
Improving Service Level Agreements for a Job

Scheduler by Visualizing Simulations

by

Dina M. Betser

S.B., Massachusetts Institute of Technology (2011)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2012

c© Massachusetts Institute of Technology 2012. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 1, 2012

Certified by. .
Dr. John Wilkes, Principal Software Engineer, Google, Inc.

VI-A Company Thesis Supervisor
Thesis Supervisor

Certified by. .
Asuman Ozdaglar, Associate Professor

MIT Thesis Supervisor
Thesis Supervisor

Accepted by .
Prof. Dennis M. Freeman

Chairman, Masters of Engineering Thesis Committee

Improving Service Level Agreements for a Job Scheduler by

Visualizing Simulations

by

Dina M. Betser

Submitted to the Department of Electrical Engineering and Computer Science
on May 1, 2012, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Currently, job owners at Google do not have a good way to generate suitable Service
Level Agreements (SLAs), which means that they cannot accurately communicate
their intentions to the job scheduler. This means that the owner’s job might not
finish on time or at all. The solution described in this thesis helps users visualize
design changes to SLAs and use simulation to explore the behavior resulting from
the SLAs. I have designed and begun development of a visualization and simulation
framework that allows users to see how the job scheduler’s behavior might vary under
different SLA parameters. This thesis describes the steps made towards designing
and implementing a system that both helps users visualize SLAs and their reward
functions, and allows users to create an SLA and gain an idea of the behavior of a
job scheduler with the SLA as input.

Thesis Supervisor: Dr. John Wilkes, Principal Software Engineer, Google, Inc.
Title: VI-A Company Thesis Supervisor

Thesis Supervisor: Asuman Ozdaglar, Associate Professor
Title: MIT Thesis Supervisor

3

0.1 Acknowledgments

I am so grateful for the many people who made this thesis possible. My M.Eng.

project has been the greatest academic challenge I faced up to this point in my life,

and as such, it proved to be an extremely educational growing experience. I really

appreciate everybody who has touched my life up to this point and has enabled me to

achieve what I have, but there are a few people whose contributions deserve additional

recognition.

There are a lot of people who helped me during my time at Google. Dr. John

Wilkes, my Google intern host on the Omega team, was incredibly giving in both his

time and creative ideas. I was very fortunate to have a thesis supervisor who was

so knowledgeable and patient in helping me with so many aspects of this project.

The other person whose assistance with this project has been invaluable was Malte

Schwarzkopf, who was my go-to grad student for technical guidance. He has done

everything from explaining the details of the simulator used in my project to helping

me debug arcane source control issues. I am very grateful to Evan Adams, another en-

gineer at Google, who taught me a lot about software engineering and helped prepare

me for a career in software engineering by emphasising software skills. Others who

made a significant impact during my time at Google include Surabhi Gupta, Gloria

Guo, and Dr. Dimitris Nakos. I was privileged to work with the Roma team, where I

gained valuable skills in data visualization and learned a lot about the infrastructure

that manages Google’s compute clusters. There have been many more amazing, bril-

liant people at Google who have been invaluable over the past three years. Although

I have not listed them here, I greatly appreciate their time and am looking forward

to working with them again in the future.

I acknowledge my MIT thesis advisor, Professor Asu Ozdaglar, for providing guid-

ance on the MIT-end of the thesis process. Professor Paul Gray was and continues to

be an outstanding Course 6 advisor, and I feel so lucky to have been able to benefit

from his advice and tutelage over the past four years. Thank you to those involved

with the 6A program, including Professor John Guttag and Anne Hunter.

4

Thank you to my friends, whose encouragement and advice kept me going through-

out the process. Special thanks go out to Jenny Liu, who acquainted me with the

MIT thesis process and assisted me in fine-tuning my final project presentation, and

to Jesse Dunietz, who helped me in the initial phases of designing and executing my

project.

A very special thank you goes out to my parents and grandparents for always

being supportive and believing in me. Without my family, I’d hardly be where I am

today. They always know just what I need and make sure I’m headed on the right

track.

5

Contents

0.1 Acknowledgments . 4

1 Introduction and Background 8

1.1 Problem . 8

1.1.1 Motivating example . 9

1.2 What is Omega? . 10

1.3 Related Work . 11

1.4 Contributions . 14

2 SLA Formulation 16

2.1 SLAs at Google . 17

2.1.1 Contributions to SLA Infrastructure at Google 19

2.2 SLAs for Job Scheduling . 19

2.2.1 SLAs for Google’s Batch Job Scheduler 20

2.2.2 SLAs for Google’s Future Batch Job Scheduler 21

2.3 Use Case . 23

3 System Design and Implementation 25

3.1 Frontend – User Interface . 25

3.1.1 Overview . 25

3.1.2 Why GWT? . 26

3.1.3 Dashboard infrastructure . 27

3.1.4 Modifications . 28

3.1.5 Simulation Service . 29

6

3.1.6 Screenshots . 30

3.2 Backend . 32

3.2.1 Outer Simulator . 32

3.2.2 Monte Carlo Simulator . 35

3.2.3 Inner Simulator . 38

4 Future Work and Conclusion 42

4.1 Future Work . 42

4.1.1 Monte Carlo Simulator – Achieving variance in start times . . 42

4.1.2 Job completion times . 47

4.1.3 Job admission control using SLAs 47

4.2 Conclusion . 48

7

Chapter 1

Introduction and Background

1.1 Problem

Google has one of the most complex distributed computing infrastructures in the

world. Within Google’s cluster management system, job owners run computing

jobs—essentially, programs within a cluster environment—that must be scheduled

and managed by Google’s job scheduler.

It would be advantageous for job owners to inform the job scheduler how important

it is for their jobs to be run soon or at all. Google’s current job scheduler is unaware

of this information – currently, the scheduler uses a job’s details about its priority,

job shape (i.e., resource requirements), and constraints (e.g., machine type, external

IP) to determine which jobs to schedule first. Schedulers could use more information

from jobs to exert finer-grained control over jobs’ timing constraints. Moreover, job

owners could use help in expressing these kinds of needs in a formal way, such as

in the form of SLAs (Service Level Agreements). An SLA is a machine-readable

document that describes a contract between a service provider and consumer. An

SLA defines contractual obligations that produce revenue or result in cost penalties; it

specifies a service consumer’s needs along with rewards provided to a service provider

upon meeting those needs. WS-Agreement [7], a Web Services protocol to establish

agreements between two services, details one method of creating SLAs, and Google

has expanded upon this model to support SLAs for some of its services.

8

Currently, job owners do not have a good way to generate suitable SLAs. They

are not directly aware of the effects that setting certain SLA parameters will have

upon the services in question, so they lack all the necessary information to generate

an SLA that will support their desired levels of service. This causes delayed and

dropped jobs because job owners cannot communicate their intentions.

1.1.1 Motivating example

Figure 1-1: An example of the type of scheduling problem the current job
scheduler cannot successfully manage. Out of the three job attributes of duration,
deadline, and priority, the job scheduler currently only uses priority in making
scheduling decisions.

Figure 1-1 provides an example of how the current cluster management system is

ill-equipped to address certain job scheduling scenarios. Job owners may have different

scheduling desires, but out of the three job attributes of duration, deadline, and

priority, the job scheduler currently only uses priority in making scheduling decisions.

In this example, there are two batch jobs to be run on the cluster. Both jobs have

a duration of 2 hours; Job A needs to be completed within 4 hours, while the other

is worthwhile to its owner if and only if it is done within 2 hours. Currently, jobs

have no way to specify these types of temporal constraints (e.g., “completed within X

hours,” and similarly, “started within Y hours”). Instead, the current job scheduler

simply uses the priority value of the jobs in determining which job to run first. In this

case, Job A would be run first because of its higher priority value, so Job B would

9

miss its deadline. However, if the jobs were run in the opposite order, both could be

completed while satisfying their respective constraints. If the scheduler knew about

these temporal constraints, it could make a better decision when scheduling the jobs

and start Job B before Job A, allowing both jobs to be run successfully. In other

words, the ordinal ranking of job priority is not everything. As this example suggests,

more should be done to take into account other attributes of a job such as duration

or deadline when making scheduling decisions.

1.2 What is Omega?

This work focuses on Omega, Google’s next-generation cluster management system.

Omega will be responsible for scheduling and running computing jobs on Google’s ex-

tensive computing infrastructure. Omega’s underlying motivation is to support multi-

ple, independent, application-specific schedulers in a single cell, with each scheduler’s

scheduling policy adjusted based on the type of workload the scheduler is designed

to face. In the Google context, a “cell” refers to a logical unit of some number of

machines within a data center. These schedulers, or “scheduling verticals,” could

process different categories of jobs and use additional information about the jobs to

make wiser scheduling decisions.

Plans are already in place to include at least two scheduling verticals in Omega:

one for service jobs, and one for batch jobs. These two categories of jobs have different

scheduling needs. Service jobs, such as continuously-running web servers, are typically

user-facing and latency-sensitive, which means that a delay in job output can be very

problematic. Batch jobs, such as MapReduce jobs [11], are often throughput-sensitive,

which means that while they might be more tolerant of delays or bursts in processing,

the rate at which the job is processed must remain high. A batch job tends to be

concerned with how soon it is able to start and complete.

Omega has a central shared state, or “cell state.” The Omega cell state tracks

machines, collections (jobs), and the tasks within a job, and also maintains a calendar

of allocation decisions. This calendaring means that the cell state has a notion of the

10

future, so jobs can reserve resources in advance.

This work serves, in part, to explore the possibility of using SLAs to make schedul-

ing decisions in Omega. Because Omega plans to support specialized scheduling ver-

ticals, it is possible that a scheduling vertical could be made to focus on jobs with

timing constraints specified as Service Level Agreements. Eventually, jobs with SLAs

could be processed by a specialized scheduling vertical in Omega.

1.3 Related Work

SLAs are being used by many computing services to improve resource utilization,

price-performance, and user satisfaction. In the context of grid and web services,

SLAs are essentially thought of as electronic contracts, which are expected to be

negotiated fully automatically (i.e., without any human intervention) and, as such,

must be machine-readable and understandable to the humans who generate the SLAs.

An SLA can be considered a legally binding contract that specifies the terms and

levels of certain services. The parties of an SLA can be distinguished into providers

and consumers of a service. The terms of the SLA are agreed upon between service

providers and service consumers.

Forms of SLAs have been in operation since the 1960s, when they were used as

a method for buying minutes of computer machine time [22]. More recently, SLAs

became more widespread as a means of making agreements when providing network

services. Most of these agreements were paper-based and were drawn up after some

form of negotiation between appropriate parties. Sakellariou and Yarmolenko [22]

have argued for providing more flexibility in the level of service offered by supercom-

puting resources, such as by making separate SLAs between the resource owner and

the user who wants to submit and run a job on these resources. The idea of providing

this kind of flexibility ties in with the concept of utility, which is closely intertwined

with SLAs. Utility as it relates to SLAs is explored in [25], which also describes the

negotiation process between clients and service providers to achieve the best possible

utility.

11

Many of Google’s peers, such as HP [23], are studying optimization of resource

allocation, wherein utility plays a large role in how resources are allocated. Within

Google, elastic resource scaling has been tested to use historical resource usage data to

adjust application resource demands automatically [12]. This relates to SLAs in that

SLAs are one way to determine how to allocate these resources by observing utility

values. Issues specifically related to the usage of SLAs for resource management on

the grid are addressed in more detail in a number of other papers in the literature,

such as by Naik, et al. [19]

Another significant area of research relates to the economic aspects associated

with the usage of SLAs for service provision (e.g., charges for successful service pro-

vision, penalties for failure, etc.). Menache, et al. [16] takes a theoretical approach to

describe how to maximize the aggregate utility of individual users together with the

service provider (minus load-dependent operating expenses), assuming that a central

controller may regulate admission and resource allocation to each arriving job based

on the job’s type. The main assumption is that in a cloud computing environment,

the completion time and user’s utility may depend on the amount of computing re-

sources applied to the job. Convexity arguments are used to establish existence and

uniqueness of the “social optimum,” where aggregate utility is maximized. Finally,

it is suggested that the social optimum may be induced by a linear usage-based tar-

iff, which charges a fixed amount per unit time and resource from all users. While

[16] focuses on a theoretical abstraction of the scheduling problem rather than im-

plementation details, it provides an additional lens from which to examine the work

described in this thesis.

Recently, there has been a significant amount of research on various other topics

related to SLAs. Issues related to the overall incorporation of SLAs into grid archi-

tectures were discussed by Mobach, et al. [18]. Additionally, NextGrid [3] proposed

SLAs as well as a negotiation approach, which were modelled according to business

objectives of both customers and service providers [26].

Work completed by the Open Grid Forum led to the development of WS-Agreement

[7], a specification for a simple generic language and protocol to establish agreements

12

between two parties. Each of the two parties can initiate or respond to the agree-

ment. The agreement structure of WS-Agreement was composed of several distinct

parts, specifically Name, Context and Terms of Agreement, the latter of which was

also divided into service description terms and guarantee terms. Service descriptions

terms mainly described the functionality to be delivered under the agreement. The

guarantee terms defined the assurance on service quality for each item mentioned in

the service description terms section of the WS-Agreement. In the specific context

of job submission, such assurances were defined as a parameter (constant) or bounds

(min/max) on the availability of part or the whole of the resource.

The ideas and specifications for the “cheap-and-simple” and “by-deadline” SLA

reward functions described in this thesis were generated after looking at other exam-

ples. The shape of the “cheap-and-simple” SLA’s reward function is similar to the

“soft deadline” of [24], defined as a monotonically decreasing function determined by

pairs of points. The “by-deadline” reward function shape was inspired by the utility

function described in [20], which has a similar shape of a positive horizontal segment,

followed by a downward-sloping segment, followed by a negative horizontal segment.

In addition to the work described in the literature, significant work has been done

within Google to deploy SLAs as a way to further automate the interactions between

providers and consumers of services. Within Google, the Census team defined SLIs,

SLOs, and SLAs [6]. Ahmadi built a PID controller for SLAs for the service that

serves as the lowest level of Google’s storage stack. This controller tuned the service

to maximize the reward defined in the SLA, thus demonstrating the use of machine-

readable SLAs to Google. Ahmadi’s code evaluating how well an SLA has been met

was used as a basis for calculating rewards in this project.

Visualizing SLAs and SLA-induced system behavior required deciding along which

dimensions to display the data. The work done by Kim [15] during Summer 2010 at

Google in visualizing SLOs served as a tool for viewing the data dimensions of SLO

performance. Kim’s goal was to build a web-based visualization tool that took in

machine-readable SLO documents, displaying the interesting/problematic parts of

the service, and reporting causes of the problems. Kim’s work with SLO visualiza-

13

tion techniques demonstrated one way to display aspects of the multi-dimensional

space of how a service is doing against its SLOs. Kim’s project also provided some

infrastructure for this thesis project’s SLA visualization aspect. Kim’s visualizations

focused on SLOs, lacking the necessary component of the reward function to fully rep-

resent SLAs. Because the reward function of the SLA determines its performance and

utility, the reward function for each SLA figures prominently in the final Omega SLA

Simulator visualizations. The Google Web Toolkit (GWT) framework, as described

in Section 3.1.2, was useful in implementing these visualizations.

Additionally, the concept of “job shape,” which includes the amount of RAM,

CPU, and disk required by the job, is detailed by Mishra, et al. [17] This concept

was useful in encapsulating the dimensions used by batch jobs for job scheduling

simulations. It provided a way for the users and the simulator itself to refer to jobs

with consistent terminology.

1.4 Contributions

The first contribution of this project was to design a way for jobs to specify temporal

constraints in the form of SLAs. Beyond that, the contributions of this work can be

divided into two categories: improving understanding and improving predictability

with respect to job scheduling.

Both of these tasks motivated the design of a simulation platform that takes into

account the temporal constraints expressed in SLAs. As part of this work, I designed

the platform to provide a way for job owners to visualize SLAs and the behavior

induced by a given SLA. It is designed to help the user understand the design space

of SLAs and guide the user towards an SLA that maximizes utility. This involves using

the job owner’s willingness-to-pay to inform job owners ahead of time how likely a job

is to start successfully in the desired time frame. To help users visualize “what-if”

scenarios, this project included the implementation of a user interface that supports

manipulating the parameters of an SLA and observing the results of simulation.

At the time of this project’s execution, Omega was still a prototype, not running

14

in production. Therefore, exploration into Omega-style scheduling was begun through

a discrete-event-based simulator. For our purposes, simulation proved useful in that

simulators enable the capability of running “what-if” scenarios for a system, without

having to use the real-world system [9]. In this case, using a discrete-event simulator

allowed us to prototype SLA-based scheduling for our system without Omega yet

being fully functional or fast.

This thesis builds upon the related work described in Section 1.3, by designing a

system that includes a user interface to present the effects of different SLA settings

on the start times of jobs within the Google cluster computing system. The system

communicates with SLA users in a way that feeds back to the user the effect of

proposed SLA parameters on job execution performance.

This thesis describes systems at Google that may or may not be deployed in

production. It describes the state of affairs at the time I left Google, and current

plans may no longer be the same. It also makes forward-looking statements about

what could be possible; it does not mean to imply that these outcomes will actually

occur.

Within this thesis, Chapter 1 has provided some background and an overview of

relevant work on SLAs. Chapter 2 describes how SLAs are implemented at Google,

including the contributions of this work that have extended support for SLAs at

Google. Chapter 3 describes the design and implementation of the system built to

address the problem described in 1.1. Chapter 4 provides ideas for future exploration

and concludes this thesis.

15

Chapter 2

SLA Formulation

One of the main tasks within this project was producing Service Level Agreements

that could be used to encapsulate a job’s desired service levels and the user’s will-

ingness to pay for them. In order to communicate these to the service provider,

which could be any of Google’s shared services such as Bigtable [10] or Google’s job

scheduler, the SLAs must be translated into a machine-readable format.

SLAs address this problem by providing a way for people to indicate just how

important it is to them to maintain their service levels in the face of situations that

change resource availability. The job owner wants the job to perform as well as

possible given whatever situation the scheduler faces. Using an SLA, the scheduler

can know better how to make tradeoffs.

Thus, SLAs serve as a machine-readable negotiation mechanism between providers

and consumers of services. Without an SLA between them, the service provider may

fail to provide the service that the application requires. An SLA represents a contract

that encourages increased utility for all parties where utility, here, means that both

sides have their needs met: the service provider does not want to spend time on tasks

that have no value, and the job owner wants to get as much done as possible.

Within this chapter, Section 2.1 details the existing support at Google for SLAs

and my contributions. Section 2.2 describes SLAs introduced by this work, specialized

for the purpose of job scheduling. Section 2.3 provides an example use case for the

system.

16

2.1 SLAs at Google

Customers specify their service requirements in Service Level Objectives (SLOs),

and an SLA augments SLOs with rewards and penalties for service levels provided.

Previous work at Google provided design principles for the infrastructure of an SLA,

including definitions for service levels, Service Level Indicators (SLIs)1, Service Level

Objectives2, and Service Level Agreements (SLAs)3 in the form of a set of machine-

readable documents (protocol buffers [4]) for all the SLA’s items.

SLAs are designed to support any reward scheme with arbitrary complexity [6].

In general, a reward is a function of all SLIs and targets defined in an SLO between

the service provider and consumer. The reward value output by an SLA takes the

following factors into account:

1. How much a customer cares about violating each SLO target individually.

2. How much a customer cares about violations of multiple targets when considered

together.

SLAs are structured in a way such that they can assign reward values to the

objectives defined in an SLO instance. SLAs support reusable and custom-made

reward functions. Figure 2-1 demonstrates the structure of the components that

make up an SLA at Google.

An SLA is composed of SLALineItems that describe the reward associated with

SLOLineItems. An SLALineItem describes how the agreement assigns rewards for an

SLOLineItem and penalizes its violation. Each SLOLineItem describes a target for a

specific SLI. For example, an SLOLineItem’s SLI can specify that the average latency

over a certain time interval should be less than 30 ms.

1 Service Level Indicator (SLI): The measurements associated with a service level: a metric of
the service’s and service consumerr’s actual behavior.

2 Service Level Objective (SLO): The desired quantity of a given service level. This includes a
clear specification of both what is to be measured and tools to take and collect the measurements.

3 Service Level Agreement (SLA): The combination of an SLO and a specification of the results of
meeting or failing to meet the SLO (a reward or penalty). With an SLA between a service consumer
and a service provider, the consumer can specify the business consequences of not being able to meet
its objectives, while the service provider can specify the consequences if a customer overloads it and
can decide how to make tradeoffs if it cannot meet all its SLOs.

17

Figure 2-1: The components that make up an SLA at Google.
An AggregationFunction consists of multiple SLALineItems, each of
which contains a RewardFunction that references QualityFunctions and
SLIQualityFunctions. QualityFunctions can refer to any number of
SLOLineItems.

For the SLOLineItem described above, an SLALineItem in its simplest form can

specify a reward of 100 if the average latency is less than 30ms and –50 otherwise.

In the case where we are interested in particular combinations of latency and an-

other factor specified by an SLI, multiple SLOLineItems are mapped into a single

SLALineItem.

In order to increase the reusability and readability of SLAs, the reward calculation

process is split into two functions. Quality value only considers how the customer

prioritizes violating a particular SLOLineItem. Reward value considers the relative

importance of different performance targets for a single customer (e.g., latency versus

throughput).

Based on this decoupling, SLALineItems consist of a QualityFunction and a

RewardFunction. A quality function takes exactly one SLOLineItem and produces a

positive scalar value that indicates how well the SLOLineItem has been met. A value

of 0 means that the objective has not been met at all and 1 means that it is fully

satisfied. Values larger than 1 can be used to indicate that the performance is better

18

than the objective. A reward function assigns reward to the value produced by the

quality function. Penalties are merely negative rewards. Unlike quality functions,

reward functions are simply a general mathematical function.

Within Google, reward is specified in units of SWE-hours, which can be thought

of as “funny money,” as these units are used to obfuscate the actual dollar value of

the resources. When looking at reward, the relative values of the units that are used

are what really matter.

2.1.1 Contributions to SLA Infrastructure at Google

As part of my work, I made modifications to Google’s existing set of SLO protocol

buffers to support SLAs for Google’s job scheduler. These modifications included

allowing an SLA’s reward function to change based on how the service did in abso-

lute terms, rather than how it did in relation to a target SLO. Within this model,

QualityFunctions generate a quality value, a measure of how well an SLO is being

met by an SLI. The quality value is then used directly within the reward function. I

added support for SLIQualityFunctions. Whereas a regular QualityFunction re-

quires an SLO for evaluation, SLIQualityFunctions generate a quality value for an

SLI without reference to an SLO.

Additionally, because part of my work emphasized allowing job owners to tweak

the values for various SLA parameters from the parameters’ default values, I incor-

porated support for max and min values for the reward function parameters so that

service providers could specify the extent to which parameter values could vary from

the default values.

2.2 SLAs for Job Scheduling

With SLAs, different desired behaviors are signalled by different shapes in the SLA’s

reward function. Thus, the challenge is to devise a set of default SLAs for a service

that encapsulates the tradeoffs that the service is willing to make.

In Omega, specialized workloads, such as MapReduce jobs, may be handled by

19

their own specialized scheduling verticals. The goal is to enable jobs in Omega to

specify SLAs. Then, an SLA-aware scheduling vertical might be able to look at SLAs

when making scheduling decisions.

This work focused on Omega’s batch job scheduler for a number of reasons. Batch

jobs are concerned with their start and finish times, unlike service jobs, which may

run continuously, so the metrics of start and completion time could be analyzed to

generate simple, useful SLAs. Additionally, there are a lot more batch jobs than

service jobs, so there is greater potential for impact. Finally, with Google’s current

batch job scheduler, a pricing scheme already exists; as part of this work, I investigated

the preexisting pricing scheme and used it as a basis for formulating new SLAs and

their accompanying reward functions.

In this work, the focus was on both the current batch job scheduler and the

next generation batch job scheduler within Omega, which may consider looking at

start time- or completion time-based SLAs in making scheduling decisions. The

time constraints of this project mandated that the focus be on SLAs for job start

times rather than job completion times; however, generating and using SLAs for job

completion times is an extension of this project that should work well for Omega in

the longer term.

2.2.1 SLAs for Google’s Batch Job Scheduler

In order to get a sense of the type of Service Level Agreement that might work for

Google’s future batch job scheduler, I began by formalizing a set of SLAs for the

existing batch scheduler. SLAs were generated by examining the current pricing

scheme used at Google for resources that are requested for batch jobs.

At Google, there are two prices, peak and off-peak. These prices represent the cost

of using resources at that time of day. There are a variety of options for scheduling

batch jobs that take this into account. One option runs the job as soon as the

resources are available, paying the price for the resources consumed, which ends up

being a mix of peak and off-peak pricing depending on when the job was requested.

Two factors enter into the reward function for this option’s SLA. The first factor is

20

the cost of the resources actually used, which is a function of how long the job was run-

ning and using resources in the cluster. This is modeled by an SLIQualityFunction

for each of the number of hours during off-peak and peak times. Thus there are qual-

ity values for both the amounts of runtime during peak hours and runtime during

off-peak hours. The other factor that enters into the reward function is the amount

of time it took for the job to start. This factor is represented as a QualityFunction

with an associated desired start time. This QualityFunction returns a quality value

less than 1 if the job does not start by this desired start time, and a value greater

than 1 otherwise. The expression for this SLA’s reward function can be found in

Example 1.

Example 1 Reward function for the existing batch scheduler. There are two compo-
nents to this reward function; if the SLO is unmet, the reward is 0. If the SLO is met,
the reward is determined by how long the job actually spends running during peak
times and non-peak times according to the batch scheduler resource pricing model,
where peak times are M-F 6am-6pm PST and non-peak times are all others.

if (delay_quality < 1)

return 0

else

return peak_runtime_quality + nonpeak_runtime_quality

With this reward function, jobs that start sooner are assigned a higher quality

value, which increases the overall reward for the scheduler.

One major difference between the SLAs for the current job scheduler and the

future job scheduler is that the current job scheduler does not support a penalty if a

job could not be scheduled by a desired time.

2.2.2 SLAs for Google’s Future Batch Job Scheduler

In discussion with those developing the Omega batch scheduler, there were two use

cases, each of which seemed to require its own SLA and accompanying reward func-

tion.

The first category includes jobs that desire a “cheap-and-simple” SLA – one that

is not expensive but is of reasonable quality. The reward function, in this case a

21

function of start time, is initially constant, and then asymptotically decreases towards

a minimum reward value as the start time increases. The reward is never negative

(see Figure 2-2). With this SLA, a job will always garner a positive reward for the

scheduler if it is scheduled, but the scheduler has an incentive to schedule it sooner

rather than later. The “cheap-and-simple” SLA includes parameters that control the

maximum and asymptotic minimum reward value and rate of decline.

Figure 2-2: The reward function of the “cheap-and-simple” SLA and its param-
eters.

The other SLA that batch job owners may wish to use is the “by-deadline” SLA.

This reward function is represented as a level positive reward, followed by a downward-

sloping reward line segment, followed by a level negative reward, also known as a

penalty (see Figure 2-3). This reward function shape was inspired by similar utility

functions derived by Popovici and Wilkes [20], and Irwin, et al. [14] The parameters

are the coordinates of the point where the reward starts to drop and the point where

the reward levels off after dropping. Users control the “max reward” and “max

penalty” values as well as at what start times the reward function has “knee points.”

With this SLA, the job scheduler can use the reward function to determine the best

time to run the job based on the rest of the scheduler’s load.

22

Figure 2-3: The reward function of the “by-deadline” SLA and its accompanying
parameters.

2.3 Use Case

As previously described, the Omega batch scheduler hopes to offer two default SLAs,

a “cheap-and-simple” SLA and a “by-deadline” SLA. Users would like to find the SLA

that will meet their needs, so they will want to tweak parameters on these default

SLAs to obtain the agreement they want.

To look at an example of what users might wish to do, let us examine “Bob,” an

imaginary user who represents a typical batch job owner at Google.

Bob has a batch job with two tasks that each have a demand shape of CPU: 1

core, Memory: 30 GB, Disk: 4.5 GB.

Bob wants his job to start in the next hour. Will Bob’s SLA give him what he

wants? The reward function of Bob’s SLA can be seen in Figure 2-4.

Bob’s goal is for his job to start by a certain time. Thus, the system needs to

allow Bob to communicate how soon he would like his job to start, for which he could

use a “by-deadline” reward function. Bob could then play “what-if” experiments to

explore and understand the scheduling behavior that his proposed SLA induces. In

this manner, job owners could use this tool to generate a proposed reward function and

observe its effects on a job for themselves. Visualization of the simulation results is

23

Figure 2-4: The reward function for Bob’s SLA.

key in reporting to the user how well the scheduler can satisfy the SLA on the desired

cell. By seeing the visualization of the simulation results, the user can ascertain if

the SLA encourages the desired behavior, and the user can tweak the SLA until the

visualized simulation results are closer to those that the user intended. This process

of tweaking the SLA helps the user understand how much he values the job being

started or completed by a particular time.

24

Chapter 3

System Design and

Implementation

This project is divided into a frontend and a backend. The frontend supports visu-

alization; the backend’s goal is to make predictions. These two functions correspond

to the contributions described in Section 1.4. The design of the system can be seen

in Figure 3-1.

The frontend, described in Section 3.1, consists of the Omega SLA Simulator

Dashboard, while the backend, detailed in Section 3.2, consists of a simulator, which

is divided into several components.

3.1 Frontend – User Interface

3.1.1 Overview

The user interface component of the SLA simulation system illustrates to users what

their options are in defining SLAs. It also informs the user of the results of various

SLA selections. This UI component allows those who wish to run jobs using the batch

scheduler to specify the job’s resources requirements (“shape”), the cell in which the

job should run, and an SLA for the job specifying its desired start time via a reward

function.

25

Figure 3-1: The design of the entire system.

This user interface is built using Google Web Toolkit (GWT) [2], a framework

for writing web applications in Java. It is based on existing dashboard software at

Google used elsewhere within cluster management.

3.1.2 Why GWT?

GWT is cross-browser compatible: the Java code is compiled into JavaScript/HTML

for all the major platforms. The JavaScript code needed for every browser is gen-

erated, but using deferred binding, each client can optimize which version is loaded

at runtime. On the programmer’s side, all the server and client code is written in

Java, which makes the development environment more uniform and consistent. The

GWT Protobuf RPC mechanism exposes the client-side API for GWT applications,

allowing for serialization and deserialization between the GWT client and server.

Additionally, pure JavaScript is hard to debug and lay out, whereas GWT has a com-

plement of cross-browser widgets that can be combined to build the interface. The

26

Model-View-Presenter (MVP) framework separates the concerns of the presentation

logic. Furthermore, GIN (GWT INjection) brings automatic dependency injection to

Google Web Toolkit client-side code. GIN is built on top of Guice, the generic Java

dependency injection framework at Google. These features of GWT make it a useful

framework with which to implement the user interface of the Omega SLA Simulator.

3.1.3 Dashboard infrastructure

The SLA Simulator Dashboard is based on existing dashboard software. Written

using GWT, the structure of this existing dashboard was similar to that needed

by the Omega SLA Simulator dashboard. Additionally, the dashboard relied upon

constructs relevant to the SLA simulator as well; for instance, the dashboard used a

ShapeCollection as the descriptor for a job, and executed its service requests for a

given set of cells or regions, just as the SLA simulator needed to do. The server logic

in the dashboard was replaced by code that communicated with the Omega simulator

on the backend.

The dashboard followed the MVP (Model-View-Presenter) design pattern, which

separates logically distinct layers in an application [21]. In the MVP paradigm, the

model stores data that can be displayed and modified by the user. The view, in

addition to displaying the data, responds to user input and UI events. The presenter

is the link between the model and view; it fetches data from the model and passes it

along to the view for display.

The MVP framework ties in with GWT’s Activities and Places paradigm. Activitys

are used to represent what the users are doing, and tend to perform actions such as

restoring state, loading a UI, or performing setup operations. Places are Java objects

that correspond to URL history tokens [5]; in this way, a Place represents a given UI

state. The dashboard only used one Place, the SlaSimulatorExplorerPlace, and

this structure was retained in the Omega SLA Simulator Dashboard.

27

3.1.4 Modifications

All changes to the dashboard focused on the dual functions of 1) allowing SLAs and

their parameters to be used as input to the simulator and 2) obtaining and displaying

results from running simulations.

New view and associated component

Figure 3-2 demonstrates the relationship of the modified view (ResultsView) and

added view (SlaView) with the existing infrastructure.

Figure 3-2: UML diagram of the Java classes for the view hierarchy. The com-
ponent added (light gray) enabled SLA configuration. The existing results com-
ponent (dark gray) was modified to query the Omega SLA Simulator on the back-
end. Other dashboard components were renamed to start with SlaSimulator,
but were otherwise unchanged.

SLA view

Because the user needs to be able to select and customize a default SLA, there needs

to be a uniform method of selecting an SLA template from a list of options, and

specifying parameters for the chosen template.

Additionally, because SLA customization was an entirely new process that needed

to occur before the RPC calls were made to the simulation backend, a new pane on the

main page was built for this purpose. In addition to SLA selection, this pane needed

to support customization by providing input fields specifying parameters specific to

the selected SLA (see Figure 3-5 on page 31, which depicts the finished interface

28

including this SLA Pane). SLAs are built by the SLA component to be sent along to

the SLA simulator by RPC.

Results view

The existing dashboard already supported integration with GViz, Google’s Visual-

ization API, so modifications to the set of Result classes were aimed at displaying

the desired graphs for the SLA simulator. To do this, the data returned by the SLA

simulator needed to be translated into a GViz-ready format.

3.1.5 Simulation Service

The dashboard’s web server consisted of a collection of services (implemented by GWT

servlets) specialized for different purposes needed by the dashboard. The service that

provided a list of cell names (SupplierInfoService) was usable. However, to fetch

simulation results from the SLA simulator, a new service needed to be created (see

Figure 3-3).

Figure 3-3: The relationship between the “frontend” and “backend.” The fron-
tend is a GWT application that consists of a GWT client and GWT server that
communicate using GWT ProtoBuf RPC. The GWT server communicates with
the backend using Stubby (Google’s RPC layer). The gray component was built
to communicate with the SLA Simulator.

The class diagram in Figure 3-4 demonstrates how the GWT ProtoBuf RPC

pattern was used for this service. SlaSimulatorClientService has the same method

signatures as SlaSimulatorService, except that an asynchronous callback function

was added as a parameter for the return value. The SlaSimulatorExplorerActivity

29

instance, which serves as the Presenter in the MVP framework, is responsible for

passing request and response objects to and from the GWT server.

Figure 3-4: This figure explores the inner structure of the GWT client
and server depicted in Figure 3-3. Each box pictured is a Java class.
SlaSimulatorExplorerPlace has an instance of each model, and represents the
state of the client. SlaSimulatorExplorerActivity acts as a presenter in the
MVP pattern by presenting SlaSimulatorExplorerPlace, and is also respon-
sible for making calls to the GWT server to receive simulation results. New
components have a gray background.

The class SlaSimulatorService was implemented as a client stub that issues

RPCs to the Omega SLA simulator, thus delegating all user requests to the simulator.

3.1.6 Screenshots

The final version of the Omega SLA Simulator user interface has four panes, each

separated by a header in red text, (see Figure 3-5). The first two panes, the Shapes

pane and the Cells pane, are largely reused from the existing dashboard. The Shapes

pane uses a set of shapes to represent a job; each shape corresponds to a task. The

third pane, the SLA pane, allows for selection of a default SLA and customization of

the fields of the selected SLA. The fourth pane, the Results pane, displays two graphs

using GViz.

In the third pane, SLAs can be selected from the drop-down menu, and their

parameters can be updated via the widgets that appear after selection of an SLA. As

an extension, logic could be implemented for the currently stubbed-out “Load SLA”

30

and “Save SLA” buttons to load an SLA from an ASCII file or to save the current

SLA to an ASCII file

Two GViz charts of cumulative density functions (CDFs) for job start times and

rewards are displayed in the Results pane. In these CDFs, the X axis represents the

metric of interest, in this case, start time, and the Y axis stores percentiles. These

percentiles correspond to the results of running the job specified by the user multiple

times in a Monte Carlo simulation.

Figure 3-5: The Omega SLA Simulator user interface.

To demonstrate the type of visualization this tool is able to show the user, consider

the following scenario. Bob, from the use case described in Section 2.3, wishes to

develop and test an SLA that will induce the job scheduler to start his job in the

31

next hour. Figure 3-5 shows how Bob would go about this: he enters his job’s task

information to the Shapes pane, selects his desired cell, and then chooses the “by-

deadline” SLA from the drop-down menu. Using the default SLA that is loaded to

the UI, with the value for the maximum refund parameter set to “−1,” he requests

simulation by clicking the appropriate button, at which point the visualizations in the

Results pane are displayed (top half of Figure 3-6). Bob can see from the left chart

that at 3600 seconds (1 hour), the job would be started with about a 40% likelihood.

Seeing this, Bob might want to alter the default SLA to encourage the scheduler to

start his job sooner. For instance, he could change the value for the maximum refund

parameter to −3, thus increasing the penalty to the scheduler for starting the job

later. Bob would want to see that the likelihood of his job starting within one hour

increased. An improved result panel can be seen in the bottom half of Figure 3-6,

where the likelihood of the job starting within the hour has jumped to 80%.

3.2 Backend

The main components of the Omega SLA simulator backend are the outer simulator

layer, the Monte Carlo simulator layer, and the inner simulator layer. Components

will be described from outermost layer to innermost.

3.2.1 Outer Simulator

The outer simulator layer of the Omega SLA simulator is responsible for communi-

cating with the GWT frontend and for performing data processing on the simulation

results of the Omega multischeduler simulator on the backend. It consists of a Stubby

(Google’s RPC layer) server to interact with the Stubby client contained within the

GWT server and the modules that process raw probability density functions (PDFs)

output by the Monte Carlo simulator. The data flow diagram for the outer simulator

can be seen in Figure 3-7.

The outer simulator layer of the Omega SLA simulator is responsible for commu-

nication between the GWT frontend and the Monte Carlo simulator. This is a simple

32

Figure 3-6: An example of how the Results pane might look when Bob runs
the simulation with different values for the “Maximum refund” parameter of the
“by-deadline SLA.” In the top half of this figure, the parameter’s value is set to
−1, while in the bottom half, the value is −3.

33

Figure 3-7: The data flow diagram for the outer simulator component of the
Omega SLA Simulator.

34

Stubby server module written in Python that is designed to accept RPC calls from

the frontend and return the data needed to visualize the CDFs obtained from the

Result Aggregator module.

The PDF-to-CDF Converter module converts PDFs of one format into CDFs of

another format. The Monte Carlo Simulator will output a PDF of results, which

is translated to a CDF in the form of a GViz DataTable [1]. These CDFs, when

produced for multiple cells, can be placed onto a single set of axes by the Result

Aggregator. This way, a single graph can contain the CDFs of a given type for all

the desired cells.

The Reward Function Evaluator accepts a distribution of job start times. This

module produces a distribution of expected reward values, which is then fed into the

Result Aggregator. It does so by substituting each start time value in the distribution

of job start times into the reward function, and evaluating the resulting expression

to obtain a reward value. The reward values generated in this way are combined to

form a distribution of reward values. The Reward Function Evaluator makes a call

to the PDF-to-CDF Converter within its logic.

The purpose of the Result Aggregator module is to collect the results from simu-

lations for one or more cells and to reformat the results as a set of data for display in

two GViz DataTables, one for start time values, and one for reward values. There-

fore, when a set of cells are selected by the user for analysis, results can be displayed

succinctly. The GViz DataTables returned by the aggregator are sent by the Stubby

server to the frontend for display.

3.2.2 Monte Carlo Simulator

The purpose of the Monte Carlo simulator is to generate a distribution of start times

for a given job. It does so by submitting a job that has been annotated with an SLA

to the inner Omega SLA simulator. On a given submission, the question answered

is, “if the scheduler tried to run the job now, how long would it take to start the job

(or would this job fail to start)?”

Monte Carlo simulation builds models of possible results by substituting a range

35

of values – a probability distribution – for any factor that has inherent uncertainty.

It then calculates results over and over, each time using a different set of random val-

ues from the probability distributions. In this way, Monte Carlo simulation produces

distributions of possible outcome values. A single value cannot sufficiently describe

the uncertainty inherent in a variable with an unknown outcome. Probability distri-

butions are a more realistic way to describe such a variable.

Monte Carlo methods vary, but tend to follow a common pattern:

1. Define a domain of possible inputs.

2. Generate inputs randomly from a probability distribution over the domain.

3. Perform a deterministic computation on the inputs.

4. Aggregate the results from the previous step into a final computation to generate

a probability distribution of outcomes.

The result is an approximation to some unknown quantity.

The Monte Carlo simulator layer is responsible for making calls to the Omega

SLA simulator. Because every run of the simulator produces only one prediction of

the job’s start time, the inner simulator must be run a number of times to generate

a distribution of start times for the job.

Therefore, Monte Carlo methods are particularly applicable, as the Omega SLA

simulator is designed to arrive at the same deterministic result based on a given set of

inputs. The simulator is initialized with an initial cell state, and proceeds by running

a trace file that has been processed for simulation. These trace files contain the event

timing information necessary for replaying the execution history of the job scheduler

for a specified time period. This information includes details such as when a job’s

tasks started within the cluster and when they finished.

The normal use case for the simulation tool would be as a means of predicting

behavior for a live cell; users aiming to run their jobs now or in the near future

would like to know what would happen if they ran their jobs on live cell with current

36

resource constraints. However, to achieve a particular goal, it is often necessary to

use historical cell state data.

Currently, the historical traces and cell states that are used for simulation may

not represent a time when the cell was particularly busy. Because of this, a job that is

injected into the trace may not face much contention, and would be likely to schedule

quickly or immediately. In order to simulate a future, busier world, the cell size may

be shrunk or the offered load increased before running the simulation to increase

the competition for available resources. More contention leads to more interesting

behavior where SLA-based scheduling might make a difference.

To apply Monte Carlo methods, the main decision to be made is how to use ran-

domness to arrive at a reasonable simulation of the cell state. The Omega simulator’s

deterministic computation needs to be run multiple times, including an element of

randomness each time, to satisfy steps 2. and 3. above. This requires a source of

randomness, which, in this case, arise from two random number generators. The

random generator within the Monte Carlo simulator controller uses a deterministic

seed to produce a random number. This random number is provided as a seed to

the second random number generator that is within the inner Omega SLA simulator.

These random numbers will be used by the Omega SLA simulator to draw input

values from a probability distribution in order to achieve variance in the load that

the job of interest faces, and thus allow us to predict the future.

As described in Section 2.2, a distribution of job start times is desired as an in-

termediate goal toward obtaining a distribution of job completion times. Users want

to know how long their job will take to complete if submitted now, and the corre-

sponding expected reward for the job. The job’s start time is used as a crude means

of approximating the job’s completion time. Adding running-time information to the

simulation to support completion time prediction is an extension that is discussed in

Section 4.1.2.

There are a number of possible methods to achieve variance in the job start time

distribution. Because the time constraints of this project did not allow me to imple-

ment these methods, the ideas for achieving variance are discussed in the future work

37

section (see Section 4.1.1).

3.2.3 Inner Simulator

The Omega multischeduler simulator is an event-driven simulator that utilizes real

Google job scheduler scheduling logic and real workload traces. The Omega simulator

includes multiple scheduling verticals with a single underlying cell state, just as Omega

plans to do. Omega is described in more detail in Section 1.2.

The workload used by the simulator consists of historical trace data from Google’s

current job scheduler running in real cells. The simulator has been used for exper-

imental purposes within Google, and as such, there is comfort within the company

that its simulation results are a reasonable reflection of the scheduler’s anticipated

behavior.

The multischeduler simulator is a discrete event simulator written in C++. It

maintains a queue of events for arrivals and completions of jobs (“collections”) and

their tasks. The types of events processed by the simulator are as follows:

1. Collection Submitted

2. Collection Scheduled

3. Task Restarted

4. Task Ended

Within the simulation, the initial cell state is loaded from historical cell data, and

an initial trace-processing pipeline prepares historical trace data for the simulator.

Because the Omega multischeduler simulator supports specialized scheduling ver-

ticals, a key step in this project was to create a specialized SLA-aware vertical. In

this vertical, SLAs serve as the basis for decision making; in other words, for jobs that

have an associated SLA, the SLA’s reward function determines the order in which

jobs are scheduled. There are a number of algorithms that could be used to determine

this order:

38

Greedy with respect to maximum reward

This algorithm uses the instantaneous reward provided by the jobs’ reward functions

to decide which job is scheduled next whenever a pending job needs to be popped off

the queue. For instance, in Figure 3-8, we see that Job P has been waiting to start

for 100 seconds and has a current reward of 1.2 SWE hours, while Job Q has been

pending for 50 seconds, with a current reward of 1.5 SWE hours. This algorithm

would pick Job Y to schedule first because it would provide a larger reward to the

job scheduler.

Figure 3-8: Graphs of the current location on the reward functions for two jobs
with different reward functions that have been pending for different durations.
Job P has an SLA of type “by-deadline,” while Job Q has an SLA of type “cheap-
and-simple.”

Greedy with respect to soonest deadline

For jobs with SLAs of type “by-deadline,” meeting the job’s deadline is a huge in-

centive for the scheduler, as jobs provide a much larger reward before their reward

function’s deadline. Thus, if two jobs are of type “by-deadline,” and both are still in

the positive portion of their reward function, the one that is closer to the downward-

sloping portion of the reward function (Job M in the case of Figure 3-9) should be

started first.

Figure 3-9: Graphs of the current location on the reward functions for two jobs
with “by-deadline” SLAs.

Greedy with respect to negative rate of change

39

Another technique is to use the rate of change of the reward function – with multiple

jobs that are about to lose large amounts of reward, the rate of reward loss can be

taken into account. The job that is losing reward at a faster rate should be started

earlier. In Figure 3-10, both Job R and Job S are at the “knee point” of the curve,

where the reward begins to diminish sharply. Because the absolute value of the rate

of change is larger after the “knee point” in Job S, Job S should be run first. A

modified version of this algorithm could additionally take into account the values of

the maximum penalties to decide which job to run.

Figure 3-10: Graphs of the current location on the reward functions for two
“by-deadline” jobs with differing rates of change. Job S has a larger negative rate
of change than Job R.

Inner simulator modifications

While the work done here was not able to provide quantitative evidence for the

effectiveness of SLA-aware scheduling, a number of steps were taken to alter the

simulator to support SLA-aware scheduling, which could be built upon in the future.

1. An SLA-aware vertical was added that schedules jobs with SLAs. A sorting

function was written for the queue of pending collections that depends on SLAs.

It includes the logic to compare jobs with SLAs using an algorithm specified in

Section 3.2.3.

2. Support for shrinking the cell size was implemented to increase contention

within the cell.

3. Support was added for annotating jobs from traces with SLAs. This required

adding an SLA field to the protocol buffer containing the information for a

collection.

40

4. A shell script was created for the Monte Carlo simulator layer to interface with

the Omega simulator and allow for input and output.

5. The simulator was altered to stop running upon the start of the job of interest,

outputting that job’s start time at that point. This was because after the

simulation has output the job’s simulated start time, there is no additional

information to be extracted from the simulation.

6. As the job to simulate does not come from the preprocessed trace file, logic was

added to inject the job with an SLA into the simulator.

As a result of these modifications, the inner simulator reached a point where based

on a given injected job and starting state, a single start time value was output for

visualization. However, because a single simulated value is not enough to give a job

owner a thorough understanding of what might happen in a variety of situations, a

discussion of how to improve the variation in start times obtained from the simulator

is included in Section 4.1.1.

41

Chapter 4

Future Work and Conclusion

This document has described the work done to design and implement an SLA-based

simulation and visualization system for Google’s Omega job scheduler. Steps have

been taken to build this system, though there are more features and improvements

that could be used to extend the functionality of the existing system and enhance it

in the future.

4.1 Future Work

There are a number of ideas for extensions that could be made to the current Omega

SLA Simulator that merit further investigation.

4.1.1 Monte Carlo Simulator – Achieving variance in start

times

There are a few ways to introduce variation in order to generate a meaningful distri-

bution of job start times (see Section 3.2.2). However, the time constraints of this

project prevented detailed exploration, so they are left as future work. The following

are some ideas for ways to allow for simulation runs to produce variable results.

Method I: Start trace at different points

Given a single job trace, we could select a random value at any time during the

42

time covered by the trace and replay the trace until the desired point was reached,

injecting the job at that point. The fraction that is the output of the random number

generator (see Section 3.2.2) from the Monte Carlo simulator layer can be thought of

as a fraction of the total trace duration. The state of the cell would be different based

on where in the trace the simulation started, which would lead to different loads on

the cell and thus different start times for the job. A simulation of this type makes a

weaker statement than desired because the simulation could only present what would

happen if a job showed up at a random time within a trace, as opposed to what would

happen if a job showed up “right now.” The latter case is more useful to a job owner

who wishes to run a job on a cell. Figure 4-1 displays the process of injecting the job

into different points of the trace.

Figure 4-1: Within a single day’s trace, a time (represented by X = 14 h above)
can be chosen at random between 0 and 24 h. The trace can then be replayed
until that point, at which time the job can be injected.

Method II: Use different initial cell states/traces

Randomness can be used to select which day’s trace is used to replay the state. Thus,

instead of choosing the time within a given trace to inject a job, as in Method I, the

job is always injected at the beginning of the selected trace. The trace chosen is the

trace from X days ago, where X is a number chosen from a distribution of positive

numbers. The cell state and trace for the chosen day can then be replayed. Figure

4-2 shows how the day to simulate could be chosen.

This method is feasible, provided much of the setup work is done in a preprocessing

43

Figure 4-2: The day chosen can be a random number of days (X in the figure)
behind the current day (N).

stage to collect the historical job data for many different days. The random seed would

be used to select which day out of the set of possible days to try to run the job. While

this method is less complex than Method I, it similarly provides a weaker result than

desired, as it does not provide an estimate of the cell’s current ability to start the job

based on the current cell state; rather, it provides an estimate of the cell’s ability to

start the job were the cell usage to look like it did in the past.

Method III: Forward-looking predictions through synthesizing end times

for already-started jobs

The idea in Method III is to do forward-looking predictions from “now” for an in-

jected job. We assume that no new jobs arrive; therefore, it is only the already-started

jobs that contend with the injected job. We also assume that resources are released

when existing jobs end, but because no new jobs appear, only the injected job has

access to the resources as they are released. These assumptions are made to simplify

the simulation, as they mean that only the already-started jobs must be considered

in addition to the injected job. The random element is that the expected end time

of each of the already-started jobs is calculated by selecting a job duration from a

distribution of expected job durations.

In order to introduce variation from run to run, we pick running times at random

from a distribution for already-started batch jobs. Service jobs effectively run con-

tinuously, and as such, have no end time. A curve can be made to fit the historical

run time data of previously-completed batch jobs using regression analysis. A ran-

44

dom value can be selected from this curve to assign job timing information to each

already-started job in the trace.

Ideally, we could produce a graph that would allow us to calculate the future

remaining run time given the job’s current running time, as in the graph in Figure

4-3.

Figure 4-3: The distribution of job durations. The future run time can be
predicted by looking at the portion of the distribution following the current job
duration.

Implementing this would require measuring the distribution of running times for

jobs. Factors such as job type (batch or service), job size, and cell history for similar

jobs may be used to generate this distribution.

One issue is that the simulator does not know how long jobs that do not have

a “job arriving” event (i.e., already-started jobs) have already been running. The

simulator assumes that they were started at time t = 0 in the simulator. Therefore,

it would still be possible to produce an expected total duration distribution for the

jobs that can be applied as if the “already-started” jobs in the trace all started at

the time of the trace’s beginning. Alternatively, another way to introduce more noise

to the system is to generate both the start time and end time of the job from the

distribution. Then, the total time between start time and end time should be drawn

from the distribution (the “duration”), and this value can be apportioned between

the “elapsed time” (X) and “future time” (Y) (as in Figure 4-4). To apportion the

total duration into X and Y , a random fraction between 0 and 1, p, can be used as

45

follows:

X = duration× p (4.1)

Y = duration× (1 − p) (4.2)

Figure 4-4: The value of the job’s duration could be randomly apportioned
between X and Y . The total duration is the sum of X and Y .

Updating the end times of the “already-started” jobs would be fairly straight-

forward because when the cell state is initialized by the simulator, the jobs of type

“already-started” receive special treatment and could be assigned a synthetic end

time by using a random number to select a value from the distribution of end times.

Method IV: Forward-looking prediction through synthesizing jobs to

introduce into the simulation

An extension of Method III would be to synthesize additional jobs to introduce into

the simulation. Doing so would populate the future cell state with competitors in

the form of synthesized jobs. Factors such as the job’s size (resource requirements),

arrival time, and reward/penalty provided would need to be synthesized for every job

using a distribution of these factors along with the random number generator.

There are a number of tradeoffs involved in implementing Method IV instead of

Method III. Method IV is advantageous when trying to make a prediction of the

future occupancy of the cell. For instance, if a job owner submits a batch job at

noon, but the cell will be busy with other (short- and long-lived) work until 8pm,

Method III would fail to take that into account, but Method IV might be able to

do so because synthesized jobs could be incorporated at any point in the simulation.

Thus, Method IV removes one of the limiting assumptions of Method III, that no

46

further jobs are introduced past the initial already-started jobs. However, Method IV

would also add complexity because it involves generating a new workload consisting

of completely new jobs based on a multitude of inputs.

Recommendation for future investigation

Method II most likely requires the least change to the logic of the simulator code

itself, and as such should be the quickest method to implement.

Method I might be the next method attempted, because unlike method II, it

requires only one preprocessed trace, though it requires changing the simulator logic

to inject the job at a specific location in the trace.

Finally, Method IV could be implemented to improve the quality of results; how-

ever, because it involves generating a model for the distribution of start times and

changing the end times of jobs in the trace accordingly, it is more difficult and should

be implemented after one of the previous two methods has produced results.

One way to validate the results of the repeated simulation would be to compare

the synthesized conditions with conditions that happen later in the trace.

4.1.2 Job completion times

As suggested in Section 2.2, in addition to knowing when their jobs will start, batch

job owners would like to know how long it will take for their jobs to be completed.

To use simulation to gain a measurement for job completion times, a model and

accompanying “what-if engine” for batch job completion times would need to be

developed. Such a model would be analogous to a model previously developed by

Herodotou and Babu [13] for elapsed times of MapReduce jobs on Hadoop.

4.1.3 Job admission control using SLAs

Once the job scheduler is able to use SLAs in deciding which job to schedule first,

SLAs can be taken a step further: the scheduler can use the information provided

by a job’s SLA to decide which jobs to accept. If a given job’s expected outcome

yields a negative reward for the scheduler, then the scheduler should not agree to run

47

the job, thus forcing the job owner to change the SLA to a more profitable one for

the scheduler. In this way, SLAs could enable a profit-aware job admission control

algorithm, similar to the work done by Auyoung, et al. [8]

4.2 Conclusion

This work takes a step in using SLAs as a means of encapsulating additional infor-

mation about job owners’ service level requirements. The Omega SLA Simulator,

as designed, aims to help job owners understand what service levels they want and

gain better predictability with respect to job timing. The user interface helps users

visualize SLAs and reward functions and the scheduling behavior these SLAs in-

duce. Machine-readable SLAs have the potential to improve communication between

job owners and the scheduler, and it is my hope that their use will become more

widespread, thus narrowing the gap between services and their users.

48

Bibliography

[1] Google Visualization Data Tables. http://code.google.com/apis/chart/

interactive/docs/reference.html#DataTable. Accessed on October 20,
2011.

[2] Google Web Toolkit. http://code.google.com/webtoolkit/. Accessed on
August 30, 2011.

[3] NextGRID: Architecture for Next Generation Grids. http://www.nextgrid.

org/. Accessed on March 1, 2012.

[4] Protocol buffers. http://code.google.com/p/protobuf/. Accessed on June
17, 2011.

[5] Tokens in GWT. http://code.google.com/webtoolkit/doc/latest/

DevGuideCodingBasicsHistory.html#tokens. Accessed on January 29, 2012.

[6] Hossein Ahmadi, John Wilkes, et al. Census: The SLA Stack at Google. Project
Documentation (Internal to Google), June 2011.

[7] Alain Andrieux, Karl Czajkowski, Asit Dan, Kate Keahey, Heiko Ludwig,
Toshiyuki Nakata, Jim Pruyne, John Rofrano, Steve Tuecke, and Ming Xu. Web
Services Agreement Specification (WS-Agreement). Global Grid Forum, 31:1–47,
2007.

[8] Alvin Auyoung, Laura Grit, Janet Wiener, and John Wilkes. Service contracts
and aggregate utility functions. In In Proceedings of the IEEE Symposium on
High Performance Distributed Computing, pages 119–131, 2006.

[9] Jerry Banks, John Carson, Barry L Nelson, and David Nicol. Discrete-Event
System Simulation, Third Edition. Prentice Hall, 2000.

[10] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wal-
lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber.
Bigtable: a distributed storage system for structured data. In Proceedings of
the 7th USENIX Symposium on Operating Systems Design and Implementation,
OSDI’06, pages 205–218, Seattle, WA, 2006. USENIX Association.

49

http://code.google.com/apis/chart/interactive/docs/reference.html#DataTable
http://code.google.com/apis/chart/interactive/docs/reference.html#DataTable
http://code.google.com/webtoolkit/
http://www.nextgrid.org/
http://www.nextgrid.org/
http://code.google.com/p/protobuf/
http://code.google.com/webtoolkit/doc/latest/DevGuideCodingBasicsHistory.html#tokens
http://code.google.com/webtoolkit/doc/latest/DevGuideCodingBasicsHistory.html#tokens

[11] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. In Proceedings of the 6th conference on Symposium on Opearting
Systems Design & Implementation, OSDI’04, pages 137–150, San Francisco, CA,
2004.

[12] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. PRESS: PRedictive Elastic
ReSource Scaling for cloud systems. In Proceedings of the 6th International
Conference on Network and Service Management, CNSM’10, pages 9–16, Niagara
Falls, Canada, 2010.

[13] Herodotos Herodotou and Shivnath Babu. Profiling, What-if Analysis, and Cost-
based Optimization of MapReduce Programs. PVLDB, 4(11):1111–1122, 2011.

[14] David E. Irwin, Laura E. Grit, and Jeffrey S. Chase. Balancing risk and reward
in a market-based task service. International Symposium on High-Performance
Distributed Computing, pages 160–169, 2004.

[15] Han Suk Kim, Sunita Verma, and John Wilkes. Interactive visual exploration of
service level objectives. Technical Report CS2011-0966, University of California
San Diego, May 2011.

[16] Ishai Menache, Asuman Ozdaglar, and Nahum Shimkin. Socially Optimal Pric-
ing of Cloud Computing Resources. In ICST International Conference on Per-
formance Evaluation Methodologies and Tools, ValueTools 2011, Paris, France,
2011.

[17] Asit K. Mishra, Joseph L. Hellerstein, Walfredo Cirne, and Chita R. Das. To-
wards characterizing cloud backend workloads: insights from Google compute
clusters. SIGMETRICS Perform. Eval. Rev., 37:34–41, March 2010.

[18] David G. A. Mobach, Benno J. Overeinder, and Frances M. T. Brazier. A Re-
source Negotiation Infrastructure for Self-Managing Applications. In Proceed-
ings of the 2nd IEEE International Conference on Autonomic Computing (ICAC
2005), pages 381–382, Seatle, WA, June 2005. IEEE.

[19] Vijay K. Naik, Swaminathan Sivasubramanian, and Sriram Krishnan. Adaptive
resource sharing in a web services environment. In Middleware, pages 311–330,
Toronto, Ontario, Canada, 2004.

[20] Florentina I. Popovici and John Wilkes. Profitable services in an uncertain
world. In Proceedings of the 2005 ACM/IEEE conference on Supercomputing,
SC’05, page 36, Seattle, WA, USA, 2005.

[21] Mike Potel. MVP: Model-View-Presenter The Taligent Programming Model for
C++ and Java. Technical report, Taligent, Inc., 1996.

[22] Rizos Sakellariou and Viktor Yarmolenko. Job Scheduling on the Grid: Towards
SLA-Based Scheduling. Computer, 16:207–222, 2008.

50

[23] Thomas Sandholm and Kevin Lai. MapReduce optimization using regulated
dynamic prioritization. In Proceedings of the international joint conference on
measurement and modeling of computer systems, SIGMETRICS’09, pages 299–
310, Seattle, WA, USA, 2009. ACM.

[24] Xiaodan Wang, Christopher Olston, Anish Das Sarma, and Randal Burns.
CoScan: cooperative scan sharing in the cloud. In Proceedings of the 2nd ACM
Symposium on Cloud Computing, SoCC ’11, pages 1–12, Cascais, Portugal, 2011.

[25] John Wilkes. Utility Functions, Prices, and Negotiation. In Market-Oriented
Grid and Utility Computing, pages 67–88. John Wiley & Sons, Inc., Hoboken,
NJ, USA, 2009.

[26] Wolfgang Ziegler, Philipp Wieder, and Dominic Battre. Extending WS-
Agreement for dynamic negotiation of Service Level Agreements. Research Report
CoreGRID Project, TR-0172, 2008.

51

	Acknowledgments
	Introduction and Background
	Problem
	Motivating example

	What is Omega?
	Related Work
	Contributions

	SLA Formulation
	SLAs at Google
	Contributions to SLA Infrastructure at Google

	SLAs for Job Scheduling
	SLAs for Google's Batch Job Scheduler
	SLAs for Google's Future Batch Job Scheduler

	Use Case

	System Design and Implementation
	Frontend – User Interface
	Overview
	Why GWT?
	Dashboard infrastructure
	Modifications
	Simulation Service
	Screenshots

	Backend
	Outer Simulator
	Monte Carlo Simulator
	Inner Simulator

	Future Work and Conclusion
	Future Work
	Monte Carlo Simulator – Achieving variance in start times
	Job completion times
	Job admission control using SLAs

	Conclusion

