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We present 2þ 1 flavor lattice QCD calculations of the nucleon scalar and tensor charges. Using the

BMW clover-improved Wilson action with pion masses between 149 and 356 MeVand three source-sink

separations between 0.9 and 1.4 fm, we achieve good control over excited-state contamination and

extrapolation to the physical pion mass. As a consistency check, we also present results from calculations

using unitary domain wall fermions with pion masses between 297 and 403 MeV, and using domain wall

valence quarks and staggered sea quarks with pion masses between 293 and 597 MeV.
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I. INTRODUCTION

A quantitative understanding of the quark structure of
hadrons is essential to relate experimentally observed
hadronic properties to fundamental processes occurring
at the quark level. Thus, lattice QCD can play a crucial
role in determining parameters of the Standard Model from
experiment and in predicting the experimental effects of
interactions beyond the Standard Model.

One example is the search for the effects of new scalar and
tensor couplings beyond the familiar weak interactions of the
Standard Model in the decay of ultracold neutrons as dis-
cussed in detail in Ref. [1]. These couplings would contribute
through the matrix elements hpj �udjni and hpj �u���djni. To
leading order in the recoil approximation, these matrix ele-
ments are proportional to the isovector scalar and tensor
charges gS and gT of the nucleon. Hence, lattice QCD
predictions of these charges are crucial for determining the
sensitivity of the decay process to the nonstandard couplings.

Another example concerns the search for an electric
dipole moment of the neutron, which constrains the pos-
sible values of the CP-violating strong interaction � angle.
The constant of proportionality between the electric dipole
moment and � can be calculated directly using a back-
ground electric field [2,3] or from the CP-odd form factor
F3 (cf. Refs. [4,5]). However, it is also instructive to relate
the neutron electric dipole moment near the chiral limit at
small � to the CP-violating pion-nucleon coupling constant
�g�NN , cf. Ref. [6]. This assumes that j�Ni intermediate
states provide the dominant contribution to the dipole
moment, which is the case as m� ! 0. In turn, �g�NN is
proportional to the isovector scalar charge gS of the nucleon

[6], which thus again appears as an important parameter
influencing the search for new physics. Given that the
physical limit occurs at finite m�, where there will be
corrections to the relation between the electric dipole
moment of the neutron and �g�NN , a comparison of this
approximation to direct evaluations can also provide insight
into the importance of these corrections. Another important
effect of �g�NN is the fact that it induces CP violation in
nuclear forces resulting in strongly enhanced nuclear elec-
tric dipole moments in certain cases [7].
These two examples directly motivate the present work

in which we calculate the nucleon’s isovector charges gS
and gT . Since the computationally formidable disconnected
contributions from couplings to the sea quarks cancel in
these isovector charges, we only calculate the connected
contributions. Extensive lattice QCD data generated with
three different lattice actions at pion masses ranging
between 149 and 597 MeVare reported, together with their
extrapolations to the physical pion mass.
In addition to the primary motivation described above,

our results also contribute to a more detailed understanding
of the nucleon sigma term �N¼1

2ðmuþmdÞhNj �uuþ �ddjNi,
which determines the part of the nucleon mass generated by
the light quark degrees of freedom via the spontaneous
breaking of chiral symmetry. Whereas we do not have the
resources to evaluate the disconnected contributions to �N

at present, the connected contributions to hNj �uujNi and
hNj �ddjNi can be given separately and are expected to
furnish most of the strength of the nucleon sigma term;
cf. Refs. [8–10] for recent lattice studies focusing on �N.
These quantities are also relevant to dark matter searches
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based on Higgs-mediated couplings of baryonic to dark
matter [11–13]. For example, the neutralino-nucleon scalar
cross-section considered in Ref. [11] can be cast as a linear
combination of terms proportional to hNj �uujNi and
hNj �ddjNi. Thus, again, the scalar charge gS of the nucleon
(including both isoscalar and isovector components) is use-
ful in quantifying searches for these dark matter candidates.

II. LATTICE METHODOLOGY

The full set of lattice ensembles on which we have
calculated our observables is listed in Table I. We make
use of three different lattice actions.

Our main results are calculated on ensembles at light pion
masses, with tree-level clover-improved Wilson fermions
coupled to double HEX-smeared gauge fields, as used by
the BMW Collaboration [14]. Operators are renormalized
nonperturbatively using the Rome-Southampton method.
For the scalar charge, we use renormalization factors calcu-
lated by the BMW Collaboration [14], and for the tensor
charge we performed our own calculation (see Appendix A).
These factors are given in Table II.

For comparison and for a consistency check, we also
present results on ensembles with two different lattice actions
used for earlier nucleon structure calculations. First, we use
unitary domain wall (DW) quarks on ensembles generated by
the RBC and UKQCD Collaborations [15,16]. Details of our
analysis methods are in Ref. [17]. Operators are renormalized
nonperturbatively using the Rome-Southampton method. ZS

[16] and, on the coarse ensemble, ZT [18] were calculated by

the RBC Collaboration. On the fine ensembles, we found

ZMSð2 GeVÞ
T ¼ 0:8168ð9Þ (see Appendix A).
Second, our mixed-action scheme [19,20] uses domain

wall valence quarks on gauge configurations with Asqtad
staggered sea quarks generated by the MILC Collaboration
[21]. Renormalization factors are calculated in the same
way [22] as those used in previous calculations of nucleon
generalized form factors. One-loop perturbation theory is
used to calculate the renormalization factors for all quark
bilinear operators evaluated at the one-loop coupling con-
stant and �2 ¼ 1=a2. Because HYP smearing suppresses
loop integrals, the ratio ZO;pert=ZA;pert, where O denotes a

general bilinear and A is the axial current, is within a few
percent of unity indicating perturbative corrections are
already small at the one-loop level for this ratio. The
multiplicative wave function renormalization in the fifth
dimension appearing in all renormalization factors is
included nonperturbatively by using the five-dimensional
conserved axial current for domain wall fermions to cal-
culate ZA;nonpert and calculating ZO ¼ ðZO;pert=ZA;pertÞ �
ZA;nonpert. The relevant matrix elements are [22] ZA;pert ¼
0:964, ZS;pert ¼ 0:971, and ZT;pert ¼ 0:987, and the result is

evolved to � ¼ 2 GeV.
For the scalar charge, we can alternatively make use of

the renormalization group invariant combination ðms �
mudÞgS. Dividing by the physical ms �mud, as measured

in 2þ 1 flavor lattice QCD calculations in the MS scheme
at 2 GeV [16,23–27], and multiplying by a ratio of differ-
ences of pseudoscalar meson masses to cancel the leading
dependence on quark masses, we get

gMSð2 GeVÞ
S � ðmbare

s �mbare
ud ÞgbareS

m
phys
s �m

phys
ud

�m2
K;phys �m2

�;phys

m2
K �m2

�

;

(1)

where the physical mK andm� in the isospin limit are from
Ref. [23] and their values on our mixed-action ensembles
were computed in an earlier work [28]. On the mixed-action
ensembles, this approach yields values of gS that differ
from the perturbatively renormalized values by between
0.4 and 1.3%. Assuming the perturbative renormalization
of the tensor charge has similar errors, we use our pertur-
bative approach for both gS and gT and conservatively
estimate a systematic error due to renormalization of 2%.
We compute nucleon forward matrix elements using the

usual ratio-plateau method [17,19]. Beginning with two-
point and three-point functions,

TABLE I. Lattice ensembles used for scalar and tensor charge
calculations.

Label

a

(fm) L3
x � Lt

m�

(MeV) m�Lxa

Number of

configurations

Number of

measurements

Wilson clover

W1 0.09 323 � 64 317(2) 4.6 103 824

W2 0.116 483 � 48 149(1) 4.2 646 7752

W3 0.116 323 � 48 202(1) 3.8 457 5484

W4 0.116 323 � 96 253(1) 4.8 202 2424

W5 0.116 323 � 48 254(1) 4.8 420 5040

W6 0.116 243 � 48 254(1) 3.6 418 10032

W7 0.116 243 � 48 303(2) 4.3 128 768

W8 0.116 243 � 48 356(2) 5.0 127 762

Domain wall

D1 0.084 323 � 64 297(5) 4.0 615 4920

D2 0.084 323 � 64 355(6) 4.8 882 7056

D3 0.084 323 � 64 403(7) 5.5 527 4216

D4 0.114 243 � 64 329(5) 4.6 399 3192

Mixed action

M1 0.124 203 � 64 293(6) 3.7 460 3680

M2 0.124 283 � 64 356(7) 6.3 272 2176

M3 0.124 203 � 64 356(7) 4.5 628 5024

M4 0.124 203 � 64 495(10) 6.2 483 3864

M5 0.124 203 � 64 597(12) 7.5 562 4496

TABLE II. MS renormalization factors at � ¼ 2 GeV for the
tensor and scalar charge on the Wilson clover ensembles.

a (fm) ZS ZT

0.09 1.107(16)(22) 1.011(5)

0.116 1.115(17)(30) 0.9624(62)
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C2ptðt; ~PÞ ¼ hNð ~p ¼ ~P; tÞ �Nð ~x ¼ 0; 0Þi; (2)

CO
3ptð�; T; ~PÞ ¼ hNð ~p ¼ ~P; TÞOð ~p ¼ 0; �Þ �Nð ~x ¼ 0; 0Þi;

(3)

where N is our lattice nucleon interpolating operator, we
compute their ratio,

ROð�; T; ~PÞ ¼ CO
3ptð�; T; ~PÞ
C2ptðT; ~PÞ

: (4)

At sufficiently large � and T � �, contributions from
excited states are negligible, and the ratio gives us the

matrix element hNð ~PÞjOjNð ~PÞi. In practice, for a fixed
source-sink separation T, we take the average over the
central two or three points of the plateau as the matrix
element. The matrix elements give us the isovector scalar
and tensor charges:

hNð ~PÞj �uu� �ddjNð ~PÞi ¼ gS �uð ~PÞuð ~PÞ; (5)

hNð ~PÞj �u���u� �d���djNð ~PÞi ¼ gT �uð ~PÞ���uð ~PÞ: (6)

We take the weighted average of results measured with
~P ¼ 0 and ~P ¼ 2�

L ð�1; 0; 0Þ. The source-sink separations

T that we use are listed in Table III. On the Wilson action
ensembles, we perform measurements at three source-sink
separations in order to better identify systematic errors
from excited-state contamination. However, our main
results are presented using the middle separation, with
T � 1:16 fm.

Chiral perturbation theory results for gA and gT are
summarized in Appendix B.

III. RESULTS

The dependence on source-sink separation for the
Wilson-clover data is shown in Fig. 1 for the scalar charge
and in Fig. 2 for the tensor charge. Neither observable
shows a strong statistically significant dependence on
source-sink separation.

The main results for the scalar charge are presented in
Fig. 3. There is broad agreement between the different
actions, although they are not entirely consistent. In
particular, the two mixed-action ensembles at m� ¼
356 MeV have points that lie significantly below the point

TABLE III. Source-sink separations T.

Action a (fm) T=a

Mixed 0.124 9

Domain wall 0.084 12

Domain wall 0.114 9

Wilson clover 0.09 10, 13, 16

Wilson clover 0.116 8, 10, 12

FIG. 3 (color online). gS versusm
2
�. Error bars are purely statis-

tical and do not include errors in renormalization factors, which are
correlated across ensembles with the same action. Two chiral fits are
shown: a three-parameter fit to the coarse Wilson-clover ensembles
(shadedup tom2

� < 0:13GeV2) anda four-parameter fit to all shown
ensembles.

FIG. 1 (color online). Scalar charge measured at three source-
sink separations on the Wilson-clover ensembles, as enumerated
in Table I.

FIG. 2 (color online). Tensor charge measured at three source-
sink separations on the Wilson-clover ensembles, as enumerated
in Table I.
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for the domain wall ensemble at m� ¼ 355 MeV. We
estimate the value of the scalar charge at the physical
pion mass, 135 MeV, in three ways:

(1) Taking the value from our ensemble with the lowest
pion mass, 149 MeV. Including the error in ZS, this
is gS ¼ 1:01ð27Þ.

(2) Performing a three-parameter chiral fit to the set of
seven a ¼ 0:116 Wilson-clover ensembles. This is
a good fit with �2=dof ¼ 3:99=4 and is shown in
Fig. 3. Extrapolating to the physical pion mass
yields gS ¼ 1:08ð28Þ.

(3) Performing a four-parameter chiral fit to the full
set of ensembles. The tension at higher pion masses
between the domain wall and the mixed action
ensembles is reflected in �2=dof ¼ 30:23=13.
Extrapolation yields gS ¼ 1:08ð23Þ.

Our tensor charge results are shown in Fig. 4. Note that
the vertical scale is expanded and the error bars are much
smaller. Again there is general agreement between differ-
ent lattice actions. The figure shows some inconsistency
between the domain wall and mixed-action ensembles at
larger pion masses. However, this is close to the 2%
correlated error that we assign to the mixed-action results
to account for perturbative renormalization. As with the
scalar charge, we estimate the physical value of gT in three
ways:

(1) Using the value from the m� ¼ 149 MeV ensemble
yields gT ¼ 1:049ð23Þ.

(2) Performing a two-parameter chiral fit to the coarse
Wilson-clover ensembles. As with the scalar charge,
the fit works well with �2=dof ¼ 4:49=5. However,
the fit chooses �2 ¼ 0, which removes the chiral
log. At the physical pion mass, this gives
gT ¼ 1:038ð11Þ.

(3) Performing a three-parameter fit to the full set of
ensembles. Because of the correlated error for the
mixed-action ensembles, this fit also works well,
giving �2=dof ¼ 19:69=14. Extrapolating to the
physical pion mass yields gT ¼ 1:037ð20Þ.

IV. SUMMARYAND CONCLUSIONS

Motivated by the facts that contributions of nonstandard
scalar and tensor couplings to neutron decay are propor-
tional to isovector gS and gT , and that �g�NN , which pro-
duces parity-violating components of nucleon-nucleon
interactions, is proportional to isovector gS, we have under-
taken a comprehensive set of calculations of gS and gT
using lattice QCD.
Our calculation includes a number of significant advances.

We have utilized three sets of ensembles that cover different
pion mass regions for which we use the same calculational
methodology. The primary data for this analysis were
obtained using the smeared Wilson-clover action developed
by the BMW Collaboration and include pion masses in the
vicinity of 150, 200, 250, 300, and 350 MeV. The 149 MeV
pion mass plays a crucial role in our analysis. It is so close to
the physical pionmass that it virtually eliminates uncertainty
from extrapolation to the physicalmass and is well below the
lowest mass used in other calculations. Furthermore, given
the known strong source-sink separation dependence in some
observables such as the momentum fraction, our careful
study of 3 separations in Figs. 1 and 2 from 0.93 to 1.39 fm
is important in ruling out contributions of excited states near
the physical pion mass.
To control systematic effects from finite lattice volume,

we have satisfied the standard criterion m�Lxa > 4 for
nearly all of our ensembles, including the crucial m� ¼
149 MeV ensemble where m�Lxa ¼ 4:2 (cf. Table I). In
addition, we carried out an explicit test for finite volume
effects using the two ensembles W5 and W6 at m� ¼
254 MeV, which are identical except for their lattice vol-
ume. Within the statistical accuracy of our calculation, no
significant deviations between the results obtained in these
two ensembles were found.
Comparison of values of gS and gT for the ensembles

W1 with lattice spacing a ¼ 0:09 fm and W7 with
a ¼ 0:116 fm at similar values of m� and Lxa,
cf. Table I, indicates the absence of a dependence within
our statistical errors.
Supplementing the results obtained at the pionmassm� ¼

149 MeV, we performed three- and four-parameter chiral
fits to gS and gT for the low mass Wilson ensembles, where
we expect chiral perturbation theory to be valid. These fits
serve as a check on the consistency of the 149 MeV data
point and have the potential to reduce the statistical error.
The central values of the 149 MeV data points and fits were
essentially identical on the scale of the errors, and it turned
out that the error in the scalar charge was essentially
unchanged while the error on the tensor charge was cut in

FIG. 4 (color online). gT versus m2
�. Error bars are purely

statistical and do not include errors in renormalization factors,
which are correlated across ensembles with the same action. Two
chiral fits are shown: a two-parameter fit to the coarse Wilson-
clover ensembles (shaded up to m2

� < 0:13GeV2) and a three-
parameter fit to all shown ensembles.
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half. We regard the chiral fits to theWilson-clover data as our
definitive results for the central values and statistical error.
We also estimate the systematic error from excited-state
contamination as the average of two absolute differences;
those between the central value from the middle source-sink
separation on the 149 MeV ensemble and the central values
from the other two source-sink separations on that ensemble,
i.e., 1

2 ðjgT¼10a
X � gT¼8a

X j þ jgT¼10a
X � gT¼12a

X jÞ. This yields
gS ¼ 1:08� 0:28ðstatÞ � 0:16ðsystÞ and gT ¼ 1:038�
0:011ðstatÞ � 0:012ðsystÞ. We emphasize that our results
do not hinge decisively on chiral perturbation theory. The
chiral fits to the data at higher pion masses rather serve to
buttress the calculations atm� ¼ 149 MeV, which by them-
selves represent determinations of gS and gT with essentially
no residual uncertainty due to chiral extrapolation.

The range of pion masses for the Wilson action overlaps
the range 297–403 MeV for the domain wall action and
the range 293–597 MeV for the mixed action, so simulta-
neous analysis provides a valuable consistency check of
the actions and normalization. In the region of overlap
between the Wilson-clover and domain wall calculations,
the results agreed well, confirming the underlying consis-
tency of these two calculations including normalization.
There is a certain tension between the mixed action and
domain wall results at higher pion masses, the origin of
which we have not been able to pinpoint; an underestimate
of the renormalization uncertainties in the mixed-action
case is one possible source. When the error in the normal-
ization is taken into account, the four- and three-parameter
chiral fits to gS and gT for all three sets of ensembles are
consistent with the chiral fits to the low mass Wilson
ensembles, as reflected in the close agreement of the error
envelopes at the physical pion mass.

Concerning other systematic uncertainties, we have yet
to perform extensive low mass Wilson calculations at
smaller lattice spacings to extrapolate to the continuum
limit and at larger volumes to extrapolate to the infinite
volume limit. At the present level of statistics, our com-
parison of two different lattice volumes at the pion mass
m� ¼ 254 MeV and two different lattice spacings atm� �
300 MeV yielded no evidence of significant volume or
lattice spacing effects. However, in view of past experience
with the well-studied case of the nucleon axial charge gA,
future more statistically accurate calculations may yet
necessitate more detailed investigations of a range of
volumes and lattice spacings. Comparable calculations of
gA by several groups including our own lie below the
experimental value by more than the statistical errors,
and it is likewise possible that the aforementioned or other
systematic errors in gS and gT are still appreciable.
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APPENDIX A: NONPERTURBATIVE
RENORMALIZATION OF THE TENSOR

CHARGE OPERATOR

In this section, we briefly describe the method and
present the results of computing the nonperturbative renor-

malization factors ZMSð2 GeVÞ
T for the tensor charge gT ,

ZMSð2 GeVÞ
T glatT ¼ gMSð2 GeVÞ

T , for clover-improved Wilson
and domain wall fermion ensembles.
Following Ref. [29], we compute amputated lattice

Green functions �lat
T of tensor charge operator and plane

wave quarks qðxÞ � eipx, p2 ¼ �2 in the Landau gauge.
We then extract the lattice renormalization factor Zlat

T

defined as ðZ=ZqÞlat�lat ¼ �tree, where �tree is the corre-

sponding tree-level amputated Green function and Zq is the

quark field renormalization. In order to match lattice-
regulated and perturbatively renormalized operators, we
compute scale-independent (SI) renormalization factors ZSI

T

ZSI
T

ZV

¼
��

ZT

ZV

�
lat

p2¼�2
�
�
ZRI0ð2 GeVÞ
T

Z
RI0ð�Þ
T

�
pert

�
mq!0;�!0

; (A1)

where the perturbative operator renormalization is calcu-
lated to order Oð�3

SÞ [30] and Zlat
V is the renormalization of

the quark charge operator on the lattice,

ðZV=ZqÞlat � hNð ~PÞjuyu� dydjNð ~PÞilat ¼: 1: (A2)

We extrapolate linearly first inmq ! 0, and then in�2 ! 0

in the range �2 � 6 . . . 15 GeV2 (see Fig. 5). Finally, we
obtain the renormalization factors for converting lattice

results into the MSð2 GeVÞ scheme:

ZMSð2 GeVÞ
T ¼

�
ZSI
T

ZV

�
� Zlat

V �
�
ZMSð2 GeVÞ
T

ZRI0ð2 GeVÞ
T

�
pert

: (A3)
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APPENDIX B: CHIRAL PERTURBATION THEORY

For chiral extrapolation of the scalar charge, we make
use of the Feynman-Hellmann theorem to obtain

gS � hpj �uu� �ddjpi ¼
�

@

@mu

� @

@md

�
Mp: (B1)

Strong isospin splitting of nucleon masses has been
computed in SUð2Þ heavy baryon chiral perturbation
theory, with explicit � degrees of freedom, to next-to-
next-to-leading order, i.e., to Oðm2

qÞ [31]. This leads to

the expression

gSðm2
�Þ ¼ 2�M � 1

2ð4�F�Þ2
�
m2

�

�
�
8

�
g2A�M þ g2�N

�
�M þ 5

9
	M

��

� ðbM1 þ bM6 Þ
�ð ffiffiffi

2
p

F�Þ3



�

þm2
� log

�
m2

�

�2

�
2�Mð6g2A þ 1Þ

þ J ðm�;�; �Þ8g2�N
�
�M þ 5

9
	M

��
; (B2)

where

J ðm;�; �Þ ¼ ðm2 � 2�2Þ logm
2

�2

þ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

p
log

�
��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2 þ i�

p

�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2 þ i�

p
�

þ 2�2 log
4�2

�2
: (B3)

Here F�, gA, and � are the pion decay constant, the
nucleon axial charge, and the �ð1232Þ-nucleon mass

splitting, respectively, in the SUð2Þ chiral limit. The con-
vention used here is that the physical value of F� is
approximately 92 MeV. We fix these three parameters to
values used for chiral extrapolation in a previous nucleon
structure calculation [19],

F�¼86:2MeV; gA¼1:2; �¼0:2711GeV; (B4)

leaving three independent parameters to which we fit our
gSðm2

�Þ data. If we fix only�, then the resulting fit has four
independent parameters.
Chiral extrapolation formulas for the tensor charge are

given in Ref. [32]. Full formulas including � loops are
given via a number of integrals, and then it is shown that
these are approximated well by an expression that includes
only the leading nonanalytic term. Also including terms
that connect to the heavy quark limit, chiral extrapolation
for the tensor charge gives:

gTðm2
�Þ ¼ �a

�
1þ �cLNAm

2
� log

m2
�

m2
� þ�2

�

þ �b
m2

�

m2
� þm2

b

; (B5)

where from the heavy quark limit

�b ¼ 5

3
� �að1��2�cLNAÞ; (B6)

and the coefficient of the log term,

�cLNA ¼ �1

2ð4�F�Þ2
��

2� 4

9

g2�N�

g2�NN

�
g2A þ

1

2

�
: (B7)

Fixing mb ¼ 5 GeV as in Ref. [32] yields a fit with three
independent parameters. In addition, fixing gA and F� as
for the scalar charge, and g�N�

g�NN
¼ 1:85, reduces the number

of independent parameters to two.

FIG. 5 (color online). Extrapolations of the scale-independent (SI) ratio (ZSI
T =Z

lat
V ) for coarse clover-improved Wilson fermion lattice

ensembles (W3, W5) (left) and fine domain wall fermion lattices (D1–D3) (right).
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APPENDIX C: TABLE OF RESULTS

Table IV contains the scalar and tensor data from our full set of ensembles.
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Yoshié, Phys. Rev. D 75, 034507 (2007).
[3] E. Shintani, S. Aoki, and Y. Kuramashi, Phys. Rev. D 78,

014503 (2008).
[4] R. Horsley, T. Izubuchi, Y. Nakamura, D. Pleiter, P. E. L.

Rakow, G. Schierholz, and J. Zanotti, arXiv:0808.1428.
[5] K.-F. Liu, Mod. Phys. Lett. A 24, 1971 (2009).
[6] R. Crewther, P. Di Vecchia, G. Veneziano, and E. Witten,

Phys. Lett. 88B, 123 (1979).
[7] W. Haxton and E. Henley, Phys. Rev. Lett. 51, 1937

(1983).
[8] H. Ohki, H. Fukaya, S. Hashimoto, T. Kaneko, H.

Matsufuru, J. Noaki, T. Onogi, E. Shintani, and N.

Yamada, Phys. Rev. D 78, 054502 (2008).
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