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Abstract

Brain computer interface (BCI) technology has been proposed for motor neurorehabilitation, motor replacement and
assistive technologies. It is an open question whether proprioceptive feedback affects the regulation of brain oscillations
and therefore BCI control. We developed a BCI coupled on-line with a robotic hand exoskeleton for flexing and extending
the fingers. 24 healthy participants performed five different tasks of closing and opening the hand: (1) motor imagery of the
hand movement without any overt movement and without feedback, (2) motor imagery with movement as online feedback
(participants see and feel their hand, with the exoskeleton moving according to their brain signals, (3) passive (the orthosis
passively opens and closes the hand without imagery) and (4) active (overt) movement of the hand and rest. Performance
was defined as the difference in power of the sensorimotor rhythm during motor task and rest and calculated offline for
different tasks. Participants were divided in three groups depending on the feedback receiving during task 2 (the other tasks
were the same for all participants). Group 1 (n = 9) received contingent positive feedback (participants’ sensorimotor rhythm
(SMR) desynchronization was directly linked to hand orthosis movements), group 2 (n = 8) contingent ‘‘negative’’ feedback
(participants’ sensorimotor rhythm synchronization was directly linked to hand orthosis movements) and group 3 (n = 7)
sham feedback (no link between brain oscillations and orthosis movements). We observed that proprioceptive feedback
(feeling and seeing hand movements) improved BCI performance significantly. Furthermore, in the contingent positive
group only a significant motor learning effect was observed enhancing SMR desynchronization during motor imagery
without feedback in time. Furthermore, we observed a significantly stronger SMR desynchronization in the contingent
positive group compared to the other groups during active and passive movements. To summarize, we demonstrated that
the use of contingent positive proprioceptive feedback BCI enhanced SMR desynchronization during motor tasks.
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Introduction

Stroke survivors with chronic hand plegia and low scores in the

Fugl-Meyer scale show limited residual muscle activity in the

upper arm extensor muscles and no finger extension. Currently,

there is no accepted and efficient rehabilitation strategy available

in patients with chronic stroke and no residual hand movements.

BCI systems could be a solution for those who suffered a stroke

and need to rehabilitate a completely paralyzed limb and a

damaged brain at the same time [1]. With this idea in mind, some

groups explored motor imagery based therapy for motor recovery

[2]. However, chronic stroke patients with motor impairment are

usually treated with physiotherapy. Recently, robots as a way of

facilitating treatment implying increased repetition and movement

control were used [3,4]. The control signal to activate the

rehabilitation robots depends on the remaining muscle control.

Force and kinematics sensors are used in robotics based motor

rehabilitation as control signals whenever stroke survivors show

residual movements to improve proprioceptive feedback [5,6].

Alternatively, electromyography (EMG) can be used as a control

signal alone or combined with force or kinematics sensors to

improve movement detection [7–9]. For patients without any

residual movement in the affected joints, EMG (if present) and

electroencephalographic (EEG) signals, combined or alone, based

BCI might be a non-invasive strategy that could be used to trigger

robot movements and therefore close the loop between brain and

effect (hand movements).

On the other hand, it has been widely demonstrated that visual

feedback plays a key role in BCI training as in any other skill

learning [10–14] and is the most used type of feedback. Recently,

vibrotactile feedback [15,16], auditory feedback [17] and robot

assisted feedback control [18] have also been implemented.
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However, the specific type of feedback does not appear to be the

critical factor for BCI performance [14]. Nevertheless, depending

on the clinical application of the BCI and the remaining afferent

pathways [10,19], feedback can play a crucial role. Recently, BCIs

approaches to motor rehabilitation in patients who suffered a

stroke, proprioceptive afferent feedback becomes a key factor to

close the loop and to produce some rehabilitation effects [1,20,21].

In these approaches proprioceptive feedback of passive movement

of the paretic limb, was delivered to the patients after

accomplishing a BCI task (normally driving a cursor on a screen

to a target by modulating the sensorimotor rhythm of EEG and

moving the limb with a prosthetic device). This passive approach

can be called discrete proprioceptive BCI since a task has to be

completed before receiving the proprioceptive feedback (several

seconds delay), therefore the proprioceptive feedback was discrete

(i.e. off-line) instead of continuous (miliseconds delay). On top of

this, we know that passive motor trainings have not been shown to

result in gains in motor function but active participation and

volition seems necessary [8,22,23]. The control of a robot or

prosthetic device and the feedback contingency are of vital

importance to enable neuro-motor-rehabilitation. Here, we

developed and tested in healthy participants an on-line proprio-

ceptive BCI, closing the loop between brain, movement and

proprioception. The difference between this system and previous

studies [20,21] consists of the online feedback being proprioceptive

(feeling the hand moving) and visual (watching the hand moving)

during voluntary brain control as opposed to online visual

feedback only i.e. the feedback is represented by a cursor on a

screen without concurrent movement, and passive movement with

proprioceptive feedback and after successful cursor control only.

However, with at least some afferent pathways intact, the

sensory information to the brain produced by moving the paretic

limb engages remaining motor areas in the vicinity of the lesion to

control the BCI. Since EEG has a limited spatial resolution it is

difficult to separate activity from somatosensory cortex, premotor

or motor cortex even using advanced spatial filtering methods

[12,24]. From previous work we know that passive movement

affects frequency bands in a similar way but somewhat weaker

than active movement and motor imagery [25,26]. The afferent

excitation of the sensorimotor brain through the robotic orthosis

produces similar EEG frequency changes. Only preliminary data

are available regarding the use of proprioceptive on-line BCI

[27,28]. Such BCIs could result in increasing and strengthening of

the oscillations used for the BCI (i.e. improve in BCI control), or

an opposite effect (decrease in BCI control comparable to

distraction), or effects on other frequencies, electrodes or time

points that do not affect the features of the BCI classifier. In order

to test these alternatives, we developed a sensorimotor rhythm

based on-line proprioceptive BCI, linking brain oscillations with a

robotic hand orthosis and investigated the effects of proprioception

on BCI control. 23 healthy participants separated in 3 different

feedback contingency groups: contingent positive (n = 9), negative

(n = 7) and sham (n = 7) feedback, were involved in the study. The

participants performed five different tasks: (1) motor imagery

without any feedback and no movement, (2) motor imagery with

proprioceptive feedback of the BCI-dependent movement, (3)

passive and (4) active movement without a BCI, and (5) rest,

comparable with the major ingredients of rehabilitation therapies

for movement disorders. Sensory motor rhythm (SMR) desyn-

chronization/synchronization during each motor task with respect

to inter-trial interval SMR was the performance measure and used

as main dependent variable.

Methods

Experimental Procedure
23 healthy volunteers were recruited for the experiment.

Participants were sitting in an upright position wearing a 128-

channel EEG cap. The experimental protocol was approved by

the ethics committee of the University of Tubingen, Medical

Faculty. Participants provide their written informed consent to

participate in this study. The hand of the participant was fixed to a

hand orthosis which could be driven by the participants’ brain

oscillations (the ‘‘closed’’ and ‘‘open’’ position of the hand was

adapted to the individual range of motion). Participants were

asked to perform 5 different tasks following 5 randomly presented

auditory cues (the name of the task taped in advance (or from a

taped recording of the voice of one of the experimenters):

1. motor imagery without direct control (MIT) of the orthosis i.e. the

participant had to imagine to move the hand without moving

the hand and with no movement of the orthosis (task1)

2. motor imagery with direct control (MIT&F) of the orthosis i.e. the

hand motor imagery related brain oscillations drove the

moving orthosis (task2)

3. passive movements of the orthosis i.e. the orthosis opened and

closed the participants’ hand. The participant was asked not to

perform any mental task. The orthosis movements are not

linked to brain activity. (task3)

4. active movement i.e. the participant was required to actively open

and close the hand attached to the orthosis and the orthosis

followed the movement. (task4)

5. rest (task5)

The participants were separated in 3 different groups receiving

3 different feedback contingencies. Only during task2 participants

used the EEG-based proprioceptive BCI to control the orthosis

with opening and closing the hand motor imagery. The first group

received contingent positive feedback (moving the orthosis with

SMR desynchronization in task 2: 9 Participants), the second

received contingent negative feedback (moving the orthosis with

SMR synchronization in task 2: 8 Participants) and the third

received sham feedback (the orthosis moved independently from

brain activity but participants believed in their control: 7

Participants).

Two seconds after the corresponding auditory cue, a ‘‘GO’’ cue

was presented and the participant performed the appropriate

motor task for 5 seconds terminated by an auditory ‘‘end’’ cue

(Fig. 1A). All auditory cues were normalized in pitch, length and

volume. In task 1 and task 2 participants were asked to perform

kinaesthetic motor imagery, i.e. imagine executing and perceiving

the movements opening and closing the hand. During task 1 no

feedback was presented to the participants in contrast to task 2, in

which direct visual feedback of the hand, moving and proprio-

ceptive feedback while the hand was moved by the brain-driven

orthosis was provided (Fig. 1B). The participants performed 4

different training sessions at 4 different days completing 10 runs of

25 trials each. The participants had no prior BCI experience.

In Table 1 a demographic description of the participants is

presented together with the oscillation type (sensorimotor rhythm

synchronization S or desynchronization DS) used in each group to

compute performance for the five different motor tasks. BCI

performance except for task2 was computed off-line.

Data Acquisition
EEG data were acquired using a BrainAmp 128-channel

amplifier from Brain Products GmbH, Munich Germany. An

Proprioception in Brain Computer Interfaces
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EasyCap 128-channel EEG cap (modified 10–20 system) from

EASYCAP GmbH, Herrsching, Germany was used for EEG data

acquisition, referenced to the nasion, and grounded anteriorly to

Fz. Only 61 EEG channels over the motor areas on both

hemispheres were used recording from pre-motor, motor and

parietal areas (Fig. 1C). Additionally, horizontal EOG on both

eyes and vertical EOG on the right eye and EMG on both upper

and lower arms for artefact correction was measured. Data were

sampled at 500 Hz and transferred to a PC for storage and real-

time signal processing using the BCI2000 platform (www.bci2000.

org). EMG data were acquired using 8 bipolar Ag/AgCl electrodes

(Myotronics-Noromed, Tukwila, WA, USA) placed on antagonis-

tic muscle pairs; one close to the external epicondyle on the

extensor digitorum (forearm extensor), the other on the flexor

carpi radialis (forearm flexor), another on the external head of the

biceps (upper arm flexor) and the last one placed on the external

head of the triceps (upper arm extensor). The EEG and EMG

electrodes impedance was always kept under 5 and 20 kOhm

respectively.

Orthosis
Each finger was moved individually using a DC2Motor M-28

(Kaehlig Antriebstechnik GmbH, Hannover, Germany) with

worm gearhead for each finger. The motor drove a Bowden

cable via cogwheel and cograil. A finger holder was mounted on

the other side of each Bowden cable (Fig. 1C). Close to this finger

Figure 1. Experimental Design. A) Timing of an experimental trial. Each trial starts with a baseline of 3 seconds followed by an auditory instruction
period. 2 seconds after the instruction a ‘‘Start’’ cue is presented and 5 seconds later an ‘‘End’’ cue. B) BCI. Participant wearing the 128 EEG channels
cap seated with the hand attached to the orthosis showing the components used during all tasks C) Close look at the orthosis with the fingers
attached. D) Schematic of the 128 channels and shaded in grey the 61 channels used during the experiments.
doi:10.1371/journal.pone.0047048.g001

Table 1. Experimental protocol.

Nr. Age Hand Oscillation type used to compute BCI performance in all tasks/motor-modes

CP 9 26.664 9R SMR Desynchronization

CN 8 26.565 8R SMR Synchronization

Sham 7 26.262 7R/1L SMR Desynchronization

Where ‘‘CP’’ indicates contingent positive, ‘‘CN’’ contingent negative and ‘‘Sham’’ sham feedback group. In the second column the number of participants of each
group, in the third the average age and in the forth column the handedness. The last column indicates the oscillation type (sensorimotor rhythm synchronization or
desynchronization) used to compute the BCI performance.
doi:10.1371/journal.pone.0047048.t001
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holder an optical position sensor was mounted to detect the finger

position independent of the bowden cable tolerance and elasticity.

Strain gauges were placed on the Bowden cables near the fingers

to detect the finger force in order to regulate the motor force to

zero (no friction) for trials with active movement. A closed and an

open finger position were predefined individually for each

volunteer depending on their hand and finger size.

The BCI system determined the orthosis position and velocity

and the device transmitted its actual position and velocity to the

host computer upon request. Once the BCI system sends a

position and a velocity command, the orthosis would then initiate

a movement to the given position with the given velocity.

Movement stopped when either the current position was identical

to the position command sent by the BCI system (as set in the most

recent position command), or when the velocity command was set

to zero by BCI system. The direction of the movement was

determined by the difference between current and desired

position. As a physical connection between orthosis and host

computer, a RS232 serial connection was used at a speed of

38400 bps. The BCI2000 two class classifier (motor imagery

versus baseline) sent an output every 40 ms and five consecutive

outputs for the same class were needed in order to send the

orthosis a no-move (zero velocity value) or a move (positive

velocity) command. This time filter was installed to avoid false

positives and false negatives. During the sham feedback condition

the BCI2000 output changed with a probability of 10%, i.e. when

it was sending an output (e.g. moving) there was a probability of

10% that the next output would be the opposite (stop) and vice

versa, requiring again 5 consecutive outputs of the same sign to

change the movement status of the orthosis. This randomization of

the output was identical to the averaged time participants from the

contingent positive group achieved to move the orthosis during

task 2.

Signal Processing
The features to be used by the BCI platform were defined

through a visual inspection of the R-squared values [29] obtained

when comparing EEG activity during rest versus intention to move

(hand open and close). The power in the electrodes and frequency

bins with highest R-squared values were identified as customized

sensorimotor rhythm (SMR) features, linearly combined with

equal weights of 21 and used as input for a linear classifier. The

result was normalized (zero mean, unit variance) with respect to

the inter-trial interval period of each training run. We defined this

final outcome as BCI output. Due to the weights used (i.e. 21),

positive values of the BCI output during a trial reflected a SMR

power spectrum decrease. In the online application, a center-

surround local spatial filtering approach, in which a radial

difference-of-Gaussians function was used to weight the electrodes

at each spatial location, was applied to the EEG activity from each

electrode. The spatial filtered EEG was modeled as an auto-

regressive (AR) process [30] of order 16 over a normalized sliding

temporal window of 500 ms shifting every 40 ms and power

spectral density of the AR-model for each electrode was computed

to calculate the mean SMR-band power in each chosen frequency

bin.

The BCI software maintained a history of the mean sensori-

motor rhythm amplitude estimate from each trial and assigned this

to a distribution representing observations for the two classes (rest

or motor intention). The classification threshold, defined as the

zero mean distance to the two distributions, was adaptive to

account for changes in the shapes of these distributions over the

course of training.

For EEG off-line analysis we performed a time-frequency

analysis using a 1.142 s sliding window with an overlap of 26 ms.

The event related spectrum perturbation was then calculated using

Morlet transforms [31] with 3 cycles at lowest frequencies and

23.04 at highest, using the 200 ms time period from 21.5 to

21.3 s before the go cue as baseline for the event related spectra

perturbation analysis. Power at 3 different frequency bins (8 – 12;

12 – 18; 18 – 25 Hz) was averaged during the 5 s after the ‘‘GO’’

cue for each motor task.

The EMG data were filtered using a high pass filter at 10 Hz,

bipolarized, rectified and visually inspected. Trials presenting

muscle activity during the resting task or absence of activity during

active opening and closing of the hand were excluded from the

event related spectrum perturbation analysis. On average, 8% of

the EEG data acquired had to be rejected due to presence or lack

of muscle activity during the experiment.

Study Design
One EEG-screening was performed the day before the first

training session and was used as a calibration session to identify the

best features (electrodes and frequency bins) to be used by the BCI

classifier. In this screening session the participants were randomly

presented with visual and auditory cues corresponding to 3

different tasks indicating to either relax (task 1), actively open and

close the right (task 2) or the left hand (task 3). After a 5 s period

performing the tasks a rest cue was presented indicating to stop.

The inter-trial-interval time was randomized between 5 and 7 s.

The participants underwent 4 to 5 runs of 25 trials. The features to

be used by the BCI platform were defined through a visual

inspection of the R-square [29] values obtained when comparing

EEG activity during rest versus intention to move (hand open and

close). The power in the electrodes and frequency bins with

highest R-square values were identified as customized sensorimo-

tor rhythm (SMR) features and used as input for the classifier.

The group matching was performed based on age, handedness

and the R-squared values obtained comparing the distribution of

data during the screening session rest versus hand motor imagery.

After the screening, a cursor control training was performed at

the end of the same session, to familiarize the participants with the

BCI. For the cursor control training session participants controlled

the velocity in the Y axis of a cursor moving from left to right on

the screen at a constant speed trying to reach a target presented at

the right side of the screen. The participants performed 4 runs

containing 12 trials. The participants arrived at 4 consecutive days

to perform one session every day. In every session the participants

were presented with the 5 different tasks described before.

Performance Measures
We analyzed how the BCI output changes during the different

tasks and investigated the effect of the feedback contingency on

BCI control. In addition to the online classification translated into

orthosis movements (task 2), we simulated the performance the

participants would have obtained if the orthosis would have moved

during every motor task in an online setup. For example, how

would the brain activity elicited during passive movement have

been classified, if the classifier set up for motor imagery (same

electrodes and frequency bins) would have been used to move the

orthosis. Furthermore, several performance measures indicating

different aspects of the SMR modulation were calculated off-line

for all the tasks:

a) Percent of time the orthosis was or would have been moved

during a trial. This performance measure reflects the ability

Proprioception in Brain Computer Interfaces
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of the participant to decrease or maintain the decrease of

SMR power during a trial.

b) Maximum consecutive time the orthosis was moving per trial.

This measure represents the longest period of time the

participant was able to decrease or continuously maintain

SMR desynchronization within a trial without inetrruption

(synchronization in the contingent negative group).

c) Number of orthosis moving onsets switching from not moving

to moving per trial. This measure reflects how many times the

participant loses and regains control of the orthosis within a

trial.

d) Latency to the first onset of orthosis movement per trial. This

measure represents the reaction time of the participant in

producing an orthosis movement (SMR desynchronization).

e) Classical performance measure of reaching target, i.e.

position of the cursor at the end of the trial, considering a

successful trial if the cursor was in the upper half of the screen

and unsuccesful otherwise.

These performance measures were calculated simulating an

online scenario before and after EEG and EMG artefact removal

to explore the influence of data contamination and the importance

of implementing on-line artefact removal filters. We assumed that

the proprioceptive feedback is felt by the user as number of times

they can make the orthosis switch from not moving to moving

(number of orthosis moving onsets), how fast they can start moving

the orthosis (onset latency), percent of time the orthosis is moving

during the trial and maximum consecutive time they moved the

orthosis. We expected to observe learning effects in the contingent

feedback groups (negative and positive) during the two tasks

involving motor imagery (with and without feedback).

Statistical Analysis
For each of the performance measures an ANOVA with two

repeated measures (task and session) and three groups (between

group factor) was performed to study main effects (session, task,

group) and interactions (session 6 task, group 6 task, group 6
session, group 6 session 6 task).

Levene’s tests for homogeneity of error variances among groups

were applied for all combinations of tasks and sessions. For all

performance measures there were none or only few violations of

the Levene-tests. Since the number of participants was less than 10

in each group and the number of performed tests was 20, slight

violations were ignored and the error variances were assumed to

be homogeneous.

Mauchly’s tests for the sphericity were done for the repeated

measures factors and in case sphericity was violated significance

tests were Greenhouse-Geisser corrected.

In this study we furthermore performed several planned

contrasts to separately identify effects between the sessions, tasks

and groups.

To identify learning over the four different BCI sessions we

performed an ANOVA of the sessions within each group for each

task separately. Mauchly’s tests for the sphericity were done for the

repeated measures factors and in case sphericity was violated

significance tests were Greenhouse-Geisser corrected.

We performed an ANOVA of the tasks for each of the groups

and Bonferroni-corrected pairwise comparisons to identify main

effects of the factor ‘‘task’’ and the source of it. The performance

measures of the different sessions were combined for this step of

the analysis.

To study the differences between groups the performance

measures of the different sessions were combined and for each task

separately we performed an ANOVA of the groups and

Bonferroni-corrected multiple comparisons.

Results

EEG frequency analysis resulted in very similar event related

synchronization and desynchronization (ERS/ERD) maps for all

motor tasks when subtracting ERS/ERD power values during

rest. A clear contralateral motor and parietal and an ipsilateral

pre-motor activation common to most motor tasks and frequency

bins was found. The active motor task presented more frequency

power differences compared to the other tasks in the 8–12 Hz

frequency bin (Fig. 2). This frequency range was the best

frequency range to use in the BCI classifier after the screening

session and resulted in the most consistent pattern of activation

(Fig. 2).

Overall Learning Effect
A statistical analysis was performed to study session effects

(learning) for every motor task. A significant group effect was

found for motor imagery alone (task 1) and motor imagery with

feedback (task 2) for all performance measures (being always

p,0.003) as expected except for the latency to the first orthosis

movement onset (Table 2).

Group Learning Effect
When analyzing every feedback group separately (contingent

Positive (CP), contingent negative (CN) and sham) for each

movement task the only significant session effect (F(3,24) = 4.406,

p = 0.0128) was an increase in number of onsets during motor

imagery alone in the contingent positive feedback group only

(Table 3 and Fig. 3). Despite of a positive trend in the learning

curve during motor imagery with feedback (task2) (Fig. 3A), the

high variance in performance led to no significant learning effect

probably caused by the high performance level (ceiling effect).

Individual Learning Effect
The learning effect was tested for every healthy volunteer

independently comparing the first session performance to each of

the other sessions using the Kruskal Wallis Test (non-parametric)

Bonferroni corrected for multiple comparisons (data were mostly

non-spherical). In the contingent positive feedback group 3

participants showed statistical significant increase in maximum

consecutive and percent of time during motor imagery task alone

and with proprioceptive feedback. The participants without

significant increase (learning) showed high values of performance

(ceiling effect). In the sham feedback group (non-contingent) and

contingent negative feedback group no significant learning

occurred in any of the participants.

BCI Performance Group Differences for Tasks
When comparing group performance measures averaged over

sessions for each motor task we observed that during motor

imagery without feedback (no movement of the orthosis occurred)

(task 1), the percent of time the orthosis would have been moved

and the number of orthosis movement onsets were significantly

higher (Bonferroni-corrected post-hoc-test) for the contingent

positive compared to the contingent negative and sham feedback

groups (Fig. 3.A, 3.B). The maximum amount of time the orthosis

was/would be moving continuously per trial and the reaching

target accuracy performance measures were significantly higher

for the contingent positive compared to the contingent negative

feedback group, and higher (but not significant) compared to the

sham feedback group (Table 4). No significant difference was

Proprioception in Brain Computer Interfaces

PLOS ONE | www.plosone.org 5 October 2012 | Volume 7 | Issue 10 | e47048



Figure 2. Motor task power distributions. EEG frequency domain power topoplots for each motor task averaged over all participants of the
contingent positive group (all 9 participants were right handed and performed the task with the right hand). The EEG power from 3 representative
frequency bins (8–12; 12–18; 18–25 Hz) was averaged over the 5 seconds of each task and subtracted from the one obtained using the same process
during rest. Red and blue color correspond to event related desynchronization (ERD) and to event related synchronization (ERS) with respect to rest in
dB. The activity distribution is very similar for all motor tasks presenting a clear contralateral motor and parietal activation and an ipsilateral motor-
pre-motor activation.
doi:10.1371/journal.pone.0047048.g002

Table 2. Feedback ‘‘Type’’ effect on BCI control learning.

Perc. Time Max. Con. Orth. Ons. Lat. Ons. Rea. Tar.

MIT F(1,14) = 21.89 p,0.001 F(1,14) = 19.29 p,0.001 F(1,14) = 43.57 p,0.001 F(1,14) = 0.02 p = 0.881 F(1,14) = 14.90 p,0.002

MIT&F F(1,14) = 26.57 p,0.001 F(1,14) = 26.11 p,0.001 F(1,14) = 28.25 p,0.001 F(1,14) = 1.56 p = 0.231 F(1,14) = 22.27 p,0.001

Feedback ‘‘type effect’’ when analyzing session effects (learning) for motor task motor imagery without feedback (MIT) (performance computed off-line) and with
proprioceptive feedback (MIT&F) using 5 different performance measures for the contingent positive group (see text): percent of time the orthosis moved (Perc. Time);
maximum consecutive time the orthosis moved (Max. Con); number of orthosis onsets (Orth. Ons.); latency to the first orthosis movement (Lat. Ons) and the classical
reaching target (Rea. Tar). Statistically significant values (already Bonferroni-corrected) are marked bold. All were significant except Lat. Ons.
doi:10.1371/journal.pone.0047048.t002
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found when comparing sham and contingent negative feedback

groups in any of the performance measures. Although in the

contingent negative group participants moved the orthosis

synchronizing their SMR brain oscillations and in the sham

feedback group performance calculated offline (movement of the

orthosis) was linked to desynchronization of SMR oscillations,

both resulted in similar BCI performance.

During motor imagery with proprioceptive feedback (task 2) and

during active movement alone (task 4), the percent of time moving

the orthosis, the maximum consecutive time moving the orthosis

and reaching target accuracy performance measures were

significantly lower for the contingent negative group compared

to the contingent positive and sham groups (Table 4), although we

found no significant differences between the sham and contingent

positive groups. On the other hand, as for the imagery task alone

(task 1), during imagery task with proprioceptive feedback (task 2)

and active movement (task 4) the number of orthosis movement

onsets was significantly higher for the contingent positive

compared to the contingent negative and sham feedback groups

for the online simulation.

There was no significant difference during passive movement

(task 3) between groups for any performance measure but the

number of orthosis movement onsets, which in the contingent

positive group showed higher values compared to the other 2

feedback groups (Fig. 1.A).

Overall Task BCI Performance Differences within Every
Group

We analyzed the difference in the off-line calculated perfor-

mance for all tasks within each individual feedback group

averaging all the sessions. When analyzing the contingent negative

group we could not find any significant difference between motor

tasks using any performance measure other than the difference

between rest and active movement BCI performance difference.

The same effect was found in the sham feedback group as well as a

significantly higher maximum consecutive and percent of time

moving the orthosis during motor imagery with proprioceptive

feedback (task 2) when compared with motor imagery task without

any feedback.

On the other hand, in the contingent positive feedback group,

all the performance measures during motor imagery without and

with proprioceptive feedback and active movement were signifi-

cantly different (higher percent and maximum consecutive time

moving the orthosis, number of orthosis movement onsets and

reaching target, and lower for orthosis movement onset latency)

compared to rest as expected.

During passive movement, the number of orthosis movement

onsets was significantly higher compared to rest indicating that

passive movement generated afferent brain activity affects

sensorimotor brain oscillations resulting in a significant increase

of orthosis movement onsets when using the proprioceptive BCI.

Furthermore, a significantly higher number of orthosis movement

onsets were found for active movement when compared to passive

movement.

Figure 3. BCI performance using 2 different measures. The midpoint of each box corresponds to the median value and the upper and lower
margines correspond to the 25 and 75 percentiles. Differences marked with an asterisk are statistically significant. A) Number of orthosis moving
onsets per session for each group during motor imagery without any feedback, with proprioceptive feedback (orthosis moved through BCI) (MIT&F)
(task 2), passive and active movements (with natural visual and proprioceptive feedback). The contingent positive group outperformed the other 2
groups significantly and shows a significant learning effect during motor imagery without feedback (MIT) (task 1). B) Percent time moving the
orthosis per session for each feedback group in the different tasks. The contingent positive and sham feedback percent of time moving the orthosis is
always significantly higher compared to the contingent negative group with the exception of the motor imagery task without feedback (MIT) (task 1).
In this condition the contingent positive group showed significantly higher BCI performance compared to the other feedback groups.
doi:10.1371/journal.pone.0047048.g003

Table 3. Statistical analysis of session effects (learning).

Nr. Orth.
Ons. MIT MIT&F

CP F(3,24) = 4.406, p = 0.013 F(3,24) = 2.041, p = 0.135

Sham F(1.651,9.908) = 0.241, p = 0.771 F(3,18) = 2.081, p = 0.139

CN F(1.910,11.458) = 1.092, p = 0.365 F(3,18) = 1.813, p = 0.181

Statistical analysis of session effects (learning) for motor task motor imagery
without feedback (MIT) and with proprioceptive feedback (MIT&F) using the
number of orthosis movement onsets per session as performance measure for
each feedback group (contingent positive (CP), negative (CN) and sham). The
statistics were performed on each group independently. Statistically significant
values (p,0.05) (already Bonferroni-corrected) are marked bold.
doi:10.1371/journal.pone.0047048.t003

Table 4. Statistical analysis on group differences.

Groups
Compared PercT MaxC NOns Lat ReachT

MIT&F CP-CN 0.0001 0.0001 0.0001 0.599 0.0001

CP-Sham 1.000 1.000 0.004 1.000 1.000

CN-Sham 0.001 0.0001 0.093 0.396 0.000

Active CP-CN 0.002 0.006 0.0001 0.144 0.012

CP-Sham 1.000 1.000 0.0001 0.004 1.000

CN-Sham 0.019 0.025 0.129 0.454 0.034

MIT CP-CN 0.0001 0.001 0.0001 1.000 0.004

CP-Sham 0.027 0.073 0.0001 1.000 0.210

CN-Sham 0.317 0.313 1.000 1.000 0.317

Passive CP-CN 0.341 0.416 0.003 1.000 0.786

CP-Sham 1.000 1.000 0.002 0.627 1.000

CN-Sham 0.216 0.147 1.000 1.000 0.309

Rest CP-CN 0.001 0.001 1.000 0.001 0.001

CP-Sham 1.000 1.000 0.012 0.027 1.000

CN-Sham 0.001 0.001 0.004 0.001 0.001

Statistical analyses on the groups (contingent positive (CP), negative (CN) and
sham) differences in performance averaged over sessions during motor imagery
without feedback (MIT) and with proprioceptive feedback (MIT&F), active and
passive movement and rest. The performance measures were the percent of
time moving the orthosis (PercT), maximum consecutive time moving the
orthosis per trial (MaxC), number of orthosis movement onsets (NOns), latency
to the first orthosis Onset (Lat) and reaching target performance (ReachT) per
session. Statistically significant values (p,0.05) (already Bonferroni-corrected)
are marked bold.
doi:10.1371/journal.pone.0047048.t004
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Discussion

A significant group effect during imagery with and without

feedback (task 1 and task 2) was found for all performance

measures except for the latency to the first orthosis movement

onset. Contingent positive group showed significantly larger

difference between SMR power during rest (increase in power)

and motor imagery tasks (decrease in power) and therefore higher

BCI performance compared to the other 2 feedback groups. This

finding suggests that after the go cue the time needed to move the

orthosis was not significantly different between feedback groups

and indicates that an initiation based therapy (after the first BCI

mediated robot movement onset, this moves continuously along a

predefined trajectory and independently of participants brain

activity) would not show any significant difference in performance

between feedback groups.

We observed a significant learning effect during motor imagery

task with no feedback (task 1) indicating implicit learning (they did

not receive any feedback during this task) present in the contingent

positive feedback group only. The participants were trained and

rewarded for motor imagery and therefore learning was expected

to occur during task 2 only (motor imagery task with propriocep-

tive feedback). We also expected some learning during task 1

motor imagery with no feedback because the same task was

repeated although feedback was only present in task 2.

As we can see in Fig. 3A and 3B the overall performance i.e.

SMR desynchronization was higher for task 2 and task 4 on

average, indicating a positive influence of proprioceptive feedback

on brain activity and on BCI performance. However, there was no

significant difference in the number of orthosis movement onsets

between motor imagery with and without feedback in the

contingent positive group. This result together with the longer

time moving the orthosis during motor imagery with feedback

implies similar processing resources to move the orthosis during

motor imagery with and without feedback tasks but a higher

capability of maintaining the SMR desynchronization when

receiving proprioceptive feedback. Furthermore, feedback contin-

gency seems to affect the resting network since the number of

spontaneous onsets in the contingent positive group was signifi-

cantly higher than the onsets of the sham group and similar to the

onsets obtained by the contingent negative group during rest.

BCI learning effects (learning of ERD and ERS) were expected

to be stronger for percent time and maximum consecutive time

moving the orthosis in task 2 because the visual and proprioceptive

feedback (orthosis moving) provides maximal information about

correct or incorrect control of the BCI. The data indicate that

participants of contingent positive group only learned to start

moving the orthosis, i.e. to change from ERS to ERD.

For all the tasks except rest (motor imagery with and without

feedback and active and passive movement), the performance was

significantly higher for the contingent positive group in terms of

orthosis movement onsets when compared to the other 2 groups.

Furthermore, percent of time and maximum consecutive time

were significantly higher in the contingent positive group too but

only during motor imagery with feedback (task 2) (proprioceptive

BCI).

In the contingent positive group only significantly higher

performance was observed during passive movement when

compared to resting BCI performance. These findings suggest

that feedback contingency (proprioceptive stimulation paired with

EEG SMR desynchronization) influences the motor network

enhancing significantly SMR down- regulation. The use of the

proprioceptive BCI assists to desynchronize the SMR rhythm

during any motor related activity, i.e. the findings indicate that

contingent proprioceptive BCI training only operates by priming

and engaging a group of ecologically relevant brain regions related

to imagery of a task, supporting the proposal of using an online

proprioceptive BCI to induce neural changes. These changes

could be used as a boosting effect for any passive or active

physiotherapy of the same movement. However, although

enhancing the SMR modulation during the passive mode, the

BCI performance during the use of the online proprioceptive BCI,

motor imagery and active movement was significantly higher than

during passive movement alone, indicating that the effects would

be significantly higher during active engagement in the motor task.

All three groups showed significant difference in performance

between rest and active movement. However, the significant

difference in performance between rest and the other motor tasks

(except for active movement) occurs only in the contingent positive

feedback group, which underlines the importance of contingent

proprioceptive BCI.

The results extend experiments of (motor) skill learning to BCI-

control, confirming the mechanistic similarity of the two and

confirming animal experiments with BCI control of single neurons

[32–34] and the hypotheses [35] demonstrating a tight time

contingency of proprioceptive and visual feedback and the active-

voluntary mode of instrumental learning as a prerequisite of

learning. None of the two essential ingredients of skill learning is

sufficient to improve motor learning: learning without immediate

rewarding feedback is not possible and active-voluntary repetitive

behaviour alone cannot secure learning if it lacks feedback.

Conclusions
We investigated an online proprioceptive BCI system linking

hand movements and brain oscillations, eliciting implicit learning

effects and producing an increase in SMR related neural networks

excitation during motor imagery, passive and active movement.

We propose the use of the here described proprioceptive BCI as a

potential motor rehabilitation tool to be used in paralyzed patients

with residual proprioception (e.g. stroke patients).
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