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Biological networks are highly complex systems, consisting largely of enzymes that act as molecular switches to activate/
inhibit downstream targets via post-translational modification. Computational techniques have been developed to per-
form signaling network inference using some high-throughput data sources, such as those generated from transcriptional
and proteomic studies, but comparable methods have not been developed to use high-content morphological data, which
are emerging principally from large-scale RNAi screens, to these ends. Here, we describe a systematic computational
framework based on a classification model for identifying genetic interactions using high-dimensional single-cell mor-
phological data from genetic screens, apply it to RhoGAP/GTPase regulation in Drosophila, and evaluate its efficacy.
Augmented by knowledge of the basic structure of RhoGAP/GTPase signaling, namely, that GAPs act directly upstream
of GTPases, we apply our framework for identifying genetic interactions to predict signaling relationships between these
proteins. We find that our method makes mediocre predictions using only RhoGAP single-knockdown morphological
data, yet achieves vastly improved accuracy by including original data from a double-knockdown RhoGAP genetic screen,
which likely reflects the redundant network structure of RhoGAP/GTPase signaling. We consider other possible methods
for inference and show that our primary model outperforms the alternatives. This work demonstrates the fundamental
fact that high-throughput morphological data can be used in a systematic, successful fashion to identify genetic in-
teractions and, using additional elementary knowledge of network structure, to infer signaling relations.

[Supplemental material is available online at http://www.genome.org.]

Biological signaling networks regulate cellular response to envi-

ronmental cues. These networks are highly complex, consisting

largely of enzymes that act as molecular switches to activate/

inhibit downstream targets via post-translational modification;

these substrates are often themselves enzymes, acting in a similar

fashion. Classical biochemical and genetic studies have provided

some understanding of the mechanisms of protein interactions

involved in signal transduction. Identification of proteins com-

prising these pathways has been carried out, in part, from forward

genetic screens in conjunction with biochemical techniques

(Hotta and Benzer 1972; Nusslein-Volhard and Wieschaus 1980).

Genes in these screens yielding similar visible mutant phenotypes

were identified for further biochemical experimentation and were

found to be components of the same pathway (Hiesinger and

Hassan 2005). In addition to classical screens, screening techniques

based on overexpression, sensitized genetic backgrounds, and

mosaic techniques have aided current knowledge of signaling.

However, despite the power of classical biochemistry and genetics

for interrogating signal transduction, there are few signaling net-

works for which a detailed, systems-level description is known

(Friedman and Perrimon 2007).

Recent advances in genomics and proteomics have trans-

formed the field of signal transduction, as large-scale approaches

allow systematic interrogation of the genome using RNAi and

mapping of PPIs using mass spectrometry. In turn, computational

techniques have been developed to perform network inference

using transcriptional and proteomic data arising from these high-

throughput screens. The strategy underlying these techniques is to

build correlations between perturbations on the basis of tran-

scriptional or proteomic signatures. These methods typically use

probabilistic graphical models (Friedman et al. 2000; Pe’er et al.

2001; Sachs et al. 2005; Bakal et al. 2008) or variations on pa-

rameterized modeling (Baym et al. 2008). High-throughput data

sources, analyzed with appropriate computational methods, have

provided new insights into cellular processes beyond classical

techniques (Friedman 2004).

In addition to these more traditional high-throughput

sources, morphological cellular signatures are emerging as an-

other high-throughput data source that can be exploited to study

signaling networks. With the advent of image-based automated

technologies and acquisition of high-throughput quantitative

imaging data (Ohya et al. 2005; Carpenter et al. 2006), methods

have recently been developed that attempt to use these tech-

nologies to quantify shape (Bakal et al. 2007), DNA morphology

(Moffat et al. 2006), and subcellular localization of organelles or

proteins (Perlman et al. 2004; Glory and Murphy 2007) on a single-

cell level. Initial analysis was commonly performed by averaging

single-cell results to derive mean scores or by clustering such

results (Gil et al. 2002; Piano et al. 2002; Neumann et al. 2006;
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Bakal et al. 2007). Recently, researchers have quantified morpho-

logical variability on the single-cell level in response to various

stimuli, e.g., genetic or chemical perturbations (Levy and Siegal

2008; Slack et al. 2008). Classification of cells toward particular

phenotypes of interest has been successfully accomplished in

multiple cases (Boland et al. 1998; Boland and Murphy 2001;

Tanaka et al. 2005; Adams et al. 2006; Chen and Murphy 2006;

Loo et al. 2007; Wang et al. 2008; Young et al. 2008; Jones et al.

2009). However, no successful method, to our knowledge, has

been developed for systematically identifying genetic interactions

or predicting signaling relationships using image-based data from

high-throughput screens.

Using morphological data for signaling network inference is

significantly more challenging than using other high-throughput

sources. For one thing, the range of detectable phenotypes with

morphological data is less than with other high-throughput data

sources: Even though dozens or hundreds of geometric morpho-

logical features can be defined and measured on the single-cell

level, invariably these features are highly redundant, requiring

substantial dimensionality reduction. More challenging still, mor-

phological data provides a highly indirect readout of signaling

state, unlike transcriptional or proteomic studies that measure

signaling component activity more directly. Yet, morphological

data has the potential to provide information that transcriptional

data cannot, namely, cellular response to post-translational pro-

tein modification.

An additional challenge in inferring signaling interactions

arises from the fact that signaling networks are highly redundant

structures that are robust to inhibition of a single gene. Therefore,

phenotypic signatures arising from single-gene knockdowns may

not be indicative of gene function. Double-knockdowns, which

have been performed in yeast SSL or growth-rate screens to un-

cover genetic interactions, are a powerful means by which to un-

derstand robust network structures (Tong et al. 2001; Han et al.

2004; Wong et al. 2004; Collins et al. 2007; Roguev et al. 2008;

Fiedler et al. 2009). It is more subtle to define and determine ge-

netic interactions in the context of high-dimensional morpho-

logical data, as compared with measuring growth rate or lethality;

but we use the terminology of ‘‘within-pathway’’ and ‘‘between-

pathway’’ genetic interactions (Kelley and Ideker 2005) in order to

highlight the connection between our work and previous studies

in yeast. Here, we consider a between-pathway interaction for two

genes, X and Y, to occur when single-knockdown of either X or Y

does not result in a mutant phenotype, but the double-knockdown

X/Y does (Fig. 1A). For our data, the genes X and Y are RhoGAPs,

the mutant phenotype has similarity to overexpression of a par-

ticular RhoGTPase (Z), and identification of between-pathway

interactions allows for prediction of RhoGAP/GTPase regulatory

relations. On the other hand, we consider a within-pathway in-

teraction for genes P and R to occur when the double-knockdown

P/R has similarity to single-knockdown of one of the genes but not

the other (Fig. 1B). For our data, the genes P and R are RhoGAPs,

and identification of within-pathway interactions allows for study

of complex RhoGAP signaling. These definitions may be viewed as

high-dimensional analogs of the usual definitions involving syn-

thetic lethality.

We describe a computational framework based on a voting

scheme at the single-cell level for identifying these types of genetic

interactions using high-dimensional morphological data. We dem-

onstrate the efficacy of this approach by inferring components of

the Rho-signaling network in Drosophila, namely, RhoGAP/GTPase

interactions. This network regulates cell adhesion and motility,

and perturbations in human orthologs have been implicated in

cancer and other diseases (Tcherkezian and Lamarche-Vane 2007).

Rho network structure, with many enzymes and few substrates, is

a common network motif (Csete and Doyle 2004; Albert 2005),

and our method makes use of the basic structure of GAP/GTPase

signaling, namely, that GAPs directly deactivate GTPases. Fur-

thermore, this signaling network exhibits robustness to single

RNAi, making it an ideal target for double-knockdown analysis.

The core of our method is a classification model that maps

putative upstream sources (e.g., RhoGAPs) to putative downstream

targets (e.g., RhoGTPases) on the basis of morphological similarity

on the single-cell level following genetic perturbation (RNAi or

gene overexpression). We use a previous image-based screen in the

Drosophila BG-2 cell line for RhoGTPase overexpression morpho-

logical data (Bakal et al. 2007) and original combinatorial RhoGAP

RNAi morphological data (Table 1; Methods). By applying this

classification model to different configurations of double-knock-

down input data, we are able to identify between-pathway and

within-pathway interactions; by applying it to single-RNAi data as

Figure 1. Model for between-pathway and within-pathway genetic
interactions for high-dimensional morphological data. (A) A between-
pathway genetic interaction for genes X and Y is said to occur when single-
knockdown of either gene does not result in a mutant phenotype, but the
double-knockdown X/Y does. For this study, X and Y are RhoGAPs, the
gene Z is a RhoGTPase, and the mutant phenotype is morphological
similarity at the single-cell level to overexpression of Z. In this way, iden-
tification of between-pathway genetic interactions in our combinatorial
knockdown data set corresponds to prediction of RhoGAP/RhoGTPase-
signaling interactions (see text). (B) A within-pathway genetic interaction
between genes P and R is said to occur when the double-knockdown P/R
bears significant morphological similarity to either the single-knockdown
for P or R, but not both. In our study, P, Q, and R are RhoGAPs, and
identification of within-pathway genetic interactions corresponds to
complex hierarchical relations between RhoGAPs.

Table 1. RhoGAPs included in double-knockdown genetic screen

Index RhoGAP

1 CdGAPr
2 RhoGAP100F
3 RhoGAP16F
4 RhoGAPp190
5 RhoGAP19D
6 RhoGAP1A
7 RacGAP50C
8 RhoGAP54D
9 RhoGAP5A
10 RhoGAP71E
11 RacGAP84C
12 RhoGAP92B
13 RhoGAP93B

All single-knockdowns and all possible combinations of double-knock-
downs except for RhoGAP19D/RhoGAP54D were included in the screen,
for a total of 90 distinct TCs. In all, 6480 single cells were imaged across
these TCs.
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well, we are able to compare the performance of our model for

network inference using single- versus double-RNAi (Table 2).

Thus, we first apply our method to map single-knockdown RhoGAP

genetic perturbations (also called treatment conditions, or TCs) to

RhoGTPase overexpression TCs, which together with the fact that

GAPs directly deactivate GTPases, allow us to predict RhoGAP/

GTPase signaling interactions; we find that single-knockdowns

produce poor predictions of known in-

teractions. Subsequently, by applying our

method to map combinatorial single- and

double-RNAi RhoGAP TCs to RhoGTPase

overexpression TCs, effectively identify-

ing between-pathway genetic interac-

tions, we thereby obtain greatly im-

proved predictions of RhoGAP/GTPase

regulation. As an additional application

of our methodology, we produce an al-

ternative classification model that maps

double RhoGAP RNAi to single RhoGAP

RNAi TCs, thus providing a means for

identifying within-pathway genetic in-

teractions for RhoGAPs. Fundamentally,

we show for the first time that high-

throughput image-based data can be

used with success to predict genetic in-

teractions and, with additional elemen-

tary knowledge of network structure for

RhoGAPs and RhoGTPases, to predict signaling interactions.

Results
We first defined a general classification model (Fig. 2) for mapping

a set of putative source (upstream) TCs (U) into a set of putative

target (downstream) TCs (D). We then applied this model to (i)

Table 2. Input data configurations for classification model

Source TCs for
mapping

Target TCs for
mapping

Genetic interaction
detected

Signaling inference
performed

Single-knockdown
RhoGAP

RhoGTPase
overexpression

NA RhoGAP/GTPase

Single- and double-
knockdown RhoGAP

RhoGTPase
overexpression

Between-pathway RhoGAP/GTPase

Double-knockdown
RhoGAP

Single-knockdown
RhoGAP

Within-pathway NA

We define a general classification model for mapping source (upstream) TCs to target (downstream
TCs). By applying this classification model to different configurations of input data, we are able to
identify different types of genetic interactions and infer signaling interactions. We first map RhoGAP
single-knockdowns to RhoGTPase overexpression TCs, which, together with the fact that RhoGAPs
directly deactivate RhoGTPases, yields classifications that correspond to signaling predictions. Second,
we map combinatorial RhoGAP single- and double-knockdowns to RhoGTPase overexpression TCs,
effectively identifying between-pathway genetic interactions, and again obtain predictions of RhoGAP/
GTPase signaling interactions. Third, we map RhoGAP double-knockdowns to RhoGAP single-knockdowns,
from which we identify within-pathway genetic interactions between RhoGAPs.
NA, Not available.

Figure 2. Workflow for classification of upstream TCs (UTC, e.g., RhoGAPs) to downstream TCs (DTC, e.g., RhoGTPases) using high-throughput
morphological data. Cell culture was subjected to a variety of genetic perturbations, multiple single-cell images were acquired for each treatment
condition, and raw geometric features were extracted for each single cell (upper left, upper middle). Raw data was subjected to normalization (upper right)
and dimensionality reduction. The single cells comprising each downstream TC and upstream TC were represented as points in reduced feature space
(bottom right, shown for UTC). Each cell of UTC was mapped to a DTC by computing a modified Euclidean distance to each DTC point-cluster and selecting
the closest DTC; single-cell results were compiled in the classification vector (bottom middle). The classification for UTC, in turn, was defined to be the mode
of the classification vector. Bootstrapping was performed to determine the distribution of the mode frequency, which, in turn, was used to calculate the
P-score for the classification of UTC (bottom left).
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RhoGAP single-knockdown TCs (U) and RhoGTPase overexpres-

sion TCs (D), (ii) RhoGAP single- and double-knockdown TCs (U)

and RhoGTPase overexpression TCs (D), and (iii) RhoGAP double-

knockdown TCs (U) and RhoGAP single-knockdown TCs (D).

Classification model for identification of genetic interactions
and signaling relationships using morphological data

For the general model, let UTC denote an upstream TC consist-

ing of c single cells. The data for UTC consists of a matrix with c

rows and a column for each morphological feature (in reduced-

dimensional feature space; see Methods). To map UTC to one of

the elements of D, we first classified each single cell in UTC by

computing its Mahalanobis distance to each element of D and

assigning it to the closest DTC. The classification of all single cells

in UTC may thus be represented by a vector of length c, termed the

classification vector. The classification of the population, UTC, was

defined to be the mode of the classification vector. We assigned a

P-value for this classification by calculating the probability of ob-

serving a mode frequency no smaller than that observed for UTC,

using bootstrapping (Methods).

We required that the classification model should map each

DTC to itself with high confidence (intuitively, the DTCs must be

distinguishable from one another); this was true for RhoGTPase

overexpression TCs (Fig. 3), but not for RhoGAP single-knock-

downs as the set of downstream TCs. Therefore, a clustering al-

gorithm was developed and implemented as a preprocessing step for

the classification model. Following clustering, the classification

model successfully mapped each DTC to the cluster containing it

(Methods).

Double-knockdowns are essential for successful prediction
of RhoGAP/GTPase-signaling relationships

We applied the classification model to map single-knockdown

RhoGAP TCs to RhoGTPase overexpression TCs (i) and single- and

double-knockdown RhoGAP TCs to RhoGTPase overexpression

TCs (ii). For each mapping of a single or double knockdown, we

calculated the associated confidence score (Fig. 4A–C). We verified

that this classification was robust to noise in input data, particu-

larly for TCs that were classified with high confidence, by jackknife

statistics (Fig. 4D). The results of this classification amounted to

predictions of RhoGAP/GTPase signaling interactions using the basic

fact that GAPs directly deactivate GTPases. The existence of a be-

tween-pathway interaction between two RhoGAPs—that is, a high-

confidence mapping of a double-knockdown to a RhoGTPase over-

expression TC, and the absence of a high-confidence mapping to this

RhoGTPase for both the single knockdowns—was viewed as evidence

that both RhoGAPs regulate this RhoGTPase (see Methods).

We tested the efficacy of our predictions using biologically

validated RhoGAP/GTPase interactions from the genes in our

data set (Supplemental Table 1A) (Sotillos and Campuzano 2000;

Billuart et al. 2001; Raymond et al. 2001; Lundström et al. 2004;

Grumbling et al. 2006; Stark et al. 2006) as well as biologically

validated non-interactions (Supplemental Table 1B). Using single-

knockdown RhoGAP TCs yielded poor predictions, achieving

sensitivity of 2/5 (40%) and specificity of 2/3 (67%) with an opti-

mal significance threshold (Fig. 5B; Supplemental Table 2). We

next analyzed the results of mapping the full set of single- and

double-knockdown RhoGAP TCs to RhoGTPase overexpression

TCs (ii). Using the same validation set, we observed vast im-

provement: The model correctly predicted four out of five known

interactions and two out of three known non-interactions for an

overall sensitivity and specificity of 80% and 67%, respectively

(Fig. 5A,B; Supplemental Table 3). The method made a total of

12 predictions (out of the 39 possible interactions); the probability

of correctly predicting four out of five known interactions, as de-

termined by hypergeometric statistics, is P < 0.025. This highlights

the predictive power of our model as well as the importance of

using double-knockdown morphological data (Fig. 5C).

Systematic discovery of within-pathway genetic interactions

We produced an alternative classification model that mapped

double RhoGAP RNAi (U ) to single RhoGAP RNAi (D) (iii) in

order to identify within-pathway genetic interactions between

RhoGAPs. As noted above, it was a requirement of the model that

each element of D be mapped to itself correctly under the model;

however, this was not the case using the entire set of RhoGAP

Figure 3. Point sets for RhoGTPase overexpression TCs and corre-
sponding phase space. Point sets for RhoGTPase overexpression TCs and
classification of all single cells in the double-knockdown screen. (A) Point
sets for RhoF30L (blue), RacF28L (green), and Cdc42Y32A (red) shown in
reduced-dimensional feature space. (B) The mapping of all 6480 single
cells from the double-knockdown RhoGAP screen to RhoGTPase over-
expression TCs. In effect, the classification model defines a phase space for
mapping single cells in the set of upstream TCs to the set of downstream
TCs.
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single-RNAi. To remedy this, we clustered the single-RNAi TCs

using a variant of EM designed to guarantee that all single-RNAi

TCs would be correctly classified to the cluster containing it

(Supplemental Table 4; Methods). We then applied the classifica-

tion model to map double-RNAi RhoGAP TCs to (clusters of) single

Figure 4. Mapping of RhoGAP double-knockdown TCs to RhoGTPase
overexpression TCs. (A–C) Significance score for mapping of all single-
and double-knockdown RhoGAP TCs to the RhoF30L, RacF28L, and
Cdc42Y32A TCs, respectively. The color scale ranges from blue (highly
significant mapping) to red (low significance). For example, the Rac-
GAP50C/RacGAP84C double-knockdown TC was mapped to RacF28L
with high significance (see also Supplemental Table 3). (D) Robustness of
classification to exclusion of data using jackknifing. For each single- and
double-knockdown TC, 100 random samples consisting of X% (X = 30,
50, 70, 90) of the cells from that TC were selected and classified to the
set of overexpression TCs. A consistency score was assigned based on
the fraction of random samples correctly classified. Single- and double-
knockdowns were binned into groups depending on the P-score of the
true classification. Mean and standard deviations of consistency scores are
shown here for the three groups defined by largest P-scores (see graph
legend). Most importantly, high-confidence classifications are extremely
robust to data exclusion (top line in graph). See Supplemental Table 8 for
full jackknife results and Methods for discussion of further robustness
testing.

Figure 5. Inference using morphological data from single- versus
double-knockdown RhoGAP treatment conditions. (A) Classification of
both single- and double-knockdown RhoGAP TCs to RhoGTPase over-
expression TCs. All pairs listed here are significant at optimal threshold, as
determined by ROC analysis. The model correctly predicts four out of five
biologically validated interactions and two out of three non-interactions.
Overall, the model made 12 out of 39 possible predictions, yielding a
P-score of P < 0.025 for identifying four out of five positive interactions.
The model mapped several RhoGAPs to Cdc42, but none with sufficient
significance (for complete results, see Supplemental Table 3). Network
visualization was performed using Cytoscape (Shannon et al. 2003). (B)
ROC curve showing single-knockdown (red) versus double-knockdown
(blue) predictive models. For the single-knockdown model, the optimal
threshold yields the only model that makes better predictions than ran-
dom guessing. For the double-knockdown model, given that the set of
validated interactions is likely incomplete, we err on the side of producing
more false positives, and prefer (0.33, 0.80) to (0, 0.60). (C) RacGAP50C
and RacGAP84C single- and double-knockdowns. The plot in PC-based
coordinates shows single-cell point sets for RacF28L, RacGAP50C single-
knockdown, RacGAP84C single-knockdown, and RacGAP50C/RacGAP84C
double-knockdown. The classification model maps the RacGAP50C single-
knockdown to RacF28L with low confidence and incorrectly maps the
RacGAP84C single-knockdown to Rho1 with high confidence, but correctly
maps the RacGAP50C/RacGAP84C double-knockdown to Rac1 with high
confidence.
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RhoGAP RNAi TCs (Supplemental Table 5). Using the results of this

classification, we identified within-pathway genetic interactions

between pairs of RhoGAPs (Table 3). In particular, we identified

cases of double-knockdowns A/B, which were mapped with high

significance to single-knockdown of A (more precisely, to the

cluster containing A), but not to single-knockdown of B. Our

methods identified the previously validated interaction between

RacGAP50C and RacGAP84C (see Discussion).

Comparison with alternate methods

This work is the first report of successful signaling inference based

on high-throughput morphological data from a genetic screen.

Thus, we considered several alternate methods that might be used

to perform inference of RhoGAP/GTPase interactions using mor-

phological data, and compared these methods with the main

classification model developed here.

Mean scores and clustering-based approaches

We first developed and tested a method that used mean scores for

each TC (unlike single cells, as in the primary classification model)

as the basis for classification. In particular, we calculated mean

scores in PC-coordinates in three dimensions for each TC, and

computed distances from each of the double-knockdown TCs to

each of the RhoGTPase overexpression TCs. To determine a P-score

for each upstream/downstream pair, we selected samples of equal

size to the UTC from the entire set of single cells (for all double-

knockdown TCs), and computed the distribution of the distance of

their mean from the RhoGTPase mean. Applied to the double-

knockdown RhoGAP data, the mean-score method made many

more predictions than the primary classification model. Indeed, in

order for the mean-score method to identify four out of five bi-

ologically validated interactions, it made a total of 23 predictions

as compared with 12 for the main classification model, yielding

a significance score of P = 0.30 (vs. P < 0.025). This highlights

a caveat of average morphological data: significant variation at the

single-cell level within individual TCs (Levy and Siegal 2008),

making it possible that two TCs’ mean scores may resemble each

other though their single-cell clusters do not, thus decreasing

the predictive power of a mean-score approach. Interestingly,

mean-scores correctly classify the three non-interactions, but be-

cause of its higher predictive power, the single-cell classification

model was preferred (see also Supplemental Results).

Incorporating other classifiers

Neural network classifiers for RacF28L and RhoF30L were pre-

viously constructed to classify cells according to similarity with

these TCs (Bakal et al. 2007). We used Z-scores for these two

classifiers to represent morphology of each single cell, computed

mean classifier scores for each double-knockdown TC, and ranked

TCs accordingly. Using an extremely strict significance cutoff

(Bonferroni-corrected P = 0.05), the RacF28L neural networks iden-

tified four targets (these were a subset of the RhoGAPs predicted

by our classification model, namely, RacGAP50C, RacGAP84C,

RhoGAP54D, and RhoGAP71E); however, the RhoF30L neural

network provided poor specificity, predicting that all 13 RhoGAPs

interact with Rho1. The concordance of our results with the

predictions of the RacF28L neural network provides added confi-

dence for our findings, but overall, this alternative method lacks

necessary subtlety to discern genetic interactions more generally.

Furthermore, the superiority of the main model over the univari-

ate RacF28L classifier highlights the advantages of using high-

dimensional data for improved inference (see also Supplemental

Results).

Alternative outlier handling

While our classification model assigned each UTC single cell to

a DTC, it may be argued that some cells should not be mapped

to any DTC. We can define a cutoff for the Mahalanobis distance

to each RhoGTPase cluster, such that a point mapped to this

RhoGTPase by the main model, but exceeding this cutoff, would

instead be deemed an outlier. A natural definition for the cutoff for

a given DTC is the minimum distance (to that DTC cluster) of all

the DTC’s points not mapped to itself. Thus, a point exceeding the

relevant cutoff for each RhoGTPase is not mapped to any of them.

We may then, as before, map all single cells from each double-RNAi

UTC to the set of DTCs, determine the mode of each UTC point set,

and calculate a P-score for this classification based on the mode

frequency. At optimal threshold, this model makes 21 (out of 39)

predictions and correctly predicts all positive interactions (speci-

ficity, 67%), yielding a predictive power of P < 0.05. This is

a promising result, suggesting that both the main classification

model and the outlier-based model should be tried on future

datasets.

Discussion
The contributions of this work are fourfold. The first contribution

was to show that high-throughput morphological data can be used

in a systematic fashion to identify genetic interactions. Second, we

showed the fundamental fact that with additional prior knowledge

of network structure, our framework can be used to identify sig-

naling interactions successfully. Third, the computational frame-

work presented here represents an initial approach to the prob-

lem that will serve as a basis for future enhancements. Fourth, we

Table 3. Within-pathway genetic interactions between RhoGAPs

RhoGAP within-pathway
Partner A

RhoGAP within-pathway
Partner B

RhoGAP92B RhoGAP5A
RhoGAP92B RhoGAP16F
RhoGAP92B RhoGAPp190
RacGAP50C RacGAP84C
RhoGAP71E RhoGAP93B

By mapping RhoGAP double-knockdown TCs to (clusters of) RhoGAP
single-knockdown TCs, our classification model identifies within-pathway
genetic interactions between RhoGAPs. Double-knockdown TCs for
RhoGAP92B/RhoGAP5A, RhoGAP92B/RhoGAP16F, and RhoGAP92B/
RhoGAPp190 all shared significant morphological similarity with single-
knockdown of RhoGAP92B; i.e., these double-knockdown TCs were
mapped to the cluster containing the RhoGAP92B single-knockdown TC,
and bootstrapping yielded P-scores for this classification that were sig-
nificant at P = 0.05 following Bonferroni correction. Furthermore, none of
these three proteins was in the same cluster with RhoGAP92B (Supple-
mental Table 4). In addition, we previously predicted that all four proteins
signal through Rho1. Analogous results were obtained for RacGAP50C/
RacGAP84C and RhoGAP71E/RhoGAP93B: The double-knockdown re-
sembled the single-knockdown of RacGAP50C (respectively, RhoGAP71E),
the single-knockdown of RacGAP84C (RhoGAP93B) was in a different clus-
ter than RacGAP50C (RhoGAP71E), and both of these proteins were pre-
viously predicted to signal through Rac1. These observations suggest the
existence of within-pathway interactions between these pairs of RhoGAPs
and highlight the capability of our methods for detecting complex signaling
among RhoGAPs and RhoGTPases.
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showed that for RhoGAP/GTPase signaling inference, our classifi-

cation model demonstrates significantly improved performance

using both single- and double-knockdown data versus only single-

knockdown data.

We developed a general method to predict genetic inter-

actions using high-throughput image-based data from a genetic

screen, and applied it to the case of RhoGAP/GTPase regulation

in Drosophila. Our work in identifying genetic interactions repre-

sents a generalization to high-dimensional morphological data of

between-pathway and within-pathway genetic interactions that

have been described for yeast (Kelley and Ideker 2005). In order to

predict signaling relations, the method requires some prerequisite

knowledge of the structure of RhoGAP/GTPase regulation (up-

stream vs. downstream TCs). Further development of an unbiased

framework for predicting signaling interactions on the sole basis of

image-based data is unlikely to succeed due to the high degree of

noise in morphological data. Our work suggests that predictions

can be successfully performed using image-based data when com-

bined with additional knowledge, thus might be used to augment

predictions using other data sources (e.g., transcriptional).

Why are predictions based on double-RNAi TCs better than

those using single-RNAi TCs? Each RhoGAP likely regulates mul-

tiple RhoGTPases and each RhoGTPase is likely regulated by mul-

tiple RhoGAPs, meaning RNAi of a single RhoGAP may not ro-

bustly increase activity of a downstream RhoGTPase. However,

RNAi of two RhoGAPs, each normally regulating the same

RhoGTPase, more likely increases its activity. Because the regula-

tory structure is redundant, combinatorial RNAi is necessary for

a sufficiently informative signal. Our findings for morphological

data parallel those of phosphoproteomic data, for which the power

of double RNAi has been demonstrated (Bakal et al. 2008). Future

work could involve the application of our methods to image-based

data for less redundant pathways, for example, VEGF (PVR) and

MAPK pathways (Kiger et al. 2003; Sims et al. 2009).

As an additional application of our methodology, we de-

veloped a model that maps double RhoGAP knockdowns to single

RhoGAP knockdowns. Viewed generally, this methodology repre-

sents a systematic way to identify within-pathway genetic in-

teractions using quantitative morphological data. Applied to

RhoGAP combinatorial RNAi, it provides a means for probing hi-

erarchical relations between RhoGAPs. A dosage-response inter-

action has been described between RacGAP50C and RacGAP84C

in fly wing (Sotillos and Campuzano 2000). We found that

RacGAP50C�/RacGAP84C+ and RacGAP50C�/RacGAP84C� TCs

share significant morphological similarity at the single-cell level,

suggesting that RacGAP50C may be required for RacGAP84C ac-

tivity. Within-pathway interactions between RhoGAPs may in

some cases reflect complex spatiotemporal signaling rather than

direct physical interactions.

A potential objection to our method of validation is the rel-

atively small size of the validation set. However, the model’s per-

formance on positive controls was supported by a significance

value of P < 0.025. Furthermore, the robustness of the model, both

to method of dimensionality reduction and exclusion of data, in-

creases our confidence in the validity of its predictions. We pro-

pose that our model’s predictions for novel RhoGAP/GTPase

interactions could serve as targets for further biological study.

Human and yeast data suggest that many more RhoGAP/GTPase

interactions likely occur in fly than have been validated (Yu et al.

2008), meaning that we should expect the model to generate false

positives. However, an additional source of false positives is im-

precision in RNAi; for instance, if there were incomplete knock-

downs for two single-RNAi TCs, each might fail to display a GTPase

phenotype, potentially causing incorrect identification of a be-

tween-pathway interaction. Collection of further data is required

to increase confidence in the model’s predictions against this

source of false positives. Another potential objection is that the

model does not classify any RhoGAP single- and double-knock-

downs to the Cdc42Y32A TC with high confidence. One expla-

nation for this is that the Cdc42 overexpression phenotype is, in

a sense, intermediate to the RhoF30L and RacF28L phenotypes

(Fig. 3). Consequently, the model is more successful at detecting

similarity of RhoGAP TCs to RacF28L and RhoF30L as compared

with Cdc42Y32A. However, the reason for the dearth of mappings

to Cdc42 may reflect the RhoGAPs in the double-RNAi screen and

the identity of their RhoGTPase partners.

Future work will involve acquisition of new double-RNAi

morphological data for additional RhoGTPases, as well as for better

simultaneous predictions of multiple RhoGTPase targets for each

RhoGAP. For the latter task, one would obtain double-overexpression

RhoGTPase data and augment the classification model with these

TCs as targets. A RhoGAP TC mapped to a double-overexpression

class (versus either of the single overexpression classes) would

suggest multiple RhoGTPase targets. Additional optimizations to

the classification model may be possible to improve performance

and can be tested on larger data sets as they become available.

Methods

Morphological datasets
As previously described, TCs were prepared in the Drosophila DM-
BG2 (referred to as BG-2) cell line using either dsRNA or over-
expression constructs (Bakal et al. 2007). The screen consisted
of 249 distinct genetic perturbations, with several replicates, for
a total of 273 TCs, including two treatment conditions cor-
responding to constitutively active Rac1 (RacF28L) and Rho1
(RhoF30L) mutants, respectively, and a treatment condition cor-
responding to a fast-cycling Cdc42 mutant (Cdc42Y32A). For each
single cell in each treatment condition, 145 geometric features
and nine status features were extracted in a semiautomated fash-
ion. In total, 12,601 single cells were imaged, for an average of
46 single cells for each TC. Each raw feature was normalized to
have mean 0 and variance 1 across the full set of single cells. Fol-
lowing normalization, dimensionality reduction was performed
by computing principal components (PCs) for all single-cell data
and projecting onto the first three PCs.

Drosophila BG-2 cells were transfected with dsRNAs targeting
13 RhoGAPs (Table 1) in all possible combination components in
combination with act-GAL4 and UAS-GFP plasmids. Live cells were
imaged and the morphology of single cells was quantified using
previously described methods. Cell segmentation was performed
using the custom CellSegmenter Software (Bakal et al. 2007). For
each single cell, the same 145 geometric and nine status features
were extracted. All 13 single-RNAi TCs were constructed and all
except one (RhoGAP19D/RhoGAP54D) of the 13

2

� �
= 78 possible

double-RNAi TCs were successfully constructed, for a total of 90
TCs. Overall, 6480 single cells were imaged, for an average of 72
cells per TC. The 90-TC data set was normalized and projected onto
the first three PCs computed using the 273-TC data set. We con-
ducted robustness testing by varying the number of dimensions of
reduced feature space and rerunning the entire classification al-
gorithm (Supplemental Methods).

The image datasets are available at http://groups.csail.mit.
edu/cb/morphInference.
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Classification model

The model maps the set, U, of upstream (e.g., RhoGAP knock-
down) TCs into the set, D, of downstream (e.g., RhoGTPase
overexpression) TCs. It was desirable that our model should (1) use
single-cell data rather than mean scores for each TC, (2) assign
meaningful confidence scores to each classification, and (3) cor-
rectly classify control (GTPase overexpression) TCs. More precisely,
let U = {UTC1,UTC2,. . .,UTCn} and D = {DTC1,DTC2,. . .,DTCm},
where UTCi denotes the ith upstream TC and DTCj denotes the jth
downstream TC. Let ci denote the number of single cells in UTCi.
To classify UTCi into D, first each of its ci single cells is separately
classified into D by calculating the Mahalanobis distance to each
DTCj and selecting the closest DTCj. The classification of single
cells in UTCi can be represented as a classification vector of length
ci, and the classification of UTCi, denoted f (UTCi), was defined to
be the mode of the classification vector. A confidence score was
assigned using bootstrapping based on the frequency of the mode,
denoted di. We selected 1000 random samples of ci cells from the
full set of upstream TCs, classified these samples into D, and cal-
culated the distribution of the mode frequency, d, of the classifi-
cation vector. This distribution was used to determine the proba-
bility of observing a classification vector mode frequency no
smaller than that observed for the classification of UTCi, i.e., the
probability that d $ di.

Identifying RhoGAP/GTPase genetic and signaling
interactions

We applied this general framework to classify the set of RhoGAP
single- and double-RNAi TCs (U) into the set of RhoGTPase over-
expression TCs (D). For single-RNAi data, results were not signifi-
cantly altered by drawing samples from the set of cells comprising
only single-RNAi TCs versus the entire set of single- and double-
RNAi TCs (Supplemental Table 6). As required, the model cor-
rectly classifies each RhoGTPase overexpression experiment with
high confidence (Supplemental Table 7). For double-knockdown
RhoGAP TCs, e.g., knockdown of RhoGAPs A/B, we interpreted
a positive classification to RhoGTPase C to suggest that both A and
B signal through C, unless the single-knockdown TC for either A or
B was classified to C at Bonferroni-corrected P = 0.05. We consid-
ered a high-confidence double-knockdown classification to be
noninformative in case one of the single knockdown components
was classified at high significance to the same RhoGTPase, as this
was necessary to avoid false-positive predictions associated with
single-knockdowns that dominate morphology (in practice, this
excludes double-knockdowns with RhoGAP92B for the primary
classification model). We incorporated this exclusion into all al-
ternative algorithms under consideration, as well.

As an additional application of our classification model, we
mapped the set of RhoGAP double-knockdowns (U) to RhoGAP
single-knockdowns (D). Applying the model directly to the entire
set, D, was not possible, because each element of D was not cor-
rectly mapped to itself. That is, some single-knockdown TCs were
classified into different single-knockdown TCs, due to the fact that
some of the 13 single-knockdown TCs were not morphologically
distinguishable from one another. To remedy this, we clustered the
single-knockdown TCs using a variant of EM designed to guarantee
that, under the final clustering, all single-knockdown TCs would be
correctly classified (Supplemental Methods; Supplemental Fig. 2).
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