes and (other repository designs

such as plastic salt domes, which close shafts over time). Some could argue that it is too difficult

to retrieve waste from deep boreholes, and that the DBWD does not meet the criteria of

retrievability. However, as the recent SKB engineering feasibility study discusses [29],

techniques borrowed from the oil industry can be used to "fish" canisters from a borehole (just as
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tools, drill bits, or pieces of equipment must be retrievable). The relative cost of such an

operation is likely to be higher than for shallow mined repositories, but nonetheless it is possible.

On the other hand, boreholes can be made irretrievable, for example by adding silicon

carbide particles to the plug, making drilling through the plug much more difficult. In many

scenarios, this may be an advantage for the DBWD concept, because the level of retrievability

can be tuned for specific needs. For example it has been suggested to put troublesome,

geologically mobile minor actinides or fission products such as Iodine and Technetium or highly

heat generating isotopes such as Americium into irretrievable boreholes [49] [57]. Alternatively,

in countries with unstable regimes that may change their policy on developing nuclear weapons

(by reprocessing readily available spent fuel from the country's repository), it might be safer to

make the waste inaccessible.

When the NWPA is amended, the decision on retrievability should be clear in scope,

definition and intent. A mandate for a geologic repository with the intent of economic reuse of

fuel should be looked at critically, as it may unnecessarily preclude more robust options of

geologic disposal that attempt to make the waste more remote, (and thus safer from a long term

radiological isolation standpoint). If economic reuse is truly a concern, then an interim (100

year) storage facility may be the preferable option to geologic disposal. However, based on

current trends for the price of raw uranium vs. reprocessing costs, the reuse and reprocessing

option will not be economic for many decades to come [5]-[8]. Secondly, proliferation and

security concerns need to be discussed when deciding to make waste readily retrievable for such

long periods. Consider that after 70 years, a spent fuel assembly loses its intrinsic safeguard to

theft, a deadly dose rate of radiation) [58]. Figure 6-10 shows a graph of the dose rate of spent

fuel over time and points out when the intrinsic barrier is lost.
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Figure 6-10. Dose rate at one meter from a Westinghouse PWR assembly with 50 GW-

d/MTU burnup, as a function of time discharged from a reactor [58].

If safety (and not economic) concerns are the only reason for retrievability, the final repository

selection will benefit, simply by virtue of having a greater number of design options to initially

choose from. A constant effort to uphold a dual mission could impact long term repository

performance [57]. In conclusion, if retrievability is limited to safety reasons, deep boreholes are

fully retrievable in that context, and should be strongly considered among the alternatives to the

Yucca Mountain repository.

6.8. Chapter Summary
Many factors contribute to the feasibility of nuclear waste disposal processes, but the primary

concerns are based on safety and economics. The proposed method's safety is confirmed in

terms of thermal and structural issues, and supporting data is drawn from prior DOE experience

with the design of robust waste canisters. The issue of backfill with buffers or lubricants (not yet

fully designed or resolved) is discussed in the context of water flooded borehole conditions. A

cost comparison between the drop-in and drill-string methods shows that the former is clearly

favored, even when the drill-string method is assumed to have optimistically fast lowering

speeds. Finally, the policy implications of retrievability requirements with respect to DBWD

and other repositories are outlined, and DBWD is concluded to be retrievable within a technical

(and not necessarily economic) definition.
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7. Summary, Conclusions, and Recommendations

7.1. Summary

Use of deep boreholes to contain nuclear waste has been gaining more attention as pressures to

deal with nuclear waste rise. The recent earthquakes, tsunami and nuclear accidents in

Fukushima, Japan have publicly highlighted the safety vulnerabilities of spent fuel pool storage,

and will cause the U.S. and many other countries to look critically at how waste is stored. The

public's desire to remove fuel from the onsite pools is complemented by the utilities' desire to

remove fuel from their plant sites altogether, to a central facility as promised by the government.

However, the Obama administration has rejected and permanently put a hold on the decades-long

evaluated Yucca Mountain repository, and policy makers and scientists are back to evaluating all

geologies and repository designs [2].

The complexity and cost of the emplacement procedure is a challenge to any repository

concept's feasibility. A spent fuel assembly produces a high radiation field, is highly dense and

produces almost 1 kW of heat. This necessitates complex shielding and handling procedures,

commonly completed robotically and remotely. Particularly for DBWD, emplacement is an

area of work that in the past, has received inadequate attention compared to drilling costs,

canister design and thermal analysis. This study proposed and evaluated a fast procedure for

emplacement of canisters which reduces mechanical and radiation handling requirements. The

proposed method is to release the canisters into a water-flooded borehole with its velocity

moderated by drag forces developed in the fluid flow process. An analytical model, dimensional

analysis, and 11 5 th scale experiments were successfully completed.

7.2. Conclusions

The reference canister design is a 0.34 meter OD steel drill casing, which when inserted into the

lining results in an annular gap of 2.35 cm. When the borehole is flooded with water and the

canister is released, the water in the gap is forced to travel in the opposing direction of the

canister. Using basic fluid conservation and force equations, it was derived that the water would

move at 3.36 times the speed of the canister. This generates large shear forces and a pressure

drop in the fluid, slowing the canister down. Combined with dimensional analysis, the analytical

solutions produced a very simple relation to describe the velocity of fluid and canister in terms of
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fundamental parameters describing the geometry, buoyancy and friction factor of the canister

and fluid flow (see Eq. (4-14)). The model was validated by 81 successful drop tests and

produces a predicted a maximum velocity of 2.4-2.6 m/s (5.3-5.8 mph) for the full scale case.

Further tests increased canister surface roughness and form losses, as a means to reduce the

velocity of the canister even further. The results showed that if a hydraulically rough surface

could be achieved on the full scale canister (through the attachment of 1.92mm particles to the

surface) the canister's velocity could be reduced by almost 50% to 1.25 m/s. A basic structural

analysis and comparison showed that this energy could easily be absorbed with a metal skirt

attached to the front of the canister. An economic study based on previously documented billing

rates and drill string lowering speeds concluded that the drop-in method drastically reduces the

cost and time of emplacement compared to a drill string method, by at least 70%. Overall, the

costs of emplacement for this method are estimated to be $700,000 per borehole, or $3.5/kg HM,

which is a very small fraction of the total $400 kg/HM appropriated for waste disposal. The

primary source of savings is the fact that the drilling rig does not have to be employed while the

canisters are traveling down the borehole (on average 3km). It is concluded that emplacement in

deep boreholes deserves serious investigation among the repository alternatives, as an

economically feasible and highly isolating method of disposing of waste.

7.3. Recommended Future Work

7.3.1. Discounted Economic Analysis of Borehole Construction and Emplacement

A key differentiator of DBWD is that it is modular, as opposed to all other mined repository

designs which rely on significant upfront investment to establish. With boreholes, only as many

holes as are currently needed are drilled (the economically optimal solution). Boreholes can be

drilled and filled sequentially, as opposed to being mined all at once, and filled all at once. This

allows for investments to be delayed as far into the future as possible. Economic comparisons

between deep boreholes with other repositories should incorporate the time value of money and

use a non-zero discount rate. It should also take into account the probability that the repository

fails politically and the investment must be recouped. In the case of a mined repository, if the

licensing fails after the initial mines have been dug, there is no way to recoup the massive

investment (as was the case with Yucca mountain). However, if a similar event occurs with a

DBWD design, the sunk cost would be the drilling and site characterization costs for a single
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borehole. Lastly, this modularity and cost effectiveness at small scales would be very beneficial

in the case that U.S. decided on having many regional repositories rather than a single large

repository. These effects might also make borehole disposal attractive for smaller national

nuclear power programs.

7.3.2. Comparison of Radiation and Handling Risks with Other Repository Designs

One consequence of the limited of diameter boreholes (necessary to reduce drilling costs) is that

it necessitates the insertion of each assembly into an individual canister. This tends to increase

the number of transfers, thus risk of accidental drop. For example, Yucca mountain

multipurpose waste packages were designed and suitable for transportation, aging and direct

disposal (TAD). Based on a simple probabilistic analysis, the total number of transfers was not

expected to result in an accidental drop [59]. A preliminary survey of these probabilities is

shown in Table 7-1, and a reasonable estimate is 1 x 10 -5 failures/transfer.

Table 7-1. Summary of various estimates of failure probabilities during handling of spent fuel.

Probability Comments Source

5.6 x 10 -5 Heavy load drop rate (>30 MT) at commercial plants, NUREG- 1774
after 1980 [60]

1 x 10 - to Probability of load drops based on Navy data NUREG-0612
1.5 x 10-4 [61]

1 x 10 -5 Failure (drop) rate used by the DOE in the [59]
probabilistic hazard analysis (PHA) in the license
application (LA) for Yucca mountain.

1- 5% Failure of crane operator to follow a given procedure, NUREG-0612
estimated based on Navy data [61]

5.6 x 10 -6 Combined equipment failure rate per demand, [62]
estimated for the TRUDOCK crane system at the
Waste Isolation Pilot Plant (WIPP)

If a similar approach [59] is applied to DBWD, assuming 2 transfers per assembly (one out of

transportation cask, one into waste canister) and a 100 MTHM repository is required (resulting in

appx. 240,000 canisters), multiple drops are expected to occur. Figure 7-1 shows the estimated

probability distribution of drops during loading of a deep borehole repository.
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Figure 7-1. Estimated number of drops during the loading of a 100 MTHM deep borehole
respository, assuming a binomial distribution of failures and a failure rate of 1 x 10 -.

Future work could examine the consequences of such accidental drops, in terms of radiological

risk to workers and offsite dose consequences. Methods of integrating storage and transportation

canister design with disposal canister design could also be investigated to minimize the number

of transfers required. Furthermore, the understanding of human error with respect to crane

failures should be expanded, and quantified in the context of a SNF repository. The risk of

accidental drop can also be applied to further demonstrate the benefit of the drop-in method over

the drill string method, which is only feasible if canisters can be interconnected or lowered at

very high speeds.
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Derivation of Canister Velocity Solutions

A.1 Introduction
The accuracy of the analytical derivation was crucial to gaining insights into the experimental

design and scaling of the results. The models begin with simplifying assumptions and first

principles of fluid flow.

A.2 Force and Momentum Balance
Summing up the forces that act on the canister when it has achieved terminal velocity, we have:

I Forces = P1 Ac + TJrDcI - P2Ac - Mg = 0

7T 2

A = -Dc
4

8f 2

M = pcV = pc Ac l = pc -Dc1
4

Combining all the expressions and solving for P1

(A-1)

(A-2)

(A-3)

(A-4)

P2 ,

P1 - P2 = Pc9l 2

Figure A-I shows a diagram of the relevant velocities in a stationary frame of reference and
control volume.
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Figure A-1. Definition of canister and water velocities and control volume, with a stationary

frame of reference. V, Vp, are the average velocities of the fluid at reference point 1 and 2,

respectively.

To calculate the pressure drop in the annulus, it is assumed that the flow in the annulus is

"fully developed" and can be described with initial and final average velocities Vp and Vp. This

assumption is validated later by the fact that the model and experiments show the Reynolds

number is in the range 104-106. To verify that entrance effects are not significant Eq. (A-6) [44]

is tested,

Turblent Entry Length
= 4.4(Re) 6  (A-6)

where an entry length/hydraulic diameter ratio of approximately 40 is obtained. This is small

compared to the actual l/De, which is approximately 100, and therefore entrance effects are

assumed to be negligible. Overall, the pressure drop/length in the entry region is higher than the

fully developed region. Therefore, assuming fully developed flow will cause the fluid pressure

drop to be underestimated (and thus the terminal velocity to be overestimated).
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Using a momentum balance on the fluid which takes into account all hydraulic losses,

AP = P1 - P2 = Frictional + Gravitational (A-7)

Pf Vf l +
2 f 1 + Kform) + pf gzZ 2 - z 1 ) (A-8)

p2V l( \

D1 - P2 = f + Kform) + pfg 1  (A-9)

A.3 Closed Boundary Condition
In order to eliminate the fluid velocity from the equations above, the continuity equations must

be applied to the control volume. As the canister moves downwards, according to the closed

boundary condition assumption the water volume it displaces will be forced to flow through the

annulus. The continuity relation, where Ve and Vp are the magnitudes of the velocities yields a

ratio of fluid to canister velocity, Eq. (A-13).

0 = Volume entering - Volume Exiting (A-10)

0= Vf2Ac(Annuius) -VcAC(Canister) (A- i)

0- V i [(Dc + Df) 2 - Dc2 Vc Dc (A-12)

solving for ,

VC

Vf2 Dc 2 V
VC Dh(2Dc + D) ratio (A-13)
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The relative velocity of the water to the canister surface is greater than the water's velocity in the

stationary frame of reference. Thus if the latter were assumed as the velocity of the water in the

gap, it would greatly underestimate the frictional forces on the canister. To take this into

account, the reference is shifted by a constant velocity. This is acceptable because the

momentum, continuity and energy equations apply in any frame of reference, as long as the

frame is not accelerating. The result of this frame of reference shift is shown in Figure A-2.

pipe =v

i

Vf=V + VC
=V.V +Vratio C C

=VCV tio +1)

Figure A-2. Velocities in the frame of reference where the constant, terminal velocity is

subtracted from all bodies. The new shifted velocities are denoted with a (').
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The key relation obtained from the continuity and shift of reference frame for analysis is Eq.

(A-14),

VI = Vc Vratio + 1) (A-14)

The momentum equations and force balance equations can now be applied in this moving frame

of reference, which takes into account the relative motion of the fluid and the canister. The

calculation of the friction factor in the annulus will be slightly overestimated in this frame of

reference, because the outer pipe has a small velocity that is in the same direction as the water

flowing in it. However, because of the larger velocity gradient near the surface of the canister,

most of the shearing will occur there, and thus it is more important to accurately model that

phenomenon/region. Overall, these relationships conveniently allow for the elimination of all

the shifted velocities, because all velocities can be represented in terms of Ve, the canister

velocity in a stationary frame of reference. Eliminating P -P 2 by combining the force balance

for the canister, Eq. (A-5) and the momentum balance, Eq.(A-9),

Pcg1  P 2  \ >D2(~+Korm +pfl (A-15)

2gl (C - 1 ) =V22 (f ( + Kform + f (A-16)

substituting in Vf2, from Eq. (A-14),

2 g Pc = VC ratio + 1)] [f + + Kform
(prf Dh Dc (A- 17)
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solving for Vc,

2gl - 1 = [Vc (ratio + 1)]2 [f (1 + ) +Korm] (A-18)

= / 2 Pf (A-19)

Jf (D + + Kf orm (Vratio + 1)2

A.4 Open Boundary Condition
In this bounding and conservative condition, the volume of the water beneath the canister is

assumed to be free to flow downwards. Therefore, as the canister moves downwards, the water

displaced by the canister will be not forced to flow through the annulus. As a result, there will

be no velocity multiplication effect (as described by Vratio) and therefore Vratio= 1. This results in

larger predicted canister velocities because the velocity gradient and shear forces on the surface

of the canister are smaller. In this situation, analysis of the boundary layer will be critical to

understanding the forces on the canister. In fact, if the boundary layer is small compared to the

actual gap, then the solution is theoretically no different from the case in which the canister is

allowed to free fall in a pool of water. Three approaches - flat plate theory, coefficient of drag,

and von Karman's universal defect method are discussed.

One approach assumes that flat plate theories approximate the annular flow (in an external flow

configuration, as opposed to a fully developed internal flow). Under these assumptions, the only

net upward force results from skin friction (there will be no net upward force from the pressure

drop of the flowing fluid). Overall, this will be shown to result in an overly conservative and

unphysical estimate for the terminal velocity. The important parameter definitions are:

Equivalent Plate Length = 1 (A-20)

Equivalent Plate Width = rcDc (A-21)
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Rei = Py1VC (A-22)

The turbulent coefficient of drag (Cd) (from viscous forces) and drag force (Fd) for flow across a

smooth flat plate, for Re,>l0 7 is given in Eq. (A-23) and Eq. (A-24) [43],
1

Cd = 0.031Rej 7 = 0.031 ( It) (A-23)

FD = CD 12 (Width)(Length)
[ =(A-24)

Combining Eq. (A-23) and Eq. (A-24) yields Eq.(A-25)

FD = CD CDcl (A-25)

p-i c 1/7 Pfv2
FD = 0.031 (Pf1 VC 2  (Dcl] (A-26)

FD = 0.03 1 (p 1)6/7 [C2 rDcpI17 (A-27)

In the steady state, according to a force balance (which assumes a zero pressure gradient from

viscous losses because this is not internal flow), the upward drag force must be equivalent to the

net downward force from gravity (Fg):

F = Mg = (pc -Pf)TDCI g
4 (A-28)
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F = FD (A-29)

combining Eq. (A-28) and Eq. (A-29) yields Eq. (A-30),

(Pc Pf 7rD (p )6/7 [C wD1/]

(pc - Pr ) 4Dc z g = 0.03 1 2 pe Dc 1 (A-30)

solving for Ve gives Eq. (A-3 1),

V = [(PC - Pf)Dg ll/7 7/13

c (0.062)pf 6/7 P1/7 -(A-3 1)

Substituting in the geometric properties from the reference canister design (which has a surface

area of only 5.34 m2 results in a Re,= 2.88 x 108, Cd= 1.9 X 10-3, Vc of 54.4 m/s, which is clearly

unphysical. The size of the boundary layer can be compared against the maximum size of the

gap thickness of 0.0235 m [43],

)-1/s(A-32)
S(x = 1) = 0.371 = 0.371(Rei) - 1/ 5

where Vc= V. This yields a 6max= 0.0375m, which is larger than the gap that the boundary

layer is constrained to fit in. The unphysical result from this model; however, shows that (in this

case of a hydraulically smooth pipe) skin friction losses in the boundary layer are small.

Therefore drag/form losses (occurring in the wake of the canister) have an important effect that

must be taken into account.

The drag coefficient for axial flow along the cylinder CD is less dependent on the axial

Reynolds number when Reaxial> 104 , is a function of the aspect ratio l/d, and is shown as Eq.

(A-33) [63],

96



Reaxiai =Pj DCVC

CD= 1, for > 8

prc
FD= CD[ (Area)]

S 2

Substituting the area of the canister,

FD = CD [ Pf V 2
2

FD = ( Dc 2)]

Aaccounting for the force of gravity,

Fg = Mg = (pc
(A-36)

pf )DcI g

According to a force balance on the canister at terminal velocity,

Fg = FD

Combining Eq.(A-35) and Eq.(A-36) gives Eq. (A-38),

(Pc -pf) DCIg =
Pf (c2 )28 8 r~

Solving for Ve,
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-(PC - pf)2g 11/2 (A-39)

Vc = - P

Substituting the reference values [12], a physically feasible canister terminal velocity of 18.3 m/s

is obtained, with a Reaxial of 6.6 x 106. Calculating the maximum size of the boundary layer from

[63] gives Eq. (A-40)

6 = 0.161(Reaxia )- 1 / 7 -. 0849m (A-40)

In this case, the boundary layer is nearly 4 times larger than the actual gap that it is constrained

to fit in. Therefore, the assumption of external flow is not valid, and can only be used to obtain

an upper bound estimate of the canister velocity. In reality, viscous effects in the boundary will

be more important because the boundary layer is forced to fit in such a small gap. In addition

there are actually two boundary layers (one extending from the pipe wall, where the velocity of

the fluid must be zero, and the other extending from the canister, where the velocity must be

equal to that of the canister). The difference in boundary layers will cause further viscous losses.

A method of getting a "best estimate" for the canister velocity in this case requires

developing an approximation for the turbulent velocity distribution (using von Karman's

"universal defect or "middle law" for example). Applying von Karman's "universal defect"

velocity distribution (which can be used in any geometry) with the conditions that the velocity is

a maximum at the surface of cylinder and zero at the outer wall:

The velocity boundary conditions apply,

Vx(r =Rc) =Vmax = Vc

Vx(r = Ri) = V,(r = (Rc + t)) = 0,

where R, is the radius of the outer lining, t is the gap size, and Re is the radius of the

canister. According to the Universal Defect law [43],
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Vmax - Vx (Y) = V*g (Y)

Where y is the distance from the conduit (outer pipe wall) and r is the radial distance from

the centerline,

y = Ri - r = (Rc + t) - r

and g (the universal function) in the turbulent boundary is[43]:

V+ = 2.441n(y+) + 5

Combining Eqs. (A-41), (A-42) and (A-43) gives Eq. (A-44),

=2.441nQ±L)+5 (A-44)
= 2 .4 4 1n (Rc+t-r)v +5

Evaluating Eq. (A-44) at the surface of the canister at Rey, (where V = Vmax) gives Eq.

(A-45),

Vmax=2.44n (Rc+t-Rc)v+5
v* ILV

Vmax=2.441n t+5
-L..rr111)

Subtracting Eq. (A-44) from Eq.(A-45) and rearranging gives Eq.(A-46),

Vmax-Vx 2. 4 4 1n
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(A-42)

(A-43)

(A-45)
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V = Vmax - V* [2.441n (R, t r)I

Evaluating the average velocity in this flow geometry,

avg

1 Ri

A CAR Vx2Trdr

2 2
2- Ri

2 R

(R1
2 - Rc 2 JR, max

- V* 12.441n ( rdr
Ri-L

2 Ri

(R 2 - RC2) Rcf

R 1

fRc
Vmaxrdr - V* [2.441n (R1 t r)]

=R 2 2 R 2 )ax - V*2.441n(t))rdr + RiV*[2 .4 41n(RI - r)]rdr
(Ri - Re ) Rc

1
2 -2 2 ) [(Vmax

- C)v-

=(Ri 2-Rcz imax

V*2.44ln ) +
2 Rc

V*2.441n(Ol] R 2 +

fRi V*[2.44n(Ri -r)]rdr

Ri V*[2.441n(Ri - r)]rdr]

Vavg= Vmax -V*2.441n(t)] + R Rc RV*[2.441n(Ri - r)]rdr
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4.88V* =R 2  + rn R i - r ) 1
Vapg, = [Vmax - V*2.441n(t)1 + (R12 -Rc2

) [-7- In(r-Rl) + l~ n(Rl 2 r) RL

=[Vmax - V*2.441n(t)] + (R 2 -R

=[Vmax - V*2.441n(t)] + (R1 -Rc

2[! ln(r-R1 ) +
2

rln(Ri - r) - - R
2 4 c

[: 2n(Ri-Ri) - In(Re-R)) + iLn(RI -
2

Ri) - - ln(RI - Re) _ Ri(Ri-Rc) R 1
2 -Rc

2

2 2 4]-

=Vmax - V*2.441n(t)] + 882 2

[2(

ln(Rl - R) - Ri(Ri-Rc)
2 2

R l- 
I(R c-R )

+ -In( R
2

SR12 Rc2

4

4.88V* VRt2V*2.441n(t)] + (R 2 -R 2 2 -in ( R-R) + ln(Ri - RI)

Lc - ln(Rl - R) t R 1 2 -RC
2 2 4 ]

4.88V*
=[Vmax - V*2.441n(t)] + (Rl 2 _Rc 2

) In (RR-

2 2]IRl

R z-Rc2

4

=[Vmax - V*2.441n(t)] + _R1
2 -R 2 [ 2 (ln(Ri -

=[Vmax -V* 2 .44ln(t)] + (R42-R?2 R 2

Re)) -R 2 n(R - Rc) - t - RI2 
-Rc

2

2 2 4].

Rc 2
In(RI - Rc) - Rt Ri 2Rc

2 4]1
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ax - V* 2.441n(t)] +
Vavg= [Vmax (R- 1V + 2)

=4lVnax - V*2.441n(t)] + 2.44 V*ln(t)-
2.44V*Rlt

(R 1
2 -_RC2 )

- 1.22V*

vg =v - - 12 2V*avg =max (R-R )- 72

avg = Vmax - 2.44V* (1 -
tRc

(R 2 _c2\1 1.2 2V

( tRc(R1
2 _ R

2

Vava Vmax - 3.66V* - 2.44V* Rc
((2Rc+t)

For R>>t,

Vavg = Vmax - 3.66V* - 1.22V*

Vavg = Vmax ~ 2.44V*

With the following definitions, the friction factor can be derived,

* TW
p

T W f avg2
-- V
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=Vmax - 3.66V* - 2.44V*
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Therefore,

V *=fVavg

Combining Eqs. (A-45), (A-47) and (A-50) gives Eq. (A-5 1),

Vavg = V*2.441n (I*

v""" =2.44 In
V*

+ 5V*-2.44V*

+ 5-2.44

Where the Reynolds number for this geometry is defined by Re = Vavg 2t, which isV

substituted into Eq. (A-5 1) and rearranged to give Eq. (A-52),

S=2.441n(

1=.86261n (.

Re Ff-2.56
2 48J

e 0.9059

=0.86261n[(Rej) - ln(2V8)]

=0.86261n[(ReV7) - ln(2V8)]

- 0.9059

- 0.9059

=0.86261n(Rej') - 0.588 (A-52)

Which is very similar to the expression for a circular pipe geometry, Eq.(A-53) [43],
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f = 0.86261n(Re/i) -1.02

A relationship between the maximum velocity (canister velocity) and average velocity in

the gap can be developed from Eq. (A-47) and Eq. (A-48) and manipulated to give

Eq. (A-54),

Vavg = Vmax - 2.44V*

Vavg = Vc - 2.44 -Vag

Vag g(1 + 0.8626j) = V

V
V -=avg ( + 6

(1 + 0.8626j7)
(A-54)

Completing a force and momentum balance,

P1 - P2 = Pc9 avg

P1 - P2 2 (av f + Kform) + pfg 1

Combining the equations as before,

Pcg1 - Pavg
2

V 2

2 (f + Korm) + Pf9
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29l PC-1 =Vaug2 (f 1+

2gl (P

avg i 2g
Dh +Kform

Kform +f

1)

+)f
Dc

Plugging in the expression for Vavg described by Eq. (A-54), gives Eq. (A-55),

\ 
1 

+2( (1 + 0.8626j))

(A-55)
V = (1 + 0.8626f)

Using the Eq. (A-52) and Eq. (A-55) iteratively, V can be calculated. For the reference scenario:

f= 1.27 x 10-2

Vc=11.51 m/s

Vavg=10.49m/s

This analysis indicates that the average velocity in the gap is approximately 90% of the canister

velocity. This is completely consistent, when compared to the same parameter for a highly

turbulent flow in pipes, where Vavg /V,ax values are typically between 0.8 and 0.87 [43]. In

reality, the canister would have to be designed to withstand such an impact (in the case of an

accidental drop when it is being lifted and emplaced).

Concerning the likelihood of the bottom of the borehole being open to a body of water:
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1. If a large body of water exists at the bottom of the borehole, the borehole was not chosen

or tested properly, as a body of water may indicate water flow or an aquifer that can

transport radionuclides.

2. The open boundary condition would be noticed before the canister is even dropped. If

there exists a large body of water that can allow for flow, (i.e the water is not forced up

around the canister but is allowed to flow into the reservoir), then it will be impossible to

actually fill the borehole with water in the first place, as it will constantly empty into the

reservoir.

3. An unfueled test canister will be dropped first to verify good behavior.

A.5 Dimensionless Solution for the Closed Boundary Condition
Converting the expression for the terminal velocity it to a dimensionless form gives further

insight into the behavior and controlling variables of the fluid flow, and improves

verification of experimental results. Recall that the terminal velocity of the canister in the

borehole in the open boundary condition was derived to be Eq. (A- 19),

2gl (P" 1
Vc = 2+1(PC 1) (A-19)

c ][f +D) + Kform] (Vratio + 1)2

The Reynolds number is determined by the velocity of the fluid. Vp 'the velocity of the

fluid in the corrected frame of reference, is equal to the velocity of the canister multiplied

by (Vratio +1). Mulitplying both sides by (Vratio +1),

29l (c-1

Vc Vratio + 1) = + ( 1(Vratio + 1)[f (I + I)+ Kform] (Vratio + 1)z

Cancelling terms,
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Vf71 =

I

Multiplying both sides by pf, Dh and

pfVf2,Df
It

2gl -1

[f('+D) Kform]

dividing by t,

I-.
, If ('

Substituting the Reynolds number, multiplying out pf ,and rearranging terms,

Re = I_2glpf(pc - pf)Dh2

p2 f (' + 1 + Kform]

Multiplying and dividing the top of the expression within the square root by Dh:

Re =
2gpf (p, - pf)Dh(

2 f + + Kform]

and substituting the Archimedes number gives the dimensionless form of the solution, Eq.

(A-56):

Re= f(Ar (2D)

f + )+ Korm
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A.6 Numerical Integration of Acceleration (Closed Boundary Condition)

The conservation of momentum equation with a moving frame of reference can be written as Eq.

(A-57),

d(MVcv) -Vcv M (A-57)
Forcescv M + - Vcv(dt) at at

Where Vcv is the velocity of the control volume, which is drawn along surface of the canister and

has equal velocity to the canister (Vc). Since there is no mass accumulating in the canister or

control volume, the right hand term goes to zero and substituting the definition of acceleration

yields Eq. (A-58),

d(MVcv) _ cv OVc (-8
Forcescv = - M = - M = a(t)M (A-58)

(dt) at at

where a(t) represents the acceleration of the canister (and control volume) as a function of time.

Recall Eq. (A-1), which describes the forces that act on the canister,

Forces = P1 Ac + TcTDcl - P2Ac - Mg

Equating Eq. (A-5 8) and Eq. (A-1), using the definition for T from Eq. (A-3), the definition of M

from Eq. (A-4), this can be rearranged to give Eq. (A-59),

Forces = Ac (P1 - P2 ) - Pc9 + p1 1V5(t) 2  f (Pcl Ac)a(t)
Y, 2 Dc (A-59)

where Vf'(t) represents the relative fluid velocity in the shifted frame of reference as a function of

time. Substituting the relation of P - P 2 from Eq. (A-9) and eliminating Ae gives Eq. (A-60),
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(pfV '(t)2 l I5(t)2
(pcl)a = (2  ( + Kform + Pgl) - Pcgl + pf f (A-0

Rearranging variables gives Eq. (A-6 1),

pJVJI(t)2a= f -- +- + Kform + fg g2pcl Dh Dc Pc (A-61)

Applying Eq. (A-14),

a -d(Vc(t)) Pf(VCVratio + 1)) / + P dt 2 pcl D Dc Korm pC (A-62)

Discretizing the equation into finite time steps gives Eq. (A-63),

A(V(t)) _ PfIVC(t)(Vratio + 1)]2 / 1 \ \ pjg (A-63)
a(t) ~At 2 pc + + Kform) + c 9

Eq. (A-63) can be integrated numerically (stepwise) using the forward Euler method. This is

completed by applying the initial condition that Ve(t=O)=0, using a small At, solving for the A Ve

for each time step and adding it to the previous time step's velocity gives the velocity as a

function of time. A more direct form is shown in Eq. (A-64),

A(Vttn [)) = Pf VC(tn)(Vratio + 1)]2 f + + K1orm + - g At (A-64)

where t, denotes current time step, and tne denotes the incremental forward time step. The

entire discrete integration process can be repeated on this velocity function to obtain position as a

function of time
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Experimental Results

B.1 Introduction
The experimental results greatly bolster the validity and confirm the basis of the analytical

model. Unique canister and sensor design and careful variation of canister properties allowed for

the model to be explored over a wide variety of conditions, within the space, cost and time

constraints associated with laboratory investigation.

B.2 Canister Density and Fluid Temperature Variation (Ar)

Table B-I presents the masses of components used to vary the density of the experimental

canister.

Table B-1. Canister components for the fully loaded 14.79 kg canister

Description Mass (kg)

Lead Bag #1 2.200

Lead Bag #2 2.202

Lead Bag #3 2.212

Lead Bag #4 2.202

Lead Bag #5 2.202

Lead Bag #6 2.202

Small Lead bag 0.376

Bottom plug 0.106

Plastic pipe with top plug 1.086

Total 14.788

For the tests described in Figure B-1, the predicted terminal velocity was 0.557 m/s and the

measured terminal velocity averaged over 740 data points was 0.543 m/s.
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Figure B-1. Experimental results from 10 drop experiments, completed on
using a 8.188 kg, reference sized canister. Velocity recorded at 100 hz.

September 20, 2010,

For the 11 tests described in Figure B-2, the predicted terminal velocity was 0.683 m/s and the

measured terminal velocity averaged over 627 data points was 0.704 m/s.
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Figure B-2. Experimental results from 11 drop experiments, completed on October 7 2010,
using a 10.388 kg, reference sized canister.
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For the 9 tests described in Figure B-3, the predicted terminal velocity was 0.794 m/s and the

measured terminal velocity averaged over 540 data points was 0.8046 m/s.
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Figure B-3. Experimental results from 9 drop experiments, completed on October 10 2010,
using a 12.588 kg, reference sized canister.

An additional 29 drop tests occurring in water temperatures between 484 and 920 C, using a

14.40 kg canister (same canister as described in Table B-1, but with the "small lead bag"

removed) and the results, including those from Figure B-1, Figure B-2, Figure B-3 and are

summarized in Table B-2.
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Table B-2. Summary of drop tests completed to investigate the effect of Ar on Re.

# of Fluid Fluid Canister Canister Fluid Terminal Relative Reynolds Archimedes
runs Temp. Density mass Density Viscocity velocity Fluid number Number

(0 C) (kg/m 3) (kg) (kg/m 3) (pa-s) of velocity
canister (m/s)
(m/s)

3 22.5 997.61 14.79 4267 9.43E-04 0.8904 3.89E+00 3.79E+04 2.82E+07

9 22.5 997.61 12.59 3632 9.43E-04 0.8046 3.51E+00 3.43E+04 2.27E+07

11 22.5 997.61 10.39 2997 9.43E-04 0.704 3.08E+00 3.OOE+04 1.73E+07

10 22.5 997.61 8.19 2363 9.43E-04 0.543 2.37E+00 2.31E+04 1.18E+07

1 92 963.95 14.40 4154 3.07E-04 0.908 3.97E+00 1.15E+05 2.57E+08

1 85.5 968.28 14.40 4154 3.33E-04 0.897 3.92E+00 1.05E+05 2.18E+08

1 79 972.4 14.40 4154 3.59E-04 0.886 3.87E+00 9.67E+04 1.88E+08

1 77.5 973.32 14.40 4154 3.66E-04 0.887 3.87E+00 9.51E+04 1.81E+08

1 76 974.23 14.40 4154 3.73E-04 0.886 3.87E+00 9.33E+04 1.74E+08

1 73.5 975.72 14.40 4154 3.85E-04 0.775 3.39E+00 7.91E+04 1.63E+08

1 72 976.6 14.40 4154 3.93E-04 0.859 3.75E+00 8.60E+04 1.57E+08

1 72 976.6 14.40 4154 3.93E-04 0.86 3.76E+00 8.61E+04 1.57E+08

1 71.5 976.89 14.40 4154 3.96E-04 0.871 3.80E+00 8.66E+04 1.55E+08

1 71 977.18 14.40 4154 3.98E-04 0.868 3.79E+00 8.58E+04 1.53E+08

1 66 979.99 14.40 4154 4.27E-04 0.854 3.73E+00 7.89E+04 1.33E+08

1 65.5 980.26 14.40 4154 4.30E-04 0.86 3.76E+00 7.90E+04 1.31E+08

1 64.8 980.67 14.40 4154 4.35E-04 0.862 3.77E+00 7.83E+04 1.28E+08

1 64.5 980.8 14.40 4154 4.36E-04 0.866 3.78E+00 7.84E+04 1.27E+08

1 64 980.8 14.40 4154 4.36E-04 0.87 3.80E+00 7.88E+04 1.27E+08

1 62 982.14 14.40 4154 4.53E-04 0.855 3.73E+00 7.47E+04 1.18E+08

1 61.5 982.4 14.40 4154 4.56E-04 0.844 3.69E+00 7.33E+04 1.17E+08

1 57 984.69 14.40 4154 4.88E-04 0.836 3.65E+00 6.79E+04 1.02E+08

1 57 984.69 14.40 4154 4.88E-04 0.856 3.74E+00 6.95E+04 1.02E+08

1 57 984.69 14.40 4154 4.88E-04 0.86 3.76E+00 6.99E+04 1.02E+08

1 57 984.69 14.40 4154 4.88E-04 0.83 3.63E+00 6.74E+04 1.02E+08

1 57 984.69 14.40 4154 4.88E-04 0.862 3.77E+00 7.OOE+04 1.02E+08

1 49.5 988.01 14.40 4154 5.47E-04 0.852 3.72E+00 6.20E+04 8.11E+07

1 49.5 988.01 14.40 4154 5.47E-04 0.856 3.74E+00 6.23E+04 8. 11 E+07

1 48 988.9 14.40 4154 5.66E-04 0.853 3.73E+00 6.01E+04 7.58E+07

1 48 988.9 14.40 4154 5.66E-04 0.855 3.73E+00 6.02E+04 7.58E+07

1 48 988.9 14.40 4442 5.66E-04 0.86 3.76E+00 6.06E+04 8.27E+07
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B.3 Results of Added Form Loss and Surface Roughness
Table B-3 presents the masses of components of the experimental canister with added form loss.

Table B-3. Canister components for the canister with added form loss (plug)

Description Mass (kg)

Lead Bag #1 2.200

Lead Bag #2 2.202

Lead Bag #3 2.212

Lead Bag #4 2.202

Lead Bag #5 2.202

Lead Bag #6 2.202

Small Lead bag 0.376

Rubber weight 0.032

Bottom form loss 0.260

Plastic pipe with top plug 1.086

Total 14.974

Table B-4 presents the temperature and velocity data collected from the drop tests that involved

an additional form loss and roughness.

Table B-4. Summary of experiments that varied form loss and surface roughness.

# of Fluid Fluid Can. Can. Viscosity Terminal Relative Re Ar Form Surface
runs Temp Density mass Density (pa-s) velocity Fluid loss Roughness

(0 C) (kg/m 3) (kg) (kg/m 3) of velocity plug?
canister (m/s)
(m/s)

1 77.5 973.32 14.97 4321 3.66E-04 0.75 3.28 8.04E+04 1.91E+08 Yes Smooth

1 76 974.23 14.97 4321 3.73E-04 0.757 3.31 7.97E+04 1.84E+08 Yes Smooth

1 76 974.23 14.97 4321 3.73E-04 0.745 3.25 7.84E+04 1.84E+08 Yes Smooth

1 73.5 975.72 14.97 4321 3.85E-04 0.75 3.28 7.65E+04 1.72E+08 Yes Smooth

1 72 976.6 14.97 4321 3.93E-04 0.77 3.36 7.71E+04 1.65E+08 Yes Smooth

1 72 976.6 14.97 4321 3.93E-04 0.75 3.28 7.51E+04 1.65E+08 Yes Smooth

5 22.5 997.61 15.102* 4321 9.43E-04 0.437 1.91 1.86 E+04 2.90E+07 Yes 60 grit

6 22.5 997.61 14.933** 4309 9.43E-04 0.547 2.39 2.33 E+04 2.86E+07 No 80 grit

*Sandpaper added 132 grams to the canister

**Sandpaper added 98.56 grams to the canister, and removing the form loss (plug) reduced the canister mass by 102 grams.
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B.4 Measurement of Surface Roughness
Surface roughness was measured via an Olympus LEXT OLS3000 Confocal Scanning Laser

Microscope. Figure B-4 and Figure B-5 present the images produced by the microscope's

software package.

Figure B-4. Confocal microscopic contour plot of 60 grit sandpaper, with height exaggerated.

Figure B-5. Confocal microscopic contour plot of 80 grit sandpaper, with height exaggerated.

The software produced many measures of roughness, varying within a range by a factor of 6.The

ten point mean roughness of the 60 grit sandpaper was calculated by the microscope's software

to be 412 micrometers, somewhat matching the predictions of 271 microns, based on the

literature search. For the 80 grit sandpaper the ten point mean roughness was 300 micrometers,

slightly larger than the predicted value of 200 micrometers for the average particle size.
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Table B-5. Summary of roughness parameters produced by the confocal microscope.

Grit Average Particle Ten point mean Mean Roughness Mean Roughness
Size (predicted) roughness (measured) (predicted) (measured)
microns microns microns microns

60 271 412.2406 67.09 60.278

80 195 311.95 53.8 40.36

Using "mean surface roughness" seems to underestimate the roughness of the surface. For

example, the roughness of stainless steel is reported in literature to be 40 microns. Overall, the

"mean surface roughness" metric unrealistically implies that the roughest of sandpaper grits has

similar roughness to stainless steel. In reality, it would seem to be closer to that of cast iron,

which has a reported roughness of 250-800 microns. Therefore, the ten point mean roughness

was used as the measure for average particle size.

B.5 Error Analysis
Measurement uncertainty is propagated by adding the uncertainties of each measured,

independent variable. The variables of importance for the canister velocity when determined by

rotary motion are described by Eq. (B-1):

V = w - 2nr (B-1)

where w is the rotational velocity and r is the radius of the pulley. In the region where terminal

velocity has been achieved, w is constant and can be approximated by Eq. (B-2),

C (B-2)
V =- - 2r

t

where C is the number of cycles or rotations the pulley undergoes, and t is the time interval over

which terminal velocity is achieved.

Since the computer and rotational meter record velocity, and there is no statement with

regards to the tolerances of time recording, it is assumed that time measurement is a negligible

source of uncertainty. The manufacturer reported the radius of the pulley to be 29 mm, and this

was confirmed by measurement with calipers.
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A large source of precision uncertainty results from measuring C. A physical explanation

for the existence of precision uncertainty with the rotary motion sensor is the small tendency of

the nylon string to slip around the rotary motion sensor during a test. The deviation is quantified

by recording the return position of the rotary motion sensor and subtracting it from the starting

position, before the canister was lifted and dropped. The average error per revolution is

calculated by taking the absolute deviation after a full test and dividing it by the total number of

revolutions during the entire drop. This would tend to overestimate the average error per

revolution during testing, because it is most likely that the string slippage occurs after the test

when the canister impacts (when tension in the nylon string is lost), not while the test is actually

occurring. The expected error during the period of terminal velocity is calculated by taking the

average error per revolution Table B-6 presents the data from 15 drop tests, showing the

deviation and error from slippage.

Table B-6. Rotational motion sensor deviations from origin after 15 drop tests. Analysis
completed for drop tests completed on February 10, 2011.
Trial Error after full Total # of rev. Error per # of revolutions Expected error during

drop test in a full drop revolution during terminal terminal velocity time
(revolutions) (revolutions) (rev./rev) velocity interval

(revolutions) (revolutions)
1 0.072 6.18 0.011650485 2.53 0.029476

2 0.036 6.658 0.005407029 2.59 0.014004

3 0.006 6.308 0.000951173 2.13 0.002026

4 0.011 6.656 0.001652644 2.21 0.003652

5 0.006 6.66 0.000900901 2.219 0.001999

6 0.005 6.675 0.000749064 2.202 0.001649

7 0.069 6.733 0.010248032 2.175 0.022289

8 0.042 6.588 0.006375228 2.075 0.013229

9 0.008 6.58 0.001215805 2.116 0.002573

10 0.011 6.53 0.001684533 2.112 0.003558

11 0.05 6.21 0.00805153 2.06 0.016586

12 0.061 6.33 0.009636651 2.08 0.020044

13 0.008 6.305 0.001268834 2.05 0.002601

14 0.006 6.594 0.000909918 2.065 0.001879

15 0.033 6.3611 0.005187782 2.07 0.010739
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From Table B-6, the mean error in revolution measurement (during the terminal velocity time

interval) can be estimated using Eq. (B-3),

o- (B-3)
Up= t. 02 5,n-1

where u, is the 95% precision uncertainty in p, n is the number of measurements made, t.0 2 5,n-1

is the student t statistic or "t factor" obtained from tables given n ,and a is the standard deviation

of the sample. Substituting in n=15, t.0 2 5,n-1 = 2.131 and calculating a, up,cis calculated to be

4.99 x 10-3 rotations.

There also exists precision uncertainty from the rotary motion sensor angle measurement

system, which has a rated tolerance of 1 degree, or 2.777 x 10-3 rotations. Adding this to the

previous source of rotational uncertainty yields u,,= 7.77 x 10-3 rotations.

If one assumes the error in radius measurement to be equal to the diameter of the fishing

line, then the ur is estimated to be 0.7112 mm. Since time is considered a certain factor, up,t is

assumed to be 0.

Assuming the independent variables are statistically independent, the estimated precision

error in V is then calculated as Eq. (B-4):

S!L 1 + 2+/1(B-4)

\ x i j x2 axi "

where y is a parameter of interest determined by variables xi, x2,...,xn. u, is the precision in

measurement uncertainty the quanity y, determined by the measurement uncertainty of input

variables u1, U2,. u,, and the partial derivatives of y with respect to x1 , x 2,...,xn. Applying Eq. (B-4)

to Eq. (B-2),
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/dV 2 (dV 2 dV 2

Uy = -uI,c + u'dr U )+ ut

calculating derivatives and substituting,

UV (21rr \z Ut C) 2,cC A )

2 2 (B-5)

Substituting experimental values (r= 29 mm, t = 0.5 sec, C=2.17) into Eq. (B-5) yields uy =

1.93 x 10-2 m/s. Thus is it is concluded that precision in measurement uncertainty is an

insignificant source of error.

Random statistical spread is another contributor to the error in the data. For example consider

the data from the experiment completed on Nov. 3, 2010 with a 14.396 kg canister dropped into

85.50 C water.

1

0.8

$0.6

0.4

0.2

0
0

Amiga&

0.2 0.4 0.6 0.8
Time (sec)

Figure B-6. Velocity data obtained from a drop test using
canister into 85.5* C water.

1 1.2 1.4

14.396 kg reference geometry

The standard deviation from the average terminal velocity in the time interval of 0.49 to 0.96

seconds in the calculated in Excel yields o-= 1.997 x 102. For such a large sample (n=48), the t

statistic converges to 2, and umy is calculated to be 5.77 x 10~3 m/s. Adding this to the precision
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uncertainty yields an overall measurement uncertainty of 2.51 x 10-2 m/s. Compared to the mean

value of terminal velocity (-0.75 m/s), this represents a relative error of 3.34%.

As for the model uncertainty, the greatest error lies in the measurement of the canister diameter.

For example, consider the canister measurements for the experiments on February 10, 2011.

Table B-7. Measured values for the canister diameter.

Canister
Diameter

(mm)
67.82
67.8

67.85
68.08
68.02
68.49
68.08

The standard deviation o- for the data in Table 2 is 0.2399. Using the student t statistic for n 7,

t.02s,n- 1 = 2.365 and therefore u,= .2144 mm. The estimates for the resulting error in model

predictions were completed using the "range" method, by testing the maximum and minimum

possible values of Dh and checking the resulting range in terminal velocity. This absolute error

was converted to a relative error, which was calculated to be 3.44%. The final graph including

all errors is shown in Figure 5-8.
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Thermal Analysis of Canister During Emplacement

C.1. Introduction
In order to ensure that potentially troublesome temperatures would not be experienced during the

emplacement procedure, a thermal analysis is applied. The square assembly canister is treated as

a homogenous region with uniform conductivity and effective circular diameter. Conduction

through the concrete cask (necessary for radiation shielding) poses the greatest barrier to heat

transfer. Overall this requires an iterative approach because the heat transfer coefficient

associated with natural convection on the surface of the concrete cask is a function of the

temperature of the surface.

C.2. Surface Temperatures
The decay heat can be described by an inverse power law relationship in Equation (C-1):

= 2200 (C-1)
t {.75

where, t is canister age in years, and q' is linear heat generation in W/m.

This equation applies to a 4.2 m tall, 0.2417 m effective diameter, PWR assembly (17X17) with

0.5 metric tons of uranium at 60 GW-day/MTU of burnup. Outside of the assembly is a 12.1 mm

thick steel casing in addition to a 0.5 m thick concrete cask to provide shielding. A diagram of

the homogenized assembly, steel casing, and concrete cask configuration was shown previously

in Figure 6-1. The overall canister diameter is then:

D = 2 rcask = 2(rcanister + Scone) = 2 (rassembly + 6 steel + Sconc)

where,

D is the overall cylinder package diameter in m,

rassembly is the homogenized fuel assembly effective radius in m,

rcask is the cask outer radius in m,

rcanister is the steel canister outer radius in m,

Sconc is the concrete thickness in m,
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osteel is the steel canister thickness in m.

The cask surface temperature as a function of the decay heat can be analyzed through

dimensionless heat transfer correlations. The convective heat transfer coefficient for a cylinder

experiencing natural convection can be defined in terms of the Rayleigh (Ra), Prandtl (Pr), and

Nusselt (Nu) dimensionless groups- Eqs.(C-2), (C-3), and (C-4). The Rayleigh number for is

defined as in Eq. (C-2):

Raa = 9f(Tcask - Tair)D 3  (C-2)

va

where,

g is gravitational acceleration (m/s 2)

P is expansion coefficient in (1/K)

v is kinematic viscosity (m2/s)

a is thermal diffusivity in (m2/s)

Tair is the air temperature in (*K)

Tcask is the cask surface temperature (*K)

The Prandtl number is defined in Eq. (C-3)

Pr - cP (C-3)
k

where,

y is the dynamic viscosity (Pa-s),

c, is the specific heat capacity of the fluid in (J/kg-0 K) and

k is the fluid conductivity (W/m-*K).

The definition and correlation Nu=f(RaPr) is shown in Eq. (C-4) for a horizontal cylinder [64],

Nud 0.60+ 0.387Rad1/6 2 hD (C-4)

[1 + 0.559/Pr9/16]8/27 k

where,
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Rad is the Rayleigh number based on the cylinder diameter,

Pr is the Prandtl number of the fluid, and

h is the convective heat transfer coefficient (W/m 2_oK).

The canister heat dissipation rate in W/m through radiation and natural convection is defined in

Eq. (C-5),

q' = q'onv + qraa = hwD(Tcask - Tair) + EJ-TD(Tcask4 - Tair4 ) (C-5)

where,

e is emissivity and

a is the Stefan-Boltzmann constant in W/m 2_oK 4.

By setting the canister heat dissipation rate equal to the canister decay heat (steady state

assumption) it is possible to iteratively solve for the surface temperature of the canister package,

using Eq (C-6),

2200(C6
0 = hT(D(Tcask - Tair) + ESrD(Tcask4 - Tair 4 ) (C-6)

The temperature difference between the cask surface temperature and steel canister surface is

defined as Eq. (C-7),

ln(rcask/rcanister) + Tcask (C-7)
Tcanister = 2wk + cas

where,

Tcanister is the canister surface temperature (*K) and

kcone is the concrete conductivity (W/m-*K).

The steel canister contributes to a very small temperature difference between the canister surface

temperature and assembly surface temperature, defined in Eq. (C-8),
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Tassembly :-
(C-8)lnOrcanister /rassembiy) +

2 Wksteel + canister

where,

Tassembly is the canister surface temperature (0 K),

ksteel is the steel canister conductivity in (W/m-0 K).

The centerline temperature is defined in Eq. (C-9),

_q'

t- 4 Wkf + Tassembly

where,

Tctr is the canister centerline temperature (oK),

q' is linear heat generation in W/m

R is canister radius in m

keff is the effective canister conductivity (W/m-0 K)

The assumed values for the thermal analysis are summarized in Table C-1.
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Table C-1. Assumed material and thermal parameters for analysis of the shielded canister
temperature distributions[12] and from Table A.3 [64] .

Parameter Value Units

g 9.8 m/s 2

p 2.725 x 10-3 (air at 94 'C) 1/ 0K

v 2.28 x 10-5 (air at 94 'C) m 2/s

a 3.285 x 10-s (air at 94 C) m 2 /s

kair 0.0313 (air at 94 C) W/mK

kconc 1.4 W/m 0 K

ksteei 50 W/mK

keff 0.63 W/m 0 K

Pr 0.697 (air at 94 'C)

E 0.85

0- 5.67 x 10-8 W/m 2 OK4

Tair 23 C

rassembly 0.12085 m

rcanister 0.1269 m

rcask 0.6269 m

Using the assumed values, Figure 6-2 shows the canister decay heat, surface temperature, and

centerline temperature versus the number of years the fuel assembly has been removed from the

reactor.
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C.3. Cylindrical Temperature Distribution
The internal temperature profile within a cylinder is defined by Eq. (C- 10) [64],

T(r) = 4 keff (1
where,

r is the radius in m

R is canister radius in m

keff is the fuel assembly effective conductivity in W/m-K

4 is the volumetric heat generation W/m 3

Converting volumetric heat generation term to linear heat generation term the resulting

temperature distribution is Eq. (C- 11),

qf

(C-10)

(C-11)q' r2) +T
T()4rckeff( R2 s

The generalized formula for the temperature distribution for cylindrical geometry is Eq. (C-12)

[64],
_ qr

T(r) = + Ci ln r + C24 keff

(C-12)

The boundary conditions define the temperature at the inner and outer radius, given by Eq (C- 13)

and Eq. (C-14),

T(rin) = Tin

T(r0Out) =Tou

(C-13)

(C-14)

Substituting Eq. (C-14) into Eq. (C-12) and solving for C2 gives Eq. (C-15),
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TOu= 4rout 2 +
4 keff

2

C2 = Tout - q
4keff

C1 In rOut + C2

- C1 In rout

Substituting the Eq (C-13) into Eq. (C-12) solving for C1 gives Eq. (C-16),

2

Tin = n + C1 In rin + C24 keff

Tri in="
4 keff

C1 Inrout
rin

+ C 1nrin + Tout - qrout 24 keff

- Tout - Tin - q (rout 2 -rin2)
4keff

C1 =

q (rout 2 -rin2)4 keff

In rn (C-16)

Substituting Eq. (C-15) and Eq. (C-16) into Eq. (C-12) and collecting terms gives Eq. (C-17),

in r + Tone
4roe 2

4eff

Tout - Tn - (rut 2 - rin 
2

)4kff In rout

rout

(rout 2 - 2)4 keff r
In - + Tout

routIn rin
rout

Defining volumetric heat generation rate as a function of q', substituting it into Eq. (C-17) and

simplifying terms gives Eq. (C- 18),
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- C1 In rout

T(r)

.2qr2
4 keff

Tone - Ti, - 4 2 (rout 2 - rn

In --

T(r) = 4 k (r rout 2)
4err

(C-17)

Tout - Tin -

Tout ~ Tin -



q

or t -r )

q' (r 2 _ rout 2)
4 rckeff (ri~t - rf,)

Tout - Tin q ' (rout 2 -rin )
41keff (Tout-ri2n)

In Fen rout
rout

q' (r 2 
- rout 2) Tout 4-T ken n r

T(r) = ,. In - + Tout4 lxkeff (rout - rin) In-r"- rout
Tout

(C-18)

Using the assumed values from Table C-I, the temperature profiles were calculated. The internal

temperature distribution for various linear heat generation rates is shown in Figure 6-3.
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