
Practical Security for Multi-User Web Application Databases

by

Catherine M.S. Redfield

B.S., Computer Science and Engineering (2011)
Massachusetts Institute of Technology

Submitted to the Department of Electrical Engineering and Computer Science
In partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2012

c© Massachusetts Institute of Technology 2012. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

June, 2012

Certified by. .
Nickolai Zeldovich

Assistant Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Prof. Dennis M. Freeman

Chairman, Masters of Engineering Thesis Committee

2

Practical Security for Multi-User Web Application Databases

by

Catherine M.S. Redfield

Submitted to the Department of Electrical Engineering and Computer Science
June, 2012

In partial fulfillment of the requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Online web applications are continuously vulnerable to attacks on their users’ data. Outside
adversaries can gain unauthorized access by exploiting unknown vulnerabilities; curious or
malicious database administrators can examine or alter the data in situ.

Multiple Principal CryptDB protects against attacks on web application servers. By
chaining encryption keys to user passwords, an attacker gaining access to decrypted data
through issuing arbitrary queries to the database through CryptDB cannot access data
belonging to offline users. A logging system and distributed key storage for CryptDB
constrain the pool of possibly compromised data after an attack.

Multiple Principal CryptDB can be used to secure the data of six web applications
examined, with 2-8 lines of altered source code and 15-111 annotations added to the schema.
On the phpBB web forum application, Multiple Principal CryptDB reduces throughput by
only 14.5%, with 24 sensitive fields encrypted, and adds less than 26ms of latency to each
individual query.

Thesis Supervisor: Nickolai Zeldovich
Title: Assistant Professor of Electrical Engineering and Computer Science

3

for my father

who always wants to hear about my research

4

5

Acknowledgments

This research was performed under the supervision of Professor Nickolai Zeldovich, and

it is a joint work with Raluca Ada Popa and Professor Hari Balakrishnan. The work on

Multiple Principal CryptDB was included in the CryptDB published at the 23rd Symposium

on Operating Systems in the CryptDB paper.

I would like to thank Nickolai for being brilliant and impossibly kind to me. For the

past year and a half, I have been continually inspired by his enthusiasm and his confidence

in my abilities.

CryptDB is the brainchild of Raluca, so naturally without her, this thesis would not

have existed. But beyond letting me work on her awesome ideas, I want to thank Raluca

for being such a generous mentor and friend. Without her help and advice and support,

there is no way this thesis would ever have been finished.

I would also like to thank my family: my father for encouraging me to always want

to learn more and do better; my mother for reminding me that learning is not the only

important part of living; and my sisters for making me laugh.

I am also grateful to all the members of the PDOS group, SITB, and Hari Balakrishnan

for their help and support on this project.

This work was supported in part by the National Science Foundation under grant

6923594.

6

Overview

1 Introduction 13

2 Overview of Single Principal CryptDB 19

3 Multiple Principals 27

4 Implementation of Multiple Principal CryptDB 35

5 Auditing 45

6 Evaluation 53

7 Conclusion 65

Bibliography 65

7

8 OVERVIEW

Contents

1 Introduction 13

1.1 Terminology . 16

2 Overview of Single Principal CryptDB 19

2.1 Encryption Schemes . 20

2.1.1 Random (RND) . 20

2.1.2 Deterministic (DET) . 20

2.1.3 Order Preserving Encryption (OPE) 21

2.1.4 Join (JOIN and DETJOIN) . 21

2.1.5 Homomorphic Encryption (HOM) 21

2.1.6 Word Search (SEARCH) . 21

2.2 SQL-Aware Encryption . 22

2.3 Implementation . 25

3 Multiple Principals 27

3.1 Key Chaining . 27

3.1.1 Key Pre-Fetching . 30

3.1.2 Offline Users . 31

3.2 Annotations . 32

4 Implementation of Multiple Principal CryptDB 35

4.1 Annotation Processing and KeyAccess . 35

4.2 Login and Logout . 37

9

10 CONTENTS

4.3 Orphaned Keys . 38

4.4 Optimizations . 40

4.5 Algorithms . 40

4.6 Changes to Application Code . 43

5 Auditing 45

5.1 Design . 46

5.2 Implementation . 48

5.2.1 Orphaned Keys . 48

5.2.2 Algorithms . 49

5.2.3 Changes to Application Code . 52

6 Evaluation 53

6.1 Security Analysis . 53

6.2 Performance Analysis . 57

6.2.1 Throughput . 58

6.2.2 Latency . 59

6.2.3 Threshold . 61

6.2.4 Storage . 62

6.3 Analysis of Supported Queries . 62

7 Conclusion 65

Bibliography 65

List of Figures

1-1 CryptDB Architecture. 14

2-1 Onions. 24

3-1 Key Chaining. 29

3-2 Private Messages. 31

3-3 Annotation. 33

4-1 Public Keys Table. 37

4-2 Orphans. 39

5-1 Distributed KeyAccess Architecture. 47

5-2 Distributed Key Transfer. 50

6-1 Application Changes and Encrypted Fields. 54

6-2 Application Access Graphs. 55

6-3 Throughput. 58

6-4 Latency. 60

6-5 Threshold Optimization. 61

6-6 Unsupported Queries. 63

11

12 LIST OF FIGURES

Chapter 1

Introduction

Online web applications are continuously vulnerable to attacks on their users’ data: as they

receive information from the user, as they process it, and even after they have stored it in

a database. Databases and application servers are also vulnerable: they can be attacked by

adversaries exploiting unknown vulnerabilities and gaining unauthorized access. Databases

are also vulnerable to attack by curious or malicious database administrators [2], or to a

physical attack [8]. Storing private user data on the database in an encrypted form, and

never allowing the database management system access to the encryption key would reduce

the damage that would result from such an attack.

A typical database-backed application has three main components: the user (client)

machines, the application server, and the database management server (database server).

Figure 1-1 shows these components in white. Our idea for of ensuring user privacy is to

have the database management system maintain the data with the same efficiency in the

unencrypted case, but without having access to the data (encrypting the data). There

have been several proposals for systems that create an encrypted database. The simplest

suggestion would be to encrypt and decrypt the data as it passes through the application

server. However, altering an existing application to handle the additional work of encrypting

and decrypting all the data that passes through it would be a huge task. This straw-

man would also transfer all the computation and filtering, which database systems are

specifically optimized to handle, to the application server, which is not designed to deal with

it. Overall, this design would require extensive time from the programmer, as well as an

13

14 CHAPTER 1. INTRODUCTION

User%1%

Database%
Proxy%

Unmodified%
DBMS%

Users’&Computer& Applica2on&Server& CryptDB&Proxy&Server& Database&Server&

KeyAccess%External% Applica=on%

Key%Setup%

User%2%

KeyAccess%External%
KeyAccess%Server% access_keys%

table%
data%

(encrypted)%

CryptDB%
UDFs%

Threat%2%

Threat%1%

Figure 1-1: The CryptDB architecture. Shaded blocks show sections of CryptDB; the
unshaded sections are unmodified.

increase in computation on the application server, which would slow down database accesses.

Recent developments in fully homomorphic encryption – where queries are performed on

the encrypted data without decryption – make that a theoretically possible solution, but the

current implementations would create an overhead impractical for real world systems [6].

In both proposals, an attacker gaining control of the application server would still be able

access sensitive data by querying the database through the application.

Popa et al. [12] propose CryptDB: a practical system which, through the observation

that there are a finite and small number of possible queries to a standard database, can

perform queries on an encrypted database. Figure 1-1 illustrates the design of CryptDB

and the threats it is intended to protect against. CryptDB is designed to act as a proxy

for the application to the database management system (DBMS), and for the DBMS to

the application. Both the application and the DBMS are unchanged and interact with the

proxy as they are designed to interact with each other. As queries pass through the main

proxy of CryptDB, it encrypts the sensitive data, and issues queries to the DBMS with all

sensitive fields encrypted.

The first threat CryptDB is designed to address (Threat 1 in Figure 1-1) is that of a

curious or malicious database administrator, or of a physical attack on the database. By

encrypting the data in the CryptDB proxy, and never giving the DBMS access to any of the

keys used for encryption, an adversary, while still able to corrupt or erase un-targeted data,

15

can no longer read any of the sensitive information. A major challenge in addressing this

threat is the tension between securing the encryption and promoting the efficient execution

of queries. Current approaches for computing over encrypted data, as mentioned above,

tend to be slow or impractical in other ways. CryptDB addresses this problem with the

idea of SQL-aware encryption, in which different encryption schemes directly related to the

possible SQL operators (equality, inequality, search, aggregates such as sum, and joins) are

used in combination to allow the DBMS to execute queries as it would usually do.

This thesis describes Multiple Principal CryptDB, which is intended to provide protec-

tion against Threat 2 (in Figure 1-1), an attack to the application server. In this case,

an attacker could cause the application to issue arbitrary queries to the database through

CryptDB, and thus could gain access to the decrypted information. To protect against this

threat, we use the idea of chaining encryption keys to user passwords (as introduced in [12]),

where the key for encrypting a data item is only accessible through a chain of encryption

based at a user password. If we consider data to be owned by one or more users, then an

item can be decrypted only if a user who has ownership over a given item is online.

While these design choices prohibit some privacy violations, attacks are still possible,

and any data owned by a user who was logged on during the period of the attack may have

been compromised. For this eventuality, we also propose a logging and auditing system for

CryptDB, wherein the system logs which keys are used, providing a record of all accesses.

Thus in the case of an attack, the log constrains the pool of possibly compromised data. To

ensure that this log is inaccessible to an attacker, we also propose a variation of Multiple

Principal CryptDB, where users run each their own copy of our key chaining program,

shown as External KeyAccess in Figure 1-1. Each External KeyAccess stores the access

keys and logs CryptDB’s accesses to them. Using this distributed key access system, it

would be possible to greatly reduce the set of possibly compromised data during an attack.

Multiple Principal CryptDB does not encrypt the entire database – only the fields which

are designated sensitive by the application maintainer. Using an annotation scheme we de-

veloped for the common web forum phpBB, Multiple Principal CryptDB has a low overhead,

reducing throughput by 14.5% and increasing database size by 1.2x, without auditing func-

tionality. For normal application usage, Multiple Principal CryptDB increases latency by

16 CHAPTER 1. INTRODUCTION

5-26ms without auditing, and 3-78ms with auditing. Although there are certain types of

queries Multiple Principal CryptDB cannot process, an examination several applications

shows that these types of queries are rare. An examination of six different web applications

showed that the design paradigm of Multiple Principal CryptDB is viable for their access

control implementations, and that, for most of them, replacing their database management

system with Multiple Principal CryptDB would require only 2-8 lines of application code

to changed, and 31-111 lines of annotations to be added to the schema.

Chapter 2 presents the encryption schemes CryptDB uses, in the case of only one prin-

cipal or user. This section is not the focus of this thesis, as it represents work proposed and

implemented by Popa et al. [14]. It is presented as background work, as the concepts of

CryptDB’s encryption schemes are easier to understand when considering the single prin-

cipal case, without the complexities of the Multiple Principal case. Chapter 3 describes

the design and Chapter 4 describes the implementation of Multiple Principal CryptDB, the

focus of this thesis, in detail. Chapter 5 discusses one of the additional features for multiple

principal CryptDB – a system for recording the keys requested by an application and from

which users’ credentials they are derived. Chapter 6 describes the tests we ran on Multiple

Principal CryptDB to determine its practicality for real world implementations. Chapter 7

concludes.

Multiple Principal CryptDB is also described in [12], on which I am a co-author. The

work on Single Principal CryptDB and the idea of key chaining are not my work, and are

presented as background work. The implementations, algorithms, and other design choices

described in Chapters 3 and 5 are my personal work.

1.1 Terminology

Throughout this thesis we use the following terms to describe specific ideas. We use the

phrases logged on and online to refer to a user who has been authenticated by the web ap-

plication they are using. We use logged off and offline to refer to a user who has specifically

revoked the authorization for the the server to act on his behalf.

We use user or external principal to refer to the authentication information associated

1.1. TERMINOLOGY 17

with a physical user of a web application, such as a username and password. Principal,

on the other hand, refers to an entity that fields can be encrypted for, and that can speak

for other principals or for users. Principals (external and otherwise) are defined by the

programmer during schema creation. An instance of a principal is the combination of

the programmer-defined principal and the data related to it. Each principal instance has

encryption keys associated with it. For example, in an online forum, the pseudonym ’alice’

and its associated password would be an instance of an external principal. A post in

the forum would be an instance of a principal (not an external principal). Text of the

post could be encrypted using the principal post’s encryption keys. Similarly, the access

graphs which describe key chains come in two types: principal access graphs which show the

programmer-designated linkages of the principals, and instance access graphs which show

the relationships between the instances of principals. We extend online to refer to principals

as well as users. A principal (or by extension, a principal’s keys) is online if there is an

online external principal who can chain to the principal in question.

In the access graphs and annotations, we say that a link in an instance access graph is a

speaks for relation. When we need to refer to two principals in a speaks for relation, we dif-

ferentiate them by calling the principal which speak for the other principal the speaks from

principal. We refer to the other principal (the one which is spoken for) as the speaks for

principal. With regards to the access graph, the speaks from principal is the principal closer

to an external principal. The speaks for principal the principal further from an external

principal and closer to an encrypted field.

We also refer to the concept of external principals owning data. This is particular to

applications with some sort of pre-defined internal access control scheme. If an external

principal is able, by the rules of the application’s access control scheme, to access a record

stored in the database, that external principal is considered to own that data.

For encrypting data, CryptDB uses symmetric key encryption. In key chaining (detailed

in Chapter 3), CryptDB uses both symmetric and public key encryption schemes. To

avoid terminological confusion, we use the symmetric key to reference the shared private

key in symmetric encryption, asymmetric private key and asymmetric public key for the

public/private key pair required for a public key encryption scheme.

18 CHAPTER 1. INTRODUCTION

Chapter 2

Overview of Single Principal

CryptDB

This section will discuss CryptDB in what we refer to as the single principal case. This is

the situation where all the encryption is based on the same master key – there is only one

principal. Intuitively, this is a system where there is only one user, and that user is the only

principal. Practically speaking, the single principal case is useful for applications where

access to data is not user-dependant (ie, applications with no access control policy), or

where the primary threats are attacks to the database. We discuss the single principal case

to examine how CryptDB (both in the single principal case and in the multiple principal

case) handles Threat 1.

Accessing an entire column or table from an encrypted database is fairly straightforward,

since the database returns the entire resultset to CryptDB for decryption. The performance

concerns discussed in Chapter 1.1 come into play when the resultset requires filtering. The

basic primitive restrictions that define SQL filters are: equality, inequality, aggregates,

search, and join. Ideally, CryptDB should receive exactly the resultset that the application

would have received if the query were being issued to an unencrypted database, but in an

encrypted form. To achieve this goal, CryptDB must be able to translate the application

generated filters into encrypted filters that can be executed over the encrypted data.

19

20 CHAPTER 2. OVERVIEW OF SINGLE PRINCIPAL CRYPTDB

2.1 Encryption Schemes

CryptDB uses a variety of schemes when encrypting queries in order to preserve the maxi-

mum security on each column. The following encryption levels provide the specified prop-

erties in CryptDB:

2.1.1 Random (RND)

The RND encryption level should be implemented with an encryption scheme with in-

distinguishability under an adaptive chosen-plaintext attack (IND-CPA). RND must be a

probabilistic scheme, meaning that with overwhelming probability, the encryption of equal

plaintexts will not result in an equal ciphertext. In our implementation, RND is an AES

or Blowfish scheme in CBC mode with a random seed. We assume that the server does not

alter results, so we don’t need to secure against chosen ciphertext attacks (IDN-CCA2), but

in cases where this is an erroneous assumption, RND could be implemented with a more

secure scheme, such as the UFE mode [5] of a block cipher. This encryption scheme is not

one the database can use for any predicates or filters.

2.1.2 Deterministic (DET)

A deterministic encryption scheme uses a psuedorandom permutation (PRP), [7] so that

equal plaintexts will always be encrypted to produce equal ciphertexts. Thus DET leak

only the equality of the plaintexts. Our implementation uses AES or Blowfish, making the

usual assumption that AES and Blowfish block ciphers are PRPs. Since we do not want to

restrict the length of inserted data, for data that is longer than a single 128-bit AES block,

the standard CBC mode of operation leaks prefix equality, so we use CMC mode. [9] Since

our DET implementation is intended to leak equality, we use a seed (or “tweak” in [9])

of zero. Using the leaked equality, the database can use DET encrypted data for equality

predicates and filters, equality joins, GROUP BY, COUNT, DISTINCT, etc.

2.1. ENCRYPTION SCHEMES 21

2.1.3 Order Preserving Encryption (OPE)

An order preserving encryption scheme is a randomized mapping where the ciphertext

preserves the ordering of the plaintext values. That is, if x < y, then for order preserving

encryption scheme OPE, with key K, OPEK(x) < OPEK(y). We implemented the OPE

scheme described in [1]. OPE leaks the order of a column, and thus can be used for inequality

filters, ORDER BY, MIN, MAX, SORT, etc.

2.1.4 Join (JOIN and DETJOIN)

In order to avoid cross-correlation between columns (i.e. if column f1 and column f2

are both at DET, and both contain the value 5, we don’t want DETf1(5) to be equal to

DETf2(5) by default), DET and OPE use distinct keys for each column. Thus joining two

columns requires an algorithm that can convert two columns encrypted with different keys

into the same two columns encrypted with the same key, without ever decrypting the data.

CryptDB uses original JOIN and DETJOIN algorithms which are described in full in [13].

2.1.5 Homomorphic Encryption (HOM)

Homomorphic encryption is an IND-CPA secure probabilistic encryption scheme that allows

the database to perform computations on encrypted data. While fully homomorphic encryp-

tion is prohibitively slow, [3] specific operations can be quite fast. We implement a Paillier

cryptosystem for summation. [11] In Paillier, HOMK(x) ◦ HOMK(y) = HOMK(x + y).

Thus executing a SUM aggregate or a summation filter can be handled by a UDF on the

database that executes the multiplication of the encrypted values, rather than the origi-

nal sum. This scheme in conjunction with DET can also be used to compute averages by

returning the sum (using HOM) and count (using DET) separately.

2.1.6 Word Search (SEARCH)

SEARCH is an encryption the protocol that allows words to be matched in an encrypted

string. We implemented protocol outlined by Song et al. [15], with some different implemen-

tation details than the authors theorized (they did not implement the protocol themselves).

22 CHAPTER 2. OVERVIEW OF SINGLE PRINCIPAL CRYPTDB

For each column requiring SEARCH, we split the text into keywords using standard de-

liminators (or a special extraction function, if the programmer choose to specify one).

Repetitions of these words are removed, the words’ positions are permuted randomly, and

each of the words is encrypted using Song et al.’s scheme, padding each word to be the

same size. SEARCH does not leak whether words repeat in multiple rows of column, and

since it does not keep multiples in a given row, it is nearly as secure as RND. However, it

does leak the number of keywords encrypted with SEARCH, which could be used to de-

termined the number of distinct or duplicate words by comparing the size of the SEARCH

and the RND ciphertexts. SEARCH allows CryptDB to support a limited implementation

of MySQL’s LIKE operation. Since SEARCH only works with complete words, CryptDB

cannot support arbitrary regular expression searches. Should multiple words in order be a

valuable search capability, duplicate removal and reordering could be removed, but based

on our evaluation of the large trace of queries from web applications, this implementation

of SEARCH was sufficient in most cases.

2.2 SQL-Aware Encryption

CryptDB uses these various encryption schemes to translate queries into an encrypted form.

Suppose the application issues the query with an inequality operation: SELECT field FROM

table WHERE field < 10. Obviously, 10 cannot be compared to an encrypted value in a

useful fashion. However, we can encrypt 10 with the same encryption scheme that field is

encrypted with, making the query: SELECT field FROM table WHERE field < ENC(10).

For this to have useful results, the ENC() function must be an order preserving encryption

(OPE) scheme, as described in Section 2.1.3. However, there are two problems with using

an OPE scheme for the entire database. First, knowing the order of the elements in the

column does not help perform aggregates on the column, so there are filters which this

paradigm does not handle. Second, an attacker accessing the encrypted data can still see

order for every column. For a column which has no inequality queries on it, there is no

reason to leak this information, and doing so could be dangerous in certain situations.

Thus we would ideally have a different type of encryption for each column, depending on

2.2. SQL-AWARE ENCRYPTION 23

what sorts of queries access that column. If inequalities are projected on a column, as in the

example, that column requires an OPE scheme. If the only projections on the column are

equalities (for example SELECT * FROM table WHERE field = 10), then a deterministic

(DET) encryption scheme is a more secure choice (order is not leaked), and still allows all

the queries to be performed on the database without decryption. Some columns may require

more than one scheme. If, for example, a text field that is filter with both WHERE field =

alice and LIKE alice, the DET scheme cannot be used for searches, while the SEARCH

scheme cannot be used for equality, so this field would need two encryptions: DET and

SEARCH.

If an application’s necessary level of security is known, then it is straightforward to

specify for each column which security level should be used to encrypt the column. If a

column has more than one operator, the column could be duplicated with the different

schemes. However, in the case where the query set is not known, there is no way to

know which level each column needs to be at to execute the application’s entire query set.

Regardless, it should be possible for CryptDB to keep each field at the most secure level

that is consistent with the queries applied to it.

In order to preserve this level of security, we introduce the notion of onions of encryption.

The goal is to start the entire database at the RND security level, and only decrease

the security of encryption when the application require more information (ie, equality or

inequality is queried for). However, reducing the security level should never reveal any

plaintext to the database. Naturally, we could fetch the entire column, and decrypt, re-

encrypt, and replace it, but for large databases this would be slow. The idea of onions of

encryptions, as shown in Figure 2-1, is to wrap the plaintext in sequentially higher levels

of encryption. For example, in the DET onion, the plaintext of the data is encrypted with

the DET-JOIN encryption scheme. The ciphertext that results from that process is then

encrypted with a DET scheme, and that result is than encrypted with a RND encryption

scheme. The result of the highest encryption scheme is then stored in the database, which

means that an attacker cannot access any of the lower levels, since she has no way to decrypt

the outermost layer of the onion. For the CryptDB proxy, which holds the encryption keys,

decryption is just the reverse of the encryption process: decrypt the RND layer, then decrypt

24 CHAPTER 2. OVERVIEW OF SINGLE PRINCIPAL CRYPTDB

RND:%most%secure%
%
%
%
%
%
%
%
%

DET:%equality%
%
%
%
%
%
%

JOIN:%equality%join%
%
%
%
%

plaintext%

RND:%most%secure%
%
%
%
%
%
%
%
%

OPE:%order%
%
%
%
%
%
%

OPE>JOIN:%
range%join%

%
%
%

plaintext%

SEARCH%
%
%
%

plaintext%

HOM:%aggs%
%
%
%

plaintext%

Onion%Eq% Onion%Ord%

Onion%Search%

Onion%Agg%

Figure 2-1: Onions. A visual representation of the layers of encryption used by CryptDB.
Taken from [12].

the result with DET, then decrypt the result of that with DET-JOIN. Thus, reducing the

security level of an entire column simply translates to peeling off onion layers.

Using user defined functions (UDFs) on the database, CryptDB does not even need to

fetch the column data to reduce a security level. A UDF is a function loaded on the database

that allow queries of the form UPDATE table SET fieldOPE = DECRYPT RND(key, field,

seed). Since UDFs are only declared for going from higher to lower onion layers, but not

for decrypting the lowest onion levels, the plaintext remains secure.

Since columns may be acted upon by different combinations of operators, for each col-

umn, CryptDB stores three onions per column – one each of DET and OPE, and one of

either SEARCH or AGG. Since aggregates do not apply to text fields, and search does not

apply to numerical fields, only one of the AGG and SEARCH onions is required.

It may appear that the longer the application uses a database, the lower the security

levels will be on the data. In practice, however, this is rarely the case. Most web applications

do not issue completely random queries – there is a fixed set of queries that the application

code can issue, and it is merely which data inserted, read or modified that is user-defined.

Of the six applications examined, four of them left >80% of the sensitive columns at the

2.3. IMPLEMENTATION 25

highest security level.

2.3 Implementation

Our proof of concept of CryptDB implements CryptDB on the MySQL database manage-

ment system. CryptDB is a library called by a database proxy – our implementation uses

mysql-proxy, an open source proxy for the database system MySQL. [16] The proxy calls

the functions from the CryptDB library to determine whether, and how to, encrypt and

rewrite the queries and resultsets between the application server and the database.

26 CHAPTER 2. OVERVIEW OF SINGLE PRINCIPAL CRYPTDB

Chapter 3

Multiple Principals

In the single principal case of CryptDB an adversary who compromises the application can

cause it to issue arbitrary queries to the database, effectively giving the adversary access to

all sensitive information. In an application where users store user-specific sensitive content

in the application database, the CryptDB multiple principle case can be useful. In this

case, data is owned by one or more users, and encrypted with different keys to disallow its

decryption unless one of the owners is logged into the application. This type of CryptDB

secures the system against Threat 2 from Figure 1-1: in the case of an attack, any data

owned exclusively by external principals who are offline for the duration of the attack is

secure. To achieve this guarantee, CryptDB must be able to determine which key it needs

to use to encrypt and decrypt a field. Since data can be owned by more than one user,

CryptDB also needs to be designed to efficiently share data between its owners.

3.1 Key Chaining

A straw-man design that allows sharing would be to duplicate data, encrypting a copy of

it with the an owners’ password for each owner. Figure 3-1b illustrates an example of this

plan with an access controlled forum that has the schema outlined in Figure 3-1a. Even in

a such a small example, we can see how this excessive redundancy can create a large space

overhead. Removing a user from this group would be time-consuming, as their copy of each

forum post must be found and deleted, for all the forums the group owns. Similarly, adding

27

28 CHAPTER 3. MULTIPLE PRINCIPALS

a user to a group would require choosing some other users’ copies of all of the forum posts,

decrypting these copies, and duplicating and re-encrypting them for the new user. Thus,

both adding to and deleting from a group would take O(|forums groups owns| × |posts per

forum|) operations. For a large forum, this would be highly impractical.

Consider instead each access control dependency as a set of principals. In this model,

data is owned, not by a user, but by a principal, which can speak for other principals and

for users (external principals). When we say a speaks for b, we mean that any data owned

by b can also be accessed by a. In Figure 3-1, the text of the forum post is owned by the

post (a principal), which is turn speaks for the author of the post, which itself speaks for

the user who wrote the post. From the point of view of other users who can read the post

text, the post also speaks for the forum it is written to, leading to a second access chain

ending in the external principals (the users of the forum application). Like the straw-man

case above, these access chains allow us to determine information about data ownership.

However, instead of using only external principal passwords as keys, we give each principal

in the instance access graph a unique encryption key. In the case of the forum post example

(Figure 3-1), an instance of post text will always be encrypted with the encryption key for

a post principal instance. Only one copy of the post text is stored, even though it is owned

by three separate users. The post key is encrypted with the forum key, which is in turn

encrypted with the group key. The group key is encrypted multiple times, once with each of

the external principal keys (passwords) who are members of the group. The post key could

also be encrypted for external principal who authored the post, but since in this example

the author must also be a member of the group, that would be redundant. We call this

series of encrypted keys key chaining. In Figure 3-1d, alice, bob, and chris can decrypt the

group 5 key, using their own passwords, then can decrypt the forum 2 key, using the group

5 key, then the post 6 key using the forum 2 key, and using the post 6 key can read the

forum post. Thus, all three of them can transverse the key chain t be able to decrypt the

desired post text. On the other hand, darrell has no copy of the group 5 key encrypted with

his password, so he has no way of using the key chain to access the post text.

In the key chaining design, unlike the straw-man, the data itself is rarely (never in the

applications examined) stored redundantly. The keys themselves are sometimes repeated,

3.1. KEY CHAINING 29

username(userid(

alice& 5&

bob& 5&

chris& 5&

darrell&

groupid(forumid(

5& 2&

pos/d(forumid(authorid(post_text(

6& 2& 2& ‘Much&have&I&travelled&in&the&
realms&of&gold,&and&many&
goodly&states&and&kingdoms&
seen.&&Round&many&Western&
Islands&have&I&been,&which&
bards&in&fealty&to&Apollo&hold.’&

(a)&Database&Schema&for&Forums&

alice	

ENC_alice	
 (‘Much	
 have	
 I	
 travelled	
 in	
 the	
 realms	
 of	

gold,	
 and	
 many	
 goodly	
 states	
 and	
 kingdoms	
 seen.	
 	

Round	
 many	
 Western	
 Islands	
 have	
 I	
 been,	
 which	
 bards	

in	
 fealty	
 to	
 Apollo	
 hold.’)	

darrell	

bob	

(b)	
 Strawman	
 EncrypHon	
 Access	
 Scheme	

ENC_bob	
 (‘Much	
 have	
 I	
 travelled	
 in	
 the	
 realms	
 of	
 gold,	

and	
 many	
 goodly	
 states	
 and	
 kingdoms	
 seen.	
 	
 Round	

many	
 Western	
 Islands	
 have	
 I	
 been,	
 which	
 bards	
 in	

fealty	
 to	
 Apollo	
 hold.’)	

chris	

ENC_chris	
 (‘Much	
 have	
 I	
 travelled	
 in	
 the	
 realms	
 of	

gold,	
 and	
 many	
 goodly	
 states	
 and	
 kingdoms	
 seen.	
 	

Round	
 many	
 Western	
 Islands	
 have	
 I	
 been,	
 which	
 bards	

in	
 fealty	
 to	
 Apollo	
 hold.’)	

username(groupid(forumid(

pos/d(

post_text(

author'

(c)(Principals(Access(Graph(for(Forum(Access(

alice	
 group	
 5	
 forum	
 2	

post	
 6	

ENC[post	
 6](‘Much	
 have	
 I	

travelled	
 in	
 the	
 realms	
 of	

gold,	
 and	
 many	
 goodly	
 states	

and	
 kingdoms	
 seen.	
 	
 Round	

many	
 Western	
 Islands	
 have	
 I	

been,	
 which	
 bards	
 in	
 fealty	
 to	

Apollo	
 hold.’)	

bob	

chris	

darrell	

(d)	
 MulKple	
 Principal	
 CryptDB	
 Key	
 Chaining	
 	

Figure 3-1: A graphical depiction of key chaining. The squares show external principals, the
ovals principals, and the hexagons sensitive fields which are encrypted. (a) shows the schema
for the this example, without encryption. (b) shows the straw-man design for encrypting
owned data. (c) shows the “speaks for” the relationships between the principals, what we
refer to as the principal access graph. (d) shows how we can use the instantiated principal
access graph (the instance access graph) to come up with a more efficient of encrypting and
storing data. In this example, the forum post is not owned simply by the author of the
post – if the author is offline, the other members of the forum should still be able read the
forum. So this same post also speaks for the forum it is posted in, and the forum speaks
for the groups that can view posts there, and the group speaks for users.

30 CHAPTER 3. MULTIPLE PRINCIPALS

but unlike a forum post, keys are a short, known length, minimizing the overhead. Modifying

a group also becomes simpler. Deleting a member of a group requires only that that

member’s copy of the group key be deleted – after which the external user then has no way

to chain to the group key, and thus cannot decrypt the forum key. Adding a member to a

group requires CryptDB to hold the group key (ie, a member of the group must be online),

but this makes sense, as such group modifications will almost certainly be carried out by

group members or by some sort of administrative superuser who will be able to chain to all

the principals. Given that the group key is accessible, an external principal can be added

to a group by encrypting the group key with that external principal’s key. Thus, modifying

the group requires only one database operation to either insert or delete the group key:

O(1).

3.1.1 Key Pre-Fetching

External principals then access their keys via these key chains, and can only access their

keys when they are logged on. There is then the question of whether a user’s keys should

be fetched as they are needed, or whether keys should be pre-fetched when the user logs on.

Multi-user web applications generate a finite set of queries, but which subset will be called

for, and the order in which they will be requested, and thus which keys will be required,

for a given user’s session are unknown ahead of time. Since there is no way to prefetch

only the exact keys an external principal will need we can either pre-fetch all the external

principal’s keys when they log on, or fetch keys and decrypt the chaining on the fly as

keys as needed. Since logging on is a fairly rare event, and in the case of a long key chain,

decrypting the entire chain could be time consuming, we choose pre-fetch most of the keys

at log-on. Section 4.4 discusses in more detail the prefetching limits – for this discussion

we can assume that all keys are pre-fetched. We make the assumption that users are more

willing to wait at log-on, rather than when trying to access data. However, in practice, we

did not observe any delay to decrypting many keys at logon.

Aside from the usability concerns, pre-fetching has the added advantage of simplifying

insertions. In the example above, we note that CryptDB should hold a group key before a

member is inserted into that group. If all keys are pre-fetched, then it is immediately obvious

3.1. KEY CHAINING 31

username	
 userid	
 msgid	
 msg_text	

alice	
 user	
 1	

msg	
 10	
 ‘Hello	
 Bob’	

bob	
 user	
 2	

speaks_from	
 speaks_for	
 sym	
 key	
 asym	
 key	

alice	
 user	
 1	
 ENC_alice(sym	
 user	
 1)	

bob	
 user	
 2	
 ENC_bob(sym	
 user	
 2)	

user	
 1	
 msg	
 10	
 ENC_sym	
 user	
 1(sym	
 msg	
 10)	

user	
 2	
 msg	
 10	
 ENC_asym	
 user	

2(sym	
 msg	
 10)	

(a)	
 Principals	
 Access	
 Graph	
 for	
 Private	
 Messages	

(b)	
 Instances	
 Access	
 Graph	
 for	
 Private	
 Messages	

(c)	
 Access	
 Keys	
 Table	
 for	
 Private	
 Message	

Figure 3-2: Alice sends a message to Bob. The message is owned by both Alice and Bob
eventually: the text is encrypted for msgid, which speaks for the userid of the sender and
the userid of the receiver. userid speaks for a username, which is an external principal.

if a member of the group is online, since CryptDB will hold all of their keys, including the

relevant group key. If keys we not pre-fetched, inserting could be time-consuming, as every

online external principal’s keys must be fetched until the required group key is found.

3.1.2 Offline Users

There is one more corner case to consider, which is motivated by a slightly different example,

shown in Figure 3-2. In this case, there is no reason to suppose that both Alice and Bob

are online at the same time, although msgid 10 must speak for both their userids. To

handle situations like this (adding a user to a group could have the same problem – while a

user who is a member of the group must be online, there is no compelling reason the user

who is being added should be), each principal has an asymmetric public key, as well the

symmetric key already reasoned about. In the private messages example, Alice writes and

sends the message to Bob, who is offline. Since this is a new message, it has a new msgid:

10. The text of the message is encrypted with the msgid 10’s symmetric key. Since userid

32 CHAPTER 3. MULTIPLE PRINCIPALS

1 speaks for Alice, and this message speaks for userid 1, the symmetric key of userid 1 is

used to encrypt a copy of msgid 10’s symmetric key. Since userid 2 speaks for Bob and

this message also speaks for userid 2, Bob needs to be able to chain to a copy of msgid 10’s

symmetric key. Since Bob is offline, however, CryptDB does not hold the symmetric key

for userid 2. However, since all principals have a public key, msgid 10’s symmetric key is

encrypted asymmetrically with Bob’s userid’s public key. When Bob logs back on, msgid

10’s key is prefetched and decrypted using the asymmetric private key for userid 2. The

implementation and storage of the various key types is discussed further in Chapter 4.

3.2 Annotations

The access graphs described in Section 3.1 show how CryptDB determines which key to

use to decrypt a sensitive field. To generate a principal access graph (such those shown in

Figures 3-1a and 3-2a), we extend SQL to include a series of CryptDB specific annotations.

An application programmer can add our annotations (prefixed with the keyword CRYPTDB

to allow our modified SQL parser to filter these and be sure they are passed to CryptDB

for processing) to the application schema to create an appropriate principal access graph.

Figure 3-3 shows the annotated schema for the examples shown in Figures 3-1 and 3-2.

The PRINCTYPE annotation specifies a principal type. In chained situations like these

examples, table keys such as groupid are generally foreign keys in other tables, and CryptDB

needs to be aware that groups.groupid refers to the same principal as forums.groupid. The

principal types allow that equality identification to take place. PRINCTYPE EXTERNAL

annotations specify external users: the roots of the access graphs. Their keys are encrypted

with passwords provided by end users. The SPEAKS FOR annotation outlines a speaks for

link in the access graph; ENC FOR, a field that needs to be encrypted and the principal it

is encrypted for. In both SPEAKS FOR and ENC FOR, principals are referred to by field

name and principal type, giving CryptDB information about whether or not a certain field

is encrypted, and if so by whom.

In Figure 3-3a, it would be possible to add the annotation CRYPTDB posts.authorid

userid SPEAKS FOR posts.postid postid, but as previously noted, this would make a

3.2. ANNOTATIONS 33

CRYPTDB PRINCTYPE username EXTERNAL;!
CRYPTDB PRINCTYPE groupid;!
CRYPTDB PRINCTYPE forumid;!
CRYPTDB PRINCTYPE postid;!
!
CREATE TABLE groups (!

!groupid integer,!
!username text,!
!...);!

CRYPTDB groups.username username SPEAKS_FOR groups.groupid groupid;!
!
CREATE TABLE forums (!

!forumid integer,!
!groupid integer,!
!...);!

CRYPTDB forums.groupid groupid SPEAKS_FOR forums.forumid forumid;!
!
CREATE TABLE posts (!

!postid integer,!
!forumid integer,!
!authorid integer,!
!post_text integer,!
!...);!

CRYPTDB posts.forumid forumid SPEAKS_FOR posts.postid postid;!
CRYPTDB posts.post_text ENC_FOR posts.postid postid;!

CRYPTDB PRINCTYPE username EXTERNAL;!
CRYPTDB PRINCTYPE userid;!
CRYPTDB PRINCTYPE msgid;!
!
CREATE TABLE users (!

!username text,!
!userid integer);!

CRYPTDB users.username username SPEAKS_FOR users.userid userid;!
!
CREATE TABLE priv_msg_info (!

!msgid integer,!
!authorid integer,!
!recipientid integer);!

CRYPTDB priv_msg_info.authorid userid SPEAKS_FOR priv_msg_info.msgid msgid;!
CRYPTDB priv_msg_info.recipientid userid SPEAKS_FOR priv_msg_info.msgid msgid;!
!
CREATE TABLE msgs (!

!msgid integer,!
!msgtext text);!

CRYPTDB msgs.msgtext ENC_FOR msgs.msgid msgid;!

Figure 3-3: CryptDB annotations are marked in bold, with the principal types in italics.

34 CHAPTER 3. MULTIPLE PRINCIPALS

redundant link in the access chain. In certain cases, however, if the author of a post

had different permissions than its viewers, such an annotation could be useful. This type of

decision requires the in-depth knowledge of the programmer and their access control policies

and security requirements.

Suffixes to the ENC FOR annotation allow the programmer to specify a minimum se-

curity level (ie, OPE, DET) below which the onions of that column cannot be decrypted.

It is also possible to add a predicate to a SPEAKS FOR annotation, should the access to a

certain field be dependant on another column in the table. This is background work, and

not within the scope of this thesis, but details can be found in Popa et al. [12].

Once these annotations have been processed when the schema are initialized, the applica-

tion can run with no other annotations. When the application issues queries such as INSERT

INTO posts VALUES (6, ‘Much have I travelled in the realms of gold, and many

goodly states and kingdoms seen. Round many Western Islands have I been, which

bards in fealty to Apollo hold.’, ...), CryptDB recognizes these as encrypted fields

and if it holds the key for post 6, encrypts post text before inserting it, using the onion

algorithms described in Chapter 2. In cases in the midst of access chains, such as INSERT

INTO forums VALUES (5, 3), CryptDB will insert the values into the database without

alteration, but will generate and store the necessary keys for principal groupid 5.

Chapter 4

Implementation of Multiple

Principal CryptDB

Multiple Principal CryptDB extends Multiple Principal CryptDB to include a class called

KeyAccess. KeyAccess is responsible for storing all the principal keys that can be chained

to by users who are online. KeyAccess also holds the principal access graph in memory, and

is responsible for storing the instance access graph in the database, along with encrypted

versions of each principal key.

Our Multiple Principal CryptDB implementation consists of approximately 18,000 lines

of C++ code, 150 lines of lua code (used by MySQL-Proxy), with another approximately

10,000 lines of test code. Of these numbers, KeyAccess in a non-distributed system is

approximately 2,300 lines of C++ code. Multiple Principal CryptDB has only been im-

plemented on MySQL 5.1, but since KeyAccess has no specialized database access require-

ments, it should be feasible to port it to other systems.

4.1 Annotation Processing and KeyAccess

Processing the annotations requires intercepting queries in MySQL’s parser. We specify that

a table must exist before an annotation can reference it. This means that when CryptDB

sees a CREATE TABLE statement, there is no way to know if the table in question should

have onion layers on any of its fields. Since the percentage of sensitive fields was small in the

35

36 CHAPTER 4. IMPLEMENTATION OF MULTIPLE PRINCIPAL CRYPTDB

applications we analyzed, we choose to create the table with no onions. If at some future

time an ENC FOR annotation in processed on a field in that table, CryptDB translates

it into a series of ALTER TABLE queries that modify the original table to suit requested

encryption.

SPEAKS FOR and PRINCTYPE annotations do not generate any queries. However,

all query types are necessary for setting up the data structures that store the access graphs

for the application. All references to access keys and encryption keys are processed through

a separate class called KeyAccess, which can be decoupled from the rest of CryptDB and

run as a separate process or set of client processes, as discussed in Chapter 5. This class

records the access graph as a series of links in a special table, which is shown in Figure

3-2c: access keys (speaks for, speaks from, sym key, asym key). Each row of access keys

contains the principal that is spoken for (labeled speaks from here), the principal that

speaks for the speaks from principal, and the speaks for principal’s key encrypted for the

speaks from principal. KeyAccess also holds the principal access graph is memory, built

from the annotations. The instance access graph (Figures 3-1d and 3-2b) is implicitly stored

in access keys.

As annotations are being processed, KeyAccess builds the principal access graph in

whatever pattern the annotation queries are issued. However, when instances of the princi-

pals are being inserted, the principal access graph must be well-formed: it must be rooted

at one or more external principals (well-formed). Otherwise, there would be no user key

password chain the encryption from. KeyAccess does not store encrypted fields, only the

principals. On the first INSERT query issued to a table in the access graph, KeyAccess

checks that the access graph is well-formed and fixes it. If the programmer attempts to

alter the graph after values have been inserted into the database, CryptDB issues an error.

At this point, the inserted data is already encrypted with the pre-defined key chains, so

altering the access graph could corrupt all pre-existing data. Adding to the graph is possi-

ble (ie, adding new principals), but as there is no way for CryptDB to predict when data

will be inserted into these new principals, these principals must be inserted maintaining the

well-formed structure of the access graph.

Besides the access keys table, KeyAccess stores a second table: public keys (principal

4.2. LOGIN AND LOGOUT 37

Principal) Asymmetric)Public)Key) Asymmetric)Private)Key)

alice& pub&alice& ENC_sym&alice(priv&alice)&

bob& pub&bob& ENC_sym&bob(priv&bob)&

user&1& pub&user&1& ENC_sym&user&1(priv&user&1)&

user&2& pub&user&2&& ENC_sym&user&2(pric&user&2)&

msg&10& NULL& NULL&

Figure 4-1: public keys.

type, principal value, asymmetric public key, asymmetric private key, symmetric key). pub-

lic keys holds all the instances of principals that KeyAccess has seen. The asymmetric

private key is stored encrypted with the symmetric private key, and the asymmetric public

key is available to all. Figure 4-1 shows the public keys table for the example from Figure

3-2. Note that msg 10 does not have asymmetric keys: asymmetric key pair generation is

one of the slowest cryptographic operations in the code. We only use public key cryptogra-

phy for the case where a key needs to be encrypted for a principal that is currently offline.

Since the principal type msg is a leaf on the access tree, there are no principals that have

keys that msg would need to chain to, so there is no reason to generate an asymmetric key

pair for any of the instances of msg. However, msg 10 still has a row in the public tree table

because we use public keys as a reference for the instances of principals that we have seen

before.

4.2 Login and Logout

External principals are logged on by the application issuing an insert query for a spe-

cial table cryptdb users. Instead of being an actual table on the database, INSERT and

DELETE queries for this table are caught by CryptDB, and send instead insertPsswd and

removePsswd calls to CryptDB. The insertPsswd method pre-fetches the user’s keys, as

described in Section 3.1; removePsswd reverses the process, expunging all keys that the

given external principal exclusively chained to. If another external principal who can chain

to that key is still logged on, KeyAccess continues to store the key, but does delete the user

38 CHAPTER 4. IMPLEMENTATION OF MULTIPLE PRINCIPAL CRYPTDB

who is logging off’s reference to it.

4.3 Orphaned Keys

The principal access graph must always be well-formed, as discussed above. However, the

instance access graph (as exemplified in Figures 3-1b and 3-2b) is determined by the SQL

queries issued by the application. Applications are not required to add records to their

databases in any order, so CryptDB is designed to handle the insertion of what we refer

to as orphans. An orphan is the instance of a principal that does not have instances of

principals that chain to it. Figure 4-2 expands on Figure 3-2 to show the query progression

that could lead to an orphan being created then absorbed back into the instance access

graph. This kind of query pattern is fairy common in the applications we investigated,

especially if there is an auto increment on the msgs table.

In the case of orphans, we make the assumption that they will be joined to the instance

access graph quickly. In the example in Figure 4-2, CryptDB would create the principal

instance for msg 11, generating the necessary keys and holding them in memory like any

other principal’s keys. Then the message text ’Long time no see’ is encrypted with the

message 11 keys and inserted in the database. Once the insertion to priv msg info gives

CryptDB the information that msg 11 is spoken for by userids 2 and 3, msg 11’s key is

encrypted with userid 2’s key and with userid 3’s key and inserted into access keys. If

userid 2 and userid 3 are both logged off at some point after this insertion occurs, msg 11 is

no longer an orphan and thus its key is removed from local memory, and userid 2 or userid

3’s keys need to be available to again gain access to msg 11. However, until that insertion

into access keys occurs, msg 11 is an orphan, and there is no way to remove it from local

memory, so the data it encrypts is vulnerable. The assumption that the instance access

graph will generally be well-formed (that is, that orphans will only be orphaned for short

periods) is based on the idea that for a normal access control scheme, there would be no

reason to leave the orphan inaccessible. If an application does not properly implement a

secure access control scheme, and does not reintegrate all its orphans into the access graph,

those orphans and any keys they can chain to will remain accessible, since they are not

4.3. ORPHANED KEYS 39

alice& user&1&

msg&10& ‘Hello&Bob’&

bob& user&2&

chris& user&3&

alice& user&1&

msg&10& ‘Hello&Bob’&

bob& user&2&

msg&11& ‘Long&7me&no&see’&
chris& user&3&

INSERT INTO msgs VALUES (11, ‘Long time no see’);!

alice& user&1&

msg&10& ‘Hello&Bob’&

bob& user&2&

msg&11&

chris& user&3&

‘Long&9me&no&see’&

INSERT INTO priv_msg_info VALUES (11, 2, 3); !

Figure 4-2: Adding an orphan msgid to the private messages instance access graph.

40 CHAPTER 4. IMPLEMENTATION OF MULTIPLE PRINCIPAL CRYPTDB

owned by any external user, and thus can never be offline.

4.4 Optimizations

In Section 3.1, we mentioned that keys are pre-fetched when an external principal logs on.

While this is the case for the internals of the key chain, there are some situations where a

user is unlikely to use certain keys, and it is a waste of time to fetch them, and a waste

of space to store them. For example, in the private messages example outlined in Figure

3-2, a user can own thousands of msgid instances, but is unlikely to want to view every

single message in a session. Thus we have an additional threshold parameter that limits the

number of instances of a given principal type that are pre-fetched. If the number of keys

of a principal type is greater than the threshold, CryptDB does not fetch those keys, but

records that those keys should be online, and the principal who speaks for them. Thus if a

key that is online but not pre-fetched is requested, it can be decrypted in a single database

query. The threshold only applies to principals that don’t speak for any other principals;

we don’t want to have any chaining required when keys beyond the threshold are fetched,

as that would negate the value of pre-fetching keys in the first place.

4.5 Algorithms

KeyAccess has five main functions that maintain the instance access graph and provide

keys to the main CryptDB proxy. The algorithms used in KeyAccess are described below.

We use the variable type Principal to refer to a principal instance.

insertPsswd(Principal external, password). The purpose of this function is to

record that external is online, and to pre-fetch external ’s keys. We add password to the

saved keys, since this is the symmetric key for the principal external. If external is a new

principal, we merely generate asymmetric keys for external, store them in the public keys

table, and return. If external is not a new principal, all the keys that external can chain to

need to be loaded. To do this, we do a depth first search of the principal access graph to

acquire a list of all the principals is possible for external chain to. In most of the systems

considered, this will be list of all the principals, but the system is designed to allow for

4.5. ALGORITHMS 41

systems that may have multiple types of external principals. We cycle through this list to

find all the possible access links (by querying the principal access graph). For each possible

access link, we query the database to determine if that link exists in the instance access

graph. If so, we check to see how many keys this link will generate. If there are more than

our threshold, we record that these keys have not been loaded, and move on to the next

link. Consider a link in the instance access graph to consist of two principal instances, which

we designate speaks from and speaks for. In accordance with the convention described in

Section 1.1, speaks from refers to the principal in the link that is closer to external, and

speaks for refers to the principal that is further away from external in the access graph. If

there are fewer keys than threshold, we decrypt the key’s speaks for principal’s symmetric

key and store it. Since the list was generated by a depth first search on the access links,

there is no way for a speaks for principal to be reached before we have stored its speaks from

principal’s symmetric key. That way, every speaks for key required we are attempting to

load can be decrypted, either using one of the speaks from keys we hold already, or acquiring

the speaks from principal’s private symmetric key from the database.

insert(Principal speaks from, Principal speaks for). This function adds a link

to the instance access graph. If speaks from is already online (ie, KeyAccess holds its

symmetric key), inserting the new link is straightforward. If speaks for is a new principal,

we generate a new symmetric key, and a new asymmetric key pair for it and store the

asymmetric pair in the public keys table. If speaks for is not a new principal, then by

assumption, its key must be available to make the new link. In either case, we now hold

both speaks from’s key, since we are considering the case where speaks from was already

online, and speaks for ’s key, since it was either already online, or has just been generated.

We encrypt the speaks for symmetric key with the speak from symmetric key and store

the link and key in the access keys table. If speaks from is not online, but does exist, we

acquire or generate the speaks for key, encrypt the speaks for key asymmetrically using

the speaks from asymmetric public key, and store that encrypted key and the new link in

access keys.

If speaks from does not exist in public keys, it is a new principal and an orphan. We

generate and store the symmetric and asymmetric keys for speaks from (the asymmetric

42 CHAPTER 4. IMPLEMENTATION OF MULTIPLE PRINCIPAL CRYPTDB

keys being stored in the database, the symmetric key in memory since orphans cannot be

offline). We acquire or generate the speaks for key, encrypt it with speaks from’s key and

store it with the new link in the access keys. Since speaks from is an orphan, any keys it

chains to must be online, because there is no way to root its chain. Thus, we also store

the speaks for key in memory. Though we make the assumption that orphan keys will not

persist, there is no way of knowing how large an access subtree will be connected to them

before they are re-integrated into the instance access graph, so we need to store the shape

of an orphan-based access tree in memory. In the case where speaks from is an orphan,

insert ends with updating these orphan subtree maps.

If speaks from is an already existing orphan, the algorithm is the same as if speaks from

was already online, except that at the end, the orphan maps must be updated with the new

link. If speaks from is a known principal, and speaks for was an orphan before this link was

added (for example, the insert statement in Figure 4-2), we go through the algorithm as

described for speaks from being online, but at the end remove speaks for from the orphan

maps so that speaks for is only online if speaks from is online.

removePsswd(Principal external). This function logs an external principal off,

meaning that we need to forget all the keys which can only be chained to by external. To

facilitate determining the subtree that needs to be removed, each key is stored in memory

with a map to a set of principals that speak for it. To remove external, we order the subtree

rooted at external using a breadth first search, then walk through it, removing external and

any other principals whose keys will be deleted from the sets of principals that speak for

each key. If a key has an empty set of principals that speak for it, the key is marked as

deleted. Since the order of the walk through the subtree is determined by a breadth first

search, a key will never have a principal that speaks for it deleted after the key is examined.

Once we have a marked complete set of keys deleted, we remove those keys from memory.

remove(Principal speaks from, Principal speaks for). This function removes an

access link from the instance access graph. We remove speaks from from the principals that

speak for speaks for. If no other online users can chain to speaks for (that is, speaks for ’s

principals that speak for set is empty), we call removePsswd(speaks for), which removes

the subtree dependant on speaks for.

4.6. CHANGES TO APPLICATION CODE 43

getKey(Principal principal). This function returns the symmetric key for principal

if there is an external principal online who can chain to principal online. We first check our

local key map. If the key is there, it is returned. If the key is not in the local map, we check

to see if we have seen principal before. If principal is unknown, then it is a new orphan,

so we generate keys for it, store the asymmetric keys in the database, store the symmetric

key in the the local key map, and return the symmetric key. If the key is not an orphan,

we check to see if it is online, but has not been pre-fetched (if there were more keys of this

principal type than we wanted to store in memory). If the key is one we can chain to, but

has not pre-fetched, we fetch it from the database, decrypt it and return it. If there is no

external principal online who can chain to the key, we return an error.

4.6 Changes to Application Code

CryptDB is intended to be minimally invasive to the application code. As discussed in

section Section 3.2, the programmer must add annotations to the schema creation. There

is also the question of logging in and out. Multiple Principal CryptDB is intended for

the multi-user application with some sort of internal access control policy. As such, it is

assumed that application code will include some sort of user authentication section. To

properly use CryptDB, the programmer must add to the authentication code an additional

database query which inserts the external principal and its secret key into the cryptdb users

table.

44 CHAPTER 4. IMPLEMENTATION OF MULTIPLE PRINCIPAL CRYPTDB

Chapter 5

Auditing

We have seen that Multiple Principal CryptDB protects the data of offline users during an

attack. However, the data owned by users who were online for any portion of the attack is

vulnerable, and there is no way to determine if it was compromised. Thus in the system

described, after an attack, we must assume any data owned by users who were online for the

attack has been compromised. For a large system, where there are thousands or millions of

users, the set of data considered compromised in this model would massive. To constrain

the set of compromised data and allow a useful post-attack analysis, we propose to extend

KeyAccess to keep a log of all the keys that it provides to CrytpDB. In this way, if an

attacker causes the application to issue arbitrary queries, KeyAccess will record all the keys

used during the duration of the attack. After the system has been repaired, an examination

of the log will allow the application maintainers to determine which keys were accessed, and

thus narrow down the set of compromised data.

Having KeyAccess as described in Chapter 3 log key accesses is only a useful solution to

this problem if the attacker gains control only of the application (through cross-site scripting,

or falsifying its credentials, or some other method), without compromising the machine on

which CryptDB is running. However, we wish to allow this kind of useful auditing to be

performed after any sort of attack, even an attack on CryptDB or the machine it is running

on. With this goal, CryptDB cannot store the log on its own machine, nor can any logs

written by CryptDB in the case on an attack be trusted. In the same way that Multiple

Principal secures offline users’ data by using the users’ private password as the key to

45

46 CHAPTER 5. AUDITING

accessing their data, we propose a distributed version of KeyAccess. Each user (external

principal) runs External KeyAccess as a background process. When the user is logged on

to the application, its External KeyAccess communicates with the main Server KeyAccess.

Keys owned by an external principal are stored by its External KeyAccess, and Server

KeyAccess must request every key from the relevant External KeyAccess. The External

KeyAccess programs are responsible for logging all accesses to the keys they store, so an

adversary will not be able to corrupt the KeyAccess log unless all the users’ machines are

also attacked.

5.1 Design

For our implementation of a distributed KeyAccess, we have three types of KeyAccess

communication with each other: CryptDB, Server, and External. The CryptDB KeyAccess

is simply a client stub that does little processing. The Server KeyAccess does most of

the CryptDB-side processing. These two are separated so that in a system where it is not

possible to run a fully distributed KeyAccess, the Server KeyAccess can be run on a separate

machine from the main part of CryptDB, at least partially sandboxing the log from any

attack on the application or CryptDB.

Figure 5-1 shows an overview of the distributed KeyAccess design. Keys of online exter-

nal principals are stored by the External KeyAccess running on that principal’s machine.

The principal access graph, which is not sensitive, and which all the External KeyAccesses

need to access, is stored by the Server KeyAccess. The database does not need to be on

the same machine as the Server, but the Server provides wrapper functions for all database

accesses, so their users do not need to be aware of any of the details on the database imple-

mentation. As described in Section 3.1, we know that more than one external principal can

own data and thus an access key can also be owned by more than one external principal. In

distributed KeyAccess, each external can hold the entire instance access subgraph that is

rooted at that external, and all the keys for the principals in that instance access subgraph.

While this increases overall duplication and thus the local memory required by the entire

system, keys are relatively small, so no individual machine should be overwhelmed.

5.1. DESIGN 47

External	

KeyAccess	

Server	

KeyAccess	

CryptDB	

KeyAccess	

Principal	

Access	

Graph	

insert	

remove	

insertPsswd	

removePsswd	

annota1ons	

getKey	

Database	

insertPsswd	
 insertPsswd	

Instance	

Access	

Subgraph	

removePsswd	
 removePsswd	

getKey	

insert	
 addToKeys	

remove	
 removeFromKeys	

Database	

Figure 5-1: Distributed KeyAccess Design. The ovals represent data structures stored in
memory for the given program. There is only one database; it is replicated in the image for
clarity. The arrows represent the direction of function calls.

48 CHAPTER 5. AUDITING

If the Server KeyAccess is compromised, as it would be in the case of attack, all logged

on keys are still accessible to the attacker, but each access will still be logged with each Ex-

ternal KeyAccess. A major change to KeyAccess in the distributed system is that CryptDB

KeyAccess and Server KeyAccess insertPsswd no longer take the users’ password as an ar-

gument. Thus if the Server KeyAccess is compromised, and a user tries to log in, the Server

KeyAccess cannot log the external principal in without calling that users’ External Key-

Access insertPsswd. If KeyAccess is compromised, the principal access graph information

it passes to an External KeyAccess may be erroneous, but since the instance access graph

is stored on the database with the keys to each link in an encrypted form, at worst, an

adversary creating a false principal access graph will only cause a user who logs in during

an attack unable to access a subset of their data. All forms of CryptDB are designed to

restrict the data an attacker can view, so the attackers’ ability to restrict the data accessible

to the external principal is not within the scope of CryptDB’s threat model.

5.2 Implementation

For our implementation of distributed KeyAccess, the CryptDB KeyAccess is approximately

200 lines, the Server KeyAccess 2,300 approximately lines, and the External KeyAccess

approximately 800 lines. We used Delta V Software’s Remote Call Framework [4] to com-

municate between the various versions of KeyAccess.

5.2.1 Orphaned Keys

Orphaned keys, as described in Section 4-2, remain a challenge in the distributed design.

Because they by definition are not owned by any external principal, they cannot be stored

in an External KeyAccess. As a result, Server KeyAccess has an additional data structures

(not shown the Figure 5-1 for clarity) that hold the orphaned keys and all of their access

chains. When orphans are reintegrated into the instance access graph their keys are removed

from the Server’s local storage and transferred to the relevant External.

5.2. IMPLEMENTATION 49

5.2.2 Algorithms

In the distributed system, the five main KeyAccess functions described in Section 4.5 are

transformed into a series of exchanges between the Server and various External versions of

KeyAccess, as shown in Figure 5-1 and described below. Each of these exchanges is triggered

by the CryptDB calling one of the normal functions, which the CryptDB KeyAccess forwards

to the Server KeyAccess. The rest of CryptDB’s behaviour is unchanged regardless of

whether it is running the standard or distributed KeyAccess.

insertPsswd(Principal external, ext address). The Server KeyAccess receives

Principal external, and ext address, the address of new external, as arguments. It stores the

ext address, then forwards the request to the External KeyAccess. The External KeyAc-

cess records the address of the Server, then uses the standard insertPsswd algorithm from

KeyAccess, querying the Server for database and principal access graph information. Once

the External KeyAccess belonging to the newly logged in user has gathered all of the keys

that external principal can chain to, it returns the set of principals whose key it now holds

to the Server. The Server then records which keys the newly logged in external holds, and

wakes up the CryptDB KeyAccess.

Server::removePsswd(Principal external). Removing an external principal is a

two stage process. While each External can store the entire instance access subgraph rooted

at itself, there is no need for all the keys to be replicated across all the Externals who speak

for them, so it is possible for the system to be in a state where the user who is logging off

is currently the only external principal holding a given key, but is not the only online user

who can chain to it. Figure 5-2 illustrates how such a situation could form and be resolved,

using the schema described in Figures 3-1 and 3-3.

In order to correctly resolve this situation, the Server first issues a removePsswdPrep

request to the External KeyAccess for external (in the example in Figure 5-2, external would

be username=’alice’). removePsswdPrep returns a list of all the principal keys which, from

the point of view of external, should be deleted in the course of this removePsswd. In the

example, alice’s removePasswordPrep would return {username=’alice’}. Since the Server

KeyAccess knows that alice also chained to {groupid = 5, forumid = 2, forumid = 3}, those

50 CHAPTER 5. AUDITING

External	
 KeyAccess	
 ‘alice’	
 External	
 KeyAccess	
 ‘bob’	

alice	

group	
 5	

forum	
 2	
 bob	

insert(username = ‘bob’, groupid = 5); !

forum	
 3	

alice	

group	
 5	

forum	
 2	
 bob	

forum	
 3	
 group	
 5	

bob	
 alice	

removePsswd(username = ‘alice’); !

bob	

group	
 5	

forum	
 2	

forum	
 3	

Figure 5-2: Distributed Key Transfer. Principals and links with dotted lines refer to prin-
cipal keys and links that the External in question is aware of the existence of, but does
not hold. For example, in the section between the insert and removePsswd, the External
KeyAccess for alice does not how bob’s symmetric key, but does record the link from bob
to groupid 5.

keys must be accessible by some other user who is online, and they should be transferred to

that user. As described in Section 4.5, keys are stored with a set of the principals who speak

for them, so using this set, the Server KeyAccess can determine that username=’bob’ also

holds the key for groupid = 5, so the subtree can be transferred to the External KeyAccess

for ’bob’. Once the subtree is transferred, and all of the keys that can still be chained to

are stored in different Externals, the Server sends removePsswd to the External KeyAccess

for external, which at this point actually deletes all the keys it holds.

insert(Principal speaks from, Principal speaks for). The Server processes the

insert using the same algorithm described in Section 4.5, except that instead of adding

5.2. IMPLEMENTATION 51

keys to a local map, they must be distributed to the appropriate Externals. In the case

where speaks from is an orphan (either a new orphan or an already existing one), both

speaks from and speaks for keys are stored locally in an orphaned keys map that is similar

to the standard KeyAccess keys map, and the orphan access graphs are stored as usual.

Non-orphaned keys are not stored locally, as we do not want Server KeyAccess to be

able to use those keys without the usage being written to an External KeyAccess log. To

determine which Externals need to know about the newly inserted link, we take the union

of the set of Externals that are currently storing speaks from and the set of Externals that

are currently storing speaks for. We need to alert the Externals storing speaks from since

they now can chain to the speaks for key, and if that is a new key, it needs to be stored

somewhere. We need to alter the Externals storing speaks for to handle a situation such as

is shown in Figure 5-2, where speaks for already has a subtree of online keys, which would

be lost if its original owners was not aware of this newly inserted link. By making the the

Externals that store speaks for are aware of the new link, even though they are not aware of

the speaks from key, we can generate the dotted segments of the instance access subgraph

shown in Figure 5-2, and thus transfer the keys on removePsswd.

It would be possible to avoid the situation in Figure 5-2 by fetching all the keys speaks for

could previous chain to, and ensuring that they are replicated on all of the speaks from

External Principals. However, there is no way of predicting how large an instance access

subgraph is (ie, how many keys would need to be broadcast to all the speaks from External

Principals), and our general paradigm is ensure that the unbounded latency is reserved for

logging in and out. Therefore we choose to use the key transfer algorithm described in

removePsswd rather than chaining and replication in insert.

remove(Principal speaks from, Principal speaks for). The Server KeyAccess

determines which Externals hold the speaks for key, and forwards the remove request to

each of them. Each of these Externals removes the link from their instance access subgraph,

and returns the Server a list of the keys which were deleted as a result of removing the link.

The Server updates its own maps to reflect the current lists of which keys each External

holds.

getKey(Principal principal). The Server checks to see if the requested principal is

52 CHAPTER 5. AUDITING

an orphan. If it is a new orphan, the Server generates the appropriate keys, stores them

in the database, initializes the various orphaned keys maps for principal and returns the

symmetric key. If principal is an orphan that already exists, the Server finds principal ’s

symmetric key in the local orphaned keys map, and returns it. If principal is held by one of

the Externals who are currently online, the Server queries an External which holds the key.

When an External receives a request for a principal’s key, it finds the key in its local map,

logs the request, and returns the key to the Server, which propagates the key to CryptDB

KeyAccess. If principal is known, but there is no External online holding its key, the Server

returns an error.

5.2.3 Changes to Application Code

Beyond the annotations required for Multiple Principal CryptDB, running a distributed

KeyAccess requires each end user to run their own version of External KeyAccess on their

machine. In the current implementation, External KeyAccess is assumed to be already

running at the time the user logs into the application, and the port and address of each

user are hardcoded. Ideally, however, the application would be modified to begin the

External KeyAccess process on the local machine, then authenticate with the dynamically

determined port and address.

Chapter 6

Evaluation

6.1 Security Analysis

How secure would an application using Multiple Principal CryptDB be? In this section we

analyze how CryptDB would be used with various applications, creating the plausible access

graphs and determining the eventual encryption level of all the encrypted fields. Since this

is the part of CryptDB that in actuality would require input from the programmer, all

of the measurements are subjective. To determine sensitive fields, we examined the field

names and what we could learn from the source code about their purposes. To build the

access graphs we compared the foreign keys in the schema and examined the source code

to figure out which columns referred to the same principals, and extrapolated from the

sensitive fields and source code and documentation what the access control rules might be.

We analyze multi-user web applications intended for a wide variety purposes, examin-

ing whether or not it was possible to run them over CryptDB and what alterations to the

application code would be necessary to do so, as Figure 6-1 illustrates. OpenEMR, which

we examined, provided enough information in the documentation to make it possible to

document the access graph, and the schema could be examined for sensitive fields, but un-

fortunately, the source code was extremely complex and convoluted, so we cannot state with

certainty the number of annotations and code changes that would be require to effectively

run it on top of CryptDB.

Figure 6-1 also shows the number of sensitive columns each application has, based on

53

54 CHAPTER 6. EVALUATION

Application Annotations Login & # Columns # Sensitive # Columns
Logout Code Total Columns at HIGH

grad-apply 111 2 lines 706 103 95
HotCRP 29 2 lines 704 22 18

OpenEMR – – 1,297 566 526
6.02 15 8 lines 15 13 7

PHP-calender 17 2 lines 25 12 3
phpBB 31 7 lines 563 23 21

Figure 6-1: Application Changes and Encrypted Fields. The number of changes required
to the application code is split into two types: Annotations and Login & Logout Code.
Annotations are the annotations the programmer must add to the database schema, de-
scribing the principal access graph. Login & Logout Code refers to the additional query
that needs to be sent to CryptDB to trigger insertPsswd or removePsswd. The sensitivity
of fields was determined by an analysis of the source code, schema, and documentation (if
it existed). HIGH refers to a security level at RND, HOM, or SEARCH, and applies to the
lowest possible security level.

our analysis. Since an application does not issue random queries to an application, but a

finite, pre-defined set, we can define the minimum security level each columns’ onions could

be at, regardless of how long the application runs. The right-most column in Figure 6-1

shows how many of the encrypted columns for each application have a minimum security

level of HIGH. A HIGH security level means that the onions that column will always be at

their outermost layer.

HotCRP [10] is a popular conference review application. Figure 6-2a shows its the

principal access graph. An important parts of the HotCRP access policy is that program

committee (PC) members not have the ability to review their own papers, or papers which

it would be a conflict to review. However, all PC members can touch any paper in the

database and HotCRP has no infrastructure in place to deter a curious or malicious PC

member. Using CryptDB, we can build the access graph with the NoConflict predicate

on the SPEAKS FOR annotation. When implementing Multiple Principal CryptDB for

HotCRP, the programmer would add the necessary predicate to the SPEAKS FOR anno-

tation, and provide some SQL function that defined NoConflict.

grad-apply is the admissions system for MIT’s EECS department. It defines two

different types of external principals: applicants and reviewers. It is the only application

we examined with multiple external types, which makes it an interesting case, but it is still

straightforward to integrate CryptDB in the grad-apply access control policy. Applicants

6.1. SECURITY ANALYSIS 55

username(contact(review(
paper(

(1tle,(text,(
etc.)(

if#No#Conflict#

(a)(HotCRP(

applicant(folderid(

recid(references(

grades,(scores,(personal/financial(
informa1on((including(SSN)(

reviewer(
reviewid(

review(

(b)(MIT(gradFapply(

(c)$OpenEMR$

admin$

user$

calendar,$forms,$billing,$
users,$pharmacy,$access$
control,$administra<on$

billing,$financial$repor<ng,$
insurance$informa<on$accoun<ng$

appointments,$medical$
recordsandhistory,$referrals$pa<ents$

encounters$
authorizing$appointments,$
treatments,$etc.;$notes$from$

appointments$

loca<on,$ethnicity,$language$
lists$lists$

Figure 6-2: The principal access graphs for three applications evaluated. In this represen-
tation, encrypted fields (hexagons) are shown as single objects for each principal, but in
reality a single hexagon can refer to many fields. See Figure 6-1 for details on the numbers
of encrypted fields per application.

56 CHAPTER 6. EVALUATION

should only be able to access their own application, whereas reviews need to access exactly

the applications they are assigned to review. Figure 6-2b outlines the principal access graph

for grad-apply. The duplicate path from reviewer to reviewid would be left out of an actual

annotation implementation, since reviewers are only able to view the review the reviews of

applications they have been assigned to read.

OpenEMR is an open source medical database. It stores information about patients’

medical histories, insurance policies, and scheduled appointments. Though it has less de-

fined access policies, OpenEMR is designed to store extremely sensitive data, so we consider

it a good case to examine for our system. Figure 6-2c shows an outline of the access graph for

OpenEMR. This presents an interesting a distinct case from phpBB, as OpenEMR uses ph-

pGACL, a php-based access control program for access control analysis, rather than storing

extra access control columns or tables. The implementation of phpGACL that OpenEMR

defines creates the five main groups, and specifies which data each group can access. To

build OpenEMR on top of Multiple Principal CryptDB, a programmer would need to in-

strument their embedded phpGAGL version primarily, since the external principal user and

the encrypted fields are the only parts of the access graph that are part of the OpenEMR

specific part of the code. OpenEMR also has seven fields that our analysis leads us to

believe should be encrypted, but which the current implementation of CryptDB could not

process. The operations in question where substring searches (not keywords searches) over

the encrypted field. The currently SEARCH scheme could not be extended to generically

search for any substring, but if the programmer knew what sort of substrings he would

be searching for, he could re-implement SEARCH encrypting the specific papers that he is

interested in, rather than by the usual key and word deliminators.

6.02 is an application for an MIT course website, that provides an interface to students

and course staff. Course staff can update their own status’ and students’ grades. Students

can view the status of course staff, and view only their own grades. While the access

graph for 6.02 is not particularly novel (users speak for statuses and grades), 6.02 is an

interesting application to examine because it is written using Python’s MySQLdb library

rather than PHP. As we can see from Figure 6-1, integration is straightforward. Of the fields

we considered sensitive, the most sensitive field was that of the students grades, which did

6.2. PERFORMANCE ANALYSIS 57

remain at HIGH. The other sensitive fields referred to values like the assignment names,

grader name, etc.

PHP-calendar is an open source calendar application. Like 6.02, it has a straight-

forward access graph, with calendars as external principals that speak for various events.

Like OpenEMR, PHP-calendar has two fields which our analysis led us to believe should

be encrypted, but which had unsupported queries performed on them. In the case of PHP-

calendar, both these fields where of the MySQL type DATE, and required type-specific

access. The current implementation does not encrypt DATE types in such a way as to allow

independent accesses to year, month, and day, as can be done with an unencrypted version

of MySQL. However, if such a functionality were important to an application, CryptDB

could be extended to handle these specific types and requests. Like 6.02, PHP-calendar

has a fairly low percentage of its encrypted fields remaining at HIGH security (only 3/12).

However, of the sensitive fields, we consider the most sensitive to be the subject, and de-

scriptions of events, and the user’s username and password. With the exception of subject,

all of these most sensitive fields are at HIGH.

phpBB is a common open source web forum application, which allows administrators

to have extremely fine-grained access control over the permissions. The forum design also

includes an apparatus for members to exchange personal messages. The examples in Chap-

ters 3 and 4 are simplifications of phpBB’s implementation, with users being able to access

posts in forums depending on their groups and private messages being shared between two

or more users.

6.2 Performance Analysis

Our evaluations were conducted between two computers. The MySQL 5.1.54 server, the

CryptDB proxy, and the phpBB server were all run on a single Intel Xeon 8-core machine

with 2.4 GHz CPU and 12 GB of RAM. Although our processor has multiple cores, we

enable only one core for most of our experiments to avoid measuring any effects due to

parallelism (or lack thereof). The MySQL clients were running on a AMD Opteron Processor

8431 machine with 2.4GHz CPU and 64GB of RAM and connected to the server across a

58 CHAPTER 6. EVALUATION

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

MySQL MySQL+proxy CryptDB

T
h
ro

u
g
h
p
u
t

(H
T

T
P

 r
eq

.
/

se
c)

-8.3%
-14.5%

Figure 6-3: Throughput. (Originally appears as Figure 14 in [12]). MySQL refers to the
throughput of the application running directly on the MySQL server, MySQL+proxy to
the throughput of phpBB connecting to an unencrypted database, and CryptDB to phpBB
running fully through CryptDB on the partially encrypted database described in 3-3.

shared Gigabit Ethernet network. The clients, while all running on separate processes, were

being run from the same machine. When we evaluated the auditing system, the CryptDB

KeyAccess process and the Server KeyAccess process were run on the same machine as the

application server, and the External KeyAccess processes were run on the client machine.

Besides the clients generated for testing, phpBB requires two users (admin and anonymous),

whose respective External KeyAccess processes were also run on the client machine. Private

messages between users and forum posts were loaded into the database.

6.2.1 Throughput

To analyze the impact of Multiple Principal CryptDB, we measured the throughput of ph-

pBB for a workload with 10 parallel clients, which ensured 100% CPU load at the application

server. Each client continuously issued HTTP requests for reading and writing private mes-

sages and forum posts. Figure 6-3 shows the throughput demonstrated by phpBB in three

different cases: communicating directly with an unencrypted MySQL database, communi-

cating with an unencrypted database through MySQL-Proxy, and communicating with a

partially encrypted database through the CryptDB proxy. We see that phpBB incurs a

14.5% loss of throughout using CryptDB, and that approximately half of that is through

inefficiencies in MySQL-Proxy.

The workload each client was performing for the throughput test was: reading five

6.2. PERFORMANCE ANALYSIS 59

private messages, reading five forum posts, writing one private message, and writing one

forum post. The details of each of these requests in discussed in Section 6.2.2.

6.2.2 Latency

Beyond the throughput results, we analyzed the specific impact of Multiple Principal

CryptDB using the comparative latency of five types of phpBB actions. The results of this

test are shown in Figure 6-4, which shows how the latency for each request type changes as

the number previously exists messages and posts in the system varies. As we can see from

these charts, the number of keys CryptDB is required to hold does not have a significant

performance impact. Multiple Principal CryptDB as described in Chapter 4 adds 5-26ms

to the processing of each request. Including a distributed KeyAccess system, requests can

take up to an additional 50ms. A further description of each workload is provided below.

Login visits the phpBB’s login page, submits the users’ username and password. This

calls KeyAccess’s insertPsswd function. Since the tests were run on pre-existing users,

insertPsswd requires multiple database accesses to fetch all of the users’ keys. The overall

latency impact was only 2-6ms. Login was not part of the throughput test workloads.

Read Message visits the phpBB User Control Panel, navigates to the users’ inbox,

and reads the first message in the inbox. For the latency tests, only the final message

read was timed. Reading a message calls KeyAccess’s getKey function, and the requires

CryptDB to decrypt the text of the message. The latency increase for reading messages

was 19-21ms for standard Multiple Principal CryptDB, which is approximately 30%. A

distributed KeyAccess system added an additional 5ms to the latency.

Read Post visits the forum index page, chooses the first forum, views that forums

main page, and then views the first post in the forum. Viewing later posts in the forum

did not significantly alter the results. For the latency tests, only the final post read was

timed. Viewing a post, like reading a message, calls KeyAccess’s getKey, and requires

decryption. The latency increase for reading messages was 16-30ms for standard Multiple

Principal CryptDB, which is approximately 44%. A distributed KeyAccess system added

an additional 4-39ms to the latency.

60 CHAPTER 6. EVALUATION

61#
62#
63#
64#
65#
66#
67#
68#
69#

0# 50# 100# 150# 200# 250#

m
s#

Number#of#Keys#

Login#

0#

20#

40#

60#

80#

100#

0# 50# 100# 150# 200# 250#

m
s#

Number#of#Keys#

Read#Message#

0#
20#
40#
60#
80#

100#
120#
140#

0# 50# 100# 150# 200# 250#

m
s#

Number#of#Keys#

Read#Post#

230#
240#
250#
260#
270#
280#
290#

0# 50# 100# 150# 200# 250#

m
s#

Number#of#Keys#

Write#Message#

0#

50#

100#

150#

200#

250#

0# 50# 100# 150# 200# 250#

m
s#

Number#of#Keys#

Write#Post#

0#

20#

40#

60#

80#

100#

120#

140#

0# 50# 100# 150#

mysql#

cryptdb#

audit#

61#
62#
63#
64#
65#
66#
67#
68#
69#

0# 50# 100# 150# 200# 250#

m
s#

Number#of#Keys#

Login#

0#

20#

40#

60#

80#

100#

0# 50# 100# 150# 200# 250#

m
s#

Number#of#Keys#

Read#Message#

0#
20#
40#
60#
80#

100#
120#
140#

0# 50# 100# 150# 200# 250#

m
s#

Number#of#Keys#

Read#Post#

61#
62#
63#
64#
65#
66#
67#
68#
69#

0# 50# 100# 150# 200# 250#

m
s#

Number#of#Keys#

Login#

0#

20#

40#

60#

80#

100#

0# 50# 100# 150# 200# 250#

m
s#

Number#of#Keys#

Read#Message#

0#
20#
40#
60#
80#

100#
120#
140#

0# 50# 100# 150# 200# 250#

m
s#

Number#of#Keys#

Read#Post#

230#
240#
250#
260#
270#
280#
290#

0# 50# 100# 150# 200# 250#

m
s#

Number#of#Keys#

Write#Message#

0#

50#

100#

150#

200#

250#

0# 50# 100# 150# 200# 250#

m
s#

Number#of#Keys#

Write#Post#

0#

20#

40#

60#

80#

100#

120#

140#

0# 50# 100# 150#

mysql#

cryptdb#

audit#

230#
240#
250#
260#
270#
280#
290#

0# 50# 100# 150# 200# 250#

m
s#

Number#of#Keys#

Write#Message#

0#

50#

100#

150#

200#

250#

0# 50# 100# 150# 200# 250#

m
s#

Number#of#Keys#

Write#Post#

0#

20#

40#

60#

80#

100#

120#

140#

0# 50# 100# 150#

mysql#

cryptdb#

audit#

Figure 6-4: Latency. The latency of five common phpBB actions which touch on sensitive
fields: logging in, reading a private message, reading a forum post, writing a private message,
and writing a forum post. phpBB run directly on a MySQL server is shown in blue, on
CryptDB without any auditing functionality in purple, and CryptDB with a distributed
KeyAccess in red.

6.2. PERFORMANCE ANALYSIS 610#
20#
40#
60#
80#

100#
120#
140#
160#
180#

0# 5000# 10000# 15000# 20000# 25000#

m
s#

Number#of#Keys#

Read#Message#

0#
10#
20#
30#
40#
50#
60#
70#
80#
90#

100#

0# 5000# 10000# 15000# 20000# 25000#

m
s#

Number#of#Keys#

Login#

61#
62#
63#
64#
65#
66#
67#
68#
69#

0# 100# 200# 300#

mysql#

cryptdb#

cryptdb#(without#
threshold#op?miza?on)#

0#
20#
40#
60#
80#

100#
120#
140#
160#
180#

0# 5000# 10000# 15000# 20000# 25000#

m
s#

Number#of#Keys#

Read#Message#

0#
10#
20#
30#
40#
50#
60#
70#
80#
90#

100#

0# 5000# 10000# 15000# 20000# 25000#

m
s#

Number#of#Keys#

Login#

61#
62#
63#
64#
65#
66#
67#
68#
69#

0# 100# 200# 300#

mysql#

cryptdb#

cryptdb#(without#
threshold#op?miza?on)#

0#
20#
40#
60#
80#

100#
120#
140#
160#
180#

0# 5000# 10000# 15000# 20000# 25000#

m
s#

Number#of#Keys#

Read#Message#

0#
10#
20#
30#
40#
50#
60#
70#
80#
90#

100#

0# 5000# 10000# 15000# 20000# 25000#

m
s#

Number#of#Keys#

Login#

61#
62#
63#
64#
65#
66#
67#
68#
69#

0# 100# 200# 300#

mysql#

cryptdb#

cryptdb#(without#
threshold#op?miza?on)#

Figure 6-5: Threshold Optimization. The latency of logging in and reading a private mes-
sage for phpBB run directly on a MySQL server (in blue), for phpBB run over CryptDB as
described in Chapter 4 (in purple), and for phpBB run over CryptDB with the threshold
optimization removed (in green).

Write Message visits the User Control Panel, navigates to the Compose Message page,

fills out and submits the message form, and confirms that the draft is correct. The entire

drafting and submission was timed for the latency tests. Writing a private message calls

KeyAccess’s getKey to create the message orphan key, then insert to add the new key to the

access graph. The latency increase for reading messages was 20-26ms for standard Multiple

Principal CryptDB, which is approximately 9%. A distributed KeyAccess system added an

additional 16-19ms to the latency.

Write Post visits the first forum from the index page, and adds a new post to it. For

the latency tests, only writing the post is timed. Writing a post calls KeyAccess’s getKey to

create the post orphan key, then insert to add the new key to the access graph. The latency

increase for reading messages was 17-34ms for standard Multiple Principal CryptDB, which

is approximately 18%. A distributed KeyAccess system added an additional 25-60ms to the

latency.

6.2.3 Threshold

To test the relevance of the optimization proposed in Section 4.4, we ran the Read Message

workload on extremely large pre-inserted datasets (up to 20,000 private message keys to

be fetched) on phpBB running on MySQL, on CryptDB as described in Chapter 4, and on

a modified version of CryptDB which pre-fetches all keys on insertPsswd. When running

CryptDB with the threshold, we set the threshold variable to be 100. Figure 6-5 shows

the results. Since the inbox is stored in reverse chronological order, our workload always

62 CHAPTER 6. EVALUATION

reads the last message, for so CryptDB running with a threshold, the Read Message test on

datasets with more than 100 messages will require an additional database query in getKey

to fetch the uncached message key. This additional latency is 0-4ms (>1%). While we

make the assumption that users are more willing to wait on login than on other operation,

the results show that fetching all the keys (CryptDB without threshold) on login for large

datasets can add up to 30ms (49%) latency.

6.2.4 Storage

Multiple Principal CryptDB adds to the data stored on the database in two ways. First,

the use of onions replicates encrypted data up to three times, and sometimes ciphertexts

are large than their respective plaintexts (depending on the encryption scheme used, and

thus on the security level). Second, KeyAccess stores access keys, the instance access graph

and associated keys, and public keys, the principal’s public keys on the database. A phpBB

database after running a workload which generated about 1,000 private messages and 1,000

forum posts was 2.6MB. The database for phpBB run on top of Multiple Principal CryptDB

after running the same workload was 3.3MB, which is an increase of about 1.2x. Of the

0.7MB increase, 230KB was for access keys, 276KB was for public keys, and 166KB was

from the expansion of encrypted fields.

In distributed KeyAccess, the log for an External principal is the length of the number

of keys accessed during the execution of the program. Since External KeyAccess stores the

set of keys requested in memory without duplication, and writes to disk when the set is

full, a user-defined maximum time has passed (for our tests, we used 5 minutes), or when

the removePsswd is called, for our tests, log sizes were minimal.

6.3 Analysis of Supported Queries

CryptDB cannot handle all queries, and Multiple Principal key-chaining can put further

restrictions on the supported queries, some of which are mentioned in Section 6.1. Figure

6-6, shows an analysis of which queries Single Principal CryptDB supports, and whether any

of those queries touch on highly sensitive fields in tables. In some ways, Multiple Principal

6.3. ANALYSIS OF SUPPORTED QUERIES 63

Application Encrypted Encrypted columns touched
columns by unsupported queries

grad-apply 103 0
HotCRP 22 0
OpenEMR 566 7
6.02 13 0
PHP-calender 12 2
phpBB 23 0
TPC-C 92 0
Trace from sql.mit.edu 128,840 1,094
...col. name contains pass 2,029 2
...col. name contains content 2,521 0
...col. name contains priv 173 0

Figure 6-6: Unsupported Queries. (A subset of Figure 9 in [12].) This table shows the
number of columns encrypted, and how many of those column are touched by queries
CryptDB cannot currently support. TPC-C refers to the standard benchmark. The trace
from sql.mit.edu was provided by MIT’s SITB, and represents the queries processed by
many of the database-backed applications running on scripts.mit.edu.

CryptDB is less restrictive than fully encrypting a database using Single Principal CryptDB,

because the Multiple Principal case encrypts data sparsely, so it puts fewer restrictions on

queries that do not touch highly sensitive fields. We see that unsupportable queries rarely

touch encrypted fields in the common applications analyzed, and in the large trace that

only .85% of all columns are touched by unsupported queries. Cryptographically, CryptDB

cannot support complex mathematical queries over encrypted fields, such as sin, log, etc.,

due to the restrictions of the homomorphic encryption, and cannot support generic substring

SEARCH. There are also more complex datatypes (such as DATE) that support for has

not yet been implemented in CryptDB.

The Multiple Principal case, while decreasing the number of encrypted fields, and thus

the possibility of cryptographic difficulties, also has further restrictions on types of queries

it can process on encrypted fields. Unlike Single Principal CryptDB, Multiple Principal

CryptDB cannot compute JOINs on encrypted fields. Multiple Principal CryptDB can

have a different key for each row of an encrypted field, depending on the principal in-

stance that speaks for the encrypted value, so the JOIN algorithm used in Single Principal

CryptDB is not possible, since it requires the two encrypted columns being joined to each

be encrypted with a single key. Of course, there is no way for a JOIN between an encrypted

and unencrypted column to be performed – to make them comparable, the encrypted col-

64 CHAPTER 6. EVALUATION

umn would have to be decrypted to plaintext on the database, which violates our security

guarantees. However, as JOINs between encrypted columns, or between encrypted and

unencrypted columns seem to be rare (they never occur in the applications we examined),

this restriction should not make Multiple Principal CryptDB impractical.

There are also a few restrictions to the types of UPDATEs Multiple Principal CryptDB

can handle. Altering the principal access tree annotations provides challenges (as described

in Chapter 4), but most fundamentally, altering, rather than inserting or removing, links

from the instance access graph is not supported. Consider the private messages example

from Figures 3-2 and 3-3. CryptDB cannot correctly process the query UPDATE msgs SET

authorid = 3 WHERE authorid = 2. Since the key for msgid is currently encrypted for

userid 1 and userid 2, to correctly implement this UPDATE, we would need to remove userid

2 SPEAKS FOR msgid 10 and insert userid 3 SPEAKS FOR msgid 10. While this is in

theory possible, it is time consuming, and based on the applications examined, an unlikely

case, so we do not support it. If an application required these kinds of UPDATEs frequently,

CryptDB could be modified to transform them in the equivalent DELETE, INSERT pairs,

but our current analysis indicates that these UPDATEs are not common.

As mentioned in Chapter 4, in Multiple Principal CryptDB, we make the assumption

that when a link in the access chain is inserted, the speaks for principal (assuming we are not

in the case of orphans) is online. From a ideological point of view, this is the assumption

that to add a permission to an access control schema, someone with the permissions to

access the schema in question will be online. Should there a be an access control scheme

that does not reflect this assumption, Multiple Principal CryptDB would probably not be

the best choice for data protection.

Chapter 7

Conclusion

In this thesis, we discussed ways to extend the security and auditing capacities of CryptDB,

using user passwords as the basis of key chains, and distributed logging of key requests

to provide accurate information about compromised data during an attack. With the in-

creasing popularity of third-party data storage in the cloud, cryptographically protected

databases are a field that should be explored. CryptDB provided a practical solution to

the standard relational database model, which Multiple Principal CryptDB builds on it to

tailor security for multi-user web applications with well-defined access control policies. In

this thesis, we show that with reasonable overhead and minimal application code alteration,

an existing application can be configured to run through a CryptDB proxy that encrypts

the sensitive data in such a way that an attacker cannot decrypt the sensitive data unless

one of its owners is online. We also provide a secure system for determining a reasonable

set of which data could have been compromised in the event of an attack.

65

66 CHAPTER 7. CONCLUSION

Bibliography

[1] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill. Order-preserving symmetric en-
cryption. In Proceedings of the 28th Annual International Conference on Information
Security Practice and Experience, Sydney, Australia, April 2008.

[2] A. Chen. GCreep: Google engineer stalked teens, spied on chats. Gawker, September
2012. http://gawker.com/5637234/.

[3] M. Cooney. IBM touts encryption innovation; new technology performs calculations
on encrypted data without decrypting it. Computer World, June 2009.

[4] Delta V Software. Remote Call Framework. http://www.deltavsoft.com/index.html.

[5] A. Desai. New paradigms for constructing symmetric encryption schemes against
chosen-ciphertext attack. In Proceedings of the 20th Annual International Concfer-
ence on Advances in Cryptology, pages 394-412, August 2000.

[6] C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the
41st Annual ACM Symposium on Theory of Computing, Bethesda, MD, May-June
2009.

[7] O. Goldreich. Foundations of Cryptography: Volume I Basic Tools Cambridge Univer-
sity Press, 2001.

[8] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calandrino,
A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest we remember: Cold boot attacks
on encryption keys. In Proceedings of the 17th Usenix Security Symposium, San Jose,
CA, July-August 2008.

[9] S. Halevi and P. Rogaway. A tweakable enciphering mode. In Advances in Cryptography
(CRYPTO), 2003.

[10] E. Kohler. Hot crap! In Proceedings of the Workshop of Organizing Workshops,
Conferences, and Symposia for Computer Systems, San Francisco, CA, April 2008.

[11] P. Paillier. Public-key cryptosystem based on composite degree residuosity classes.
In Proceedings of the 18th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques (EUROCRYPT), Prague, Czech Republic, May
1999.

67

68 BIBLIOGRAPHY

[12] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan. CryptDB: Protecting
confidentiality with Encrypted Query Processing In Processings of the 23rd ACM
Symposium on Operating Systems Principles, Cascais, Portugal, October 2011.

[13] R. A. Popa and N. Zeldovich. Cryptographic treatment of CryptDB’s adjustable join.
Technical Report MIT-CSAIL-TR-2012-006, Computer Science and Artificial Intelli-
gence Laboratory, Cambridge, MA, March 2012.

[14] R. A. Popa, N. Zeldovich, and H. Balakrishnan. CryptDB: A practical encrypted
relational DBMS. Technical Report MIT-CSAIL-TR-2011-005, MIT Computer Science
and Artificial Intelligence Laboratory, Cambridge, MA, January 2011.

[15] D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted
data. In Proceedings of the 21st IEEE Symposium on Security and Privacy, Oakland,
CA, May 2000.

[16] M. Taylor. MySQL Proxy. https://launchpad.net/mysql-proxy.

	Introduction
	Terminology

	Overview of Single Principal CryptDB
	Encryption Schemes
	Random (RND)
	Deterministic (DET)
	Order Preserving Encryption (OPE)
	Join (JOIN and DETJOIN)
	Homomorphic Encryption (HOM)
	Word Search (SEARCH)

	SQL-Aware Encryption
	Implementation

	Multiple Principals
	Key Chaining
	Key Pre-Fetching
	Offline Users

	Annotations

	Implementation of Multiple Principal CryptDB
	Annotation Processing and KeyAccess
	Login and Logout
	Orphaned Keys
	Optimizations
	Algorithms
	Changes to Application Code

	Auditing
	Design
	Implementation
	Orphaned Keys
	Algorithms
	Changes to Application Code

	Evaluation
	Security Analysis
	Performance Analysis
	Throughput
	Latency
	Threshold
	Storage

	Analysis of Supported Queries

	Conclusion
	Bibliography

