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Abstract

Evaluating the current structural stability of historical buildings is a challenging task.
Even the stability and structure of the original architecture is often poorly understood
and difficult to calculate. Using a laser point cloud scan as a template from which
to base the geometric reconstruction, we can more accurately capture the current
state of the cathedral. In order to analyze the structural stability, the building must
be discretized into a collection of adjacent geometric primitives. We have created
a system that allows a user to do a 3D reconstruction of these historical buildings,
particularly cathedrals, by fitting geometric primitives to the point cloud scan. There
are three major components to aid the user in reconstructing the architecture: the
user interface, data visualization, and the geometric fitting algorithm. The system
efficiently renders the point cloud from which the user can then select portions of
the point cloud to model. After the user provides a rough estimate of the geometry,
the geometric fitting algorithm snaps the selected geometry to the user’s point cloud
selection. Once the cathedral is constructed and geometries are adjacent, we can
evaluate the forces using structural gradients and predict changes to the geometry
to form a more stable structure. Our program allows users to output volumetric 3D
models with adjacent blocks such that the structural stability may be evaluated.

Thesis Supervisor: Frédo Durand
Title: Associate Professor
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Chapter 1

Introduction

1.1 Motivation

Evaluating the current structural stability of historical buildings, especially cathe-

drals, is a challenging task. Often these buildings are centuries old, and even the

structure of the original architecture is often poorly understood and difficult to cal-

culate. Although blueprints of these buildings exist, these blueprints are only 2D

representations of the building, not fully encapsulating the 3D geometry. In addition,

they are not accurate representations of the building’s current state, as these old

buildings are often deteriorated and have been modified or refurbished.

For example, the Tarazona Cathedral features many lesions and changes due to

the deterioration of the cimborio and clerestory arches [13]. Not only has chemical

attack significantly degraded the structure, but changes in structure and the mantling

and dismantling of various architectural features such as the flying arches created

disruptions in the stability. The Mallorca Cathedral also suffers from a variety of

deformations, including large cracks that run through the central nave and arches

[13] . Masonry columns were constructed later to support failing flying arches and

the piers have suffered from curvature warping and lateral displacement. Additions

and modifications need to made to these buildings to better guarantee safety and

structural stability.

Using a technique called spatial archaeology, Professor Andy Tallon acquired a
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laser scanned point cloud of the Bourges cathedral, containing over a hundred million

points. Point cloud scans such as these provide a more realistic 3D representation of

the current state of the cathedral.

To evaluate the forces on structures such as these, Whiting [19] presented a system

that calculates the structural gradients and suggests changes to the geometry to form

a more stable structure. However, input into Whiting’s system has traditionally been

simple geometric elements, as opposed to the full structure of the cathedral.

We have two main problems: acquiring an accurate input 3D model and perform-

ing the structural evaluation of these models. In Section 1.2.1, we’ll discuss the idea

of surface mesh reconstruction and how it ultimately does not fully characterize the

volumetric properties necessary to evaluate the forces on the structure. Section 1.2.2

covers the disadvantages of procedural modelling and how it may not provide a fully

accurate model. Therefore, we aim to create a system that takes as input the point

cloud scan, allows the user to do a 3D reconstruction via geometric shape fitting, and

outputs the geometries into Whiting’s system such that the structural stability may

be evaluated.

1.2 Background

1.2.1 Surface Mesh Reconstruction

Rendering the point cloud as a surface mesh is one way to reconstruct the original

structure. Aiger, et al [2] uses 4 point co-planer congruent sets and registration to

create a surface mesh. Alliez, et al [3] uses a Poisson surface reconstruction to recover

the mesh of a 3d object. Delauney triangulation and graph cuts are also common

ways of recreating a 3D mesh [7]. Rusinkiewicz and Levoy [15] proposes an optimized

multi-resolution mesh renderer, which could be used to speed up the processing of

this large dimensional point cloud mesh reconstruction.

More specifically to the reconstruction of architecture, prior work has also used

mesh based reconstruction. Wu, et al. will present their work on Schematic Surface
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Reconstruction [20] at CVPR 2012, which uses profile curves and swept surfaces to

characterize point clouds of architecture as a surface mesh. In 2009, Edouard Grave

performed a surface reconstruction based on the point cloud scan of Bourges. After

reconstructing the point cloud surface, he cut each of the surfaces into horizontal

slices, with each slice separating each geometric primitive. However, classifying the

cathedral as a mesh does not lend itself to the evaluation of forces. The most glaring

example of this is the surface reconstruction of walls as planes. As planes are flat

surfaces, the structural stability cannot be accurately computed because walls also

have depth and mass. Although the mesh reconstruction technique may give the most

fine grain details, it does not accurately capture the 3D geometric structure and does

not provide the volumetric models needed in order to properly calculate the forces.

Ultimately, surface mesh reconstruction only creates a facade of the structure and is

missing the important volumetric information necessary to evaluate the stability of

the structure.

1.2.2 Procedural Modeling

Ramamoorthi and Arvo [12] approached the problem of generating models from 3D

scans by modeling them as generative models, i.e. a generalization of a swept sur-

face defined by continuously transforming arbitrary curves. Their algorithm has two

phases. The first is recognition, in which an appropriate model is chosen from a library

of potential objects. The second is parameter estimation, which adjusts the model

to best fit the data by performing curve refinement. As a cathedral can be modeled

as a collection of geometric primitives, we similarly will adopt the recognition step of

the algorithm, allowing for an initial guess of the root model. However, because our

library of geometric primitives will be basic building blocks, curve refinement does not

best meet our needs for the parameter estimation part. In addition, because Whit-

ing’s force evaluations rely on the primitives being six-sided blocks, curved structures

are an incompatible input.

Parish and Mueller [11] presented a system that procedurally rebuilds cities based

off of 2D maps by forming a grammar based on L-sytems. However, because they use
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2D maps to rebuild these 3D structures, depth information is lost, making it undesir-

able for evaluating structural stability. Mueller et al [?] then extended this grammar

to procedurally model buildings. Similarly, Whiting proposed a procedural model-

ing system that uses a grammar to build cathedrals [19]. This approach, however,

relies heavily on the architect who is familiar with the existing structure and may

incorrectly assume that the blueprints are an accurate representation of the current

structure. We would like to be able to take current point scans of cathedrals and

rebuild the structure according to these scans. Using the detailed point scans instead

of blue print models allow us to more finely identify weak points in the current state

of the structure.

Nan, et al [10] uses point cloud scans to rebuild large scale urban scenes using

SmartBoxes, which snaps axis-aligned rectangular cuboids to urban point cloud scans

using RANSAC and interactive user feedback. While this work is closest to ours,

fitting the point cloud parameters in an urban architecture versus a cathedral relies

on several different assumptions. Nan’s technique relies on repeatability of structural

elements and design patterns to automate the process of building the entire building.

On the other hand, a cathedral tends to have much less repeated elements and many

small, fine intricacies that must be accounted for.

1.2.3 Data Fitting

In 2010, Lee implemented registration to fit geometric primitives to the point cloud.

However, registration solved for the rotation and the translation of the primitive, but

did not include scaling or stretching. In the context of computer vision and robotics,

Garcia [6] uses RANSAC to fit primitives to the point cloud. Schnabal et al [16] also

uses RANSAC to classify point clouds from primitive shapes. In addition, AutoCAD

has an plug-in that allows users to extract shapes from a point cloud [1].

The iterative closest point algorithm is also widely used to register and align the

outputs of 3D scanners. Schneider, et al. used ICP to align morphable head models to

scans [17]. Rusinkiewiz and Levoy experimented with different algorithmic variations

on ICP [14]. Beginning with two meshes and an initial guess of their relative rigid-
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(a) Whiting’s procedural model (b) Simulation of Building Falling

Figure 1-1: Whiting’s Force Evaluation Work

body transform, it iteratively refines the transform by matching pairs of points and

minimizing the error.

1.2.4 Stability Evaluation

Once the cathedral is classified as a collection of geometric primitives, we must be

able to evaluate its structural stability in some way. In addition, we would like to

suggest improvements to the structure on how to make it more stable.

Force evaluation has often been conducted using finite element methods and a

continuous damage model [13]. Finite element analysis often focuses on the visual-

ization of weak points in the structure. However, it does not directly suggest ways or

alternatives for the designer to create a more stable structure.

In Siggraph Asia 2009, Whiting et al. proposed a system for a Procedural Model

of Structurally-Sound Masonry Buildings [19]. Her system calculates the forces and

tensions from one geometric primitive onto another by calculating the adjacencies,

or interfaces between each of these blocks. Using these force models, she can use an

iterative procedure and calculate the gradients with finite differencing to minimize

the tension on each of the blocks in order to suggest a more stable structure. Because

of its ability to handle masonry structures, we will use Whiting’s program to evaluate

the structural stability of the fitted geometric primitives. This system will provide

the structural input into Whiting’s program.

17



1.3 Thesis Overview

Using these laser scan points, our goal is to model the cathedral as a set of volumetric

geometric primitives. Once the cathedral is modeled as a set of adjacent geometric

primitives we can evaluate its structural integrity using force models. Modelling the

laser scan as geometric primitives consists of three major components: the user inter-

face, the data visualization, and geometric fitting algorithm. These three components

help us to achieve our two main objectives– create a 3D volumetric model based off

of the point cloud scans and ensure the blocks are adjacent in order to export them

to the force evaluation system. The details of the work are provided as follows.

Chapter 2 overviews the system in terms of the engineering design and a high level

description of the user workflow when modeling the cathedral.

Chapter 3 handles the visualization of the point cloud. The laser point scan

of Bourges consists of over 2 GB of data, roughly over 100 million points. The

visualization component presents the methods for quickly rendering the laser point

scan and maximizing the ease in which a user can visually extract key features.

Various optimizations were utilized such that the user could more easily navigate

through the point cloud.

Chapter 4 reviews the user interface of the system. It was important to have a

flexible, robust user interface since the user is the primary agent in reconstructing

the cathedral. Selection of points, geometry, and faces had to be implemented and

optimized for ease and speed. Manual and mouse manipulation of the geometry gives

the user fine grain control of the initial geometry fitting.

Chapter 5 provides a summary of the geometric primitives that were used to model

elements of the cathedral.

Chapter 6 summarizes the details the algorithms used to snap geometric primitives

to the point cloud. The primary algorithm is ICP, or the iterative closest point

method. Given points in a set, the iterative closest point method will find the closest

point to a geometric primitive and find the least squares transformation to minimize

the error. Iterative closest point allows for any transformation; however, in some cases,
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shear may not be desirable. Thus, the chapter also highlights polar decomposition

as a way of removing shear. In cases where an object is not axis-aligned, the user

must realign the shape by choosing corresponding points on both the geometry and

the point cloud.

Chapter 7 describes how shapes are made adjacent. In order for the forces to be

properly analyzed, each adjacent geometry must have adjacent faces. ICP does not

necessarily handle this, so we provide a user interface and algorithm for snapping

adjacent geometries together.

In Chapter 8, I present some 3D reconstructions of portions of the cathedral, as

well as the force evaluation of these reconstructions as it is run through Whiting’s

system.

Finally, in Chapter 9 we provide a conclusion and the future possibilities of this

work.
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Chapter 2

System Overview

To reconstruct point cloud scans into 3D volumetric geometric models, we require

three basic components: visualization, user interface, and geometric fitting algo-

rithms. The geometry must fit to the point cloud, as well as snap to other geometries

to ensure adjacency. Once the model is created, it is then imported into Whiting’s

system so that the structural stability of the model can be evaluated.

2.1 Visualization

The viewer has to render three basic components, the point cloud of the cathedral,

the selection, and the geometric model. Figure 2-1 shows the hierarchy of the object

models.

Because the point cloud is so large and dense, a grid box acceleration structure

had to be implemented in order to optimize the viewing.

2.2 User Interface

Figure 2-2 illustrates the process the user should take when reconstructing the struc-

ture.

The user interface has to handle four main tasks: selection, visualization, geometry

fitting, and geometry handling. Different tools are associated with each of these tasks

21



Figure 2-1: Object Model

Figure 2-2: User Pipeline
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Figure 2-3: Model View Controller diagram

and are responsible for implementing the algorithms for each task. The user must be

able to select points, shapes, and faces, as well as manipulate the geometry placed in

the scene. The UI for the visualization allows users to more easily navigate through

the large point cloud, and we must also provide UI for allowing the user to specify

parameters for the geometric fitting algorithms.

Figure 2-3 shows the layout of model view controller. The Application Handler

is the high level controller that funnels the communication between the model, the

different user interface components, and the OpenGL viewer.

2.3 Geometric Shape Fitting

Because surface mesh reconstruction fails to encapsulate the volumetric data needed

to evaluate the forces and procedural modelling does not capture the current state

of the structure, this system uses geometric shape fitting to create the 3D model.

The geometric shape fitting primarily relies upon the iterative closest point method

to snap geometric primitives to point cloud selections. It solves for the best fit using

constrained least squares. To handle edge cases, we also allow the user to also mark

correspondences before doing the fitting. Polar decomposition was also used to allow

the user to remove shear if needed.
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2.4 Force Evaluation

As described earlier, we will use Whiting’s system to evaluate the structural stability

of our model. Since this system will be providing input into Whiting’s system, our

output must adhere to the following conventions:

• The model must be a valid obj file

• Each geometric primitive must either be a six sided block or only contain six

sided blocks

• The model must be centered at the origin

• Geometry must be adjacent

• The bottom of the model must be parallel to the floor

Given a compatible obj file, we can then find the interfaces and calculate the ten-

sions acting on each block. Then, using structural gradients, Whiting’s program will

suggest changes to the geometry, eventually iterating to a more stable structure.
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Chapter 3

Visualization

3.1 Introduction

The visualization of large point clouds is challenging, both in terms of speed and

memory. To handle the large amount of data, this system partitioned the cathedral

into axis-aligned grid boxes. We optimized the rendering by using these grid boxes

to selectively render areas of the cathedral and by sampling the data at different

resolutions.

3.2 Data Structure of the Cathedral

Because the cathedral point cloud is greater than 2 GB of data, the visualization was

optimized to handle the large amount of points. As a pre-processing step, the full

(a) Bourges Cathedral in France (b) Point Cloud Render of Bourges

Figure 3-1: Bourges Cathedral
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Figure 3-2: Full Point Cloud Render

model was broken into individual, smaller files so that the user could view portions

of the cathedral without having to load the huge file. After parsing the 2 GB file

and finding the minima and maxima along each axis, the cathedral was broken into

10x10x4 grid boxes based on these point cloud extrema. Saving each grid box as a

separate file ensured that sections could be loaded fast and independently.

Because the model is so large, the user in most cases will not want to view the

whole cathedral at once. Loading the whole point cloud model without sampling

any of the points takes about ten minutes to load. Therefore, we dynamically load

sampled portions of the cathedral. Using the visualization tool, the user can specify

the span of gridboxes. Any unloaded grid boxes are loaded on demand.

3.3 Visualization Options

The current visualization interface supports two different modes. The user may choose

to highlight a current span of gridboxes. Alternatively, the user can choose to only

view a span of grid boxes. This tool is useful in that when viewing a point cloud,

it can be harder to distinguish planes and shapes. Comparatively, discrete geometry

26



(a) Full view (b) Grid box highlighted (c) Viewing single grid box

Figure 3-3: Visualization Options

(a) Full Render (b) Fast Render when mouse is moving

Figure 3-4: Fast Rendering

creates occlusions that allow the user to more easily distinguish architectural elements.

Because the point cloud has holes, it is much harder for the user to see the boundaries.

By allowing the user to visualize a small subsection of the cathedral, it becomes easier

to navigate the scene and fit geometry.

To view the cathedral, we provided similar functionality as other 3D modelling

programs. Using the mouse, the user can manipulate the camera to manuever through

the scene. In addition, other shortcuts, such as Ctrl+Alt+C centers the camera

around the current point selection.

3.4 Multi-Resolution Rendering

The viewing environment also supports multi-resolution rendering. Because the

cathedral contains a large number of points, when the user manipulates the mouse

we only draw a percentage of the points on the screen to optimize the speed of the

application. When the camera stops, the full number of points should be displayed.
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Chapter 4

User Interface

The user interface consists of four main components: visualization, selection, ICP,

and geometry. The visualization UI handles the dynamic loading of grid boxes. The

selection UI handles selecting points, geometries, and faces. The ICP UI handles the

data fitting components, namely the ICP algorithm, the alignment algorithm, and the

adjacency algorithm. Finally, the geometry UI gives the user controls to transform

selected geometry.

4.1 Selection

The user must choose an appropriate set of points to match with the geometric

primitive before ICP can be applied. The user interface supports the selection of

points, geometries, and faces, along with tools to subtract or add points from a current

selection. It also supports taking the union, intersection, and difference based upon

two screen-space bounding rectangles. We select objects by projecting the point data

from the 3D world space to the 2D camera view. If these objects lie within the bounds

of the axis-aligned rectangle drawn to the screen, then they are selected.
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(a) Visualization Tab (b) Selection Tab (c) ICP Tab (d) Geom Tab

Figure 4-1: UI Tabs

4.1.1 Point Selection

Point selection is a crucial feature of this tool, as the user must be able to select

points that they want to fit to a geometric object. The user selects points by clicking

and dragging a 2D rectangle onto the screen. For every grid box in the cathedral, we

project each of the points to the screen. If the projected point is within the bounds

of the rectangle, it is then selected. However, we also limit the selection to a certain

z-depth, as we do not want to select points that are too far away. We also support

subtraction, union, intersection, and difference.

4.1.2 Geometry Selection

The user must also be able to select geometries so that they can manipulate the

transform of geometric objects. Alternatively, they may want to delete the geometry,

export the geometry, or copy and paste the geometry. In a similar manner as point

selection, the user clicks and drags a 2D rectangle onto the screen. For every shape,
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(a) Initial selection of points (b) After removal of points

Figure 4-2: Adding and Removing Points

(a) Geometry Selection Exam-
ple 1

(b) Geometry Selection Ex-
ample 2

Figure 4-3: Geometry Selection

we project their vertices onto the screen. If any of the projected coordinates of the

vertices fall within the bounds of the selection rectangle, then the geometry is selected.

When a geometric primitive is selected, it is highlighted red, and shows up in the GUI

under the selected geometries list, where the user can also see the ids of the selected

geometry. Similar to point selection, subtraction, union, intersection, and difference

is supported.

4.2 Geometry Manipulation

The application gives the user different ways to transform the geometry and apply

a best guess transformation to the shape. When the shape is given a close initial

guess, ICP has a much better chance of converging. In most cases, the initial scaling

does a pretty good job at giving a good first guess for ICP. However, in certain edge

cases, such as non-axis aligned shapes, the user might first have to manipulate and

transform the object to aid ICP.
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4.2.1 UI Manipulation

A GUI allows the user to specify the rotation, translation, and scale, and apply that

transform to the selected geometry. From the tx, ty, tz values specified for translation

and sx, sy, and sz values specified for scale, we form the translation matrix T and the

scaling matrix S.

The rotation matrix R = Rz(γ)Rx(β)Ry(α), whose Euler angles are α, β, and γ,

where

Rx(θ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0

0 cos(θ) −sin(θ) 0

0 sin(θ) cos(θ) 0

0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Ry(θ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

cos(θ) 0 sin(θ) 0

0 1 0 0

−sin(θ) 0 cos(θ) 0

0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Rz(θ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

cos(θ) −sin(θ) 0 0

sin(θ) cos(θ) 0 0

0 0 1 0

0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The matrices are then combined to M and applied to the geometry. If the geom-

etry has a transform G, then the geometry’s new transform G′ is

M = TSR

G′ = MG

After the transformation is applied to the geometry, all of the values are reset.

Other methods were also explored, such as storing the global translation, rotation,
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and scale for each geometry. Maya, the modeling program, does something similar,

keeping track of the geometry’s general translation, rotation, and scale. However,

because we run ICP to figure out a best fit transform for a geometric object, we can-

not simply keep track of a translation, rotation, and scale for every geometric object

since ICP also introduces a shear component. We tried to use polar decomposition,

described in Section 6.2 to extract the translation, rotation, and scale for the geome-

try. However, because polar decomposition does not yield unique and reliable results,

this approach turned out to be impractical.

4.2.2 Direct Manipulation

On top of the manual GUI manipulation, we can use the mouse to rotate, translate,

and scale geometry. Most of this extends libGLViewer’s manipulated frame interface,

which by default, uses Ctrl+Left Mouse to Rotate and Ctrl+Right Mouse to trans-

late. For interactive scaling, when the user clicks a checkbox, it allows them to use

Ctrl+Right Mouse to scale.

4.3 Undo/Redo

Because this application needs to be fairly robust and involves a lot of user interaction,

we support undo and redo. Undo and redo is a crucial feature in case the user applies

an unwanted transform to a geometry.

Undo and redo is implemented each as a simple stack. Each transformation is

saved as an Action, which gets pushed to the undo stack. Before each new trans-

formation is applied to a geometric primitive, we save the old transformation of the

geometry. Pressing Ctrl+Z pops the action off the undo stack, pushes it onto the redo

stack, and re-applies the old transformation to the geometry. Pressing Ctrl+R pops

the action off of the redo stack and applies the old transformation to the geometry.
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(a) Geometry to be copied (b) New selection (c) Geometry pasted

Figure 4-4: Copy and Pasting Geometry

4.4 Copy/Paste

Users also are able to copy and paste geometry. In particular, this is useful for

repeating architectural features, such as columns and arches.

The user can select one or more geometries via the geometry selection tool and

then can copy the selection. They must then select a new point cloud selection to

inform the program where the copied geometry should be pasted. Ctrl+P or Edit-

>Paste pastes the copied geometry at the center of the selected points. If there is no

current selection, it copies the object to the same position.

4.5 Project Settings

The project .config file contains all of the project settings for loading the project.

The file format is as follows:

Name of original point cloud file

Default .geoms file to save model to

Name of file for loading grid boxes

Number of grid boxes

Max value in point cloud

Min value in point cloud
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4.6 Import/Export

4.6.1 Loading and Saving the Model

The user can save the model by pressing Ctrl-S or from the menu File->Save or

File->Save as. The program keeps track of the current file the user is saving to,

which is either the default file specified by the project configuration file, or whatever

was the last file the user specified with the save as option. Instead of saving every

single object’s vertices and faces in the scene, the program saves the name of the file

associated with the object and the current transformation of the object. This is saved

as a .geoms file under the project’s file directory. The file format is as follows:

GeomID

GeomFile

Matrix Transformation of geometry

Since the user can save a model, it follows that the user must be able to load a

model so that they can model different sections of the cathedral at a time. File->Load

Model allows the user to open a .geoms file.

4.6.2 Export

The user can either export a selection of geometry or the full model. It gets exported

into an obj file that is compatible with Whiting’s program. As noted before, this obj

file must only contain blocks that have six sides and quadrilateral faces. The user

designates a block with the syntax

g blockType_shapeNumber_blockNumber

which separates every six faces.
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Chapter 5

Geometry Primitives and

Cathedral Architecture

To evaluate the forces of the structure, each of the components needs to be a vol-

umetric geometric primitive. The system contains a library of geometric primitives

that is able to classify the expanse of the structures in the cathedral.

5.1 Primitive Library Selection

We accumulate a library of primitives, a selection of geometric primitives that can ac-

curately classify a cathedral. Once the user selects some points, they can then choose

which geometric primitive best classifies their point cloud selection. The geometry is

then appropriately scaled and centered at the centroid of the point cloud. The user

can then use ICP or manipulate the shape with their mouse to achieve the desired

fitting.

Coming up with a grammar of library primitives was a challenging task, as cathe-

drals have very different structures, and each structure may have detailed ornate

structures. Fortunately, because we are interested in its forces and structural sta-

bility, we can discretize a lot of these structures into very basic geometric building

blocks.

Because of our initialization process, each geometric primitive must be unit sized,
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(a) Unit scaled cube (b) A cube can also be trans-
formed to form a wall or plane

(c) A cube can also form a pil-
lar or column

Figure 5-1: Basic Cube

centered at the origin, and be a valid obj file. A script converts any obj file to be

compatible with the system, normalizing and centering the shape. To be used within

the program, each obj file needs to be written to ShapeDictionary.txt, which contains

the names and references to the obj files.

5.2 Basic Geometries

Our primitive library features some basic building blocks. Of course, there is a basic

cube which can be scaled and stretched. The cube covers a lot of potential archi-

tectural features, such as planes, walls, and floors, as seen in 5-1. In addition, at its

core, a cathedral is built from a collection of simple stones and bricks, so if the user so

decides to, they could arduously model the whole cathedral as a collection of cubes.

Although there are many different kinds of columns with different ornamentation,

most can be modeled as a simple cylinder. However, because Whiting’s program only

allows for six sided blocks, the cylinder gets converted to a block in a post-processing

step when it gets exported.

Domes and vaults are also common features of cathedrals. The shape dictionary

also contains a half sphere, apse/half dome, and a quarter dome. Again, these objects

are more for aesthetic purposes, as these are not six sided shapes.
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(a) Unit scaled cylinder (b) Non-cube block

Figure 5-2: Other Basic Geometries

5.3 Special Cases

5.3.1 Arches

Arches actually prove to be one of the most difficult features of the cathedral to char-

acterize, especially since there are many different arches, and these different charac-

teristics impact the structural stability of the arch itself. As opposed to the columns,

where ornamentation does not have a real impact on its structural stability, the struc-

tural stability of the arch is highly dependent on its design.

Simple rounded arches prove to be less complex to model because of its rounded

spherical nature. However, pointed arches prove to be much more complex. In ad-

dition, pointed arches are not always symmetrical, with each side of the arch having

a different center of rotation. Future work, as an extension of Whiting’s procedural

modeling work, would allow the user to procedurally model their own arch, meaning

they would have to specify the center of rotation for each side of the arch. In lieu of

this, the introduction of the half arch as geometric primitive allows ICP to scale and

stretch such that it could be appropriately fitted and transformed according to the

point cloud.

5.3.2 Statues

There is also be geometry that we cannot model with simple geometric primitives,

such as statues. However, often these statues are on parapets or on ceilings; they

add weight to the cathedral structure and still need to be included. We choose to
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(a) Curved Arch (b) Pointed Arch (c) Half of a pointed arch

(d) Spandrel (e) Groinvault (f) Gothic Groinvault

(g) Flying Buttress

Figure 5-3: Different Arch Types
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model these statues as a single block of roughly the same size, for the simple sake

of computation. As future work, we could also potentially recreate the statue using

gradient reconstruction; again this would only be for aesthetic purposes due to the

constraints of the force modelling program. However, discretizing these structures as

a single block is enough to calculate the impact of the statue on its underlying base.

5.3.3 Wall Thickness

Because walls are not simply planes, we must also provide a user interface such

that a user could hypothesize the thickness of a wall or a ceiling, as it might not

have been captured by the point cloud scan. The GUI interface for transforming

geometric primitives allows the user to change the thickness (scale), position, or

rotation. Because the laser scans might not reveal every single component of the

cathedral, this re-emphasizes why mesh reconstruction is not the desired solution for

this problem. For example, there often are hidden structures behind walls, providing

extra structural stability to the building. Being able to enter in wall thickness per

geometric primitive (as opposed to a general mesh) helps compensate for this invisible

geometry.
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Chapter 6

Geometric Primitive to Point

Snapping

After the user selects the points from the cloud and has approximately placed the

corresponding geometric primitive in the scene, the geometric primitive then needs to

snap to the data. Various techniques of fitting geometric primitives to a point cloud

were discussed in Section 1.2.3. We use the iterative closest point method, or ICP, to

fit the geometric primitive to the point cloud data.

6.1 Iterative Closest Point Method

We implement the primitive to point matching with the iterative closest point algo-

rithm. The Iterative Closest Point Algorithm is 4 steps:

1. Associate points from the test set to the model set

2. Estimate the transformation from the geometric model to the point cloud using

least squares

3. Transform the primitive using the estimated parameters

4. Iterate to reduce error
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6.1.1 Initialization

ICP heavily relies on having a good initial guess; therefore, we make several initial

assumptions and give the user controls in order to improve the performance of the

algorithm. If the geometric primitive is initially positioned in a similar orientation

as the point set, less iterations are required to converge. Therefore, by allowing the

user to manipulate the primitive and specify the initial correspondences, ICP will

converge much faster.

A rough initialization places the geometric primitive at the centroid of the point

cloud selection, where the centroid is the center of mass defined as:

centroid =
∑
p ∗ 1/n where n is the number of points

Similar to Nan et al [10], we assume the structure is axis-aligned, find the extrema

of the point cloud selection, and scale the geometry according to the point cloud

extrema. In most cases, this gives a pretty good guess for ICP, but there are drawbacks

when the shape is not axis-aligned. This sometimes causes greater problems for

users, as they must correct the effects of the incorrect auto-scaling. We address these

alignment issues in Section 6.3. A later observation found that placing the object at

the centroid was not robust in handling outliers. The more outliers the point cloud

contained, the more offset the center was. Instead, we calculate the median, discard

the points relative to the median, and then center the shape at that point.

6.1.2 Nearest Point to Primitive

After the initial fitting, the next step is to find the corresponding snapping points from

the cloud to the model. Although there are many different methods for finding the

closest point, as described by Szymon Rusinkiewicz [14], we approach this problem by

matching each point to the nearest triangle on the primitive mesh. For every point in

our laser scan, we find the closest intersection from the point to our model mesh. For

every triangle in our mesh, we project point p onto the triangle. The closest point p′

from p to the triangle may lie either on the face, the edge, or one of the vertices. The
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closest point of intersection on the model mesh yields p′, the matching point on our

model to point p from our dataset.

As an alternative, our algorithm could have switched the order of the loops, finding

every point p in the point cloud that coordinates with the vertices of our faces.

However, because the point cloud may have incomplete sections that may not directly

align with a geometric primitive, for each point in the geometry, there may not be

an exact match in the point cloud. Therefore, it makes more sense to find the closest

point on the geometry from p in our point cloud.

6.1.3 Projected Point on Face

For each point p in the point cloud, we must first find the closest point p′ on the

selected model geometry. First, for every face, project point p on face f of the

geometry. Given a face with vertices v1, v2, and v3, we can define the following terms:

Normal of the plane: nplane = ((v2−v1)×(v2−v3))
||((v2−v1)x×(v2−v3))||

Distance to the plane: dplane = (p− v1) · nplane

Projected point on plane pplaneproj = p− dplane ∗ nplane

We need then to test if this projected point pplaneproj is within the bounds of

the plane, because not every projected point may lie on the face itself (it may lie

outside the face). If the point lies within the bounds of the plane, we then need to

compute the distance from our cloud point p to our projected point on the plane. If

this distance is less than our stored minimum distance, then our new closest point

becomes the projected point on the plane pplaneproj and the new minimum distance

dplane is the Euclidean distance from our projected point to p.

6.1.4 Point in Plane

To calculate whether a point is in the plane, we must first calculate the centroid of

the face. For a face with i vertices v1, v2, . . . , vi, the centroid c is defined as

c =
∑
v ∗ 1/i
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We then find the normal unit vector nplane of the plane. For each edge or halfspace,

we have to test if the point is inside or outside. First, we have to calculate the normal

to the edge, which we can calculate as the cross product of the plane normal nplane

and the edge e, where edge ei = vi+1 − vi.

nedge = nplane × (vi+1 − vi)

We also need to determine the direction of the normal of the edge and make sure that

all of the normals point outward. We determine the angle by taking the dot product

of the vector from the point on the face to the centroid and the edge normal. If the

angle of the normal is greater than 0, then the normal points inward with an angle

of less than 90 degrees. We want to make every normal point outward, so we reverse

the direction of the normal.

We then need to find the angle to the plane, which we calculate as

θplane = (vi − p) · nedge

If the angle to the plane is greater than 0, then the point is outside of the plane. If

this is the case then we stop iterating through the rest of the edges, because we know

with certainty that the point is not in the plane. However, if the angle to the plane

is not greater than 0, then we need to test the other edges to ensure that all of the

edges contain the point. If for every edge on the face, the point is inside with respect

to each edge, then the point is in the plane.

6.1.5 Edge Projected Point

However, if the projected point does not lie in the boundaries of the face, we then

need to figure out if the point lies on one of the edges of the face. For each of the

edges e on the face, we project p onto e. We then need to test if this projected point is

within the line edges. Given an edge with vertices v1 to v2, the line is parameterized

as:

P (t) = edge ∗ t+ v1 where x = v1 when t = 0
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We therefore must solve for t2 where P (t) = v2 and tproj for P(t) = the projected

point on the edge. If tproj for the projected point is greater than t1 = 0 and less than

t2, then tproj lies within the edges of the line. We then find the distance from the

projected point onto the edge to our point p. If this distance is less than the stored

minimum distance, then our new closest point becomes the projected point onto the

edge and the new minimum distance is the distance from our projected point to p.

6.1.6 Vertex Projected Point

If the projected point does not lie on the boundaries of the face or an edge, then

the closest point from p to the shape is a vertex the face. Therefore, for each of the

vertices of the face, we take the distance from our point p to each of the vertices. If

the point to point distance is less than our stored minimum distance, then we set the

vertex as the closest point.

6.1.7 Summary of nearest point to primitive

Finding the closest point from the point cloud to model is a crucial part of this

algorithm. In summary, for each point, we project every point from the point cloud

selection onto each of the faces, the edges, and vertex. If the projected point is within

the bounds of the faces or the edge and the distance from the projected point to our

point p is less than our globally stored minimum, then it becomes the new closest

point.

6.1.8 Finding the Best Fit Transformation

Once we have the point to point matching we can find the transformation matrix

from model set p′ to our dataset p. This gives us an over-constrained system, but we

can solve it using a least squares approximation, which minimizes the error. We need

to find a transformation matrix T such that

min
∑

(p− Tp′)2
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We can solve this minimization using singular value decomposition [9]. Given an ini-

tial transformation from p′ to p, we can rerun the algorithm, finding a new intersection

point from p to our transformed mesh, and find a new transformation, reducing the

error on each iteration.

In our equation where T is our transform matrix, P is our dataset matrix, and M

is our model set matrix:

TM = P

Solving for T : T = PM−1

Because it is an over-constrained equation (both P and M are nx4 matrices, where

n is the number of selected points) and finding the inverse of M is difficult, we will

instead use the SVD of the model matrix M where M = V DU where D is the diagonal

matrix. We can then calculate the inverse of the model matrix M :

M−1 = V D−1UT

We can now plug M−1 to solve for our transform matrix T = PM−1. This transform

matrix T can then be applied to the geometry, where if the geometry currently has

the transform G, then the new transform matrix G′ will be

G′ = TG

6.1.9 ICP Optimizations

One potential optimization that we explored was weighting the point pairs based on

the compatibility of normals given by

Weight = n1 ∗ n2 [14]

However, because the normals generated from PCA was not always reliable due

to the high curvature of the columns, this approach was discarded. In addition, the

initial fitting was often sufficient and ICP performed well enough that normal based

weighting was unnecessary. See Appendix A for more details.

Instead, we extended ICP by weighting the point pairs based on Euclidean dis-

tances where the weight was expressed as:
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(a) Before ICP- points are se-
lected

(b) Initial fitting of shape (c) After ICP fitting

(d) Before ICP- points are se-
lected

(e) Initial fitting of shape (f) After ICP fitting

Figure 6-1: Results of ICP Algorithm

Weight = 1 −Dist(p1, p2)/Distmax [14]

This weighting term helps ICP favor point pairs that have closer Euclidean dis-

tances, both helping to remove outliers and converge quicker.

Finally, we also implemented rejection of outlier pairs. The point pairs whose

Euclidean distance was greater than .9 of the max distance was then discarded, signi-

fying that these points were outliers. However, if the mean distance was greater than

.75 of the max distance, then these points were retained. If this was the case, this

means that the mean is closer to the max distance, and there may be no outliers.

6.2 Removing Shear with Polar Decomposition

6.2.1 Motivation

Because we are using ICP instead of a constrained registration, our geometry is sub-

ject to many different transformations, including shear. However, with architectural

buildings, objects are often axis-aligned and rarely are sheared. Although this may
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suggest that we should constrain ICP, there are potentially cases, especially in cathe-

drals, where more unconventional architectural pieces occur, and that shear may prove

useful. As an alternative, we create the option for the user to manually remove shear

from a geometric object.

In general, removing shear is not a trivial problem, as it requires breaking the

transformation matrix of an object into all of its individual transformations (shear,

rotation, translation, transformation). Because our geometry has likely already un-

dergone many transformations, this makes deconstructing the transformation a more

challenging. Luckily, a quick technique called polar decomposition allows us to de-

construct the matrix into its basic transformations. However, the results of polar

decomposition are not unique, as many different combinations of scale, rotations, and

translations could result in the final transform. Therefore, polar decomposition does

not always yield perfect results, but is still a useful tool for the user to have.

6.2.2 Implementation

Before performing the Polar Decomposition [18], we first extract the translation ma-

trix T from a transformation matrix M . We then perform the polar decomposition,

which factors a 4x4 homogeneous matrix M as

M = QS

Where Q is the best possible rotation and S is the stretch, or scale, matrix. We

determine this by averaging the matrix with its inverse transpose until it converges.

We set

Q0 = M

then Qi + 1 = (Qi +Qi − T )

until Qi + 1 −Qi = 0

As Shoemake [18] points out, this is essentially a Newton algorithm for the square

root of I and converges quadratically when Qi is orthogonal.

We can then factor the stretch matrix as
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S = UKUT

where U is the rotation matrix and K is diagonal and positive. We determine U

and K by taking the SVD of the matrix. The paper suggests taking using a Takagi

factorization to find the scale matrix. However, since SVD is quicker, and S is a

positive semi-definite matrix, taking the SVD should be sufficient in extracting the

scale. We then take K as the our best guess of a scale matrix.

To remove the shear, we then replace the original matrix M with our new matrix

M ′ where

M ′ = TQK

where T was our initial translation matrix, Q was the best possible rotation matrix

factored by the polar decomposition step, and K is the best guess scale.

For the most part, using polar decomposition is useful in generally removing shear.

However, because this decomposition is not unique and there are many different

rotations for which U could represent, this techniqe does not always produce desirable

results.

6.3 Alignment

6.3.1 Motivation

The initial placement of the geometry to our selection assumes an axis aligned geom-

etry since it takes the extrema of the point cloud selection and scales the unit-sized

geometry appropriately. In most cases, this is a reasonable assumption, as pointed

out by the work in SIGGRAPH 2010 done by Nan, et al [10]. However, there are

many cases in which the geometry is not axis-aligned, such as diagonal walls. There-

fore, with the alignment tool, the user can realign geometry as necessary, by selecting

points from the model that corresponds to points on the point cloud. Similar to ICP,

the least squares solution yields the appropriate transformation. However, in order

for this equation to be constrained, the user must select at least 8 corresponding

points on the model to yield a reasonable geometric transform.
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6.3.2 Single Point Selection

The current selection tool allowed for users to select a rectangular region of points or

a geometry object. However, for the alignment tool, users needed the ability to select

a single point in the point cloud, or a single point on the geometry. Therefore, the

alignment tool was extended to handle single point selection.

For all of the projected points that are within a radius of 10 of the user’s click, the

distance from these points to the camera is calculated. Assuming the user intended to

click the point that was closest to the camera, the point that is closest to the camera

and has a projected point within a radius of 10 of the user’s click is the chosen point.

For selecting a single point from the geometric model, we perform a similar algo-

rithm as selecting the point in the point cloud. However, instead of projecting all of

the points in the point cloud, we project the points of the geometries’ vertices in the

scene.

6.3.3 User Interface

The first iteration of this tool required the user to mark the data and model points

precisely in the same order, and there was no visual indication of which points corre-

sponded to each other. This made the process cumbersome and difficult. Therefore,

when ported to the final tool, the user interface of the alignment tool was taken care-

fully into consideration. A map for the marked data points, a map for the marked

model points, and a color map all help the user to keep track of which points corre-

spond to each other.

We can see in Figure 6-2 where our initialization failed because the wall is diagonal

and not axis aligned. The user has selected corresponding points in the data and on

the model, which are signified by the matching colors. After selecting the points and

pressing the Align Shape button, the geometry is now transformed appropriately.

Alternatively, to deal with non-axis aligned cases, the user can also manually

rotate the object, whether it is through direct mouse manipulation or by specifying the

amount to rotate and re-scale. However, allowing the user to specify correspondences
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(a) Initial Fitting- Before alignment (b) After alignment

Figure 6-2: Results of Alignment Algorithm

can be faster and more precise, depending on the architectural element and how much

the initialization was incorrect.

6.3.4 Algorithm

Similar to ICP, we apply a least squares solution to solving this problem. For each

point m selected in the model and each point d selected in the point cloud, we find

the best 4x4 transformation matrix T such that

di = T ∗mi

where i is the number of user annotated points. Note that the user must specify

at least four points for the equation to be solvable.



d1

d2

d3

d4
...

di


= T
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Chapter 7

Adjacency

To evaluate the structural stability of a model, Whiting’s program requires that each

of the geometric blocks have adjacent interfaces. After the geometry has been snapped

to the point cloud, there is no guarantee that the geometry is adjacent. We provide

an extra tool that enables the user, as a post-processing step, to guarantee that the

geometric primitives are adjacent. By allowing the user to select faces, we perform

another least squares fitting to snap geometries together.

7.1 Motivation

To evaluate the structural stability of an object, the blocks must be adjacent so that

the tension at each of the interfaces may be calculated. Whiting’s program requires

the input model to already have these adjacencies specified. Unfortunately, ICP only

handles the snapping of the geometric primitives to the point cloud, and not the

snapping of one geometry to another. Therefore, as a post-processing step, users

select two faces and designate that they should be adjacent. Projecting the points

from one geometry to another and doing a least squares fitting snaps the geometries

together.
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7.2 Face Selection

The selection tool only previously handled point and geometry selection, so we ex-

tended it to handle selection of faces of a geometric primitive. In summary, for the

point clicked, for each face, project each of the vertices to the screen. From the clicked

point, draw a ray from the clicked point to (0,0). We need to see how many times this

ray intersects the shape boundaries. If there is an even number of intersections, then

it is outside of the shape. Conversely, if there are an odd number of intersections,

then it is inside of the shape.

For each pair of points bounding the shape, we calculate the line intersection

between the line and the ray we created. The un-parameterized equation of the ray

going through (px,py) to (0,0) is

y = py
px

∗ x

The un-parameterized equation of a line going between two points along the line

of the shape from (x0,y0) to (x1,y1)

y = y1−y0
x1−x0 ∗ (x− x0) + y0

Combining the two equations to solve for the point of intersection we have:

x = [−(y1−y0)/(x1−x0)∗x0+y0]
[py/px−(y1−y0)/(x1−x0)]

After finding the x-y intersection, we plug it into the parameterized equation:

P (t) = p0 + t ∗ (p1 − p0)

where p0 = (x0, y0) and p1 = (x1, y1). If 0 ≤ t ≤ 1 for the intersection, then we

have intersected the line. If the number of intersections are even, then the point lies

outside of the face. On the other hand, if the number of intersections is odd, then

the point lies inside the face and the face is hit. After calculating all of the faces that

were hit, for each of the hit points, we find the distance between the vertex and the

camera. The face that has the smallest distance between its hit point and the camera

ends up being the selected face.
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7.3 User Interface

With face selection, there are two modes. Shift+f toggles between the two possible

face selections. The blue face indicates the face of the geometry that will be trans-

formed. The green face indicates the face of the geometry that stays static. The user

interface also allows the user to add multiple faces or remove multiple faces from the

selection.

7.4 Algorithm

Once we determine the face of the geometry that needs to be made adjacent to the

chosen geometry, we project the points of the face from the geometry that is to

be transformed onto the surface of the other geometry. We run the closest point

algorithm to find the closest point p′ for every p on the selected geometry. Once we

have the closest point, we solve the least squares problem. For each of the points p

on the selected face, the closest p′ is the new target point. For every point p not the

on the selected face, the target point is p. We then solve this least squares problem

using the SVD. Again, we solve for a 4 x 4 transformation matrix T where


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

While this method is much simpler than relying on ICP to create adjacent geome-
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(a) Shapes not adjacent-faces selected (b) After running adjacency alg

(c) Shapes not adjacent-faces selected (d) After running adjacency alg

(e) Shapes not adjacent-faces selected (f) After running adjacency alg

Figure 7-1: Results of Adjacency Algorithm
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tries, specifying adjacent faces is still yet another step for the user. In the future,

automating this step would be useful, potentially by finding the closest face to a des-

ignated face and then automatically deciding that they should be adjacent. However,

there are many edge cases in which this approach would not be reasonable. For ex-

ample, two arches are connected to the same column, we want the faces of each of

the arches to be adjacent to the column, but not necessarily to each other.
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Chapter 8

Results

The main goal of this system is to provide volumetric input into Whiting’s program

and it was tested by reconstructing portions of the cathedral; the user geometrically

models the structure against the point cloud template. By successfully importing

this model into Whiting’s system and evaluating the structure’s stability, we validate

the system’s ability to create feasible 3D models that are compatible with Whiting’s

program.

8.1 Models

The following two examples, Figure 8-1 and Figure 8-2 show two of models that were

built. Figure 8-1 took about thirty minutes to construct, including the step of making

the shapes adjacent. This model features nine geometric primitives, including arches,

spandrels, cylinders, and cubes. Figure 8-2 took about an hour and a half to construct

and took great advantage of the copy and paste feature. It features groinvault arches,

cylinders, and cubes.

8.2 Discussion

It is hard to evaluate the correctness of the model because the system requires the

user to make many assumptions about the internal structure of the building. In many
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(a) Estimated time to construct: 30 minutes

Figure 8-1: Example Model 1

(a) Estimated time to construct: 1.5 hours (b) Same model as 8-2a but from a different
perspective

Figure 8-2: Example Model 2
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cases, the system forces the user to discretize an ornate feature of the cathedral, such

as the decorated column as a simple cylinder. We could hypothetically compare the

error results in ICP using the distance between the matched points. However, this

still assumes correctness in the user’s assumptions about the building. In addition,

the point cloud does not capture the depth of walls, so the user must approximate

the thickness. Procedurally modelling the cathedral suffered from a similar problem

in that it was hard to evaluate the correctness of the structure with regards to the

current state of the cathedral. Therefore, we must rely upon the human eye to match

the point cloud with the geometric primitives.

8.3 Force Evaluation

Once the cathedral is fully classified as a system of geometry primitives, we then

use force models to evaluate the cathedrals structural stability, as demonstrated by

Whiting [19]. Using her system, we evaluate whether or not the force exhibited on

existing geometries yields a stable structure or not. Being able to successfully import

our geometric models into her system and evaluate the structural forces allows us to

validate our system. Figure 8-3a shows two arches being constructed in our point

cloud modelling program. Once it is exported into the appropriate format, it is then

imported into Whiting’s program so that the forces can be evaluated. Interfaces and

adjacencies are correctly calculated as seen in Figure 8-3b. Once the interfaces are

computed, we evaluate the forces on each of the blocks. Because the arches are thin,

the structure is not very stable, having an initial force value of 253,560 as seen in

Figure 8-3c. The most stable structure should have a force value of 0.

Whiting’s system also suggests modifications to the existing structure to make

it more stable. She calculates the gradients with finite differencing to minimize the

tension on each of the blocks. After running an iteration of the gradient descent, as

seen in Figure 8-3d, the structure is made more stable, having a force evaluation of

228,136. The end columns start getting slanted and the arch bases are made wider.
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(a) Arch structure constructed in this system (b) Adjacencies and interfaces interpreted
correctly in Whiting’s program

(c) Constructed Structure loaded into Whit-
ing’s program with forces calculated. Note
the current structure is not very steady and
has a force evaluation of 253560.

(d) Modifications to the arch after running
an iteration of gradient descent. Notice the
slanted columns and the thicker arch bases.
The structure is more stable, with a force
evaluation of 228136.

Figure 8-3: Evaluation of forces
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Chapter 9

Conclusion

We present a system that allows users to perform a volumetric geometric reconstruc-

tion of a point cloud cathedral and evaluate the structural stability of the 3D model.

Combining an extensive user interface with shape fitting algorithms, we can cap-

ture a volumetric snapshot of the building’s current state and evaluate its structural

stability.

9.1 Future Work

We could utilize many more geometric primitive types for more accurate modelling.

Because Whiting’s program supported force calculation with only six sided blocks,

that limited the primitives we could use. Future work includes either generating

geometric primitives made out of these simple blocks, or extending Whiting’s work

to handle curved structures with multiple faces. Other alternatives include creat-

ing a procedural modeling program that is specifically designed to create simple

architectural structures out of these six-sided building blocks. Alternatively, as a

post-processing step, this program, given any obj file, could discretize the mesh into

blocks by using a mesh discretizing algorithm.

There are also extensions to what we can visualize with the force models. Once

we have computed the force models on the collection of geometric primitives, we can

visualize the components of the cathedral in various ways. For instance, weaker areas
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of the structure can be color coded, and specific data calculations can be displayed

based on the users inputs.

Also, this system requires a bit of user involvement for the fitting. The problem

is a non-trivial one, but increased automation of this system would greatly help to

streamline the reconstruction process.

Allowing ICP to create shear ended up causing complications when creating ad-

jacencies between individual blocks and blocks with the ground, specifically when

porting between the two systems. In particular, the constraint that the base blocks

must be parallel to the floor caused problems. Implementing a constrained ICP that

restricts shear, along with providing the existing ICP implementation would aid the

user in the reconstruction process.

9.2 Summary

This work presents an interactive user tool that visualizes point cloud data of a

cathedral and provides tools for users to fit volumetric geometric primitives to the

point cloud in order to analyze its structural stability. A grid box approach and

dynamic loading helps optimize visualization of the dense point cloud. The extensive

user interface allows for user selection of points, geometries, and faces, as well as

tools for transforming these geometries. With the help of the iterative closest point

algorithm and least squares fitting, the user can snap geometries to the point cloud,

snap geometries to selected points, and snap adjacent geometries. Finally, once the

user is done modeling a section, they can export the model into an obj file and import

it into Whiting’s system to evaluate the structural stability. By providing a point

cloud as a template, this system allows users to create a more accurate 3D volumetric

reconstruction of architectural buildings so that its stability can be evaluated and

structural modifications may be suggested.
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Appendix A

Appendix A

A.1 Normal Calculation

A.1.1 Summary

Knowing the normals of the points has some potentially useful features, especially in

the improvement of ICP. We can compute the normals using Principal Component

Analysis [4] [8] [5], or PCA.

PCA can be summarized in the following steps:

1. Find the nearest neighbors

2. Calculate the covariance matrix

3. Compute the eigenvalues of the covariance matrix

4. The eigenvector associated with the smallest eigenvalue is the normal

A.1.2 PCA Implementation

In order to perform PCA to find the normal of a point p, we first need to know the

nearest neighbors of p. We take advantage of the grid acceleration structure and limit

our search of nearest neighbors to the points within p’s own grid box. Using the C++
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vector built-in sort based on distances to the point, sped things up exponentially over

our naive sort implementation.

Once we know the nearest neighbors, we need to calculate the covariance matrix

of the set of k nearest neighbors. We first calculate the centroid p∗ of the nearest

neighbors. For each point x in the nearest neighbors set, we calculate the covariance

matrix as

P = 1/k ∗∑(xk − p∗)T (xk − p∗)

where k is the number of nearest neighbors and p∗ is the local data centroid

p∗ = 1/k
∑
xj.

We can then compute its approximate surface normal as the eigenvector associ-

ated with the smallest eigenvalue of the symmetric positive semi-definite matrix, or

covariance matrix, that we found above. We calculate the eigenvalues by finding the

SVD. The eigenvector corresponding to the smallest eigenvalue is the approximate

surface normal.

A.1.3 Results

This method of calculating the normals only yielded marginal results. In cases where

the point cloud was more planar, this technique worked very well. On the other hand,

in cases of high curvature or variable density of points, this technique failed.

For example, in specialized cases, like the decorated column in Figure A-2, the

calculation of normals failed, due to the highly ornamental nature of the column

and the high curvature of the column. Although the column appears to be merely a

simple cylinder, if viewed from above, the user can see that it is much more ornate

and contains a high amount of curvature.

The problem of calculating normals with a high amount of curvature is not a

new one and has been tackled by many people. The number of nearest neighbors

and the density of the point cloud has a strong influence on the correctness of the

normal. Mitra [8] suggests varying the number of nearest neighbors based on the
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(a) Render of the normals (in blue) on the surface
of the plane. In this case, PCA behaves quite well.

Figure A-1: Rendering Normals of Plane

calculated curvature of the point cloud. We experimented with varying the number of

nearest neighbors and increasing the density of points, but neither yielded consistent

or suficient results. Therefore, because the results of PCA were not consistent, we

chose not to include the normals in our calculation of ICP. Because the initial snapping

for ICP does a reasonably good job, the inclusion of normals in the optimization of

ICP was unnecessary.
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(a) Incorrect Normal on Column. The
normal is in blue, and the red and green
lines are the orthogonal unit eigenvec-
tors. As we can see, the green line
should be the correct normal, so PCA
fails.

(b) View of column from above. We
can see that the column is not simply
a cylinder; there is a lot of decoration
and ornation, which makes the estima-
tion of normals difficult due to the high
curvature.

Figure A-2: Incorrect Normals Example
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