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'ABSTRACT

A Markov Chain model of an unreliable transfer line with interstage
buffer storages is introduced, The system states are defined as the

operational conditions of the stages and the levels of materials in the

storages. The steady-state probabilities of these states are sought in

order to establish relationships between system parameters and performance

measures such as production rate (efficiency), forced-down times, and

expected in-process inventory.

Exact solutions for the probabilities of the system states are found
by guessing the form of a class of expressions and solving the set of

transition equations. Two- and three-stage lines are discussed in detail.

Numerical methods that exploit the sparsity and structure of the transition

matrix are discussed. These include the power method and a recursive

procedure for solving the transition equations by using the nested block

tri-diagonal structure of the transition matrix.

Approximate methods to calculate the system production rate are intro-

duced. These consist in lumping machines together, so as to reduce the

length of the transfer line to two stages, or in lumping workpieces to-

gether in order to reduce the capacity of the storages and thereby render

the dimensions of the state space tractable.

The theory is applied to a paper finishing line, as well as to batch

and continuous chemical processes. These serve to illustrate the flexi-

bility of the model and to discuss the relaxation of certain assumptions.
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1. INTRODUCTION

Complex manufacturing and assembly systems are of great importance,

and their significance can only grow as automation further develops and

enters more areas of production. At the same time, the balance between

increased productivity and high cost is rendered more acute by the

limitations on world resources, the precariousness of the economy, and

the sheer volume of material involved. It is thus necessary to carefully

study such systems, not only out of scientific inquisitiveness but also

because of their important economical implications.

A suitable starting point in the study of production systems is the

transfer line. For the purposes of the present work, a transfer line may

be thought of as a series of work stations which serve, process, or operate

upon material which flows through these stations in a predetermined order.

Transfer lines are the simplest non-trivial manufacturing systems, and it

appears that future work on more complex systems will by necessity be based

on the concepts and methods, if not the results, derived in their study.

Furthermore, transfer lines are already extremely widespread: they have

become one of the most highly utilized ways of manufacturing or processing

large quantities of standardized items at low cost. Production line

principles are used in many areas, from the metal cutting industry, through

the flow of jobs through components of a computer system, to batch

manufacturing in the pharmaceutical industry. At the same time, the accele-

rated pace of life and crowded cities have institutionalized queues of

people waiting to be served through series of stages, from cafeterias to

vehicle inspection stations. The work presented here is devoted to methods

of obtaining important measures of performance and design parameters for

transfer lines, such as average production rate, in-process inventory,

component reliability, and forced-down times.

The transfer line considered here may be termed unflexible: the material

flowing through the system is of only one type, and must go though all the

stations. A fixed sequence of operations is performed before the material is

considered finished and can leave the system. Such a system can be studied

-12-
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as a special case of flexible manufacturing systems.

The stations (also termed machines in the discussion that follows) are

unreliable, in that they fail at random times and remain inoperable for

random periods during which they are repaired. It is possible to-compensate

for the losses in production caused by these failures by providing

redundancy, i.e. reserve machines that enter the network in case of failures.

However, this is often prohibitively expensive, especially in the case of

systems involving very costly components.

An alternative appears (Buzacott[1967a]) to have been discovered in

the U.S.S.R. in the early fifties. This consists in placing buffer storages

between unreliable machines in order to minimize the effects of machine

failures. Buffers provide temporary storage space for the products of

upstream machines when a downstream machine is under repair, and provide

a temporary supply of unprocessed workpieces for downstream machines when

an upstream machine is under repair. Although providing storage space and

possibly machinery to move parts in and out of storages may be cheaper than

redundancy of machines, the cost of floor space and in-process inventory

are far from negligible. It is thus necessary to find in some predefined

sense the "best" set of storage capacities, in order to minimize cost

while keeping productivity high. This leads to what may be refered to as

the buffer size optimization problem, which is discussed in section 1.1.

Before this important optimization problem can be solved, however, the

effect of buffers on productivity, in-process inventory, and other measures

of performance must be quantified. This quantification is the purpose of

the research reported here.
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1.1 Considerations on the Economic Analysis of

Interstage Buffer Storages

It is known from experimentation, simulation, and analysis that the

average production rate and in-process inventory of a transfer line increase

with buffer storage capacity. Before studying in detail the precise methods

for finding the relations between these parameters, however, it may be

necessary to describe the context for which they are intended. These results

are considered in the optimal allocation of interstage buffer storage space.

In some systems, it is desirable to maximize production rate; in others,

such as lines that produce components to be assembled with parts produced

elsewhere at known rates, it is desirable to keep the production rate as

close as possible to a given value, while minimizing cost. In the former

case, storages are often of significant value in increasing production rate

and compensating for the losses due to the unreliability of machines. However,

large storages mean high in-process inventory, a situation that is usually

not desirable. In the latter case, ways will be described to find the least

costly configuration of interstage buffers to give the desired production

rate. In both cases, however, there is need for analysis techniques in

order to understand the exact relation between the various design parameters

and performance measures.

Since production rate is known to increase with storage size,

maximizing production rate could be achieved by providing the system with

very large buffers. However, there are important costs and constraints

associated with providing buffers, including the costs of storage space and

equipment, and in-process inventory. Thus, the buffer size optimization

problem must take into account a number of constraints, including the

following:

(i) There may be a limit on the total storage space to be provided to the

line, i.e. on the sum of the capacities of all individual interstage

buffer storages, due to cost of or limitations on floor space.

(ii) Furthermore, the capacity of each interstage storage may be limited

due to limitations on floor space, or else, the weighted sum of storage
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capacities may be limited. This is the case, for example, if the system is

an assembly line in which parts are mounted onto the workpieces so that

their sizes increase in the downstream direction; this would not only

necessitate tighter constraints on downstream storages, but it may also

place a low upper limit on them because of floor space limitations.

(iii) It may be desirable to limit the expected (i.e. average) total number

of jobs or parts in the system at any time, that is the in-process

inventory. (It may be noted that Elmaghraby[19661 calls only those parts

that are actually being serviced in-process inventory, while he denotes

those in the buffer storages as in-waiting inventory. Here, as in most

other works, the term is taken to mean the material waiting in buffer

storages.) In-process inventory is an important consideration in.the

design and operation of manufacturing systems, particularly when the parts

are costly or when delay is particularly undesirable due to demand for

finished products.

(iv) It may be necessary to limit the expected number of parts in certain

storages only. This is the case, for example, if very costly elements are

mounted onto the workpieces at a certain station, so that the in-process

inventory beyond that point must be limited; if parts equipped with the

costly components are allowed to wait in storages, the time between the

purchase or manufacture of the costly elements and the sale of the finished

products may become long, and this is undesirable. More generally, since

each operation at subsequent stages gives more added value to each part,

it may be necessary to weigh the cost of downstream inventory more than

upstream inventory.

It may also be desirable to limit the amount of in-process inventory

between certain specific stations. This is the case, for example, if a

workpiece is separated into two parts at a certain station, and one of the

parts is removed, possibly processed in a separate line or server, and the

two parts are then reassembled at some downstream station. In this case,

it is not desirable to have large amounts of inventory waiting between the

separation and assembly stations, since that would imply that at certain

times, in the presence of failures, the ratio in which the two parts arrive
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at the assembly station would significantly deviate from the desired

one-to-one ratio. Complex network topologies, such as lines splitting and

merging, separate lines sharing common servers or storage elements, are

not treated here. The present work applies only to simple transfer lines.

This is believed to be only a necessary first step towards the study of

more complex systems.

It must be noted here that, as will be shown in section 5.3, items

(i) and (ii) are not equivalent to (iii) and (iv). In other words, although

limiting storage size certainly does impose an upper limit on the amount

of in-process inventory, the relation between these two quantities is not

necessarily linear.

The constraints outlined above are, of course, not exhaustive; specific

applications may require additional considerations or constraints.

Calculating the costs involved in designing, building and operating

transfer lines with interstage buffer storages involves numerous factors.

Kay[1972] who studied the related problem of optimizing the capacity of

conveyor belts by analytical as well as simulation techniques, found that

conveyor capacity is an important parameter in the design of production

systems. Yet, he found that none of the industrial designers that he

encountered had considered this as a design parameter. The techniques and

results presented here may serve the dual purpose of reiterating the

importance of methods and approaches for calculating the relation of buffer

capacity and other design parameters to the performance of transfer lines.

The economic aspects of production lines with interstage buffer

storages have been studied by numerous researchers, in some cases by simu-

lation, and in others by analytical methods based on queueing theory. Barten

[19621 uses computer simulation to obtain mean delay times for material

flowing through the system; he then bases his economic analysis on the cost

of providing storage and labor and overhead costs as a function of delay

time. Love[1967], who studied the related problem of modeling and policy

optimization of a two-station (e.g. warehouse-retailer) inventory system,

gives a cost model for inventory including the expected cost per time to

operate the system, the cost of providing buffer facility, and that of the

expected inventory at each storage. Soyster and Toof[1976] investigate the
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cost versus reliability tradeoff, and obtain conditions for providing a

buffer in a series of unreliable machines. Young[1967] analyzes multi-

product production lines and proposes cost functionals for buffer capacities,

which he then uses in optimization studies by computer simulation. Kraemer

and Love[1970] consider costs incurred by in-process inventory as well as

actual buffer capacity, and solve the optimal buffer capacity problem for

a line consisting of two reliable servers with exponentially distributed

service times and an interstage finite buffer storage.

The approaches proposed in these works may be followed in deriving

appropriate cost models for an economic analysis of the system. It is

beyond the scope of the present work to attempt to solve, or even formally

state, the buffer size optimization problem. For this reason, the economics

of unreliable transfer lines with interstage buffer storages are not

discussed here in depth. It will suffice to list some of the important

elements that must be considered in the cost analysis of such production

systems. These include:

(i) Cost of increasing the reliability of machines. While the production

rate generally increases with the reliability of individual machines,

bottleneck stages eventually dominate. At the same time, increased machine

reliability involves increased capital cost, possibly due to additional

research, high quality components, etc. In cases where machines are already

chosen, there may be no control on their individual efficiency.

(ii) Cost of providing materials handling equipment for each storage.

Buzacott[1967b] observes that providing storages involves a fixed cost,

independently of the capacity of the storage, because of equipment needed

to transfer pieces to and from the buffer, maintaining the orientation of

the workpieces, etc. This complicates the decision problem on how many stages

a production process must be broken into for optimal performance.

(iii) Cost of providing storage capacity. Floor space can be very expensive,

so that buffer storages may involve considerable cost which is linear with

the capacity of the buffer. It is sometimes possible, however, to use

alternate types of storage elements, such as vertical (chapter 7) or helical

(Groover[19753) buffers, in order to reduce the area occupied by the buffer.



(iv) Cost of repair of failed machines. There is clearly a tradeoff between

investing in increased machine reliability (item(i)) and in repairing

unreliable machines. Although this cost may not be controlled by providing

interstage storages, it enters the design of transfer lines.

(v) Cost of maintaining in-process inventory. One of the major goals in

production engineering is minimizing in-process inventory. This is

important not only when expensive raw material is involved, but also when

the value added to the parts by machining is considerable.

(vi) Cost due to delay or processing time. Apart from the cost of operating

the system, there may be a cost due to delaying the production or increasing

the expected total processing time. This is especially true of transfer

lines involving perishable materials, such as in the food, chemical, or

pharmaceutical industries. Delay in response to demand is also an important

consideration, although this is most important in flexible lines where the

product mix may be changed to conform to demand.

(vii) The production rate of the system: the objective of the optimization

problem is maximizing profit rate, a function of production rate as well as

cost rate. The latter involves labor and overhead costs, and may be computed

in terms of mean-time needed to process a workpiece, including machining

times, in-storage waiting times, and transportation. The former requires

a more difficult analysis, since its relation to other system parameters

such as reliability and storage size, is highly complex.

It is evident from this discussion that the problem of optimally

designing a production line has many aspects. These include the choice of

machines on the basis of reliability and cost; the division of the line into

stages once the machines have been chosen; and the optimal allocation of

buffer capacity between these stages. Yet, the relations between these

steps and between the various design parameters are not well known, and most

previous work in this area has centered on fully reliable lines, on simple

two-machine systems, or on simulation. The lack of analytical work on

unreliable lines with buffer storages has prompted Buxey, Slack and Wild[1973)

to write "the only way to achieve realistic buffer optimization is through

the use of computer simulations adapted to apply to specific rather than
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general situations." Numerical and analytical ways to obtain exact as well

as approximate values for production rate, as well as some other performance

measures, given the characteristics of the machines and storages,

constitute the primary contribution of the present work.
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1.2 A Brief Review of Past Research

Transfer lines and transfer line-like queueing processes have been

the subject of much research, and numerous approaches as well as results

have been reported in the literature. The first analytical studies were

the works of Vladzievskii[1952,1953] and Erpsher[1952], published in the

U.S.S.R. in the early fifties.

Applications of queueing networks and transfer line models can be

found in a large number of seemingly unrelated areas. These include the

cotton industry (Goff[1970]), computer systems (Giammo[1976], Chandy[1972],

Chandy, Herzog and Woo[1975a,1975b],Shedler[1971,1973], Gelenbe and Muntz

[1976], Baskett, Chandy, Muntz and Palacios[1975], Buzen[1971], Lam[1977],

Konheim and Reiser[1976], Lavenberg, Traiger and Chang[1973], Wallace[1969],

Wallace and Rosenberg[1966], etc.), coal mining(Koenigsberg[1958]), batch

chemical processes (Stover[1956], Koenigsberg[1959]), aircraft engine

overhauling (Jackson[1956]), and the automotive and metal cutting industries

(Koenigsberg[1959]).

A large portion of related research is based on the assumption that

parts arrive at the first stage of the transfer line in a Poisson fashion.

This greatly simplifies computation, and may be applicable to models of

systems where parts arrive from the outside at a random rate, such as jobs

in computer systems, people at service stations, cars at toll booths, etc.

Most if not all of the computer-related work, as well as the results of

Burke[1956], Hunt[1956], Avi-Itzhak and Naor[1963], Neuts[1968,1970], and

Chu[1970] are based on the Poisson input assumption. As Soyster and Toof[1976)

point out, however, this approach is not realistic when it comes to industrial

systems such as assembly and production lines. Here, it is more reasonable

to assume that parts are always available at the first stage, so that to

follow Koenigsberg[1959], the approach may be termed "stochastic" as

opposed to "queueing."

The production rate of transfer lines in the absence of buffers and in

the presence of buffers of infinite capacity have been studied (Buzacott[1967a,

1968], Hunt[1956], Suzuki[1964], Rao[i975a], Avi-Itzhak and Yadin[1965],
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Morse[1965]). Some researchers have analyzed transfer lines with fully

reliable components, in which the buffers are used to minimize the effects

of fluctuations in the non-deterministic service times (Neuts[1968,1970],

Purdue[1972], Muth[1973], Knott[1970a],Hillier and Boling[1966], Patterson

(1964], Hatcher[1969] (It should be noted that Knott[1970b] disputes

Hatcher's results and provides a counter-example)). Two-stage systems with

finite interstage buffers have also been studied (Artamonov[1976], Gershwin

[1973a,1973b], Gershwin and Schick[19771, Gershwin and Berman[1978],

Buzacott[1967a,1967b,1969,1972], Okamura and Yamashina[1977], Rao[1975a,

1975b], Sevast'yanov[1962]). Longer systems have been more problematic

because of the machine interference when buffers are full or empty (Okamura

and Yamashina[19773). Such systems have been formulated in many ways

(Gershwin and Schick[1977], Sheskin[1974,1976], Hildebrand[1968], Hatcher

[1969], Knott[1970a,1970b]) and studied by approximation (Buzacott[1967a,

1967b], Sevast'yanov(1962], Masso and Smith[19741, Masso[1973]), as well as

simulation (Anderson[1968], Anderson and Moodie[1969], Hanifin, Liberty and

Taraman(1975], Barten[1962], Kay[1972], Freeman[1964]), but no analytic

technique has been found to obtain the expected production rate of a

multistage transfer line with unreliable components and finite interstage

buffer storages.
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1.3 Outline of Research and Contributions

The present work aims at devising analytical, numerical, and

approximate methods for solving the problem of obtaining the production rate

and other important performance measures of transfer lines with more than

two unreliable stages and finite interstage buffers, while at the same time

furthering the understanding of two-machine transfer lines.

The problem is formally stated in chapter 2: a description of the

transfer line is followed by a state-space formulation in section 2.1, and

a discussion of the modeling assumptions in section 2.2. The Markov chain

model is introduced and discussed in section 2.3.

An analytical approach is developed in chapter 3: the states of the

system are classified as internal and boundary, and these are studied in

sections 3.1 and 3.2 respectively. A sum-of-products solution for the

steady-state probabilities of internal states of the system is introduced

in section 3.1.2, and the analysis is extended to the boundary states for

two-machine lines, and three-machine and longer lines, in sections 3.2.1

and 3.2.2 respectively.

Numerical methods for solving the transfer line problem are developed

in chapter 4: the iterative multiplication scheme known as the power method

is introduced and discussed in section 4.1. An algorithm which solves the

large system of transition equations by taking advantage of the sparsity

and block-tri-diagonal structure of the transition matrix is developed in

section 4.2: the structure of the transition matrix is studied in section

4.2.1 and the algorithm is formulated in section 4.2.2. Some important

computer storage problems associated with this algorithm are discussed in

section 4.2.3.

The state probabilities obtained by the analytical and numerical

methods discussed in chapters 3 and 4 are used to calculate important system

performance measures in chapter 5: these include efficiency and production

rate, forced-down times, and in-process inventory. The production rate of

the system is discussed in section 5.1: alternate ways to compute production

rate are given in section 5.1.1, and the effects of start-up transients on
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this quantity are investigated by dynamic simulation in section 5.1.2.

The dependence of production rate, forced-down times and expected in-process

inventory on the failure and repair rates of individual machines and the

capacities of individual storages is studied in sections 5.1.3, 5.2, and

5.3 respectively.

Approximate methods for computing the system's production rate with

less computation than is required by the exact methods developed in earlier

chapters are introduced in chapter 6: dynamic simulation and its limited

uses in the present work are briefly reviewed in section 6.1. An aggregate

method for computing the approximate average production rate of a long

transfer line is introduced in section 6.2: this method is based on the

quasi-g.eometric input and output characteristics of two-machine lines, as

demonstrated in section 6.2.1. Since a single machine has exactly geometric

input and output characteristics, the approximate equivalence of a single

machine to a two-machine, one-storage segment of a transfer line is

proposed in section 6.2.2. It is shown, however, that the approximation is

best when the line is not well balanced, a rare occurrence in actual

industrial systems. A mathematical operation on the system parameters.

referred to as the 6-transformation is introduced in section 6.3.1. It is

shown in section 6.3.2 that this transformation leaves production rate

nearly unchanged. The major consequence is that the state space can be

considerably reduced through this approach, thus decreasing the amount of

computation and memory necessary to solve the problem.

Chapters 7,8, and 9 are devoted to applications of the theory. The aim

of these chapters is primarily to demonstrate the wide-range applicability

of the model, while at the same time pointing out its shortcomings and

weaknesses and discussing ways of extending the model to more closely conform

to actual situations.

Chapter 7 outlines a paper finishing line: this system is shown to

lend itself to a three-machine, two-storage transfer line model, although

several important differences exist between the system and the model. These

are discussed in section 7.1, while attempts at modeling the system are

reviewed in section 7.2.
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Chapters 8 and 9 investigate the application of the transfer line

model to chemical systems. It appears that Stover's [1956] pioneering

work in the application of queueing theory to chemical plants has not been

followed up or developed subsequently. Yet, as is shown here, this approach

can be particularly useful in estimating the production rates of chemical

systems in the presence of unreliable equipment: pumps or valves that fail,

heating, cooling, or control mechanisms that break down, etc.

A queueing theory approach to the study of batch chemical processes,

in which pumps, reactors, and other unreliable components are represented

by machines and holding tanks by storages, is introduced in section 8.1.

Major differences between actual systems and the model are discussed in

sections 8.1.1 and 8.1.2. The model is extended to account for cases where

servicing times are not deterministic. This includes reactors where batches

of chemicals take periods of time which deviate from a known mean holding

time to reach a desired conversion. This may happen because of variations

in the temperature or concentration of the feed, or because the kinetics

of the reaction are not understood well enough to predict reaction times

exactly. The new model is applied to a simple system consisting of a batch

reactor and a still, separated by unreliable pumps and parallel holding

tanks, in section 8.2.1. A numerical example is worked out, and more complex

systems are discussed, in sections 8.2.2 and 8.2.3 respectively.

The 6-transformation introduced in section 6.3 is taken to its limit

as 6+0 and the model is shown to become equivalent to a continuous system

in chapter 9. Results obtained by differential equations for a continuous

line are outlined in section 9.1, and the limiting case of the 6-transformation

is studied in section 9.2. The two approaches are shown to yield identical

results. A numerical example of a continuous chemical process, in which a

plug-flow reactor and a distillation column are separated by unreliable

pumps and a holding tank is worked out.

Conclusions and suggestions for future research appear in chapter 10.



2. PROBLEM STATEMENT AND MODEL FORMULATION

Formulating a mathematical model in order to study the relations

between certain parameters and measures of performance in transfer lines

requires a formal and unambiguous statement of the problem.

Section 2.1 gives a general description of a multistage transfer line

with unreliable components and interstage buffer storages. The line is

discussed in section 2.1.1 and a state space formulation is introduced

in section 2.1.2.

The various assumptions made in the process of translating the system

into a mathematical model are outlined and discussed in section 2.2. These

assumptions are necessary in order to render the mathematical model

tractable, while not losing sight of the physical properties of the actual

system. Many of these assumptions are standard (Feller[1966], Koenigsberg

[1959]). The assumptions are stated, justification is given, and possibilities

of relaxation are investigated.

The Markov chain approach to modeling the transfer line is discussed

in section 2.3. This approach is frequently used in the study of queueing

networks arising from computer systems (Wallace[1972,1973], Wallace and

Rosenberg[1966]) or manufacturing systems (Buzacott[1967a,1967b,1969,1971,

1972]). A brief review of the properties of Markov chains is given in

section 2.3.1. (An excellent and exhaustive text on Markov systems is Howard

[19711). The Markov model of the transfer line is discussed in section 2.3.2.

-25-
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2.1 Modeling the Transfer Line

2.1.1 Description of a Multistage Transfer Line

with Buffer Storages

The system under study is illustrated in figure 2.1. It consists of a

linear network of machines separated by buffer storages of finite capacities.

Workpieces enter the first machine from outside the system. Each piece is

processed (drilling or welding in a metal cutting line, reacting or

distillating in a chemical plant, data processing in a computer network, etc.)

by machine 1, after which it is moved into storage 1. For the purposes of this

study, the nature of the machine operation may be ignored, and a machine is

taken to be an unreliable mechanism which moves one workpiece per cycle in

the downstream direction. The buffer is a storage element in which a workpiece

is available to a downstream machine with a negligible delay. The part moves in

the downstream direction, from machine i to storage i to machine i+l and so

on, until it is processed by the last machine and thereby leaves the system.

Machines fail at random times. While some of these failures are easy to

diagnose and quick to repair, such as some tool failures, temporary power

shortages, etc., others involve more serious and time-consuming breakdowns,

such as jamming of workpieces or material shortages. Thus, the down-times of

the machines, like the up-times, are random variables. When a failure occurs,

the level in the adjacent upstream storage tends to rise due to the arrival of

parts produced by the upstream portion of the line; at the same time, the level

in the downstream adjacent storage tends to fall, as the parts contained in

that storage are drained by the downstream portion of the line. If the failure

lasts long enough, the upstream storage fills up, at which time the machine

immediately preceeding it gets blocked and stops. Similarly, given that the

failure takes long enough to repair, the downstream storage eventually empties,

and causes the machine following it to starve and stop. This effect propagates

up and down the line if the repair is not made promptly.

If it is assumed that machines cannot operate faster than their usual rates

in order to catch up the time lost because of such failures, it is clear that
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breakdowns have the effect of reducing the average production rate of the

transfer line. Although machine failures are to a certain extent inevitable,

it is desirable to avoid situations in which operational machines are

affected by failures elsewhere and are forced to stop. Such situations

can to a certain extent be avoided by the use of buffer storages, which

act so as to partially decouple adjacent machines. As the capacities of

these storages are increased, the effects of individual failures on the

production rate of the system are decreased.

It is desirable to study the interactions between the elements of

the system and the relations between various system parameters, so as to

be able to quantify the advantages of using buffer storages and their

effect on system production rate.
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2.1.2 State Space Formulation

A probabilistic approach is taken in the study of unreliable transfer

lines. Starting with probabilities of failure and repair for each individual

machine in the line, the probabilities of producing a piece, of being forced

down, or of having a given number of parts in a given storage within any time

cycle are sought. These are used in evaluating the system's performance. The

transfer line problem was studied through such a probabilistic approach for

the first time (see Buzacott[1967a]) by Vladzievskii[1952].

In order to carry out the analysis in this direction, it is necessary

to formulate a state space for the probabilistic model. A system state is

defined as a set of numbers that indicate the operational status of the

machines and the number of pieces in each storage, as described below.

For each machine in a k-machine line, the variable a. is defined as

follows:

0 if machine i is under repair

6.=aid~~~~~ |i=l,..,k (2.1)i

1 if machine i is operational

It is important to note that operational is defined to mean "capable of

processing a piece," as opposed to "actually processing a piece." This

accounts for cases where the machines are in good working order, but are

not processing parts because they are starved or blocked. Several authors

(Haydon[1972], Okamura and Yamashina[1977], Kraemer and Love[1970]) define

four states, by adding to the above separate states for blocked and starved

machines. It will be shown, however, that since probabilities of transition

between states are taken here to depend not only on the states of machines

but also on the levels of storages, the two approaches are equivalent, though

the one given by equation (2.1) is more compact.

The variable n. is defined as the number of pieces in (the level of)

storage j. Each storage is defined to have a finite maximum capacity N ,

so that
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o < nj < N. ; j=,..,k-l (2.2)
J ]

The state of the system at time t is defined to be the set of numbers

s(t) = (nl ( t) r,. .,n k-l (t ), l k(t ) . . ( (2.3)

It may be noted that time, though denoted by the letter t, is discrete. As

will be described in section 2.2.2, time is measured in machining cycles.

The efficiency of a transfer line is defined to be the probability of

producing a finished piece within any given cycle. It may be thought of as

the expected ratio of time in which the system actually produces finished

parts to total time. Efficiency, E, satisfies

0 < E < 1 (2.4)

State transition probabilities are treated in section 2.2.3. Methods

of obtaining steady state probabilities are developed in chapters 3 and 4,

and their relation to efficiency are discussed in chapters 5 and 6.
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/2.2 Assumptions of the Model
/

2.2.1 Input and Output of the Transfer Line

It is assumed that an endless supply of workpieces is available upstream

of the first machine in the line and an unlimited storage area downstream of

the last machine is capable of absorbing the parts produced by the line. Thus,

the first machine is never starved and the last machine is never blocked.

Although a large portion of computer-related work assumes that jobs

arrive at the system at random rates, often in Poisson fashion, it is more

realistic in industrial systems to assume that parts are available when

needed (Soyster and Toof[1976]). Nevertheless, it is possible to think of

cases in which delays in reordering raw materials etc. may cause a shortage

of workpieces at the head of the line. Similarly, it is conceivable that

congestion downstream in the job shop may cause blocking at the end of the

line. These events would clearly not have Poisson time distributions: in

that case, parts arrive singly, with random interarrival times. In most

industrial cases, it may be expected that parts are delivered in batches.

In such cases, it is possible to think of the first and last machines in

the model as representing loading and unloading stations. Then, temporary

shortages of workpieces or temporary congestion downstream may be modeled as

failures in these machines. In other words, unreliable first and last machines

may model delivery to and from the production line, especially if parts are

moved in bulks (Bagchi and Templeton[l972]).

A single machine, i.e. a one-machine line, stays up for a random length

of time, and once a failure occurs, it remains down for a random length of

time. Both of these periods are geometrically distributed (as will be shown

in section 2.2.3). Thus, the arrival of bulks (or batches) of geometrically

distributed sizes, with geometrically distributed interarrival times, may be

modeled by a fictitious first machine. This may involve some additional

considerations, however. Subsequent deliveries must be independent, and the

first storage may have to have infinite capacity.
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In general, the assumption of infinite workpiece supply will be

justified for most industrial applications. Entire production lines seldom

have to stop because of lack of raw material; major shutdowns due to strikes

or accidents are of an entirely different nature and are not considered

stochastic failures in the sense described in section 2.2.3. There may,

nevertheless, be cases where loading and unloading batches takes some time.

This is the case, for example, with the paper finishing line (chapter 7)

where paper is supplied to the line in the form of extremely large, but

necessarily finite rolls. As discussed in section 7.1.2, the effect of

starving the line during loading may be ignored if the period of time in

which the system is starved is negligible compared to other times involved

in the system.
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2.2.2 Service Times of the Machines

It is assumed that all machines operate with equal and deterministic

service times. The temporal parameter t is chosen so that one time unit is

equal to the duration of one machine cycle. Thus, the line has a production

rate determined only by its efficiency. The efficiencies of individual

machines in isolation, on the other hand, are functions of their mean times

between failures and mean times to repair, or alternately their repair and

failure probabilities. (This is discussed in detail in section 5.1).

Although deterministic service times may be encountered in certain

actual systems (Koenigsberg[1959] mentions an automobile assembly line),

this assumption does not hold in many industrial applications. Not only is

machining time often a random variable, but downstream machines frequently

operate on the average at a faster rate than upstream ones, in order to

avoid as much as possible the blocking of upstream machines.

The assumption of constant machining times is justifiable if service

times do not deviate appreciably from the mean, compared to the mean service

time. This is because variances in service times do not significantly affect

the system behavior and average production rate at the condition that the

system is not driven to boundaries, i.e. storages are not emptied or filled

up. As will be shown in later chapters, the largest steady-state probabilities

belong to states with 1 or Ni-l pieces in storages. Thus, the system runs most

often near boundaries. As a result of that, small deviations from the mean may

average out, although large deviations may starve certain machines and block

others, thereby reducing the line production rate.

Solutions have been obtained for queueing networks with servers having

exponential time distributions (See section 8.2). The assumption of exponential

distribution reduces the complexity of the problem, but numerous researchers

point out that this is often not a reasonable assumption (e.g. Rao[1975a]).

Gaussian distributions have been proposed by some (Vladzievskii[1952],

Koenigsberg[1959]) and certain Erlang (See Brockmeyer, Halstrrm and Jensen[1960])

distributions may be considered in that they have applicability to industrial

cases and satisfy the Markov proper-y o= no memory (Section 2.3).

Transportation takes negligible time compared to machining times.
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2.2.3 Failure and Repair of Machines

Machines are assumed to have geometrically distributed times between

failures and times to repair. This implies that at every time cycle, there

is a constant probability of failure given that the machine is processing

a piece, equal to the reciprocal of the mean time between failures (MTBF).

It is further assumed that machines only fail while processing a piece.

Similarly, there is a constant probability of repair given that the machine

has failed, equal to the reciprocal of the mean time to repair (MTTR).

The assumption of geometric failure rate is common (Vladzievskii[1952],

Koenigsberg[1959], Esary, Marshall and Proschan[1969], Barlow and Proschan

[1975], Goff[1970], Buzacott[1967a,1967b,1969], Feller[19661, Sarma and Alam

[1975]). It makes it possible to model the system as a Markov chain, since

it satisfies the memoryless property of Markov systems (Section 2.3).

However, there are certain difficulties with this assumption. While it

applies to those cases where the overwhelming majority of failures are due to

accidental, truly stochastic events, such as tool breakage or workpiece

jams, it does not account for scheduled down-times or tool wear. Such stoppages

are predictable given knowledge of the history of the system. Yet, when there

is a very large number of possible causes of failure, so that even if some are

scheduled, the time distribution including stochastic failures is close to a

geometric distribution, this assumption can be made.

Geometric repair time distributions imply that the repair is completed

during any cycle with a constant probability, regardless of how long repairmen

have been working on the machine. This assumption may not be far from the truth

if there are many possible causes of failure, each of which take different

lengths of time to repair.

Some examples of actual up- and down-time distributions from an industrial

manufacturer appear in figures 2.2 and 2.3. Although these are for relatively

small numbers of runs, totalling no more than several hundred time cycles, the

distribution is in fact seen to be remarkably close to geometric. (These charts

represent typical data obtained from an industrial manufacturer. The actual

data is the proprietory information of the industrial manufacturer.)
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The model does not take into account the problem of machine interference

(Benson and Cox[1951], Cox and Smith[1974]), in which the limited number of

repairmen affects the repair probabilities when more than one machine are

down simultaneously. Not only are the repair probabilities reduced in such

cases, but they further depend on which machine broke down first, since the

repairmen will be at work at that machine with greatest probability. Ways of

taking this problem into account are discussed to some detail in section 7.1.6.

While repair takes place independently of storage levels or the number

of failed machines, a failure can only occur when the machine is actually

processing a part. This implies that the upstream storage is not empty and

the downstream storage is not full. In the former case, the machine has no

workpiece to operate on, and in the latter, it is not allowed to operate since

there is no place to discharge a processed workpiece. In other words, a

forced-down machine cannot fail. In research reported by Koenigsberg[1959],

Finch assumed that forced-down machines have the same probability of failure

as running machines, an assumption that is not realistic.(Buzacott[1967a,1967b],

Okamura and Yamashina[1977]).

The assumption that machines only fail while actually processing a piece

is consistent with the assumption that the great majority of failures is due

to stochastic events such as tool breakage, as opposed to scheduled shutdowns

or major system failures that may happen at any time.
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2.2.4 Conservation of Workpieces

The model does not account for any mechanism for destroying or rejecting

workpieces, or for adding semi-finished workpieces into the line. Thus, the

average rate at which pieces are processed by each stage in the line is the

same for all stages. It is shown in section 5.1.1 that the solution to the

two-machine line satisfies the conservation of pieces. The proof is not

complete for longer lines.

The fact that pieces are not created by the system is true except when

machines cut workpieces into identical parts, all of which are then processed

by downstream machines; this is the case in the paper finishing line (See

section 7.1.1). That pieces are not destroyed, however, assumes that a

workpiece is not scrapped when a machine fails while processing it (as in

the work of Okamura and Yamashina[19773), that there are no interstage

inspection stations where defective parts are removed, etc. In systems

satisfying these requirements, all stages process the same average number of

pieces per cycle, and it is thus only necessary to compute the production

rate of one stage, e.g. the last one (Koenigsberg[1959]). There is an

importantexception to this rule, and that involves infinite buffer storages

for which the upstream portion of the line is more efficient than the

downstream portion. This is examined in greater detail in section 5.1.3.

Cases in which workpieces are cut into parts or parts are assembled or

packaged together are briefly treated in section 7.1.1. It is possible to

approximate such lines by considering the smallest part as a unit and

analyzing larger parts, either before they are cut or after they are

assembled, as multiples of the smallest unit. This approach is not exact, and

errors are introduced by effective changes in the flexibility of the system.

(See section 6.3).
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2.2.5 Dynamic Behavior of the System

It is assumed as a convention that machines make their state transitions

first, conditional on the level of the adjacent storages. Once these changes

take place, the storage levels undergo state transitions, within the same time

cycle. This is only a convention and the actual system does not have to

operate this way. Thus, the transition a. i(t)-*ai(t+l) is conditional on .i(t),

ni 1 (t) and ni(t). However, the transition n (t)-+n (t+l) is conditional on

ni _l(t),ni(t),ni+l(t), as well as ai(t+l) and ai+l(t+l), where these latter

indices are the final machine states while the former are the initial storage

states. Note that the machine and storage transitions depend only on the

adjacent machine and storage states, and do not depend on the states of

machines and storages further removed.

This assumption makes the computation easier, because it implies that

the final storage state is uniquely determined once the initial storage states

and the final machine states are known. The advantages of this approach in

the mathematical derivation are made clearer in section 3.1.1.

This assumption is consistent with those stated previously: a machine

can not fail if the adjacent upstream storage is empty, so that there are no parts

to process, or if the adjacent downstream storage is full, so that there is

no place to put the processed piece. Furthermore, a piece is not destroyed

when a machine fails, but merely remains in the upstream storage until the

machine is repaired. Finally, since all machines work synchronously, there

is no feed forward information flow, so that the knowledge that a place will

be vacant in the downstrean storage or that a piece will emerge from the

upstream machine in the time cycle to follow does not influence the decision

on whether or not to attempt to process a piece.

It is important to note that this is mostly for mathematical convenience

and need not represent the operation of the actual system. One consequence of

this assumption is important, however, and must be consistent with the actual

system. Because there is no feed forward information flow, a machine can not

decide to process a piece if the upstream storage is empty, even though the

upstream machine may be ready to discharge a part. Similarly, the machine
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cannot start processing a piece if the downstream storage is full, even

though the downstream machine may have just been repaired and is ready to

take in a piece. Thus, there is a delay of at least one cycle between

subsequent operations by adjacent machines on any given workpiece, and

between a change in the system state and decisions on the part of the

machines towards the next state transition. This is unlike the models

analyzed by Hatcher[1969] and Masso[1973], in which a part may emerge

from a machine and go into the next, bypassing the storage element,

within the same time cycle.
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2.2.6 The Steady State Assumption

It is assumed that the probabilistic model of the system is in

steady state, i.e. that all effects of start-up transients have vanished

and that the system may be represented by a stationary probabilistic

distribution.

A stochastic system is never at rest. Thus, as explained in section

5.1.2, the steady state assumption does not imply that the system is not

fluctuating. What it does imply is that a sufficiently long period of time

has passed since start-up, so that knowledge of the initial condition

of the system does not give any information on the present state of the

system. Thus, the average performance of the system approaches the

steady state values calculated by assuming that the probabilistic model

of the system is stationary.

There may be cases, however, in which transients take very long to

die down, compared to the total running time of the system. In such

cases, the steady state values may not represent the average performance

of the system. The effects of start-up transients are briefly discussed

in section 5.1.2.
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2.3 Formulation of the Markov Chain Model

2.3.1 The Markovian Assumption and Some Basic Properties

A stochastic process may be defined as a sequence of events with random

outcomes. A process is said to be Markovian if the conditional joint probability

distribution of any set of outcomes of the process, given some state, is

independent of all outcomes prior to that state. Thus, defining the state

of the system at time t as s(t),

p[s(t+l) s(t),s(t-1),, s(t-))] = p[s(t+l) s(t)] (2.5)

This implies that at any given time, the transition probability depends only

on the state occupied at that time; it is independent of the past history of

transitions. Another way of saying this is that the transition from one

state to another is independent of how the system originally got to the first

state. This is what is meant by the memorylessness of Markov processes.

The expression appearing on the right-hand-side of equation (2.5) is

the probability of transition from the state occupied at a given time to the

state occupied one time step later. This probability is assumed to be

independent of time. Thus, the state transition probabilities are defined as

t.. = p[s(t+l)=jIs(t)=i] ; all i,j (2.6)

Given that there are M states, the transition probabilities defined by

equation (2.6) obey the following relations:

t..j 0 ; all i,j (2.7)

t.. = 1 ; all i (2.8)
j=1 ti

It is possible to represent the state transition probabilities in matrix form.
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The transition matrix is defined as

tll t21 ... tM1

t12 t22
T = . . (2.9)

t ..M tMM

At time t, the probabilities that the system is in state i=l,..,M may be

represented as a state probability vector, defined as

p1(t) p[s(t)=l]

P2(t) p(s(t)=2]
P2 (t)

P(t) = . . (2.10)

PM(t) p[s(t)=M]

where

M
EPi (t) = 1 (2.11)

i=l

Then, the state probability vector at time t+l is given by

p(t+l) = T p(t) (2.12)

and recursive application of equation (2.12) gives

(t) = T p(O)

A (t) P(0) (2.13)

Here, p(0) is a given initial (a priori) probability vector, and Tt denotes
th

the t power of the transition matrix T. The chain is termed ergodic if the
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limit

lim (t) A (2.14)
tom

exists and if the steady-state probability vector defined as

Ap = p(0) (2.15)

is independent of the value of the initial state probability vector p(0).

As t4-, equation 2.12 becomes

p = T p (2.16)

since the vectors p(t) and p(t+l) converge to p.

Equations (2.11) and (2.16) are shown to uniquely determine the value of

p for the system under study in section 4.2.1. These two equations form the

basis of both analytical methods derived in chapter 3 and the sparse block

tri-diagonal system of equations solving algorithm introduced in section

4.2. The power method discussed in section 4.1 is based on equations (2.12)-

(2.15).
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2.3.2 System Parameters

Assumption 2.2.3 implies that whenever a machine is processing a part,

it has a probability of failure Pi' Since the up-times of the machines are

geometrically distributed, the failure probability for a given machine is

equal to the reciprocal of its mean time between failures. When the machine

is operational, i.e. in good working order, but forced down either because

the upstream storage is empty or because the downstream storage is full, it

can not fail; thus, the failure probability of a starved or blocked machine

is zero. Finally, when processing a piece, a machine can either fail or

successfully complete the machining cycle; thus, since its failure probability

is pi' the probability that it successfully completes the part is 1-p..

Repair of a failed machine starts at the beginning of the time cycle

following the failure. By assumption 2.2.3, the probability that a failed

machine is repaired at the end of any cycle is r.. This value is independent

of storage levels or the status of other machines. Since down-times of machines

are geometrically distributed, the repair probability of a given machine is

equal to the reciprocal of its mean time to repair. The probability that a

failed machine remains down at the end of a time cycle is 1-r,. These

probabilities are summarized in table 2.1.

As discussed in section 2.2.5, storage level transitions are uniquely

determined by the knowledge of the initial storage levels and the final

machine states. Consequently, these transitions have probabilities either

equal to 1 (certain) or to zero (impossible). The transitions with probability

1 are listed in table 2.2. Some of these are discussed below.

The level of storage i at time t+l depends on its level at time t, as

well as on whether or not a part is added to or withdrawn from it by the

adjacent machines. The upstream machine adds a piece to the storage if it is

operational and if it is allowed to process parts, i.e. if it is neither

starved nor blocked. Similarly, the downstream machine withdraws a piece

from the storage if it is operational, as well as neither starved nor

blocked. Consequently, ni. (t+l), the level of the storage at time t+l, is

determined by the upstream and downstream machine states at time t+l (ai (t+l)
1
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prob[i (t+l) i (t) i(t) ni (t)]

ni-(t) ni(t) ai(t) ai (t+l) probability

0 0 l-r.

0 1 ri

O - 1 0 0

O - 1 1 1

- N. 1 0 0

- N. 1 1 1
1

>0 <Ni 1 0 P

>0 < N. 1 1 -p

Table 2.1. Machine State Transition

Probabilities
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Table 2.2. Storage Level Transition Probabilities.

prob[ni (t+l)ni _l(t),a (t+l),n (t)a +(t+l) n +(t)l

nil (t) n (t) i+l(t) a. (t+l) ai. (t+l) ni (t+l) probability
i-1i 1 n +l 1 i+l 1

o 0 <N 1 0 0 0 1
i+l

1

0 1 0 1

1 0 1

1 1 0 1

Ni+l 10 0 0 1.
0 1 0 1

1 0 0 1

1' 1 0 1

o >0,<N. <Ni 0 0 n (t) 1

0 1 n.(t)-l 1
1

1 0 n.(t) 1
1

1 1 n.(t)-i 2

o >0,<N. N 0 0 n. (t 1
1 i+l 1

0 1 n.(t) 1
1

1 0 n.(t) 1
1

1 1 n.(t) 1

O N. <N. 0 0 N. 1
1 1i+l1 1

o 1 N.-I 1
1

1 0 Ni 1

1 1 N.-! 1

o N. N 0 0 N. 1
1i 1+ 1

0 1 N. 1

i 0 N. 

11 iN. !
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(Table 2.2 continued)

ni-l (t) n (t) n. (t) a(t+) (t+l) (t+l) n. (t+l) probability
i i+l i i+l 

>0 0 <N. 0 0 0 1
i+1

0 1 0 1

1 0 1 1

1 1 1 1

>0 0 N 0 0 0 1
i+l

0 0 1

1 0 1 1

1 1 1 1

>0 >0,<N. <N 0 0 n.(t) 1
1 i+l 1

0 1 n.(t)-l 1

1 0 n.(t) + 1

1 1 n.(t) 1
1

>0 >0,<N. N 0 0 n. (t) 1
1 i+l 1

0 1 n. (t) 

1 0 n (t)+ 11

1 1 n. (t)+l 1

1O 1 n.-l 1
>0 N. N 0 0 N. 1

1 Ni+1 1
0 1 N.- 1

1 0 N. 1

1 1 N.-l 1

>0 N. N 0 0 N. 1

0 1 N. 1

All other transitions have probability = 0.
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and ai+ (t+l)) and the levels of the upstream and downstream storages, as

well as its own level, at time t (n il(t),n (t),ni+l(t)). This follows from

assumption 2.2.5.

As an example, consider the first two sets of four cases in table 2.2.

Storage i is initially empty, and so is storage i-1. Since parts may not be

removed from an empty storage, the level at time t+l does not depend on the

downstream portion of the line; the outcome is n. i(t+l)=0 whether the

downstream machine is up or down, as well as whether ni+l(t)=Ni+l or not.

In the third set in table 2.2, the storage is initially neither empty

nor full; again, the upstream storage is empty, so that parts may not be

added to the storage whether the upstream machine is up or down. However,

since the downstream storage is not full, parts may be removed if the

downstream machine is up. Consequently, the level of storage i at time t+l

is equal to n.(t) if the downstream machine is down, and to n.(t)-l if it

is up.

Since not all machine state and storage level transitions have non zero

probabilities, it is not possible to go from every system state to every

other one in one time step. Furthermore, it is impossible to reach certain

states, while others may only be reached from states that are impossible

to reach in the first place. A simple example of a two-machine line with

storage capacity equal to 4 will serve to illustrate this; its state

transition diagram appears in figure 2.4.

It is first noted that for a two machine line, the state of the system

as given by equation (2.3) is

s = (n,clc2) (2.17)

It may be seen in figure 2.4 that states (0,1,0) and (0,1,1) can be reached

from no other states; at the same time, (0,0,0) can only be reached from itself

and from (0,1,0). The arguement may be extended to all states drawn with a

dotted line. These cannot be reached once the system leaves them: such states

are termed transient states, and their steady state probabilities are equal

to zero. For this reason, thev are often referred to as impossible states in

the discussions that follow. In general, it is not difficult to verify whether
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or not a state is transient. A procedure that serves this purpose for a

general k-machine line appears in the FORMAC program in Appendix A.2.

It is necessary to make a distinction between two types of states

before going any further. The set of boundary states contains all states

in which at least one of the storages obeys one of the following two

relations:

n. < 1 (2.18)
1

n. > N.-l (2.19)
1 1

It will be shown that these states must be treated separately from all other

states because of differences in transition equations.

The set of internal states contains all other states, i.e. all states

for which the relation

2 < ni < Ni-2 ; i=l,..,k- (2.20)

is true for every storage. The significance of this classification becomes

more apparent in chapter 3.

The steady state probabilities of the transfer lines are defined, in

accordance with the definition of system states in equation (2.3), as

p[s(t)] = p[nl (t),..,n k _ l (t) t,.,a l (t),. (2.21)

The production rate of the system will be shown to be the sum of a certain

set of these probabilities. Analogously, in-process inventory, forced down

times and other important quantities will be derived as sums of sets of

state probabilities.

Analytical and numerical methods for obtaining these probabilities are

derived in chapters 3 and .4.

The number of states in a k-machine line with storage capacities N1,.

Nk_ is given by

ki
m = 2 (N +I)..(N. +1) (2.22)

1 k-l



3. DERIVATION OF ANALYTICAL METHODS

By guessing a sum-of-products solution for internal states and using

the Markov model presented in chapter 2, it is possible to obtain analytical

expressions for the steady-state probabilities defined in section 2.3.

Analytical expressions are given for two-machine lines in Artamonov[1976],

Buzacott[1967a,1967b,1969], Gershwin[1973a], and Gershwin and Schick[1977].

The approach is general in the present chapter, although only solutions

for the two- and three-machine transfer lines are explained in detail.

Section 3.1 discusses the guessed solution and the transition equations

for internal states. These equations are expressed in terms of failure and

repair probabilities, as well as state probabilities, in section 3.1.1. A set

of equations is obtained by guessing the form of the expression for internal

steady-state probabilities and substituting it into transition equations,

in section 3.1.2 The analysis of internal states and transition equations

is perfectly general and applies to a k-machine transfer line. The specific

cases of two- and three-machine lines are investigated in detail.

Boundary state transition equations are introduced in section 3.2.

These are used to complete the analytical solution for the two- and three-

machine cases. The two-machine line is worked out in section 3.2.1. An

attempt is made to generalize the derivation to longer lines in section 3.2.2,

where the three-machine case is described in detail.

-52-
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3.1 Closed-Form Expressions for Internal States

3.1.1 Internal State Transition Equations

The state of the system is defined in equation (2.3) as the set of

numbers

s(t) (nl (t),.. nkl(t) ,al (t),..,ak(t)) (3.1)

For every state s(t+l), i.e. for every combination of storage levels and

machine states, it is possible to write a transition equation of the form

p[s(t+l),t+l] = p[s(t+l)ls(t)].p[s(t),ti (3.2)

all
s(t)

where the first factor in the summation denotes the probability of transition

from the initial state s(t) to the final state s(t+l). Equation (3.2) is

completely general, and does not assume steady-state. The summation is

performed over all possible initial states s(t). Modeling assumptions

outlined in section 2.2 make it possible to express the transition probability

as the product of machine transition probabilities and storage transition

probabilities. The first factor in the summation in equation (3.2) may be

written as

p[s(t+l)Is(t)] = P P (3.3)n

where

k

P p[(i. (t+l)lni_(t),ai(t),nnt)ni (3.4)

i=l

and
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k-l

P = 1 p[ni(t|+l)Inl(t)t ,. (t+l),nt) (t (t() (3.5)
n n1 · 1 '~li+l

i=l

These conditional probabilities follow from the discussion in section 2.3 as

well as tables 2.1 and 2.2. The fictitious storages no(.) and nk(.) are defined

so that nO(.) is never empty and nk(.) is never full; this is consistent with

assumption 2.2.1, which states that the first machine is never starved and

the last machine is never blocked.

The terms in the product in equation (3.4) are the transition probabilities

of individual machine states. These appear in table 2.1. The terms in the

product in equation (3.5) are either zero or one. This is because final storage

states are uniquely determined by initial storage states and final machine

states (See sections 2.2.5 and 2.3). Furthermore, the only possible storage

transitions are those in which the levels change by at most one unit (See

section 4.2.1), that is,

n.(t+l) = n(t), or (3.6)
ni (t)+l

This eliminates a large number of transitions.

Internal state transition equations are defined as those transition

equations involving only internal states, i.e. equations in which the final

state as well as all the initial states (from which there is a non-zero

transition probability) in equation (3.2) are internal.

When all storages are internal, i.e. when they all have levels such

that

2 n.i L N.-2 ; i=,..,k-l (3.7)

all the operational machines can transfer parts from their upstream to their

downstream storages. In other words, they are neither starved nor blocked,

and thus remove a piece from the upstream storage and add one to the

downstream storage. Then, the final state of storage i is given in terms of

its initial level and the final states of adjacent machines by the equation
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n (t+l) = n (t) + . (t+l) - ai+ (t+l) (3.8)

For example, equation (3.8) indicates that if the upstream machine is down

and the downstream machine is up, the final level is equal to the initial

level minus one.

For internal state transitions, the machine transition probabilities

in table 2.1 may all be combined in a single expression as

piei(t+l) nil(t),ai (t),ni(t)] =
1i ni-1 i 

1.a (t+l) a (t+l) ( t+l) a (t)

[ (1)-P1 p c J 1 (3,9)

Since .i() only takes the values 0 or 1, any combination of ai.(t) and a. (t+l)

results in the reduction of the right hand side of equation (3.9) to a single

term. For example, if a. (t)=0 and ai (t+l)=l, the transition is one in which

machine i is repaired. It may be verified that for this set of ai(*), the

right hand side in equation (3.9) reduces to r..

Equation (3.4) may be rewritten as
k

-a. (t+l) a (t+l) 1-a (t)=a J7 (1-ri). r.1

i=l

[(1-Pi) 1 1i l(t) (3.10)

Set S is now defined to be the set of all states s(t) such that given

n.(t+l), i. (t+l), and ai+ l (t+l), n.(t) satisfies equation (3.8). It then follows
I I i+ 
that equation (3.2) becomes

p[,s(t+l),t+l] = P p[s(t),t]
s(t)ES



-56-

1 1 k

T [F-lri) -i (t+l) ai (t+l) 1-a. (t)

al(t)=O ak(t)=O i=l1

[(lPi)(t+l) 1- i(t+l) a .(t )

p[nl(t), .. n k -_ l ( t ) ,.., k( t),t] ()] (3.11)

where nl(t),..,nk_ (t) satisfy equation (3.8) (i.e. are completely determined

by ai(.)).

It is now necessary to guess the form of the expression for p[-] in order

to analytically solve the problem. This is done in section 3.1.2.
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3.1.2 The Sum-of-Products Solution for

Internal State Probabilities

It is well known that numerous queueing theory problems result in

product-form solutions. These were studied by Jackson[1963]; Gordon and

Newell[1967a] obtained product-form solutions for closed queueing systems

with negative exponentially distributed service times; Baskett, Chandy, Muntz

and Palacios[19751 formulated a theorem applicable to certain types of

networks of queues with different classes of customers, stating that the

equilibrium state probabilities are given by a product of a set of terms

each of which is dependent only on one state variable. Such product form

solutions have also been used by numerous researchers, including Denning and

Buzen[1977], Lam[1977], and Solberg[1977]. The work of these authors is

concerned with flow through networks of queues, and does not deal with

aspects of reliability.

For reasons which will become clear later in this chapter, it is

assumed here that the steady-state (i.e. time-independent) probability

distribution for internal states has a sum-of-products form:

p[s] = p[nl,... ,nk lall 1 .. ak] (3.12)

n1 n a1 ak

=Z c 1 Dk-l 1 ~ (3.13)CjX ... Xk- lj ... Ykj (313)
j= l

where C., X. ., and Y. are parameters to be determined.
J 13 13

The set of constants must satisfy an additional constraint, that the

sum of all states, internal and boundary, equals one:

Z p[s] 1 (3.14)

all s

An analogy is made here with differential equations boundary-value

problems: in a differential equation of order n, there may be n distinct

solutions. Although each of these solutions by itself satisfies the equation,
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only a certain linear combination of these solutions satisfies the boundary

equations (See for example Boyce and DiPrima[1969]).

Suppressing for clarity the index j, one of the terms in this summation

is substituted into equation (3.11):

n (t+l) nk_(t+) (t+l) a (t+l)
Xk-1 1 ' Yk =

1 k-1 1 k

e 1 k [(l-ri)l ai(t+l)r a(t+l)] 1-.(t)

1(t)=O ak (t)=O i=l

[(lPi)~. (t~l) 1 -e ( t l ] ~ (t) n l(t )nk~l ) (t)1i ·CXk . ..

al (t)
tk (t)

* 1 Yk (3.15)
1k

Using equation (3.8) and cancelling like terms on both sides, this gives:

5] (t+l)-aa2 (t+l) -a (t+)- (1 (t+l) a (t+l)
X ..- 1 Y ...Y

1 1 k

· E n [(l-r.)l-a (t+l) a. (t+l) 1-~. (t)
1 k

1 (t)=0 ak(t) =0 i=l

[,i c (t+l) _Pi. (t+l) 1a(t) ( )
[( -P Pi i i (3.16)

or, readjusting the exponent of the first parantheses in the right hand side

of equation (3.16),

a. (t+ 1) -a. (t+l) a. (t+l)
X.i Y

1-a. ( t+l) a. (t+l)

1 1 k p(1 p )ai(t+l) l -a i(t+l) Y ( (t)

al(t)=O a (t)=O i=l -r) i ) i ( )
(3.17)

(3.17)
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where for convenience, Xk 1. Note that ai(t) only occurs as an exponent in
k 1

the right hand side of equation (3.17); furthermore, ai(.) only takes the

values 0 and 1. The right hand side of (3.17) can be rewritten as

i=1a [ (l t+1i ) . (t+l)Hl-r) Pii r. 3 18j

This reformulation is not obvious and requires a proof. Proceeding by

induction, it is easy to see that the right hand side of equation (3.17)

equals (3.18) for k=1. Assuming that the equality holds for k, it is shown

that the equality holds for k+l as follows (for simplicity, the term in

the product in the right hand side of (3.17) is referred to as A i):

1 1 1 k+l

=O Ca =0 a k+=O i=l

1 A 1 k 1 k

E E1 + A. A1+
ai, ==0 i=l a =0 a i=0 i= !

1 k 1 k

k

(1 + A.) (1 + kl (3.19)

i=l

Equation (3.19) completes the proof. When (3.18) is substituted into equation

(3.17), the argument t (though not t+l) vanishes. Multiplying both sides by

the denominator in (3.18), it follows that:

k
5 x-. (t+l)- (+(t+l)

i+l
X i

i=-

fI[(i-r.) r. + (1-p.) 1 P.i Y'] (3.20)
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Equation (3.20) has been derived with no conditions on .a(t+l); thus,

it must hold for all values of a. (t+l). In particular, if a. (t+l) = 0, for

i=l,..,k, then (3.20) reduces to:

k

1 = n [(l-r i) + PiY (3.21)

i=l

if a.(t+l) = 1, and a.(t+l) = 0 for i=l,..,k, iyj, then (3.20) becomes

k

-l 1+ p.Y.]K[r. + (l-p.)Y.1 (3.22)
-1 x Y

i=l
ifj

where for convenience, X0= 1. Using equation (3.21) on the right hand side

of (3.22), the equation can be reduced to

]r ]3 j=l,..,k (3.23)

X I (l-rj) + pjYj
j-L

Any other sets of values for a.(t+l) in equation (3.20) give equations that

may readily be derived from (3.21) and (3.23). Since X0 Xk 1, there are
0 k

k+l equations in 2k-1 unknowns. For k>2, this implies that there are more

unknowns than equations. Furthermore, the weighting and normalizing constants

C. remain to be computed.
3

Two cases are now analyzed: when k=2, there are three equations in

three unknowns and the system of equations given by (3.21) and (3.23) can

be solved analytically. When k_ 3, a numerical approach is needed to obtain

the terms in equation (3.13). Furthermore, there are more unknowns than

equations, so that additional information must be found.

In the two-machine case, k=2. Equations (3.21) and (3.23) may be

solved to give X.. and Y... Since these equations are non-linear, they allow
17 1j

multiple solutions. It may be verified that there are two sets of solutions in

this case. These are:



Xll = 1

(3.24)

- r 1,2Y x ri ; i=1,2 /

Pi

X12 Y22 / Y12

Y r1 + r2 - rlr 2 - P2r 1
12 -

P1 + P2 - PlP2 - Pr2 (3.25)

rl + r2 - rlr 2 Plr2Y 1 2 12 p 1r 222

P + P2 P1P 2 - P2rl1

The constants C. in equation (3.13) are found in section 3.2 by using
J

boundary equations, as well as (3.14).

In the three-machine case, there are only four equations in five

unknowns. The solution is therefore not uniquely determined. Furthermore,

since the simultaneous equations (3.21) and (3.23) are non-linear, there is

the possibility of multiple solutions.

For any set of {Xlj,.. ,Xk tjYlj,.. Y kj} , there is a set of constants
C. such that equation (3.13) holds. The set of constants is found by

analyzing the boundary equations,as discussed in section 3.2.
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3.2 The Boundary State Transition Equations

3.2.1 The Two-Machine, One-Storage Line

Internal states and transition equations are analyzed in section 3.1.

To complete the problem, it is necessary to study boundary states and

transition equations. In section 2.3.2, boundary states are defined as

states in which at least one storage level satisfies one of the

following two relations:

n. 1 (3.26)

n. h N.-l (3.27)
1

Boundary state transition equations are defined to be state transition

equations in which at least one state (whether initial or final) is a

boundary state.

The number of boundary state transition equations increases rapidly

with the number of machines in the line, and with storage capacities. In

the simplest case of a two-machine line, however, these are not a function

of storage size, and are easy to list.

Neglecting transient (zero steady-state probability) states, the

lower boundary (n=O or 1) state transition equations are the following:

p[0,0,1] = (l-rl) p[0,0,1] + (1-rl)r 2 p[1,0,0]
2

+ (1-rl)(l-P2) p1,0,1] + P(1-P2) p[l,l,l (3.28)

p[1,0,0] = (1-r ) (l-r 2 ) p[1,0,0] + (l-rl)P 2 p[1,0,1]

+ P1P 2 p[1,1,1] (3.29)
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p[l,0,1] = (1-rl)r2 p12,0,0] + (l-r1 )(l-p 2) p[2,0,13

+ Plr2 p[2,1,0] + p (1-P2) p[2,1,1] (3.30)

p[1,1,1] = r p[0,0,1] + rlr 2 p[1,0,0]

+ rl(l-p 2) p[1,0,1] + (1-p1 ) (l-p 2) p[l,l,l1 (3.31)

p[2,1,0] = rl(1-r2) p[1,0,0] + r p2 p[1,0,1]

+ (1-P) P2 p[1,1,11] (3.32)

Using the state transition diagram for the two-machine case (figure 2.4),

it may be verified that these are the only possible transitions involving

lower boundary states. These equations are now analyzed.

For the general k-machine line, boundary state probabilities are

expressed as a sum of terms, analogous to the sum-of-products for internal

state probabilities in equation (3.13):

p[s] = C. c ~[sX,..,X 1_,j l kjpps] C Uc 'X S j '..'r k lj k (3.33)

j=l

It is noted that equation (3.33) applies to all states, and takes the form

of internal state probability expressions when

[(n'1 ''nk-l'a1' 'a k)'Xljf' Xk-!,j-l Y .. ykj

n n a k
= 1 k-l 1 k (334)X X Y ii .. k' (3.34)lj k-l, il kj

The analogy with boundary-value differential equations problems is carried

over to the analysis of boundary state transition equations. Thus, as in

section 3.1.2, only one of the terms in the summation in equation (3.33)

is considered. The notation

jU. = { X (3.35)
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is introduced.

The two-machine boundary state transition equations are studied: Noting

that all the right hand side terms in equation (3.30) are internal, it is

rewritten as

2 2
[(1,0,1),U.] = (l-rl)r 2 Xlj + (1-r) (l-P2) Xlj

2 2
+ Plr2 Xlj + Pl(1-P2) Xlj YljY2j

2
Xj [(1-r 1) + PlYlj] [r2 + (1-P2)Y2j. (3.36)

Equation (3.23) is used to simplify (3.36). For j=2, noting that X2j= 1,
2j

the rightmost term in equation (3.36) is rewritten as

[(-r 2) + P2Y2j] Y2 / Xl(3.37)

Substituting (3.37) into equation (3.36), and using (3.21), it follows

that

i[(1,0,1),U.] = X Y (3.38)
j lj Y2j

It can be verified that in general, any state which can only be reached

from internal states has the internal (product) form.

Equation (3.38) is substituted into (3.33), giving

2

p[l,0,l] = Cj Xlj Y2j (3.39)

j =1

State (2,1,0) is internal. Thus, it has a probability of the form given by

equation (3.13):

2

p[2,1,0] = C Y (3.40)

j=1



The parameters X.. and Y., are given by equations (3.24) and (3.25).

Equations (3.39) and (3.40) are substituted into equations (3.28),

(3.29), (3.31), and (3.32), and these four equations are summed up.

The coefficients of C2 cancel eachother out, and the equation reduces

to:

C ( 2 ) = 0 (3.41)

P1 P2

Whenever the two machines do not have equal efficiencies, the term in

the parantheses is not zero and CI=O. If the two machines have equal

efficiencies, it is easy to see that equations (3.24) and (3.25)

are identical, i.e. equations (3.21) and (3.23) have one second-order

root given by either of (3.24) or (3.25). In this case, it is not

necessary to have two terms in the summation in equation (3.33), since

the terms are identical. It is possible to set one of the C. to be

zero. The constant C1 is arbitrarily set equal to zero when the two

machines have equal efficiencies. Since Ci=O when they do not, it

follows that the steady-state probabilities for a two-machine line

have only one term in the summation in equation (3.33).

From equation (3.32), it follows that:

~[(,1,),U.] = X - rp X
,1,1 jj = X lj - rlP2 Xlj Y2j

rl(l-r 2 ) (1,0,0) ,U ] (3.42)
1 2 3

Equation (3.42) is substituted into equation (3.29), giving, after some

simplification and use of equations (3.21) and (3.23),

[i(l,0,0),Uj] = Xlj (3.43)

The probability of state (1,0,0) is also seen to have the internal form.

Equation (3.43) is now substituted into (3.42), and yields, after using

equations (3.21) and (3.23),
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[(l,l,1),U.] = jj [r2 + (1-P2)Y2j] (3.44)
j 2 2 2j

Equation (3.44) shows that state (1,1,1) does not have a steady-state

probability with an expression of the internal form. Two equations are

left, (3.28) and (3.31). These are consistent, and substituting

equations (3.38), (3.43) and (3.44) into either of these two equations

give the expression

[(O,O,1),U.] = X + r1 2 2 pr (345)
j = Xlj - P2r3

p2 rl

The same reasoning is applied to the upper boundary (n=N-l or N)

state transition equations. These are the following:

p[N-2,0,l1 = (l-rl)r2 p[N-l,O,O + pr 2 p[N-l,l,0]

+ p1(1-p 2) p[N-l,l,1] (3.46)

p[N-l,O,0] = (l-rl)(l-r2) P[N-1,0,0] + p (1-r2) p[N-l,l,O]

+ P1P2 p[N-ll,l] (3.47)

p[N-l,l,0] = rl(l-r2) p[N-2,0,0] + rP 2 p[N-2,0,1]

+ (1-p )(1-r 2) p[N-2,1,0] + (1-P)P 2 p[N-2,1,1]

(3.48)

p[N-l,l,l] = rlr2 p[N-l,0,0] + (1-Pl)r2 p[N-l,l,0]

+ (1-p1 )(1-p 2) p[N-l,l,1] + r2 p[N,1,0] (3.49)

p[N,l,0] = rl(1-r2) p[N-1,0,0] + (1-p1 )(1-r 2 ) p[N-1,l,0]

+ (1-Pl)P2 p[N-l,1,1] + (1-r2) p[N,l,0] (3.50)

Here, it is noted that all states with storage level n=N-2 are internal.

These equations are solved as before. Again, it is found that the equations
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can be manipulated to obtain equation (3.41), so that C1 may again be

set equal to zero. Furthermore, the additional equations are found to

be consistent, giving a unique set of probability expressions.

The complete set of steady-state probabilities for the two-machine

transfer line is summarized in table 3.1.

A certain amount of symmetry is visible in these results: for

example, the expressions for p[0,0,1 and p[N,l,O0] have similar forms;

so do p[l,1,l] and p(N-l,l,1], and other pairs. Such considerations

give some insight into the derivation of analogous expressions for the

three-machine case in section 3.2.2.

A computer program designed to evaluate the steady-state probabilities

and some performance measures (See chapter 5) of the two-machine line

appears in Appendix A.1.
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Table 3.1. Steady-state probabilities of two-machine line.

p[0,0,0] = O0

pEO,, =CX_1 + r2 1rlr2 - p2rp[0,0,1] = CX
P2rl

p[0,1,0] = 0

p[0,1,1] = 0p ,ro,ll] = O

p[1,O,O] = CX

p[1,1,0] - O

CX rl + r2 - rlr2 - P2r
p[1l,l,l1] = 1 2

P2 P1 + P2 - P1P2 - P2rl1

= c 2

p 1 nal,2] = Y1 2 

p(N-1,0,0] =CN

p[N-1,0,1] = 0p?[N-lO,lN = O

p[N-1,1,0] = CX N-

CXN- 1 r1 + r2 - r Plr2
p[N-I,1,1]

P1 P1 + P2 - P1P2 - Plr2

p[N,0,0] = 0

p[N,0,1] = 0

r +r rr - r

p[N,1,0] = 1 r l + r 2 r l r 2 - r2
Plr2P1r2

p(N,1,1] = 0

X-X 1, Y1, and Y2 are given by equation (3.25); C satisfies (3.14)2
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3.2.2 Longer Transfer Lines

The three-machine, two-storage case is complex enough to make the

manual generation of the boundary state transition equations almost

intractable. A program was therefore written in the IBM FORMAC Symbolic

Mathematics Interpreter language (See Tobey[1969], Trufyn[n.d.]), a

superset and extension of PL/I. This program generates the boundary

state transition equations for a general k-machine line with given

buffer capacities algebraically, i.e. in mathematical symbols rather

than numerically. The program listing, as well as a sample output for

the lower boundary of a three-machine line with buffer capacities

Nl=N2=10, appear in Appendix A.2.

The boundary state transition equations constitute a very large

system of linear equations. With considerable work, as well as insight

given by the quasi-symmetry of the two-machine results, this system

can be solved to give closed-form expressions for the ,[,] defined in

equation (3.33). The procedure is considerably more complex than the

solution of the two-machine case presented in section 3.2.1, and

involves a great deal of algebraic manipulations.

In the three-machine case, boundary states are subdivided into

two classes. Corner states are those in which both storages have boundary

levels; edge states are those in which only one of the two storages

has a boundary level. It is found that there is a simple relationship

between certain edge states: for states with the same machine status

configuration (i.e. the same .a ; i=1,2,3), incrementing the internal

storage level n. corresponds to multiplying [f-] by Xj.. Thus, for

example,

5[(l,n2+1,0,0,1),U j]1 = X2j [(l,n2,0,0,1),Uj] (3.51)
2 z2j 2

where both .n2 and n2+1 are internal. *Consequently, the number of

expressions that need to be derived does not increase with storage size.

The complete derivation is lengthy and is not reproduced here. A



-70-

sample of the expressions for the lower boundary corner and edge states

is given in table 3.2. A more complete account of the derivation appears

in Gershwin and Schick[1978].

The crucial fact about these C[.] expressions is that, though they

all satisfy subsets of the boundary state transition equations, they do

not all satisfy all these equations. Only the appropriate linear

combination of these solutions satisfies all the transition equations.

The procedure followed to obtain this linear combination is outlined

below.

For the Markov chain described in section 2.3,

= T p (3.52)

or

(T - I) p = 0 (3.53)

where I denotes the identity matrix. Following equation (3.33), the

probability vector p may be rewritten as

p = Cj ~[Uj] (3.54)

j=l

where

[U.] USU_ (3.55)

s ',u.]
m J

The number of states, m, is given by equation (2.22) as

m = 2k (N+l) ... (N +1) (3.56)
1 k-l

for a k-machine transfer line with storage capacities N1 ,..,Nk 1.

Thus, equation (3.53) becomes:

(T - I) C Cj [U] = 0 (3.57)

j=1
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Table 3.2. Some boundary state probability expressions
for a three-machine transfer line.

Edge states (n2 internal):

n 2
Efl,n2,0,0,0] = X1X2

n2

[l,n2,0,0,1l] = X1X2 Y3

n2
U[l,n2,0,1,0] = X1X2 Y2

E[l,n2,0,1,1] = XX 2 Y2Y3

E[l,n ,1,0,0] = 0

E[l,n2,1,0,11 = 0

n2
S[l,n2,1,l,03 = X1X2 Y1 (1 - r2 + P2Y2) / P2

[El,n 2,1,1,] = X1X 2 Y1Y3 (1 - r2 + P2Y 2) / P2

Edge states (nl internal):

ni
,[nl,l,O,0,0] = X 1 X2

n

Inl,l,0,0,l] = X 1 X2Y3

[n 1 ,1,O,1,0] = 0
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(Table 3.2 continued)

n
E[nl,l,0,1,1] = X 2 2 (1 - r 3 +p 3Y 3 ) /p 3

[nll,l,l,0] 3= 0
n

U[nl,l,l,l,1] = X1 X2Y Y2 (1 - r3 + P3Y3) / P3

Corner states:

1- r

U[00,0,01,1] (r r rr -pr)XXYY
2 1 3 13 rl3 1 2 1 2

rl P3

0,1,0,1,0] = rl X1X2Y1Y2

r1 + r3 - rlr3
[0,1,0,1,1] x Y=

P 3rl 12 12

X2

- (1 - p3 - r3 )(1 - r1 ) (1 - r2)

r +ri( rr H 

1 r3 1 r~ 3 23 1

Sfi~o~i~i]r P X1X2Y1Y2
1 3



-73-

(Table 3.2 continued)

i[1,1,0,0,0] = X1X 2

[1,1,0o,o,1] = X1X 2Y 3

[1,1,0,1,0,] = 0

[1,1l,0,1,1] = X1X 2Y 2 (1 - r3 + p3Y 3) / p3

i[l,l,l,,OO] = o

[1t1,,1,0,1] = 0

[1,I1,1,1,0] = x1 x 2Yly 2

1= X2Y1 [(1 - r2 )(1 - r3 ) + ( - r 2 + P2Y2) P3Y3

(A complete list appears in Gerswin and Schic 8

(A complete list appears in Gershwin and Schick[1978].)



-74-

or 

C (T- I) j[Uj] = 0 (3.58)

j=l

Defining the vector C as

C:2 (3.59)

and the matrix B as

-[U [U2 *- . [U ] . (3.60)

equation (3.58) is rewritten as

(T- I) C = 0 (3.61)

For a given set {U1,U2,..,U }, where all U. are distinct and

satisfy the internal equations (3.21) and (3.23), the system of equations

in (3.61) has a unique solution C if and only if the matrix (T-I)B has

rank equal tol-7. Thus, only Q, the number of terms in the summation in

equation (3.33), remains to be determined.

Because the expressions [.*] satisfy most transition equations, most

components of the product vector

(T - I) t[Uj] (3.62)

are identically equal to zero for any U. that satisfies equations (3.21)

and (3.23). For example, in the three-machine case with storage capacities

Nl=N2=10, 898 components out of the 968-vector are identically zero. Thus,

most of the rows in the matrix equation (3.61) are automatically

satisfied, regardless of C. If Z is taken to be the number of rows not

automatically satisfied, then the system of equations (3.61) has a

unique solution C, once a set of k distinct U. is chosen. The system in
3
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(3.61) can be reduced by computing only those Q rows of (T-I)E that are

not satisfied identically. The new reduced order system can be written

as

rc = O (3.63)

where r consists of the non-zero rows of (T-I)E. This is an ZxZ rather

than an mxm system, and thus, the computational work needed to solve

for C is drastically reduced. In addition, Z as a function of storage

capacities increases much more slowly than m. The complexity of the

problem thus remains tractable even for very large storages.

Unfortunately, serious numerical problems arise in the solution

of equation (3.63). Although r has rank l-l, it appears to the

computer to have much lower rank because of these numerical problems.

This difficulty is overcome by using singular value decomposition

techniques (Golub[1969], Golub and KahanE1965]). The least squares

solution of equation (3.63) is then the weighting (though not yet

normalized) constants in the summation in equation (3.33). This

procedure is described in detail in Gershwin and Schick(1978].

It only remains to normalize the values obtained by equation (3.33)

so that equation (3.14) is satisfied. This is achieved by summing up

all the state expressions and dividing each expression by the sum. This

may cause substantial round-off errors in systems with very large

storages (and hence large state-spaces).

The analytic solution for the three-machine transfer line is now

complete. The main difficulty in extending the above results to longer

transfer lines lies in the derivation of the i[.] expressions. General

forms for these expressions for k-machine lines have not yet been

obtained; thus, even larger sets of boundary equations may have to be

solved in order to obtain the steady-state probabilities of longer lines.



4. NUMERICAL METHODS FOR EXACT SOLUTIONS

While analytical solutions often have the advantage of being compact

and easy to implement, they are hard to derive; furthermore, they depend

strongly on modeling assumptions in such a way that they offer little

flexibility for relaxing or modifying such assumptions. It is thus often

useful to use numerical approaches to solve the problems; while these may

not necessarily be as compact as analytical solutions, they do offer

greater flexibility.

An iterative multiplication scheme known as the power method is

introduced in section 4.1. Computational problems caused by the convergence

of this algorithm are stressed, and possible improvements are suggested.

An algorithm which exploits the sparsity and block tri-diagonal

structure of the transition matrix is developed in section 4.2. Because

a large proportion of storage level transitions have zero probability,

the transition matrix T is extremely sparse. Furthermore, if the system

states are listed in the appropriate order, the matrix has a useful and

interesting nested block tri-diagonal structure. These properties are

used in solving the large set of transition equations. The motivation for

developing such an algorithm, as well as the structural properties of the

transition matrix, are discussed in section 4.2.1. The algorithm is

derived in section 4.2.2. The flexibility and usefulness of this approach

and the computer memory and programming problems involved are discussed

in section 4.2.3.

-76-
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4.1 The Power Method

The property of ergodicity is defined in section 2.3.1 as follows:
At

Given the transition matrix T, and setting ¢(t) - T a process is

ergodic if and only if

lim D (t) = (4.1)

t-~m

exists, and the value of

A b p_(0) (4.2)

is independent of p(0), provided that Pi(O) = 1.

A closed class is defined as a set of states C such that no state

outside C can be reached from any state inside C. Two states communicate

if each can be reached from the other. A closed communicating class is

a closed class in which all pairs of states communicate. A final class is

one that includes no transient states.

A process is periodic if a state can be reached from itself in

d, 2d, 3d, ..., nd, ... trials. If d=l only, the process is termed aperiodic.

The existence of a self-loop (a transition such that t ..i 0 for some i)

on at least one state in a final class is sufficient for its aperiodicity.

The Markov chain model of a transfer line described in chapter 2

contains only one final closed communicating class; furthermore, several

states in that class contain self-loops. These conditions are sufficient

for ergodicity. Thus, for an arbitrary initial probability vector p(O),

the steady-state probability vector p may be computed from equation (4.2).

Since t is not known, equation (4.2) is rewritten as follows:

tim Tt (O) = (4.3)

Equation (4.3) suggests a "brute force" ethod for obtaining the steady-

Equation (4.3) suggests a "brute force" method for obtaining the steady-
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state probability vector p. This method consists in an iterative

multiplication scheme

p(t+l) = T p(t) (4.4)

with a given p(O).

Convergence criteria such as

1 p(t+l)-p(t) EH < E

or (4.5)

max pi (t+l)-pi(t) I < C

may be used to decide when a vector has been obtained that is sufficiently

close to the steady-state probability vector.

In devising a computer implementation of the iterative multiplication

algorithm, it is necessary to take advantage of the sparsity (See section

4.2.1) of the transition matrix. This is not only desirable, it is

imperative in view of the large dimensions of the matrix (See table 6.1).

A sparse matrix need not be stored in full. Rather, its nonzero

elements and their coordinates are stored, making it possible to

represent extremely large sparse matrices with relatively small arrays

(Tewarson[1973J). For example, given that a certain element t.. of the

sparse matrix T is nonzero, it is sufficient to store tij, i, and j. The

full matrix may be reconstituted from this information. Thus, it is only

necessary to store p(t) and p(t+l), in addition to the arrays giving

the nonzero elements of the transition matrix, while implementing the

power method algorithm.

The major limitation of this algorithm is the computation necessary

for the convergence of p(t)+p. Although the properties of the ergodic

Markov chain outlined above guarantee that the vector converges to the

steady-state distribution, the number of iterations required to satisfy

convergence criteria such as those in equation (4.5) may get very large

as the number of machines in the line or the capacity of the storages

increase, thereby increasing the dimension of the vector. Some results
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of runs for a three-machine line with the computer program given in

Appendix A.3 are presented in figure 4.1. (It must be noted that these

results do not correspond exactly to the iterative procedure given in

equation (4.4): some improvements were made, as described below. Still,

these results can give an idea of the way in which computation

increases as storage size increases.) The machine parameters are the same

as those given in table 6.2. The first storage has capacity N1=5, and

the second storage capacity is varied.

The rate at which this algorithm converges depends most strongly on

two factors. These are the accuracy of the initial guess, and the second

largest eigenvalue of the transition matrix (the largest eigenvalue is

always 1). The latter factor is dependent on the system parameters, such

as failure and repair probabilities and storage capacities. Furthermore,

the computation of the eigenvalues of a matrix as large as T is far from

trivial. Thus, there is no control over the eigenvalues, and even

evaluating them in order to estimate how fast the algorithm converges is

a difficult problem.

The initial guess, however, can be improved significantly, by making

certain observations.

(i) The transient (zero steady-state probability) states are easy to

predict (Section 2.3.2). Thus, it is possible to set at least some of the

states equal to their final values.

(ii) The steady-state probabilities can be subdivided into three classes

according to their orders of magnitude. In ascending order, these are the

internal states, the edge boundary states, and the corner boundary states.

For example, in the case of a three-machine line with system parameters

given in table 6.2 (For the probability distribution, see the sample output
-3 -2 -1

in Appendix A.4), these orders of magnitude are 10 ,0 , and 10

respectively. Thus, it is possible to predict the relative magnitudes of

the final values (See Gershwin and Schick[1978]).

(iii) By the 6-transformation tecrhniques outlined in section 6.3, it is

possible to solve a smaller problem first (i.e. a problem with smaller

storage sizes). The results of the smaller problem may then be used, by

also taking the order of magnitude considerations into account, to set up
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Figure 4.1. The number of iterations in which the
computer program in Appendix A.3 converges
for N1 5, p=105 , and ri given in sample

output, Appendix A.4.



an initial guess for the larger problem.

It is sometimes desirable to perform a sensitivity analysis on

specific storages, by incrementing their capacities up while keeping all

other system parameters constant. In this case, a combination of items

(ii) and (iii) may be used. The upper boundary probabilities for the

already solved problem with capacity Ni are shifted so as to become the

upper boundary probabilities of the new problem with capacity N.'. Internal

states are set equal to an internal set of probabilities in the already

solved problem. This procedure is illustrated in figure 4.2.

(iv) During the iterative multiplication procedure, it is possible to save

some computation by using interpolation at regular intervals. For example,

the program for a three-machine line given in Appendix A.3 uses the vectors

p(t-l) and p(t) to interpolate p(t+l) once every ten iterations. This

essentially gives a "free" iteration, since interpolating involves less

computation than multiplying the vector by the transition matrix.

In order to avoid the propagation of computational errors, it is

useful to normalize the p(t) vector at regular intervals. The program

in Appendix A.3 does this once every ten iterations.

It may also be noted that it is possible to further save storage by

only storing numerically distinct transition probabilities. It is shown in

section 4.2.1 that the transition matrix T has a block tri-diagonal,

block Toeplitz form. Thus, most probabilities reoccur many times along

the diagonals of the matrix. Storing only distinct probabilities thus

saves a significant amount of computer memory.

In general, many numerical devices may be used to improve the rate

of convergence of the iterative multiplication algoritnm. Still, for

moderately large systems, the number of iterations remains large. It may

thus be necessary to turn to more efficient methods in some cases.
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Figure 4.2. Building up initial guess for power method

based on the results for a smaller storage

capacity case. (Phase plane for the levels

in the two storages)
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4.2 Solution of the System of Transition Equations

by Use of Sparsity and Structure

4.2.1 The Transition Matrix and its Structural Properties

It is shown in section 2.3.1 that the transition matrix T and the

steady-state probability distribution E are related by

_p= T p (4.6)

or

(T - I) p = 0 (4.7)

Because p satisfies equation 3.14, it cannot be identically zero. Thus,

I 0o and (T - I) is a singular matrix. The following two theorems are

now stated:

Theorem 4.1: If in the matrix T all rows and all columns corresponding to

states outside the closed class C are deleted, there remains a stochastic

matrix that defines a Markov chain on C. This subchain may be studied

independently of all other states (Feller[19661).

Theorem 4.2: In a finite recurrent aperiodic class, the steady-state

probability distribution p is uniquely deterrmined by the set of equations

pi = 1 (4.8)

P j= pi t.; j=l,..,m (4.9)

where as in 2.3.1, T = [tji] (Karlin[19681).

As pointed out in section 4.1, there is only one final (recurrent)

aperiodic closed communicating class in the Markov chain under study. It

may thus be concluded from the above two theorems that the deficiency of

(T - I) in equation (4.7) is one. In cther words, its rank is one less

-han full.
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The vector V is defined as:

V [1 1 ... 1 T (4.10)

Then, equation (3.14) is rewritten as

T
_ p = 1 (4.11)

T
The vector V is substituted for a row in (T - I). Calling this new matrix

T*, and defining b [0...0 1 0 ...0]
T where the 1 entry corresponds to the

location of V in T*,it follows that:

T* p = b (4.12)

Equation (4.12) is solved to give

= T* b (4.13)

In principle, the problem thus reduces to solving a system of linear

equations. Okamura and Yamashina[1977] solve the two-machine transfer

line problem precisely in this way, by solving simultaneous linear

equations in terms of the state probabilities. Because of memory

limitations, they can only solve systems for which the storage capacity

is less than 36. However, the dimensions of the system are generally

very large (See table 6.1). Thus, solving (4.12) would involve an

extremely large amount of computation and computer memory, as the number

of machines in the line or the capacities of the storages increase. It is

therefore necessary to fully exploit the sparsity and structure of T*.

Tha sparsity follows from the fact that many storage transitions have

zero probability (See table 2.2). The structure follows from the following

two observations relating to the transition matrix T:

(i) During a single transition, storage levels can each change by a

maximum of 1, i.e.,
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in.(t+l) - ni(t) < 1 i=l,..,k-l (4.14)

This is due to the facts that parts only travel in one direction, each

stage consists of only one machine, and the time cycle is defined such

that a machine processes one part per cycle. Thus, as seen in the storage

transition table 2.2, a storage can go up by 1, down by 1, or stay at a

constant level.

(ii) During a single transition, adjacent storages cannot change in the

same direction, i.e. they cannot both gain or both lose a piece within

a single cycle. This is a consequence of the two facts mentioned in item

(i), as well as the conservation of pieces (Assumption 2.2.4) in the

system. As an example, a single machine i is analyzed. The level of the

upstream storage i-l can decrease only if machine i-1 is down or starved,

and machine i is up and not blocked. At the same time, the downstream

storage i can decrease only if machine i is down or starved, and machine

i+l is up and not blocked. Now machine i cannot be starved, since if it

were, storage i-l could not go down. Thus, for storages i-l and i to both

decrease, it is necessary that machine i be both up and down, a contra-

diction. A similar argument can be made for the case in which both

storages are hypothesized to go up.

If the system states, as defined by equation (2.3), are listed

semi-lexicographically (i.e. the order of the indices from the fastest

changing one to the slowest is kakl,.. 'alfnl n2,..,nnkl then

observation (i) implies that the matrix T is block tri-diagonal. If there

is more than one storage, the main-diagonal blocks are themselves block

tri-diagonal. This nested block tri-diagonal structure persists for as

many levels as there are storaaes. Furthermore, in the case where there

are more than one storage , observations (i) and (ii) together imply that

the off-diagonal blocks are block bi-diagonal, and this structure persists

for one fewer levels than there are storages.

The lowest level blocks, which are smallest and most basic, are
k k

2 x2 . These each represent a specific storage level transition; for

example, a particular block in the matrix of a three-machine line may

represent a transition in which the first storage stays constant while the
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second goes up; another, a transition in which the first storage goes down

while the second goes up, etc. Each of the 2 columns and rows of a basic

block represent each of the 2 machine states, from (0 0 .. 0) = all machines

are down, to (1 1 .. 1) = all machines are up. Finally, because T

premultiplies p in equation (4.6), columns correspond to initial states,

and rows to final states.

Some examples should help clarify the structures of the blocks and of

the transition matrix.

(i) Two-machine line: the storage is initially internal, and remains

constant through the transition (Main-diagonal block).
2 2

The basic blocks for a two-machine line are 2 x2 =4x4 square matrices.

From table 2.2, it follows that for an internal initial storage level, the

number of pieces does not change in either of the following cases: either

the machines after the transition are both down (0 0), so that no parts

go into or out of the system, or the machines are both up (1 1), so that

a part enters and another leaves the system. Thus, only two out of the

four rows in this block are non-zero. The elements in these rows are

computed by using table 2.1. For example, given that the storage is

initially internal, (0 1) -+ (O 0) with probability equal to (1-rl)p2.

The block is thus completely determined, and appears in table 4.1.

(ii) Same as above, except that the storage is initially full (Upper

boundary, main-diagonal block).

Once again, the final machine states that ensure the desired storage

level transition are determined by using table 2.2. Given that the storage

is initially full, its level remains constant only if the second machine

is down, i.e. for final machine states (O 0) and (1 0). In the former

case, nothing enters or leaves the system; in the latter, the first machine

is blocked and the second is down, so that pieces do not enter or leave

the system. If the second machine were operational, then the storage

level would necessarily go down, since the first machine is not allowed to

process a piece when the downstream storage is full. Again, only two out

of the four rows in the block are non-zero. While evaluating the elements

in these rows, it is noted that the probability of failure of the first

machine is zero, since it is blocked.
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(l -rl 1)p2 P (l-r2) 1-r)P2 P P 2

0 0 0 0

0 0 0 0

rlr 2 r (l-P 2 (1-P) r 2 (1-P1) (1-P2

Table 4.1. Two-machine line, lowest level, internal, main-

diagonal block.
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The block thus defined appears in table 4.2.

(iii) Three-machine line: both storage levels are initially internal;

during the transition, the first stays constant, while the second loses

a piece (Main-diagonal block in the second level upper off-diagonal

block - see figure 4.4).

The basic blocks of a three-machine line are 2 x2 = 8x8 square

matrices. It follows from table 2.2 that when initial storages are

internal, the second storage loses a piece only if the second machine is

down while the third machine is up. On the other hand, the first storage

level remains unchanged if the first two machines are either both up

or both down. Since the second machine is known to be down, the first

machine must be down as well. Thus, only one final machine state satisfies

the given conditions: (O 0 1), and only one out of the eight rows is

non-zero. All machine transition probabilities are conditional on

internal initial storages.

The block is thus determined and appears in table 4.3.

As stated earlier, the blocks are arranged in the transition matrix

in a very useful nested block tri-diagonal structure. Two examples for

two- and three-machine lines are given in figures 4.3 and 4.4 respectively.

For clarity, the blocks in these figures are represented only by the

final machine states corresponding to non-zero rows. It is noted that

corner boundaries, where more than one storage is empty or full, differ

from edge or internal transition blocks. These latter blocks are arranged

in a convenient block Toeplitz form (Grenander and Szeg6[19581), which

greatly facilitates computer implementations of the algorithm described

in section 4.2.2. The block Toeplitz form is visible in figure 4.3, because

the storage capacity is larger than 2 (Thus, internal transitions for initial

storage levels equal to 1,2 and 3 involve identical basic blocks arranged

on the diagonals of the matrix). In figure 4.4, the storages have capacities

N1=N2=2, in order for the diagram to fit on cne page and be readable. Here,

the matrix is essentially subdivided into three second level block-columns

(for n =0,1, and 2), each of which is made up of three lowest level block-

columns (for nl=0,1, and 2). The lowest level block-columns in the centers

of the larger block-columns would be extended in Toeplitz form if N >2.
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(lr) (l-r2) (1-r)p2 0 0

0 0 0 0

r (l-r2 ) P2 (1-r2 P2

0 0 0 0

Table 4.2. Two-machine line, lowest level, upper boundary,

main-diagonal block.
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n(t)

0 1 2 3 4
00

i 01 1S ,

I 0 0 0 10 1 _ _ _ __1_ _ _ _ _

t 4 AO O3'~""""~"" 00 01

ef' P internal eff POeff. Pa:O transitions eff. P 1=0
eff. Pi =Pi

Figure 4.3. Structure of the transition matrix T for a
two-machine case with N=4. (The numbers indicate
the non-zero rows in the block. Eg. 00 - first
row in block is nonzero. Shaded areas indicate
zero blocks. The notation eff.p. denotes the
effective failure probability in that block-
column.)
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Figure 4.4. Structure of the transition matrix T for a three-
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boundary transitions. For other notation, see fi.
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Similarly, the middle second level block-column (That corresponding to

n2=1) would be extended in Toeplitz form if N2>2.

It must be noted that although system states are said to be

internal if all storage levels are greater than 1 and less than N.-l,

internal transitions are those for which neither storage is empty

(n.=O) or full (n.=N.). The reason for this difference is evident from

the transition tables 2.1 and 2.2. These require that for a machine to

be able to process a piece, there should be at least one piece in the

upstream storage (i.e. n.>O) and at least one vacant slot in the

downstream storage (i.e. n.<Ni).
1 1
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4.2.2 Solution of the System of Transition Equations

It is shown in section 4.2.1 that the set of equations

(T- I) p = O (4.15)

and

p- = 1 (4.16)

has a unique solution p, and that (4.15) and (4.16) may be combined and

rewritten in the form

T* p = b (4.17)

or

-1
p = T* b (4.18)

Equation (4.17) is to be solved by making use of the sparsity and

structure of the transition matrix T. It is noted that while (T - I) is

of the same block tri-diagonal form as T, the substitution of V for one

row of (T - I) disturbs this structure. A new matrix T' is defined. This

is a slightly modified version of (T - I) designed to make it non-singular.

The nature of the modification is not of capital importance. In the

program appearing in Appendix A.4, it consists in substituting in only that

part of V which falls within the main-diagonal block. The rest of V is

later taken into consideration, by applying the matrix inversion lemma

(See below) on the inverse of T' calculated by the algorithm described

in this section. Thus, the nested block tri-diagonal structure and sparsity

of T is not lost. The following system of equations must now be solved:

T' p = b (4.19)

The matrix inversion lemma (Householder[1965] ) is now stated:

Lemma 4.1: Given the non-singular matrices H and G and their inverses

-H and G -
H and G , and the compatible matrices F and G, the following identity
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holds:.

(H - EGF) = H-1 - HE(-G + FH E) FH (4.20)

This lemma is used below to show that changing a single row in a

matrix H (whose inverse H -1 is known) by defining EG -1F appropriately

amounts to inverting a scalar. In this way, modifying T' -l b to obtain

T*-lb is shown to be very simple.

The row in T' to be modified is chosen to be the row corresponding

to the location of V in T*. Thus, its position corresponds to the

location of the 1 entry in the otherwise all-zero b vector. The vector

T is defined to be a correction vector such that

T' + b a = T* (4.21)

Then, by lemma 4.1,

T* = (T' - b(-l)T

-= -l T -l( + T -TTl ' (4.22)

where (1 + TT' -lb) is a scalar and its inversion trivial. However, it

is known from equation (4.18) that all of T* 1 is not needed. This

inverse only appears in (4.18) as post-multiplied by the vector b. Thus,

p = T*-lb

(T' + b aT)- b

-lm -- l )-l T T -lb
T' b T' b(1 + T' b) 3T' b

F+3TT'-lbF T -1L ) Tj T'

T' -b (4.23)

1 + _TT' b
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It is noted that the term in the parantheses in (4.23) is a scalar.
-1

Furthermore, T' only appears in (4.23) as post-multiplied by b. Since

b is a vector of zeros with one 1 entry, post-multiplying a matrix by

b amounts to reading off one column of that matrix. It will be shown that

because of this, it is useful to substitute V for one of the first 2

rows in the (T - I) matrix.

Equation (4.23) has an interesting implication: whatever the slight

modification discussed earlier actually is, it follows from (4.23) that

the result will merely be a scalar multiple of the true probability

vector p. Thus, finding the solution vector p amounts to normalizing

the result obtained by solving the modified system in equation (4.19).

The denominator (1 + a T' b) performs this normalization. As a

consequence of this, it is possible to modify T* in absolutely any way,

as long as the resulting matrix is still block tri-diagonal, and has

become non-singular. The desired result p can then be obtained by

normalizing T' b.

For simplicity of notation, the T' matrix is now partitioned into

blocks as seen in table 4.4. Matrices of this form have been studied by

various authors. Disney[1972] solves the two-server queue with overflow

problem (See also linlar and Disneyl[19673) by using the block tri-diagonal

structure of the transition matrix. Evans[19673 proposes a quadratic

matrix equation of the form

2
B + AK + CK = 0 (4.24)

based on the assumption that the solution vector may be partitioned into

vectors yi such that

y =i+ = Ky.i (4.25)

Wallace[1969] develops this algorithm, derives conditions for such a

solution to exist, and proposes an iterative algorithm to obtain the K

matrix. These studies apply to block tri-diagonal matrices of infinite

dimension and block Toeplitz form, except possibly at the lower boundary.
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A0 C1 0 0 0

B0 Al C2 0 ... O

O B1 A2 C3 ... 
1 3

0 ... 0 B A C
N-2 N-i N

L ... 0 0 B A
N-able 44. General form of the T' matrix.N

Table 4.4. General form of the T' matrix.



-98-

Such matrices are termed by Wallace quasi-birth-death processes.

Solutions of systems of equations with tri-diagonal or block

tri-diagonal matrices have been studied by Hindmarsh[1977], Varah[1972],

and Temperton[1975], in relation to systems of difference equations and

other applications. Navon[1977J presents several algorithms including

an LU-decomposition scheme for block tri-diagonal matrices, and

investigates the numerical stability of such algorithms.

As stated above, the entire inverse matrix T* is not needed,

since it only appears in equation (4.23) as post-multiplied by b.

Nevertheless, an algorithm for computing T* for a two-machine line

is described in full for completeness. The algorithm is then generalized

to a k-machine line. It is shown that in order to obtain the inverse

of a matrix such as the one appearing in table 4.4, it is necessary to

know the inverses of the main-diagonal blocks. However, it was shown

earlier that in the case of a k-machine line, there are k-l levels of

nested block tri-diagonal matrices. In other words, the main-diagonal

blocks are themselves block tri-diagonal. Thus, it is necessary to

obtain the full inverse of a block tri-diagonal matrix at all levels

except the lowest and the highest levels. In the former case, the lowest

level (basic) blocks are not tri-diagonal; in the latter, only one column

of the inverse is needed in equation (4.23). This is done by means of the

algorithm described below.

The following matrices are defined for a two-machine system: T'

is the slightly modified non-singular version of (T - I). Thus, it has the

2form of the matrix given in table 4.4. It consists of (N+1) blocks, each

of which is of dimension 2 x2 =4x4. Here, N is the storage capacity as in

the earlier discussion. The rectangular matrix Y is defined as a matrix

of dimensions 4(N+l)x4. It is partitioned into N+i blocks of dimension

4x4, as seen below:

Y N 1 (4.26)

Y_N j
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The rectangular matrix E has the same dimensions as Y. It is partioned

into N+l blocks of dimension 4x4, as seen below:

E - . (4.27)

EN

Thus, the dimensions of the matrices are compatible, and it is possible

to write the equation

T' Y = E (4.28)

From table 4.4 and equation (4.28), it follows that:

- A0Y 0 + C1Y = E0 (4.29)

B0Y 0 + A1Y 1 + C2Y 2 = E1

B1Y1 + A2Y2 + C3Y3 = E2

N-2 N-2 + AN-1 N-1 CNY N EN_1 (4.30)

B Y + A Y ( 4.31)
BN- 1YN- + AN N N(4.31)

Assuming that AN is invertible, equation (4.31) may be solved to give

-1
Y = A [E BNlY Y (4.32)
N N N N-1N- 1

Substituting (4.32) into (4.30), and assuming once again that the desired

inverses exist, it follows that:

-! -t -I
Y [A - CA BN_1 [E - CNAN E - B Y 3 (4.33)N-i N-i N N N-i N-i N N N N-2 N-2

Equations (4.32) and (4.33) suggest a recursion. Defining the matrices

X. and D. as

;~~--~----- -~-"-`-I -I -~ i-
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X0 = AN
= AN -1 i=l, .. ,N (4.34)

X. = A C X. 1 B
i N-i N-i+lXi-l BN-i

and
-1 -1

D = A EN X E
O N~ 1 N 0 N i=l,.. ,N (4.35)

D. X. [E C D.=
D =X N-i N-i+l i-1]

it may be verified that

-1
Y = Di - X. . N-i-i N-i-i ; i=0,.. ,N (4.36)
N-i BN-i-iYN-i-1

The set of equations (4.29) through (4.31) are thus solved backwards, until

equation (4.29), which gives

-1
Y = A [E0 C1Y] (4.37)

From (4.36), it follows that (4.37) can be rewritten as

-1 -l
Y = A [E CDN + CX BN- (4.38)o 0 0 1 N- 1 iN-1 00

Solving (4.38) for Y0 , and factoring,

Y0 =X B [A C 1XN (4.39)o o iN-i 0 0 1 N-l

- X [E C D 3 (4.40)
= XN [E 1 N-1

= D (4.41)

where (4.40) and (4.41) follow from equations (4.34) and (4.35) respectively.

The recursion is thus complete. Equations (4.36) and (4.41) are rewritten

as

Yo = D i
=iDN i=i,..,N (4.42)

Y. D -X B. .
N-i N-i 1-
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where D. and X. are defined by equations (4.34) and (4.35).

Now, the matrix E is successively set equal to a set of matrices

which together constitute the identity matrix. This is achieved by

defining the blocks of E as follows:

E. = I
1Ij } i=0,l,.. ,N (4.43)

E. = 0 ; j=0,l,..,N; jyi

Then, solving equation (4.28) by the recursion formulas defined above

gives a solution matrix Y which is the i+l s block-column of T'-1

Clearly, then, it is only necessary to obtain the inverses of X ,..,X N

in order to find T' . However, these blocks may be large in systems

with more than two machines. It is therefore not desirable to use a

direct inversion procedure, since even the best computer implementations

of inversion algorithms involve considerable amounts of computation. It
-1

is necessary to make use of the sparsity of C. and obtain X. more

efficiently.

It is noted that Ci has few non-zero rows: by a rough estimation,

only about 25% of the rows in Ci are non-zero. It is easy to verify

that a product in which C. appears as a pre-multiplier has its only
.1

non-zero rows in the same positions as those of C.. Thus, the product

CN XX B (4.44)
N-i+l i-i N-i

in equation (4.34) has approximately three quarters of its rows equal to

zero. It follows that only about one quarter of the rows of AN-i in

equation (4.34) are altered when the term in (4.44) is subtracted from it.

-t
If AN is known, it is then possible to use the matrix inversion lemma

N-i
-1

(lemma 4.1) to alter these rows and obtain X. efficiently. It only

remains to show that A. are relatively easy to obtain.

In the general k-machine case, the main-diagonal blocks are themselves

block tri-diagonal. As noted above, this nested structure persists for k-l

levels. This suggests a recursive procedure whereby the inverses of the
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main-diagonal blocks are computed by the algorithm described above.

At the lowest level, as in the two-machine case, the blocks are

basic, in the sense described in section 4.2.1, and their dimensions
kk

are 2 x2 . The main diagonal blocks represent those transitions in

which none of the storage levels change. They are thus similar to

the blocks discussed in examples (i) and (ii) in section 4.2.1. The

important difference between these examples and the main-diagonal

blocks of T' is that T' is a slightly modified version not of T but

of (T - I) . Thus, the identity matrix is subtracted from each of the

main diagonal basic blocks. The inverses of these blocks have relatively

simple closed-form solutions. For example, the inverse of the block

described in example (i) of section 4.2.1 (minus the identity matrix)

has the following form. Given that the block is represented by A=[a..]
13

and its inverse by A l=[a.j],

al = 44 / A

al a a a ;j=2,3
laj = (alja44 a4ja 14 ; j2

a14 = -a14 / A

a41= -a41/ A (4.45)

a~j = (a4jall - alja41) / ; j=2,3

a4 = all / A

a'. = -1 ; j=2,3

where

= all a44 a4a41 (4.46)

-!
All other entries in A are zero. This closed inverse carries over to

larger blocks which have the same form as the block in example (i) of

section 4.2.1. For the three-machine analogous block, for example, all

3 and 4 in the above equations become 7 and 8, respectively; nothing else

is changed.

Here, it is important to note that although the algorithm described
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in this section adopts the notation A ,A1,..,AN for generality, not all

of these matrices are in fact distinct. Basic blocks are defined as the

transition probabilities for given initial and final storage levels. The

important point to note, however, is that these transitions are not

conditional on the precise values of these levels. Rather, it is whether

the initial level was empty, full, or otherwise which conditions the

transition probability. These three possibilities are termed regions.

In a k-machine line, there are k-l storages, each of which can be in any
k-1

of three regions. Thus, there are at most 3 different matrices among

the (N +1)..(Nk +1) basic main diagonal blocks. This implies the block

Toeplitz form of the transition matrix. The fact that the number of

different Ai is small is especially important if the storage capacities are

large. The number of distinct matrices among the Ai is independent of

storage capacity and remains small. This is further discussed in section

4.2.3.
-i

It is important to reiterate that the entire T' matrix is not

needed. In fact, if T is substituted for one of the first 2 rows of

(T - I), the problem becomes significantly simpler. In that case, it is

only-necessary to compute a column from the first block-column of T'

This means that the solution Y corresponding to E =I, Ei=..=E =0 is
0 1 N

sought. Then, the problem becomes

0 1 i=l,..,N (4.47)

i N-i i-l i-i

where X. are defined, as before, by equation (4.34). The column of Y
1

corresponding to the v row in T' is then equal to T' b. The solution

vector p is found from equation (4.23).

The problem is now reformulated for the general k-machine transfer

line. The T' matrix for such a line is block tri-diagonal; its main

diagonal blocks are themselves block tri-diagonal, and this persists

downwards for k-l levels. The lowest level (Z=l) is defined to be the

basic level. Then, the solution to ecuation (4.19) is to be found

recursively; solving the t h level problem requires the results of level
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Q-1. The following notation is now established: A., B. and Ci are the
1 1 1 th

main-, lower off-, and upper off-diagonal basic blocks. At the t level,

th
the main diagonal block in the i block-column is A.; similarly, the

t level upper off-diagonal block in the i block-column is C., and the

th level lower off-diagonal block in the i block-column is B.. The

Xi., E., and D. matrices are defined analogously. This notation will be
1 1 1

clarified by the example on table 4.5.

At k=l, the inverses of the main-diagonal blocks, (A ) , are found

by explicit inversion, or by means of closed-form solutions such as that

in equations (4.45) and (4.46).

At the th level, where L<k-l, the following recursions are defined

in order to calculate (AI

X =A
0 N i=l,.. ,N (4.48)

9, 9, I 9 -19l )
X A C (X ) B
i N-i - N -i+l i-l N -i

9-1 i
D = (X) E49)o 0 N

9.. 9,-l R N9.. (4.49)
D = [E C ] EDD
1 = (i [N i N-i+l i-l

and

Y = D
0 N9

9, , £ t )-19 9..Y i=l, .,N .(4.50)
1 Ni N-i i-l -

where (XM) is found by applying lemma 4.1 on (Ai) ; for each but the

lowest level, (A.) are the inverses obtained at the level immediately

below. This is done by setting E successively equal to the identity

matrix I, as stated in equation (4.43).

An example may serve to clarify this procedure: it is desired to

find p for a three-machine transfer line with storage capacities N1 and

N2. Thus, equation (4.19) must be solved to obtain T' b.
2
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A C 0
0 1

A-I % - 1Z-1 A-1 1-lB A Co 1 2

A.

Z-1 Z-1 Z-1
B A C
N-2 N-i1 N

0 BNB-1 A-1

Table 4.5. The 2th level main-diagonal block.
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Finding the inverse of a block tri-diagonal matrix requires knowledge

of the inverses of its main-diagonal blocks. Furthermore, every level

corresponds to a storage, and each storage has three regions: empty, full,

and otherwise. Thus, for a three-machine system, k=3 and there are only

3 =9 distinct basic blocks, and 3 distinct second level blocks. The

procedure followed in solving this problem is schematically illustrated

in figure 4.5. The numbers on the arrows indicate the order of the steps

of the recursion. For reasons that directly follow from equations (4.48)

to (4.50), the recursion proceeds from top to bottom and from right to

left in the diagram.

Since only the first block-column of T' is needed at the highest

T
level (at the condition that V is substituted for any one of the first
k

2 rows), for Z=k-l, the recursion described by equations (4.48)-(4.50)

reduces to:

k-l k-l
X A I

k-l k-i k-i k-i -1 k-i ' ' (4.51)l

i N -i N -i+l i-) BN i
k-i k-l k-i

and

k-l k-l -1
Y k (X

0 N
k-l

(xk-1(N i~)-1 1l yi=l,--N (4.52)
k-l _k-i 1 - 1 l i1 yk-i

Nk-i

Equations (4.48) through (4.52), together with (4.23), completely

determine the solution vector p, i.e. the vector of state probabilities

for a k-machine transfer line.



-107-

'-4/-, z z

(N z ..- t--- - z- z
/ - Z Z'~ ,-t "'~ Z II 11

/ 0

a)I 

/.~l ~ = t
-4 , - o

c c r4I 0

- ~ o g z ola\- -" C CO- -am c 

?\0~~~~~~~~ _

\ ' z -i C

04\- -( - _--- Z II II

'4_ 1U- a) 4C C 0 : ,. =i

CE .

01 ==' =



-108-

4.2.3 Discussion of the Algorithm and

Computer Implementations

The basic blocks represent the state transition probabilities given

the initial and final storage levels. If the storage levels are ordered

semi-lexicographically, then the blocks are arranged in a block tri-

diagonal form. Because of the way in which the states are ordered, each

level corresponds to allowing the level of a particular storage to take

all values from zero to maximum capacity Ni. (See figure 4.4).

At each level, all blocks on any given diagonal are equal except

at the upper and lower boundaries (figure 4.6). This is because transition

probabilities are conditional on the adjacent storages being empty,

full, or otherwise. As long as a storage is not empty or full, it

influences the transition probability in the same way, regardless of the

value of its level. Each diagonal matrix is thus in nearly block Toeplitz

form. Since there are only three storage regions, there are three

distinct main-diagonal blocks in any higher level block. Thus, at each

level ., it is not necessary to obtain all (A.) in order to compute

(X) . Only three different (A) -1 must be obtained: for i=N .,N -1, and

0. These are computed in this order because of the way in which equation

(4.48) is set up. Furthermore, since there are three distinct matrices at

each level, the total number of distinct main-diagonal blocks for all
k-9

branches of the recursion at any level I is given by 3 . This may be

verified in figure 4.5. At the lowest level (Z=l), there are 3 =9 different

storage region combinations, and thus there are 9 distinct main-diagonal

blocks. At the second level, there are only 3 distinct main-diagonal blocks.

As storage size (and thus the total number of blocks) increases, the

savings in computation made by the observation that only three inverse

matrices have to be obtained at any level of the recursion becomes more

and more important.

Secondly, it may be noted that on the boundaries, some of the blocks

which (according to the formulation of the nested block tri-diagonal

matrix) should be non-zero diagonal blocks are in fact zero blocks. This
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in any main-diagonal block.
S-.valuesFigure 4.6. Location of boundary block-columns

in any main-diagonal block.
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may be verified in figure 4.4. This is caused by the fact that the level

of an empty storage cannot go down, and that of a full storage cannot

go up. The positions of these blocks are easily predictable, so that

it is possible to save computation by avoiding multiplications involving

large, all-zero blocks. Furthermore, at the highest level, the upper and

lower main-diagonal blocks are bi-diagonal, instead of tri-diagonal, for

these reasons. This too allows great computational savings, since for those

two cases (out of a total of three distinct highest level main-diagonal

blocks), equations (4.48)-(4.50) reduce to

y (Al) E 

YQ = (Ai) [Ei B-l i-l R Ri=l,·..,N (4.53)
Y =(A.) [E-B Y 
i 1 1 -i-l i-1

A third and very important point is that if some storage capacity is

increased from N to N' at some level Q, then it is only necessary to

recompute (X ) ,..., (XN,) in equation (4.48) (as well as higher level
N N'

matrices).The savings in computation allowed by this are crucial especially

for large NR. The reason for this is that increasing the capacity of a

storage amounts to appending new block-columns and block-rows to the matrix

at level Q. If the very last storage is being incremented up, then Z=k-1

and the only change in the original matrix is in the final block-column,

since transitions with initial storage nk l=Nk l are no longer boundary

transitions when the capacity is increased to N' > N . As a result,
k-l k-l

only X-matrices with indices beginning at the old storage capacity and at

levels beyond the storage whose capacity is changed need be recomputed.

Since the bulk of computations in the algorithm is the computation devoted

to generating (X)-1 (equation 4.48), this is an important consideration

in computer implementations.

The major problem in computer implementations of this algorithm is

not computation time but memory requirements. Because (X) -1 can only be

generated "upwards", i.e. from i=O to i=N ! (equations (4.48)) and are

used "downwards", i.e. from i=Ni to i=O (equations (4.49) and (4.50)),

they must all be stored in memory and can not be computed as needed. This

causes very serious memory problems. At high levels, the X matrices are



very large. In IBM double precision, the computer program given in

Appendix A.4 required 1M bytes for a small (Nl=N2=10) storage capacity

case.

This difficulty can be overcome by reverting to slow memory: this may

be done by creating disk files and storing the unused (X.)- matrices in

these files. Since these matrices are not needed at all times, the time

loss incurred by this procedure may not be very significant. A better

way is to use the IBM Virtual Machine System (See references under IBM).

This process allows unlimited virtual memory and enables the program to be

loaded and executed even with large storage capacities.

Computational complexity and error stability studies remain to be

performed for this algorithm.



5. COMPUTATION OF SYSTEM PERFORMANCE MEASURES

Calculating the steady-state probabilities by using the methods

outlined in chapters 3 and 4 is not an end in itself. It is a means for

obtaining certain system performance measures that are of use in

designing transfer lines or job shops. This chapter discusses some of

these important performance measures and how they are obtained from

the state probabilities.

The steady-state (long-time average) efficiency and production

rate of the system are defined and ways of computing them are discussed

in section 5.1. Section 5.1.1 discusses different expressions for

efficiency, as well as various ways to calculate it. Some conclusions

pertaining to the conservation of pieces are derived from these

equivalent methods for obtaining efficiency. The transients of the

system are investigated in section 5.1.2 and their effects on the

production rate of the system are discussed. Some computational

results on the dependence of efficiency on storage size are given and

discussed in section 5.1.3.

Section 5.2 investigates the effect of buffer size on the

performance of individual machines. The asymptotic behavior of forced-

down times as functions of storage size is established.

Section 5.3 studies the dependence of in-process inventory on

storage capacity. It is shown that inventory does not necessarily

increase linearly with storage size, and that in some cases it

approaches an asymptote as storage capacity is increased.

-112-
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5.1 Efficiency and Production Rate of the System

5.1.1 Computation of Efficiency

A transfer line can produce a part during a time cycle if and only

if the last machine is operational and the last storage is non-empty.

The efficiency of the transfer line is defined as the probability that

the line produces a part during any cycle. This probability is equivalent

to the expected value of the ratio of the number of cycles during which

the line produces a part to the total number of cycles. The production

rate of the transfer line is the expected number of completed parts

produced by the system per unit time. Thus, since all machines have

equal, deterministic service times (Assumption 2.2.2), it follows that

A Efficiency
Production Rate = (5.1)

Length of Machining Cycle

Throughout this work (with the exception of chapter 8) the length of a

machining cycle is taken to be one time unit, so that production rate

equals efficiency. These two terms are thus used interchangeably.

The efficiency in isolation of the i machine in a k-machine

transfer line is defined as

e A -average up time
e (5.2)

1
average up time + average down time

= (i/Pi) (5.3)

(1/pi) + (l/ri)

= i (5.4)

ri + Pi

Physically, this is the efficiency of that machine removed from the line

and supplied with an unlimited reservoir of workpieces and an unlimited

sink for processed parts. It is easy to.see that for a one-machine line,
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where assumption 2.2.1 holds, this quantity is equivalent to the

definition for transfer line efficiency given by equation 5.1.

When the machine operates within an unreliable transfer line,

however, the assumption of unlimited supply of workpieces does not hold,

since the adjacent upstream storage is sometimes empty due to failures

upstream in the line. Similarly, the assumption of unlimited storage

space for machined pieces does not hold, since the adjacent downstream

storage is sometimes full due to failures downstream in the line. Thus,

the actual production rate of the machine in the unreliable line,

defined as its utilization, is lower than its efficiency in isolation.

th
The utilization of the i machine in a k-machine transfer line is

defined as

E = p[a piece emerges from machine i during
any cycle at steady-state]

p[ (t+l)=l,n_ (t)>O,ni(t)<N.] (5.6)

The difference between the arguments of .i() and n. (-) is required by

assumption 2.2.5. It is clear that the efficiency of the transfer line,

as defined in section 5.1, is equal to the utilization of the last

machine, Ek, as given by equation (5.5). Here, nk(t) is taken to be

non-full, as stated in section 3.1.1. Intuitively, the expected

utilization of all machines should be equal, since pieces are neither

created nor destroyed by the line (Assumption 2.2.4). This proposition

is developed later.
th

Another numerical quantity is now defined for the i machine in

the transfer line:

S = D[a. (t)=l,n (t)>O,n. (t)<N ] (5.7)
1 1 1- 1 1 i

It is noted that the difference between Ei and Si is that in the latter,

all events take place at the same time t, whereas in the former, the

machine state and the storage levels are examined at different times.
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Proposition 5.1: E. = S.
1 1

Since from section 2.3.2,

p[a.(t+l)=ljci (t)=0,n (t)>0,n.(t)<N. = r. (5.8)i 1 i-1 1 i 1

p[ai(t+l)=llai(t)=l,n i-(t)>0,ni(t)<Ni] = 1-Pi (5.9)

it follows that by Bayes' theorem,

Ei = riP[ai(t)=0,n i (t)>0,n(t)<N.i +

C(1-ip P [i(t)=l,nl (t)>0,ni(t)<Ni. (5.10)
1 1i ' i- 1 1

All events in equation (5.10) take place at the same time t. The two

terms on the right hand side of (5.10) may be rewritten as

p[ai(t)=0,ni (t)>Otni(t)< i s£Q (5.11)
sE:Q

o

p[(.(t)=l,ni (t)>Oni(t)<N. (5.12)
1 ' ni-1 2. . (5.1

where

Q {sli (t)=j,nl (t)>0,ni (t)<N } ;j=0,1 (5.13)

Thus, equation (5.10) becomes

E. = r. C p[s] + (1-p;) p[s] (5.14)

0so SE 1

Using the same notation, equation (5.7) may be rewritten as

S = p[s] (5.15)
zSQi
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It is thus necessary to show that

Ei - Si = ri E p[s) - Pi E pIs] (5.16)

0 scsi

= 0 (5.17)

Consider the set Q . Since machine repair does not depend on storage

levels, the probability that the system leaves Qo in any time cycle

is given by

ri p[ 0] = ri p[s] (5.18)
i £Q

To get into set Q , which consists of all states in which machine i is

down and the upstream storage is non-empty and the downstream storage

is non-full at the same time cycle, it is necessary that at the

previous time cycle, these storageswere non-empty and non-full,

respectively. This is because by assumption 2.2.3, a machine can only

fail while processing a piece, and it can only process a piece if there

is at least one piece in the upstream storage and at least one vacant

slot in the downstream storage. Thus, set Q0 can only be reached from
0

set Q1, and this takes place if machine i fails. The probability that

the system enters set Q in any time cycle is therefore given by

P P[Q11 = pis (5.19)
sEQ21

Because of the steady-state assumption (Section 2.2.6), the probability

of the system entering any set of states during a given period must

equal the probability of it leaving the same set during a period of the

same length. Thus, equations (5.18) and (5.19) give the balance equation

r E p[s] = p. p[s] (5.20)
S F_ ,~s£~'

o
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so that

E. - S. = 0 (5.21)
1 1

or

E. = S. (5.22)
1 1

This proves proposition 5.1. The consequence of this proof is that the

computation of efficiency is considerably simplified.

Proposition 5.1 can also be demonstrated intuitively*. Consider

for the sake of illustration the last machine in a two-machine line.

Neglecting transient (zero steady-state probability) states, it may be

verified in the state transition diagram (figure 2.4) that all

transitions to states in which the storage is non-empty and the second

machine is up, with exactly one exception, result in the production of

a piece. Thus, calculating the sum of the probabilities of these states

is equivalent to finding the ratio of the number of transitions that

result in the production of a piece to the total number of transitions.

The only exception is the transition (0,0,1)-(1,1,l). This does not

result in a part because the storage must first become non-empty before

the second machine can operate. However, it is also observed that all

possible transitions to (0,0,1) from other states do result in the

production of a piece. This is the case with the three transitions

(1,0,0)-(0,0,1), (1,0,1)+(0,0,1), and (1,1,1)+(0,0,1). This means that

for every transition to (1,1,1) that does not result in a piece, there

is exactly one transition to (0,0,1) that does. Thus, if the probabilities

of states in which the storage is non-empty and the second machine is up

are summed (thereby obtaining S2), the (0,0,1)-(1,1,1) transition that is

included in the sum but did not result in a part is esactly counter-

balanced by transitions to (0,0,1) that were not included in the sum

but that did result in a part. Since the sum of the probabilities of

* This demonstration is due to Mr. M. Akif Eyler of Harvard University.
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states which have been reached by a transition that resulted in the

production of a part is E., it follows that

E. S. Z p[s] (5.23)

as before.

Proposition 5.2: S. = S. ; all i,j (Proof for k=2).

The proof that all machines have equal utilizations is considerably

more complex. In the two-machine case, it involves closed-form

expressions derived in chapter 3, and explicit relations between X, Yi'

and Y2. Since such relations have not yet been obtained for lines with

more than two machines, the proposition has not yet been proved for

transfer lines longer than two machines. The consequence of this

proposition is that the assumption that pieces are neither created

nor destroyed by the line (Section 2.2.4) implies that all stages in the

line have equal steady-state production rates.

For the two-machine case, the proof proceeds as follows:

Defining the sets

B1 {Slal=l,n<N} (5.24)

B2 -- {sla 2=l,O<n} (5.25)

It is easy to verify from equation (5.7) that

S. = p[Bj] ; j=1,2 (5.26)

Introducing the more compact notation

B1 {(n<N,l,a ) (5.27)

B2 = {(O<n,c ,l) (5.28)

and defining the intersection of these two sets as
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C B 1 n B2 (5.29)

= {(O<n<N,l,1)} (5.30)

equation (5.26) may be rewritten as

S. = p[B. - C] + p[C] ; j=1,2 (5.31)
3 J

Thus, proving that the two machines have equal utilizations is

equivalent to showing that

p[B 1 - C] = p[B 2 - C] (5.32)

This is demonstrated as follows: the set on the left hand side of

equation (5.32) is

B1 - C = {(O,l,a2)} U {(n<N,1,0)} (5.33)

It is noted that both elements in the first set in this union have

zero steady-state probabilities. Thus,

N-1

p[B1 - C1 L p[n,l,0] (5 34)

n=O

Similarly,

B2 - C = {(N,a1,i)} U {(O<n,0,l)} (5.35)

Again, the elements in the first set of the union have zero steady-

state probabilities. It follows that

N

P[B2 - C] = p[n,0,l] (5.36)

n=l

The results of section 3.2.1 are now used. From table 3.1,
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cxn Y1
( CX Y1 ; n=2,.. ,N-1

p[n,l,0J] = n (5.37)I 0 ; n=0,1

CX" Y ; n=l,.. ,N-2

p[n,0,1] = 2 (5.38)

0 ; n=N-1,N

and from equation (3.25),

=Y2 / Y (5.39)

Thus,

N-1 N-1

L p[n,1,0] = CX Y1 (5.40)
n=O n=2

N-2

= cx+l y (5.41)
n=l

N-2

= CXn y2 (5.42)
n=l

N

= >i p[n,0,1] (5.43)
n=l

It follows that

p[B 1 - C] = p[B 2 - C] (5.44)

which proves the proposition for the two-machine case.

In the general k-machine case, equations (5.24) and (5.25) are

extended to include both upstream and downstream storages:

B. {sI .=1 ,<n. 1 <N. } (5.45)

so that once again,
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S. = p[Bi] (5.46)

Then, demonstrating that all machines have equal steady-state

utilizations is equivalent to proving that

p[B i - C] = p[Bj - C] ; all i,j (5.47)

where, as before,

C = B.. Bj (5.48)

As stated earlier, the proof for the two-machine case involves the

explicit relationship between Xi and Y. given by equation (5.39). Since

this relation is not known to hold for a k-machine line, the proposition

has not been proved for the general case.
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5.1.2 System Transients and Efficiency

Both the analytical and the numerical methods discussed in the past

chapters give steady-state solutions. In some problems, steady-state

signifies the theoretical description of a system when time is allowed

to approach infinity and the system itself becomes static as all

transients die down. For example, a released pendulum oscillates for a

certain period of time, but it eventually comes to rest. In stochastic

systems, steady-state does not imply that the system itself is at rest,

but that the probabilistic model of the system has become stationary.

For ergodic systems, one consequence of this is that the system

behavior at steady-state is independent of initial conditions (See

section 2.3.1). Assumption 2.2.6 therefore implies that the system has

been running long enough so that it is governed by steady-state probability

distributions, and the effects of start-up have vanished. Knowing the

system's initial state thus gives no information on its present state.

Essentially, therefore, the practical equivalent of the abstract concept

of steady-state is the long-time average. In practical situations, this

may approach the steady-state values in a time that is relatively short

compared to the mathematical calculation of the time required to

approximate steady-state conditions. When the system has run long enough,

the average efficiency obtained is equal to the steady-state value

computed on the basis of the theory developed in chapters 3 and 4.

How long is "long enough", however, is a question that is difficult

to answer. The speed with which the system approaches steady-state is a

function of the second largest eigenvalue of the transition matrix (See

section 4.1). The eigenvalues are related to the system parameters (the

probabilities of failure and repair and the storage sizes) and are not

easy to compute. It is possible to estimate how many cycles it would

take for the transients to vanish, given an initial condition, by using

the oower method (Section 4.1). The number of iterations the algorithm

ne~ec co converge is a measure or the expected spned with which the system

reac-,es a stationary probabilit 1 `istribution.
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There are two main consequences of the effect of start-up

transients on the efficiency of the system:

(i) The steady-state efficiency may be calculated, by analytical or

numerical methods, to as many decimal places as the computer is capable

of handling. However, if the start-up transients take very long to

vanish, so that the system does not sufficiently approach steady-

state during finite-time operations, this accurate efficiency computed

on the basis of the steady-state probabilities will not reflect the

actual behavior of the system. As a result of this, the model will not

adequately describe and predict the production of the actual system.

(ii) On the other hand, the transients may not dominate enough to

render the model useless, although they may have some effects on the

system. Then, the fact that actual efficiency is close but not exactly

equal to the steady-state efficiency suggests that approximate methods

may be used to calculate with less work an approximate efficiency that

is sufficiently precise for actual (e.g. industrial) applications. This

theme is developed in chapter 6.

Since no system has yet actually operated for an infinite length

of time, it is important to understand the finite-time, non-steady-state

behavior of the system. The dynamic simulation program described in

section 6.1 was used and runs were made for different lengths of time

and system parameters. Some results are presented in figures 5.1-5.5.

In one set of runs, the average nunmber of pieces produced per

cycle was sampled at regular intervals, for several interval lengths.

These are not cumulative averages, but were computed over each non-

overlapping interval. It should be noted, however, that intervals were

taken consecutively and without long time periods between them. Thus, the

sample efficiencies obtained in this manner are not independent. As

expected, deviations from the mean become smaller as the length of the

time intervals are increased. At the limit, an infinite-length time

interval would give the steady-state efficiency. This is confirmed by

the fact that the cumulative averace efficiency approaches the steady-

state value after about 500 time cvcles and does not appreciably

deviate from that value thereafter even tnough the sample averages
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continue to fluctuate. The important point to note is therefore not that

the output of the system fluctuates, but that the cumulative (long-

time) average converges on the steady-state value. Three examples for a

two-machine line with the parameters appearing in table 5.1 are given

in figures 5.1-5.3. These are for interval lengths of 1, 10, and 100

cycles, respectively. Since the three graphs are drawn to the same

vertical scale, the fact that the magnitude of the deviations from the

mean decrease with interval length is clearly illustrated in these

plots.

A different set of runs consist of simulating systems with

different parameters, keeping the time interval constant. Figures

5.4 and 5.5 illustrate some results for the system parameters given

in table 5.2. For very small failure or repair probabilities, the system

spends long periods of time in few states, while it does not reach

some of the lower probability states during simulations of short

durations. Thus, it does not fluctuate often enough in short time periods,

and the cumulative average does not approach the steady-state value

during these short periods. On the other hand, large failure or repair

probabilities imply that transitions take place often, and all states

are visited more or less frequently. The cumulative average approaches

the steady-state efficiency much faster in this case. This experiment

confirms that the applicability of the steady-state assumption to

actual systems depends strongly on the system parameters.

Sections 5.1.3, 5.2, and 5.3 discuss the relations between system

parameters and three basic performance measures: production rate, forced-

down times, and in-process inventory. All computations make the steady-

state assumption. How close such results are to actual values depends on

the system parameters and the length of time the actual system is

continuously operated.
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P1 - 0.1 P2 = 0. 05

N= 4

r ! = 0.2 r 2 = 0.2

Table 5.1. System parameters for dynamic simulation

of system transients.

kiI 
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Figure 5.1. Sample and cumulative average production rates
for a two-machine line and intervals of length 1.
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Figure 5.2. Sample and cumulative average production rates
for a two-machine line and Intevals of length 10.
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Figure 5.3. Sample and cumulative average production rates for
a two-machine line and intervals of length 100
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Pl = 0.001 P 2 0.002

Case 1: N = 4

rl = 0.001 r2 0.003

1 2

Pi 0.9 P2 = 0.9
Case 2: N = 4

r= 0.8 r =0.8

Table 5.2. System parameters for dynamic simulation of

system transients.
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Figure 5.4. Sample and cumulative average production rates for
a two-machine line with small probabilities of
failure and repair.
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SAMPLE PRODUCTION RATE.
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Figure 5.5. Sample and cumulative average production rates for
a two-machine line with large probabilities of
failure and repair.
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5.1.3 Production Rate and Storage Size

Studies of transfer lines may be subdivided into three classes, on

the basis of the assumption they make with regard to the capacity of

interstage buffers. These are (Barten[1962]):

(i) No storage: In the case of servers in tandem with no storage space

between them, the machines are most tightly coupled, in that when one

of them breaks down, the entire line must stop. Such lines are often

encountered in industry, as in the case of continuous production lines.

(ii) Infinite storage: In this case, the machines are as decoupled as

possible, as is shown below. Although infinite buffer capacities give

the highest possible production rate for a given set of machines, this

assumption does not have wide applicability to actual situations. Costs

of storage capacity and in-process inventory make even very large buffers

relatively rare in industry.

(iii) Finite storage: In this case, a limited storage capacity is

provided between machines or stages consisting of several machines.

This is the most common case in industry, as well as in many other

areas.

The no-storage case was treated by numerous researchers, including

Buzacott[1967a,1968], Hunt[19561, Suzuki[1964], Rao[1975a], Avi-Itzhak

and Yadin[1965], and Barlow and Prochan[19751. Masso and Smith[1974]

state that adjacent stages with no storage between them may, in some

cases, be combined and treated as a single machine. This simplifies the

analysis of long transfer lines considerably. The most complete analysis

of the efficiency of systems without buffer storages appears in

Buzacott[1968], where various network topologies are considered.

In the present case, the system consists of k machines in series,

with equal and deterministic cycle times, taken to be 1 time unit. The

derivation of the efficiency of a line with no storages presented

below follows Buzacott[19681]. For a given machine i, where i=l,..,k,

the mean up- and down-times are given by I/p. and l/r., respectively.

Assuming that during some long time period T, machine i produces M pieces,
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it follows that during that period, the expected number of breakdowns

is MPi. Thus, the total expected down time of machine i is MPi/ri time

units. However, the whole line is forced down whenever one machine

fails. It follows that

k

T = M+ MPi/ri (5.49)

The efficiency of the line is equal to that of any machine, since the

line is up only when all machines are up. As defined in equation 5.1,

efficiency is the ratio of expected up time to total time. Thus,

E(O) = _ (5.50)
T

k (5.51)

1 Z pi / r.

i=l

where E(0) is defined to be the efficiency of a line with no buffer

storages. This value gives a lower bound to the transfer line production

rate that can be obtained with the given set of machines.

An upper bound is given by the limit of efficiency as the storage

capacities go to infinity. Although this is, as stated earlier, an

unrealistic assumption, it does sometimes give remarkably accurate

results (See Solberg[1977]). Infinite buffer models have been the subject

of considerable research, including Buzacott[1967a,1967b], Hunt[1956],

Morse[1965], and Schweitzer[1976].

A common mistake (Buzacott[1967b], Koenigsberg[1959] , Masso and

Smith[1974], Barten[1962] and others) is to assume that infinite buffers

truly decouple the machines, so that each machine may be considered

independent from all others. It follows then that the efficiency of the

line, E(X), is equal to that of the least efficient machine. Basing

himself on Burke[1956], Koenigsberg[1959] notes that this is the case
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when machines are reliable and have exponentially distributed service

times, and the input to the line is Poisson. In this case, Burke shows

that the output of a machine is also Poisson, and since an infinite

storage implies that there is no blocking, each stage is indeed

independent. Assumption 2.2.1, however, requires that a machine in

isolation be never starved or blocked. Okamura and Yamashina[1977]

point out that in some cases, the average number of pieces in a storage

approaches a limit as the capacity of the storage increases (See also

section 5.3). In such cases, the storage may be empty and starve the

downstream machine with positive probability. It is thus incorrect to

assume that machines are truly decoupled by infinite storages.

However, this does not invalidate Buzacott's thesis that the

production rate of a line with infinite buffers is equal to that of

the least efficient machine. Furthermore, Okamura and Yamashina's

counter argument leaves much to be desired: although they are able to

solve two-machine lines with storage capacities less than 36 only

(because of memory limitations), they deduce from a graph a value for

E(O) which they say is lower than the efficiency of the least efficient

machine. The assertion that the production rate of a line with infinite

buffers is equal to the efficiency of the least efficient machine is

proved by two different approaches. Mathematical induction is used

below; it is also demonstrated in section 5.2 that in the two-machine

case, the forced-down times of the least efficient machine approaches

zero as storage capacity increases.

To prove the proposition, it is first noted that for a transfer

line with infinite capacity buffer storages, any segment of the line (be

it a single machine or a series of machines and storages) behaves

independently from the downstream part of the line. This is because

blocking can not occur with infinite buffers. Thus, the segment operates

at its efficiency in isolation, i.e. at its highest possible production

rate, without being hampered by what is appended downstream of it.

A storage is defined to be stable if and only if its level

increases without bound as t-x with zero probability (Lavenberg[1975],

Hildebrand[19673).
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The proof that the production rate of a line with infinite capacity

buffers is equal to the efficiency of its least efficient machine

proceeds as follows: Concentrating first on the first storage (storage

1), two cases may be considered. Either the first machine is less

efficient than the second one, in which case the storage is stable

(See section 5.3), or else it is unstable.

(i) Storage is stable: Since the first machine is never blocked, it

operates with a production rate equal to its efficiency in isolation.

The second machine can do no better than the first, so that the flow

of pieces through the second machine must be equal to or less than the

efficiency of the first one. If the average rate of flow through the

second machine were less than that through the first one, the level

in the first storage would increase without bound as t-o. This

contradicts the hypothesis. Thus, for a stable storage, conservation

of pieces (See sections 2.2.4 and 5.1.1) holds, and the production rate

of the downstream machine is equal to that of the upstream one, which

is the least efficient of the two.

(ii) Storage is unstable: By definition, the number of pieces in the

storage increases without bound as t-+. By modeling the level of the

storage as a birth-death process with states = 0,1,2,... and assigning

Pi ,i+' the probability of transition from state i to state i+l to be

greater than Pi.i-1 for all i, it may be shown that the probability of

being in state 0 (storage is empty) decreases to zero as t-*-. (Note

that this is also true for states 1,2,...). Thus, the probability that

the second machine is starved goes to zero as t-=. Since the second

machine is never blocked, the rate of flow through it approaches its

efficiency in isolation as t-~. In case (i), the first machine is less

efficient than the second one by hypothesis. Here, the second machine is

at most as efficient as the first one. Thus, the assertion has been

proved for storage 1.

Storage i is considered next. It is between machines i and i+l

(See figure 2.1). It is assumed, following the usual induction argument,

that the assertion is true for storage i-l. Thus, the rate of flow through

machine i is equal to the efficiency of the least efficient among machines
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1 to i. Once again, there are two possibilities.

(i) If storage i is stable, conservation of pieces holds by the same

argument as above. Then, the rate of flow through machine i+l is equal

to that of machine i. For the storage to be stable, it is noted that

machine i+l must be more efficient than the upstream portion of the

line. Thus, the rate of flow through machine i+l is equal to the

efficiency of the least efficient machine among machines 1 to i+l.

(ii) If storage i is unstable, the same argument as above implies that

the probability that it is empty approaches zero as te-. Then, the rate

of flow through machine i+l approaches its efficiency in isolation as

t-O. The storage is unstable only if the efficiency of machine i+l

is less than or equal to that of the upstream portion of the line.

Thus, it has been shown that assuming that the assertion holds

for storage i-l implies that it also holds for storage i. The proof is

now complete. Defining the efficiency of the line E(X) to be the rate

of flow out of the last machine (which may or may not be equal to the

rate of flow into the line, depending on the stability of the storages),

it follows that (Buzacott[1967a,1967b]):

E(X) = mm ,k r+ pi j (5.52)

ii=l ,..,k

The lower bound on production rate given by equation (5.51) and the

The lower bound on production rate given by equation (5.51) and the

upper bound given by (5.53) are now analyzed. It is noted that for a

perfectly reliable machine, Pi/ri 0 and for a completely unreliable

one, pi/r. -+ . Thus, if all machines are very reliable, E(0) - E(O) -* 1.
1 1

On the other hand, if a single machine is much less reliable than all

the others, E(0) - E(>). Since the difference between the upper and lower

bounds indicates how much production can be increased by the addition

of buffer storages, it follows that storages are most useful when each

machine is not extremely reliable and no single machine is much less
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efficient than all others (Buzacott[1967a]). An interesting consequence

is that the production rate of a balanced line, in which all machines

have equal efficiencies in isolation, is likely to improve more by the

addition of buffer storages than that of an unbalanced line.

Although the difference between E(O) and E(O) indicates how much

can be gained by adding storages with infinite capacities to the line,

it is useful to have a measure of how effective a given storage

configuration (N1,.. Nk_ 1) is in reducing the loss of production due

to breakdowns. The effectiveness of a set of storage capacities for a

given line with known E(O) and E(X) is defined as

n(N! ,.. ,Nk) =E(N N E(NO,.) (5.54)

E(=) - E(O)

(Equation (5.61) follows Freeman[1964] and Buzacott[1969], rather than

Buzacott[1967b], who takes the denominator to be l-E(O)). Since

E(0) _ E (Ni, k-l E (5.55)

it follows that

o L p(.) L 1 (5.56)

It is clear that n(N ,..,N 1) may have identical values for

different sets of storage capacities (N1l . .,Nk-1). However, providing

storage space at different locations may have different costs. Thus,

the optimization problem of section 1.1 involves also minimizing cost

for a given n(').

Although efficiency is known to vary between E(O) and E(X), it is

important to know the rate at which this increase occurs with respect to

buffer capacity. This is because there are cases in which very large

buffers can improve production rate significantly; however, in some

of these, most of the improvement is achieved with small buffers, while

larger buffers do not further increase production rate appreciably.
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Okamura and Yamashina[1977] classify curves of efficiency against

storage capacity in three groups: those in which the curve is almost

linear, those in which it displays a marked concavity, and those that

initially rise quickly, but soon approach a limit. These types of

curves are illustrated by the graphs of efficiency against storage

capacity in figure 5.6 (Gershwin[1973b]). These results are for two-

machine lines with the system parameters given in table 5.3.

In case 1, both machines are very efficient. Hence, both E(O)

and E(X) are close to 1 (and to each other), so that there is little

to be gained by the addition of buffer storage between the machines.

Since the increase is very gradual, this case is similar to those

which Okamura and Yamashina call almost linear. In case 2, the machines

are less efficient and neither machine is significantly less efficient

than the other. Thus, the addition of buffer storage can be expected

to improve the line production rate considerably.

Cases 3 and 4 are interesting to compare. The least efficient

machines in these two cases have equal efficiencies, so that the

limiting production rates as the storages increase are equal. However,

the other machines in these cases have different efficiencies: the

second machine in case 3 is more efficient than that in case 4.

Consequently, the first machine is more of a bottleneck in case 3 than

the first machine in case 4. Thus, the difference between E(0) and E(X)

is larger in case 4.

On the other hand, for small storages, the two curves have approxi-

mately the same slopes. Thus, while in case 3, n(10)=0.28 and I(20)=0.50,

the effectiveness values for the same storage capacities in case 4 are

n(10)=0.16 and n(20)=0.27. It is therefore more effective to use

relatively small buffers in case 3, although very large buffers gain

much more in case 4. Case 3 approaches the limiting value faster, and

thus falls into the third class described by Okamura and Yamashina.

Case 4, however, displays a marked concavity for a much broader range

of storage capacity, and belongs to the second group of curves in their

classification.
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Pi = 0.001 P2 = 0.001

Case 1: 

r1 = 0.04 r 2 = 0.04

( P = 0.01 P2 = 0.01

Case 2:

r = 0.08 r 2 = 0.08

P( = 0.01 P2 = 0.01

Case 3:

r= 0.04 r 2 = 0.08

(P = 0.01 P2 = 0.01

Case 4:

rL = 0.04 r 2 = 0.04

Table 5.3. System parameters for two-machine lines.
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Figure 5.6. Steady-state line efficiency for o-machine
transfer lines.
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It follows that two numbers are of interest when deciding whether

or not to provide buffer storage between stages: while the difference

between E(0O) and E(=) gives the total increase in production rate that

can be achieved by buffer storage, the effectiveness n(*) indicates

what fraction of this total increase is gained by a given storage

capacity.

The difference between E(0) and E(O) depends on the efficiency in

isolation of each machine in the line, i.e. on the ratio of Pi and ri.

The rate at which the efficiency versus storage size curve increases

(which determines n(')) depends on the magnitudes of these

probabilities. For example, if p.=r.=0.1, i=1,2, then equations (5.51)

and (5.53) yield that E(0)=0.33 and E(-)=0.50. If p =ri=0.001, i=1,2,
~ 1

E(0) and E(o) have the same values. Thus, the line efficiency can be

increased from 0.33 to at amost 0.50 by the addition of buffers in

both cases. Yet, in the former case, a storage of capacity N=4 yields a

production rate equal to E(4)=0.35938, corresponding to an effectiveness

of n(4)=0.15630; in the latter, the production rate for the same storage

capacity is E(4)=0.33361, corresponding to an effectiveness of only

nr(4)=0.00168. This is not difficult to explain intuitively: little

decoupling can be exercised on the machines in a line by adding a buffer

storage if the machines fail extremely rarely, and when they fail, take

very long to be repaired. In such cases, relatively small capacity

storages empty or fill up in a length of time which is small compared

to the total up or down times; their influence on production rate is

therefore negligible. If machines fail often and are repaired easily,

a small capacity storage may improve production rate significantly. On

the other hand, very large storages may improve efficiency significantly

in the former case, since they take longer to empty or fill up. Thus, there

is a certain relationship between the magnitudes of transition

probabilities and storage capacity. This relation is the basis of the

6-transformation outlined in section 6.3.

Results have been obtained for a three-machine line by the methods

of section 4.2. Some of these appear in figures 5.7-5.9, where the line

efficiency is plotted against the capacity of one of the storages,



-142-

while the other is varied as a parameter. System parameters are given

in table 5.4.

In case 1 (figure 5.7), the last machine is most efficient, so that

workpieces produced by the second machine are most often instantly

processed by the third machine. Thus, the second storage is often

nearly empty, and little is gained by providing it with a large

capacity. On the other hand, the efficiency in isolation of the first

machine is close to that of the downstream segment of the line (i.e.

the portion of the line downstream of it, consisting of machine 2,

storage 2, and machine 3). Thus, it is not profitable to provide

storage space between machines 2 and 3, though it is useful to provide

a buffer between machines 1 and 2.

In case 2 (figure 5.8), the first machine is most efficient. Thus,

the first storage is often nearly full, and the downstream segment of

the line operates most of the time as if in isolation. On the other

hand, the efficiency of the third machine is close to that of the

upstream segment of the line (machines 1 and 2, storage 1). Thus, little

is gained by providing the first storage with a large capacity,

although it is useful to have a large storage between machines 2 and 3.

In case 3 (figure 5.9), all machines have equal efficiencies in

isolation, and the effects of added storage capacity are most clearly

visible in this case. Furthermore, it is observed that the production

rate is symmetrical with respect to the orientation of the system.

Since all machines are identical, for example E(2,5) = E(5,2), etc.

These examples indicate once again that storages act best as

buffers to temporary fluctuations in the system. If the efficiencies

of machines are very different, storages do not improve production

rate; if the line is well balanced, the temporary breakdowns are to

a certain extent compensated for by buffer storages.
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(Pi =l0 p= 0.1 P2 0.1 P3 = 0.01

Case 1: 0.01

r = 0.1 r =0.1 r =0.2

Pl =0.0 2 p=0.1 3 =0.1
1 2 3

Case 2: 

1 0.2 r2 = 0.2 r3 =0.2

Pi= 0.1 =. p = 0.1 P3 0.1

Case 3: 0.

r = 0.2 r = 0.2 r = 0.2

Table 5.4. System parameters for three-machine lines.
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Figure 5.7. Steady-state line efficiency for a three-machine
transfer line with a very efficient third machine.
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Figure 5.8. Steady-state line efficiency for a three-machine
transfer line with a very efficient first machine.
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Figure 5.9. Steady-state line efficiency for a three-machine

transfer line with identical machines.
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5.2 Forced-Down Times, Storage Size, and Efficiency

It is suggested in section 5.1.1 that the rates of flow of

workpieces through each machine in a k-machine line are equal at steady-

state; this is proved for k=2. In lines with finite storages, the

utilization of the machines is always lower than their efficiencies in

isolation, since they are occasionally blocked or starved. As storage

capacities are increased, the utilizations asymptotically approach the

efficiency in isolation of the least efficient machine. This is proved

by induction in section 5.1.1. An alternate proof is given in this

section, by showing that the forced-down times of the least efficient

machine go to zero as storage capacity is increased.

Often, reliability involves increased cost. Thus, it may be

undesirable to design and build highly efficient components if they

are required to operate within lines involving significantly less

efficient components. Since a good measure of how efficient a given

component is with respect to the rest of the line is its forced-down

times, or alternately the steady-state probabilities that it is idle

or blocked, it is necessary to study the relationship between this

probability, the efficiency, and storage size.

The two-machine case is discussed here. Similar results may be

obtained for longer lines as well.

Although increasing the efficiency of an individual machine has the

overall effect of increasing the production rate of the transfer line,

this effect is far from simple to calculate. The utilization of the

improved machine (and hence, the production rate of the transfer line)

does not increase linearly with the efficiency of an individual machine.

As is shown below, the effects of system bottlenecks are significant.

Since a transfer line may contain less efficient stages, and the line

production rate cannot possibly exceed the efficiency of its worst stage,

it would appear that the utilization of an individual machine should

approach an asymptote as its efficiency is increased.
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In addition, it is shown in section 5.1.3 that buffer storages

contribute most to the system production rate when the machines are

not extremely efficient and no machine is significantly less efficient

than the others (i.e. the line is balanced). Such observations are

important when designing machines and transfer lines, in that they

may provide guidance in decisions involving reliability, storage capacity,

and cost tradeoffs. A specific example is analyzed here, and some

conclusions are drawn on the effect of buffers and machine efficiencies

on each other and on the production rate of the transfer line.

The parameters considered in the numerical example appear in

table 5.5. The first machine is not altered, while the efficiency of the

second machine is increased (here, this is done by decreasing the

failure probability while keeping the repair probability constant).

The performance measures sought are machine utilization and forced-

down times (alternately, the probabilities of being starved or blocked).

In case 1, the efficiency in isolation of the second machine is very

low (e =0.15). The efficiency of machine 2 is increased, past that of

the first machine (when el=e2 =0.50 in case 3) up to e2=0.85 in case 5.

Thus, the system bottleneck is machine 2 in cases 1 and 2, and machine 1

in cases 4 and 5. This is well illustrated by the graphs of line

efficiency and probability of blocking and starving appearing in figures

5.10-5.13.

The line efficiency is plotted against storage capacity for each of

the five cases in figure 5.10. In cases 3-5, the value of E(X) is the

same, since the least efficient machine is the first one (and it is not

altered). In cases 1-2, on the other hand, the least efficient machine

is the second one. Thus, E(O) changes as e2 is varied. This effect is

clearly seen in figure 5.11, where the line efficiency is plotted

against the efficiency in isolation of the second machine, e2 , for

various values of storage capacity. The production rate increases with

e2 until e2 = el, after which the first machine acts as a bottleneck

and the production rate approaches an asymptote. Thus, beyond a certain

point, increasing the efficiency of the second machine becomes less and

less effective. This result agrees with those for the flow through
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All cases: p = 0.1 rl = 0.1

Case 1: p2 = 0567 r= 0.1-

Case 2: p = 0.2 r= 0.1

Case 3: p 2 = 0.1 r2 = 0.1

Case 4: 2 = 0.05 r2
= 0.1

Case 5: 2 = 0.018 r= 0.1

Table 5.5. System parameters for two-machine lines.
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networks of queues conducted by Kimemia and Gershwin[1978]. It is

found that in general, when a given attribute is limiting, the flow

through the network increases linearly with that attribute; as the

attribute increases, it is no longer limiting and some other attribute

is. Thus, the flow rate reaches an asymptote.

It is noteworthy that for a certain range of e2, it appears

that providing small amounts of storage can improve the production

rate as much as increasing e2; for example, e2=0.67 and no storage

gives approximately the same efficiency as e2=0.6 and N=4, or

e2=0.5 and N=10. This is significant, because improving the efficiency

of a machine may involve a great deal of research and capital

investment or labor costs, and may thus be more expensive than

providing a small amount of buffer capacity. It is especially

important that this effect is strongest when the machines have

approximately the same efficiency, i.e. when the line is balanced.

Since this is most often the case in industry (although deliberately

unbalancing a line may at times be profitable - see Rao[1975b], Hillier

and Boling[1966]), the fact that increasing buffer capacity is most

effective when the line is balanced is of great importance.

Figures 5.12 and 5.13 are also revealing, in that they show the

dependence of forced-down times on the efficiency of the second machine

and the storage capacity. The probability that the first machine is

blocked (p[N,1,0]) is plotted against storage capacity in figure 5.12.

It is seen that this probability approaches a positive asymptote when

the second machine is least efficient, and hence the bottleneck. It

approaches zero when the first machine is least efficient, so that

as the storage capacity is allowed to increase without bound, the first

machine is fully utilized because it is the system bottleneck. This

result agrees with the findings of Secco-Suardo[1978] and Kimemia and

Gershwin[1978]: as the speed (and thus the production rate in isolation)

of a machine increases, the average size of the queue decreases.

Conversely, the probability that the second machine is starved

(p[O,O,11) is plotted against storage capacity in figure 5.13, approaches

a positive asymptote when the first machine is limiting. When the second
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machine is the system bottleneck, this probability approaches zero

as storage increases.

This may be demonstrated analytically by using the two machine

state probability expressions derived in chapter 3. In the case where

the first machine is more efficient than the second, (p1/rl)<(P2/r 2)

so that Y1<Y2 and X>1 (See equation (3.25)). Now from table 3.1,

rl + r2 - rl 2 P2r 1

p[0,0,1] = CX (5.57)
P2rl

where C is chosen so that the probabilities sum up to one. Thus,

limC = Xn (1+Y)(l+Y ) + . (5.58)!im C ... .

N-)x n=2

where this first term is sufficient to guarantee that C-0 as N-+ (since

X>l and all other terms are positive). Thus, for el>e2 ,

lim p[O,0,1] = 0 (5.59)

On the other hand, in the case where the first machine is less

efficient than the second, (p/r)>(/r so that Y>Y2 and thus,

X<1 (equation (3.25). From table 3.1,

p[N,l,0] = cxNl 1 r r 2 -r l r 2 (5.60)

1 r2

Since X N-0 as N-~ for X<l, it is sufficient to show that C does not

tend towards infinity as N is increased. Neglecting terms containing

XN -I (because X<1), the limit for 1/C is written as

!im C (l+Y)(+Y) + X(1+Y2 ) + . +

N-OO n=2 1 2 2

r1 + r2 r r P- 1 1 r + r2 - r lr P2rl
X 1 2 P2r + 1 2

P2 rl P2 P1 + P 2 P- 1 P2 P- 2 r1

(5.61)
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Since for X<1,

xn = (5.62)
1-x

n=O

equation (5.61) has a non-zero right hand side. Thus, C is bounded for

e<e2 and

lim p[N,1,0 = 0 (5.63)
N~o

These proofs show once again, as stated in section 5.1.3, that at

least for the two-machine case, the infinite-buffer production rate is

such that the least efficient machine is never forced down. This

implies that it is equal to the efficiency in isolation of the least

efficient machine.
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5.3 In-Process Inventory and Storage Size

The cost of providing storage may increase linearly with its

capacity, in terms of floor space etc. However, the cost incurred by

maintaining in-process inventory is not linear with buffer capacity.

Calculating the expected number of workpieces in a storage or in the

entire production line therefore involves the use of state probabilities.

The expected inventory in storage i is given by

N1 Nk-l 1 1

E . =ct 1.. , ' P[nl, . ., _l,1 l,.. , k].n. (5.70)
n 0n1= nk-1=0 1 al=0 (k=0

Solving the buffer size optimization problem described in section 1.1

involves the cost of maintaining in-process inventory. This cost must

be calculated on the basis of the expected inventory, as given in

equation (5.70).

Two-machine and longer lines are reviewed here.

Okamura and Yamashina[1977] observe that for large enough buffer

capacities, an increase in the capacity does not necessarily imply an

increase in the expected number of pieces in the storage. This is

illustrated by the results presented in figures 5.14 and 5.15. These are

for a two-machine line with state parameters as given in table 5.5.

In figure 5.14, the expected number of pieces in the storage is

plotted against storage capacity. In cases 1 and 2, the first machine

is more efficient than the second, and the expected in-process inventory

is seen to increase with storage capacity. In case 3, the two machines

have equal efficiencies, and the expected inventory increases linearly

with storage capacity. In cases 4 and 5, the second machine is more

efficient than the first, and the expected inventory approaches an

asymptote. This is even more evident in figure 5.15, where the expected

in-process inventory as a fraction of the storage capacity is plotted

against storage size. These curves are seen to approach limiting values.
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Figure 5.14. Expected in-process inventory plotted against
storage capacity, for two-machine lines with
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That the expected inventory approaches an asymptote when the

second machine is more efficient than the first (e2>e ) may be proved

analytically by using equation (5.70) and the results of chapter 3.

As in section 5.2, it is first noted that for el<e2 , X<1 and C approaches

a limiting value as N-4- (See equations (5.61) and (5.62)). Furthermore,

for X<l,

lim XN - 1 (N-1) = 0 (5.71)

lim XN - 1 N = 0 (5.72)
N4o

For the two-machine case, equation (5.70) may be explicitely written as

N-2

I = CXn (1+Y1)(l+Y2) n + CX + CXY2 +
n=2

r +r + rr2 r
CX 1 2 1 2 p 2r 1

2 1
+ P2 P1P2 - P2rl + CX (N-1) +

N-i N-i r +r r r - r
CX Y (N-l) + CXN 1 2 rlr2 - lr2

p1 p 1 p 2 -pp 2 pr 2 (N-1
Pl Pl P2 P1P2 Plr2

N-l rl + r 2 lr 2
+ CX 1 2 1 r2 - 1 2 N (5.73)

Plr2

From equations (5.71) and (5.72), it is seen that the last four terms

approach zero as N-+-. Furthermore, since C approaches a constant as

N-o, the second, third, and fourth terms also approach constants.

Thus, to prove that I approaches an asymptote as N-~=, it is sufficient

to show that the first term approaches a limiting value. This is done as

follows:

N-2 N-2
n~n _ n-i

nxn = X n Xn -X

n=2 n=2

N-2
d _

X dx E xn
n=2
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d [X2 xN-l1

= X 2X- (N-1)XN-2 2 N- ]

1 -X X (5.74)
(! - X)2

As N-4o, equation (5.74) reduces to

N-2

lim E n Xn 2X (575)

N+- n=2 (1 - X)

Thus, I approaches an asymptote as N-+.

An important consequence follows from this: In cases with el<e2,

added storage capacity is utilized less and less as the storage capacity

increases. This asymptotic behavior is similar to that exhibited by

production rate as a function of storage capacity (Section 5.1.3). As

N-x, increasing the storage capacity becomes less useful and contributes

less to improving the system efficiency. How quickly the line efficiency

approaches the limiting value is related to the speed with which Ii

approaches the limit. However, it seems incorrect to say, as Okamura

and Yamashina[1977] do, that in general, curves of efficiency and

expected inventory against buffer size have the same shape. This should

be obvious from cases 1 through 3 in figure 5.14.

While in the two-machine case, the expected in-process inventory

depends on the relationship between the efficiencies in isolation of

the upstream and downstream machines, this is not so in longer lines. In

general, the expected inventory in storage i depends on the efficiencies

in isolation of the upstream segment of the line (machines 1 through i

and the storages between them) and the downstream segment of the line

(machines i+l through k, and the storages between them).

As a consequence, the expected inventory of storage i increases if

the capacity of an upstream storage is increased, since that has the

effect of increasing the efficiency of the upstream segment of the line.

Similarly, the expected inventory in storage i decreases if the capacity

of a downstream storage is increased, since that has the effect of

increasing the efficiency of the downstream segment of the line.
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This is illustrated by the results plotted in figures 5.16 and

5.17 for a three-machine line with parameters given in table 5.6. In

figure 5.16, the capacity of storage 2 is increased, and the expected

inventory as a fraction of storage capacity in storage 1 is seen to

decrease. Since the production rate of the downstream portion of the

line (machines 2 and 3, storage 2) approaches an asymptote as N2~,

the expected inventory in storage 1 also approaches an asymptote. In

figure 5.17, the capacity of storage 1 is increased, and the expected

inventory as a fraction of storage capacity in storage 2 is seen to

increase. Again, since the production rate of the upstream portion of

the line approaches an asymptote as N ->, the expected inventory in

storage 2 also approaches an asymptote.

This has an important consequence: how effective a buffer is

generally depends on its utilization by the system. Thus, if a storage

is very often empty or full, it serves little purpose in the line

(Buzacott[1967a])). It follows that altering the capacities of upstream

or downstream storages affects the contribution of a given storage to

the production rate of the transfer line. It is necessary to consider

this interaction between storages while computing the optimal buffer

capacity allocation for a system.
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Pi = 0 . 1 r, = 0.2

2 = 0.1 r2 =0.2

P3 0.1 r3 =0. 2

Table 5.6. System parameters for a three-
machine line.
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Figure 5.16. Expected in-process inventory as a fraction of
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6. APPROXIMATE METHODS FOR SOLVING MULTISTAGE

LINE PROBLEMS

An important difficulty in calculating the production rates of

transfer lines with more than two machines and relatively large storages

is that the state space very rapidly reaches intractable dimensions. From

equation (2.22), the number of states for a k-machine line with storage

capacities N1,..,Nk_l is given by

k
m = 2 (N1 + 1) (N + 1) (6.1)

Some examples of only moderately large problems are given in table 6.1.

Considering the fact that certain processes, for example in the

automotive industry, may involve many tens of machines, it becomes

extremely difficult or even impossible to solve the problem exactly,

whether by the analytical methods derived in chapter 3, or by numerical

approaches outlined in chapter 4 (See Buzacott[1969]).

In such cases, approximate methods such as computer simulation are

often used. Simulations can often be expensive and inefficient, although

the particular details of specific systems can better be considered in

simulation than in analytical approaches. A simulation program that

corresponds exactly to the model dexcribed in chapter 2 is reviewed in

section 6.1. This program (See Appendix A.5) was used at various stages

of the research, both for gaining insight into the behavior of the system,

and for checking the validity of analytical and numerical results

obtained.

An aggregate method that lumps two-machine, one-storage segments of

longer transfer lines into almost equivalent single machines is discussed

in section 6.2. Although the agreement with exact results is best when

the line is unbalanced (rarely the case in practice), the accuracy for

balanced lines may be satisfactory for many applications.

Based on the relationship between the magnitude of failure and repair

-166-
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k N 1 N 2 N3 m
.. 2

2 10 - - 44

2 100 - - 404

3 10 10 - 968

3 100 100 - 81,608

4 10 10 10 21,296

4 100 100 100 16,484,816

Table 6.1. The number of system states in a k-machine

transfer line with buffer storage capacities

N1 ,-.,Nk- 1
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probabilities and storage size described in section 5.1.3, the

6-transformation is introduced in section 6.3. This approximate approach

effectively lumps workpieces together, and reduces the capacity of the

storages. The dimensions of the state space are thereby reduced, while

the transformation leaves the line efficiency virtually unchanged.

An intuitive explanation of the transformation is given, followed by

some numerical examples. The transformation is taken to its limit as

6+0 in section 9.2.
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6.1 Dynamic Simulation of the System

6.1.1 State Frequency Ratios

To test the hypothesis that the solution to a three-machine line

for internal states has a product form (rather than a sum-of-products

form - see chapter 3), the state frequencies [. ] obtained by simulation

were used to calculate the following ratios:

[W(nl+n,n2,al,2,3] ] 1 (62

W[n n 21 ca ta2 c n = (6.3)
12 nln 2 

w[nl,n2 ,+n,,a 2,ca = 22 (6.3)W nl n2la1 a2'a3 ]
w[nln 20,C, 2,(a3]

[nln2,0,l2a3 ]c (6.4)

[nl,n2 ,alO,a ,] 123 (6.5)
~[nln2,51, o0,a3 2

[n!,n2,n1,G 2, 1]1nr21-t2 2 (6.6)

w[nln 2 ',1 ,2 , 2' 3

(where n. and n.+n are all internal). If there were only one term in

equation (3.13), these estimates would be very close to the true values

for X. and Y., for long enough simulation runs. 2i and ~. were calculated

for all pairs of internal states, and their averages and variances were

computed. These values for the parameters in table 6.2 appear in table

6.3. The variances were seen to decrease but did not vanish. This suggests

that Z#l in equation (3.13), i.e. that the internal state probabilities

have a sum of products, rather than a product form. Similar calculations

were subsequently performed on exact numerical results obtained by the

power method (Section 4.1). The values obtained confirmed these findings.
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pi 0.10 r 0.20

2 2

N = 10
.
....

p3 = 0.05 r = 0.15

Table 6.2. System parameters for dynamic simulation. 

7.

.
7 
0.

N~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. ;.:.
10~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Estimates of Parameters Averages Sample Variances

1t, 0.937 0.0084

f22 0.974 0.0082

2.46 0.241

-2 3.24 0.426

2.44 0.434

Table 6.3. Estimates of parameters computed by taking ratios

of state frequencies from simulation results.
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6.1.2 System Transients

In order to check the validity of approximate methods, as well as

to see how well steady-state results represent the behavior of the actual

system for finite-time runs, sample averages of production rate over

time intervals of various lengths were calculated. These are the ratios

of the number of pieces produced during a time interval to the interval

length. The cumulative average, i.e. the ratio of the total number of

pieces produced to the total time elapsed was also calculated. these

results are discussed in section 5.1.2. It is shown that while the

cumulative average approaches the steady-state value for long times, the

rate at which it approaches this value depends strongly on system

parameters.

It must be noted that the sample average production rates

calculated in this way are not uncorrelated: although intervals do not

overlap, they follow eachother immediately. More nearly independent sample

averages could be obtained by skipping alternate time intervals.

Steady-state values may also be misleading when considering the

loading and unloading of the transfer line. Assumption 2.2.1 states that

parts are always available to the first machine and storage space is

always available to the last machine in the line. Thus, the line is

assumed never to be blocked or starved. In practice, however, it is often

the case that workpieces are delivered to and finished parts are removed

from the transfer line area in batches. Thus, in actual systems, there

usually are input and output queues, i.e. external buffers, upstream and

downstream of the line. It is therefore necessary to design these buffers

and schedule deliveries to and from the line in such a way that the

probabilityof starving or blocking the line is very nearly zero.

This may be done by obtaining the distribution of up times and

down times for the transfer line as a whole. The output distribution

determinesthe probabilities of producing exactly 1,2,..,n,.. pieces

consecutively, and of not producing pieces for exactly 1,2,..,n,.. time

cycles consecutively. The input distribution determines the probabilities

of taking in exactly 1,2,..,n,.. pieces consecutively, and of not taking
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pieces in for exactly 1,2,..,n,.. time cycles consecutively. It is

important to note that these distributions are not uniquely determined

by the steady-state line production rate. For example, a line which

produces an average of 1000 pieces consecutively and is down for an

average of 500 consecutive time cycles has a steady-state efficiency of

0.667. A line which produces an average of 10 pieces consecutively and

is down for an average of 5 consecutive time cycles has the same steady-

state efficiency. Yet, in the former case, a very large external buffer

is needed to ensure that the line is almost never blocked; in the latter,

a much smaller buffer is sufficient. Furthermore, although the average

rates of flow through the first and last machines are equal (for finite

storages - see section 5.1.1), the input and output distributions are

generally not the same.

A method for obtaining these distributions analytically is

described in section 6.2. These distributions are used in an approximate

approach for finding the production rates of long transfer lines.
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6.2 An Aggregate Method for Obtaining the Production

Rate of Multistage Transfer Lines

6.2.1 Quasi-Geometric Input/Output Distributions of

a Two-Machine Line

Sevast'yanov[1962] describes an approximate procedure for solving

problems involving multistage transfer lines where storage level is

modeled as a continuous variable. He bases his method on the observation

that as articles move in the downstream direction, there is an equal but

reverse flow of "anti-articles", or holes, in the upstream direction. It

may be noted that Gordon and Newell[1967b] independently introduce the

concept of duality on the basis of the same observation in their work on

closed cyclic queueing systems. Basing himself of Sevast'yanov's work,

Buzacott[1967b] describes a method for approximating a three-machine

line by a two-machine line: this can be done by dividing the line into

two stages, either at the first storage, or at the second one. Buzacott

states that this method can be applied if the two-stage line up-time

distribution is not far from geometric and the stage repair distributions

are identical.

In order to verify the applicability of the first of these conditions,

the simulation program was used as described in section 6.1.2. The program

was designed to record the numbers of times that in a run of given length,

a two-machine line produced parts for exactly 1,2,..,n,.. consecutive

cycles, as well as the numbers of times that it failed to produce parts

for exactly 1,2,..,n,.. consecutive cycles. These quantities are

normalized to give the frequencies of producing (or failing to produce)

parts for 1,2,..,n,.. consecutive cycles, given that it produced (or

failed to produce) for at least one cycle. Results are plotted in figures

6.1-6.3 for a given two-machine line (See table 6.4) and three different

storage capacities. The logarithms of the frequencies of producing

exactly n parts given that at least one part has been produced are plotted

against n, the number of parts produced. Since the down-times are not
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P1 = 0.10 r1 = 0.20

P2 = 0.05 r = 0.20

Case 1: N = 4

Case 2: N = 8

Case 3: N = 16

Table 6.4. System parameters for output

distributions of a two-machine

line.
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dependent on storage capacities in a two-machine line (down times depend

on the time it takes to repair the last machine or to render the storage

non-empty (i.e. to repair the first machine)), the down-time frequency

distribution is the same for all three cases and appears in figure 6.4.

The logarithms of the distributions are very close to straight

lines. The slopes of these lines depend on the storage capacity in a

way which will be discussed below. This implies that the frequency

distributions are very close to geometric. Since finite time simulations

by their nature can not give exact steady-state results, it is necessary

to derive the probability distributions analogous to these frequency

distributions analytically. Output processes of single stages and

transfer lines have been studied by various authors (Burke[1956,1972],

Clnlar and Disney[1967], Chang[19631, Wyner[19741, Aleksandrov[1968]).

These studies include stages with exponential service times, Poisson

arrivals, and overflow processes. However, the output of a two-stage line

with deterministic service times and a finite interstage buffer (as well

as an unlimited supply of workpieces upstream) has not been investigated.

The following events are defined:

o - Event that the system fails to produce a (6.7)
piece for exactly n time cycles.

W = Event that the system produces pieces for (6.8)
n exactly n time cycles.

= U
n=l n (6.9)

= Event that the system has failed to produce
a piece for at least one cycle.

.o

_ A U fn
n=l

(6.10)
= Event that the system has produced at

least one piece.

Corresponding to the frequencies described in section 6.1.2, the following

conditional probabilities are now defined:

Ap[nI ~ P[J? ni] (6.11)
u_ in7 n
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Pd[n] A P[ nl2 ] (6.12)

By equations (6.9) and (6.10),

1;,n C if (6.13)

0n C 2 (6.14)

As a result,

P[°'n,)]. = P['n] (6.15)

p[ ,In ] = P[ n] (6.16)

Using equations (6.15) and (6.16) and Bayes' theorem, it follows from

(6.11) and (6.12) that

p [n] = p[9j I/ p [-] (6.17)

Pd[n] = P[nJ / P[ ] .(6.18)

To compute the unconditional probabilities in equations (6.17) and (6.18),

the analytical expressions for the steady-state probabilities of a two-

machine line (See section 3.2.1) are used.

In order to produce exactly n pieces, the system must start out being

down, i.e. not producing parts. The system starts producing, remains up for

exactly n cycles, and then stops again. This happens either because the

last machine fails or because the storage empties. Similarly, in order to

fail to produce pieces for exactly n cycles, the system must start out

having produced at least one piece. It then stops producing, remains

down for exactly n cycles, and starts producing again. This happens either

because the last machine is repaired or because the storage becomes

non-empty.

The output process of a two-machine line is analyzed below. The state

transitions that result in the production. of a finished piece are studied,
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and it is shown that by modifying slightly theMarkov chain, it is

possible to subdivide all recurre t states into two classes. This

information is then used in computing the probabilities of equations

(6.17) and (6.18).

A simple two-machine line with storage capacity N=4 is used for

illustration. The state transition diagram of the system as described

in section 2.3 is given in figure 6.5 (only recurrent states are included).

The heavy lines represent those transitions during which a part is

produced by the system. It is seen that except for two states, all

states are reached by transitions of only one kind, i.e. either those

that result in the production of a part, or those that do not (See also

section 5.1.1). All states in which the last machine is operational

are reached through transitions that result in the production of a part,

with the exception of the transitions (0,0,1)-(0,0,1) and (0,0,l)+-(l,1,l).

All other transitions to (0,0,1) and (1,1,1) result in the production of

a part.

It is possible to modify the Markov chain by splitting states, so

that the states are subdivided into two sets. These sets are defined as

follows:

"1 = {s s is reached by a transition that produces a part} (6.19)

Q0 = {sIs is reached by a transition that (6.20)
does not produce a piece}

In the discussion that follows, the system is referred to as being in an

up state at time t if s(t)E• 1, where s(t) is the state of the system.

Conversely, the system is in a down state at time t if s(t) EQ

As shown in figure 6.6, state (0,0,1) is split into states (0,0,1)'

and (0,0,1)". State (0,0,1)' is reached from (1,0,0), (1,0,1), and (1,1,1),

through transitions that always result in a part. Thus,

(0,0,1)' £ Ql1 (6.21)
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Figure 6.6. Splitting states (0,0,1) and (1,1,1).
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On the other hand, state (0,0,1)" is only reached from (0,0,1)' or from

itself, through transitions which do not result in parts, so that

(0,0,1)" s Q0 (6.22)

Physically, (0,0,1)' is the first occupancy of state (0,0,1). Since it

has no self-loops, it leads either to (0,0,1)" (all subsequent

occupancies of (0,0,1)) or to outside of state (0,0,1).

A similar argument is made for state (1,1,1), which is split

into two states, (1,1,1)' and (1,1,1)". Here again, (1,1,1)' is the

first occupancy of (1,1,1) coming from (0,0,1). Since it is necessary

for the storage to become nonempty before a part can be produced, no

pieces are produced when (1,1,1)' is reached. Thus,

(1,1,1)' C Q0 (6.23)

(1,1, 1)" Q1 (6.24)

The states of the Markov chain are thus subdivided into two sets,

as shown in equations (6.19) and (6.20). The steady-state probability

vector of the modified system is denoted by p. The transition matrix

of the modified system is denoted by T.

The steady-state transition equations involving the split states

are the following:

p[(O,0,l)'] = (1-rl)r 2 p[1,0,01 + (1-rl) (l-P2) p[1,0,l]

+ (i-P2) p [(1,1,1)'] + P (1-P2) p[(1,1,1)"]

(6.25)

p[(0,0,1)"] = (l-rL) p[(0,0,1)'] + (l-rl) p[(0,0,1)"] (6.26)

p[(l,l,l)'] = rl p[(0,0,1)'] + r1 p[(0,0,1)"] (6.27)

p[(l,l,1)"] = rl(1-p2) p[1,0,1] + rlr 2 p[1,0,0]

+ (1-p !) (-p2) P[(1,1,1)'1 + (1-Pt)(1-p2) p[(1,1,1)

(6.28)
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The transition probabilities multiplying the state probabilities on the

right hand side of equations (6.25)-(6.28) comprise the rows corresponding

to the split states in T.

These equations are simplified by noting that since states (0,0,1)

and (1,1,1) are split to give (0,0,1)', (0,0,1)", (1,1,1)' (111,1)"

it follows that

p[10,0,1, = p(0,1)] p[(0,0,1)"] (6.29)

p[1,1,1] = p[(1,1,1)'] + p[(1,1,1)"] (6.30)

Furthermore, state (0,0,1) can only be reached through (0,0,1)' and can

only be left through (1,1,1)'; since these states have no self-loops

and (1,1,1)' can be reached from no other state, it follows that

p1(0,0,1)'] = p[(1,1,1)'] (6.31)

This equation directly follows from (6.26) and (6.27). Once equation

(6.30) and the results of section 3.2.1 are used to solve (6.28) for

p[(0,0,1)'], the probabilities of all the other split states are

easily computed. The expressions for these state probabilities are given

in table 6.5.

Thus, the vector p is known, and may be used to obtain the output

up- and down-time distributions, as described below. For the sake of

illustration, only the up-time probability distribution is derived. The

down-time distribution is obtained analogously.

The vector q(n) is defined as the probability distribution given

that the system was running for a long time prior to t=0, was in a down

state at t=O, and has been in up states for t=l,..,n. At n=O, q(O) is

therefore the steady-state conditional probability vector given that the

system is in a down state:

0 if i0 1

q(0) (6.32)

i I p/1 if i£
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Table 6.5. Steady-state probabilities of split states

r1 + r 2 - rr 2 - P2rl
p[(0,0,1)'] = CX 

P2

p= (l-r) r1 + r 2 - r1 r2 - P2rl
p[(0,0,1)"] = CX

rl1~ P2

r +r - rr - Pr
p1[ (1,1,1) '] = C 1 2 1 2 2 r1

P2

r1 + r2 - rr 2 - P2rl (1 p(1 p2) + P2rl
p[(1,1,1)"] = CX

P 1
+ P2 - P1 P2 - P2rl P2

t ~ ~ ~ ~ ~ ~ ~ ~ ~~ 
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where i denotes the index of the state in the modified system and

a = L. P. (6.33)
intP

The matrix Q is defined to be a stochastic matrix of the same

dimensions as T. The elements of the matrix are given by

p[s(t+l)=jls(t)=i] / ®i if jsC (.4
A 11(6.34)qij -

0( O if jQso

where

i. E C p[s(t+l)=kl s(t)=i (6.35)
k£QRkc21

Then, the vector q(.) and the matrix Q are related by

q(n+l) = Q q(n) (6.36)

The probability p[]) is the probability of producing at least one

piece (i.e. that the system was in a down state at t=O, and in an up state

at t=l, regardless of the states s(t) for t>l). Thus, it is given by

P[~] = p[s(1)eQ1 lls(O)E 0 (6.37)

=p-sl)=izs(O)PQ03 (6.38)

Defining the vector u such that

' 1 if iCQ

u. = (6.39)
eq1 ua n0 if isQ0

equation (6.38) is rewritten as



T %
p[ 3] = u T q(0) (6.40)

In order to produce exactly one piece, the system must next enter

a down state:

PC[1 ] = p[s(2)SO, s(1)Q0ls(O)E2 ] (6.41)

Using Bayes' theorem, equation (6.41) is rewritten as

p[1 ] = p[s(2) j0Is(l)CQls(0)EQS0]· P[s(1)EQlls(0)q0]'-

P[s(O)EO 1 (6.42)

The last factor in (6.42) is given by a in equation (6.33), and the

second by p[OW] in equaticns (6.37) and (6.40). The first factor is the

sum of the probabilities of down states at t=2. Defining the vector d

such that

( 0 if i£2
d. _ 1 (6.43)

01 if i£Q

the first factor in (6.42) is given by

p[s(2)Q s(l)SQl, Is(0)2 o] = dT q(1) (6.44)

Thus, (6.42) becomes

p[W I d T a(l)u T c (0) (6.45)

and from (6.17), it follows that

p u[l = dT T q(1) uT % q(./ T q() (6.46)

= dT - C l) · (6.47)
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Equation (6.42) is generalized to obtain the probability of

producing exactly n pieces:

p[Qn] = p[s(n+l)Qol0s(n)E•ql,..,s(l)Csl,s(0)E0] ...

p[s(l)sE 1Rs(0)ER] . p[s(O)ERs] (6.48)

Combining (6.48) with equations (6.17) and (6.37), it follows that

pu[n = d T q(n) u T q(n-l)...u T q(l).O (6.49)

Note that q(O) is given by equation (6.32).

Equation (6.49) is used to obtain the up-time distribution p [n] of

the output of a two-machine transfer line. An analogous method may be

used to obtain the down-time distribution, Pd[n].

Some numerical results for p [n] for the system parameters in table

6.4 are given in table 6.6. The simulation values appear only for

comparison. The use of these distributions is discussed in section 6.2.2.
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p [n]

n analytical simulation

1 0.121909 0.121479

2 0.106641 0.105821

3 0.092271 0.092769

Table 6.6. Probability of producing exactly n pieces

given that the system has produced at least

one piece, for a two-machine line.
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6.2.2 Single Machine Equivalence of Two-Machine Line

It follows from assumption 2.2.3 that a single machine has

geometric up- and down-time distributions. For a single machine, the

system state is given only by a. Then,

n-1
Pu[n] = p[a=0] r (l-p) p (6.50)

P u~n] p[5=0] r

n-i
= (l-p) p (6.51)

n-1

P (n]~nl~ = pla=LLE~~~~(6.52) 
Pd[n ] p[ot=lJ] p

- (l-r) n - r (6.53)

Taking the logarithm of these distributions gives

in pu[n] = (n-1) ln(l-p) + in p (6.54)

In Pd[n] = (n-l) ln(l-r) + In r (6.55)

These functions are linear in n. Thus, graphs of the logarithms of the up-

and down-time distributions against up and down times respectively are

straight lines with slopes ln(l-p) and ln(l-r) respectively. It is shown

in section 6.2.1 that the corresponding graphs for two-machine transfer

lines are almost straight lines. The fact that they are not exactly

straight may be explained by the following arguments:

A single machine has no "memory". In other words, the past history

of the system does not affect its transition probabilities. In a two-

machine transfer line, the storage acts as a memory. For example, if

the last machine fails, the storage tends to fill up; if the machine is

later repaired but after some time the first machine breaks down, it

takes a longer period of time for the line to stop producing pieces

because the storage is full, due to the previous failure. On the other
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hand, if the first machine fails twice consecutively, the storage has

few parts in it and it takes a shorter time for the line to stop

producing pieces. Thus, the storage provides information on the past

history of the system, and this affects the up- and down- time

distributions.

The transfer line does not produce finished parts if the last

machine is down or if the last storage is empty (See section 5.1.1).

If the storage were never empty, the two machines would be effectively

decoupled, in the sense that the output behavior of the line would

only depend on the status of the last machine. In that case, the

distributions would be exactly geometric and identical to those of the

second machine. Similarly, if the last machine never failed, it would

have no effect on the output behavior of the system: since service

times are deterministic, it would merely introduce a delay of one

cycle, but would not affect the actual distributions of up and down

times. In that case, the distributions would be determined by the first

machine only, and would be exactly geometric.

Thus, the deviation of the distributions of a two-machine line

from exactly geometric are due to the coupling effects of the two

machines. These effects are insignificant when the machines have very

different efficiencies. From the discussion in section 5.2, it follows

that the probability that the storage is empty decreases as the first

machine is made more efficient. At the limit (el=1.0), the probability

that the storage is empty is zero. The up- and down-time distributions

are then only determined by the second machine and are exactly geometric.

Similarly, the probability that the second machine is down

decreases as the second machine is made more efficient. At the limit

(e2=1.0), this probability is zero. The up- and down-time distributions

are then only determined by the first machine and are exactly geometric.

A similar argument can be made in the case where the efficiency in

isolation of one of the machines approaches zero. As the efficiency of

one machine is decreased, the forced-down probability of the other

machine increases (See section 5.2). From assumption 2.2.3, machines cannot
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fail when forced down. Thus, the time a machine spends under repair

becomes insignificant compared to total time as the efficiency of the

other machine is decreased. Consequently, the up- and down-time

distributions of the line approach those of the least efficient machine

as its efficiency approaches zero.

In general, the up- and down-time distributions of a two-machine

line is closest to exactly geometric when one machine is strongly

limiting, i.e. when the line is not well balanced. In such cases, the

two-machine line may be approximately represented by a single machine.

The failure and repair probabilities of a single machine may be obtained

from the slopes of the graphs of the logarithms of up- and down-time

distributions, as seen in equations (6.54) and (6.55). Analogously, the

failure and repair probabilities of the single machine that is approximately

equivalent to a two-machine line are obtained from the slopes of the

straight lines which best fit the logarithm of the up- and down-time

distributions of the line. It is important to note that the two-machine

line and the approximately equivalent single machine must have equal

efficiencies. Thus, it may be necessary to adjust the p and r values

obtained from the slopes of the distributions in order to obtain the

efficiency of the two-machine line.

The use of this procedure in reducing long transfer lines to

approximately equivalent two-machine lines that can be solved by the

closed-form expressions given in chapter 3 is discussed in section 6.2.3.



-195-

6.2.3 Solution of a k-Machine Line by the

Aggregate Method

It is shown in section 6.2.2 that a two-machine line in isolation

may be approximately represented by a single machine. This suggests a

method for approximately computing the production rate of a k-machine

line by successively lumping together two-machine segments of the line.

This procedure is illustrated by figure 6.7.

If the limiting machine is the second one in the two-machine

segment, appending more machines downstream of it can only serve to

make its utilization even lower. In that case, the output distributions

are still close to geometric.

Often in practice, however, downstream machines are faster or

more efficient than upstream ones (See section 7.1.4). This is done

in order to reduce the probability of blocking upstream machines and to

avoid having to use large storages (See section 5.3). In that case, it

is possible to use input up- and down-time distributions, and start

lumping machines from the end of the line towards the beginning

For three-machine lines, the approximation is often accurate

within one or two percent. As stated before, it is worst when the line

is balanced, since the coupling effects of the machines in the line are

strongest then. When one machine strongly acts as a bottleneck, the

approximation is much better.
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a m alz
approximately

equivalent
Machine

Figure 6.7. Reduction of a three-machine line to

an approximately equivalent two-machine

line by the aggregate method.
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6.3 The 6-Transformation

It is shown in section 5.1.3 that there is a relationship between

the magnitudes (i.e. not the ratios between them) of failure and repair

probabilities and the buffer capacities required to achieve a given

efficiency.

In the example given in section 5.1.3, two two-machine lines are

considered. These have p =ri=0.1, i=1,2, and pi'=r.'=0.001, i=1,2,

respectively (The primes are only for clarity and are intended to serve

to differentiate the two lines. This also applies to E(.) and E'(-)).

Both lines are shown to have the same limiting efficiencies, E(0)=E'(0)=

0.333 and E(-)=E' ()=0.500. Yet, in the former line, a buffer of capacity

4 gives an efficiency of E(4)=0.35938, while in the latter, the same

buffer capacity-yields only E'(4)=0.33361. Further investigation reveals

that E'(400)=0.36834, a value which is close to E(4). It is seen that

going from the former to the latter line, the failure and repair
-2

probabilities are multiplied by 10 while the storage capacity is

divided by the same number. The resulting efficiencies are close to

eachother. The following proposition is now introduced:

Proposition 6.1. The 6-transformation: letting

Pi Pi 6 (6.56)

ri = ri 6 (6.57)

N = N / 6 (6.58)

For a wide range of 6, the efficiency of the original system and that

of the transformed system are nearly equal.

It is observed that the transformed system with the parameters on

the left hand side of equations (6.56)-(6.58) is identical with the

original system with the parameters on the right hand side of these

equations, except that the time cycles are now of length 6. Thus, the

fact that the transformation leaves the line efficiency almost
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unchanged can be explained intuitively by the argument illustrated by

figure 6.8.

At the top of the diagram, a workpiece is shaved by the tool in a

machine. The cycle length is 1, and the probability that a machine fails

or is repaired within a time cycle are p. and r.. The storage size is N;

thus, when full, it takes N cycles to empty. At the center of the

diagram, the workpiece is sliced into 1/6 identical parts. However,

the slices are held together 1/6 at a time. Thus, the sliced parts

are treated exactly as unsliced, i.e. slicing has no consequence. The

probability that the machine fails or is repaired within the time it

takes to process any slice are pi6 and r.6, respectively. Since the

slices are held together, if a machine fails while processing any slice

within a set, the entire set is moved back into the upstream storage

and must be reprocessed (This is a mathematical abstraction; in a real

system, a machined piece need not be machined again). In the third

case, the slices are allowed to go through the system independently.

The probabilities of failure and repair during each cycle are pi6 and r.6,

respectively. Because the slices are independent of eachother, if a

machine fails while processing a slice, only that part is moved back

into the upstream storage. Thus, there is no loss of time due to

reprocessing.

A numerical example is illustrated by figure 6.9. The system is a

two-machine line with parameters given by table 6.7. The value of 6 is

varied from 1.0 to 0.01. The efficiency of the original system (6=1.0) is

E(4)=0.65764; that of the transformed system (6=0.01) is E'(400)=0.66892.

As 6 is changed from 1.0 to 0.01, the line efficiency remains within 0.011.

The line efficiency is plotted against 6 in figure 6.9. It is noted that

as 6+0, the curve in figure 6.9 approaches a straight line. This line

can be used to make the 6-transformation even more accurate.

It must be noted that E(0) and E(X) are unchanged by the transformation,

since they only depend on the ratios between Pi and r., not on their

magnitudes (See section 5.1.3). The difference between E(0O) and E(O) is

shown in section 5.1.3 to determine how much can be gained by providing

the system with storage capacity. This difference is also an indicator of
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Figure 6.8. Intuitive explanation of the 6-transformation.
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P1 = 0.05 r 0.20

N = 4

p = 0.05 r= 0.15
2 System parameters for -transformation.

Table 6.7. System parameters for 6-transformation.
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how accurate an approximation is obtained by the 6-transformation.

Some numerical results appear in table 6.8. In case 1, machine is much

less efficient than machine 1. Thus, the difference between the

limiting efficiencies is E(-)-E(0)=0.00219; the line efficiency stays
-5constant through the transformation to within 10 in this case.

In case 2, neither machine is extremely limiting, and E(-)-E(0)=0.12122.
-2The line efficiency stays constant only to within 10 in this case.

In both cases, however, the approximation is good enough to be useful

in many engineering applications.

The major consequence of the 6-transformation technique is that

systems with large storages can be reduced to approximately equivalent

systems with smaller storages. The transformation is thus equivalent

to lumping workpieces together, thereby reducing the capacities of the

storages. Smaller storages mean reduced state space dimensions, and

this significantly decreases the computational burden. This is

illustrated by figure 6.10. The solid curve is the efficiency versus

storage capacity graph for a small system, i.e. a system whose

efficiency rises sharply with small storage capacities. The dotted

curve is the approximate efficiency of the original system, which

has much larger storages and whose efficiency rises more smoothly

with storage size. Since the efficiency of the smaller system at

any storage capacity N is approximately equal to that of the larger

system at storage capacity N/6, where 6 is the ratio of the failure and

repair rates of the two systems, the efficiency of the large system

may be approximated by that of the smaller system with considerable

savings in computation.

As pointed out in section 4.1, the 8-transformation method is also

useful in estimating the state probabilities of a system with large

storages by solving the problem for a system with smaller storages. This

is related to the order of magnitude considerations mentioned in section

4.1 (See also Gershwin and Schick[19783). To illustrate this argument, the

two-machine line probability expressions given in chapter 3 are analyzed.

The orders of magnitude of X. and Y. in equation (3.25) are related

to the ratios between pi and r. and the relative efficiencies in isolation

:1. 1~~~~~~~~__



-203-

-4

,-4

0a,OU

0a)U -
4

C 0o

_ \ I Wa) 
0 

I

o we 0:

a tugloilll a) E0 0o 4.,

0 0

0caz!c a)

.,-

o

r.



-204-

P1 rl P2 r2 N 6 E(N) Case

.100 .700 .700 .100 4 1 0.12499

.020 .140 .140 .020 20 .2 0.12498

.004 .028 .028 .004 100 .04 0.12498

.001 .007 .007 .001 400 .01 0.12498

.100 .200 .050 .150 4 1 0.57515

.020 .040 .010 .030 20 .2 0.58475

.004 .008 .002 .006 100 .04 0.58629

.001 .002 .0005 .0015 400 .01 0.58663

Table 6.8. System parameters and line efficiencies for

various values of 6.
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of the two machines. It can be shown that these orders of magnitude are

not affected by the 6-transformation (See section 9.2). The numbers of

states for a two-machine system is linear with storage capacity (See

equation (2.22)). Thus, if the orders of magnitude of i[.] in equation

(3.33) do not change for most states, the value of the normalizing

constant C can be expected to change inversely with the number of

states, and thus, with storage size. On the other hand, some of the

boundary probabilities have different orders of magnitude from that of

internal states. These are p[0,0,1], p[1,1,1], p[N-l,l,1], and p[N,1,0].

It is seen in table 3.1 that the orders of magnitude of the former two

probabilities have a ratio of 1/P 2 with the order of magnitude of

internal probabilities; the orders of magnitude of the latter two

probabilities have a ratio of 1/pl with that of the internal probabilities.

From equations (6.56) and (6.57), it follows that these ratios should

change when the system undergoes a 6-transformation. This change is

inversely proportional to Pi, and therefore to 6. On the other hand, C

is inversely proportional to N and therefore proportional to 6. Thus,

the two effects cancel eachother out in these boundary state probabilities.

In consequence, it can be expected that the four boundary state

probabilities given above are approximately unchanged by the transformation,

while all other probabilities change proportionally to 6. The numerical

example given in table 6.9 confirms this proposition. The order of

magnitude considerations are discussed with respect to the three machine

case in Gershwin and Schick[1978].

The major limitation on the 6-transformation applies to the range

of 6. Since Pi and ri are probabilities, it is necessary that

0 L p i Lr 1 (6.59)

Given Pi and ri., only a limited range of 6 satisfies (6.59). Furthermore,

it is necessary that N, the storage capacity of the transformed system,

be an integer. Equation (6.58) implies that not all 6 satisfy this

condition. Consequently, it may not always be possible to reduce a system
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Case 1: 6=0.5 Case 2: 6=1.0

l=0. 001 rl=0. 002 P=0.002 r =0.004

P2=0.0005 r2 =0. 002 p =0.001 r =0. 0042 2 2 2

N = 400 N = 200

P[0,0,1] = 0.234439 0.234543

p[1,1,1] = 0.312898 0.313351

p[399,1,1] = 0.108616 p[199,1,1] = 0.108966

p[400,1,0] = 0.081327 p[2 0 0,1,0] =- .061452

p[10 0,0,0] = 0.535855X10 4 0.980038x10 4

-3 -3
p[100,0,1] = 0.142823X10 0.261082x10

-3 -3
p[100,1,0] = 0.142954x10 0.261562x10

-3 -3
p[100,1,1] = 0.381021x10 0.696800xl10

Table 6.9. System parameters and some boundary and internal state

probabilities for 6-transformation (Note that the ratio

between the left hand side and right hand side sets of

probabilities is 1 in the upper (boundary) sets and 6

in the lower (internal) sets).
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with large storage capacities to a smaller problem which is efficiently

solvable. This is especially true if the system with large storage has a

large failure or repair probability or if, in case there is more than

one storage, the storage capacities differ widely. Work should be

directed towards investigating whether or not it is possible to extend

the transformation so that it may be applied to different segments of a

transfer line with different values of 6. This approach would also be

useful in analyzing systems where parts are cut or assembled by stages

in the line so that each machine does not process the same average

number of parts (See section 7.1.1).

The limit of this transformation as 6-0 is a continuous system.

It is shown in chapter 9 that the limiting system can be analyzed by

differential equations in the two-machine case (the three-machine or

general k-machine cases are not yet solved). This renders the analysis

of the system considerably simpler.



7. AN APPLICATION OF THE MODEL: A PAPER FINISHING LINE

Although an effort was made to conform as much as possible to

actual systems by choosing the modeling assumptions realistically, the

transfer line model presented here remains an idealized abstraction, a

mathematical tool. The following three chapters are concerned with

applications of the model, discussions of its limitations and

shortcomings, and investigations of possible changes and extensions to

adapt the model to real situations.

One existing system that may lend itself to the transfer line model

is a roll products paper finishing line: here, paper from large rolls is

winded into cylinders of smaller diameter, which are then cut into user-

size rolls. These are then packaged, several rolls at a time. The system

can be thought of as a three-machine, two-storage transfer line.

Yet, it is shown in section 7.1 that the system does not satisfy

many of the modeling assumptions described in section 2.2. The paper

finishing line is used in the present chapter to illustrate possible

discrepencies between actual systems and the transfer line model and to

discuss ways of relaxing the assumptions that do not hold. Attempts at

modeling the system and a discussion of the models are presented in

section 7.2.
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7.1 The Paper Finishing Line

The paper finishing line considered here consists of three stages

separated by two storage elements. These components are the following:

(i) The Continuous Winder

(ii) The First-in-last-out Buffer Storage

(iii) The Log Saw

(iv) The Conveyor Belt

(v) The Wrapper

The system is sketched in figure 7.1. These components differ from

the idealized machines and storages in the transfer line model in a

number of ways. In some instances, the effects of these differences may

be negligible; in some, major model changes may be necessary to account for

these discrepencies. Still others may necessitate an altogether different

approach.

The main discrepencies between the model and the actual system, as

well as possible approximations, are briefly discussed in sections

7.1.1 to 7.1.6.
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7.1.1 The Workpieces

The continuous winder takes in a large roll of paper, known as a

parent roll, which is approximately 10 ft. in diameter and 10 ft. long.

It winds up the paper onto cardboard cores of the same length. Each of

these cores takes the length of paper that makes the output of the

continuous winder to have the diameter of commercially available rolls.

These are termed logs. The log saw takes in these logs two at a time,

and saws them each into about twenty short cylinders, the size of

user rolls. Because the log saw takes in two logs at a time, the buffer

storage between the first two stages stores the logs two at a time.

Its capacity is typically about sixty pairs of logs. After coming out

of the log saw, the rolls travel on two conveyor belts until they

reach the wrapper. The conveyor belts each have a capacity of about

forty rolls. The final stage wraps the rolls in packages of two or

four.

The simple one-piece-in, one-piece-out machine model introduced

in section 2.1.1 is thus not applicable to this considerably more

complex system. One possible approximation is to take the smallest

unit (the roll or pair of rolls) as the workpiece in the transfer line

model. Everything else is then computed in terms of this smallest unit.

Thus, the continuous winder, for example, processes twenty rolls, rather

than a log; the log saw processes forty rolls, rather than two logs; and

the wrapper processes two or four rolls, rather than a package. A variant

of the 5-transformation techniques (Section 6.3) may be used to adapt this

system to the transfer line model. The duration of a cycle in which the

log saw processes two logs is equal to that of forty cycles in which

machine 2 processes a unit workpiece. Thus, the probability of failure or

repair during a single roll cycle is equal to 1/40 of the respective

probabilities during a single actual machining cycle in which the log saw

processes two logs. This analysis can be extended to the other stages of

the system as well.



-212-

It is important to note that this is only an approximation. As

pointed out in section 6.3, there is an effective change in the

flexibility of the system when the 6-transformation is applied. This

is due to the fact that when a failure occurs, there is a loss of

time in the lumped-workpieces case that does not take place in the

case where pieces travel singly through the system. Thus, the

efficiency of the transformed system is not exactly the same as that

of the original system.
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7.1.2 Input to the Line and System Transients

The input to the first stage (the continuous winder) is a large roll

of paper (the parent roll) which takes about one hour to unwind.

The fact that the input to the transfer line is thus in some sense ·

continuous dows not matter, since the machine uses up discrete segments

of the paper. However, the assumption that workpieces are always present

at the first stage (Section 2.2.1) is not always satisfied: the continuous

winder is starved when the parent roll is being loaded.

Since Markov processes are, by definition, memoryless (Section 2.3.1),

it is not possible to take scheduled down times and other deterministic

events into consideration with the present model. However, if the lengths

of time required to load and unwind a parent roll can deviate signifi-

cantly from the mean value, it may be possible to model this phenomenon

as a stochastic event, by lumping it together with other causes of

failure and repair times. The time to unwind a parent roll may be-

assumed to be random if rolls do not contain the same length of paper

or if this length is variable because of defects in the paper. Since

loading a roll requires human intervention, the time needed to load a

new roll may be assumed to be random if workmen are not always available

at the transfer line. In this case, termination of the paper on a parent

roll and loading a new roll can be modeled as random events and be

included in the calculation of the failure and repair probabilities

of the continuous winder along with other causes of breakdown.

A consequence of the parent roll loading time is that the storages

often empty while the roll is being loaded, so that the line is

restarted every time. This introduces important transients which Gordon-

Clark[1977] estimates can significantly influence the production rate of

the system for as long as about a third of the total time the roll takes

to unwind.

This is a more important difficulty than the fact that the continuous

winder is occasionally starved. If no real transients were introduced by
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the loading, it would have been possible to compute the actual production

rate of the line from knowledge of the ideal production rate (i.e.,

assumption 2.3.1 satisfied) and the average loading time of a parent

roll. However, the duration of loading time is such that the line is

restarted with empty storages every time the roll ends. Thus, the

probabilistic model of the line never achieves steady-state. As

suggested in section 5.1.2, transients may have a very important effect

on the efficiency of the transfer line. When the steady-state assumption

(Section 2.2.6) does not hold, the production rate computed by the

methods outlined here may not be representative of the actual behavior

of the system.

It is possible to deal with system transients through Markov

techniques, and in particular, by means of the iterative multiplication

method (Section 4.1). Since the initial condition is known (at t=O,

s(0)=(0,0,1,l,l)), the initial probability vector p(O) could be defined

to have a 1-entry corresponding to that initial state. The transition

matrix can then be iteratively multiplied and the probability of

producing a part at each time cycle (i.e. at each multiplication) be

computed by summing up the probabilities of the appropriate states

(Section 5.1.1). Considering the fact that a cycle has a very short

duration in this system, however, the iteration would have to be performed

a very large number of times and it is therefore doubtful that this

approach would be an efficienct way of comnputing the transient production

rate.
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7.1.3 Rejects and Loss' of Defective Pieces

When the continuous winder is turned on, it takes a certain length

of time to reach the operating speed; a number of logs manufactured

during the period of acceleration are defective and must be discarded.

Similarly, the log saw may be preprogrammed to reject the rolls at

certain positions in the logs because the parent roll may be known to

be partly defective.

Both of these events have deterministic results: given the rate of

failure of the continuous winder, it is possible to estimate the

percentage of production lost in the acceleration period. Similarly,

since the log saw is preprogrammed to reject a given quantity of rolls,

this loss too is predictable. However, these events have an effect on the

behavior of the system because they affect the probabilities of storages

emptying out and starving downstream machines. Thus, the loss in

production is more than the mere fraction of rejects out of the total.

The assumption that parts are not rejected or destroyed at any

point in the system (Section 2.2.4) is thus not satisfied. As a result,

the expected flow rates through all the machines are not equal. This

may or may not be neglected, depending on the percentage of rejects in

the total production.

The difficulty may be overcome by extending the model. Non-predictable

rejections (e.g. at an inspection station) may be taken into account by

defining new transitions with positive probabilities, in which storage

levels go down (or fail to rise) even though the appropriate machines

are uD and processing workpieces. Predictable losses (e.g. the logs

lost while the continuous winder is accelerating) may be accounted for

by computing the average down-times of machines so as to include the

times when parts are processed but rejected, or by defining new system

states (e.g. acceleration states).

Some of the methods developed in this study may be extended to

obtain the performance results of such a model.
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7.1.4 Machining Times

In order to reduce the probability of filling up storages and

blocking the machines, particularly as large storages can be expensive,

the relative speeds of the machines are designed to increase in the

downstream direction. Thus, the relative speed of machine i+l is

greater than that of machine i. This violates assumption 2.2.2, which

states that all machines run at equal rates.

It is sometimes possible to approximately compensate for this by

adjusting the failure probabilities so that the value of the efficiency

of machine i in the model is equal to the value of the production rate

of the actual machine in the system. This is done as follows: the

production rate in isolation of a machine which operates at the

deterministic speed of .i and has failure and repair probabilities

Pi and ri is given by

Production rate = C i (7.1)

r- + p

This is the product of the speed of the machine and its efficiency

in isolation (See section 5.1.1). For a certain range of Si, it may

be possible to readjust the failure probabilities Pi so that a common

time basis is taken: the slower machines appear to operate at the

same speed as faster machines, but they are less efficient.

It is important to note that this approach does not give exact

results. The production rate of a line with given storages depends

not only on the efficiencies of individual machines, but also on the

magnitudes of Pi and r. (See section 5.1.3). Thus, adjusting these

probabilities while keeping the production rates in isolation of

individual machines constant may introduce significant errors.

The fact that machining times are not only different, but also can

be adjustable, gives rise to an optimal control problem which will only

be touched upon here: the problem of controlling storage levels.

The continuous winder is sometimes operated below its maximum
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speed for two reasons (Gordon-Clark[1977]): the limitation imposed upon

it by the speed of the next downstream machine (the log saw), and the

assumption that higher speed causes a higher failure rate, which is

undesirable since the continuous winder is difficult to restart. Tests

have indicated, however, that in some cases the continuous winder can

be operated at 20% faster than its present speed (though the failure

rate is likely to increase). Furthermore, it has been acertained that

the continuous winder can also be operated as slowly as 25% of its

present speed.

In addition, it is known that the crucial part of the line is the

first storage and its adjacent machines, since the wrapper fails

considerably less often (See sections 5.1.3, 5.2). Thus, controlling

the speed of the continuous winder could significantly improve the

production rate of the system.

Such real time control raises a number of interesting questions.

These include:

(i) When the log saw (or the wrapper) is down and/or the level of

the storage is high, would decreasing the speed of the continuous

winder be profitable? Buzacott[19691 states that it can be shown by

using linear programming that the optimal policy for operating machines

is never to slow them down. However, restarting a forced down

continuous winder requires operator action and can result in the loss

of several defective logs. Thus, it may be profitable to slow the

continuous winder down so as to decrease the probability that it gets

blocked. If so, what storage level should be considered high? How

must all speeds of the continuous winder be computed to give optimal

yield?

(ii) When the parent roll is close to exhausted, would increasing the

speed of the continuous winder in order to fill up the storage improve

the system production rate? This increase would result in providing the

log saw with workpieces to process at least during part of the time in

which a new parent roll is loaded. Considering that higher speed is

likely to mean a higher failure rate, how much faster should it run? If

a failure does occur, when is it more profitable to discard the almost
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empty parent roll and load a new one?

(iii) While the system operates normally, is it profitable to control

the speed of the continuous winder in order to maintain a certain optimal

minimum level in the storage? (From Buzacott[1969], decreasing the speed

in order to maintain a maximum level is known not to be profitable).

(iv) As stated in section 7.1.3, some logs manufactured while the

continuous winder accelerates or decelerates can be defective and are

discarded. How is this effect to be taken into account in controlling

the speed of the continuous winder?

More could of course be said about this important problem, which

may carry over to other systems as well. This question is beyond the

scope of the present work, but is clearly of importance and constitutes

a possible direction for future research.
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7.1.5 The Conveyor Belt

The log saw and the wrapper are connected by a two-channel conveyor

belt with a capacity of about forty rolls each.

It is common in the literature to encounter conveyor belts being

referred to simply as in-process storage facilities (e.g. Richman and

Elmaghraby[1957]). However, these differ from the idealized storage

element considered here, in which a workpiece is available to the

downstream machine as soon as it enters the storage, because of the

delay involved in the transportation of pieces between stages. Pritsker

(1966] observes that a power driven conveyor often corresponds to a

no-storage line: in such a system, the parts are moved along with the

belt at a speed equal to the production rates of the upstream and

downstream machines. Thus, if a downstream machine fails, the conveyor

must be halted. On the other hand, Pritsker states that a non-powered

conveyor is identical with the limited storage case. It is suggested

below that this is not necessarily true.

It is stated in section 2.2.5 that there is a delay of one cycle

between the time a workpiece is completed at stage i and the time its

processing starts at stage i+l (assuming that the stages are operational

and not forced down). A conveyor in which a piece leaving machine i

moves fast enough that it reaches machine i+l in at most one cycle may

be considered equivalent to the idealized storage described in section

2.1. If parts move at a slower speed on the conveyor, a different

approach may be necessary to account for the time lost in transportation.

In either case, a conveyor can be thought of as a storage element only

if parts are allowed to accumulate on it, i.e. when the conveyor is not

required to stop if a part reaches a machine which is not ready to take

it in.

Conveyor belts have been analytically studied by Kwo[1958] and others,

and numerous researchers have used simulation techniques in their work

(e.g. Kay[1972], Barten[1962]).
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In the case of the conveyor belt in the paper finishing line, it

may be possible to model the conveyor belt as a series of perfectly

reliable machines with limited storage between them. The number of

stages is determined by the time (the number of cycles) needed for a

part to travel from the log saw to the wrapper. However, this

approach has the effect of increasing the number of machines in the

model, thereby increasing its complexity.
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7.1.6 The Failure and Repair Model

Assumption 2.2.3 implies that a forced-down machine is able to

resume production as soon as the upstream storage ceases to be empty

or the downstream storage ceases to be full. In accordance with this

assumption, the state of a forced down machine is denoted by a.=l,

indicating that it is in good repair.

It is often the case in industrial systems that the upstream

machine is automatically shut down when a storage fills up and blocks

it. In some cases, such as the continuous winder, restarting the machine

requires human intervention and may even be costly and cause loss of

product due to defects. The model as it now stands does not account for

such events, although it can be extended.

For example, it is possible to define a third machine state, forced

down. The transition from this state to the down state (i.e. failure

when forced down) would have zero probability, while the transition to

the up state (i.e. being restarted) would have a probability that may

or may not be equal to r..

Similarly, the problem of having too few repairmen (or the machine

interference problem - see Cox and Smith[1974]) is ignored here. However,

it is important in actual systems and in particular, in the case of the

paper plant discussed here, where several parallel paper finishing lines

share a limited crew. It is possible to extended the model to account

for this problem: for example, there may be a lower repair probability

when two machines are down simultaneously than when only one machine is

down (See Benson and Cox[19511).

Lastly, the model assumes that a machine is starved if there are no

pieces in the upstream storage, while in the actual line, the log saw is

not allowed to operate if there is only one pair of logs left in the

storage. Since there is always one pair in the storage, it can be

ignored, and the storage capacity is given by N -1, rather than N1

·LP·~~~~~~~~~~ 1··~ III)II-· )·- __ _
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7.2 A Brief Discussion of Some Attempts at

Modeling the System

Although the behavior of a system as complex as the roll products

paper finishing line can probably best be predicted by an extremely

detailed computer simulation, such programs often take a long time to [::

develop and are very costly, both in terms of manpower and computer

time. Good mathematical models with analytical or relatively simple

numerical solution techniques are therefore extremely useful in

studying such systems.

Gordon-Clark[1977] modeled the system as a semi-Markov process;

one version of his model was based on an 8-state process, where each F
state represents a combination of the states of the machines ((0,0,0)

through (1,1,1)). The states thus do not take storage levels into

account in this model. The state residence times and transition

probabilities were estimated from records of the actual operation of

the paper finishing line. If the line were still in the designing stage, I:

these would have had to be guessed. Transition probabilities may in

some cases be worked out from data from individual machines. However,

the state residence times are more difficult to calculate, since they

involve knowledge of average storage levels. Since Gordon-Clark's

model does not consider storage levels as state variables, the ,

residence times cannot be evaluated theoretically.

The predicted and actual results were not in excellent agreement.

Among possible reasons for this discrepency, non-geometric actual failure

and repair rates, dominating transients, and the effects of the past

history on system behavior were proposed. To these may be added the

fact that forced down and failed machines behave differently, a point

that was not taken into account by this model, since storage levels

were not state variables.

This last difficulty may be accounted for by two approaches: by

defining three machine states (operational, failed, and forced down)

instead of two; or by extending the definition of a state to include

at least the three storage regions (empty, full, or otherwise). That the
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model would significantly improve if the above was done is suggested by

the fact that the best agreement between predicted and actual behavior

was for the continuous winder which is forced down least frequently;

the worst agreement was for the wrapper, the stage which is idle most

often.

Another approach would be to modify the transfer line model

developed in chapter 2 to account for the discrepencies outlined in

section 7.1. Some modifications proposed to adapt the model to the

paper finishing line are relatively easy to implement, such as

considering the smallest unit (the roll or pair of rolls) as a workpiece.

Assuming that the parent roll loading time has negligible effects on the

system, that rejects amount to a negligible fraction of total

production, that the conveyor is fast enough to be equivalent to a

storage, etc. may give satisfactory results. Some problems may

introduce errors into the computation of system performance measures:

for example, the fact that repair crews are limited in number implies

that the repair probability is reduced when more than one machine fails;

furthermore, even the order in which they fail matters. Still other

issues, such as dominant transients, may require a completely different

approach. A detailed analysis is required to verify the applicability

of the transfer line model presented here to this particular system.

This is clearly beyond the scope of this work, which aims primarily

at answering generic questions as opposed to studying specific systems.

This chapter has tried to show several possible sources of difficulty

which may arise in the application of an idealized mathematical model

to real systems. The following two chapters investigate two qualitatively

different cases, in an attempt to emphasize the flexibility of the

model.



8. APPLICATION OF A TRANSFER LINE MODEL TO

BATCH CHEMICAL PROCESSES

The discrete nature of the Markov chain model of a transfer line

described here allows a wide range of applications, including not only

obvious cases such as assembly and transfer lines in the metal cutting

or electronic industries, but also chemical processes in which batches

of chemicals proceed through stages in the manner of a production line.

A queueing theory approach to batch chemical systems is outlined

following Stover's [1956] early work in section 8.1. Some of the

differences between a model proposed by Koenigsberg[1959J and the

present model are discussed in sections 8.1.1 and 8.1.2.

Applications of the transfer line model to such systems, as well

as a discussion of the results thus obtained, appear in section 8.2.

-224-
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8.1 A Queueing Theory Approach to the Study of

Batch Chemical Processes

In an early paper, Stover[1956]*used a queueing theory approach to

estimate the production rate of a chemical plant that was planned to be

expanded. The system consisted of a stage of parallel reactors, followed

by holding tanks, followed by a stage of parallel stills. Stover modeled

the stills as exponential service time servers, and computed the number of

holding tanks and.stills needed to achieve the desired production rate.

Essentially, his model was a single-stage, parallel-server queue, and

techniques existed for its solution.

Basing himself on Stover's work, Koenigsberg[1959] proposed a

schematic representation of a batch chemical process similar to that

presented in figure 8.1. Represented thus, the plant may be studied as

a transfer line, although certain important particularities of the

system are not accounted for by the model as it stands.

Some of the differences between the system and the model are

discussed in sections 8.1.1 and 8.1.2.

*Acknowledgment is due to the Archives of the United States Rubber Company,
Naugatuck, Connecticut, for supplving Mr. Stover's unpublished manuscript.
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8.1.1 Non-Deterministic Processing Times

Stover[19561 reports that maintaining a fixed schedule and production

rate for batches finishing in the stills is not possible because of

unpredictable variations in reaction times. These variations may be due

to fluctuations in feed temperature or concentration, changes in the

activity of catalysts, etc. Thus, batches are modeled as taking random

periods of time to be processed in the stills.

By assumption 2.2.2, the model of a transfer line developed in the

present work involves stages that have deterministic and equal service

times. Reliable lines with random cycle times have been studied by

numerous researchers. Most of this work assumes exponentially

distributed service times (Hillier and Boling[1967], Konheim and Reiser

[1976], Neuts[19683, Muth[1973], Hunt[1956], Hatcher[1969], Knott[1970a,

1970b]). Rao[1975a] studied two stage lines with normal and Erlangian

service times and no interstage storage; Neuts[1968] considers a line

consisting of two stages, one of which has uniformly distributed service

times. Buzacott[1972] studied a two-stage line with identical unreliable

machines and exponential service times. Gershwin and Berman[1978] analyze

a two-stage line with exponentially distributed service times and

unreliable machines. Lines with more than three stages have not been

successfully analyzed because of the complexity of the effects of blocking

and starving when storages are full or empty (Okamura and Yamashina[1977]).

The transfer line model of chazter 2 is extended, following Gershwin

and Berman[1978], to allow exponentially distributed service times, in

section 8.2. Rao[1975b] states that exponential service time distributions

often do not represent actual systems, where the service times are closer

to normal distributions (Vladzievskii[1952], Koenigsberg[19593). However,

the solution of exponential service time models is an important step

towards the analysis of models where the service times are given by Erlang

distributicns (See 3rockmeyer, .HastrOm and Jensen[19601). This is because

a stage with Erang distributed service times may be thought of as a

machine in which a series of distinct operations are performed on the

workpiece, each of which takes an exponentially distributed length of time.
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(See Wallace and Rosenberg[1966], Lavenberg, Traiger and Chang[1973],

Herzog, Woo and Chandy[1974]). In other words, an Erlang stage is

equivalent to a series of exponential stages. The importance of this

lies in the fact that Erlang distributions may represent accurately

normal distributions, which themselves best model chemical reaction

time distributions.
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8.1.2 Feedback Loops

The solvent recycling system in figure 8.1 cannot be accounted

for by the present model. Given that the amount of solvent in the system

is constant, such a system could be modeled by a cyclic queueing

network of the kind analyzed by Koenigsberg[19583 or Finch[1959].

However, certain additional assumptions make it possible to use the

present model in studying the system in figure 8.1. These are the

following:

(i) If the solvent tank is large enough, the inlet and outlet of the

plant are effectively decoupled. In this case, the last stage is never

blocked because of a failure or blocking in the first stage. Thus,

recycling the solvent does not change the structure of the model.

(ii) It may be assumed that in case either the solvent inlet pump Vsl

or the raw material inlet V fail, the first stage fails because both
m

mechanisms must operate for the reactors to be fed. Similarly, if

either Vs2 or V fail, the last stage may be assumed to fail.

Thus, it may be possible to model V and V as a single machine;

similarly, Vs2 and V may be considered a single machine. The condition

for this to hold is that the repair times of V and V , as well as those
sl m

of V 2 and V , are identical. In this case, the failure and repair

probabilities of the single machine equivalents may be computed as

follows: Given that V S fails with probability Psl and V fails with

probability p , rhe single machine equivalent remains up during a cycle

if both Vsl and Vm remain up. Thus,

p = 1 - (1 - Dl)(! Pm) (8.1)

On the other hand, given that v D and V have equal repair rates r, the

repair rate of the equivalent single machine is simply equaal to r. Thus,

the equivalent machine has geometric up and down time distributions and

the model of Gershwin and Berman[1978] maav be apnlied. A similar

argument can be made for Vs2 and V p
s2 p
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(iii) It may be assumed that the amount of solvent in the system is

sufficient so that the first stage is never starved. This assumption

completes the decoupling of the first and last stages in the transfer

line model of the batch system.

It may be noted that by assuming infinite storage capacities,

Secco-Suardo[1978] shows that in a closed network with large numbers

of customers (in a production line, pellets, in the batch chemical

plant, batches of solvent, etc.), one stage always acts as a bottleneck,

so that the system is equivalent to an open network.

By making the above assumptions, the system pictured in figure 8.1

may be treated as a transfer line.
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8.2 The Production Rate of a Batch Chemical Process

8.2.1 The Single Reactor, Single Still Case

As outlined in section 8.1, the transfer line model is extended

to cover a system of the type described by Koenigsberg[1959]. Stover[1956]

studies the system as a single-stage, multiple-server queue; he assumes

that the stills have exponentially distributed service times, and that

the holding tanks comprise a finite queue. If the reactors are also

modeled as having exponentially distributed service times, the single

reactor, single still case can be analyzed by means of the results

derived by Gershwin and Berman[19783.

The system considered here consists of two stages; these are the

reactor and the still. Both stages include all pumps, valves, and other

devices through which batches of chemicals are transfered. The stages

are unreliable in the sense that they occasionally fail, due to

unpredictable failures in pumps, heating or cooling systems, and so on.

A finite number of parallel holding tanks are located between the two

stages. The object of the study is to compute the effects of the

variations in service times on the production rate of the system, and

to see how these effects can be mitigated by the use of interstage

holding tanks.

As stated in section 8.1.1, the service times are assumed to be

exponentially distributed, although this assumption may not hold for

batch chemical processes. It is hoped that the exponential results

will provide the theory necessary to help analyze and solve Erlangian

systems.

The steady-state probabilities of the system are found by Gershwin

and Berman[1978] by assuming a solution for internal states of the form

of equation (3.13), and substituting the expression into detailed

balance equations for internal states. This development is analogous to

the derivation in chapter 3. Here, however, the stages operate with
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variable service times. The mean service time for stage i is given by

1/Vi. A consequence of the fact that the stages are not synchronous is

that the boundaries reduce to n=O and n=N, instead of nil and n_ N-1

as in the deterministic service time case. Thus, the states with n=l

and n=N-l have probabilities with internal form expressions.

For the two-stage exponential service time transfer line, the

internal equations (analogous to (3.21) and (3.23) in the deterministic

case) are the following:

r1r
1) - P1 Y1 + rl + -P 0 (8.2)

1 1

12(1 _ 1) PY + r2 + 2 = (8.3)

pY +pY r -r r 0 (8.4)
P1 +P2 2 1 2

These constitute a set of three non-linear equations in three unknowns,

and may be combined into a fourth order polynomial in terms of one of

the variables, say Y1. In this case, it is easy to verify that Yl=rl/P

is a root, so that the polynomial becomes

r
1 3 2

( Y1 + Y1 + + 1 ) = 0 (8.5)

where Bj, j=1,2,3 are functions of ri and Pi, i=1,2.
1

The cubic polynomial has its roots at

Y = 2 i cos e. ; i=2,3,4 (8.6)

where

1 2
a = -(3~2 -12)

3 2 1

1 3
b = (21 - 9a + 27 3)27 1 1 3

= arccos -b/2 (8.7)

anda/27
and
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e.i = - + 120(i-2) ; i=2,3,4 )
(~ and 8i measured in degrees.)

After Yli are found from equations (8.6) and (8.7), these

values are substituted into (8.2)-(8.4) and Y2i and Xi are found.

Thus, the solution is of the form of (3.13):

4

p~n,a, = E C. Xi Y Y (8.8)1 2 11i i 2i

The coefficients Ci are found by using boundary detailed balance

equations (analogous to boundary transition equations in section 3.2).

For the root Yl=r1 /p1 mentioned above, it is found that Y2=r2/P2 and

X=1; the constant C1 corresponding to this root is found to be zero,

as in the deterministic case. This is noteworthy, because the set

Y1 1, Y2 1, X1 corresponds in both the exponential and the deterministic

case to a solution that assumes the stages in the system to be

decoupled. That Cl=O implies that this is not true.

These results are now used in a numerical example.
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8.2.2 A Numerical Example

The following system is considered: a batch reactor and a still

are separated by N=10 parallel holding tanks. The first stage consists

of the reactor as well as valves, pumps, etc. which serve to transmit

the batches of chemicals; the second stage similarly consists of the

still, as well as pumps etc. Both stages are unreliable, and randomly

fail because of breakdowns in the pumps, in temperature control

mechanisms, and in other unreliable devices. The production rates in

isolation of both stages are equal to 0.5 batches / time unit.

The still has failure and repair rates (in probability / time

unit) equal to p2=r2=l.0. Its service times are exponentially

distributed with mean 1/> =1.0.
2

The reactor failure and service rates Pi and '1 are varied in

such a way as to hold average production rate constant at 0.5 batches /

time unit. The repair rate (in probability / time unit) is equal to

rl=1.0.

Results for some values of pi and l1 appear in table 8.1. It

is seen that as the efficiency in isolation of the first stage is

increased and its service rate decreased, the line production rate

increases. This suggests that for these system parameters, the

fluctuations in service times influence line production rate more

strongly than the failures in the first machine. This is important,

because in practice, chemical systems are often highly reliable,

although such variations in service times may sometimes be unavoidable.

Random service times can be used to model human intervention in the

processing of batches. Although humans may be highly reliable, it is

clear that variations in service times cannot be avoided. From these

results, it follows that it is more important to control fluctuations in

service times than improve the reliability of the first stage in this

line.

The experiment is repeated this time by varying P2 and 12 so as to

2 2~~~~~~~~~~~~~~~~~~~~~~~~~~~..
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P1 r el 1 Line efficiency(Production rate)

9 1 .1 5 0.432

2 1 .33 1.5 0.435

1 1 .5 1 0.438

.5 1 .67 .75 0.441

.11 1 .9 .55 0.442

Table 8.1. System parameters and line production rate

for a two-machine line with exponential

service times.
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maintain the production rate of the second stage at a constant value

equal to 0.5 batches / time unit. The other system parameters are set

at plr= =r==r2 =l.0.

The same values as those given for P1 and p1 in table 8.1 are

assigned to P2 and 2

The results obtained confirm that efficiency is more important

than service rates (or alternately, reducing variations in service

times is more beneficial than improving efficiency in isolation,

given a constant production rate in isolation) for these system

parameters.

Furthermore, it is observed that the line production rate is

symmetrical with the orientation of the production line. Thus,

when the parameters of the two stages are reversed, the line

production rate does not change. This is the case with deterministic

service time transfer lines also.
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8.2.3 Parallel Reactors. or Stills

The system discussed in sections 8.2.1 and 8.2.2 is a simple

case of the general class of systems discussed in section 8.1 and

schematically illustrated by figure 8.1. The present state of the

model is not able to deal with networks with non-linear topologies,

such as those involving stages with multiple servers. Ignall and

Silver[1977] give an approximate method to calculate the production

rate of a two-stage, multiple-server system with deterministic service

times. Single stage queues have been treated by several authors

including Morse[1965], Galliher[1962], and Disney[1962,1963].

Future studies of multichannel stage transfer lines may be

based on defining the system states as not only the operational

conditions of the machines, but the number of operational machines in

each stage. If each machine has exponentially distributed service

times, it may be possible to represent the stage as a single machine

with Erlang service time distributions (See Lavenberg, Traiger and

Chang[1973]).

A different approach may be modeling the number of operational

machines in any stage as a birth-death process (See also Taylor and

Jackson[1954]). This assumes that the probability that more than one

machine fails simultaneously is small enough to be neglected. The

production rate of the stage at any time can then be expressed as a

function of the number of operational machines in the stage, as well as

the levels of the storages upstream and downstream of the stage. These

levels affect the stage if fewer batches are available in the upstream

storage than there are operational machines, or if less storage space is

available in the downstream storage than there are operational machines.

A sufficient range of applications exists to make the results of

linear topology production lines described in this work of interest.

However, it is clear that their applicability will greatly increase if

these results can be extended to more complex networks as well.



9. APPLICATION OF A TRANSFER LINE MODEL TO

CONTINUOUS CHEMICAL PROCESSES

Although the preceding discussion has centered on discrete transfer

lines (i.e. lines in which discrete workpieces travel through the system),

it is possible to extend the model to continuous transfer lines. In such

systems, the storage level is treated as a continuous variable.

Continuous models are often good approximations to discrete queueing

networks with large numbers of customers (Newell[1971]); in the case

of transfer lines, they can be good approximations to the discrete

system if the storage capacities are very large (Sevast'yanov[1962]).

Since continuous models can be studied by means of differential

equations, the computation needed to obtain the steady-state probability

distribution of the system can be greatly reduced by making this

approximation. In addition, the continuous transfer line model can be

used in the study of unreliable hydraulic systems (Buzacott[1971]) or

continuous chemical processes. Here, fluids or chemicals flow through

series of unreliable stages separated by holding tanks. By using the

steady-state probability distributions, it is possible to find the

relations between the failure and repair rates and holding tank sizes,

and performance measures such as the flow rate through the system, the

amount of material in the tanks, etc.

Two approaches to the problem are discussed here. A differential

equations approach for obtaining the probability density functions is

reviewed in section 9.1. The two-machine discrete line analytical

results of chapter 3 and the 6-transformation of section 6.3 are used

to arrive at identical results in section 9.2. A numerical example is

worked out and discussed in section 9.3.

-238-

,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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9.1 The Continuous Transfer Line Model

By assuming that the buffer storage level may be treated as a

continuous variable, Graves[19771 has derived a series of probability

density functions that describe the steady-state probability distribution

of the system states for a two-machine line. These probability density

functions are denoted by f(x,al,a 2), where x is the level of the

storage (0LxLN) and al and a2 are the machine states as defined in

section 2.1.2. Graves' derivation is summarized below.

To obtain the probability density functions f(.), it is necessary

to consider.transient local balance equations. Denoting the transient

probability density function by f(x,al,a2,t), where t is time, for a

small time increment A and internal storage level (O<x<N),

f(x,l,l,t+A) = (1-P1A-P2 A) f(x,l,l,t) + rlA f(x,O,1,t)

2
+ r A f(x,l,O,t) + O(A2) (9.1)

where (A 2 ) denotes terms of order A2 and above. Equation (9.1) is

a balance equation on the probability of being in state (x,l,1) at

time t+A. The parameters Pi and ri are failure and repair rates, not

probabilities. Thus, for small A, the products p A and r.A are the
1 1

probabilities of failure and repair of machine i. Given that the

system is in state (x,l,l) at time t, it stays in that state over

the increment A with probability (1-p )(1-p 2A); if the system is in
1 2

states (x,0,1) or (x,l,0), the transition probabilities in the small

time increment A are rlA(l-p2A) and (1-i A)r2A respectively. Finally,

the probability of transition from (x,O,O) to (x,l,1) is rlAr2A. The

terms of order A2 are lumped together as a first-order approximation,

and equation (9.1) directly follows. Letting A0O and making the

steady-state assumption (i.e. assuming that d(*)=O), it follows thatdt

(-p-iD2) f(x,l,l) ± + f"xO1) ± r f(xlO) = 0 (9.2)1 2 rJ 2LVIL
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Similarly,

f(x,O,0,t+A) = (l-r A-r2A) f(x,0,0,t) + pAl f(x,l,0,t)

+ p2 A f(x,O,l,t) + O(A2 ) (9.3)

Again, letting A+O and making the steady-state assumption, equation

(9.3) gives

( -rl-r2 f(x,x,l,0) + P 2 f(x,0l,) = 0 (9.4)

In both equations (9.1) and (9.3), the final machine states are such

that the storage levels do not change within the time increment A.

Given that the storage levels are internal, the level goes down by A

in the time increment A if the second machine is up while the first

is down. The balance equation is

f(x-A,0,1,t+A) = (l-rlA-P2A) f(x,O,l,t) + p A f(xl,l,t)

+ r A f(x,0,0,t) + o(A ) (9.5)

When A+0 and the steady-state assumption is made, (9.5) gives

d
df(x,0,1) = (-r-P 2) f(x,O, 1) + P1 f(x,l,l)

+ r2 f(x,0,0) (9.6)

Similarly, the differential equation giving the probability density

of internal states with an operational first machine and a failed

second machine is:

f(x,1,0) = (-r2-P f(x,l,0) + P2 f(x,l,1)

+ rl f(x,0,0) (9.7)

Equations (9.2), (9.4), (9.6), and (9.7) determine the steady-state
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probability density functions for the internal states. The boundary

probability mass functions are found by using balance equations

analogous to the boundary transition equations of section 3.2. Assumption

2.2.3 states that machines can only fail while processing parts. Thus,

it is not possible for a failed machine to be preceeded by an empty

storage or followed by a full storage.* As a consequence, some

probability mass functions p[-] at the boundaries x=O and x=N are

found to be identically zero:

p[O,O,0]. = p[0,1,0 = 0 (9.8)

p[N,-0,O] = p[N,O,1] = 0 (9.9)

In setting up the boundary balance equations, it is noted that

boundary transition rates differ from internal transition rates,

because of assumption 2.2.3. For example, the transition (N,1,O)-(N,1,0)

occurs with probability (1-r2A), rather than (1-plA)(1-r2 A), since the

the first machine cannot fail when it is blocked. On the other hand,

the transition (N,l,1)(N,l,1) occurs with probability (1-p1 ) (1-P2A),

since the first machine is not blocked as long as the storage is drained

simultaneously by the second machine, even if x=N. As a result, it is

necessary to redefine the terms blocked and starved for the continuous

transfer line. Here, a machine is blocked if its downstream storage is

full and the downstream machine is down. Similarly, a machine is starved

if its upstream storage is empty and the upstream machine is down. These

definitions differ from those for the discrete line given in chapter 2.

From these conditions, it follows that at the upper boundary (x=N),

p[N,l,0,t+A] = (l-r2A) prN,l,0,t] + p2A p[N,l,l,t]

N

+ Jf(x,l,0,t) dx + o(A2) (9.10)

N-

* This assumption causes the boundary conditions presented here to differ
slightly from those in the work of Graves.
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The integral in (9.10) accounts for the probability that the first

machine remains up and the second remains down through the time

increment A. Since the machines operate at unit rate (as before -

note that Graves' results include the case when they operate at

different rates), the limits of the integral go from N-A to N. It is

noted that

N

lim f(x,l, = f(N 0,t) (9.11)

A+0 J A
N-A

Thus, letting A+0 and assuming steady-state, (9.10) becomes

0 = -r2 p[N,1,0] + P2 p[N,l,1] + f(N,1,0) (9.12)

Similarly,

p[N,l,l,t+A] = (1-plA- 2A) p[N,l,l,t] + r2 p[N,1,0,t] + O(A 2

(9.13)

which gives

0 = (-pl-P2) p[N,1,1] + r2 p[N,1,0] (9.14)

At the lower boundary (x=O), analogous balance equations are

p[0,0,1,t+A] = (1-rlA) p[0,0,1,t] + pl1 p[0,l,l,t]

0

+ X f(x,0,1,t) dx + 0(A2 ) (9.15)

p[0,l,l,t+A] = (1-p l-P2A) p[O,1,l,t] + r A p[O,O,l,t]

+ o0(A) (9.16)

which give
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0 = -rl p[0,0,1] + P1 p[0,1,1] + f(0,0,1) (9.17)

0 = (-plP 2) p0l,1,1] + r1 p[0,0,1] (9.18)

Equations (9.12), (9.14), (9.17), and (9.18) are the steady-state -

boundary transition equations. These may be simultaneously solved,

giving:

p[N,1,03 = [l 2 f(N,l,0) (9.19)
r2p 1

piN,l,1] = - f(N,l,0) (9.20)
P1

p[0,0,1] = [.+_ f(0,0,1) (9.21)

1
pE0,1,1] = I f(0,0,1) (9.22)

P2

Equations (9.19)-(9.20) are found by solving (9.12) and (9.14)

simultaneously; equations (9.21)-(9.22) are found by solving (9.17) and

(9.18) simultaneously.

The internal balance equations may be solved by first adding (9.2),

(9.4), (9.6), and (9.7) together, giving

d d
- f(x,l,O) d f(x,O,l) = 0 (9.23)
dx dx

Equation (9.23) is solved to give

f(x,l,0) = f(x,0,1) + 1K (9.24)

The constant K1 is now evaluated. Given that the system is in state

(N,i,l) at time t and that the first machine fails during the time

increment A (this is possible, since machine 1 is not blocked as long

as machine 2 is operational), it follows that
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f(N,O,l,t+A) = plA pEN,l,l,t] + 0(A2 ) (9.25)

which gives, as A+0 and steady-state is assumed,

f(N,0,l) = Pi p[N,l,1] (9.26)

This is the third boundary balance equation at the upper boundary.

Adding (9.12), (9.14), and (9.26), it follows that

f(N,0,1) = f(N,1,0) (9.27)

Similarly, at the lower boundary,

f(0,l,O,t+A) = p 2A p[O,1,l,t] + O(A2 ) (9.28)

which gives the third lower boundary balance equation,

f(0,1,0) = P2 p[0,1,1] (9.29)

Adding (9.17), (9.18), and (9.29), it follows that

f(0,1,0) = f(0,0,1) (9.30)

From either of equations (9.27) and (9.30), it follows that Kl=0 in

equation (9.24). Thus,

f(x,l,0) = f(x,0,1) (9.31)

Using (9.31), equations (9.2) and (9.4) give

f(x,1,1) = 21 f(x,0,1) (9.32)

[Pl + P 0

2- _
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Substituting (9.32) and (9.33) into (9.6), it is found that

d f(x,O,l) = -rl P2 + P+ r[l+p2])fx

((pir 2p+r 2[+P) f(xO,1)
= (( 2 P2 l [Pi+P2 rl+r 2 ]

X f(x,O,l) (9.34)

Solving (9.34) gives

f(x,O,1) = K2 e (9.35)

and from (9.31),

-Xx
f(x,l,O) = K2 e (9.36)

As Graves notes, if the machines have equal efficiencies, so that

(r!/Pl)=(r2/p2), then X=O and the distribution in equations (9.35) and

(9.36) are uniform.

The normalization constant K2 is found by noting that the sum of

the probability mass functions and the integrals of the density

functions must add up to 1. Thus,

1 l N

l=O a =0 J f(x,a ,c2) dx + p[O,O,1] + p1O,l,i]
cOi = 12 0

+ p[N,1,03 + p[N,l,l] = 1 (9.37)

The probability distributions of a two-machine line where the storage

level is a continuous variable are thus completely determined. These

functions are summarize i;n table 9.1. Continuous transfer lines with

more than two machines give rise -o very complex systems of equations

(Sevast'vanov[i962], Gravesr[19 77, Gordon-Clark[1977]) which have not

yet been solved.
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Table 9.1. Steady-state probability distributions
for two-stage continuous lines.

P + P2 -Xx
f(x,0,0) = K 2 e

rl + r2 2

-Xx
f(x,0,l) = K2 e

-Xx
f(x,l,0) = K2 e

r +r
1 2 -Xx

f(x,l,l) K2 e
P1 + P2 2

rp2p10,,0,] = 0

p 2

p[N,0,0] = 0

p[N,0,1] = 0

P + P2 -Np[N 1 ,0 ] K2 e

r2P 1

1 -XN
p[N,1,1J K e

P 2

The constants K2 and 'A are given by equations (9.37) and

(9.34) respectively.



-247-

9.2 The 6-Transformation and its Limit as 6-0

In section 6.3, the 6-transformation is introduced as follows:

r. - r.6
1 1

P - i (9.38)

N N/S

The resulting system is equivalent to the original system with cycle

length equal to 6, and the efficiency is virtually unchanged by the

transformation.

The steady-state probabilities of the transformed system are now

computed. The resulting expressions are shown to approach the continuous

results of section 9.1 as 6-0.

From equation (3.25),

r + r - (rlr2 + P r
1 2 12r (939)

1 P + P2 - (P 1 P2 +
2 rl) 6

and

r1 + r 2 - (rlr 2 + Pr2)6
2 1 (9.40)
2 + P 2(P2 + 2)

where Y. are the parameters in equation (3.13) for the transformed

system. Each of the expressions in section (9.39) and (9.40) may be

written as first order Taylor expansions around 6=0:

= Y. + Yil6 + 0(6) ; i=1,2 (9-41)

where

Yio= [Yi 56=0

p1 2
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and

11 6dL 1 J 6=0

(rl+r 2) (PlP2 +r2 Pl)-(pl+ 2 ) (rlr 2+P2r
(9.43)

2
(P1+P2)

Y2 1 = 2 -6=0

(r1 2+ rlP2r )-(pl+P2 ) (r r2+P r2

(9.44)

(p +p
(P1+P2)

Similarly, from equations (3.25) and (9.41),

2 _x = Y2 / Y1

Y + Y 6

+ 0(6) (9.46)

Y10 + Yll6
1l0 +~11

Using Taylor's theorem, (9.46) becomes

_ = 20 + YY2 20Yll 6 + 0(6) (9.47)

Y Y10 Y10

which, by using equations (9.42)-(9.44) and simplifying considerably,

gives

((P2rl-Plr2) [ PP 2 + r+r 2 1 + 0(6) (9.48)

= 1 - X 6 (9.49)

where X is the same constant that is defined in equation (9.34). The

definition of internal states for the modified system is derived from
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equation (2.20). Since the transformation has the effect of dividing

parts into 1/6 slices (See section 6.3), internal states are defined

to be those for which the storage level n/6 obeys the relation

2 L n L N-2 L6~~~ _N-2nL~~~~ 6 _(9.50)

Equation (3.13) for the transformed system is

n

p[,l,a2] = C X 6y (9.51)

n/6 1 2
= C (1 - 10)n / ( Y 0 +Y l l ) (Y20+Y216) + 0(6)

(9.52)

It is noted that

n/6" -n_
lim (1 =- = e (9.53)
6-o

For the continuous system, the storage level is denoted by x, and the

steady-state probability density function is defined as follows:

n+0 n

f(x,al,a2 ) = P[n 6 '1'a2] P['aa2f~x1la2 1 '2~ 1 '~2 (9.54)

For each combination of machine states a., equation (9.52) becomes,

as 6+0,

-Xx
f(x,0,0) = C e (9.55)

f(x,0,1) = C e (9.56)

--x r ____-_

f(x,l,0) = C e (9.57)
P1 + P2

f(x,l,1) = C e [ (9.58)

It is easy to verify that equations (9.-5'-(9.58) agree with the probability
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density functions given in table 9.1, with

r + r
K = C (9.59)2 Pl + P2

2 2

The boundary state probability expressions of section 3.2.1 are

shown below to reduce to the results of section 9.1 as 6+0. It is

noted that in the discrete line, n=l and n=N-1 are considered boundary

storage levels. In the transformed system, this corresponds to

n/6=1/6 and n/6=(N-1)/6. Thus, as 6+0, the boundary becomes x=0 and

x=N only.

From table 3.1,

r+ r r 2-r r

p[0,0,1] = C X 1 2(9.60)
p2rl 

For the transformed system, equation (9.60) becomes

,0,1 = C -X 1 r2 - 2rl

P2rl

r + r 2 - (rlr + P 
= C X p (9.61)

P2rl1

Noting that as 6+0, X+1, the limit as 6+0 of (9.61) is

p0,0,l] = (9.62)
-2 1

It is shown in section 6.3 that the normalizing constant C is of the

order of 6. This follows from the fact that C is the reciprocal of the

sums of the probability mass functions and the integrals of the density

functions, and that all these functions are of the order of 1/6. Thus,

the expression in (9.62) is bounded as 6+0; this applies to all the

other probability mass functions as well.
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Similarly, from table 3.1,

p[N,lN = C XNl 1 2+ r 2 r l r 2 r1~p[N,1~ C X ~~p r (9.63)

which gives, for the transformed system,

N-6 r'6

p[N,1,0] = C X 6 (9.64)
P1r2

As 6- 0, using (9.53) gives

r +r
c -XN 1 2

p[N,1,0] = e (9.65)
6 ~ P1r 2

Analogously, the limits of

C - r + r - (r r + Prl ) (9.66)
=C r 1 2 1 2 2 1 (9.66)

p[6,1,1 = P26 p + p 2 (pp 2
+ Pp2 r)6

N-6

pt- ,1,1P] = CX rt + r2 - (prlr 2 + plr2)6 (9.67)

(from table 3.1, for the transformed system) become, as 6-0, and

using equation (9.53),

C rl + r2
p[0,1,1] = C (9.68)

P20 Pt + _2

C r + r 2- -XN 1 2
p[N,l,1] = e (9.69)

Pli Pl +P 2

By using equation (9.59), it is easy to verify that equations (9.62),

(9.65), (9.68), and (9.69) are identical to the corresponding expressions

in table 9.1. Thus, the steady-state probabilities for a discrete two-

machine line outlined in chapter 3 give results that are identical to

those obtained by differential equaticns when the 6-transformation is

applied and 6-*0, i.e. when the length of a machining cycle is allowed

to approach zero.
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9.3 The Production Rate of a Continuous Line

Happel[1967] notes that in some continuous industries, down

times are not a major problem because it is possible to make up for

the lost time once the repair is made. He adds, however, that in some

large continuous systems, such as the petrochemical industry, down

time is a more serious problem due to the unavailability of interstage

storage capacity (Goff[1970]). This suggests that in some cases,

particularly when up and down times are not excessively long compared

to the service rates of the stages (See section 5.1.3), storage

elements may make a contribution to the production rate of some actual

continuous systems.

The production rate of a two-stage continuous line where both

stages operate at unit service rates is given by

1 N

E = | f(x,ca ,1 ) dx + p[N,l,1] + p[0,1,1]

1= 01

c- 1 2 1 + l+ -N

1 P2 2 1+ Pl2 + 1 +P2

(9.70)

where C is obtained by normalizing the probability functions:

1 1 N

E1 E | f(x,a1',2 ) dx + p[0,0,1] +

CC l=O 2= 0 01

p[0,1,1] + p[N,1,0] + p[N,l,1] (9.71)

[ P2 ( rl P )+P1 12 ) 2 +
[ r2 ( + 1+2

rl r2 (1 1 + 1 + 12) -N (9.72)

P r +rA P 2 +D
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A simple example is considered here. The system consists of a

plug-flow reactor and a distillation column, separated by a holding

tank of known finite capacity. The reactor and distillation column

are taken as unreliable stages in a two-stage continuous line. The

unreliable nature of these stages may be due to failure in pumps, in

heating or cooling systems, or in other devices.

It is assumed that there is no volume change during the reaction.

Thus, the flow rates through the stages are equal. Time is scaled so

that this flow rate is 1 volume unit / time unit.

The system parameters are given in table 9.2. The volume of the

holding tank is varied and the system production rate is computed by

means of equation (9.70). Some values of efficiency for different

storage capacities appear in table 9.3. The discrete line values

corresponding to the same line parameters are also given for

comparison.

It is seen that as in the discrete case, transfer line efficiency

increases with storage capacity, but approaches an asymptote. From

the discussion of the 6-transformation in section 6.3, it follows

that the limiting efficiencies E(O) and E(X) are computed by using

equations (5.51) and (5.53). It is easily verified that the results

in table 9.3 (which were computed by setting N=O and N-+ in equation

(9.70)) confirm this.

The results in table 9.3 are also an indication that the

6-transformation is a good approximation; since the continuous line

results are equal to those for a transformed system as 6-0, the

good agreement between the discrete and continuous line results suggests

that in many cases, it is possible to model a discrete line approximately

by a continuous line, and obtain its efficiency with considerably less

computation by using (9.70).
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P = 0.01 r = 0.09

P2 = 0.02 r = 0.1

Table 9.2. System parameters for continuous line.



Storage Capacity Continuous Efficiency Discrete Efficiency

0 0.7627 0.7627

0.1 0.7634

1 0.7658 0.7695

10 0.7926 0.7899

100 0.8315 0.8319

0.8333 0.8333

Table 9.3. Efficiency for continuous and discrete lines
for several storage capacities.



10. SUMMARY, CONCLUSIONS AND FUTURE DIRECTIONS

The aim of the work presented here has been to obtain analytical

and numerical methods in order to quantify the relationships between

design parameters and performance measures in unreliable transfer lines

with interstage buffer storages.

A Markov chain model is formulated (Chapter 2); the states of the

system are defined as sets of numbers describing the operational

conditions of the.machines (up or down) and the number of parts

waiting in the interstage queues. The steady-state probabilities of

these states are sought in order to compute various system performance

measures such as expected production rate, in-process inventory, and

idle times.

A closed-form solution is guessed and used in the steady-state

transition equations for obtaining expressions for state probabilities

(Chapter 3). The solution of this system of equations for two-stage

systems has been discussed in the literature. A method is developed to

obtain solutions for longer transfer lines as well. The set of boundary

transition equations is solved algebraically to give a set of expressions

that are used in a sum-of-terms form solution. The number of expressions

to be derived changes with the number of stages in the line, but not

with the capacities of interstage buffer storages. Once these expressions

are found, a small system of equations (whose dimensions are linear with

storage capacities in three-machine lines) is solved to obtain the steady-

state probabilities of the system. Nevertheless, this system of equations

is ill-conditioned, and causes numerical problems.

Some numerical methods are derived for obtaining the steady-state

probabilities by using the sparsity and structure of the transition

matrix (Chapter 4). An iterative multiplication scheme is introduced

and analyzed. A recursive algorithm for solving the large system of

transition equations by making use of the nested block tri-diagonal

structure of the transition matrix is developed and discussed. This

algorithm is general and applies to any number of stages, although computer



-257-

memory requirements are considerable.

The steady-state probabilities are used to compute exactly the

expected production rate (efficiency) of the system (Chapter 5).

Alternate ways to calculate efficiency are introduced; it is proved

that in the finite storage capacity case, the steady-state rates of flow

through both machines in a two-machine line are equal. The proof is

not complete for longer lines. The effects of system transients on line

efficiency are discussed; it is shown that the extent to which steady-

state values represent the actual performance of the system depends

strongly on the system parameters. The relationship between storage

capacity and line efficiency is investigated. It is demonstrated that

storages contribute most to the system production rate when the line

is balanced. Furthermore, the rate at which storage capacity improves

line production rate depends on the magnitudes of the failure and

repair probabilities of the system. An inductive proof of the

assertion that infinite storage efficiency is equal to the efficiency

of the worst stage is presented.

The relationship between storage capacity and forced-down times

is investigated. It is shown that the infinite storage production rate

is such that the system bottleneck is saturated. Furthermore, the line

production rate increases almost linearly with the efficiency in

isolation of the system bottleneck until it ceases to be limiting; at

that time, the line production rate reaches an asymptote. For -a

balanced line, it is shown that increasing storage capacity can be as

beneficial as improving the efficiency in isolation of individual

machines, although providing buffer capacity may be cheaper than improving

the reliability of machines.

The effect of storage size and machine efficiencies on expected

in-process inventory is studied. The asymptotic behavior of in-process

inventory is demonstrated, and the effects of the relative efficiencies

of upstream and downstream segments of the transfer line on a particular

storage are discussed.

The system efficiency is also computed by approximate methods

(Chapter 6). These consist in lumping machines and storages together in
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equivalent single stages, thereby reducing the number of stages in the

model; and in lumping workpieces together, thereby reducing the

capacities of storages in the model. Both approaches have the effect

of reducing the dimensions of the'state space and saving computation

considerably.

The results obtained are discussed with relation to a roll

products paper finishing line (Chapter 7). Possible discrepencies

between the model and actual systems are discussed in the light of this

example. Approximations or changes in the model to account for such

discrepencies are proposed and investigated.

The model is extended to continuous-time systems. In discussing a

batch chemical process in which batches require random processing times,

a two-stage line with exponentially distributed service times is

analyzed and the results are applied to a plant consisting of a batch

reactor and a still, separated by unreliable pumps and parallel holding

tanks (Chapter 8).

A differential equations approach is reviewed for obtaining the

steady-state probability distributions in the case where the material

traveling through the system is or can be modeled as a fluid (Chapter 9).

A numerical transformation introduced in chapter 6 is taken to its

limits, and these results are shown to agree with those of the differential

equations solution. The expressions obtained are applied to a chemical

plant consisting of a plug-flow reactor and a distillation column,

separated by unreliable pumps and a finite holding tank.

Directions for future research include more complex, non-linear

system topologies and random processing times. A flexible manufacturing

system in which many types of parts flow through the system in a non-

deterministic order may be modeled as a system where stages have random

processing times. The value of the results presented here will greatly

increase if they can serve as a basis for more work in complex flexible

manufacturing systems.
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11. APPENDIX: PROGRAM LISTINGS, I/O INFORMATION

AND SAMPLE OUTPUTS

A.1 Two-Machine Line, Analytical Solution

This program computes the steady-state probability distribution

for a two-machine transfer line by using the closed-form expressions

obtained in chapter 3.

The input is as follows:

First Card: Columns 1-20: Failure probabilities (Pi, i=1,2)
(Format F10.5)

Columns 21-40: Repair probabilities (r., i=1,2)
(Format F10.5)

Columns 41-70: Lower bound, upper bound, and step size

for incrementing storage capacity.
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FOHThAN IV S1 RELEASZ 2.) MAIN DATi = 78191 17/21/43

C ANALYTIC SOLUTION TO TWO-SrATIJK PHOBLF'i T'? O :J 1
0001 IiPLICIT KEAL*8 (A-hl,O-Z) T-;.)'3') 
000)2 DILE;NSION P2(2004) TWo )103')

1 ,1. (501) TCwo ) ;'!4
1,PZ (501,2, 2) PY(501,2,2) T;))5
1 ,PN(3) TWD )JJG..

3003 INTESGE AA,3B,Al,Bl,A2,132 37
000U4 199 WBITE (6,97) T W)n ) Io
OT) '5 97 FOtiNAT (li31) T nC X J 9?J)
00Ob RLA ) (5, b, LN)=1 01)00) ?, ,8 ,STN ,Ji ,KN 01 J
0007 6 FOh'iA (4F1).5,3I 1D)
O 080 UP= 1 ./r TWz; -"3
000) UQ=1./Q TW(; 3. 
')t)1'1 'JH= ./Fe 1
OJ11 US=1./S Tiwu150 r
00 12 4FITE t6,4) P, U1P, (Q, rU,, Up, 'J, S. JS- T'U 
0313 4 FORMAT (1H , 2OH PAFAMNTLvi r )17

150n P = PROBABILITY iILAD 1 SOS DOWN fiiL_ IT IS 'JP = '.5 TO )i;
1358 -- AVERAGE Uc-T11E 3F HZAD 1 = F12.5/ To 01 )
150H ; = PiOBABILIlY HiEAD 2 3OcS D(iWN WilTLI IT 13 'J? = F'9 .5 2, 4'il;: :
135H -- AV:;AGE IJP-TIrL ')F FEAD 2 = P1F.5/ TWfl)s2 I1.-
150H R = iiOBABILITY HEAD 1 ;OS IUP iliL IT I3 'v)WN = ,').5 2
135ii -- AVEPAG3 D0YW-TIL OF H'AD 1 = F12.5/ T. 'J2 3
150H S = PROSABIT.ITY li-AD 2 JOrS UP -liILre IT i D3OW = FD.) . T;D=F'2 2
135H -- AVERAGP DOO:-TIN: DF HNAD 2 = F12.5/ T 
1) ¶ 8)02 L

0.t4 .) = 1./(t. + P/F + 0/S) Ti,-) ?7.
0015 AL1 =P/R T ̂  ^) J j2 :
Oulb iE (,/S.GT.P/f) AI=',/S Vj30',1*
0017 AT = 1./(1. + Al) Ti()3 ; 3
0 14F d IIT2 (6,44) AO,AlI T' 3)!310
0319 44 PORMAT ( 28H EFFICIINCY 'ITh 10 BPIFFi - P9.5/ TAu0 532/

1 34H I'EFICIENCY WITH INPINITE 9UFYEP = F9.5) T40T 'JD; 313 
0)21 DO 9999 NN=IN,JN,KN T-r0-fl34).
0021 WrITE (6, 9P) 3
0J22 WIilTE (6.45) NN T U '03 ) .
0023 45 FOHNAT ( T'W)C37 0

1 19H STOEAE' CAPACITY I, 7i PTiC_) T '3 '.
OJ24 NN1 = NN + 1 13 '
0325 dQ=NN-1 m'' )40)J '
0)26 WRITE (6,'8) Td 041 -..-
0327 98 FORMAT (////) T1; ) 423 ..
0328 K=4*NN+4 T 043)04 ::I::
00 29 AK=K T JD 43 41
0)3.) S=R+S-R*S T. J004 'P!
00) 31 PQ=P+O-P*Q ?.:; 004)::
0;332 RSQ=k3S-R*Q T7.) ,:47::
0033 ISP=RS-S P 5004 R0O -
0J34 PQE=SPQ-Q*h T)) 34 81
0)35 PQS=P2-FP* T4O 1 5530
3) A6 Y=e SU/PQS ):) 
'1)03 Z=RSP/PQR T.:'0

3=/Y S TWI0 , 3i'
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FORrRAI IV 31 RLLEASE 2.0 MAIN DAT. = 78191 17/2')/43

003 If (NN .GT. IN) GO TO 200 T3 301 4
0')40 WRITE (6,98) T'JO55 ?
0041 4PITI (6,19) X,Y,Z TW':)5 6'
0J42 19 FORMAT ( 5H X = F8. 5/ TvW)': ;570

1 5H I = FRP.5/ TN 0t)','
1 5H Z = F;J.5) OO) I; ,)y

0343 200 CONTINUE To;) J6 ) 0
0044 DO 101 I1 = 3,NQ -wr,)1 I 
0345 II 1 = 11-1 TwOt O,2 (
0046 DO 101 T2=1,2 TWI ) co 3
0)47 II2=12- 1 TO:)0',. 0
0048 DO 101 13=1,2 TW - 5r
0041 II3=13 -

1 T', "
0)51 131 PZ (I1,I2,.[3) =X*=III lY"LI-)ZIT 3 TiOf)G{.70
0051 ?Z(1,1,1) = 0. TWD0 o5,;
0052 PZ (1,2,1) ). TWOV,],9
0u53 PZ (1,2,2) 0. TWOO07')
0054 PZ(2.2,1) =. T0G71 11
0055 PZ (2, 1,1) = X TWO0u72 )
0056 PZ (21,2) = X*Z Tw;u? )731
0357 PZ(2,2.2) = Xt (S (1.-QZ) =zI /3 T'nO7)0740
0058 PZ(1,1,2 = PZ(2,2,2) *PQR/R To003751
0059 PZ (NN+ 1,l, 1) = 0. T*O007j7
0060 PZ(NN+1,1,2) = 0. TW )00 77
061 PZ(NNf 1,2, 2) = 0. TO0 0781
0062 ?Z(NN ,1,2) = 0. T.JDO 7,,
0063 IN = X*'NQ T7;-O) 3)
0064 PZ(NN ,1,1) = XN I"'Our, lG
0065 Z (NN 2, 1) = XN*Y TiO )8 2)
0066 PZ (NN ,2,2) = XIN (k+(1.-P)

=
Y) /p TlWUO0JP3'

0067 ?Z (NN+ 1,2,1) PZ ('N,2.2) *.~$S/S TWt)OO 1j4 )
00368 C=0 ,W Otf" 5rt
006q DO 102 I1=1, NN1 Ti '0; 6:)
0070 IQ(I1) = I1-1 T 0 4()OH7)
0071 DO 102 I2=1,2 ')O 180
0)72 DO 102 I3=1,2 TiOO0'4,)O
0073 102 C=C+PZ (11,12,I3) TWO )0n0o
0074 DO 103 I1=1,NN1 TWO';) 139
0075 DO 103 I2=1,2 4;0 .l.2 5
0076 DO 103 13=1,2 TWO1 )93
0)77 103 PZ (I1,I2,13) =PZ (I1,I 2,I3) /C .40;Uq94 G
0078 u ITb (6, 9 ) '"W30095 
0979 PrITE (6,31) ((((I%(I1, 2,13 ,Ij=1,2),12=1,2), 1 (I1), oq h3

1 I 1= 1, NN 1) ) rW, J097C
00&) 31 FORMAT (30H PROBA3ILITY DIST1IBUTON / -WO009O3

1 / 10X, 3H0 0, 12X, 3H 1, 12, 1 , 12, 3 1, 12X,1 1, TO3oU930
1 15X, 1HN// TW(10 390
1 (6X,4E13.6,I15/)) TWO01010

C Z1 = PROS HEAD 1 OPEPATING TWO) 1)2)
Z2 = PBOB HEAD 2 OPEIATING TWOO1030

C Z3 = iXPECT3D NUMBER PIECES :': JE:l1 TWO 1) 4'
Z4 = PHOB QITEUE EMPTY T4001053

C Z5 ? PROB QEdI.EU FULL TW0o1053
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FORTRAN IV G1 RELEASL 2.0 MAIN DArE = 71q91 17/29/43

C Z6 = PROB O 0 TWO' 137
C Z7 = PROB 0 1 TWOO10P0
C Z8 = PROB 1 0 TWOO 9 1'9)
C Z9 = PROB 1 1 rwoo 1 0

0081 Z1 = 0. TW0 11 10
0382 Z2 = 3. TWO01123
00'83 Z3 = 0. TWO 1130
0084 Z4 = 3. TW001149
0085 Z5 = 0. TWO01155
0096 Z6 = 0. TwO0 1160
0087 Z7 = 3. TK001173J
0088 Z8 = O. TWO 11P3
00R9 Zq = 0. TW1 YO1190
0090 DO 7 J=1,K TWO

1
1 2)0

0091 BB=(J-1)/2 TW0I1210
0092 B1=J-1-2*BB TWO) 122.)
0093 N1=BB/2 TWO01230
0O94 AN=N 1 TWO;) 14 )
0)95 A1=BB-2*N1 TWOO1S 50
0096 NP = Hi + 1 TWO0 126
0097 P2(J) = PZ(NP,AI+I,B1+1) TWO01270
009" IF (A1 .EQ. 0 .AND. N1 .LT. NN) Z1 - Z1 + ?Z(NP,A1+I,B1+1)-k. TWO012iO
0)99 IF (A1 .EQ. 1 .AND. N1 .LT. NN) Z1 = Z1 + PZ(N?!,A1+1,l1+1)1 (1.-?)TO0u1293
0100 IF (t1 .EU. 0 .AND. N1 .GT. 0 ) Z2 F Z2 + PZ(NP,A1+1,1i+1)*S TW)01303
0101 IF (B1 .EQ. 1 .AND. N1 .GT. 0 ) Z2 = Z2 + PZ(NP, 1+i,B1+1)" (1.-Q)T0)1 310
0102 Z3 = Z3+AN*P2 (J) TWO0 1320
0103 IF (N1 .EQ. 0 ) 24 = Z4 +P2(3) T7O 3133)
0104 IF (N1 .EU. NN) Z5 = Z5 +P2(J) TWO01340
0105 IF (A1 .EQ. 0 .AND. B1 . Q. 3) Z6 = Z6 + 22(J) TWOC1357
0106 IF (Al .EQ. 0 .AND. B1 .EQ. 1) Z7 = Z7 + P2(J) TW0C)01363
0107 IF (A1 .EQ. 1 .AND. B1 .EQ. 0) Z8 = Z + P2(J}) TWjO1370
0138 IF (Al .EQ. 1 .AND. B1 .EQ. 1) Z9 = Z9 + P2(J) TWO'1380
0139 7 CONTINUE TWO01310
0113 WRITE (6,98) TW001400
0111 WRITE (6,20) TWD 01410
0112 20 FORMAT ( 20H TOTALS ) TW001420
0113 WRITE (6,15) Z6,Z7,Z8,ZQ TWO014 10
0114 15 FORMAT (4PF15.5) TW() 1440
0115 WRITE (6,98) TWO01450
0116 WRITE (6,98) TW0)1469
0117 Z10=Z3/A N100. TWO01470
011q WRITE(6,8) Z1,Z2,Z3,210,Z4,Z5 TWOO01480
0119 8 FORMAT ( TWOO1490

1 29 H EFFICIENCY E1 S F9.5/ TWY01530
1 29 H EFFICIENCY E2 F9.5/ TWO031510
1 29 8 AVERAGE STORAGE FILL = FP.5/ TWO1520
1 29 H AVERAGE STORAGE FILL (9) = F9.5/ TWO0153O
1 29 H PROBABILITY STORAGE EMPTY = F9.5/ TWOO01540
1 29 H PROBkBILITY STOPA;E FPLL = F9.5/ TWO01550
1) TW03 1560

0120 9999 CONTINUE TQO 1570
0121 SO TO 199 TWO01590
0122 1000 CONTINUE TWOC 1S90
0123 ZND TDO16 37
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A.2 The Boundary Transition Equations Generator

This program is written in the IBM FORMAC Symbolic Mathematics

Interpreter language (See Tobey et.al.[1969], Trufyn[n.d.1), a

superset of PL/I.

A sample output which includes only the lower boundary corner

and edge state transition equations for a three-machine system with

storage capacities Nl=N2=10 appears on pages 264- 266.

The input to this program is not formatted. The following data

is required, in this order:

K, the number of machines in the line;

i, Pi, ri., the machine indices and failure and repair probabilities

for i=l,..,K.

(Note that i must be an integer, but the failure and

repair probabilities are declared and hence treated
by the program as characters. A sample input may thus
be: 1, "Pl", "R1".)

i, N. the storage indices and maximum capacities for

i=l, and N must be inteers. ecause N, a-1.

(Note that i and Ni must be integers. Because Ni are

used as upper limits on several loops in the program,
these can not be given as characters.)
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-, - .--- l l --( - -m -----' ? ----~ -, - , --, ------ -? ---- --l ----. -, --.-, ----..
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,·.EOUATION N0. 14 -

ZERO · - P.( 1. 2. 0. 0, I ) . P.4 1. 3. 1, I, 0 P2 Pi A3 * R * I P.-( , 3, 0. 1. ' ) 2 I - 4? * )
---- --- ---- --- ---- --- -------------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

41 I* 1 P.( 1. 3, 0. 0, 0 I R3 * ( - P3 + I 4 P.( 1. 3, 1, 1. 1 ) P2 Pi * I - P3 * I ) ( - R1 * I I 4.( l, 1,
--------------------------------------------------------------------------------

0, 1, I I P2 * 4 - R2 ) 1 ! ( - P3 * ) I - RI * 1 ) P.( 1, 3, 0. 0, 1 )

---EOUATION NO. 15 ...
ZEO - P.4 1, 2, 0. 1 * P.t 2, 1. 1, 0, I 4 Pt R2 o3 * R - 1 I ) P.( 2, 1. 0, , I , ! 2 Pt * P - P2 * 4 

P. Z.,, 1.l, 1, I ) Pi P3. ( - P2 . I I -- . }P.( 2,1, O. 1, I ) 03 (- -4+ I ) P.[ 2?, 1, 0, O, 4) PI

R2 * I - RI · i ) ( - RI * I I P.( 2, 1, 0. 0, 0 ) 42

· *-EOUATION NO. 16..
ZERO & - P.( .It 2, 0. 1, ) * P.1 2t 2, It 0, 3 Pt R2 R3 * ( - 4l * 1 ) P.( 2, 2, 0. 0, 3 ) 2 R1 + ( - P2 * 1 

P.4 2, 2. 1, It, 0 ) Pt R3 * - P2 * I ) I - RI * I I P.( 2, 2. 0, t. 0 ) R3 * I - P3) , I P.( 2, 2, 1. 0, 1 ) P1

R2 * ( - P3 * I ) ( - RI + 1 ) P.4 2. 2. 0, 0, I ) '12 * - P2 * 1 ) ( - 03 * I ) P.( 2, 2, 1, 1, I ) P1 * t - '2

1 I I I - P3 , I ) I - R1 * I I P.( 2, 2. 0. 1. I I

--- EQUATION '0. 17
211O . - P.( 1, 2. 1. 1t 0 ) * P.4 I, 1, 0, 0O I 12 PI 41 + P.L 0, 2, 0. 1, I ) 0 R1 * 4 - P2 * I ) P.( 1. 1, 1, I

· 1 ) P3 [ ( - R3 1 I ) P.( L. 1, 0, 0, 0 22 R1 - .3 * I I P.I O, 2, O, 1, 0 }) [ * - P2 , I - PI )

I ) P.4 1. 1, 1, 1, I ) P3 · ( - P2 * I ) ( - PI · I I ( - 33+ 1 P.( 1. 1, 1. 1, 0 4

·*sEQUATIOG NO. is ...
ZrRO = - P.4 1. 2. 1, It, I * P.4 1. 2, 0. 0. 0 4) 2 .A RI 1 P.- 0. 3. 0. 1, 0 ) 13 RI * ( - P2 +I ) '.( 1 2, 0, I
--------------------------------------------------------------------------------

0 I R3 RI ( - P3 * I I P.! 1, 2, 3. 0, I I R2 R1 ( - P * ' I P.( O ,3. 0. 1, I I RI + ( - P2 + I I { - P3 
----------------------------------------...............................................................................
I I P.4 1. 2. 0, 1, I 4 R1 * 4 - '2 * I 4 ( - PIt * I ) .4 1. 2, 1, 1, 0 ) 43 * 4 - P2 * I ) { - PI · I ) 4 - pi
-------------------------------------------------------- ---------------------------
* 1 ) P.4 1, 2. 1, 1. I )

..........................
***EQUATION 4O. 19

ZERO · -P.( 2, O., O, I I ( - Z . I P.( 2, L.1, , 3 P1 . (-2 14 -P * + ) P.4 2. 1t, 0, 0, 0
--------------------------------------------------------------------------------

4 ;3 · ( - p3 · L ) 0.( 2. 1. 1. 1. 1 I P' PI I - 42 * 1 ) '.4 2. 0. 4, 3, 1 ) Pt * ( - 42 ) 1 4 I - pi I I P.
---.......--.................--........................................................................................

( 2, 1. 1, 0, 1 I Pi · ( - P3 * I ) I - I * . I P.( 2, I, 3, 1. I 4 02 * 4 - R2 * I I ( - RI * I ) P.4 2. '¾ 0, 0
--------------------------------------------------------------------------------
, I ) 4 ( - 82 * I 4 ( - PI * i ) - R1 * I I .1 2, l. 3, 0, 1 4
-- -- -- ------- -- -- -- -- -- -- -- -- - -- -- -- -- -- -- -- -- -

·.. EOuArTION NO. 20 .
ZERO . - P.4 2, 0, 1, 0, I I . 4 - R2 * 1 ) P.( , 1, 0 0, 3 I ; ( -R I [ ) P.( t, 1, 0. 1, 1 ) P2 41*
--------------------------------------------------------------------------------
- R2 * I I P.4 1. 0. 0. 0. I ) R1 * ( - ;2 * I 4 ( - '3 1 4 :.4 I , 4, 0, 0, I ) RI * ( - PI * I I . I, 1, I. I 1

--------------------------------------------------------------------------------
O 4 P2 .4 * ( - Pt * 1 ) P.( 1. O, 11 , t, I 2 * I - P1 * I ) 4 - P3 * I ) .1 ,1. 1. 1, 1. 1 ; P2

*a*(OUAT ON NO. 24 .
ZERO . - P. 2, 1. 0. 0, 4 * P.( 2, 1t, 1.t 1. I I P2 PI ' * - 2 * 1 ) P.4 2, 1 1. 3. 1 ) Pt 3 * 3 - 1 * 1 )
--------------------------------------------------------------------------------
P.4 2. 1, 0, 1, I I P2 P3 * I - 12 * I 4 l - RI * I ) P.I 2, 1. 3, 30 , , ) P3 * - q2 * 1 4 ! - 83 i ) P. 2. 1.,

1t, 0, 0 Pi · ( -82 * t ) 4 - * 1 4 ( - R1 * I ) P.4 2, , 0, 30, 3 1
--.....-- .- ..... --.-- -.....-...........------------...........

·S*EOUAT 1N04 'O. 22 ...
ZEO · - P.( 2, 1. 0, 0, I 4 * P.( 7, 2. 1. 1t, 0 t P2 1 , ( - ;2 + 1 ) P.4 2, 2, 1, 0, 3 I Pt 13 * ( - 4R * I 

P.1 2. 2, 0, 1, O ) P2 13 - 4 - 2 2 1 I - I * 1 ) .( 2., 2. 0. O, ' ) RI * ( - '3 * 1 ) P.4 2. 2. 1, 1. I ) P2
--------------------------------------------------------------------------------
P1 · I - 12 · I ) t - P3 · 1 ) P.[ 2, 2, 1, 0 1 2 1 * I - PI * I ) 4 - RI * I ) . 2 . 0. 41 2 * ( - .12
----- -------- ------------ ---------- -- - - - - - -- - - - - - -- - - - - - - -- - - - - - -- - - - - - -- - - - - - -
* I I 4 - P3 * I ) ( - ;t * I I P.( 2, 2, 0. 3, I I

------------------------------------------------
· EQOUArION '40O. 23t.

ZF0O · - P.( 2. 11, 0, 1 1 I * P.( 1, [. 1. 0, 0 4 P1 A2 RI 4 I - R1 * 1 P.( t, [, 0 0, n I 42 RIt + .4 3, 3, [, 3
--------------------------------------------------------------------------------
, I ) Pt 2 , I - P3 ' I ) 0.( 4 , 1, 1, 0, 1 ) e1 2Z - - I , . 0. 0. I1 12 * ( - ,' · I 4 I - 41 I

[ 4 .4 3. 1. 0 , 1 4 3? * 4 - 02 * I 4 I 3 o I 4 P , 3, , 4, 1 , I . L I 1 ( - 2 * I ) 4 4 - P3 A 

-----------------------------------------------------------------------------------------------------* I I P.4 3. 1. 0, L, I I

"''-'---~-----------------------· *EQUAT ION NO. 24,ZERO . - P.1 2, 1,4,0, 0 ! ·,4P( 1, 1, 0, l, L, 2P3 1RI -42 I I . ,I, 0, 0, I I3 1 -2* I 14
( -13 1 I I P.4 1. 1, 0. 0. , ) RI " I - 01 * I 4 '. 1 [, , ·. 1, 4,11 0 3* 4 - 0 1 4 4 - * I I .2 I, I.

1. 1. 3 ) P2
.... -- --- -...
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*'vEQUATION NO. 25
ZERO - - P.( 2, 1, . 0, 1 P.( 1. 2. 0, 1, 0 1 P23 R.I R - 42 · 1 ) P.( ., 2, 0, 0, A R3 RI + ( - PI + I 

P.-( 1 2, 0, I, I I P2 RI * ( - R2 * I ! 1 - P3 * 1 I P.I 1, 2, 0. 0, 1 I RI * I - P1 * 1 I P.( 1, 2, 1, 1, O ) P2

R3 + I - P1 + 1 ) { - P3 1 i ) P.( 1, 2. 1, 1, 1 ) P2

"' "EQUATION NO. 26 '

ZERO - - P.( 2, 1, 1t 1,t 1 ) P( 2, It 0. 0, 0 R2 R3 RI * P.( 2, 0. 0. 0o, 1 ) R2 1 RI - P3 * I 1 P. 2. 1, 0. O

I ! R2 RI * I - P2 * I I I - P3 * I I P. 2, It. 0, I, I I1 * - PI + 1 1 P.( 2, 1, 1, 0, 0 { R2 R3 + 1 - P1 
-------------------------------------------------------------- -- ---------------------------------
1 ) P.( 2, 0, 1, 0, 1 1 R2 · - PI 1 I I - P3 · 1 I P.( 2, 1, 1, 0, 1 { R2 · i - P2 · I ( - P1 + I - P3

........---.............................................................................................................
* I ! P.( 2, 1, 1, 1. I I

;'ZEOUATION NO, 27
ZERO · -P.( 2, ,0 O, O, 0 * P.( 2, 2, 1, ,1 P2 P1 P3 + I - RZ * I ! P.( 2. 2, 1, 0. I ) P1 P3 · I - RI + I 
-- -------------------------- - -------------------- ------------------
P.( 2, 2, 0, I. I ) P2 P3 * ( - R2 * i ) I - RI · I ! P.1 2, 2, 0. 0, 1 } P3 · ( - R3 * I ] Pd( 2, 2, 1. 1, 3 ) P2

........---.............................................................................................................
PL 4 ( - R2 * 1 I ( - R3 * I I P.( 2. 2, 1, 0, 0 1 "I + I - R3 1 I I - RI · I ) P.( 2, 2, 0, 1, O ! P2 + ( - R2
--- --- --- ------ -------------- -'---- - - - - - - - - - - - - -- - - - - - - - - - - - -- - - - - - - - - - - - - -
· I 1 I - R3 · I I I - RI * · I P.t 2. 2, 0, 0, O 1

*,',EOUATION NO. 28 *-- -
ZERO - P.( 2, 2, 0, 0, I + P.( 2, 3, 1, I1 0 1 P2 P1 R3 1 - R2 1) P.( 2, 3. 1. 0.o 0 P1 R3 { - RI * I I

P.I 2, . I, P3R 3 · ( -P RZ · ! ! - RI · I ) P.( 2. 3,O, 0 0 R3 · - P3 + I ) P.f 2. 31. 1, 1 P2

P1 · I - R2 * ! ! ( - P3 + I ) P.( 2. 3, I, 0, I p PI · - P3 · 1 I 1 - R1 · I I P.( 2, 3, 0, 1, 1 ) P2 * I - R2
.......................................................................................................................

! I I - P3 · I - RI + 1 ) P.1 2. 3, 0, 0, 1 I
......................................................

· 'EQUATION NO. 29
ZERO E - P.( 2. 2. 0, I O 1 * P.( 3, 1, 1, 0, 1 1 pI 42 P3 R { - R1 + 1 P.( 3, 1, 0, 0, 1 I R2 P3 · ( - PZ + I

P.( 3, 1, 1. 1, 1 ) P1 P3 · I - P2 I 1 1 ( - RI · 1 ) P.1 3, 1, 0, 1, 1 ! P3 · I - R3 · I ) P.t 3, 1, 1, 0, O 1 Pt
.......................................................................................................................
R2 * I - R3 · 1 I ( - RI * 1 1 P.( 3, 1, 0, 0 0 ! R2

',, EOUATION NO. 30 
ZEIO - P.( 2, 2, 0, 1, 1 I * P.( 3, 2, 1, 0, 0 P P R2 43 R 1 - 1 * I I P.( , 2, C. 0, 0 2 R3 ( - P2 · I !

P.1 3. 2, 1. 1, O I PI 43 ( - P2 I ) ( - l · 1 I P.( 3, 2, 0, 1, 0 1 R3 · ( - P3 · 1 ) P.( 3,. 2, 1, 0, 1 1 P1

R2 * I - P3 , I ) ( - RI * 1 ! P.( 3. 2, 0, 0, I I R2 · 1 - P2 I I { - 03 ' I I P.( 3, 2, 1. 1, 1 ! PI . ( - P2

) ( - P3 * ) ( - R I P,. 3,2, 0,1, I I

.'eEOQU-TION NO. 31 -- *
ZERO · - P.( 2, 2, 1, 0, 0 I * P. t1, 2, 01, I P2 P3 RI · I - Rt2 1 ) P.( 1, 2. 0o, 0, I P RI · - i 4 

P.( I, 2, 0, I, 0 ! P2 R[ · ( - 42 1 I - 43 1 I P.! 1. 2, 0. 0. 0 )1 R - 01 + I ) P.( 1, 2. 1, I, 1 P2

P3 * ( - P1 * I I - 43 · I ) P.( 1, 2, 1, 1, 0 ) o2

~..~~~~~~~~~~~~~3 ....~........................
"sEQUATI ON NO. 32

ZERO · -P.( 2,2,Z e 1 0, 1 P,( 1.t 3, 0, 1, 0 1 P2 R3 R I - 2R I P. 1,3,0 0 3 R 1 1 R Pi · I 

P.1 1, 31, 0. , I 1 P2 RI · ( - 42 * ! I I - P3 1 ) P.-1 1, 3, 0. 0. I 3 R1 * I - Cl ' I 1 P.1( - , 3. 1 1, 0 -P2

R3 . I - P1 t I ) ( - 3 · 1 IP) I 1.3, I, 1. I P2

"'EQUATI ON NO. 33
ZERO - - P.( 2. 2, 1. 1, O ) * P.I 2, 1I 0, 0, I ) R2 P3 91 0 I - P2 * I ) P,( 2, 1, 0. 1, I ) 03 R4 3 ( -I3 · 1 I

-- ---- ----- '- -"'-'-" -- """"~""' " " " I""- ----- ---- -- "'
P.( 2, 1, O 0. 0 1 42 41 · ( - P1 * % I P,( 2. 1, I, 0, 1 I 42 P3 * ( - P2 1 1 1 - PI + 1 I P.( 21, 1, 11, 1 
-- -----------------------------------------------------------------------------
o03 * - P1 * I ) ( - 43 * I I P.( 2, 1. 1, 0. 0 ) 42
-----------------------------------------------

"'EQuATION NO. 34 ,
1RO · -2O.0 , 2, 1 e 1, I -· P.L 21 2, O, O, 0 i R3 1 l t - 02 , I I P.t 2, 2, o , ( - PP , R RI

P.( 2, 2, - 2 0, eI I t - P2 · ! ¢ -I P3 ' L ) .( 2-12, O, 1, L ( -I Pt I P-(2 2,. 1, 0., -P 2
.---------------------------------------- . . .... I.... ....... 2,...2...... ......

R) · I - P2 - I I Ptt+ I I P.( 2, 2, 1, 1, O I m3 * I - P I * ! I I - P) l ·I P.I 2, 2, l, O, i I It · ( - P2

·~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~··--I- --- --- ---- ----- - - - ---- -- ----- --- -- -- --·- ---- ---- -- --,-
----------.........-----....--------............. o.-.....



-267-

INPUI IUOFOR.,AC P?.ECr(JCESSO?
BU 'J, RY: F-RCED iJ RE. C I i NS (JAIN) ;

FU)RMAC UPTIUNS;
GEI LISi (t,) ;

·Livu: FEGIN; 0iCLAR NSIO (N1 ) , M. AXST(N+1) ,INSIO(+1) ,M.ACHI (N) , IN1AC (N);
DLCLAR iiE.PH (N) ,FAIL (N) ) CHARACIER [N/10+2) VARYING;
LECLARE (FiNAL,FRCG3) CAfiACTER (10*N) VARYING;
DECLARI Cdli CIARATTER (5*N) VARYING;

LCC?01: DC J=1 IC N;
Ghl. LiSi i,FA1L iI), RE (I) ) ;
LNE LCOPO1;

LOOP(0: ECC ,J= t C N-1;
G;fI LISI (I, :AY.Si (1+ 1));
ktl: LOCP02;
tAxs I1) =0; ""A X1 (;N+ 1) =0;
.JN3IA1A=£i; NSI$A2=PRUE (MAXST+) ;

SA X Si (N + 1) 1;
iN SR i 1) =1; I.iSlC ( + 1) =0;

I E1' = 1;
LOOPA: C0 N231-1 ',c NE'2A2; LOCP1: D O INC2=1 TC NSIA1;

NoU [I = iDL 1- 1;
LCi'2: EC IN;E3=2 , --1:

N STiR (iNi3) =NJ U/ ({MAXS' (IN L3+1) +1)
DtU i= NtLdi- ( (;: AXS - (A i j I + 1 +1) *NS;R (I N D3) );

ENC LDO(:P;
N!S TL ('i) = NDU.;
NDUl = I C 2-1;

LCU.3: Lu IN 3= 1 20 N N;
C; ACil N C3) =N UN'/ (2* *LN-IND3) ):

I;D)U.M=1.IU. - {r-ACwHi [I.N'23) ~ (2* * (N-!NL3;) );
irN LOCP 3;
iNCEX=();

LGLCGU3:: CC I NC3=2 L N;
ir' NST(; R (iO3) >3 6 (N:AXSI (ITD3)-3) > NSTO(J (IND3)

%H1EN G(C r0 NCLCCE1;
IF 2 >=NSl)h (IN L3) 'IHEN INDE;X=1;
iF NS2TCR, INDJ) >=(IA XS N (ZN23)-2) T.EN i.LDLX=1;
ENE LCCP35;
IF INDEX = O3 T:ia: Gu :2 E!:NLC,1;.

LGOi11 : CC iN;=2L 7C N;
iF NSZCR iNtCJ -D ) i= N GC T;O S102;
iF tACiI (.iN3J) = O rSEiN Oc 10 ENCLOCTF1;

510): IF NSTC (iNLJ-1 = C lHti G;C To ELCCPi1;
iF hlNEJ=2 SiLN C To S101;
iF NSTC' liNDj- 1j = 1 6 ŽACHI (IND.3-2) = 1 IiTEN vGv TO ENDLOCP 1;

S1C1: iF MAC;lL (;ND3- ) =1 TlEN NO 2J £NCLCCP1;
ELSE v C iNDLC, 11';

S102: iF NS'i iD3) '-= 1 % 'iE.N C TO S1J25;
IF M.ACi'i (2;[L, ) - 1 :ihN 2C TOC _;NLO,1 1:
ELSE G(, i' S1UC;

S1025: IF NSTR (iN3) -·= MAXSi(iNNL) THEitN GO IO 3105;
IF MACiiL {i:;-3-1) = ' %iiN G0C TO ENDLCP;1;

S10': iF NSTGRQ iN;J+1) =nAS$I (INr,3+1) ItHIN ,O TO ENDLOUP11;
IF INE3= ',iEN GC TO S1O0;
IF NSTO(L kiNDJ+ 1) = (AXS' (IN3*I+1) -1j) £ ACiI (IND3+1) =1 IHEN GO TO
ENZLCCP1 I;

S104: IF MAC'il (iNJL) = 1 IHEN 20 iC ENCLCOF1;
FLEE JC TO E.LNDLCCP 1;

o1S5: irF Ni.,u {.N'3) 3 - V;AXSi (IN N 3)-1 %IHEN GC T0 ENDLCCP11;
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IF MAChI (rND3-1) = 0 THEN GO TO S103;
ENDLOOPI1: END LOOCF 11;

I INAL='P. (i';
LOOP91: LO 1ND3=2 TC N;

INI=O;
S150: I=NSIx i(INDL3)/(1C** (IN+1)) ; IF I=0 THEN GO TO S151;

INI=INT+I; GC IC S150;
S151: CHR=NS'iOR IND3) I ',';

CHR=SU SIR (CtiR, -INi, 2+iNT).;
kINAL=FINAL I IClif;

INE LOOP91;
LO1OC1: EC IND3=I It N-1;

CIfi=MACii (IiN3) 1 I ', ';
ChR=SULSTH(CiiR,,2);
'INAL=FINALI ICli;
END LOCP101;
CHii= =MACRiL (N) I ' ) ';
CHl= SUES I (CHR, 9, 2) ;

FINAL=FINALj I CR;
LEI (SU;=J) ;

LCOPE: LO IDD1=1 IC NSIA2; LOOP4: DO IDD2=1 TC NSIA1;
NDU.=IDD 1- 1;

LCOP5: CO 1NL3=2 IO N-1;
1NSiC (IND3.) =NOUr./ ({AXST (INL3+1) + 1) ;
NDU==NUMt-- i (iAY. SI lIND3+1) +1) *iNSTC (IND3) );
ENE LOOP5;
IN SIC (N) =NDU i;
NDUM-=ID2-1;

LCOPt: EC .IND3=1 IO N;
INMAC =IN 3) =NDIŽ]:/ (2** (N-IND3) );
NDlUM=NLDUi- (INMAL (IND3)* (2** (N-IN(3)) ) ;
ENE LOCP6;

LOOP61: CC iNC3-2 IC N;
IF AESiNSIOR (INJ) -lNTOC (IND3)) > 1 THEN GO TO ENDLOOP4;
ENE LOCP61;

LCOL12: LO IND3=2 IC N;

iF INSITC LND3) -=0 TIHN GO 1O S202;
IF INMAC(INL3) = 0 THEN GC TC ENDLOCF4;

S200: IF INSIO(IND3-1) = G I!HEN GC TO ENELOCP12;
IF IND3 = 2 ElEN GO TO 5201;
iF INSTO(.iNDJ3-1)=l & IN.AC(IND3-2)== THEN GO IO ENDLOOP12;

5201: iF INMAC(1NL3-1) = 1 THLiN GLC T3 ENELOCF4;
£LS GCC 10 hNDICCP1i2;

S202: IF INSIO(IND3) -= 1 ITHEN GO TO S2025;
iF IN!.AC(iND3) =1 THEN GO TC ENELCCE12;
ELSE GO 1O S20C;

S2025: IF 1NSTO(1NE3) -= MAXS1(INL3) iHEN GO IO S205;
iF iNMAC((1i,3-1) = 0 THEN GO TO ENDLOOF4;

S2O0: IF iN:STOC 1NuJ3+ 1 =MAXSI(INE3+1) 71HEN GG IO ENDLOOP12;
IF iND3 = \ 'i N GO I(0 S504;

IF N bSIC. IN i; 3+ ; = i(.AXSTN (:N3+1) - 1) & INAC (IND3+1) =1
IHEN GO 1UL Z~NDLCGF12;

S204: IF INmAC (1NL3) = 1 TI1FN G(O TO ENLLCCPl;
ELSL GO 10 ENDLCCP12;

S205: IF iN$U (I.ND3) -= (6AXS {(INE3)-I) IhEN '30 TO ENDLOOP12;
IF INMAC (IND3- 1) = TO HEN GO 1 S203;

IN;LOOP12: N' L(COP1z;

LET (TRN=I) ;
LOCP7: Lt INC3- I 5I0 N;

IF INM(ACIINL3) -= 0) IiEN O ICT S608;
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LET (IRN= ( "MACHI (INC3) "*"R EPR (IND3) " + (1-"MACHI IND3) ) * (1-"REPR (
2N 3) ") ) *IRN) ;
GO TO ENDLOOP7;

S608: IF 1NSTU(iND3) =- 0 & INSTO(IND3+1) -= MAXSZr(INC3+1) THEN GO TO
S609;
1F MACHI (lNC3)=1 THEN GO TO ENDLOOP7; ELSE GO TO ENDLOOP4;

S609: LET (TRN= ( ( 1-"MACIiI (IND3) ") *"FAII (INC3) "+" MACHI (IN 3) "* (1-"FAIL(
INC3) "))*TRN);

ENGLOOP7: END LOOP7;
LOOP8: DO IND3=2 1O N;

IF INSTO(IND3) -= 0 1HEN GO IO S613;
iF INSTO(IND3-1) -= 0 THEN GC TO S612;
1F NSTOR(INk3) = 0 THEN GC TO ENDLOCP8; ELSE GO IO ENDLOOP4;

S612: IF NSTOR (iND3) = MACI (IND3-1) THEN GO 10 ENDLOOP8; ELSE GO TO
EN DLCOP4;

S613: IF 1NSTO(IND3) -= MAXST(IND3) THEN GO TO S615;
IF INSTO iiND3+I) -= MAXSI(IND3+1) THEN GO TO S614;
IF NSTOR(INDJ) = MAXSi(IND3) IHEN GC TO ENDLOOP8; ELSE GO TO
ENELCOP4;

S614: IF NSICR(1ND3) = (m.AXST(INC3) -tACH1 (IND3)) TItEN GO TO ENDLOOP8:
ELSE GO TO ENDLCCP4;

S615: IF INSTC(iND3-1) = C THEN GC TO S617;
IF INSTO( IND3+1) = ntAXST(IND3+1) THEN GC TO S616;
iF NSTOR (iND3) = (INSIC (IND3) f+ACHI (IND3-1)-MACHI (IND3)) THEN GO
TO ENDLCoiP; ELSE GO 10 ENELCOP4;

S616: IF NShiOR(LN3) (S3) TO(IND3) +MACHI (IND3-1)) THEN GO TO. ENDLOOP8;
ELSE GO TO ENDLCCP4;

Sb17: IF INSO(IND3t1) = MAXST(IND3+1) THEN GO TO S618;
IF NSIOCR IND3) = (INSTO(1ND3)-MACHI (T1N3)) TI;EN GO TO ENDLOOP8;
ELSE GO IO ENDIGOF4;

S618: IF NSTOR(INC3) -= INSTO(IND3) THEN GO TO ENDLOOP4;
ENLLOOP8: END LUOCP;

PRCB='P. (' 
LCOP9: DO IND3=2 TC ;;

I NT=O;
S152: i=LNSTC(IND3)/(10**(INT+1)) ; IF I=0 THEN GO TO S153;

lNI=INl+1; GC IC S152;
S153: CHR=iNSTO (IND3) II',';

CHR-SUBSTR ((CR,C -iN,2+INT) ;
PRCE=PFUOEI ChR;
tND LOCP9;

LOOE10: DC IND3=1 TC N-1;
CHR=INMAC (ND3) 'I ';

CHB=SUESIR iir, 5, 9,2)
PROB=PROBjj ICHB;
iND LOOP10;
CHi=IN=AC (N) I ') ';
CHR=SU ESTR (CH39,2) ;
PROE=PROBIJ CiR;
LET (SUJ=SUi+ (TRN*"?ROB"));

ENDLOOP4: END LOOP4; END LCCPE;
PUT LIST(' ***E5UATICN NO. 'TlE, ' ***')

PRIN2_OUT (ZERO=SUM-'"FINAL") ;
TEB=ITER+ 1;

ENDLOCP1: END LOOP1; END LOCEA;
ENE EOUNDaY;
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A.3 The Power Method Iterative Multiplication Program

This program computes the steady-state probability distribution

for a three-machine line by the power method. It is possible to speed

convergence by first solving a small problem and then performing the

6-transformation on the results in order to get an accurate initial

guess for the larger problem.

The input is as follows:

First Card: Columns 1-30: Failure probabilities (pi, i=1,2,3)

(Format F10.5)

Columns 31-60: Repair probabilities (r., i=1,2,3)

(Format F10.5)

Columns 61-64: Storage capacities (N., i=1,2)
(Format I2)

Columns 65-67: Value of 1/6 (> 1, since smaller problems

are to be solved first.) (Format I3)

Columns 68-70: Number of times the 6-transformation is

to be performed.(Format I3)

Columns 71-80: Convergence criterion (Note that £+c62

when the transformation is applied)

(Format F10.5)
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FORTRAN IV G1 RELEASE 2.0 MAIN DATE = 77159 18/58/39

C --- THREE STATIONS---SOLUTION BY SPARSE MATRIX ITERATION
C --- AND BOOTSTRAPPING
C -- ACCELERATE EVERY TENTH STEP
C -- SCALE MODIFICATION 2

0001 COMMON P,Q, P , R, S,R3,NN1 ,NNM2,K
I ,NP(2) ,AP(3).AR(3), NN11,NN21
2 , E&R,ERR2,NQ
1 .IX
4 , IM,IFACT,AFACT,KK

0002 COMMON /CS/ C1100001
0033 COMMON /!S/ IY(I3O00,2)
0004 COMMON / DRTY / Y1o000)
0005 DOUBLE PRFCTSIUN Y
0006 INTEGCR AA,88,A1,131,A2,B2
0007 DC 999 1=1,1000
0008 999 Y[( )=O
0039 :Q = 10000
OOL ERR2 = 1.E-6
0011 199 CONTINUE
0012 READ (516) P,G,P3,R,S,R3,NNl,NN2,IFACT,KK,ERR
0013 6 FORMAT (6F10.S,212,13,13 ,F10.51
0014 IF (INN .EO. O) 3O TO 199
001; 997 IF (NN2 .FQ. 0) ,s TO 191
0016 AFACT = IFACT
0017 DCO 000 I" = 1,KK
0018 WRITE (6,q7)
0019 q7 FORIM&T (11)
0020 IF (IM .E.. 1) GO TO 9001
0021 -RR = ER4/AFACT /AFACT
0022 P = . P /AF ACT
0023 C = C /AFACT
0024 R = . /AFACT
0025 S = S /AFACT
0026 P3 = P3 /AFACT
0021 R3 = 43 /AFACT
0028 NN1= NNl*IFACT
0029 NN2= NN2*IFACT
0030 9001 CONTINUE
00i1 NNII = NNI+ 1
0032 NN21 = NN2+ 1
0033 NP(1) = YNll
0034 NP(2) = NN21
0035 AP(1) = P
0036 AP(2) = O
0037 AP(3) = PA
0039 AR( ) = 2

0039 AR(2) = S
0040 ARI3) = R3
0041 iRITF 1{6,4) P,O,P3,R.S,R3,NNl.[NN2,ERR
0042 4 FORMAT 11 I 20HPARAMETFRS

1 4H P =F15.5/
I 4H 0Q =F5.5/
1 4H P3=F15.5/
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FORTRAN IV C! RELEASE 2.0 MAIN DATE = 77159 18/58/39

1 4H R =F15.5/
1 4H S =F15.5/
1 4H R3=FI5.5/
1 4H N1=110/
I 4H N2=l1O/
1 4H E =El5.5I

0043 WRITE 16,98)
0044 98 FORMAT (i//I)
0045 K=B*NNll*NN21
0046 IF {K .GT.1000) 0O TO 199
0047 CALL AMAT
0048 9000 CONTINUE
0049 GO To 19Q
0050 END
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FORTRAN IV 31 RELEASE 2.0 AMAT DATE = 77159 18/58/39

0001 SUBROUTINF AMAT
0002 COMMON PO, P3, R,S,R3tNNl,NN2,K

1 ,NP(2) ,AP(3),AR(3), NN1.,NN21
2 , ERR,ERRZ,NQ ,IX
4 ,IM,IFAfCT,AFLCT

000i COMMON /NS/ JNI.JN2
00)4 COMMO"4N /CS/ C(10000)
0005 COMMON /RS/ P(10000,2)
0006 INTESER A4,BB,1,81A29,82

I ,R
0007 IX 
000 DO 8001 11 = 1,2
0009 DO 8002 12 = 1,2
00) 00D R003 JYl = I,NN11
0011 00' S004 J'2 = 1 ,NN21
0012 CALL NTRA4S (tII2,JNL,INI,1)
0013 00 8005 13 = 1,2
0014 CALL 'TRA'iS (12,13IJN2,1N2,2)
0015 DOJ 9006 JI = 1,2
0016 CALL ATRA':S I1,Jl,Il,PPI,JNI,JN2)
0017 IF (PP1 .LT. .RR2) GO TO 9006
001 00D 8007 J2 = 1,2
001') CALL ATRANS (?,J2,12,PP2,JNI,JN2)
0020 IF (PP2 .Lt. 'RR2) GO TO 8007
0021 r, 8008 J3 = 1,2
0022 CALL ATRaINS t,'J3,3 1,PP3,JNI,JN2)
0023 Ax = PPI*PP2*PPI
0024 IF (4x .LT. EYR2) GCO O 9008
002' A2 = 13+2*I2+4*l1+8*1N2+P*NN21*(IN1-1)-14
0026 At = J +2*J2+4*Jl+.*JN2+8*NN21*(JN1--1)-14
0027 IX = Ix + 1
0028 P(IX,1) = Al
0029 (IX,2) = 42
0030 C(IX) = Ax
0031 BOOR CCNTIrUE
0032 8007 C NT UE
0033 8006 CCNTINUE
0 034 8005 CCNTINUE
0035 8004 CCNTINUE
0036 8003 CNTI NUE
0037 8002 CONTINUE
0038 80 I C3NTINUE
0039 CALL ITrE
0040 RFTURN
0041 END
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FORTRAN IV 1i RELEASE 2.0 ITER DATE = 77159 18/58/39

0001 SUBROUTINE ITER
0002 COMMON P,O,P3,R,St3,NNt1NN2,K

I ,NP(2) ,AP(31,AR(3), NN11,NN21
2 , ERR,ERR2,NO ,IX
4 ,IM,IFACT,AFACT,KK

0003 UIMENSION RR1(O1000),RR2(1000)
0004 DOUBLE PRECISION RRI,RR2
0005 K2 = K*K
0006 WRITE (6,9) IX,K2
0007 9 FORMAT I// ' THERE ARE',I,' NON-ZERO ELEMENTS OUT OF A POSSIBLE',

I 110/' IN THE TRANSITION MATRIX'//)
OOO ICOUNT = 0
0009 IF (IM .NE. 1) GO TO 9000
0010 AK = K
0011 AK = 1./AK
0012 00 6 1 = 1,K
0013 6 RR1(I) = AK
0014 8 CALL MATMLT(RRI,RR2)
0015 ICOUNT = ICOUNT + 1
0016 AX = 0.
0017 ex = 0.
0018 DO 7 1 = 1,K
0019 AX = AX +DABSIRRIII) - RR2(I))
0020 RR11 = RRI(I)
0021 7 BX = AMAXI(RX,RR11)
0022 IF tAX .LF. BX*ERR) GO TO 10
0023 TX = AX
0024 DO 3 1 = 1,K
0025 IF (RR2() ..LT. ERR2) GO TO 32
0026 RRl(I) = RR2(I)
0027 GO TO 3
0028 32 RR1II) = O.
0029 3 CONTINUE
0030 AX = 0.
0031 DO 33 1 = I,K
0032 33 AX = AX + RR(Il)
0033 AX = I./AX
0034 DO 34 1 = 1,K
0035 34 RRlII) = RRII) * AX
0036 IF (IICOUNT .EO. (ICOUNT/10)*10)

I CALL PRINT (RR1,NN11,NN21,ICOUNT,TX,RX,O)
0037 GO TO 8
0038 10 J=O
0039 IF(IM.EO.KK) J=l
0040 CALL PRINT (RR2,NN11,NN21,ICOUNT,AX,BX,J)
0041 RFTURN
0042 5 FORMAT (60X,E20.81
0043 31 FORMAT (3nHIPROBABILITY DISTRIBUTION ///

1 18E15.5/1)
0044 4 FORMAT (6110)
004S 9000 CALL SCALE (RRIRR2)
0046 GO TO 8
0047 END
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FORTRAN IV 31 RELEASE 2.0 ATRANS DATE = 77159 18/58/39

0001 SUBROUTINE ATRANS (Ll,L2,L3,PP,JNI,JN2)
0002 COMMON P,v,P3,, S,R3,NN1,N42,K

1 ,NP(2) ,API3),ARf3), NN11,NN21
0003 AL3 = L3 - 1
0004 IF (L2 .NE. 1) GO TO 10
0005 PP = 4RILI)*AL3 + (1.-AR(L1)!*(1.-AL3)
0006 .RETURN
00C7 10 IF (LL-2) 1,2,3
0008 1 IF (JNl .EO. NN11) GO TO 4
0009 5 PP = APL11)*(1.-AL3) + (l.-APILll)*AL3
0010 RETURN
0011 4 PP = AL3
0012 RETURN
0013 2 IF (JN .FQ. I .OR. JN2 .EQ. NN21) GO TO 4
0014 cn TO 5
0015 3 IF (JN2-1) 4,.',5
0016 END
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FORTRAN IV 1 KRELEASE 2.0 NTRANS DATE = 77159 18/58/39

0001 SUBROUTINr NTR&NS (A,e,N,NN2, II[)
C MODIFIED TO ACCOUNT FOR STORAGE BACKUP

0002 COMMON P,Q,P3,RS,R3,NN1,NN2,K
I ,NP(2) ,AP(3),AR(3), NNIL,NN21

0003 COMMON /NS/ IN(2)
0004 INTESER A,B
0005 N2 = N1

1 (A-1)*IU[III) - tB-1)*IDIIll)
0006 RETURN
0007 END



-277-

FORTRAN IV 31 RELEASF 2.0 IU DATE = 77159 18/58/39

0001 FUNCTION IU(IX)
0002 COMMON Pt,,P3,R, S,t3,NN,NN2,K

I ,NP(2) ,APi3),ARI3), NN11,NN21
0003 COMMON /NS/ IN(2)
0004 IF (IX .EO. 1) GO TO 1
0005OO r (NIX - 1) .NE. 1 1 GO TO I
0006 2 IU = 0
0007 RETURN
0008 1 IF (IN(IX) .EO. NP(IX)) GO Tn 2
000q IU = I
0010 RFTURN
0011 END
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FORTRAN IV S1 RELEASE 2.0 10 DATE = 77159 18/58/39

0001 FUNCTION ID(IX)
0002 COMMON P,O, P3,R,S, R3,NNN,N42,K

I ,NP(2) ,AP(3),AR(3), NNll,NN21
0003 COMMON /NS/ IN1(2)
0004 IF (IX .EQ. 2) GO TO 1
0005 IF (IN(IX + 1) .NE. NPIIX + 1)) GO TO 1
0006 2 '0ID = 0
0007 RETURN
0008 1 IF (IN(IX) .EO. 1 ) GO TO 2
0009 ID = 1
0010 RETURN
0011 END
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FORTRAN IV l1 RELEASE 2.0 MATMLT DATE = 77159 18/58/39

0001 SUBROUTINE MATMLT (Z1, Z2)
0002 COMMON P,Q,P3,R,S,R3tNNt,NN2,K

. ,NP(l) ,API3),AR(3), NNIL,NN21
2 , ERR,ERRZ,NQ ,IX

0003 COMMON /CS/ C(10000)
0004 COMMON /BS/ 13110000,2)
0005 INTEGER B

0006 DIMENSION 21(1000),Z211000)
0007 DOUBLF PRFCISION Z1,Z2

0008 L)C 1 I1-l,K
000q 1 Z2 (11)=o.
0010 00 2 IZ = 1,IX
0011 2 Z2(t(IZ,2)) = Z2{(BIZ,2)) + C(IZI*Zi(B(IZ,1))
0012 RETURN
0013 END
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FORTRAN IV Sl RELEASE 2.0 PRINT DATE = 77159 18/58/39

0001 SURROUTINF PRINT (X,N1,N2,II,AA,BB,IFLG)
0002 COMMON / PRTY / Y(10001
0003 DIMENSION X( 1000)
0004 DOUBLE PRECISION X

1 ,Y
0005 WRITE (6,1) II
0006 1'FORMAT (IHI, 1X, 'PROBABILITY DISTRIBUTION -- ITERATION ',

1 14///// 4X,'000', 12X, '001',12X. '010', 12X, '011',
2 12X,'100', 12X, '101', 12X, '110', 12X,'l11'//;I//

0007 N28 = N2*8
0008 DG 2 1 = 1,NI
0009ooo I = - I
0010 N281 = N28*I1
0011 WRITE (6,3) 11
0012 3 FORMAT ( //10X, 'N1 =',13//)
0013 IF(IFLG.EQ.I) WRITE(7,99)(X(N28I+J),J=1,N28)
0014 99 F'ORMAT(8E 10.5)
0015 2 WRITE (6,4)(X(N28I+J),J=1,N28)
0016 4 FORMAT (RE15.5/I
0017 CC = AA/BB
0018 WRITE (6,5) AA,BP,CC
0019 5 FORMAT (///' STOP CRITERION: AX =', E17.8, ' BX =', E17.8,2X,

1 2X,
1 'AX/BX =' , E17.8)

0020 EE = 0.
0021 K = N28*N1
0022 DD = AX
0023 AX = 0.
0024 DO 1002 I = 1,K
0025 1002 AX = AX + DABS (X(I) - YVII)
0026 IF III .LF. 30) GO TO 1000
0027 IF (II .N1. III/20)*20) GO TO 1000
002# ALAM = AX/DD
0029 EE = ALAM/I I .- ALA)
0030 1000 CONTINUE
0031 DO 1001 I = 1,K
0032 Y(I) = XiI) - EE*(Y(I) - Xl(I)
0033 1001 X[[) = Y(I)
0034 RETURN
0035 END
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FORTRAN IV ,1 RELEASE 2.0 SCALE DATC = 77159 18/58/39

0001 SU.ROUTINF SCALE (RRI,RR2)
0032. COMMON P,, P3,R ,SR3,NN,NN2.K

I ,NP(2) ,AP13),AR(3), NNJ11,N21
2 , ERRrRRRR2,N ,IX
4 IM, IFACT,AFACT

0003 INTEGER AL, A2
0004 DIMENSION RRIl000),RR2(1000)
0005 DOU8LE PRECISION RRl,RR2

2 ,RAT(3)
0006 RATlI) = AFACT*AFACT
0007 RAT (2) = AFACT
00OR RAT[3) = 1.
0009 NM1 = (N'411- )/IFACT + 1
0010 NO21 = (N2 1 -)/I r ACT + 1
0011 DO 2 JNI = 1,NNIl
0012 IN1 = (JN1-1)/IFFCT + 1
0011 IF (JN1 .iQ. 2) INl = 2
0014 IF (JNL .'O. 3 .[IR. JN1 .FQ. 4) INi = 3
0015 IF (JNI .EQ. NN1) IN1 = N"ll - 1
0016 IF (JNt .E0. NN11-2 .OR. JN1 EQ. NN11-3) ItN = NM11-2
0017 DO 2 JN2 = 1,NN21
00 1N2 = (JN2-11/IFACT + l
0019 IF (JN2 .EQ. 2) IN2 = 2
0020 IF (JN2 .tO. 3 .OR. JN2 .FO. 4) 1N2 = 3
0021 IF (JN2 .FQ. NN2) !N2 = NM21 - 1
0022 IF (JN2 .FO. NN21-2 .OR. JN2 .EQ. NN21-3) IN2 = Nu21-2
0023 CO 2 JI = 1,2
0024 00 2 J2 = 1,2
0025 0O 2 J3 = 1,2
0025 Al = J3+?*J2+4*JL+8*JN2+8*NN21*(JNl-l)-14
0027 42 = J3+2*J2+4*J1+8*IN2+R*NM?l*[INi-l)-14
0028 II = 1
0029 IF (JN1 .LT. ?) II = II + 1
0030 IF (JN2 .LT. 2) II = II + 1
0031 IF IJN1 .GT. NN1) II = II + I
0032 IF (JN2 .^T. NN2) II = II + 1
0033 2 RRI(41) = RR2(A2)/RAT II)
0034 CALL PRINT (RRI,N'I1lNN21,0,I.,1.,0)
00%5 RETURN
^OJ3 C.ND
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A.4 Block Tri-Diagonal Equation System Solver

The present version of this program is for three-machine lines

only. The program can be rewritten in a recursive language (e.g. PL/I)

in order to solve general k-machine lines. The necessary change is

indicated by the dotted line on the flow-chart on page 283.

The program uses the IBM IMSL subroutine LINV2F to invert the

lowest-level main-diagonal blocks. The closed-form solutions for the

inverses of these blocks may be incorporated in the program (See section

4.2.2).

The input is as follows:

First Card : Columns 1-3: Number of machines (in the present
vesrion of the program, this must be 3)

Column 4: An asterisk (*) in this column supresses

the printing of the probability distribution)

Next K Cards: Columns 1-13: Repair probability of machine (in order)

(Format E13.6)

Columns 14-26:Failure probability of machine (in order)

(Format E13.6)

Next K-1 Cards: Columns 1-5: Storage capacity (in order) (Format I5)

A sample of the output of this program appears on page 284.
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AMAT

KSIMAT BCMAT

I .

I I I .

M A I N PHIPSI

PRINT

Flow-chart of the Block tri-diagonal equation system solver.
(The dotted lines indicate the recursions necessary for solving
systems of transition equations for transfer lines with more
than three machines.)
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3 MACHINES AND 2 STORAGES.

MACHINE 1 FAILURE PROBABILITY: 0.100000D+00, MEAN UP-TIME: 0.10000002
REPAIR PROBABILITY: 0.2000000+00, MEAN DOWN-TIME: 0.500000D+01
EFFICIENCY (IN ISOLATION): 0.666667D+00

MACHINE 2 FAILURE PROBABILITY: 0.500000D-01, MEAN UP-TIME: 0.200000D+02
REPAIR PROBABILITY: 0.200000D+00, MEAN DOWN-TIME: 0.500000D+01
EFFICIENCY (IN ISOLATION): 0.800000D+00

MACHINE 3 FAILURE PROBABILITY: 0.5000000D-01 MEAN UP-TIME: 0.200000D+02
REPAIR PROBABILITY: 0.150000D+00, MEAN DOWN-TIME: 0.6666670+01
EFFICIENCY (IN ISOLATION): 0.750000D+00

STORAGE 1 HAS MAXIMUM CAPACITY: 4

STORAGE 2 HAS MAXIMUM CAPACITY: 4

PROBABILITY DISTRIBUTION :

N1 0= 
000 001 010 011 100 101 110 111 N2

0.0 0.0 0.0 0.13183D+00 0.0 0.0 0.0 0.0 0
0.0 0.0 0.42525D-02 0.34020D-01 0.0 0.0 0.0 0.0 1
0.0 0.0 0.51995D-02 0.887451D-02 0.0 0.0 0.0 0.0 2
0.0 0.0 0.47515D-02 0.76938D-02 0.0 0.0 0.0 0.0 3
0.0 0.0 0.43149D-02 0.0 0.0 0.0 0.0 0.0 4

N1= 1
000 001 010 011 100 101 110 111 N2

0.0 0.44718D-02 0.0 0.0 0.0 0.0 0.0 0.32957D-01 0
0.17467D-03 0.38044D--03 0.0 0.10063r-01 0.0 0.0 0.10631D-02 0.17133D+00 1
0.16458D-03 0.39255D-03 0.51171D-03 0.10548D-02 0.0 0.0 0.917190D-02 0.15987,-01 2
0.15691D-03 0.0 0.49270D-03 0.79309D-02 0.0 0.0 0.83329D-02 0.140861D-01 3
0.0 0.0 0.44590D-02 0.0 0.0 0.0 0.75519D-02 0.0 4

N1 = 2
000 001 010 011 100 101 110 111 N2

0.0 0.43394D-02 0.0 0.0 0.0 0.96877D-02 0.0 0.0 0
0.15678D-03 0.37092D-03 0.0 0.10009D-01 0.45799D-03 0.819760-03 0.0 0.20728D-01 1
0.15010D-03 0.401451-03 0.50743rD-03 0.93399D-03 0.41720r-03 0.73827r,-03 0.10647r-02 0.25207D-02 2
0.144250-03 0.0 0.45617rD-03 0.81363D-02 0.37921D-03 0.0 0.10488D-02 0.14l10D-01 3
0.0 0.0 0.45398D-02 0.0 0.0 0.0 0.81445D-02 0.0 4

N1 = 3
000 001 010 011 100 101 110 111 N2

0.0 0.42293D-02 0.0 0.0 0.0 0.93210L-02 0.0 0.0 O
0.14505D-03 0.36955D-03 0.0 0.0 0.38573D-03 0.739240-03 0.0 0. 10052Dt00 1
0.13796D-03 0.40984D-03 0.0 0.0 0.35670D-03 0.76266r-03 0.478021-02 0.86948r,-02 2
0.13474D-03 0.0 0.0 0.67640r1-03 0.33351D-03 0.0 0.4294s51-02 0.7662ZD-01 3
0.0 0.0 0.38330D-02 0.0 0.0 0.0 ().144.301-01 0.0 4

NI = 4
000 001 010 011 100 I0] 10 ;i N2

0.0 0.0 0.0 0.0 0.0 o.:y9741i -01 0.0 0.0 0
0.0 0.0 0.0 0.0 0.21',87r-02 0.44816D-02 0.0 0.0 1
0.0 0.0 0.0 0.0 0.19977D-02 0.422649-02 0.0 0.0 2
0.0 0.0 0.0 0.0 0.18557D-02 0,.0 0.0 0.13754D-01 3
0.0 p.0 0.0 0.0 o.0 0.0 O.779371-01 0,0 4

LINE EFFICIENCY = 0.54254D+00

AVERAGE STORAGE FILLS
STORAGE 1 : 0.19110D+01
STORAGE 2 : 0.15007D+01

AVERAGE STORAGE FILLS (FRACTION OF MAXIMUM CAPACITY)
STORAGE I : 0.47774D+00
STORAGE 2 : 0.37516rD+00

TOIAL IN-PROCESS INVENTORY : 0.341160+01
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FORTRAN ITV 1 RFLEASE 2.3 AMAT DATE = 78177 16/4d/48

0001 SUBROUTINE A.AT(INDEX,FINV) IATO)10
C'*****SUILDS AND INVERTS LOWEST L¥VEL MAIN DIAG3NAL BL3CK MAT !)02 0

0002 IMPLICIT REAL*8 (A-H,0-Z) ATO0 30
0003 CONO01 P(3), I(3) NSTOR (2) ,N,NW,L.MIT,NST,IDU.4,N I,ASTYB `MAT IN 
00)4 DIMENSION F(P,8) ,NREGN (4),In AC(3),MACIN (3),FINV ( W,),) KAREA (100) .ATD'05)OSG
0005 1 =I(-1 MATrJn)
03006 NRESN(1)=2 MATOO:)7O
0007 NREGN(N* 1) =2 ':a
0308 J=INDEX-1 MA rr}0P*0
000) DO 1 I=1,N1 .ATOOI10)
0013) NRJGN(N1-i+2) = (J/(3" (N1-1))) 1 MAT 00)1 1
0011 1 JJ-((NREGN(N1-I.2)-1) * (3** (NI-I))) MA TO' 120

C*****NRG N(I)=1/2/3 IF STORA;E (I-1) IS EMPTY/INTE N AL/FULL MAT0 3130
0012 DO 2 1=1,NN MArTd 14)
0013 DO 2 .1=1,NN MAT'.15)
0014 2 P(IJ)=O.DO 1AT00140
OJ15 DO 115 L=1,NN .M.T0,'173
0116 J=L-1 MATUtl ,3.
0017 DO 3 K=1,N M AT00190)
0018 MAC(K) =J/(2'* (N- )) MAT 002 0')
03 1q 3 J=J- (MAC(K) (2*

'
(N-K))) IAT n9)2 1

0320 DO 7 J=l,N1 MAr0322 )
03021 T N=AC(J) ATOd)233
0022 IF(Nih'GN(J).EQ.1) IN=0 MAT1O24 )
Ou23 lOrUT=-MAC (J+1) IATO,)25')
0924 IF (NOGN (J+2). EQ.3) rOUT=O 1A!C

1
26)

0025 K =NREG N (J + 1) MAT i.)2 7 0
0Lt,2 GO TO (4,5,6),K MAT9,'2 )
0%27 4 LP(I.NE.O.) GO TO 115 1AT0-'2q9
00T2 GO TO 7 MAT 0030
0)29 5 IF((1N+IOUT).NE.3) GO T'. 115 IATOC310
033.0 GO TO 7 MA TO) 32 Y
0J31 6 I'(IOJT.NE.0) t;O TO 115 :aTO O13'
0032 7 CONTINUE MAT63)340

('*****NOW BUILD FOW OF MATRIX MAT 0350
~0;.3 DO 11 I=1,NN 3AO00360

0 )"4 =1 T -1 MA - I!}3 7 
3 J35 DO q K1I,N MAT00338
or)

36
,IACIN (K) =J/(2*- (N- K)) MAT ) D339

0037 9 J=J-(MACIN (K) * (2'* (N-K))) MA.TZ40 .
C****-MACIN (I) =0/1 IS THE INITIAL STAT! If .ACHIN:E I MAr])41)

00J8 F (L,I) =1.DO 1AT0 42 0
0039 DO 11 J=1,N AT"0 )4 31
0.)4) ?(L ,I)=F(L I)((1.D0-I(:))'(lA]ACIN(J))(1-,AC(.))))' 4AT 0 3

1 (R (J) - ( ( 1-MACIN (J) -MAC (J))) MATOc0450
0041 IF (HEGN(J).EQ.1.OR. NR3 N (J+ 1) .£. 3) 0O T3 10 MAT00460
3042 F(L ,I)=F(L ,I)*(P(J)*(5ACIN((J)*(1-MAC(.1)) ))AT ff 4 71

1 ((1. DO-P (J)) (MACIN (J) MAC (J))) MA700 4.u
30c4 SO TO 11 1kT 9
3o4' 10 IF((.ACIN(J)3"(1MAC(J))).NI.A3) ?(L ,I)=0.0v A ))
30045 11 JONTIN UE MAT 0351 0

OQ ;46 115 CONTINUE MAr ).%)
0047 DO 12 II1,NN nMAT005 33
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0048 12 F(I,I) =(IIl)-I.DO ,AT00540
0049 IF(INDEX. E. 1) GO TO 14 MAT00550
0050 DO 13 I=1,NN MAT00560
0051 13 F (1,I)=1.DO MAT00570
0052 14 CALL LINV2F(F,NN,NN,FINV,6,iKAREA,IER) MATCOSPO
0053 RETUEN MAT00590
0054 END MAT006 00

F..~
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0001 SUBROUTINE BCMAT (MATNM,INDEX,?F .IATO. 10
C*'***BUILDS LOWEST LEVEL BLOCKS EXCEPT MAIN DIAGONAL .ATO h20

0002 IMPLICIT RaAL*8(A-H,O-Z) MAT0'h 31
0003 COMMON P(3) ,R(3),NSTOR(2) ,N,NN,LIMIT, NST,IDUM,NwN,ASTER n.ATO00i4t
0004 DIZENSION F (8,8),NREGN(4),rAC (3),NMA N(3),NSTO (2) !ATO0o5o
0095 N 1=N-1 nATOUb6J
0006 NM-NN-1 MATO0670
0007 NR EGN (1) 2 MAT )f068
0008 NREG (N *1) 2 MA?006nO
0009 J=INDEX-1 NAT ) 7 )ff
0010 DO 1 L=l,N1l .1 ro710
00 11 NRG (N 1-I+2) =(J/(3** (N1-I))) +1 .ATO)7T9
0012 1 J=J-( (NGN(NI1-I+2) -1) (3"(N -I) )) NAT0.)730

C*****NxREGN(I)=1/2/3 IF STORAU£ (I-1) IS E.NPTY/INTZRNAL/FULL MAT7n740
0313 J=MATNM SAT00750
001u DO 2 I=1,N .A-'0760
0315 .AC (I) =J/(2*- (N-I)) .AT00770)
0016 2 J=J- (AC( (I) * (2** (N-I)) ).ATO0J7H

C*-****AC (I)=0/1 IFP INAL 0ACHIN! I IS DOWN/UP IN INTER~AL CASE rATOIX .Ar0079)
0017 DO 3 I=1,N1 NA-D9Scl
0018 3 NSTO(I) =AC (I)-AC (I* 1) A% T) ) 1)

C""*'*NSTO(I)=-1/O/1 IF STORAGE I GOES DOWN/CONSTANT/UP IN THIS .AT;IX AT09r'20
0019 DO 4 I1=,NN kTI.")-k 3
0020 DO 4 J=1,NN MAT 0O' )
0021 4 P (I,J) =O. DO A-' r,5 )
0J22 DO 135 L=I,NM NAT-On6.)
00 23 J= L 'A rO ) 70
0l24 DO 5 K=1,N .AT. (I)dO
DO25 X AC (K)} J/(2** (N-K) ') ATOu'JO
0126 5 J=J- (MAC (K)* (2** (N-K))) )A )',O
0027 DO 9 J=1,N1 I AT0010
0028 IN=NAC(J) aA' ) )9 2) 
0029 I F (NREGN (J).EQ.1) IN=O A TO)'3 33
0030 IOUT=--AC (J+1) 1.Ar 94)
0)31 iF(NREGN(J+2) EQ.3) IOUT=O WAT00953
03 32 K=NR EGN (J+ 1) * AT 3 
))33 GO TO (6,7,S),K NATVG)70
0o31U 6 IF(IN.NE.NSTO(J)) 'O TO 135 ATlo 93
0)35 GO TO 9 M

A T O
c 

o

3 J6 7 IF((IN+IOUT) .N.HSTO (J)) GO TO 135 .AT 1O0D
0037 GO TO 9 NMAr

'
1 I

Ou3l 8 Ir(IOUT.NE.NSTO(J)) GO TO 135 NAT )1J2U
0)39 9 CONTINUE nA- 1-3'

C-'"'NOd BUILD ROW OF MATRIX MATOl1')40
0040 DO 13 I11,MN nATN1)S)
0)41 J=I-1 eMAOln(>0-) 41 J-1-1 MAT0 1ln60
0')42 DO 11 Ks1,N MAT-O1.7
09013 ACIN (K) =J/(2*'. (- K)) wA' IdO
0044 11 J-J- (MACIN (X) * (2** (N-K)) ) NA) 1J-

C$****mACIjN(I) 0/1 IS THE INITIAL STATE MOP ACHINE I Mk'19a
0045 F( L+1,I)1. I.D 0AT)011
0')46 DO 13 J01,1 MA'lT112C
0.i47 Fi(L+1 ,I)} {L+I ,I)}(1.D0-Ril (J) * (1-,ACIN (J) ) (1- AC (J) )))*130
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1 ( J) * (-ACI(J)(( CI(J)) *"AC(J) ) MATO 1140
0043 IF(NREGN(J).EQ.1.OR.NREJN (J+1).E.3) GO T3 12 MAT0115O
O)4q F (L+1 ,I)=F(L+1 , I)*(P(J)** (&CIN (J) *( 1-AC ())))* -MAT011O

1 ((1. D-P (J)) ** (A CIN (J) M AC (J)) ) nAT 11 70
0050 GO TO 13 MATr11 0O
0051 12 IF((IlACIN (J)*(1-tAAC(J))).NE .) F(L+1 ,I)=0.D) MAT)119)
0052 13 CONTINUE MzAT12 0

0053 135 CONTINUE MAT) 12 10

0054 RETURN MAT:)122 0

0955 END MAT)1233
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00)1 SUBROUTINE KSIMAT(IND,KSINV}) AT01240
C*'***CONSTRUCTS INVERSE OP SECOND-LEVIL IAIN DIA.ONAL BLOD: NMAT01Ž50
C****,THE PROGRAM ASSUMES THAT THER% A8E NO PATHOLOGICAL CASES MAro12b0
C****'WITH STORAGE SIZES LESS THAN 2 MAT01270

0002 IMPLICIT REAL*8(A-d,O-Z) MATO128d
0003 HEALL KSINV MATU124)
0004 COMMON P(3),R (3) ,NSTOR (2) ,N,N~,LIMIT, NST.IOUT, NIN,ASTA'A 1A 3 })
0005 DIENSION B(8,8) ,C(8,8), AINV(8,8) MAT01310
0jOb 'DIMENSION XINV (8,8,11),D (8,d,11) ,KSINV (d.88) MATO 132)
9007 DINENSION DUM1 (8,8),DUM2 (,A~),DUM3(8,8),DUM4(8) .1Al'J13 3 
0008 INDEX=IND AT') 1 3.0
00 )9 CALL AlAT(INDEX,AINV) MAT013'5,
0010 DO 10 r=1,NN MAT0 1360
0011 DO 10 J=1,NN MTO 137)
0012 10 XINV(I,J,1)=AINV (I,J) MAT013;'J
0013 JC=0 NAT 7l 39 J
0014 DO 105 I=2,N MAT0140.
0015 105 JC=JC+ (2*' (N-I)) MATOl& 1n
0)16 JB=2-" (N-1) tA T0142n
0u17 - DO 20 LOOP=2,LINIT .AT0)1410
3)18 IF(LOOP.LL.3) CALL BCMAT(JC,IND'EX,C) .ATO01440
0019 rF(LOOP.EQ.2.OR.LnOp. EQ. LIMlT) INDEDEX=INDEX-1 ATo 145C:
092 ) IF (LOOP. EQ. 2. O. LOOP. EQ. LIMnrT) CALL 3C¶ AT (JB,IN DX,3) fA r:146: 
0021 DO 11 I=1,NN .AT0147n
0022 DO 11 J=1,NN MATO148 
0023 DUl1 (IJ)=0.DO AT01490
0024 DO 11 K=1,NN AT0 150'
0025 11 DUm1 (r,J) =DU1 (I ,J)+C(IK)' XIN(K.J,LOOP-1) AT01510
00n26 DO 12 I=I1,N AT0 152"
0027 DO 12 J=1,NN NATC1' 30
002R DU2 (I J) =. D0 .ATO 1540
0329 00 12 K=1,NN MArt0155O
0033 12 DUM2(T,J) ,=DU2 (I,J)+OUM1 (I,R) eS (K,.) Z;n 15653

'**t**DUM2 IS A SPARSE MATRIX VITH SDU.F NONZERO ROWS MAT01573
0031 IF (L00P. E.2.0R.LOOP. Q. LI.IT) L .L AMAT (INDX ,A&INV) !Ti015;d
0032 DO 13 I=1,NN MAT01'r1,9
0U33 DO 13 J=1,NN NA? 0160)
0.D34 13 XINV (I,J.LOOP) A INV (l,J) MAr16 16
0035 DO 19 I=1,NN YAT01b2,
0J3b DO 18 J=I1,NN AT') 16 3'
0137 Ip(DUM2(I,J) .EQ.0.DO) GD TO 18 MA Olt;14
003E 3CAL-- 1. DO N VTO lf 50
0319 DO 14 K=1,XN A4'01660
0040 14 SCAL=SCAL*CUN2 (I, K) *XINV (K,I,LOOP) .MATO 1h70
0a1) DO 15 Kl,NN MATO l. 0
0u42 DUM4 (K) = 0. CO0 NAC 16'30
0)43 DO 15 Ll1,NN AT ,17DJ
0u44 15 DJU4 (K) DDM4(K) DU2 (I,L)*X!lV (L,K,LOP) LAO01?

1

0045 DO 16 K-1,NN NMATO 17 2)
0046 DO 16 L-1,NN MAT01'y30
0347 16 D303 (K,L) =XINV (K, I,LOOP) CDUM4 (L) AT 0174'
0c48 DO 17 Kzl,NN MATU1750
004Q DO 17 Lt1,NN NATU 176C
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0350 17 XINV(K.L,LOOP)=XINV (K,L, LOOP)-DUT3(K,L) /SCAL MAT3O177')
0)51 ;O TO 19 MATO178&
0952 18 CONTINUE 'AT 0179C
0353 19 CONTINUF MAT01')3)
0054 20 CONTINUL MATO 1 1l

C*****X' S DZFINED, COMPUTING D'S AAT31,2)
0055 DO 35 IDENT=I.LIMIT NATO18H 30
0)56 INDEX=IND rAT 01n4 
0057 L=LIMIT-TDENT MAT O1', 50
0058 IF(L.EQ.0) GO TO 22 MAT) 1$8'
0059 DO 21 I=1,L .AA r01;'7)
0060 DO .21 J=I,NN MA mO 1 .-)
0)61 DO 21 K=1,NN MAT01"O0
0362 21 L(J,,K, I)=0. DO MAT'C 19')
0J63 22 L=L+1 MATC 1'I J
0064 DO 27 I=L,LIMIT MAT I2 )
0.65 IF(I.N!.L) GO TO 24 MT.)"¢'3 
0066 DO 23 J=1,NN T.i I'.
0067 DO 23 K=1,NN IAT J15)
00.8 23 D(J,K,I) =XINY (J,K,I) nATU]'.o:)
0069 IF(I.FQ. LLMIT) GO TO 27 A. T) 1' 7
0070 7IF(I.EQ. 1) CALL BCMAT(JC,TN:5.X,C) . )ATi919 

J071 IN DEX
=

IN DX- 1 AT, lo 9 
0172 GO TO 27 A10 2i1J
0973 24 IF ([I.5. (L+1) .AND.I.!k.2) CALL SCA £ (J.1CINDEX,C) IATJ2) 1
0074 IF (I. 7Q. (L+2).AND. I. Q. 3) .ALL SCiAT (JC,INDiX,C) ^AT'2 2 =2F
0075 DO 25 J=1,NN 'I r0? I 30
007F. DO 25 K-1,NN A.T:2u)

t O ~j0077 DUM1 (J,K) =0.D0 MAT 132-,50)
0078 DO 25 M=1,NN A A T2t.
0V79 25 DrUM (J,K) =DUM1 (J,K)-C(J, M) 3 (A,K, I-1) IAT02'70
000 DO 26 J=1,NN 1A A' 020A
0081 DO 26 K=1,NN MT

0
2 )90

0OOP2 D (J,K, I) =0. D0 MAP:)210l
0)83 DO 26 1=1,NN 'ATC21 1 
U0004 26 D(J,K,I) D(J, ,I) +*XINV (J. ,,i ,) Din 1 (M,K) MAT,)212%

00OOS 27 CONTINUE "AT 1J.
C'"'"* DOS D.FINED, COMPUTING KSI INVE[1SF ,AT0?140

00d6 iND X=I ND-2 MAT)21 5')
0087 DO 34 I=I,LIMIT .AT0:160
0088 IF(I.NE.1) GO TO 30 .1AT12177
0089 DO 28 3=1,NN 'AT021 C
0090 DO 28 K=1,NN ~AT 21 '4
0091 28 DU:3 (.J ,K) =D(J,KLIMIT) A T0?22 I
0092 DC 29 J=1,NN MA% 221)
0)93 DO 29 K=1,NN A1T02220
09n42 29 KSINV(J, (IrENT-1) * NN+K)}DUM3 (J,K) A:ATJ2230
0395 CALL bCMAT(JB,INDEX,B) MAT02240
0096 INDEX=INDEX+1 N AT( 2250
0)97 GO TO 34 MAT 022bC
009p 30 IF(I.AQ.3) CALL 3CMAT(JB,INDLX,,) nATC2270
0199 DO 31 J=1,NN 14 AT 2? 3
0100 DO 31 K=1,NN 1AT022C,.
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0101 DUM1 (J,K) =C. AO0 .AI230J
3102 DO 31 L=1,NN 1AT ' 231 
0103 31 DUnl (J,K)- CUMn1 (J,K) + 8(J, L)*9[t1:3 (L,K) ' :41.'2. 2
0104 D0 32 J=1,NN .AT7233'
0105 DO 32 K=I,NN MATOT234
0106 DUI2 (J,K)=O. DO .AT )2235
0107 DO 3Z L=1,NN AAT02.6r,
010 32 Di3fl2 (J,K) =DUMn2 (J,K) +XINV (J, L, LirnlTl-I) *DIJ;51 (L,.K) nA£";2 i1I
01)9 DO 34 J=1,NN A I'023P0
0110 DJO 33 K=1,NN . T'.)239'
0111 DU r.3 (J,K) =D(J,K,LI n1 + 1-I) - U. 2(J,K) MAT )Z4 .C
0112 33 KSINV( (1-1)*NN+J, (ID.NT-1) 4N+K) =J].Y3 (J,r) .TATP, 2M lU
0113 34 CObTIMIUE 'SAT'J242 '

C* **t*LOCK-COLUMN 'IDENT' OF WSI INVSRSL ').?UTDJT .TA-02431-
0114 35 CONTINUE !A'T 2i4

Z""-'*KSI INVEPSL COMPUTED f.TO23SO
0115 lETUR N AT ) 24

n
l

0116 END -. A r ? u 7;
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0001 SUBRUUTINE PHIPSI (MATNM,IND,F) MAT02450
C*****BUILDS SECOND LEVEL OFF-DlA3)NAL BLLCKS MAT 249')
C**$**PRESENT VERSION FOR THREE MACHINES MAT02500

0002 IMPLICIT eEAL*8(A-HO -Z) MIAT02511
0003 COMMON P(3R(3)OR(2)N,,LNSTOR(2)U,NN,LIMTNSTIOUINN,ASTEF AT32520
0004 DIMENSION BC(8,8) ,AT32s30
0005 DINENSION F(88,88) M.AT02540
000 DO 1 I=1,NNN nAT0255i
0307 DO 1 K=1,NNN MAT025h, 0

0Or' 1 F(I,K)=0. DO ;Aro0579
0009 K' MAT )253 )
00)10 J=1 iA C25 '0
0011 IF (MATNM. Q. 2) J=6 .'2& )2'
0012 IFLAG=O A 02f1 )
0013 2 INDEX=IND .A T0262 I
0'14 DO 6 I=1,LIMIT MATU0263
0015 lF(IFLAG. . 0.O) GO TO 3 MAT02h40
0)16 IF(MATNM.EQ.1.AND.I.EQ.1) GO TO 5 MAT (265,)
0017 IP(TATN . EQ.2.AND.I.Qt.LIi.) GC TO 6 AT02(h?
0)18 3 IF (1.LE.2.OD. I.SQ. LI.lI') CALL BCMAT(J,INDEX, BC) MAT¶027 )
u019 DO 4 L=1,NN ATD 2 IC
0020 DO 4 n=1,NN NAT .2'') 
0o21 4 F ( (LlTI T-I +K) *NN+L, (LIrIT-I) *!iNN. ) =bC (L,M) ArAT027,0
0022 5 IF (I. Q. 1.OR.I.EQ. (LIMIT-1)) IN4DX=INDEX-1 'Ar 271 0
0023 6 CONTINUE MN0272 I
0024 IF (IFLAG.NE.0) dETURN YiAT27 31
0025 IPLAG=I 1AT 3274 )
0026 K= 1 NA"027 5)
0)27 I (MATNM. EQ.2) K=-1 ATiC27 60
0028 J=5 ATo 277')
0)29 IF(MATNM.EQ.2) .1=2 iAT027d )
0030 3O ro 2 nATi(27gO)
0331 END MAT 02 )3 
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0001 SUBROUTINE PRINT(STATE) 'a:.' ..
ZC''""OUTPUTS RESULTS WITH THR.EE-iACHIiM PFO).Ar Ft, '.IA
C*****CALCULATES AND OUTPUTS fFII IENCTY A.' ) i
$"*"**NOTE---SLOWEST MOVING INDEX IS *LAST' STOPAGE &TrIZ' }

0002 IMPLICIT REAL*8(A-H,O-Z) ttt -.,}
0003 COMON P(3) ,R (3) , NSTOB (2) ,N, NN LI .IT, RST, IOUT, NNN,ASTeh .: :',A .1
0004 DIMENSION STATZ(3080) IT 7,7^9
0005 DATA STAR/'*'/ %:',.24
0006 IF(ASTER.NE.STAI) WRITE(IOUT,1 ) 
0407 1 FORMAT(1Hl,2X,'PROBABILITY DISTRIB'JTION :',// )
000R N1-NSTOR(1) 1
0009 N2zNSTOR (2)'1 +qi l'"'Z
0010 EFF-O.DC '
0011 AVG1=0.ODO r0 ,0,
00 12 VG 2=.0DO 1
0013 DO 6 I=1,N1 'a t
0)14 NNl=I-1

0015 NBEGN=NN1*t :%? ) . 4'

0016 IF(ASTER.NE.STAR) RIT:(IOUT,2) NN1 .
0017 2 FORaAT(1HO,/,1o0X,'N1 = ,IS,/,3,'l000',101,'001',1 JI,')1'',lt, 's..J)i

1 '011', lOX,' 100',10X,'101',lOX,'11D',10X,'111',21X,'42',/) ¶ U-l
001Q . 0 b J=1,N2 '
0019 NN2=J-1
0020 IF(NN2.LQ.0) GO TO 4 ;T'lt '3,
0'321 DO 3 K=2,8,2 "a' 1 )
0022 3 :FPP=EFF+STATE(NBEGN+K) 
0023 4 DO 45 K=1,8 's;.':7:J
0)24 AVG1=AVG1+STATE (NBEGN*K) 'NNH1 * 1: J

0025 AVG2=AVG2+STAT E (NB LGN +) *NN2 '1; ' 

0')26 45 IF (STATE (NBZGN+K) .LT. 1.D- 12) STATF (N3EGN*) =0. D0. 
0027 Iw (ASTER.NE.STAR) YRITE (LOUT,5) (STATE(.NB EN+ ) ,K- 1, ),:' 'aJ1 11
04)2 5 FORfMAT(1H ,8E13.5, 11X,I4! '31
00293 6 NBEN=:-NBGN+N'1*P 
0i33 'iRITE (IOUT,7) EYF ' '
0031 7 PORMAT(1H0,////, LINE FFICINCY = ',- 15.5) '- V.'
0032 WRITL (IOUT,75) AVG 1,AVG2 ' '
0033 75 FORSMAT(1H0,'AVERAGE STOR AGE FILLS : ,/, SOA(; 1 

1 ,115.5,/,' STORAGE 2 ',Z15.%) ' ' 
OJ34 AGG1=AVG1/NSTOR(1)
0035 AGG2A VG2/NSTOB (2) '
0036 WRITE(IOUT.8) AGGI,AGG2
0037 8 FORMAT(1HO,'AVERIGE STORCBAGE FILLS (FRACTION OF AX/I.U- ' ('

1,'PACIT!) : ',/,' STORAGE 1 : ',E15.5,/,' sTA% 2 ' :.

2,E15.5)
0038 TINVRY=AYGlAVG2 
0039 WRIT (IOUT,9) TINVRY
0040 9 ?ORNAT(1HO,'TOTAL IN-?RC£'SS INVY T Y :' S. 
0041 RETOUR N
0')42 sND
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Cs**'*MAIN PROGhAM - THREE MACHINE TWO STORAGE C&ASE AT0330;)
C*****HIGHEST LEVEL - COMPUTATION OF STATL VECTOR M!AT03310
C***'*THE PROGRAM ASSUMES THAT THFE ARF. NU PATHOLOGICAL CASLS MAT03320
C*,***WITH STORAGE SIZES LESS THAN 2 MATU3330

0001 IMPLICIT REAL*8(A-H,O-Z) kT')O3340
0002 REAL*9 KSINV MAT03350

C*$****&RNING - DIMENSIONS MUST CE READJUST D YOR DIFFERENT LAT. MAT)3360
;:****MAXIMUM DIMENSION - 3 MACHINES AND 2 STORAGES M.r03373
C****MAKXIMUM DIMENSION - STORAGES N1=10,N2=34 MAAT338i)

03703 COMMON P(3),R(3) ,NSTOR(2),N,NN,LIMIT,NST,IOUT,NNN,AST Ei A l0'33'0()
0004 DI!eNSION KSINV(88,88),PHI (8b,88) ,PSI(88,88),STATE(3090) .AT')340'
0.)95 DIMENSION DUM 1 (88,88,DU2(88) , DUM2 88,88),DUM3(88,88),DU .. 4(83) 'AT03410
0006 DIMENSION XINV(88,88,3 5) AT0 3420
0007 IN=5 MAT03430
0009 IOUT=6 Ar 03440
0009. 1 READ(IN,2,END=999) N,ASTER MAT7345)
0)10 2 FORMAr (I 3,A1) MAT;)34u 

C*****ASTEBISK IN COL.4 SUPPRESSES PRINTING OF PR33. DIST. M4AT]3473
0011 IF(N.EQ.0) GO TO 91 MAT034rOr

C~****N=O - INCREMENT SECOND STORAGE MA -349:)
0)12 NLAST=N MAT03500
0313 IFLAG=O MATU3510
0)14 NN=2**N M.T 03520
0015 ISTO=N-1 MkT0 3530
0015 3 PFORMAT(1H1,I3,' MACHlNES AND ',I3,' ST3)EAES.',//) MA?)354')
0017 DO 310 J=1,N MA103550
0018 310 READ(IN,4) R (J),P(J) lAT )3561
0019 4 FORMAT (2E13.6) .AT93570
0020 DO 321 J=1,ISTO MAT?35 )
0)'21 320 READ(IN,7) NSTOR(J) MAT035'10
0022 WRITE (IOUT,330) MAT03600
0)23 330 FORIAT (1HO,/////////) MAT 133 10
0324 WRITE(IOUT,3) N,ISTO ¶AT 03620

0925 7 FORMAT(I5) MAT03630
0026 DO 5 J=1,N MAT0340O
0027 TI MUP=1.DO/P(J) MArT335
0028 TIMD=I1.DO/R (J) MAT 03660
002 EFISOL=R (J)/ (R (J) +P(J)) MAT )3(,7)
0'30 5 iRITE(IOUT,6) J,P(J).TIlUP,rs(J) ,TINDiN,EFISOL MAT036"0
0031 6 FORMAT(IIH g'MACHINE ',I3,' FAILUFR PtOBAEILITY: ',E13.6,', REAN Q]MAT.3693

1P-TIME:',3X, E13.6,/,14X,'FRFAIR POBABILITY: ',S 13.6,', MEAN DOWTNMAT03700
2-TIME: ',E13.6,/,14X,'EFFICI!NCY (IN ISOLATION): 3',13.6,/) MAT)3719)

0032 NST=2**N M AT03720
0033 DO 8 J=I,ISTO MAT03730
0034 NST=NST" (NSTOh (J) +1) MAT03740
0035 8 WRITi(IOUT 9) J, NSTOR(J) MAT03751
0036 9 FORMAT(1. ,'STORAGE ',I3,' : AS MAXIMIJUM CAPACITY: ',I5,/) MAT03760
0037 IDEX=3*'ISTO MATJ3770

:*-***THeBE AFE 'INDEX' COMBINATIONS F1 'LYOWER BOJNDARY', 'INTERNAL', MAT0378u
C*****AND 'UPPER BOUNDARY' REIOSNS FOR L'ACd STORAGE. MAT)3791

0038 LIMIT=NSTOE1l) A1 .ATi03O00
0 39 NNN=LIMIT*NN MAT30 1C
0040 CALL KS0MAT (INDEX, KSINVY MAT03O20
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OU41 DO 10 ITzl,NN MAr:) 3 10
0')42 DO 10 J=1,NNN NATN3R40
043 4 10 XINV (rJ , 1)=KSINV(1,J) M AT,.,]3 IG
0044 LIiNSTOR (2)+1 MAr') I" ,,
0345 LOOP=1 KPAT;) 3;''
O0c4b GO TO 100 IAT -i
0147 91 READ(IN,9q) NUP,NTTM -.A ':"(
00#4 92 FO RMAT (2I5) A' 'it
0)49 4 RITE (IOUT,J 30) MAT)J'1 
0350 N q LAST AT 1)' i
0 )D 1 NND

=
AT'' 

0052 q3 INDEX=2* (J** (TSTO-1))
0053 IFLAG=1 MAT ;J9,
0054 LOOP=L -1 NAT, 'It..)
0155 L1=L1+NUP .AT 1 91::
00tb NSTOR(I STO) zNSTt)4 (TSTO) +NIJ Lm'' 3"'
0057 NST=2'*N A
90)58 DO 94 I=1,IST,) MAAT)4 4),.
0 05q4 )94 NST=NST

·
(NSTO, (I).1) ,

0963 WRITE(ItUIT,J) N,ISTO MA ?4';
J
')

0361 DO 95 I=1I,N .A,.)
0062 TIMUP=1.DJ/?(1) 1ATi ; .JI
03b3 TI IDN= 1. D0/k (I)A") 4,, t ',
00644 EFTSOLR (I)/(H (I) +P(I) MAr'II,(,N )
0065 95 ,RITE(IOUT,6) I,P (I) ,Ti' {Uk',:' () ,£IMDN, iFISOL 1A rJ4o 'O
3066 DO 96 I=1,ISTG ... ;!.
0067 96 WiITE(IOUT,9) I,'ST 1,(II ')A'r A.),)'.o)
OJ6t8 100 LOOP=LOOP* I.k)1 -)
0369 I](LOOP.GT.LI) GO TO 20 MA 14110
0970 I(LOOP. LL.3) CALL PHIPSI(1,INDFX,Pit) .lA-'1
0971 DO 11 '=1,NNN MkT!)41 j

n

0372 DO 11 .]=1,NNN IATI1;) 140
0073 0U l1 (I ,J) =:. DO AT)4 1 5'

"

0074 DO 11 =1 ,NNN MAT 341I0
0075 11 L)tJM1 (I,J) DUM 1 (I,.1) + PH I (I,K) *INV NV (K, ., LOOP-1) MAT'4I17

2

0076 1 [ (LOOP.. EP.2 .OR .LUOP . E'. L 1) INDEX= INDEX- (3" ([ Tf- 1) ) T 
0077 1F (LOOP. EZ.2.OR. LOOP. .o L1) CALL IPHI PSI (2, INDt X,PGI) MAT , 19I

0)78 DO 12 I=1,N'N MA'Tj42 O0
007q DO 12 J=1,YNN IATJU4Y1I
0 38') DI M2 (I, J) 0. DO MA T )4 22"
001'1 DO 12 K1I,HNN MAT )4e
0182 12 DU Mi2 (I ,J) =DU M2 (I,J)+DUM1 (I,K) -PSI (F,J) .'MAT';2{ 

j

C*-**Duim2 IS A SPAbSE MAITRIX WITl SOML NONZLhU ROWS IA T1'4 2,-
0983 IF (IFLAG.EQ. 1) CALL KSIMAT(IN'JLX,KSINV) !.AT J42 ;
OOR4 IP(IFPLAG. E.. 1) TFL AG=2 MAT)272
00M5 I P (LOOP.E .L. CR. LOOP. r:Q. L1) (C ALL K S.'MAT(INDk.X, KS I NV) IATJU2o
00Uh DO 13 I-I,MN M 4', (T{2

n ]

0087 DO 14 J-I1,NN T1Ar-A.3`
0086 13 ITNV(T,J,LOOP)-K5TNV(I,J) MATC;441)
0089 DC 19 I=1,NN R.:']'2 12
Q)q:) DO 18 J-1,NN MA 1,TO

r
4 1

*

00'. 1 I?(DUM2(I,J) .kQ.0.DO) GO TO 1.MT' 33j
03Jq2 SC&L- 1,.DO MT 0.4 350
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FORTRAN IV G1 RELEASE 2.0 MAIN DATE = 78177 16/48/48

0093 DO 14 K=1,NNN MAT04360
0094 14 SCAL=SCAL+DUK2(I,K)*XINV (K,I,LOOP) M AT04373
0395 DO 15 K=1,NNN MAT04390
0096 DUM4(K)=O.0C MAT04390
0097 DO 15 L=1,NNN MAT0443')
0099 15 DUM4(K)=DUM4 (K)+DnM2 (I,L)*XINV (L, K,LOOP) MAT04410
0099 DO 16 K=1,NNN MAT04420
0100 DO 16 L=1,NNN MAT04430
0101 16 DOM3(K,L) =XINV (K,I,LOOP) DU n4(L) MAT04440
0102 DO 17 K=1,NNN MATO44u5)
0103 DO 17 L=I,NNN MAT'4469
0134 17 XINV (K,L,LOOP)=XINV(K,L, LO) -Dr, 3(K,L) /SCAL MATO4470
0105 GO TO 19 MAT04480
0106 18 CONTINUE MAT04490
0107 19 CONTINUE AT 04500
3108 GO TO 100 MAT 04510
0109 20 CONTINUE .A'"U4520

C*****X'S DEFINLD, NOW COMPUTING THE FINST COLUMN OF r' INVLIESF !AT04530
0110 INDEX=3 MAT04540
0111 DO 34 I=1,L1 MAT0455)
0112 IF(I.:E.1) GO TO 30 MAT04560
0113 DO 28 J=1,NNN IAT0)457
0114 DO 28 K=1,NNN IAT045PO
0115 28 DUn3(J,K) =XINV (J,K,L1) MA"3459)
)116 CALL PHI PSI(2,INDEX,PSI) MATO 4630
0117 INDEX=INDEX+ (3** (ISTO-1)) 'hAT4610
0l18 GO TO 325 MAT04'2L
0 119 30 IF(I.EQ.3 ) CALL PHIPSI(2,INDEX,PSI) 1AT04630
')120 DO 31 J=1,NNN. MATO4i V,1
0121 DO 31 K=1,NNN AT03450
0122 D0M"1 (J ,K) =0. DO MAT -46j0
0123 DO 31 L=1,NNN MATO4670
0124 31 DUM1 (J,K)=DUM1 (J,K) +PSI(J,L) *DUIJ3(L,K) MAT0468
0125 DO 32 J=1,NNN MAT U4690
0126 DO 32 K=1,NNN MA)473

')

0127 DUM3(J,K) =O.DO MAT047 10
0128 DO 32 L=1,NNN MA-r04720
'3129 32 DU3 (J,K) =DUM3 (J,K)-XINV (J,L, LI+-I) DUM1 (L,K) MAT04730
0130 325 DO 33 J=1,NNN MA3T4743
0131 33 STATE ((I-1) *NNN+J) =DUM3(J, 1) MAT )475 
0132 34 CONTINUE MATO4760

C*****FIRST COLUMN OF T' INVERSE COMPUTED. M.ATQ477.
-*'**APPLYING MATRIX INVLRSI)N LE~.MA FOR iOW OF ON_. MAT047P0

0133 SUMIt.DO MAT3479 )
0134 I=NN+* MAT04PO0
0135 DO 35 J=I,NST !!AT0448 1
0136 35 SUMsSUM+STATE(J) MAT04R20
0137 DO 36 I=1,NST MATO049 30
31 38 36 STATE (I) =STATE (I) /SUM MAT 0440

C*'**'STATt VECTOR COMPUTED. MAT04850
3139 CALL PRINT (STATE) MAT0486n
0140 iRITE(!OUT,330) lA'n4q73
0141 IF(IFLAG.EQ.0) GO TO 1 MAT04880
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0142 NI ND=I ND+1 ,AT 04890
01 43 IF(NIND.LE.NTIrM) GO TO J3 AT049 00
01 44 GO TO 1 AT :)'49 1 0)
0145 q99 CONTINUE 'A-19 20
0146 END MAT }4( ]);
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A.5 The Transfer Line Simulator

This program uses the IBM IMSL function GGUB to generate a

random number; it makes the stochastic decisions by comparing the

magnitude of the random number with the predetermined failure and

repair probabilities.

The input is as follows:

First Card: Columns 1-2: Number of machines (K L 9)
Columns 3-9: Time limit on simulation run

(Number of cycles)

Next K Cards: Columns 1-2: Index of the machine (i)
Columns 3-7: Probability of failure (p.) (Format F5.3)
Columns 8-13: Probability of repair (r.) (Format F5.3)

Next K-1 Cards: Columns 1-2: Index of storage (i)
Columns 3-5: Capacity of storage (N.)

Next Card: Columns 1-2: Option parameter
(0: Transient analysis
1: State frequency ratios
2: Frequencies of producing/not producing

for n consecutive cycles)

Next Card: (Only if Option parameter = 0)
Columns 1-13: Steady-state efficiency (Format E13.6)
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FORTRAN IV G1 Rt.LzASL 2.0 MAIN DATE = 7819z 14/39/02

0001 JIXENSION USTAr( 121, 8) ,aACh i(3) ,bSTO( 4) ,aAXST( 4),
1 FAIL (3) , EPR (J) ,MSTO& (3),I ( 5), IND( 5),
2 . SU ( 5) ,S3 ( 5) ,RAT( 5) ,AVG ( 5)

0002 DlIENSION kULL (13034) ,iPT(10J0)
0003 DItENSION FT (22) ,PFNUt (9)
0004 DATA fNU.//' 1 ,'', '3', '','5', '6', '7', '', '9'/
0o0)j iATA SLASH/' /, '/
0006 DATA FT/' ( l ',',z (2','X,13',') ,3X ',', ',' ',' (2X,, 4),',

1 '2X, ' ' ,' (2X,',' I2),','5X,l','7,bX',',F9.','6, ,
2 ' ' ,' ', ', (2X,', 'F9.6',')) '/

0007 L1T=1000
0008 IN=5
0009 £OUT=6
0010 9'J READ(IN,1,END=9b) N, LIZIT
0011 1 ORaMAr (I2,17)
0012 TOTAL= Ll IT
0)13 1F(N.Gr.0.ANVi.N.LI-.9) GJ TO 401
0014 RITE(OIOUT,400) N, LI1.IT
0)15 ,403 FOR 1AT(1H ,'INCOBiECI DATA ',I2,2X,17)
0016 CALL LXIT
0017 401 IX=767
001d 0O 402 I=1,LT'i
0019 ?ULL(I)=O
0)2) 402 i 1PT(I) =
O2 I F 1 6) = PbUl (:'-1)
0022 FT (1U)-iNUH(N)
0023 LF(N . T.3)} T (17) =;ZLASi
0024 IF (N. GT. 5) GO TO JO01
0025 FT (19) =iNUM (N2)
0026 '30O TU 802
0027 8J)1 iT(to)=FNUM(1)
G028 ZNC1=2*N-11
0)29 PT (19) =FNUa(IND1)
0030 H02 CONIINUE
0031 NNN- 1
0032 dRITL(IUUT,101) Y,NN,,L1,.II
0033 1ul ?POkdAr(1Hl,2,' .1ACdlNIS, ',12,' S.ORAGZS. T1I LI.IT ',17/)
0034 DO 5 IND1=I,N
0035 i LAD (IN ,2) , 1LU. 1, U 2
0)36 2 PORMAT (IZ, 2 5.3)
0037 4RITE (IOUT,205) 1,DOU1, U.'2
0J38 205 FORnAT(18 ,i2,2(2X,FS.3J ;
0039 IF(0.LT.I.ANL.I.LE.N) GO TO 4
0,j40 laITL (IOUT,3) I,DUOl,DU52
0U41 3 FONAT(1H ,'INCOARIC'T DATA ' ,I2,2F5.3)
0J42 CALL £X1T
0043 4 FAIL (I)sLrCU
0044 5 R.R (I)"DUM2
0045 O0 8 IND1=1, N
00u4 RLIAD(IM,6) I,YDCU
0047 6 F(n1AT (12,I3)
004 ilITk (IOUT, 65) I, NDU'J
00U4 65 POR ATT (I ,II2,~3
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PORTRAN IV G1 RLEBASL 2.0 MAIN DATE = 78192 14/39/j2

0050 IF(0.LI.I.AND.l.LE.NN) GO TO 8 --
0051 WILTE(IOUT,7) I,N-UU.
0052 7 FOkIAT(1H ,'INCOBIBCT DATA ', 1, I3)
0053 CALL £XT 
0'354 o dAX ST(I*+1)NDO U n
0055 M nAXST (N+1=1 : :
0356 READ (IN,2U9) IOP !-:
0057 209 FORVMAT(I 2) -.
0058 IF (IOP.NE.O) GO TO 84 ....
0059 dtkAD(IN,210) £FIC
0u60 21 FOR AT (E 1 3.6)
0)61 84 CONTINUE
0062 WHITE(IOUT,85)
0063 85 k'OniMAT(1ItO,/)
0064 NSTA1=2*=N
0065 NSTA2=1
0066 DO 9 IND1=2,N
0067 9 NSiA2=NSTA2* (MAXST (IND1) +1)
0068 DO 10 1ND1=1,NSTA2
0069 JO 1 1ND2=1,NSTA1
0J70 13 NSTAT(I Nul,I N,2)=:)
0071 DO 11 INDI=1,N
0072 11 nACIl (IbD1)1 
0073 LAST=1
0074 MAXF=O
0075 AXP=0 
0076 iNPT= 1
0J77 NPAXT=0 -
0078 N STP=Ll/'l T/1 CO
0379 CALC=3. 
0080 FLAS'T=0.
0081 SUS =0:.
0082 STEP=NSTEP
0083 1F(IOP.Lv.U) WBITE(IOUT,115) EPIC
Oo844 115 FOR IAT (1H ,' TIi.: PItCS PRODUCED: $SAIPLL AViRAGE: C MU LATIYV .

1 IAVeAG;: PFFICINC Y= , E 13.6 ,/)
0085 NSTOh(l) 1 
0086 NSTOR (N+1) =0
0087 DO 1i INDI=2,N
0088 12 NSTO (IND 1)1 ;
009 9TITlK=O [
0J9j 13 NTINtL=NTIW+ 1 I
0U91 D) 15 Ibi l1=1,N
0 Ji9 IF (lACNI (IND1).Q. 1) GO TO 1 
0093 CALL GGuOB(IX, 1,NUm)
QO94 L{P(RNUM.GT.REPi(IND1)) SU TO 15 ...
0095 dACH21 (IN D1) - 1 !:=
0096 GO TO 15
0097 144 I?(NSTOR(LNDI)..Qd.J) GO To 15
0098 lF( S'YO (INDl 1) o1~.8AXST (INDI )1 ) GO TO 15 :
0399 CALL GGUB(IX 1hNtI) -
010o0 IF(dNU.Gl.1FAIL(IND1)) GO T 15
0101 AAClI (I ND 1) =0
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OnaTRAh IV (,1 i:LLEAS. 2. 0 AIN DATE = 78192 14/3Js/U2
0132 15 CONTI NUI
0103 DO 2 INDI1=2,N
0104 iF (NSTOfi (IND1).: E.0) GO TO 16
0105 IF(aTUOa(l(i Dl-1)..J) GO TO 200106b ISTO (I ND 1) =a-Cii (IND 1-1)
0107 GO TO 20
OlOs lb I (NSTOR (IND1) .Ni,.:AXYST (INJ1)) GO TO 1701oJ9 IF (NSTOR(INI+ l) .EQ.MA AXT(NlD 1 1) GO Tu 200110 ISTOx (IND1) =NSTOE (IND1)-MACBi[ (Ii;D1)0111 GO To 20
0112 17 IF (IS £OR(1NiD1-1) .£E., ) GO TO 1')0113 IP(NSTOt(IND1+1).-;..,AXST(IND11)) GO Tl' 160113
0115 (;O TO 20
0116 18 3STOR (I NIl1) =NSTUE(IND1) dACHI (IiD l- 1)0117 GO TO 20
0116 19 I/F(NS2OR(lND1+1).!iU. aAZT(NDLi1+I1) GO TO 200119 d.STUo (INVL1) =NSTOR (INl:1) -r.AC ii (IND1)0123 20 CONT1;UL
0121 I?(LAST.EQ.1) GO TO 2040122 i/' (NSTUR (k). N. 3..AND.,,ACHI (N) .=i. 1) GO TO 2010123 MPT=.APT+ 1
0124 GO TO 2U8
0125. 2U1 IF((MPT.L.E.L1T) GO TO 2u3012b WR1.TL(1OGUT,202) N1..c, L.r]
0127 2)2 FORMAT(1h ,'RUN S'IOPPLD AT TI.r = ',I7,/' SYS-it: Di.D dOT 2rSOUC.-; F1Ok LONGIR TIHAN ',17)
0126 GO TO 235
0129 2U3 IF(ll 'I.G .AY 2 ) ,AXto ^ 1PI
013U0 rnPl (nM PT) =PT (aP!T) .+1
0131 LA3T=1
01232 5MPT= 1
0133 NPART=NPAiT+ 1
0134 GO TO 20O
0145 2U4 IF (NSTOh (N) . y.U.O _,iACi£ (:) .±.L.O) GO TO 20450136 AMPT=PT + 1
U137 NPAiT=NLAkTI 1
o0116 GO TO 208
0139 2045 IF (APT.LL. LTT) GJ TO 207
0140 RITL(IOUT,2u 6) STI.c,,LTI
0141 20(6 ?OhAr(1In ,'UN STOPPEDJ A£X i giL = ',17,/' SYSTE.I PaODULCED F.0D LONGlrzE THAN ',i7)
0142 GO TO 235
0143 2U7 Ii(Mf1i'T.GT.?IAXIp) AX=M:1dPT
0144 Y-LL (MPT) =FULL(a1?7) 1
0145 LAST',O
0146 IMPT,1
0147 zUR CONTINTUk
O146 0O 21 IhD 16 ,N
0149 21 NST'O (ID 1) JSTUOR (IN D1)
0150 INL 1 1
0151 1?(NI.LT.2) GO TO 2z5
0152 DO 22 IND3-2,NN
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POt(TRAN IV G1 RELr.ASL .0 jAIN uATk = 781t2 14/3r/,2

0153 22 INu 1=IND1+ (NSTOL (1ND3) *(MAX3T (ItJD3+1) +1))
0154 225 IND1=1 hD1+NSTOfi{N)
015t 1Ni)2=1
015b DO dJ INDJ=1,N
0157 23 IND2=INL2+((2*(N-iNL3))*5Ashl (:ND!g))
01 5 NSTAT (I i 1,L ND ) =ISTAT(I ND1, I 2) 1
015q f1F(IUP.N.0O) GO TO 2,4
0161) rF (((NTIMi1NSIrP) 'N STLP) .N. 4. N IE) Gt 10 23'4
0 161 CA.C=CALC+1.
01o2 DU 1I=-NPAI T
01 63 UUM2=dT1ML
01604 illM 2= JU, 1/ LJ M2
9165 U tdl=3)J11-kLAS'£

O lb FLAT=NPAhlI
01to7 DUM 1l=u M hl// [-
0168 ,U :1b=SUiS+ (LU.11**42)
01U b F.I:rF (IUUT,2 J3) NTIt, NJAdTIiJM 1fDU.i2
017; .J3 FO.tiAT!(I'i ,17,10X,I7,4X,.1i3.G,oX,z;13.o)
0171 234 CONT1NU;
0172 IF{(NGIM}.Lq.LIlR') ;O Tu 13
U173 iF(I .ii. O) GO TO 235
03174 JU :;U I = i=S Uxz,/(LALC) - C EJ.i 2 *Z)
0175 ;UtI2= ($SUau/CALC) - (L£F 1C**2)
017b iE1Ti, (41GUT,2345) -ALLc,DUl,iU:1i2
0177 ~Z345 F0N4A. (li3J,/' VAI¢iANt. J)P ),,JC1 I() 1 ;_ ( ','5. J,' L;At.L- ',,'' ,,

1 ' 6iTli .XL)?CT'zD VAi.[lE:=CUi.'i[LATIV A; ' .RVkA- ; :', '13.0,/,' WI'i'i _.A-.C

2TLij V ALlE.=ANALYTI CAL FI'I..[;;CY :' ,A.l3.o,//j
0178 2 5 CONTI'NUJ
0179 .iTL (IOlJl,b5)
0180 NNN=(. *N)-1

1ol91 DO %0 iNUI1=l, i:
0182 9 u1 l'ai) (I1ND1) = 1
)013 J; 902 INv1=l,N;
01P4 g42 N , (N.',+ I :,1) =2' (,-1i l )
185 I ND3=,-.

01 o IF(IhD3.f,y0.) Go 1(0 qOj3j
16d7 Ju 9LCJ 1NLv1=1,Il:;Lj

01 88 D0 9U3 1Nu2=I;,1,I:ID3
01o9 9U3 iND[(ID1)- INiD(ID31)*(MAKST(iL;j2*2) +1
'3199 ')35 DO 9,4 1=1,NNi
( 1 1 1 (1) =

U
0192 3U.A (I)
01 93 9u4 S;i, (I) =(,o
019'4 J3 28 IND1=1,NSTh2
j195 U0 2o INDv=I,;l1 Al
196 NDU M

=
i N - 1

0197 iF.i;N.L2.2) GC To 255
QOl'l OCJ 25 IbN.J32,NN
01 '9 NSTur (1NDj.) =NDJt,/ ( .1AkS(I NL3+ 1) +t1)
i tu, 2UM:n= N 1UM-((M A i (I 3 +1) +1 *NS j'O¶F (I iJ3))
02 51 255 NS'Oh (N) =NDUM
GOL N2S LJ.- N L.- 1
0203 au ou INDJ=l,h
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POTiiAN IV i1 a-LtLASE 2.U AIN DATe = 78192 14/3 /U 2

02 )4 .'.ACHl (1 hV3) =ND U/ (2' (:J-LND) )
0205 .6 NDUd=NbUffl- (AC.I (IN ' J) (2- (1N-IND3Y ) )
0206 STAIST=NSTAT (I iD 1, I D..)
0207 hO = STA T /TOTAL
0208 O 9v5 I=1,NNN
02,39 9U5 RAI (I) =
0210 DO 906 I=2,N
0211 It (KSTG (1) .L1.I.N.hSTOU (1) .CG. (GIAXST(1) - 1)) G TO 911
0212 q96 COiNTINUi
0213 DU 91) I-1z,NN
02 14 3DU 1 =N SIAl (IN L1, IN z)
0215 Ik (I. IE. N) GO rO 907
0216 IPF(ACdlI (I-NN).Q.0) GO 10 910
0217 JU.2=NlSTAT (INC1,IN 2-IND (£))
0 1. 1F(DU72.LQ. .) JO TO 910
0219 A1(Il)= CUl/LUj2
0220 JU.i (l) =SJ a (Z) + PAT (l)
0221 SQ (1) =SUk (I) + (H A'L (I) -*' )
0222 fI (I) ='I (I) + 1
u223 GO IC 91U
0224 907 F (NSTuh (i1+1).E. 2) GO TO 910
0225 N3=NSra (I +1) - 1
022b LO 95U 1ND3=2,,;3
0227 :4= (N3-lNL) J+ 1) 1NLk (1)
022 '0UQ2= N STA' (I I'C1-N4, I D2)
0221 1i (JU 12.c..).) .;o 0O 1Sv
0230 0 U.,3J=N STOai iI +I)-IN D3
0231 Jl3= 1./DU M 3
0232 rATr (1) =(DULi1/LJ.42) ' J,.i3
0233 ZU. (1) =SUM (I) +iSAT (1)
0234 QaR (I) =S2Q (I) + (NAT (I) $ 2)
02J) F (I) =Fl(I) +1
O23b 4950 U.NT1NiJE
0237 910 CONTIYUE
0236. 911 WRTt .(1UUT, FT) 1ND , l C2, (N$1 t 1) ,=-2,) ( A ), I= 1N),

1 :;SrAT(INL 1 , IND2) ,?O, , (RA(I) ,=1,hNN)
0239 28 CONTINUE

Lz4J IF(IUP.NE.1) Go TO 8124
0241 30 282 1=-1,1N
')242 li (FI (r) .:.O.9.) J IC 2LY2
0243 IT (IOU 21,Lf 1)
0244 d. 1 FiO.tAT(1lO, ILIfS r;{AN 2 rtLLY iT:.RNAL S$ORAGi sraT£i.')
0245 GO TO 8123
o024 2d2 CUNTINUL
0247 DU i14 1-1,.3hN
0248 AV (I) =SUM {I) /Fi (1)
'J.4 ;AR-= (j-ik (l;/rI (I))-(VU (I) -l2
U 503 IF (I .T. N) GO TO -1l
0.51 i2ITf (IOUr,29) I,FI (I ),A V (I) ,VA F
0252 29 FOR.AT(1H ,' STOr. AG ', Iz,' (' ,F.J,' POINTS) AVbaAG. :

1 F9.b,' VhRiANC. : ' ,F9. b)
0253J 3 ru 914
0254 j91i LNJ1=I-NN
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0255 dhIT' (fOUT, 13) IN31,FI(I),AV; (I) ,VR
0256 913 £POI(AT(1H ,' MACHINI; '.IZ,' (',I8.0,' POINTS) AV..AGE: 

1 }9. 6,' VABIANC : ',F9.6)
0257 914 CONTINdE
0258 N1-=
0259 DC 8U5 IND1=3,N
0260 IND3=2
0261 DO 81j4 INJ2=IND1, N
0262 804 iNJi3=IN D3* (kA'XST (1N i,2) 1 )
0263 o05 N1=NI+LND3
02b4 N2=NSlA2-N 1+ 1
0265 1 (1) =0
0266 .SUd (1) =0
02b7 S0d (1 =0
02tL DO 811 1Nl=N 1,,N2
0269 Ju 811 ID2=I1,NSTA1
0-70 oU dl= iNSTaT tl bid 1, I.D2)
0271 DU 1= DU1J/TOTAL
0272 NDJ t=I ND 1- 1
0273 IF (iNi.LT.2) GO TO 807
0274 D0 JA6 IND3=2,NN
0 75 NSL'On (iN'DJ) =N DUM/ (MA;.sT (IuL3+1) + 1)
0276 6 6i DUM =iDU i

- ( ( A XST (IN L3+1) +1) *STO (i N33) )
0277 807 NSTOit (Nr= Ni 
0278 NDU3=IND2- 1
0279 DO ova IND3= 1,
02p8 MACi (INv3; =NLIUM/ (2*¥ (N-IND3))
02o1 o ;b NhD U M DU .'1I- ( 1A ( ii (I ND 3) * ( 2** h - I Ni3) )
0 292 DUM3- 1
0283 OU 809 IND3=2,fN
0284 .Ui2=AVG (lNu3-1) }=I:I()R( TD3
0285 8U9 DUI.3=DUJ3*U1u2
02 86 30 610 IND3=1,l;
0287 )UM2=AVG(IND3+NN)**43ACii (i.i.)3)
0288 8b 1) ;JUM3=Jl3*DtJnM2
0289 JUM 2= UMl /vUi3
0290 sUi (1)=SU( {1) DU:2
0291 S9, (1) =Sk {(1) + (ilJM2*'2)
0292 d11 FI (1) =,Zl 1)+1
0293 DUI=$J=(I1 J/FI (1J
0294 DUM12= (SVR {1)/F I (1) )- (DUdl* *2)
0295 [iRlTg(IOUT,812) FI(1), DUil, JU.2
0296 bt12 iUn£AT(llt ,'NOttNALiZING CUNSTANT ('e,F.O,' )i8;oirs) AV;RAGE :

1 E12.6, VAhI ANCz: ,F9. b)
0297 ii124 IF (O1P. NE. 2) GO TO 9i
0298 13125 SSm-0
0299 rFk =U
0300 JC 813 I=1,.AXf
0301 EFyrEFF+ (1*FULL (I))
0302 613 Ss =SSM*+ULL (I)
0 J03 DO 814 I=1I,AXF
03904 814 fULL(i)ZFULL(I)/SSti
0305 ss5=0
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FO8TRAN IV G1 RELLASE 2.0 MAIN DATZ - 78192 14/39/02

030. DO 815 I=1,dAxP
0307 8 15 SSM-SSM+EMPT ()
0308 DO 816 l 1,X?
0309 816 ZEPT (I)=LMPT (I)/SSI
0310 RITB IOOUT, 17)
0311 817 OaMAiT (1H .'PROBABILIT! O PD00CCNL;J PlECLS CUNStCUTlVEL! :')
0312 00 818 I=1,MAXP
0313 818 WRITE(IOUT,d19) I,iULL(L)
0314 819 FP01AT(1d ,I7,3X,£13.6)
031 1W5 IT (IOUT ,820)
0316 d20 PORAT (1H ,'PROBAbILITY OF di)T PhODUCIJG FOi N CONS.CUiTIVL TI.IE ST

1PS :'-)
017 DO 821 I=1,MAXF
u318 P9l ihITitIOUT,819) I,E3PT (I)
0319 LU(£ PFF/TCTA L
0320 IN11= .FP
0321 ikITL (100T,822) IND1, LIIf1T,LOGX
0322 oa2 ORdMAT(1H ,'THE SYSTEM PiODUCD ',17,' PIEC.. IN ',I7,r TIM. ST11'S

1. .FkFICIi.NCY = '13.61
0423 GO TO 99
0324 98 CONTINUE
0325 ,-D
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