
MIT Open Access Articles

An analysis of the control hierarchy
modeling of the CMS detector control system

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Hwong, Yi Ling et al. “An Analysis of the Control Hierarchy Modelling of the CMS
Detector Control System.” Journal of Physics: Conference Series 331.2 (2011): 022010.

As Published: http://dx.doi.org/10.1088/1742-6596/331/2/022010

Publisher: IOP Publishing

Persistent URL: http://hdl.handle.net/1721.1/76604

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/76604
http://creativecommons.org/licenses/by-nc-sa/3.0/

Available on CMS information server CMS CR -2010/301

The Compact Muon Solenoid Experiment

Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Conference Report
16 December 2010

An Analysis of the Control Hierarchy Modeling of
the CMS Detector Control System

Yi Ling Hwong for the CMS Collaboration

Abstract

The supervisory level of the Detector Control System (DCS) of the CMS experiment is implemented
using Finite State Machines (FSM), which model the behaviors and control the operations of all the
sub-detectors and support services. The FSM tree of the whole CMS experiment consists of more
than 30.000 nodes. An analysis of a system of such size is a complex task but is a crucial step towards
the improvement of the overall performance of the FSM system. This paper presents the analysis
of the CMS FSM system using the micro Common Representation Language 2 (mcrl2) methodol-
ogy. Individual mCRL2 models are obtained for the FSM systems of the CMS sub-detectors using the
ASF+SDF automated translation tool. Different mCRL2 operations are applied to the mCRL2 models.
A mCRL2 simulation tool is used to closer examine the system. Visualization of a system based on
the exploration of its state space is enabled with a mCRL2 tool. Requirements such as command and
state propagation are expressed using modal mu-calculus and checked using a model checking algo-
rithm. For checking local requirements such as endless loop freedom, the Bounded Model Checking
technique is applied. This paper discusses these analysis techniques and presents the results of their
application on the CMS FSM system.

Presented at CHEP2010: International Conference on Computing in High Energy and Nuclear Physics 2010

An Analysis of the Control Hierarchy Modelling of the CMS
Detector Control System

Yi Ling Hwong2, Tim Willemse8, Vincent Kusters8, Gerry Bauer7, Barbara Beccati2,
Ulf Behrens1, Kurt Biery6, Olivier Bouffet2, James Branson5, Sebastian Bukowiec2,
Eric Cano2, Harry Cheung6, Marek Ciganek2, Sergio Cittolina,2, Jose Antonio
Coarasa2, Christian Deldicque2, Aymeric Dupont2, Samim Erhan4, Dominique Gigi2,
Frank Glege2, Robert Gomez-Reino2, Andre Holzner5, Derek Hatton1, Lorenzo
Masetti2, Frans Meijers2, Emilio Meschi2, Remigius K. Mommsen6, Roland Moser2,
Vivian O'Dell6, Luciano Orsini2, Christoph Paus7, Andrea Petrucci2, Marco Pieri5,
Attila Racz2, Olivier Raginel7, Hannes Sakulin2, Matteo Sani5, Philipp
Schieferdeckera,2, Christoph Schwick2, Dennis Shpakov6, Michal Simon2, Konstanty
Sumorok7

1DESY, Hamburg, Germany, 2CERN, Geneva, Switzerland, 3Eidgenössische Technische
Hochschule, Zurich, Switzerland, 4University of California, Los Angeles, Los Angeles,
California, USA, 5University of California, San Diego, San Diego, California, USA, 6FNAL,
Chicago, Illinois, USA, 7Massachusetts Institute of Technology, Cambridge, Massachusetts,
USA, 8Technical University of Eindhoven, aNow at Universitaet Karlsruhe

Email: Yi Ling Hwong - yi.ling.hwong@cern.ch

Abstract. The supervisory level of the Detector Control System (DCS) of the CMS experiment
is implemented using Finite State Machines (FSM), which model the behaviours and control
the operations of all the sub-detectors and support services. The FSM tree of the whole CMS
experiment consists of more than 30.000 nodes. An analysis of a system of such size is a
complex task but is a crucial step towards the improvement of the overall performance of the
DCS system. This paper presents an analysis of the CMS FSM system using the micro
Common Representation Language 2 (mCRL2) methodology. Individual mCRL2 models are
obtained for the FSM systems of the CMS sub-detectors using ASF+SDF. Different mCRL2
operations are applied to the mCRL2 models. A mCRL2 simulation tool is used to closer
examine the system. Visualization of a system based on the exploration of its state space is
enabled with a mCRL2 tool. Requirements such as command and state propagation are
expressed using modal mu-calculus and checked using a model checking algorithm. For
checking local requirements such as endless loop freedom, the Bounded Model Checking
technique is applied. This paper discusses these analysis techniques and presents the results of
their application on the CMS FSM system.

mailto:yi.ling.hwong@cern.ch�

1. Introduction
The CMS experiment is a general purpose detector designed to study a wide range of particles and
phenomena produced in the high-energy collisions in the LHC. The control, configuration, readout and
monitoring of hardware devices as well as the monitoring of external systems, such as the electrical
system, cooling system, etc, is carried out by the Detector Control System (DCS). The modeling of the
control system is implemented as a hierarchy of Finite State Machines (FSM) and is developed using
the SMI++ toolkit [1]. FSMs are described using the State Manager Language (SML) and are
organized in a tree structure where each node has one parent and zero or more children, except for the
top node, which has no parent. Commands are sent from a parent node down to its children and the
states of the children are propagated up the tree (Figure 1). The FSM tree of the whole CMS
experiment consists of more than 30.000 nodes, which makes the design and implementation of a
homogenous and consistent system a complex task. A single badly designed FSM may be sufficient to
lead to endless loops, potentially hampering the performance of the experiment.

Figure 1. A simple control system modeled using Finite State Machines

In view of the complexity of the FSM system, it is almost impossible to track down problems when
unexpected behaviors manifest themselves. In this project we developed automated verification
tooling for our analysis purposes. The project is divided into two main parts. First, we formalised the
SML by mapping its language construct onto constructs in the process algebraic language mCRL2 [2].
Second, we identified properties that can be verified for FSMs in isolation and developed dedicated
verification tooling based on Bounded Model Checking [3].

Using the ASF+SDF meta-environment [4], we developed a prototype translation implementing
our mapping of SML to mCRL2. This allowed us to quickly assess the correctness of the translation
through simulation and visualization of FSMs in isolation. Our dedicated verification tools allow the
FSM developers to quickly perform behavioral sanity check on their code and use the feedback to
further improve on their design.

2. The State Manager Language (SML)
The Finite State Machines (FSMs) are described using the State Manager Language which is provided
by the SMI++ toolkit. Listing 1 shows a snippet of the definition for a class in SML.

A class is the declaration of a FSM object and consists of one or more state clauses. Each state
clause consists of zero or more when clauses and action clauses. The when clauses describe how the
object will behave in a certain state, i.e. the rules by which the object will obey for transition between
states or to execute a command. A when clause has two parts: a guard which is a Boolean constraint
on the states of the children of the object and a referrer which describes what should happen if the
guard evaluates to true. An action clause consists of a name and a list of statements. When an object
in a state S receives a command from its parent, it looks inside the state clause of state S for an action
clause with the same name as the command and if such an action clause exists, it executes its
statement list. Commands received which are not declared in the action clause are ignored.

class: $FWPART_$TOP$RPC_Wheel_CLASS
 state: OFF

when (ANYFwCHILDREN in_state ERROR) move_to ERROR
when (ANYFwCHILDREN in_state RAMPING) move_to RAMPING

 when (ALLFwCHILDREN in_state STANDBY) move_to STANDBY
when (ALLFwCHILDREN in_state ON) move_to ON
when ((ALLFwCHILDREN not_in_state OFF) and

 (ANYFwCHILDREN in_state STANDBY)) move_to STANDBY

 action: STANDBY
 do STANDBY ALLFwCHILDREN
 action: OFF
 do OFF ALLFwCHILDREN
 action: ON
 do ON ALLFwCHILDREN

Listing 1. Part of the definition of the Wheel class in SML

2.1. From SML to mCRL2
We formalise the semantics of programs written in SML using the process algebra mCRL2 by
providing a mathematical model for the language constructs of SML. Consequently the SML codes
can be analysed mathematically. mCRL2 is a specification language that can be used to specify and
analyse the behaviour of large distributed systems. The language is supported by a toolset enabling
simulation, visualisation and verification of software requirements.

We utilised the ASF+SDF meta-environment to develop an automatic translator which will
translate SML into mCRL2. This allows us to model a FSM model in the mCRL2 language, upon
which the verification tool from the mCRL2 toolset is applied (see Section 3). The Syntax Definition
Formalism (SDF) was used to describe the syntax of both SML and mCRL2, whereas the Algebraic
Specification Formalism (ASF) was used to express the term rewrite rules for the actual translation.
An example of the translation is shown in Translation 1.

SML

State: OFF

when G1 move_to S1
…
when Gn move_to Sn

mCRL2

inState_OFF(s) && isWhenPhase(phase) -> (
 translation_of_G1 ->

move_state(self,S1).
Wheel(self,parent,S1,chs,phase,aArgs) <>

 …
 translation_of_Gn ->

move_state(self,Sn).
Wheel(self,parent,Sn,chs,phase,aArgs) <>

 send_state(self,parent,s).
 move_phase(self,ActionPhase).
 Wheel(self,parent,s,chs,ActionPhase,
 reset(aArgs)))

Translation 1. A simplified translation of the when clauses of a state OFF for the Wheel class

Due to the intricacies of the language, the formalisation of SML was far from trivial. We used the

mCRL2 simulation and visualization tools to ensure a translation that reflects the real system
accurately. This is an important part of the project as subsequent model checking using the mCRL2

verification tool is performed on this mCRL2 model derived from the translation. It is crucial that the
translated model is as close to the actual behaviour as possible because otherwise, the outcome of the
analysis of the models which is conducted using mCRL2 (or BMC, which will be discussed in section
4) may not reflect what goes on in the real system.

3. General Tooling for Verification
The analysis of a system often involves showing that the modelled system exhibits certain desired
properties, or does not exhibit an undesired one. A powerful verification method which is supported in
the mCRL2 toolset is model checking. A formula expressing a desired property that the system should
not violate (or satisfy) is needed for model checking. Such formulas are expressed in regular modal
mu-calculus [5]. The formulation of requirements is an involved matter and often requires several
attempts before the desired property is accurately expressed. To this end we have formulated some
basic requirements and check them on the Wheel subsystem, see Table 1.

Table 1. Basic requirements for the Wheel subsystem; i:Id denotes an identifier of an FSM; i_c:Id

denotes a child of FSM i; c:Command denotes a command; c2s(c) denotes the state with the
homonymous command name, e.g., c2s(ON) = ON

1. Absence of deadlock:
 nu X. [true]X && <true>true

2. Absence of endless loop:
 nu X. [true]X &&
 [exists s:State. move_state(i,s)](nu Y

 [(!move_phase(i,ActionPhase))]Y &&
 [exists s:State. move_state(i,s)] false)

3. Responsiveness:

 nu X. [true]X && [comm_command(i,i_c,c)](mu Y. <true>true &&
 [!comm_state(i_c,i,c2s(c))||
 exists c’:Command. comm._command(i,i_c,c’))]Y)

4. Progress:

 nu X. [true]X && mu Y. <exists s:State. move_state(i,s)>true ||
 [true]Y

The first two requirements are fairly straightforward while the third and forth requirements are

more elaborate. The ‘Responsiveness’ requirement expresses the inevitability of a state change by a
child once such a state change has been commissioned while the ‘Progress’ requirement asserts that
state changes should always be attainable, i.e., an FSM will eventually change its state. All these
requirements hold for the Wheel subsystem.

The expressiveness of the modal mu-calculus entails the versatility of the mCRL2 verification tool
to check for any requirements. However, the enormous state-space of the FSM system renders this a
time consuming process.

4. Dedicated Tooling for Verification
In an attempt to improve on the time performance of a general verification tooling, we explored the
possibilities of using Bounded Model Checking (BMC) to analyse a FSM in isolation. The basic idea
of BMC is to check for a counterexample in bounded runs. If no bugs are found using the current
bound, then the bound is increased until either a bug is found, the problem becomes intractable, or

some pre-determined upper bound is reached upon which the verification is complete. The BMC
problem can be efficiently reduced to a propositional satisfiability problem, and can therefore be
solved using a SAT solving tool [6]. We have applied BMC techniques for the detection of endless
move_to loops and the detection of unreachable states and trap states. An example of an endless
move_to loop can be seen in Listing 2, showing an excerpt of the ECALfw_CoolingDee SML code
which our tool found to contain issues. If an instance of ECALfw_CoolingDee has one child in state
ERROR and one child in state NO_CONNECTION, it will loop indefinitely between these two states.

state: ERROR
 when (ANYFwCHILDREN in_state NO_CONNECTION) move_to NO_CONNECTION
 when (ALLFwCHILDREN in_state OK) move_to OK

 state: NO_CONNECTION
 when (ALLFwCHILDREN in_state OK) move_to OK
 when (ANYFwCHILDREN in_state ERROR) move_to ERROR

Listing 2. An excerpt from the ECALfw_CoolingDee SML code that exhibits an endless loop

We formulated the problem of detecting a loop into a SAT problem with the predicate in_state
defined as follows: in_state(s,p,i) holds if and only if the process with identifier p is in state s after i
steps. We assign the identifier zero to the FSM under consideration. The resulting formula has three
components: the state constraints, the transition relation and the loop condition. The state constraints
ensure the FSM is always in exactly one state and that the states of the children do not change during
the execution of the when phase. The transition relation is the translation of the when clauses, denoting
the move_to steps that a FSM is allowed to take. The loop condition states that if in_state(s,0,0) holds,
then in_state(s,0,i) must hold for i > 1, indicating that the parent returns to the state in which it started.

For the detection of unreachable states and trap states, we adopted a graphical approach. For this,
we determine whether there is a configuration of children such that a FSM F can execute a move_to
action from a state s to a state s’. Doing so for all pairs (s,s’) of states of F yields a graph encoding all
possible state changes of F. Computing the strongly connected components (SCCs) of the thusly
obtained state change graph gives us a clear overview of the reachability of the FSM states. A well
designed FSM should contain only one single SCC. A system displaying more than one SCC is often
an indication of a faulty design. The state change graph of the ESfw_Endcap FSM class is shown in
Figure 2. We can clearly see that the state OFF can never be reached from any of the other states.

Figure 2. The state change graph of the ESfw_Endcap FSM class. The SCCs are placed within a

dashed frame

5. Results
We obtained very encouraging results with our dedicated tools for verification. We have analysed
more than 40 FSM classes so far and found 6 to contain issues, two of them shown in Listing 2 and
Figure 2 respectively. Note that although trivial at first glance, such errors are difficult to be detected
due to the size of an average FSM class which contains more than 100 lines of SML code in general.
We automated the process of pinpointing the source of an error and this is done in typically less than
one second. Our state change graph verification method has been incorporated in the FSM 3D
visualization tool which is currently being developed.

6. Conclusion
The Finite State Machine (FSM) system of the CMS experiment is a large and complex system. We
studied the State Manager Language (SML) which is used to describe the FSMs and formalised it
using the process algebraic language mCRL2. The translation of SML into mCRL2 was implemented
using the ASF+SDF meta-environment. We carried out formal verification of a small subsystem using
the model checking tool provided by mCRL2. Based on specific needs for certain requirements such
as endless loops freedom and the reachability of all states, we also built dedicated tools based on
Bounded Model Checking for verification of FSMs in isolation. Results so far are very encouraging
and we plan to further explore SAT solving techniques, and combine it with symbolic verification
techniques such as the ones currently offered in the mCRL2 and LTSmin toolsets [7].

7. Acknowledgement
This work has been supported in part by a Marie Curie Initial Training Network Fellowship of the
European Community’s Seventh framework program under contract number(PITN-GA-2008-211801-
ACEOLE). We would also like to thank Giel Oerlemans, Dennis Schunselaar and Frank Staals from
the Eindhoven University of Technology for their contribution to the automatic translator. We also
thank Clara Gaspar for her valuable advice about the SML language.

References
[1] B. Franek and C. Gaspar. SMI++ object-oriented framework for designing and implementing

distributed control systems. IEEE Transactions on Nuclear Science, 52(4):891-895, 2005
[2] J.F. Groote, A.H.J. Mathijssen, M.A. Reniers, Y.S. Usenko, and M.J. v. Weerdenburg. Analysis

of distributed systems with mCRL2. In Process Algebra for Parallel and Distributed
Processing, pages 99–128. Chapman Hall, 2009

[3] A. Biere, A. Cimatti, E.M. Clarke, O. Strichman, and Y. Zhu. Bounded Model Checking.
Advances in Computers, 58:118–149, 2003

[4] M. Van den Brand, A. Van Deursen, J. Heering, H.A. De Jong, M. De Jonge, T. Kuipers, P.
Klint, L. Moonen, P.A. Olivier, J. Scheerder, J.J. Vinju, E. Visser, and J. Visser. The
ASF+SDF meta-environment: A component-based language development environment. In
Reinhard Wilhelm, editor, Proc. of Compiler Construction, volume 2027 of LNCS, pages
365–370. Springer, 2001

[5] J.F. Groote and T.A.C.Willemse. Model-checking processes with data. Science of Computer
Programming, 56(3):251–273, 2005

[6] A. Biere, A. Cimatti, E.M. Clarke, O. Strichman, and Y. Zhu. Bounded Model Checking Using
Formal Methods in System Design, 19, 7–34, 2001

[7] S.C.C. Blom, B. Lisser, J.C. van de Pol, and M. Weber. A database approach to distributed
state-space generation. Journal of Logic and Computation, 2009

