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We present a study of �� ! ��K0
SK

0
Sð�0Þ�� and �� ! K�K0

SK
0
Sð�0Þ�� decays using a data set of

430 million � lepton pairs, corresponding to an integrated luminosity of 468 fb�1, collected with the

BABAR detector at the PEP-II asymmetric energy eþe� storage rings. We measure branching fractions of

ð2:31� 0:04� 0:08Þ � 10�4 and ð1:60� 0:20� 0:22Þ � 10�5 for the �� ! ��K0
SK

0
S�� and �� !

��K0
SK

0
S�

0�� decays, respectively. We find no evidence for �� ! K�K0
SK

0
S�� and �� !

K�K0
SK

0
S�

0�� decays and place upper limits on the branching fractions of 6:3� 10�7 and 4:0� 10�7

at the 90% confidence level.

DOI: 10.1103/PhysRevD.86.092013 PACS numbers: 13.35.Dx, 14.60.Fg

The � lepton can be used as a high-precision probe of the
Standard Model and models of new physics. A recent
BABAR paper, for example, presented a search for CP
violation by measuring the decay-rate asymmetry of �� !
��K0

S�� decays [1]. One of the backgrounds in that

analysis is �� ! ��K0
SK

0
S��, which has a large uncer-

tainty in the branching fraction [2]. The uncertainty in
the background from �� ! ��K0

SK
0
S�� decays was not a

limitation of the decay-rate asymmetry measurement, but
an improved measurement of the branching fraction and an
understanding of the decay dynamics will be required for a
future measurement at a high-luminosity B-factory.
This paper presents measurements of the branching

fractions of �� ! ��K0
SK

0
Sð�0Þ�� decays and the first

search for �� ! K�K0
SK

0
Sð�0Þ�� decays. In this work we

use theK0
S ! �þ�� decay mode. Here and throughout the

paper, charge conjugation is implied.
Previously, ALEPH and CLEO measured the �� !

��K0
SK

0
S�� branching fraction to be ð2:6� 1:0� 0:5Þ �

10�4 [3] and ð2:3� 0:5� 0:3Þ � 10�4 [4], respectively.
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ALEPH set an upper limit on the �� ! ��K0
SK

0
S�

0��

branching fraction of 2� 10�4 at the 95% confidence
level [3].

The present analysis uses data recorded by the BABAR
detector at the PEP-II asymmetric-energy eþe� collider,
operated at center-of-mass (CM) energies of 10.58 and
10.54 GeV at the SLAC National Accelerator Laboratory.
The BABAR detector is described in detail in Ref. [5]. In
particular, charged particle momenta are measured with
a five-layer double-sided silicon vertex tracker and a
40-layer drift chamber, both within a 1.5 T supercon-
ducting solenoidal magnet. Charged kaons and pions are
separated by ionization (dE=dx) measurements in the sili-
con vertex detector and the drift chamber in combination
with an internally reflecting Cherenkov detector. An elec-
tromagnetic calorimeter made of thallium-doped cesium
iodide crystals provides energy measurements for electrons
and photons, and an instrumented flux return detector
identifies muons. Based on an integrated luminosity
of 468 fb�1, the data sample contains approximately
430 million �-pair events.

Simulated event samples are used to estimate the selec-
tion efficiency and purity of the data sample. The produc-
tion of � pairs is simulated with the KK2F Monte Carlo
(MC) event generator [6]. Subsequent decays of the �
lepton, continuum q �q events (where q ¼ u, d, s, c), and
final-state radiative effects are modeled with Tauola [7]
and EvtGen [8], JETSET [9], and PHOTOS [10], respec-
tively. Passage of the particles through the detector is
simulated by Geant4 [11].

The �� ! ��K0
SK

0
S�� decay is simulated with Tauola

using �� ! K��K0��. The �� ! ��K0
SK

0
S�

0�� decay is

simulated with EvtGen using �� ! K��K0�0�� and
�� ! K�0K0����. As we later show, the �� !
K��K0�� and �� ! K��K0�0�� have a K�ð892Þ meson
that is observed in the ��K0

S channel, and the �� !
K�0K0���� has a K�ð892Þ meson that is observed in the
�0K0

S channel.

The � pair is produced back-to-back in the eþe� CM
frame. As a result, the decay products of the two � leptons
can be separated from each other by dividing the event into
two hemispheres—referred to later as the ‘‘signal’’ hemi-
sphere and the ‘‘tag’’ hemisphere—using the plane per-
pendicular to the event thrust axis [12]. The event thrust
axis is calculated using all charged particles and all photon
candidates in the entire event.

We select events with one prompt track and two K0
S !

�þ�� candidates reconstructed in the signal hemisphere,
and exactly one oppositely charged prompt track in the tag
hemisphere. All tracks are required to have the components
of momentum transverse to the e� beam axis be greater
than 0:1 GeV=c in the laboratory frame. A prompt track is
defined to be a track with its point of closest approach to
the beam spot being less than 1.5 cm in the plane transverse
to the e� beam axis and less than 2.5 cm in the direction of

the e� beam axis. A K0
S candidate is defined as a pair of

oppositely charged tracks where neither track is identified
as a prompt track. The invariant mass of theK0

S candidate is

required to be between 0.475 and 0:525 GeV=c2 (see
Fig. 1). Furthermore, the distance between the beam spot
and the �þ�� vertex must be at least three times its
uncertainty (the di-pion pair will be referred to as the
‘‘K0

S candidate daughters’’).

The charged hadron must be identified as a charged pion
or a charged kaon. The efficiency for selecting charged
pions and kaons is approximately 95 and 90%, respec-
tively. The probability of misidentifying a charged pion
(kaon) as a charged kaon (pion) is estimated to be 1% (5%).
The charged pion and kaon samples are divided into

samples with zero and one �0 mesons. Events with two or
more �0 mesons are rejected. The �0 candidate is recon-
structed from two clusters of energy deposits in the elec-
tromagnetic calorimeter that have no associated tracks.
The energy of each cluster is required to be greater than
30 MeV in the laboratory frame, and the invariant mass of
the two clusters must be between 0:115 and 0:150 GeV=c2.
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FIG. 1 (color online). The invariant mass of the two
K0

S ! �þ�� candidates in the �� ! ��K0
SK

0
S�� (top) and

�� ! ��K0
SK

0
S�

0�� (bottom) samples after all selection criteria

have been applied. The points are data and the histograms are the
prediction of the Monte Carlo simulation. For both plots, the
white histogram represents �� ! K��K0�� decays, and the blue
(medium shaded) and beige (light shaded) histogram shows the
��!K��K0�0�� and ��!K�0K0���� (�

�!��K0
SK

0
S�

0��)

decays, respectively. The red (dark shaded) histogram is the q �q
background.
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The clusters in the electromagnetic calorimeter that are not
associated with a �0 candidate are ignored in the analysis.

To reduce backgrounds from non-� pair events, we
require that the momentum of the charged particle in the
tag hemisphere is less than 4 GeV=c in the CM frame and
be identified as either an electron or a muon. For momenta
above 1 GeV=c in the laboratory frame, electrons and
muons are identified with efficiencies of approximately
92 and 70%, respectively [13]. We also require the magni-
tude of the event thrust to be between 0.90 and 0.995.

The invariant mass of the charged hadron and the twoK0
S

mesons is required to be less than 1:8 GeV=c2. For �� !
��K0

SK
0
S�

0�� decays, we do not include the�
0 in the mass

calculation. The ��K0
SK

0
S invariant mass is shown in

Figs. 2 and 3. The��K0
SK

0
S�

0 invariant mass is also shown

in Fig. 3. We also require the pseudomass to be less than
1.9 and 2:1 GeV=c2 for the �� ! ��K0

SK
0
S�� and �� !

��K0
SK

0
S�

0�� samples, respectively (the �0 meson is

included in the pseudomass calculation). The pseudomass

is defined to be Mpseudo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
h þ 2ð ffiffiffi

s
p � EhÞðEh � PhÞ

q

where Eh and Ph are the energy and magnitude of the
momentum of the hadronic final state in the laboratory
frame [14].

The invariant mass distribution predicted by the MC for
the hadronic final state particles and for their combinations
does not perfectly describe the data. In particular, the peak
of the (��K0

SK
0
S) invariant mass distribution in the MC is

found to peak approximately 5% lower than the peak
observed in the data. To improve the modeling of the
data we have weighted the �� ! ��K0

SK
0
S�� in Tauola

using the Dalitz plot distribution for the ��K0
S invariant

mass (shown for the data sample in Fig. 2). The weighting
function is from a two-dimensional (9� 9) matrix using
M2ð��K0

SÞ with both ��K0
S combinations (the matrix is

constructed to be symmetric). The weighted events are
used in all the mass plots and we observe an improvement
in the modeling of the data.
The branching fractions of the two charged pion modes

are determined simultaneously to take into account the
cross feed of each decay mode into the other sample. The
branching fraction is

Bj ¼
X

i

��1
ji ðNdata

i � Nbkgd
i Þ=ð2N��Þ

where j represents the �� ! ��K0
SK

0
S�� and �� !

��K0
SK

0
S�

0�� decay modes; i represents the (��K0
SK

0
S)

or (��K0
SK

0
S�

0) reconstruction modes; Ndata
i and Nbkgd

i are
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FIG. 2 (color online). The Dalitz plot of the (��K0
S) system, and the (��K0

SK
0
S), (�

�K0
S) and (K

0
SK

0
S) invariant mass distributions for

events that pass the �� ! ��K0
SK

0
S�� selection criteria. The invariant mass requirement is not required for the plot of the (��K0

SK
0
S)

invariant mass. There are two entries per event in the Dalitz plot and in the (��K0
S) mass plot. The points are data and the histograms

are the prediction of the Monte Carlo simulation. The signal decays are represented by the white histogram (�� ! K��K0��). The
beige (light shaded) histogram shows the �� ! K��K0�0�� and �� ! K�0K0���� (�� ! ��K0

SK
0
S�

0��) decays. The red (dark

shaded) histogram is the q �q background. The mass plots use �� ! ��K0
SK

0
S�� events that have been weighted based on the Dalitz plot

distributions in the top left plot.
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the number of data and background events in the ith data
sample; ��1 is the inverse of the selection efficiency matrix
(�ij is the probability to select an event of type j with the

selection criteria i); and N�� is the number of �-pair
candidates determined from the integrated luminosity and
the e�e� ! cross section.

The columns in Table I give the number of data and
background events for each reconstruction mode. Table I
also gives the selection efficiency matrix, where the
horizontal row gives the efficiency for selecting the true
decay for each reconstructed mode. For example, the effi-
ciency for selecting a true �� ! ��K0

SK
0
S�� decay is
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FIG. 3 (color online). The (��K0
SK

0
S), (��K0

SK
0
S�

0), (��K0
S), and (�0K0

S) invariant mass distributions that pass the �� !
��K0

SK
0
S�

0�� selection criteria [except for the plot of the (��K0
SK

0
S) invariant mass where the selection requirement on the mass

is not included]. There are two entries per event in the (��K0
S) and (�0K0

S) mass plots. The points are data and the histograms are the

predictions of the Monte Carlo simulation. The two signal channels are shown in the white (�� ! K��K0�0��) and beige (light
shaded) (�� ! K�0K0����) histograms. The dark blue (medium shaded) histogram is �� ! ��K0

SK
0
S�� (�� ! K��K0��) decays.

The red (dark shaded) histogram is the q �q background. The mass plots use �� ! ��K0
SK

0
S�� events that have been weighted based on

the Dalitz plot distributions shown in Fig. 2.

TABLE I. Results for the charged pion decays. The background events are primarily q �q
events.

Decay mode �� ! ��K0
SK

0
S�� �� ! ��K0

SK
0
S�

0��

Branching fraction ð2:31� 0:04� 0:08Þ � 10�4 ð1:60� 0:20� 0:22Þ � 10�5

Events

Data 4985 409

Estimated background 98� 17 35� 7
Selection efficiency

�� ! ��K0
SK

0
S�� ð4:93� 0:02Þ% ð0:21� 0:01Þ%

�� ! ��K0
SK

0
S�

0�� ð3:04� 0:10Þ% ð2:65� 0:09Þ%
Fractional systematic errors

Selection efficiency 0.008 0.12

Background 0.004 0.04

Common systematics 0.034 0.03

Total 0.035 0.13

J. P. LEES et al. PHYSICAL REVIEW D 86, 092013 (2012)

092013-6



ð4:93� 0:02Þ% and ð0:21� 0:01Þ% with the (��K0
SK

0
S)

and (��K0
SK

0
S�

0) selection criteria, respectively.

We measure the �� ! ��K0
SK

0
S�� and �� !

��K0
SK

0
S�

0�� branching fractions to be

Bð�� ! ��K0
SK

0
S��Þ ¼ ð2:31� 0:04� 0:08Þ � 10�4;

Bð�� ! ��K0
SK

0
S�

0��Þ ¼ ð1:60� 0:20� 0:22Þ � 10�5;

where the first error is statistical and the second is system-
atic. The statistical correlation parameter for the two mea-
surements is found to be �0:21. The results have been
corrected for the K0

S ! �þ�� branching fraction [2].

The systematic uncertainties (see Table I) are divided
into the selection efficiency, background, and common
systematic components. The uncertainties on the elements
of the efficiency matrix only include the errors specific to
that decay and those selection criteria. Uncertainties that
are common to all matrix elements are included in the
common systematic errors.

The efficiency for selecting �� ! ��K0
SK

0
S�� events is

found to be ð4:93� 0:02Þ% and ð0:21� 0:01Þ% for the
samples with zero and one �0 candidate, respectively. The
uncertainty on the first efficiency is from the MC statistical
error. The uncertainty on the second efficiency also
includes the MC statistical error and an error that takes
into account the uncertainty for finding a fake �0 meson in
�� ! ��K0

SK
0
S�� decays. The uncertainty for finding a

fake �0 is estimated to be 6% and is determined by
comparing the number of �� ! ��K0

SK
0
S�� decays that

have two neutral clusters in the data and MC samples
where the invariant mass of the two neutral clusters must
not be near the �0 mass.

The efficiency for selecting �� ! ��K0
SK

0
S�

0�� events

is found to be ð3:04� 0:10Þ% and ð2:65� 0:09Þ% for the
samples with zero and one �0 candidate, respectively. The
uncertainties include the MC statistical error and an uncer-
tainty for the �0 identification. The uncertainty for identi-
fying a �0 meson is estimated to be 3% based on studies
with tau lepton andDmeson data and MC control samples.
We observe that the efficiency for selecting �� !
��K0

SK
0
S�

0�� decays with and without a �0 is approxi-

mately equal, and hence we assign a 3% uncertainty on the
efficiency for selecting �� ! ��K0

SK
0
S�

0�� decays with-

out reconstructing the �0 meson.
The background in the charged pion modes is predicted

by the MC simulation to be entirely from eþe� ! q �q
events. The background in the charged kaon modes is cross
fed from the charged pion modes where a charged pion is
misidentified as the charged kaon. The background in the
charged pion sample is confirmed with data and MC simu-
lation control samples. The control samples are created
using the nominal selection criteria except that the invari-
ant mass and pseudomass requirements are reversed to
eliminate the �-pair events and enhance q �q events. The
ratio of selected events in the data to MC control samples is

found to be consistent with unity within 15% for both
�� ! ��K0

SK
0
S�� and �� ! ��K0

SK
0
S�

0�� samples. The

15% value is added to the MC statistical uncertainty of the
number of background events.
A number of systematic uncertainties are common to

both the �� ! ��K0
SK

0
S�� and �� ! ��K0

SK
0
S�

0��

branching fractions’ measurements. They can be catego-
rized into two components: tracking and particle identifi-
cation reconstruction uncertainties, and topological
selection uncertainties.
The tracking and particle identification reconstruction

uncertainties include the uncertainty on the track recon-
struction efficiency (0.5%). They also include the uncer-
tainties on the efficiencies of the particle identification
algorithms: lepton identification (combined electron and
muon) (1.6%), charged pion particle identification (0.5%),
and K0

S identification (1.8% for two K0
S). The particle

identification algorithms used in this work are based on
standard BABAR routines and the uncertainties are deter-
mined using control data and MC samples [5,15]. The
uncertainty on the efficiency for selecting �0 mesons is
included in the elements of the selection efficiency matrix.
The topological selection uncertainties include a 2% un-

certainty associated with the topological selection criteria
that impose requirements that the prompt tracks be associ-
ated with the primary vertex. Also included is the uncertainty
in the product of the luminosity multiplied by the eþe� !
�þ�� cross section (1%). If the weighting of the invariant
mass distribution of the �� ! ��K0

SK
0
S�� MC decays is not

included (or another weighting scheme is used), we find the
change in the measured branching ratios to be negligible
compared with the other systematic uncertainties.
In Fig. 2 we plot the (��K0

SK
0
S), (�

�K0
S), and (K0

SK
0
S)

invariant mass distributions. The contribution of the
K�ð892Þ resonance (K� ! ��K0

S) is observed in the

(��K0
S) invariant mass plot and the Dalitz plot in Fig. 2.

The �� ! ��K0
SK

0
S�� branching fraction is in good

agreement with the previous measurements of ð2:6�
1:0� 0:5Þ � 10�4 [3] and ð2:3� 0:5� 0:3Þ � 10�4 [4].
The theoretical prediction for the �� ! ��K0

SK
0
S��

branching fraction is 4:8� 10�4 [16]. Decays involving
a pion and two kaon mesons can have contributions from
both axial and vector currents at the same time, and the
vector contribution for �� ! ��K0

SK
0
S�� is estimated to

be 1:4� 10�4 [16].
Assuming isospin symmetry [17] and using other

measurements, we can estimate the �� ! ��K0
SK

0
L��

branching fraction. The �� ! ��K0 �K0�� and �� !
��KþK��� branching fractions are equal if isospin is an
exact symmetry (the �� ! ��K0

SK
0
S�� and �� !

��K0
LK

0
L�� branching fractions are also equal).

Hence Bð�� !��K0
SK

0
L��Þ¼Bð�� !��KþK���Þ�

2Bð�� !��K0
SK

0
S��Þ and we obtain

Bð�� ! ��K0
SK

0
L��Þ ¼ ð9:8� 0:5Þ � 10�4
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where Bð�� ! ��KþK���Þ ¼ ð14:4� 0:4Þ � 10�4 [2]
based on measurements from BABAR [18] and Belle
[19]. The prediction is in good agreement with the branch-
ing fraction measured by ALEPH of ð10:1� 2:3� 1:3Þ �
10�4 [3].

The (��K0
S) invariant mass distribution for events that

pass the �� ! ��K0
SK

0
S�

0�� selection show evidence for

K�� peak (see Fig. 3). The (�0K0
S) invariant mass has an

excess near 0:9 GeV=c2 in data with respect to the MC
simulation suggesting that K�0 mesons may also contribute
to this decay. We model the �� ! ��K0

SK
0
S�

0�� decay

using �� ! K��K0�0�� and �� ! K�0K0���� because
a model based on a phase space distribution of the final state
particles does not describe the (��K0

S) invariant mass dis-

tribution. The relative contribution of �� ! K��K0�0�� to
�� ! K�0K0���� decays is determined to be (0:17�
0:03) by simultaneously fitting the (��K0

S) and (�0K0
S)

invariant mass distributions (see Fig. 3). The predicted
Monte Carlo distributions are fit to the data spectra after
the subtraction of the �� ! ��K0

SK
0
S�� and background

events. The normalizations of the two modes are varied with
the constraint that the values be positive numbers. If we do
not include the �� ! K�0K0���� decay, then we observe a
disagreement between the data and MC samples in the
lower-mass and higher-mass regions of the Mð��K0

SÞ and
Mð�0K0

SÞ distributions in Fig. 3.

The same criteria are used to select �� ! K�K0
SK

0
S��

and �� ! K�K0
SK

0
S�

0�� decays except that the charged

track is required to be a kaon. The numbers of events are
given in Table II and found to be consistent with the
estimated background prediction. The background is
almost entirely due to cross feed of �� ! ��K0

SK
0
S��

and �� ! ��K0
SK

0
S�

0�� decays and very little back-

ground from q �q events. The branching fractions are deter-
mined for each channel independently and used to place
upper limits on the branching fractions of

Bð�� ! K�K0
SK

0
S��Þ< 6:3� 10�7;

Bð�� ! K�K0
SK

0
S�

0��Þ< 4:0� 10�7;

at the 90% confidence level.
The �� ! K�K0 �K0�� and �� ! K�KþK��� branch-

ing fractions are also predicted to be equal assuming iso-
spin symmetry. The �� ! K�KþK��� branching fraction
is ð2:1� 0:8Þ � 10�5 [2] based on measurements from

BABAR [18] and Belle [19]. BABAR finds that a �� !
K���� contribution can account for all of the
�� ! K�KþK��� decays. This suggests that the �� !
K�K0

SK
0
S�� and, consequently, the �� ! K�K0

SK
0
S�

0��

branching fractions should be small in the limit of isospin
symmetry.
In summary, we have measured the branching

fractions of the �� ! ��K0
SK

0
S�� and �� !

��K0
SK

0
S�

0�� decays to be ð2:31� 0:04� 0:08Þ � 10�4

and ð1:60� 0:20� 0:22Þ � 10�5, respectively. The �� !
��K0

SK
0
S�� decay can be modeled with �� ! K��K0��,

and the �� ! ��K0
SK

0
S�

0�� decay can be modeled with

��!K��K0�0�� and ��!K�0K0����. The �� !
��K0

SK
0
S�� branching fraction is a significant improve-

ment on the previous measurements and the �� !
��K0

SK
0
S�

0�� branching fraction is the first measurement.

In addition, we place the first upper limits on the branching
fractions of 6:3� 10�7 and 4:0� 10�7 on the �� !
K�K0

SK
0
S�� and �� ! K�K0

SK
0
S�

0�� decay modes at the

90% confidence level.
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TABLE II. Results for the charged kaon decays. The background events are primarily q �q
events.

Decay mode �� ! K�K0
SK

0
S�� �� ! K�K0

SK
0
S�

0��

Branching fraction ð1:9� 3:0� 0:3Þ � 10�7 ð1:5� 1:8� 0:1Þ � 10�7

Limit (90% CL) 6:3� 10�7 4:0� 10�7

Events

Data 23 1

Estimated background 20:0� 0:5 0:15� 0:02
Selection efficiency ð3:85� 0:04Þ% ð1:37� 0:03Þ%
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