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"ABSTRACT

A Markov Chain model of an unreliable transfer line with interstage
buffer storages is introduced., The system states are defined as the
operational conditions of the stages and the levels of materials in the
storages. The steady-state probabilities of these states are sought in
order to establish relationships between system parameters and performance
measures such as production rate (efficiency), forced~-down times, and
expected in-process inventory.

Exact solutions for the probabilities of the system states are found
by guessing the form of a class of expressions and solving the set of
transition equations. Two- and three-stage lines are discussed in detail.
Numerical methods that exploit the sparsity and structure of the transition
matrix are discussed. These include the power method and a recursive
procedure for solving the transition equations by using the nested block
tri-diagonal structure of the transition matrix.

Approximate methods to calculate the system production rate are intro-
duced. These consist in lumping machines together, so as to reduce the
length of the transfer line to two stages, or in lumping workpieces to-
gether in order to reduce the capacity of the storages and thereby render
the dimensions of the state space tractable.

The theory is applied to a paper finishing line, as well as to batch
and continuous chemical processes. These serve to illustrate the flexi-
bility of the model and to discuss the relaxation of certain assumptions.
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1. INTRODUCTION

Complex manufacturing and assémbly systems are of great importance,
and their significance can only grow as automation further develops and
enters more areas of production. At the same time, the balance between
increased productivity and high cost is rendered more acute by the
limitations on world resources, the precariousness of the economy, and
the sheer volume of material involved. It is thus necessary to carefully
study such systems, not only out of scientific inquisitiveness but also
because of their important economical implications.

A suitable starting point ih the study of production systems is the

transfer line. For the purposes of the present work, a transfer line may

be thought of as a series of work stations which serve, process, or operate
upon material which flows through these stations in a predetermined order.
Transfer lines are the simplest non-trivial manufacturing systems, and it
appears that future work on more complex systems will by necessity be based
on the concepts and methods, if not the results, derived in their study.
Furthermore, transfer lines are already extremely widespread: they have
become one of the most highly utilized ways of manufacturing or processing
large quantities of standardized items at low cost. Production line

principles are used in many areas, from the metal cutting industry, through

the flow of jobs through components of a computer system, to batch

manufacturing in the pharmaceutical industry. At the same time, the accele-
rated pace of life and crowded cities have institutionalized queues of
people waiting to be served through series of stages, from cafeterias to
vehicle inspection stations. The work presented here is devoted to methods
of obtaining important measures of performance and design parameters for
transfer lines, such as average production rate, in-process inventory,
component reliability, and forced-down times.

The transfer line considered here may be termed unflexible: the material
flowing through the system is of only one type, and must go though all the
stations. A fixed sequence of operations is performed before the material is

considered finished and can leave the system. Such a system can be studied

-12-
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as a special case of flexible manufacturing systems.

The stations (also termed machines in the discussion that follows) are
unreliable, in that they fail at random times and remain inoperable for
random periods during which they are repaired. It is possible to.compensate
for the losses in production caused by these failures by providing.
redundancy, i.e. reserve machines that enter the network in case of failures.
However, this is often prohibitively expensive, especially in the case of
systems involving very costly components.

An alternative appears (Buzacott[1967a]) to have been discovered in

the U.S.S.R. in the early fifties. This consists in placing buffer storages

between unreliable machines in order to minimize the effects of machine
failures. Buffers provide temporary storage space for the products of
upstream machines when a downstream machine is under repair, and provide

a temporary supply of unprocessed workpieces for downstream machines when
an upstream machine is under repair. Although providing storage space and
possibly machinery to move parts in and out of storages may be cheaper than
redundancy of machines, the cost of floor space and in-process inventory
are far from negligible. It is thus necessary to find in some predefined
sense the "best" set of storage capacities, in order to minimize cost
while keeping productivity high. This leads to what may be refered to as

the buffer size optimization problem, which is discussed in section 1.1.

Before this important optimization problem can be solved, however, the
effect of buffers on productivity, in-process inventory, and other measures
of performance must be gquantified. This guantification is the purpose of

the research reported here.




1.1 Considerations on the Economic Analysis of

Interstage Buffer Storages

It is known from experimentation, simulation, and analysis that the
average production rate and in~process inventory of a transfer line increase
with buffer storage capacity. Before studying in detail the precise methods
for finding the relations between these parameters, however, it may be
necessary to describe the context for which they are intended. These results
are considered in the optimal allocation of interstage buffer storage space.

In some systems, it is desirable to maximize production rate; in others,
such as lines that produce components to be assembled with parts produced
elsewhere at known rates, it is desirable to keep the production rate as
close as possible to a given value, while minimizing cost. In the former
case, storages are often of significant value in increasing production rate

and compensating for the losses due to the unreliability of machines. However,

large storages mean high in-process inventory, a situation that is usually
not desirable. In the latter case, ways will be described to find the least
costly configuration of intexrstage buffers to give the desired production
rate. In both cases, however, there is need for analysis techniques in e
order to understand the exact relation between the various design parameters ] =
and performance measures.

Since production rate is known to increase with storage size,
maximizing production rate could be achieved by providing the system with
very large buffers. However, there are important costs and constraints
associated with providing buffers, including the costs of storage space and
equipment, and in-process inventory. Thus, the buffer size optimization
problem must take into account a number of constraints, including the
following:

(1) There may be a limit on the total storage space to be provided to the
line, i.e. on the sum of the capacities of all individual interstage
buffer storages, due to cost of or limitations on floor space.

(ii) Furthermore, the capacity of each interstage storage may be limited

due to limitations on floor space, or else, the weighted sum of storage
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capacities may be limited. This is the case, for example, if the system is
an assembly line in which parts are mounted onto the workpieces so that
their sizes increase in the downstream direction; this would not only
necessitate tighter constraints on downstream storages, but it may also
place a low upper limit on them because of floor space limitations.

(iii) It may be desirable to limit the expected (i.e. average) total number
of jobs or parts in the system at any time, that is the in-process
inventory. (It may be noted that Elmaghraby[1966] calls only those parts
that are actually being serviced in-process inventory, while he denotes
those in the buffer storages as in-waiting inventory. Here, as in most
other works, the term is taken to mean the material waiting in buffer
storages.) In-process inventory is an important consideration in . the
design and operation of manufacturing systems, particularly when the parts
are costly or when delay is particularly undesirable due to demand for
finished products.

(iv) It may be necessary to limit the expected number of parts in certain
storages only. This is the case, for example, if very costly elements are
mounted onto the workpieces at a certain station, so that the in-process
inventory beyond that point must be limited; if parts equipped with the
costly components are allowed to wait in storages, the time between the
purchase or manufacture of the costly elements and the sale of the finished
products may become long, and this is undesirable. More generally, since
each operation at subsequent stages gives more added value to each part,
it may be necessary to weigh the cost of downstream inventory more than
upstream inventory.

It may also be desirable to limit the amount of in-process inventory
between certain specific stations. This is the case, for example, if a
workpiece 1s separated into two parts at a certain station, and one of the
parts is removed, possibly processed in a separate line or server, and the
two parts are then reassembled at some downstream station. In this case,
it is not desirable tc have large amounts of inventory waiting between the
separation and assembly stations, since that wouldé imply that at certain

times, in the presence of failures, the ratio in which the two parts arrive
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at the assembly station would significantly deviate from the desired
one-to-one ratio. Complex network topologies, such as lines splitting and
merging, separate lines sharing coﬁmon servers or storage elements, are
not treated here. The present work applies only to simple transfer lines.
This is believed to be only a necessary first step towards the study of
more complex systems.

It must be noted here that, as will be shown in section 5.3, items
(i) and (ii) are not equivalent to (iii) and {(iv). In other words, although
limiting storage size certainly does impose an upper limit on the amount
of in-process inventory, the relation between these two quantities is not
necessarily linear.

The constraints outlined above are, of course, not exhaustive; specific
applications may require additional considerations or constraints.

Calculating the costs involved in designing, building and operating
transfer lines with interstage buffer storages involves numerous factors.
Kay[1972] who studied the related problem of optimizing the capacity of
conveyor belts by analytical as well as simulation techniques, found that
conveyor capacity is an important parameter in the design of production
systems. Yet, he found that none of the industrial designers that he
encountered had considered this as a design parameter. The techniques and
results presented here may serve the dual purpose of reiterating the
importance of methods and approaches for calculating the relation of buffer
capacity and other design parameters to the pérformance of transfer lines.

The economic aspects of production lines with interstage buffer
storages have been studied by numerous researchers, in some cases by simu-
lation, and in others by analytical methods based on queueing theory. Barten
[1962] uses computer simulation to obtain mean delay times for material
flowing through the system; he then bases his economic analysis on the cost
of providing storage and labor and overhead costs as a function of delay
time. Love[l1967], who studied the related problem of modeling and policy
optimization of a two-station (e.g. warehouse-retailer) inventory system,
gives a cost model for inventory including the expected cost per time to
operate the system, the cost of providing buffer facility, and that of the

expected inventory at each storage. Scoyster and Toof[1976] investigate the
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cost versus reliability tradeoff, and obtain conditions for providing a
buffer in a series of unreliable machines. Young[1967] analyzes multi-
product production lines and proposes cost functionals for buffer capacities,
which he then uses in optimization studies by computer simulation. Kraemer
and Love[l1970] consider costs incurred by in-process inventory as well as
actual buffer capacity, and solve the optimal buffer capacity problem for
a line consisting of two reliable servers with exponentially distributed
service times and an interstage finite buffer storage.

The approaches proposed in these works may be followed in deriving
appropriate cost models for an economic analysis of the system. It is
beyond the scope of the presént work to attempt to solve, or even formally
state, the buffer size optimization problem. For this reason, the economics
of unreliable transfer lines with interstage buffer storages are not
discussed here in depth. It will suffice to list some of the important
elements that must be considered in the cost analysis of such production
systems. These include:
(i) Cost of increasing the reliability of machines. While the production
rate generally increases with the reliability of individual machines,
bottleneck stages eventually dominate. At the same time, increased machine
reliability involves increased capital cost, possibly due to additional
research, high quality components, etc. In cases where machines are already
chosen, there may be no control on their individual efficiency.
(ii) Cost of providing materials handling equipment for each storage.
Buzacott[1967b] observes that providing storages involves a fixed cost,
independently of the capacity of the storage, because of equipment needed
to transfer pieces to and from the buffer, maintaining the orientation of
the workpieces, etc. This complicates the decision problem on how many stages
a production process must be broken into for optimal performance.
(ii1i) Cost of providing storage capacity. Floor space can be very expensive,
so that buffer storages may involve considerable cost which is linear with
the capacity of the buffer. It is sometimes possible, however, to use
alternate types of storage elements, such as vertical (chapter 7) or helical

(Groover [1975]) buffers, in order to reduce the area occupied by the buffer.
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(iv) Cost of repair of failed machines. There is clearly a tradeoff between
investing in increased machine reliability (item(i)) and in repairing
unreliable machines. Although this cost may not be controlled by providing
interstage storages, it enters the design of transfer lines.

(v) Cost of maintaining in-process inventory. One of the major goals in
production engineering is minimizing in-process inventory. This is
important not only when expensive raw material is involved, but also when
the value added to the parts by machining is considerable.

(vi) Cost due to delay or processing time. Apart from the cost of operating
the system, there.may be a cost due to delaying the production or increasing
the expected total processing time. This is especially true of transfer
lines involving perishable materials, such as in the food, chemical, or
pharmaceutical industries. Delay in response to demand is also an important
consideration, although this is most important in flexible lines where the
product mix may be changed to conform to demand.

(vii) The production rate of the system: the objective of the optimization
problem is maximizing profit rate, a function of production rate as well as
cost rate. The latter involves labor and overhead costs, and may be computed
in terms of mean-time needed to process a workpiece, including machining
times, in-storage waiting times, and transportation. The former reguires

a more difficult analysis, since its relation to other system parameters
such as reliability and storage size, is highly complex.

It is evident from this discussion that the problem of optimally
designing a production line has many aspects. These include the choice of
machines on the basis of reliability and cost; the division of the line into
stages once the machines have been chosen; and the optimal allocation of
buffer capacity between these stages. Yet, the relations between these
steps and between the various design parameters are not well known, and most
previous work in this area has centered on fully reliable lines, on simple
two-machine systems, or on simulation. The lack of analytical work on
unreliable lines with buffer storages has prompted Buxey, Slack and Wild[1973]
to write "the only way to achieve realistic buffer optimization is through

the use of computer simulations adapted to apply to specific rather than
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general situations." Numerical and analytical ways to obtain exact as well
as approximate values for production rate, as well as some other performance
measures, given the characteristics of the machines and storages,

constitute the primary contribution of the present work.
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1.2 A Brief Review of Past Research

Transfer lines and transfer line-—like queueing processes have been
the subject of much research, and numerous approaches as well as results
have been reported in the literature. The first analytical studies were
the works of Vladzievskii[1952,1953] and Erpsher[1952], published in the
U.S.S.R. in the early fifties.

Applications of queueing networks and transfer line models can be
found in a large number of seemingly unrelated areas. These include the
cotton industry (Goff[1970]), computer systems (Giammo[1976], Chandy[1972],
Chandy, Herzog and Woo[1975a,1975b],Shedler{1971,1973], Gelenbe and Muntz
[1976], Baskett, Chandy, Muntz and Palacios[1975}, Buzen[1971], Lam{1977},
Konheim and Reiser[1976], Lavenberg, Traiger and Chang[1973], Wallace[1969],
Wallace and Rosenberg[1966], etc.), coal mining(Koenigsberg[1958]), batch
chemical processes (Stover[1956], Koenigsberg[1959]), aircraft engine
overhauling (Jackson[1956]), and the automotive and metal cutting industries
(Koenigsberg[1959]).

A large portion of related reseérch is based on the assumption that
parts arrive at the first stage of the transfer line in a Poisson fashion.
This greatly simplifies computation, and may be applicable to models of
systems where parts arrive from the ocutside at a random rate, such as jobs
in computer systems, people at service stations, cars at toll booths, etc.
Most if not all of the computer-related work, as well as the results of
Burke[1956], Hunt[1956], Avi-Itzhak and Naor[1963], Neuts[1968,1970], and
Chul[1970] are based on the Poisson input assumption. As Soyster and Toof[1976]
point out, however, this approach is not realistic when it comes to industrial
systems such as assembly and production lines. Here, it is more reasonable
to assume that parts are always available at the first stage, so that to
follow Koenigsberg[1959]}, the approach may be termed "stochastic" as
opposed to "queueing."”

The production rate of transfer lines in the absence of buffers and in
the presence of buffers of infinite capacity have been studied (Buzacott[1l967a,

1968}, Hunt[1956], Suzuki[l964], Rao[1975a], Avi-Itzhak and Yadin[1965],
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Morse[1965]). Some researchers have analyzed transfer lines with fully
reliable components, in which the buffers are used to minimize the effects
of fluctuations in the non-deterministic service times (Neuts([1968,1970],
Purdue[1972], Muth[1973], Knott[1970a],Hillier and Boling[1966], Patterson
[1964], Hatcher[1969] (It should be noted that Knott[1970b] disputes
Hatcher's results and provides a counter-example)). Two-stage systems with
finite interstage buffers have also been studied (Artamonov[1976], Gershwin
[1973a,1973b], Gershwin and Schick[1977], Gershwin and Berman[1978],
Buzacott[1967a,1967b,1969,1972], Okamura and Yamashina[l1977], Rao[1975a,
1975b], Sevast'yvanov[1962]). Longer systems have been more problematic
because of the machine interference when buffers are full or empty (Okamura
and Yamashina[l977]). Such systems have been formulated in many ways
{Gershwin and‘Schick[l977], Sheskin[1974,1976], Hildebrand[1968], Hatcher
[1969], Knott[1970a,1970bl) and studied by approximation (Buzacott[1967a,
1967b], Sevast'yanov([1962], Masso and Smith[1974], Masso[l1973]), as well as
simulation (Anderson([1968], Anderson and Moodie[1969], Hanifin, Liberty and
Taraman[1975], Barten[1962], Kay[1972], Freeman[1964]), but no analytic
technique has been found to obtain the expected production rate of a
multistage transfer line with unreliable components and finite interstage

buffer storages.
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1.3 Outline of Research and Contributions

The present work aims at devising analytical, numerical, and
approximate methods for solving the problem of obtaining the production rate
and other important performance measures of transfer lines with more than
two unreliable stages and finite interstage buffers, while at the same time
furthefing the understanding of two-machine transfer lines.

The problem is formally stated in chapter 2: a description of the
transfer line is followed by a state-space formulation in section 2.1, and
a discussion of the modeling assumptions in section 2.2. The Markov chain
model is introduced and discussed in section 2.3.

An analytical approach is developed in chapter 3: the states of the
system are classified as internal and boundary, and these are studied in
sections 3.1 and 3.2 respectively. A sum-of-products solution for the
steady-state probabilities of internal states of the system is introduced
in section 3.1.2, and the analysis is extended to the boundary states for
two-machine lines, and three-machine and longer lines, in sections 3.2.1
and 3.2.2 respectively.

Numerical methods for solving the transfer line problem are developed
in chapter 4: the iterative multiplication scheme known as the power method
is introduced and discussed in section 4.l1l. An algorithm which solves the
large system of transition egquations by taking advantage of the sparsity
and block-tri-diagonal structure of the transition matrix is developed in
section 4.2: the structure of the transition matrix is studied in section
4.2.1 and the algorithm is formulated in section 4.2.2. Some important
computer storage problems associated with this algorithm are discussed in
section 4.2.3.

The state probabilities obtained by the analytical and numerical
methods discussed in chapters 3 and 4 are used to calculate important system
performance measures in chapter 5: these include efficiency and production
rate, forced-down times, and in-process inventory. The production rate of
the system is discussed in section 5.1: alternate ways to compute production

rate are given in section 5.1.1, and the effects of start-up transients on
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this quantity are investigated by dynamic simulation in section 5.1.2.

The dependence of production rate, forced-down times and expected in-process
inventory on the failure and repair rates of individual machines and the
capacities of individual storages is studied in sections 5.1.3, 5.2, and

5.3 respectively.

Approximate methods for computing the system's production rate with
less computation than is required by the exact methods developed in earlier
chapters are introduced in chapter 6: dynamic simulation and its limited
uses in the present work are briefly reviewed in section 6.1. An aggregate
method for computing the approximate average production rate of a long
transfer line is introduced in section 6.2: this method is based on the
quasi—geométric input and output characteristics of two-machine lines, as
demonstrated in section 6.2.1. Since a single machine has exactly geometric
input and output characteristics, the approximate equivalence of a single
machine to a two-machine, one-storage segment of a transfer line is
proposed in section 6.2.2. It is shown, however, that the approximation is
best when the line is not well balanced, a rare occurrence in actual
industrial systems. A mathematical operation on the'system parameters .
referred to as the O-transformation is introduced in section 6.3.1. It is
shown in section 6.3.2 that this transformation leaves production rate
nearly unchanged. The major consegquence is that the state space can bg
considerably reduced through this approach, thus decreasing the amount of
computation and memory necessary to solve the problem.

Chapters 7,8, and 9 are devoted to applications of the theory. The aim
of these chapters is primarily to demonstrate the wide-range applicability
of the model, while at the same time pointing out its shortcomings and
weaknesses and discussing ways of extending the model to more closely conform
to actual situations.

Chapter 7 outlines a paper finishing line: this system is shown to
lend itself to a three-machine, two-storage transfer line model, although
several important differences exist between the system and the model. These
are discussed in section 7.1, while attempts at modeling the system are

reviewed in section 7.2.
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Chapters 8 and 9 investigate the application of the transfer line
model to chemical systems. It appears that Stover's [1956] pioneering
work in the application of queueing theory to chemical plants has not been
followed up or developed subsequently. Yet, as is shown here, this approach
can be particularly useful in estimating the production rates of chemical
systems in the presence of unreliable equipment: pumps or valves that fail,
heating, cooling, or control mechanisms that break down, etc.

A dqueueing theory approach to the study of batch chemical processes,
in which pumps, reactors, and other unreliable components are represented
by machines and holding tanks by storages, is introduced in section 8.1.
Major differences between actual systems and the model are discussed in
sections 8.1.1 and 8.1.2. The model is extended to account for cases where
servicing times are not deterministic. This includes reactors where batches
of chemicals take periods of time which deviate from a known mean holding
time to reach a desired conversion. This may happen because of variations
in the temperature or concentration of the feed, or because the kinetics
of the reaction are not understood well enough to predict reaction times
exac?ly. The new model is applied to a simple system consisting of a batch
reactor and a still, separated by unreliable pumps and parallel holding
tanks, in section 8.2.1. A numerical example is worked out, and more complex
systems are discussed, in sections 8.2.2 and 8.2.3 respectively.

The §-transformation introduced in section 6.3 is taken to its limit
as 60 and the model is shown to become equivalent to a continuous system
in chapter 9. Results obtained by differential equations for a continuous
line are outlined in section 9.1, and the limiting case of the &-transformation
is studied in section 9.2. The two approaches are shown to yield identical
results. A numerical example of a continuous chemical process, in which a
plug-flow reactor and a distillation column are separated by unreliable
pumps and a holding tank is worked out.

Conclusions and suggestions for future research appear in chapter 10.




2. PROBLEM STATEMENT AND MODEL FORMULATION

Formulating a mathematical model in order to study the relations
between certain parameters and measures of performance in transfer lines
requires a formal and unambiguous statement of the problem.

Section 2.1 gives a general description of a multistage transfer line
with unreliable components and interstage buffer storages. The line is
discussed in section 2.1.1 and a state space formulation is introduced
in section 2.1.2.

The various assumptions made in the process of translating the system
into a mathematical model are outlined and discussed in section 2.2. These
assumptions are necessary in order to render the mathematical model
tractable, while not losing sight of the physical properties of the actual
system. Many of these assumptions are standard (Feller[1966], Koenigsberg
{19591). The assumptions are stated, justification is given, and possibilities
of relaxation are investigated.

'The Markov chain approach to modeling the transfef line is discussed
in section 2.3. This approach is frequently used in the study of queueing
networks arising from computer systems (Wallace[l1972,1973], Wallace and
Rosenberg{1966]}) or manufacturing systems (Buzacott{1967a,1967b,1969,1971,
1972]). A brief review of the properties of Markov chains is given in
section 2.3.1.(An excellent and exhaustive text on Markov systems is Howard

[1971]). The Markov model of the transfer line is discussed in section 2.3.2.

-25-
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‘2.1 Modeling the Transfer Line

2.1.1 Description of a Multistage Transfer Line

with Buffer Storages

The system under study is illustrated in figure 2.1. It consists of a
linear network of machines separated by buffer storages of finite capacities.
Workpieces enter the first machine from outside the system. Each piece is
processed (drilling or welding in a metal cutting line, reacting or
distillating in a chemical plant, data processing in a computer network, etc.)
by machine 1, after which it is moved into storage 1. For the purposes of this
study, the nature of the machine operation may be ignored, and a machine is
taken to be an unreliable mechanism which moves one workpiece per cycle in
the downstream direction. The buffer is a storage element in which a workpiece
is available to a downstream machine with a negligible delay. The part moves in
the downstream direction, from machine i to storage i to machine i+l and so
on, unti}]l it is processed by the last machine and thereby leaves the system.

Machines fail at random times. While some of these failures are easy to
diagnose and quick to repair, such as some tool failures, temporary power
shortages, etc., others involve more serious and time-consuming breakdowns,
such as jamming of workpieces or material shortages. Thus, the down-times of
the machines, like the up—times,'are random variables. When a failure occurs,
the level in the adjacent upstream storage tends to rise due to the arrival of
parts produced by the upstream portion of the line; at the same time, the level

in the downstream adjacent storage tends to fall, as the parts contained in

that storage are drained by the downstream portion of the line. If the failure
lasts long enough, the upstream storage fills up, at which time the machine
immediately preceeding it gets blocked and stops. Similarly, given that the
failure takes long enough to repair, the downstream storage eventually empties,
and causes the machine following it to starve and stop. This effect propagates

up and down the line if the repair is not made promptly.

If it is assumed that machines cannot operate faster than their usual rates

in order to catch up the time lost because of such failures, it is clear that
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breakdowns have the effect of reducing the average production rate of the
transfer line. Although machine failures are to a certain extent inevitable,
it is desirable to avoid situations in which operational machines are
affected by failures elsewhere and‘are forced to stop. Such situations
can to a certain extent be avoided by the use of buffer storages, which
act so as to partially decouple adjacent machines. As the capacities of
these storages are increased, the effects of individual failures on the
production rate of the system are decreased.

It is desirable to study the interactions between the elements of
the system and the relations between various system parameters, so as to
be able to quantify the advantages of using buffer storages and their

effect on system production rate.
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2.1.2 State Space Formulation

A probabilistic approach is taken in the study of unreliable transfer
lines. Starting with probabilities of failure and repair for each individual
machine in the line, the probabilities of producing a piece, of being forced
down, or of having a given number of parts in a given storage within any time
cycle are sought. These are used in evaluating the system's performance. The
transfer line problem was studied through such a probabilistic approach for
the first time (see Buzacott[1967a]) by Vliadzievskii[1952].

In order to carry out the analysis in this direction, it is necessary
to formulate a state space for the probabilistic model. A system state is
defined as a set of numbers that indicate the operational status of the ‘
machines and the number of pieces in each storage, as described below.

For each machine in a k-machine line, the variable ai is defined as

follows:

0 if machine i is under repair

e

izl,--lk (2'1)

1 if machine i is operational

It is important to note that operational is defined to mean "capable of

"

processing a piece," as opposed to "actually processing a piece." This
accounts for cases where the machines are in good working order, but are
not processing parts because they are starved or blocked. Several authors
(Haydon [1972], Okamura and Yamashina[l1977], Kraemer and Love[l1970])) define
four states, by adding to the above separate states for blocked and starved
machines. It will be shown, however, that since probabilities of transition
between states are taken here to depend not only on the states of machines
bQF also on the levels of storages, the two approaches are egquivalent, though
the one given by equation (2.1) is more compact.

The variable nj is defined as the number of pieces in (the level of)
storage j. Each storage is defined to have a finite maximum capacity Nﬁ,

o

so that
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0 £ n. £ X i J=1,..,k-1 {2.2)
The state of the system at time t is defined to be the set of numbers
s(t) = (nl(t),--,nk_l(t),dl(t),.-,uk(t)) (2.3)

It may be noted that time, though denoted by the letter t, is discrete. As
will be described in section 2.2.2, time is measured in machining cycles.
The efficiency of a transfer line is defined to be the probability of
producing a finished piece within any given cycle. It may be thought of as
the expected ratio of time in which the system actually produces finished

parts to total time. Efficiency, E, satisfies
0 £ E L1 (2.4)
State transition probabilities are treated in section 2.2.3. Methods

of obtaining steady state probabilities are developed in chapters 3 and 4,

and their relation to efficiency are discussed in chapters 5 and 6.
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[7.2 Assumptions of the Model

2.2.1 Input and Output of the Transfer Line

It is assumed that an endless supply of workpieces is available upstream
of the first machine in the line and an unlimited storage area downstream of
the last ﬁachine is capable of absorbing the parts produced by the line. Thus,
the first machine is never starved and the last machine is never blocked.

Although a large portion of computer-related work assumes that Jjobs
arrive at the system at random rates, often in Poisson fashion, it is more
realistic in industrial systems to assume that parts are available when
needed (Soyster and Toof{1976]). Nevertheless, it is possible to think of
cases in which delays in reordering raw materials etc. may cause a shortage
of workpieces at the head of the line. Similarly, it is conceivable that
congestion downstream in the job shop may cause blocking at the end of the
line. These events would clearly not have Poisson time distributions: in
that case, parts arrive singly, with random interarrival times. In most
industrial cases, it may be expected that parts are delivered in batches.

In such cases, it is possible to think of the first and last machines in

the model as representing loading and unloading stations. Then, temporary
shortages of workpieces or temporary congestion downstream may be modeled as
failures in these machines. In other words, unreliable first and last machines
may model delivery to and from the production line, especially if parts are
moved in bulks (Bagchi and Templeton{1972]).

A single machine, i.e. a one-machine line, stays up for a random length
of time, and once a failure occurs, it remains down for a random length of
time. Both of these periods are geometrically distributed (as will be shown
in section 2.2.3). Thus, the arrival of pulks (or batches) of geometrically
distributed sizes, with geometrically distributed interarrival timesf may be
modeled by a fictitious first machine. This may involve some additional
considerations, however. Subsequent deliveries must be independent, and the

first storage may have to have infinite capacity.
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In general, the assumption of infinite workpiece supply will be
justified for most industrial applications. Entire production lines seldom
have to stop because of lack of raw material; major shutdowns due to strikes
or accidents are of an entirely different nature and are not considered
stochastic failures in the sense described in section 2.2.3. There may,
nevertheless, be cases where loading and unloading batches takes some time.
This is the case, for example, with the paper finishing line (chapter 7)
where paper is supplied to the line in the form of extremely large, but
necessarily finite rolls. As discussed in section 7.1.2, the effect of
starving the line during loading may be ignored if the period of time in
which the system is starved is negligible compared to other times involved

in the system.
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2.2.2 Service Times of the Machines

It is assumed that all machines operate with equal and deterministic
service times. The temporal parameter t is chosen so that one time unit is
equal to the duration of one machine cycle. Thus, the line has a production
rate determined only by its efficiency. The efficiencies of individual
machines in isolation, on the other hand, are functions of their mean times
between failures and mean times to repair, or alternately their repair and
failure probabilities. (This is discussed in detail in section 5.1).

Although deterministic service times may be encountered in certain
actual systems (Koenigsberg[1959] mentions an automobile assembly line),
this assumption does not hold in many industrial applications. Not only is
machining time often a random variable, but downstream machines frequently
operate on the average-at a faster rate than upstream ones, in order to
avoid as much as possible the blocking of upstream machines.

The assumption of constant machining times is justifiable if service
times do not deviate appreciably from the mean, compared to the mean service
time. This is because variances in service times do not significantly affect
the system behavior and average production rate at the condition that the
system is not driven to boundaries, i.e. storages are not emptied or filled
up. As will be shown in later chapters, the largest steady-state probabilities
belong to states with 1 or Ni—l pieces in storages. Thus, the system runs most
often near boundaries. As a result of that, small deviations from the mean may
average out, although large deviations may starve certain machines and block
others, thereby reducing the line production rate.

Solutions have been obtained for gueueing networks with servers having
exponential time distributions (See section 8.2). The assumption of exponential
- distribution reduces the complexity of the problem, but numerous researchers
point out that this is often not a reasonable assumption (e.g. Rao[l1975al).
Gaussian distributions have been proposed by some (Vliadzievskii[l952],
Xoenigsberg[1959]) and certain Erlang {(See Brockmever, Halstrgm and Jensen[1960])
distributions may be considered in that thev have applicability to industrial
cases and satisfy the Markcov proper=zv oI nc mémory (Section 2.3).

Transportation takes negligible time compared to machining times.
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2.2.3 Failure and Repair of Machines

Machines are assumed to have geoﬁetrically distributed times between
failures and times to repair. This imélies that at every time cycle, there
is a constant probability of failure given that the machine is processing
a piece, egqual to the reciprocal of the mean time between failures (MTBF).

It is further assumed that machines only fail while processing a piece.
Similarly, there is a constant probability of repair given that the machine
has failed, equal to the reciprocal of the mean time to repair (MTTR).

The assumption of geometric failure rate is common (Vladzievskii[1952],
Koenigsberg[1959], Esary, Marshall and Proschan[1969], Barlow and Proschan
[1975]1, Goff[1970], Buzacott[1967a,1967b,1969], Feller[1966], Sarma and Alam
[1975]). It makes it possible to model the system as a Markov chain, since
it satisfies the memoryless property of Markov systems (Section 2.3).

However, there are certain difficulties with this assumption. While it

applies to those cases where the overwhelming majority of failures are due to
accidental, truly stochastic events, such as tool breakage or workpiece

jams, if does not account for scheduled down-times or tool wear. Such stoppages
are predictable given knowledge of the history of the system. Yet, when there
is a very large number of possible causes of failure, so that even if some are
scheduled, the time distribution including stochastic failures is close to a
geometric distribution, this assumption can be made.

Geometric repair time distributions imply that the repair is completed
during any cycle with a constant probability, regardless of how long repairmen
have been working on the machine. This assumption may not be far from the truth
if there are many possible causes of failure, each of which take different
lengths of time to repair.

Some examples of actual up- and down-time distributions from an industrial
manufacturer appear in figures 2.2 and 2.3. Although these are for relatively
small numbers of runs, totalling no more than several hundred time cycles, the
distribution is in fact seen to be remarkably close to geometric. (These charts
represent typical data obtained from an industrial manufacturer. The actual

data is the proprietory information cf the industrial manufacturer.)
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The model does not take into account the problem of machine interference
(Benson and Cox[1951], Cox and Smith[1974]}), in which the limited number of
repairmen affects the repair probabilities when more than one machine are
down simultaneously. Not only are the repair probabilities reduced in such
cases, but they further depend on which machine broke down first, since the
repairmen will be at work at that machine with greatest probability. Ways of
taking this problem into account are discussed to some detail in section 7.1.6.

While repair takes place independently of storage levels or the number
of failed machines, a failure can only occur when the machine is actually
processing a part. This implies that the upstream storage is not empty and
the downstream storage is not full. In the former case, the machine has no
workpiece to operate on, and in the latter, it is not allowed to operate since
there is no place to discharge a processed workpiece. In other words, a
forced-down machine cannot fail. In research reported by Koenigsberg{1959],
Finch assumed that forced-down machines have the same probability of failure
as running machines, an assumption that is not realistic. (Buzacott[1967a,1967b],
Okamura and Yamashina[l977]).

The assumption that machines only fail while actually processing a piece
is consistent with the assumption that the great majority bf failurés is due
to stochastic events such as tool breakage, as opposed to scheduled shutdowns

or major system failures that may happen at any time.
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2.2.4 Conservation of Workpieces

The model does not account for any mechanism for destroying or rejecting
workpieces, or for adding semi—finished-workpieces into the line. Thus, the
average rate at which pieces are processed by each stage in the line is the
same for all stages. It is shown in section 5.1.1 that the solution to the
two-machine line satisfies the conservation of pieces. The proof is not
complete for longer lines.

The fact that pieces are not created by the system is true except when
machines cut workpieces into identical parts, all of which are then processed
by downstream machines; this is the case in the paper finishing line (See
section 7.1.1). That pieces are not destroyed, however, assumes that a
workpiece is not scrapped when a machine fails while processing it (as in
the work of Okamura and Yamashina[1977])), that there are no interstage
inspection stations where defective parts are removed, etc. In systems
satisfying these requirements, all stages process the same average number of
pieces per cycle, and it is thus only necessary to compute the production
rate of one stage, e.g. the last one (Koenigsberg[1959]). There is an
important exception to this rule, and that involves infinite buffer storages
for which the upstream portion of the line is more efficient than the
downstream portion. This is examined in greater detail in section 5.1.3.

Cases in which workpieces are cut into parts or parts are assembled or
packaged together are briefly treated in section 7.1.1. It is possible to
approximate such lines by considering the smallest part as a unit and
analyzing larger parts, either before they are cut or after they are
assembled, as multiples of the smallest unit. This approach is not exact, and
errors are introduced by effective changes in the flexibility of the system.

(See section 6.3).
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2.2.5 Dynamic Behavior of the System

It is assumed as a convention that machines make their state transitions
first, conditional on the level of the adjacent storages. Once these changes
take place, the storage levels undergo state transitions, within the same time
cycle. This is only a convention and the actual system does not have to
operate this way. Thus, the transition ui(t)+ai(t+l) is conditional on di(t),
ni_l(t) and ni(t). However, the transition ni(t)+ni(t+l) is conditional on
ni_l(t),ni(t),ni+l(t); as well as ai(t+l) and ai+1(t+1), where these latter
indices are the final machine states while the former are the initial storage
states. Note that the machine and storage transitions depend only on the
adjacent machine and storage states, and do not depend on the states of
machines and storages further removed.

This assumption makes the computation easier, because it implies that
the final storage state is uniquely determined once the initial storage states
and the final machine states are known. The advantages of this approach in
the mathematical derivation are made clearer in section 3.1.1.

This assumption is consistent with those stated previously: a machine
can not fail if the adjacent upstream storage is empty, so that there are no parts
to process, or if the adjacent downstream storage is full, so that there is
no place to put the processed piece. Furthermore, a piece is not destroyed
when a machine fails, but merely remains in the upstream storage until the
machine is repaired. Finally, since all machines work synchronously, there
is no feed forward information flow, so that the knowledge that a place will
be vacant in the downstrean storage or that a piece will emerge from the
upstream machine in the time cycle to follow does not influence the decision
on whether or not to attempt to process a piece.

It is important to note that this is mostly for mathematical convenience
and need not represent the operation of the actual system. One conseguence of
this assumption is important, however, and must be consistent with the actual
system. Because there is no feed forward information flow, a machine can not
decide to process a piece if the upstream storage is empty, even though the

upstream machine may be ready to discharge a'part. Similarly, the machine
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cannot start processing a piece if the downstream storage is full, even
though the downstream machine may have just been repaired and is ready to
take in a piece. Thus, there is a delay of at least one cycle between
subsequent operations by adjacent machines on any given workpiece, and
between a change in the system state and decisions on the part of the
machines towards the next state transition. This is unlike the models
analyzed by Hatcher[1962] and Masso[1973], in which a part may emerge
from a machine and go into the next, bypassing the storage element,

within the same time cycle.
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2.2.6 The Steady State Assumption

It is assumed that the probabilistic model of the system is in
steady state, i.e. that all effects of start-up transients have vanished
and that the system may be represented by a stationary probabilistic
distribution.

A stochastic system is never at rest. Thus, as explained in section
5.1.2, the steady state assumption does not imply that the system is not
fluctuating. What it does imply is that a sufficiently long period of time
has passed since start-up, so that knowledge of the initial condition
of the system does not give any information on the present state of the
system. Thus, the average performance of the system approaches the
steady state values calculated by assuming that the prcobabilistic model
of the system is stationary.

There may be cases, however, in which transients take very long to
die down, compared to the total running time of the system. In such
cases, the steady state values may not represent the averagevperformance
of the system. The effects of start-up transients are briefly discussed

in section 5.1.2.
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2.3 Formulation of the Markov Chain Model

2.3.1 The Markovian Assumption and Some Basic Properties

A stochastic process may be defined as a sequence of events with random

outcomes. A process is said to be Markovian if the conditional joint probability
distribution of any set of outcomes of the process, given some state, is
independent of all outcomes prior to that state. Thus, defining the state

of the system at time t as s(t),
pls(t+l) |s(t),s(t-1),..,s(t-T)]1 = pls(t+l)|s(t)] (2.5)

This implies that at any given time, the transition probability depends only
on the state occupied at that time; it is independent of the past history of
transitions. Another way of saying this is that the transition from one
state to another is independent of how the system originally got to the first
state. This is what is meant by the memorylessness of Markov processes.

The expression appearing on the right-hand-side of equation (2.5) is
the probability of transition from the state occupied at a given time to the
state occupied one time step later. This probability is assumed to be

independent of time. Thus, the state transition probabilities are defined as

£ & pls(t+1)=j|s(t)=i] ; all i,3 C(2.6)

Given that there are M states, the transition probabilities defined by *

equation (2.6) obey the following relations:
2 0 ; all i,3 (2.7)

M
2t = 1 alli (2.8)

It is possible to represent the state transition probabilities in matrix form.
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The transition matrix is defined as

=

%1 1

€0 )

M

r""‘
rf

.en tMl

(2.9)

At time t, the probabilities that the system is in state i=1,..,M may be

represented as a state probability vector, defined as

B (t—
Pl )
Pz(t)

p() =1} .
pM(t)

where
M
pi(t) = 1
i=1

Then, the state probability vector at time t+1 is given by

p(t+1)

and recursive application of equation (2.12) gives

plt)

Here, p(0) is a

= T p(t)

™ p(0)

ne

®(t) p(0)

s

pls(t)=1]
pls(t)=2]

ne>

pls{t)=M]

.

—

(2.10)

(2.11)

(2.12)

(2.13)

given initial (a priori) probability vector, and Tt denotes

th C . L s
the t = power of the transition matrix T. The chain 1s termed ergodic if the
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limit

lim & (t) &

Tt

o (2.14)

exists and if the steady-state probability vector defined as

P 4 ® p(0) (2.15)

is independent of the value of the initial state probability vector p(0).

As t>®, equation 2.12 becomes

since the vectors p(t) and p(t+l) converge to p.

Equations (2.11) and (2.16) are shown to uniquely determine the value of
p for the system under study in section 4.2.1. These two equations form the
basis of both analytical methods derived in chapter 3 and the sparse block
tri-diagonal system of equations solving algorithm introduced in section
4.2. The power method discussed in section 4.1 is based on equations (2.12)-

(2.15).




-45-

2.3.2 System Parameters

Assumption 2.2.3 implies that whenever a machine is processing a part,
it has a probability of failure pi. Since the up-times of the machines are
geometrically distributed, the failure probability for a given machine is
equal to the reciprocal of its mean time between failures. When the machine
is operational, i.e. in good working order, but forced down either because
the upstream storage is empty or because the downstream storage is full, it
can not fail; thus, the failure probability of a starved or blocked machine
is zero. Finally, when processing a piece, a machine can either fail or
successfully complete the machining cycle; thus, since its failure probability
is pi, the probability that it successfully completes the part is 1—pi.

Repair of a failed machine starts at the beginning of the time cycle
following the failure. By assumption 2.2.3, the probability that a failed
machine is repaired at the end of any cycle is ri. This value is independent
of storage levels or the status of other machines. Since down~-times of machines
are geometrically distributed, the repair probability of a given machine is
equal to the reciprocal of its mean time to repair. The probability that a
failed machine remains down at the end of a time cycle is l-ri. These
probabilities are summarized in table 2.1.

As discussed in section 2.2.5, storage level transitions are uniquely
determined by the knowledge of the initial storage levels and the final
machine states. Consequently, these transitions have probabilities either
equal to 1 (certain) or to zero (impossible). The transitions with probability
1l are listed in table 2.2. Some of these are discussed below.

The level of storage i at time t+1 depends on its level at time t, as
well as on whether or not a part is added to or withdrawn from it by the
adjacent machines. The upstream machine adds a piece to the storage if it is
operational and if it is allowed to process parts, i.e. if it is neither
starved nor blocked. Similarly, the downstream machine withdraws a piece
from the storage if it is operational, as well as neither starved nor
blocked. Conseguently, ni(t+l), the level of the storage at time t+l, is

determined by the upstream and cdownstream machine states at time t+1 (ai(t+l)
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probla, (t+1) | n, . (£), a, (£), n, ()]

i-l(t) n, (t) ai(t) ai(t+l) probability
- - 0 l-r,
i
- - 0 r,
i
- 1 0 0
- 1 1 1l
- N, 1 0 0
i
- N, 1 1 1
1
> 0
0 <Ni 1 P
>0 <N, 1 1 i-p

Table 2.1. Machine State Transition
Probabilities
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Table 2.2. Storage Level Transition Probabilities.
Q. +1),n,
probln, (t+1) [n,_, (£),a, (t+1),n, (), 0, (e+1),n, ., (£)]

+ + A
ni-l(t) n, (&) ni+l_(t) o, (t+l) ai+l(t 1 n, (t+1) probability
< 0
0 0 Ni+l 0 0 1
0 1 0 1
1l 0 0 1l
1 1 0 1
0 0 Ni+l 0 0 0 1l
0 1 0 1
1 0 0 1
1 1 0 1
>0,< <

0 0, Ni Ni+l 0 0 n, (t) 1
0 1 n, (t)=-1 1

1
1 0 n, (t) 1

i
1 1 n, (t)-1 1

1

>0,< .

0 0, Ni Ni+l 0 0 ni(t) 1
0 1 n, (t) 1

i
1 0 n, (t) 1

1l
1 1 n, (t) 1

RS

<

0 Ni Ni+l 0 0 Ni 1
0 1 N.-1 1

1
1 0 N, 1

1
1 1 N.-1 1

1
0 Ni Ni+l 0 0 Ni 1
0 1 N, 1
1 D N 1

b_.l
[
}_J
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(Table 2.2 continued)

ni_l(t) ni(t) ni+1(t) ai(t+1) ai+l(t+l) ni(t+l) probability
> <
0 0 Ni+l 0 0 0 1
0] 1l 0 1
1l 0 1 1
1 1l 1 1
>
0 0 Ni+l 0 0 0 1
0 1 0 1
1 0 1 1
1 1 1 1l
> >0,< <
0 0, Ni Ni+l 0 o] ni(t) 1
0 1 ni(t)—l 1
1 0 ni(t)+1 1
1 1 n, (t) 1
i
> >0,<
0 o, Ni Ni+1 0 0 ni(t) 1
0 1 n, (t) 1
i
1 0 ni(t)+l 1
1 1 ni(t)+l 1
> <
0 Ni Ni+l 0 0 Ni 1
0] 1 N.-1 1
i
1 0 N, 1
i
1 1 N,-1 1
i
>
0 Ni Ni+l 0 0 Ni 1
0 1 N, 1
i
1 0 N, 1
i
1 1 N, 1
i

All other transitions have probability = O.
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and ai+l(t+l)) and the levels of the upstream and downstream storages, as
well as its own level, at time t (ni—l(t)'ni(t)'ni+l(t))' This follows from
assumption 2.2.5.

As an example, consider the first two sets of four cases in table 2.2.
Storage i is initially empty, and so is storage i-l. Since parts may not be
removed from an empty storage, the level at time t+1 does not depend on the
downstream portion of the line; the outcome is ni(t+1)=0 whether the
downstream machine is up or down, as well as whether ni+l(t)=Ni+l or not.

In the third set in table 2.2, the storage is initially neither empty
nor full; again, the upstream storage is empty, so that parts may not be
added to the storage whether the upstream machine is up or down. However,
since the downstream storage is not full, parts may be removed if the
downstream machine is up. Consequently, the level of storage i at time t+l1
is equal to ni(t) if the downstream machine is down, and to ni(t)-l if it
is up.

Since not all machine state and storage level transitions have non zero
probabilities, it is not possible to go from every system state to every
other one in one time step. Furthermore, it is impossible to reach certain
states, while others may only be reached from states that are impossible
to reach in the first place. A simple example of a two-machine line with
storage capacity equal to 4 will serve to illustrate this; its state
transition diagram appears in figure 2.4. '

It is first noted that for a two machine line, the state of the system

as given by equation (2.3) is

A
= , 2.17
s (n al,az) ( )
It may be seen in figure 2.4 that states (0,1,0) and (0,1,1) can be reached
£rom no other states; at the same time, (0,0,0) can only be reached from itself
and from (0,1,0). The arguement may be extended to all states drawn with a
dotted line. These cannot be reached once the system leaves them: such states

are termed transient states, and their steady state probabilities are equal

to zero. For this reason, thev are often referred to as impossible states in

the discussions that follow. In general, it is not difficult to verify whether
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or not a state is transient. A procedure that serves this purpose for a
general k-machine line appears in the FORMAC program in Appendix A.2.

It is necessary to make a distinction between two types of states

before going any further. The set of boundarv states contains all states
in which at least one of the storages obeys one of the following two

relations:

n, £ 1 . (2.18)

n, 2 N,-1 (2.19)

It will be shown that these states must be treated separately from all other
states because of differences in transition equations.

The set of internal states contains all other states, i.e. all states

for which the relation

2 < n, < N,-2 o i=l,...k-1 (2.20)
is true for every storage. The significance of this classification becomes
more apparent in chapter 3.

The steady state probabilities of the transfer lines are defined, in

accordance with the definition of system states in eguation (2.3), as

4
pls(t)] = pln, (&),..on _, (8),a (2], .ha (E)] (2.21)

The production rate of the system will be shown to be the sum of a certain
set of these probabilities. Analogously, in-process inventory, forced dowg
times and other important quantities will be derived as sums of sets of
state probabilities.

Analytical and numerical methods for obtaining these probabilities are
derived in chapters 3 and 4.

The number of states in a k-machine line with storage capacities N_,..,

1

N

k=1 is given by

mo= 20 (N1 .. +D) ‘ (2.22)



3. DERIVATION OF ANALYTICAL METHODS

By guessing a sum-of-products solﬁtion for internal states and using
the Markov model presented in chapter 2) it is possible to obtain analytical
expressions for the steady-state probabilities defined in section 2.3.
Analytical expressions are given for two-machine lines in Artamonov([19761],
Buzacott[1967a,1967b,1969], Gershwin[1973al, and Gershwin and Schick{1977].
The approach is general in the present chapter, although only solutions
for the two- and three-machine transfer lines are explained in detail.

Section 3.1 discusses the guessed solution and the transition equations
for internal states. These equations are expressed in terms of failure and
repair probabilities, as well as state probabilities, in section 3.1.1. A set
of equations is obtained by guessing the form of the expression for internal
steady-state probabilities and substituting it into transition equations,
in section 3.1.2 The analysis of internal states and transition equations
is perfectly general and applies to a k-machine transfer line. The specific
cases of two- ana three-machine lines are investigated in detail.

Boundary state transition equations are introduced in section 3.2.
These are used to complete the analytical solution for the two- and three-
machine cases. The two-machine line is worked out in section 3.2.1. An
attempt is made to generalize the derivation to longer lines in section 3.2.2,

where the three-machine case is described in detail.
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3.1 Closed-Form Expressions for Internal States

3.1.1 Internal State Transition Eguations

The state of the system is defined in equation (2.3) as the set of

numbers

s(t)

i}

(nl(t)..-,ri_l(t),al(t),.‘,ak(t)) (3.1)

For every state s(t+l), i.e. for every combination of storage levels and

machine states, it is possible to write a transition equation of the form

pls(t+l),t+1l] = E pls(t+1)|s(t)l-pls(t),t] (3.2)

all
s(t)

where the first factor in the summation denotes the probability of transition
from the initial state s(t) to the final state s(t+l). Egquation (3.2) is
completely general, and does not assume steady-state. The summation is
performed over all possible initial states s(t). Modeling assumptions

outlined in section 2.2 make it possible to express the transition probability
as the product of machine transition probabilities and storage transition
probabilities. The first factor in the summation in equation (3.2) may be

written as

pls(es) [s(0)] = B e (3.3)
where
k
P, = l l pla, (t+1) [n, _, (£),0, (£),n (©)] (3.4)
i=1

anc
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P = | p[ni(t+1)lni_l(t),ai(t+l),ni(t),ai+l(t+1),ni+1(t)] (3.5)

These conditional probabilities follow from the discussion in section 2.3 as
well as tables 2.1 and 2.2. The fictitious storages no(') and nk(-) are defined
so that no(-) is never empty and nk(-) is never full; this is consistent with
assumption 2.2.1, which states that the first machine is never starved and

the last machine is never blocked.

The terms in the product in equation (3.4) are the transition probabilities
of individual machine states. These appear in table 2.1. The terms in the
product in equation (3.5) are either zero or one. This is because final storage
states are uniquely determined by initial storage states and final machine
states (See sections 2.2.5 and 2.3). Furthermore, the only possible storage
transitions are those in which the levels change by at most one unit (See
section 4.2.1), that is,

n, (t)-1,

n, (t+1) = n;(t), or (3.6)
ni(t)+1

This eliminates a large number of transitions.

Internal state transition equations are defined as those transition

equations involving only internal states, i.e. equations in which the final
state as well as all the initial states (from which there is a non-zero

transition probability) in equation (3.2) are internal.

When all storages are internal, i.e. when they all have levels such S

that

2 & n, &£ N,-2 ;o i=1,..,k-1 (3.7)

all the operational machines can transfer parts from their upstream to their
downstream storages. In other words, they are neither starved nor blocked,

and thus remove a piece from the upstream storage and add one to the

downstream storage. Then, the final state of storage i is given in terms of

its initial level and the final states of adjacent machines by the equation
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n, (£+1) = n (t) + a, (t+1) - a, o (t+l) ) (3.8)

For example, equation (3.8) indicates that if the upstream machine is down
and the downstream machine is up, the final level is equal to the initial
level minus one.

For internal state transitions, the machine transition probabilities

in table 2.1 may all be combined in a single expression as

pla, (t+1) [n, _, (£),0, (t),n, (©)] =

i—a.(t+l)
(1-r,) * r

ai(t+l) l—ai(t+1) di(t)
(l—pi) P,

.

o, (t+1) ] 1-a. (t)
1 R
i

i (3.9)

Since ai(c)bonly takes the vglues 0 or 1, any combination of ai(t) and ai(t+l)
results in the reduction of the right hand side of equation (3.9) to a single
term. For example, if ai(t)=0 and ai(t+l)=l, the transition is one in which
machine i is repaired. It may be verified that for this set of ai(~), the
right hand side in equation (3.9) reduces to ri.

Equation (3.4) may be rewritten as
k

n 1-a, {(t+1) o, (t+1)q 1-a. (t)
P = [(l-r) * r. * ] * .
[0} 1 1

i=1 o, (t+1) 1-a,(t+l)] a, (t)
1 1

[(l-pi) * D, (3.10)

Set S is now defined to be the set of all states s(t) such that given

ni(t+l), ai(t+l), and QL (t+1), ni(t) catisfies equation (3.8). It then follows

1
that eguation (3.2) becomes

-

pls(t+1) ,t+1] = Z Pa pls(t),t]
s{t)EsS
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1 1 k
}: 2: I I 1-o, (t+1) _ o, (t+1) | 1-a, (t)
= Ty [(1"ri) 1 ri 1 ] 1

al (t)=0 ak (£)=0 i=1

o, (t+1) 1-a, (t+1) 7 a, (t)
. (l-pi) i p; i i

. p[nl(t),..,nk_l(t),ozl(t),..,onk(t),t] (3.11)

where nl(t)""nk—l(t) satisf&requation (3.8) (i.e. are completely determined
by ai(.))o T ’
It is now necessary to guess the form of the expression for p[-] in order

to analytically solve the problem. This is done in section 3.1.2.
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3.1.2 The Sum-of-Products Solution for

Internal State Probabilities

It is well known that numerous queueing theory problems result in
product~form solutions. These were studied by Jackson[1963]; Gordon and
Newell[1967a] obtained product-form solutions for closed queueing systems
with negative exponentially distributed service times; Baskett, Chandy, Muntz
and Palacios([1975] formulated a theorem applicable to certain types of
networks of queues with different classes of customers, stating that the
equilibrium state probabilities are given by a product of a set of terms
each of which is dependent only on one state variable. Such product form
solutions havé also been used by numerous researchers, including Denning and
Buzen([1977], Lam{1977], and Solberg[1977]. The work of these authors is
concerned with flow through networks of queues, and does not deal with
aspects of reliability.

For reasons which will become clear later in this chapter, it is
assumed here that the steady—state (i.e. time-independent) probability

distribution for internal states has a sum-of-products form:

= roee ’ re oy 3.12

pls] plnjr.vrmy o0ty o] ( )
- n n a [0

=Z cx b x Kl ¢l gk (3.13)
j=1 3 13 k-1,3 13 k3

where Cj' Xij' and Yij are parameters to be determined.
The set of constants must satisfy an additional constraint, that the

sum of all states, internal and boundary, egquals one:

Z pls] = 1 (3.14)

all s

An analogy is made here with differential egquations boundary-value
problems: in a differential equation of order n, there may be n distinct

solutions. Although each of these solutions by itself satisfies the equation,
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only a certain linear combination of these solutions satisfies the boundary

equations (See for example Boyce and DiPrima[1969])

Suppressing for clarity the index j, one of the terms in this summation
is substituted into equation (3.11):

n. (t+1) (t+1) G, (t+1) o (t+1)
cx.1 X “k-1 Y, Y =
1 AR " | to k
1 k
z E l l [ 1 -0 (t+1) o (t+l)] 1-a, (t)
1-r r. 1 1
a, (£)=0 ak(t) =0 i=1 1
. ' (t) (t)
. o, (£+1) _ 1-a (£+1) o, (t) "1 Pk-1
[(1 P, ) 1 i ] i « C xl ..o xk 1
a. (t) a, (t) _
1 k
Yl ... Yk (3.15)

Using equation (3.8) and cancelling like terms on both sides, this gives:

al(t+l)-a2(t+l) (t+l)—uk(t+1) al(t+1) o, (t+1)

1 P Xk- Yl ...Yk =

1 1 k
E .o Z I I [(1_ri)l—ai(t+l)

al(t)=0 dk (t)=0 i=1

X

u.(t+1)] 1-0. (t)
ril 1

. [(1 b, 03 (t+1) 1o, (41) Yi:lOLi(t)

. (3.16)
i

or, readjusting the exponent of the first parantheses in the right hand side
of equation (3.16),

o (t+1) - o (t+l) oy (t+1)

K X Y.
[1- : -
1~ a (t+1)

i=1 (1- r, ) % (t+1)

a (t+1) 1-o, (t+1) ai(t)

D

@, (£)=0 o (£)=0 i=1l (1- r,)l a, (t+1) riai(t+l)

(3.17)
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where for convenience, Xké 1. Note that ai(t) only occurs as an exponent in

the right hand side of equation (3.17); furthermore, ai(-) only takes the

values O and 1. The right hand sidé of (3.17) can be rewritten as

k o, (t+1) 1-a, (t+1)
1 1

I_I L. [(1-p)) Py i (3.18)

i=1 [(1-r )P0 (FFH) o (L

This reformulation is not obvious and requires a proof. Proceeding by
induction, it is easy to see that the right hand side of equation (3.17)
equals (3.18) for k=l1l. Assuming that the equality holds for k, it is shown
that the equality holds for k+1 as follows (for simplicity, the term in
the product in the right hand side of (3.17) is referred to as A?i):

1 k+1

-

al=0 ak=0 ak+l=0 i=1
1 1 k 1 1 k .
cee l l ai ces E l l ai
A7« 1 + A, . Ak
. i i +1
=0 Q = = = = =
al K 0 i=1 al 0 ak 0 i=1
k
= + . -
l l (1 Ai) (1 + Ak+l) (3.19)
i=1

Eguation (3.19) completes the proof. When (3.18) is substituted into equation
(3.17), the argument t (though not t+l) vanishes. Multiplying both sides by
the denominator in (3.18), it follows that:

k
o, (t+1)-a, . (t+1) o, (t+l)
i i+l i
X. Y, =
1 1
i=1

r, + @l—pi> D. v. 1 (3.20)

i b

k
1-a, (e+1) o, (e+1) a, (t+1)  1-o, (t+1)
l l [(i-r,) * * ‘ * *
1
i=1
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Equation (3.20) has been derived with no conditions on ai(t+l); thus,
it must hold for all values of ai(t+1). In particular, if ai(t+l) = 0, for
i=1,..,k, then (3.20) reduces to: .

k ' i

1 = l I [(1-xr,) + p,Y. ] (3.21) =
i i1 £
|=l o

if aj(t+l) = 1, and ai(t+l) = 0 for i=1l,..,k, i#j, then (3.20) becomes
k

X, ) X5 ¥y = [ l [(1-r.) + piYi]-[rj + (l—pj)Yj] (3.22)
i=1
i#3

where for convenience, Xoé 1. Using equation (3.21) on the right hand side

of (3.22), the equation can be reduced to

_ -p.) Y, :
Xy Yoo £yt (1 pj) 5 i 3=l,..,k (3.23)

X (1-r,) + p.Y.

j=1 J P53

Any other sets of values for ai(t+l) in equation (3.20) zive unations that
may readily be derived from (3.21) and (3.23). Since XO = Xk = 1, there are
k+1l equations in 2k-1 unknowns. For k>2, this implies that there are more
unknowns than equations. Furthermore, the weighting and normalizing constants
Cj remain to be computed.

Two cases are now analyzed: when k=2, there are three equations in
three unknowns and the system of equations given by (3.21) and (3.23) can
be solved analytically. When k=23, a numerical approach is needed to obtain
the terms in equation (3.13). Furthermore, there are more unknowns than
equations, so that additional information must be found.

In the two-machine case, k=2. Equations (3.21) and (3.23) may be
solved to give Xij and Yij' Since these egquations are non-linear, they allow
muitiple solutions. It may be verified that there are two sets of solutions in

this case. These are:
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X1 0= 1
(3.24)
X, f =
Yil = i 3 1i=1,2
P
\
X, = Y,/ ¥,
Y. = T3 T I, 7 ET, - PyTy
12
+ - -
Py TPy T PyP, T Py, > (3.25)
Y. o= T3 T T, T ET, - PiT,
22
Py ¥ Py = PyP, ~ PT

/

The constants Cj in equation (3.13) are found in section 3.2 by using
boundary equations, as well as (3.14).

In the three-machine case, there are only four equations in five
unknowns. The solution is therefore not uniquely determined. Furthermore,
since the simultaneous equations (3.21) and (3.23) are non-linear, there is
the possibility of multiple solutions.

For any set of {X..,..,X

13

D SIS 4 M 3
k-1,3""13’ kj} there is a set of constants
Cj such that equation (3.13) holds. The set of constants is found by

analyzing the boundary equations,as discussed in section 3.2.
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3.2 The Boundary State Transition Equations

3.2.1 The Two-Machine, One-Storage Line

Internal states and transition equations are analyzed in section 3.1.
To complete the problem, it is necessary to study boundary states and
transition equations. In section 2.3.2, boundary states are defined as
states in which at least one storage level satisfies one of the

following two relations:
n, £ 1 (3.26)

n, =2 N,-1 (3.27)

Boundary state transition equations are defined to be state transition

equations in which at least one state (whether initial or final) is a
boundary state.

The number of boundary state transition equations increases rapidly
with the number of machines in the line, and with storage capacities. In
the simplest case of a two-machine line, however, these are not a function
of storage size, and are easy to list.

Neglecting transient (zero steady-state probability) states, the

lower boundary (n=0 or 1) state transition equations are the following:

P[Ololl] = (l“rl) P[OIOI]—) + (l—rl)rz p[er,O]
+ (l—rl)(l—Pz) pll,0,1] + pl(l—p2) pll,1,1] (3.28)
p[1,0,0] = (l-r))(l-r,) p[1,0,0] + (1-r))p, PI1,0,1]

+ PP, pl1,1,1] (3.29)
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+ PiT, pl2,1,0] + pl(l-p2) pl2,1,1] {3.30)
pll,1,1] = r, pl0,0,1] + rlr2 p[l,?,o}

+ rl<l-pz) p(1,0,1] + (1—pl)(1—p2) pll,1,1] (3.31)
pl(2,1,0] = rl(l-rz) pl1,0,0] + r.p, pl1,0,1]

+ (l—pl) P, pll,1,1] : (3.32)

Using the state transition diagram for the two-machine case (figure 2.4),
it may be verified that these are the only possible transitions involving
lower boundary states. These equations are now analyzed.

For the general k-machine line, boundary state probabilities are

expressed as a sum of terms, analogous to the sum-of-products for internal
state probabilities in eguation (3.13):
2

= E' X .r.esX P SR ' 3.33
pls] Cj Els, 13 x-1,3'"13 kj] ( )
j=1

It is noted that egquation (3.33) applies to all states, and takes the form

of internal state probability expressions when

re ey Coreesl )X reey PR SRR S
Elnyreeimy gr@reer@ )Xy g Xy ) oi g K3
n n [s4 8]
1 k-1 A X
= X .. . . «s Y .
13 Xk-l,j Yll kj (3.34)

The analogy with boundary-value differential equations problems is carried
over toc the analysis of boundaryv state transition equations. Thus, as in
section 3.1.2, only one of the terms in the summation in egquation (3.33)

is considered. The notation

a
/
L

P SR S .
5 { XpgroorX g 505 X5 (3.35)
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is introduced.
The two-machine boundary state transition equations are studied: Noting

that all the right hand side terms in equation (3.30) are internal, it is

rewritten as

2 2
E[(l,o,l),uj] (1-r Vr_ X5, + (l-rl)(l-pz) X

1752 ®15 1j
+p.r. X>. + p.(1-p.) X°. Y. .Y
PiTy %15 7 PPy A5 T149%24
= X%, [(-r) +p.Y..] [r. + (1-p)Y..1  (3.36)
13 17 TPty 2 Pyl%25 :

A
Equation (3.23) is used to simplify (3.36). For j=2, noting that X2j= 1,

the rightmost term in equation (3.36) is rewritten as

[(l—rz) + p2Y2j] Y2j / le (3.37)

Substituting (3.37) into equation (3.36), and using (3.21), it follows
that

E[(l.O,l),Uj] = xlj Y2j (3.38)

It can be verified that in general, any state which can only be reached

from internal states has the internal (product) form.

Equation (3.38) is substituted into (3.33), giving

2
pl(l,0,1] = E Cy Xpy Y,,j (3.39)
j=1

State (2,1,0) is internal. Thus, it has a probability of the form given by
equation (3.13):

2
2
pl2,1,0} = Z Cy X135 Yoy (3.40)
j=1
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The parameters Xij and Yij are given by equations (3.24) and (3.25).
Equations (3.39) and (3.40) are substituted into equations (3.28),
(3.29), (3.31), and (3.32), and these four equafions are summed up.
The coefficients of C_ cancel eachother out, and the eguation reduces

2
to:

c, (1 2) =0 (3.41)

Whenever the two machines do not have equal efficiencies, the term in
the parantheses is not zero and C1=O. If the two machines have equal
efficiencies, it is easy to see that egquations (3.24) and (3.25)

are identical, i.e. equations (3.21) and (3.23) have one second-order
root given by either of (3.24) or (3.25). In this case, it is not
necessary to have two terms in the summation in equation (3.33), since
the terms are identical. It is possible to set one of the Cj to be

zero. The constant C., is arbitrarily set equal to zero when the two

1

machines have equal efficiencies. Since C_=0 when they do not, it

1
follows that the steady-state probabilities for a two-machine line

have only one term in the summation in egquation (3.33).

From equation (3.32), it follows that:

2
E[(l,l,l),Uj] = le Ylj - rlp2 le Y2j

- - r
rl(l r2) 5{(1,0,0),Uj] (3.42)

Equation (3.42) is substituted into eguation (3.29), giving, after some

simplification and use of equations (3.21) and (3.23),

E{(l,o,O),Uj} = le (3.43)

The probability of state (1,0,0) is also seen to have the internal form.
Egquation (3.43) is now substituted into (3.42), and vields, after using

equations (3.21) ané (3.23),
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£[(1,1.1),Uj3 = 713 [r, + (1-p2)Y2j] (3.44)

Equation (3.44) shows that state (1,1,1) does not have a steady-state
probability with an expression of. the internal form. Two equations are
left, (3.28) and (3.31). These are consistent, and substituting
equations (3.38), (3.43) and (3.44) into either of these two equations
give the expression

+ - -
EL0,0,1),0,1 = X, S ! (3.45)

13
Pyry

The same reasoning is applied to the upper boundary (n=N-1 or N)

state transition equations. These are the following:

pIN-2,0,1] = (l—-rl)r2 plN-1,0,0] + P T, pIN~-1,1,0]
+ pl(l~p2) pIN-1,1,1] (3.46)
plN-1,0,0] = (l—rl)(l-rz) P[N-1,0,0] + pl(l—rz) p[N-1,1,0]
+ PP, plN-1,1,1] (3.47)
piN-1,1,0] = rl(l'rz) p[N-2,0,0] + P, pIN-2,0,1)
+ (l—pl)(l-rZ) p[N-2,1,0] + (1-pl)p2 pIN-2,1,1]
(3.48)
plN-1,1,1] = rr, pIN-1,0,0] + (l-pl)r2 p[N-1,1,0]
+ (1-pl)(1—p2> pIN-1,1,1] + r, p[N,1,0] (3.49)
piN,1,0] = rl(l-rz) pIN-1,0,0] + (l—pl)(l—rz) piN-1,1,0]

+ (1-pl)p2 pIN-1,1,11 + (l—rz) plN,1,0] (3.50)

Here, it is noted that all states with storage level n=N-2 are internal.

These equations are solved as before. Again, it is found that the equations
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can be manipulated to obtain equation (3.41), so that C. may again be

set equal to zero. Furthermore, the additional equationi are found to
be consistent, giving a unique set of probability expressions.

The complete set of steady-state probabilities for the two-machine
transfer line is summarized in table 3.1.

A certain amount of symmetry is visible in these results: for
example, the expressions for p[0,0,1] and p[N,1,0] have similar forms;
so do pl[l1l,1,1] and p(N-1,1,1], and other pairs. Such considerations
give some insight into the derivation of analogous expressions for the
three-machine case in section 3.2.2.

A computer program designed to evaluate the steady~state probabilities
and some performance measures (See chapter 5) of the two-machine line

appears in Appendix A.l.
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Table 3.1. Steady-state probabilities of two-machine line.

p[OIOIO] = 0
r +x_ -rr =-p.r
Pa*1
pl0,1,01 = 0
plC,1,11 = 0
p[llOlO] = CX
pl1,0,11 = CXY2
pl1,1,0] = 0
L] - cx r, + r, - LT, - pr,
’ ’ -
+ - -
Py Py ¥ Py = PyPy T PyTy
0. O
n 1 2
== H £ £ -
p{n,onl,azl CX Y Y2 ; 2 £ n & N-2
pIN-1,0,0] = cxV %
pIN-1,0,11 = O
plN-1,1,0] = oVt Y
- + - -
pIN-1,1,1] = o i T T A TR b
74y - -
Py Py ¥ Py T PPy T PyE,
p[N,0,0] = 0
P[Nlol]-} = 0]
L X, +r -rr =-oprx
pIN,1,0] = cxN 1.1 2 1r2 12
P1%o
p(Nllll] = 0
Xéxl' Yl' and Y2 are given by equation (3.25); C satisfies (3.14)
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3.2.2 Longer Transfer Lines

The three-machine, two-storage case is complex enough to make the
manual generation of the boundary state transition equations almost
intractable. A program was therefore written in the IBM FORMAC Symbolic
Mathematics Interpreter language (See Tobey[1969], Trufyn[n.d.l), a
superset and extension of PL/I. This program generates the boundary
state transition equations for a general k-machine line with given
buffer capacities algebraically, i.e. in mathematical symbols rather
than numerically. The program listing, as well as a sample output for
the lower boundary of a three-machine line with buffer capacities
Nl=N2=lO, appear in Appendix A.2.

The boundary state transition equations constitute a very large
system of linear equations. With considerable work, as well as insight
given by the gquasi-symmetry of the two-machine results, this system
can be solved to give closed-form expressions for the £[+] defined in
equation (3.33). The procedure is considerably more complex than the
solution of the two-machine case presented in section 3.2.1, and
involves a great deal of algebraic manipulations.

In the three-machine case, boundary states are subdivided into

two classes. Corner states are those in which both storages have boundary

levels; edge states are those in which only one of the two storages
has a boundary level. It is found that there is a simple relationship
between certain edge states: for states with the same machine status
configuration (i.e. the same ai ; i=1,2,3), incrementing the internal
storage level ni corresponds to multiplying £[+«] by Xij' Thus, for

example,

5[(1,n2+1,o,o,1),uj] = ij s[(l,n2,0,0,1>,0j] (3.51)
where both n, and n2+l are internal. Consequently, the number of
expressions that need to.be derived does not increase with storage size.

The complete derivation is lengthy and is not reproduced here. A
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sample of the expressions for the lower boundary corner and edge states
is given in table 3.2. A more complete account of the derivation appears
in Gershwin and Schick[1978].

The crucial fact about these £[+] expressions is that, though they
all satisfy subsets of the boundary state transition equations, they do
not all satisfy all these equations. Only the appropriate linear
combination of these solutions satisfies all the transition equations.
The procedure followed to obtain this linear combination is outlined
below.

For the Markov chain described in section 2.3,

p = Tp (3.52)

oxr

(T-I)p=20 (3.53)

where I denotes the identity matrix. Following equation (3.33), the

probability vector p may be rewritten as

2
= . . 3.54
P Z <y 13 [UJ ] ( )

1

(R
i

where
3 [sl,Uj]
E[s%,uj] (3.55)

§Jpj]

E[sm,Uj]

The number of states, m, is given by equation (2.22) as

k

= + oo (N + .
m 2 (Nl 1) (Nk—l 1) (3.56)
for a k-machine transfer line with storage capacities Nl""Nk-l'
Thus, equation (3.53) becomes:
2
(T - I) E Cj Q[Uﬁ] = 0 (3.57)

3=1
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Table 3.2. Some boundary state probability expressions
for a three-machine transfer 1line.

Edge states (n2 internal):

E[llnerIOIO] = X1X2 2
i)
E[llnzlololll = Xlx2 Y3
72
E[llnzlolllol = XlXZ Yz
"2
E[l,nz,oll,l] = X1X2 Y2Y3
g[llnzlllolol = o]
g[lrnzrl.-orll = 0
"2
g[llnzlllllol = Xlxz Yl (1 - r2
"2
g[llnzllllll] = XlXZ Y1Y3 (1 - r2
Edge states (nl internal):
"1
£f =
e(nlrllorolol Xl X2
™
anllllororll = Xl X2Y3

iinl.l,O,l,O]

I
O

+ szz) / o,

* P2Y2) / Py
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(Table 3.2 continued)

n
1
= - +
E[nl,l.O,l.l] X, TXY, (L-ry+pY) /py
i1
g[nlrlll,O:O] = Xl X2Yl
"y
g[nllllllol}-] = Xl X2Y1Y3
g[nlllrlllrol = 0
]
E[nl,l,l,lrl] = X, T XYY, (1-r,+pY) / P,
Corner states:
1 - rl
= s + - - b
£10,0,0,1,1] 2 (r, S p3rl) X, X, ¥ Y,
1 P
1l - rl
£[0,1,0,1,0] = “";;-— X1X2Y1Y2
r +r_-r.r
1 3 13
£[o0,1,0,1,11 = or X1X2Y1Y2
371
X. X pP.pP.Y
12 172 3
g[lrororolll = — [ Y.Y + (1 - P )
p3(rl + r, rlrz) r, 172 3
- (1 - Py - r3)(1 - rl)(l - rz)]
r. +r - r.r_ - p.r
1 3 1°3 371
g[llollllll} = rlp3 X1X2Y1Y2
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(Table 3.2 continued)

gl1,1,0,0,0] = Xlxz

£[1,1,0,0,1] = X1X2Y3

E[llllolllol = 0

£[1,1,0,1,1] = X1X2Y2 (1 - r3 + p3Y3) / P3

g[llllllolol = 0

E[llllllorl] = 0

£l1,1,1,1,01 = X1X2Y1Y2

£11,1,1,1,11 = 1%2"1 |1 -r) )@ -x) + (1 -xr +p¥) py
e —== 2 3 2 T Pyl P3fy

PoP;3

(A complete list appears in Gershwin and Schick[1978].)
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or 2
E cj (T - 1) g[Uj] = 0 (3.58)
j=1
Defining the vector C as
C
1
c &% (3.59)
S
and the matrix Z as
= 2 [ew.1 £y . E(u] (3.60)
=1 =""2 =272
equation (3.58) is rewritten as
(T-1I)2c = 0 ‘ (3.61)

For a given set {Ul,U2

satisfy the internal equations (3.21) and (3.23), the system of equations

,..,Ug}, where all Uj are distinct and

in (3.61) has a unique solution C if and only if the matrix (T-I)E has
rank equal tof-], Thus, only £, the number of terms in the summation in
equation (3.33), remains to be determined.

Because the expressions £[+] satisfy most transition equations, most

components of the product vector

(T - 1) ElU,] (3.62)

are identically equal to zero for any Uj that satisfies equations (3.21)
and (3.23). For example, in the three-machine case with storage capacities
N1=N2=10, 898 components out of the 968-vector are identically zero. Thus,
meost of the rows in the matrix equation (3.61) are automatically
satisfied, regardless of c. 1If 2 is taken to be the number of rows not
automatically satisfied, then the system of egquations (3.61) has a

unique solution C, once a set of £ distinct Uj is chosen. The system in
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(3.61) can be reduced by computing only those £ rows of (T-I)Z that are
not satisfied identically. The new reduced order system can be written

as
'c = o (3.63)

where ' consists of the non-zero rows of (T-I)Z. This is an 4x% rather
than an mxm system, and thus, the computational work needed to solve
for C is drastically reduced. In addition, £ as a function of storage
capacities increases much more slowly than m. The complexity of the
problem thus remains tractable even for very large stpraées.

Unfortunately, serious numerical problems arise in the solution
of equation (3.63). Although ' has rank 2-1, it appears to the
computer to have much lower rank because of these numerical problems.

This difficulty is overcome by using singular value decomposition
techniques (Golub[1969], Golub and Kahan{1965]). The least squares
solution of equation (3.63) is then the weighting (though not yet
normalized) constants in the summation in egquation (3.33). This
procedure is described in detail in Gershwin and Schick([1978].

It only remains to normalize the values obtained by equation (3.33)
so that equation (3.14) is satisfied. This is achieved by summing up
all the state expressions and dividing each expression by the sum. This
may cause substantial round-off errors in systems with very large
storages (and hence large state—spaées).

The analytic solution for the three-machine transfer line is now
complete. The main difficulty in extending the above results to longer
transfer lines lies in the derivation of the &£[+] expressions. General
forms for these expressions for k-machine lines have not yet been
obtained; thus, even larger sets of boundary equations may have to be

solved in order to obtain the steady-state probabilities of longer lines.




4. NUMERICAL METHODS FOR EXACT SOLUTIONS

While analytical solutions often have the advantage of being compact
and easy to implement, they are hard to derive; furthermore, they depend
strongly on modeling assumptions in such a way that they offer little
flexibility for relaxing or modifying such assumptions. It is thus often
useful to use numerical approaches to solve the problems; while these may
not necessarily be as compact as analytical solutions, they do offer
greater flexibility.

An iterative multiplication scheme known as the power method is
introduced in section 4.1. Computational problems caused by the convergence
of this algorithm are stressed, and possible improvements are suggested.

An algorithm which exploits the sparsity and block tri-diagonal
structure of the transition matrix is developed in section 4.2. Because
a large proportion of storage level transitions have zero probability,
the transition matrix T is extremely sparse. Furthermore, if the system
states are listed in the appropriate order, the matrix has a useful and
interesting nested block tri-diagonal structure. These properties are
used in solving the large set of transition equations. The motivation for
developing such an algorithm, as well as the structural properties of the
transition matrix, are discussed in section 4.2.1. The algorithm is
derived in section 4.2.2. The flexibility and usefulness of this approach
and the computer memory and programming problems involved are discussed

in section 4.2.3.

-76-
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4.1 The Power Method

The property of ergodicity is defined in section 2.3.1 as follows:
Given the transition matrix T, and setting $(t) é Tt, a process is

ergodic if and only if

lim &(t) = ¢ (4.1)

o0

exists, and the value of
A
p = ¢ p(o) (4.2)

is independent of p(0), provided that z:pi(O) = 1.
i

A closed class is defined as a set of states C such that no state

outside C can be reached from any state inside C. Two states communicate

if each can be reached from the other. A closed communicatihg class is

a closed class in which all pairs of states communicate. A final class is
. one that includes no transient states.
A process is periodic if a state can be reached from itself in
d, 28, 34, ..., nd, ... trials. If d=1 only, the process is termed aperiodic.
The existence of a self-loop (a transition such that tii # 0 for some i)
on at least one state in a final class is sufficient for its aperiodicity.
The Markov chain model of a transfer line described in chapter 2
contains only one final closed communicating class; furthermore, several
states in that class contain self-loops. These conditions are sufficient
for ergodicity. Thus, for an arbitrary initial probability vector p(0),
the steady-state probability vector p may be computed from equation (4.2).

Since ¢ is not known, eguation (4.2) is rewritten as follows:

1im T p(0) = p (4.3)

£t

Equation (4.3) suggests a "brute force" method for obtaining the steady-
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state probability vector p. This method consists in -an iterative

multiplication scheme
plt+l) = T p(t) (4.4)

with a given p(0).

Convergence criteria such as

Il p+l)-p(t) || < €
or ‘ (4.5)
max [pi(t+l)-—pi(t)| < €
i
may be used to decide when a vector has been obtained that is sufficiently
close to the steady-state probability vector.

In devising a computer implementation of the iterative multiplication
algorithm, it is necessary to take advantage of the sparsity (See section
4.2.1) of the transition matrix. This is not only desirable, it is
imperative in view of the large dimensions of the matrix (See table 6.1).

A sparse matrix need not be stored in full. Rather, its nonzero
elements and their coordinates are stored, making it possible to
represent extremely large sparse matrices with relatively small arrays
(Tewarson[1973]). For example, given that a certain element tij of the
sparse matrix T is nonzero, it is sufficient to store tij’ i, and j. The
full matrix may be reconstituted from this information. Thus, it is only
necessary to store p(t) and p(t+l), in addition to the arrays giving
the nonzero elements of the transition matrix, while implementing the
power method algorithm.

The major limitation of this algcrithm is the computation necessary
for the convergence of p(t)-*p. Although the properties of the ergodic
Markov chain outlined above guarantee that the vector converges to the
steady-state distribution, the number of iterations required to satisfy
convergence criteria such as those in equation (4.5) may get very large
as the number of machines in the line or the capacity of the storages

increase, thereby increasing the dimension of the vector. Some results
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of runs for a three-machine line with the computer program given in
Appendix A.3 are presented in figure 4.1. (It must be noted that these
results do not correspond exactly to the iterative procedure given in
equation (4.4): some improvements were made, as described below. Still,
these.results can give an idea of the way in which computation

increases as storage size increases.) The machine parameters are the same

as those given in table 6.2. The first storage has capacity N.=5, and

1
the second storyage capacity is varied.

The rate at which this algorithm converges depends most strongly on
two factors. These are the accuracy of the initial guess, and the second
largest eigenvalue of the transition matrix (the largest eigenvalue is
always 1). The latter factor is dependent on the system parameters, such
as failure and repair probabilities and storage capacities. Furthermore,
the computation of the eigenvalues of a matrix as large as T is far from
trivial. Thus, there is no control over the eigenvalues, and even
evaluating them in order to estimate how fast the algorithm converges is
a difficult problem.

The initial guess, however, can be improved significantly, by making
certain observations.

(i) The transient (zero steady-state probability) states are easy to
predict (Section 2.3.2). Thus, it is possible to set at least some of the
states equal to their final values.

(ii) The steady-state probabilities can be subdivided into three classes
according to their orders of magnitude. In ascending order, these are the
internal states, the edge boundary states, and the corner boundary states.
For example, in the case of a three~machine line with system parameters
given in table 6.2 (For the probability distribution, see the sample output

2, and lO_l,

in Appendix A.4), these orders of magnitude are 10_3, 10
respectively. Thus, it is possible to predict the relative magnitudes of
the final values {(See Gershwin and Schick[1978]}).

(1ii) By the dO-transformation technigues outlined in section 6.3, it is
possible to solve a smaller problem first (i.e. a problem with smaller

storage sizes). The results of the smaller problem may then be used, by

also taking the order of magnitude considerations into account, to set up
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Figure 4.1. The number of iterations in which the

computer program in Appendix A.3 converges

for Nl=5, £=10 °, = and r, given in sample

output, Appendix A.4.
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an initial guess for the larger problem.

It is sometimes desirable to perform a sensitivity analysis on
specific storages, by incrementing their capacities up while keeping all
other system parameters constant. In this case, a combination of items
(ii) and (iii) may be used. The upper boundary probabilities for the
already solved problem with capacity Ni are shifted so as to become the
upper boundary probabilities of the new problem with capacity Ni'. Internal
states are set equal to an internal set of probabilities in the already
solved problem. This procedure is illustrated in figure 4.2.

{iv) During the iterative multiplication procedure, it is possible to save
some computation by using interpolation at regular intervals. For example,
the program for a three-machine line given in Appendix A.3 uses the vectors
p(t-1) and E(t)‘to interpolate p(t+l) once every ten iterations. This
essentially gives a "free" iteration, since interpolating involves less
computation than multiplying the vector by the transition matrix.

In order to avoid the propagation of computational errors, it is
useful to normalize the p(t) vector at regular.intervals. The program
in Appendix A.3 does this once every ten iterations.

It may also be noted that it is possible to further save storage by
only storing numerically distinct transition probabilities. It is shown in
section 4.2.1 that the transition matrix T has a block tri—diagoﬁal,
block Toeplitz form. Thus, most probabilities reoccur many times along
the diagonals of the matrix. Storing only distinct probabilities thus
saves a significant amount of computer memory.

In general, many numerical devices may be used to improve the rate
of convergence of the iterative multiplication algorithm. Still, for
moderately large systems, the number of iterations remains large. It may

thus be necessary to turn to more efficient methods in some cases.
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Figure 4.2. Building up initial guess for power method
based on the results for a smaller storage
capacity case. (Phase plane for the levels
in the two storages)
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4.2 Solution of the System of Transition Eguations

by Use of Sparsity and Structure

4.2.1 The Transition Matrix and its Structural Properties

It is shown in section 2.3.1 that the transition matrix T and the

steady-state probability distribution p are related by

P = Tp (4.6)
or

(T-I)p = 0O (4.7)

Because p satisfies equation 3.14, it cannot be identically zero. Thus,

p # 0 and (T - I) is a singular matrix. The following two theorems are
now stated:

Theorem 4.1: If in the matrix T all rows and all columns corresponding to
states outside the closed class C are deleted, there remains a stochastic
matrix that defines a Markov chain on C. This subchain may be studied
independently of all other states (Feller([1966]).

Theorem 4.2: In a finite recurrent aperiodic class, the steady-state

probability distribution p is unigquely Jdetermined by the set of equations

2 e =1 (4.8)
5. = 2. o, t,. ; $=1,..,m (4.9)

where as in 2.3.1, T é [tji] (Kariin([19681).

As pointed out in section 4.1, there is only one final (recurrent)
aperiodic closed communicating class in the Markov chain under study. It
may thus be concluded from the z2bove two theorems that the deficiency of
(T - I) in eguation (4.7) is one. In cther werés, its rank is one less

~han full.
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The vector y.is defined as:

4

v (11...1]° (4.10)

Then, equation (3.14) is rewritten as

vip = 1 (4.11)

T . . ;
The vector V' is substituted for a row in (T - I). Calling this new matrix
T*, and defining b é [0...0 1 0...0]T where the 1 entry corresponds to the

location of y? in T,it follows that:
™ p = b (4.12)
Equation (4.12) is solved to give
-1

p = ™ b (4.13)

In principle, the problem thus reduces to solving a system of linear

equations. Okamura and Yamashina[l977] solve the two-machine transfer

line problem precisely in this way, by solving simultaneous linear
equations in terms of the state probabilities. Because of memory
limitations, they can only solve systems for which the storage capacity
is less than 36. However, the dimensions of the system are generally

very large (See table 6.1). Thus, solving (4.12) would involve an

extremely large amount of computation and computer memory, as the number
of machines in the line or the capacities of the storages increase. It is =
therefore necessary to fully exploit the sparsity and structure of T*.

Tha sparsity follows from the fact that many storage transitions have

zero probability (See table 2.2). The structure follows from the following
two observations relating to the transition matrix T:

(i) During a single transiticn, storage levels can each change by a

maximum of 1, i.e.,
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Ini(t+l) —ni(t)! < 1 i=l,..,k-1 (4.14)

This is due to the facts that parts only travel in one direction, each
stage consists of only one machine, and the time cycle is defined such
that a machine processes one part per cycle. Thus, as seen in the storage
transition table 2.2, a storage can go up by 1, down by 1, or stay at a
constant level.

(ii) During a single transition, adjacent storages cannot change in the
same direction, i.e. they cannot both gain or both lose a piece within

a single cycle. This is a consequence of the two facts mentioned in item
(i), as well as the conservation of pieces (Assumption 2.2.4) in the
system. As an example, a single machine i is analyzed. The level of the
upstream storage i-1 can decrease only if machine i-1 is down or starved,
and machine i is up and not blocked. At the same time, the downstream
storage i can decrease only if machine i is down or starved, and machine
i+l is up and not blocked. Now machine i cannot be starved, since if it
were, storage i-1 could not go down. Thus, for storages i-1l and i to both
decrease, it is necessary that machine i be both up and down, a contra-
diction. A similar argument can be made for the case in which both
storages are hypothesized to go up.

If the system states, as defined by equation (2.3), are listed
semi-lexicographically (i.e. the order of the indices from the fastest
changing one to the slowest is ak,ak_l,..,ul,nl,nz,..,nk_l), then
observation (i) implies that the matrix T is block tri-diagcnal. If there
is more than one storage, the main-diagonal blocks are themselves block
tri-diagonal. This nested block tri-diagonal structure persists for as
many levels as there are storages. Furthermore, in the case where there
are more than one storage , observations (i) and (ii) together imply that
the off-diagonal blocks are block bi-diagonal, and this structure persists
for one fewer levels than there are storages.

The lowest level blocks, which are smallest and most basic, are
2kx2k. These each represent a specific storage level transition; for
example, a particular block in the matrix of a three-machine line may

represent a transition in which the f£irst storage stavs constant while the
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second goes up; another, a transition in which the first storage goes down
while the second goes up, etc. Each of the Zk columns and rows of a basic
block represenf each of the 2k machine states, from (0 0 .. 0) = all machines
are down, to (1 1 .. 1) = all machines are up. Finally, because T
premultiplies p in equation (4.6), columns correspond to initial states,

and rows to final states.

Some eximples should help clarify the structures of the blocks and of
the transition matrix.

(i) Two-machine line: the storage is initially internal, and remains
constant through the transition (Main-diagonal block).

The basic blocks for a two-machine line are 22x22=4x4 square matrices.
From table 2.2, it follows that for an internal initial storage level, the
number of pieées does not change in either of the following cases: either
the machines after the transition are both down (0 0), so that no parts
go into or out of the system, or the machines are both up (1 1), so that
a part enters and another leaves the system. Thus, only two out of the
four rows in this block are non-zero. The elements in these rows are
computed by using table 2.1. For example, given that the storage is
initially internal, (0 1) - (0 0) with probability equal to (1_r1)P2'

The block is thus completely determined, and appears in table 4.1.
(ii) same as above, except that the storage is initially full (Upper
bdundary, main~diagonal block).

Once again, the final machine states that ensure the desired storage
level transition are determined by using table 2.2. Given that the storage
is initially full, its level remains constant only if the second machine
is down, i.e. for final machine states (0 0) and (1 0). In the former
case, nothing enters or leaves the system; in the latter, the first machine
is blocked and the second is down, so that pieces do not enter or leave
the system. If the second machine were operational, then the storage
level would necessarily go down, since the first machine is not allowed to
process a piece when the downstream storage is full. Again, only two out
of the four rows in the block are non-zero. While evaluating the elements
in these rows, it is noted that the probability of failure of the first

machine 1s zero, since it is blocked.
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(l—rl)(l-rz) (l-rl)p2
0 0
0 0
rr, rl(l-pz)

py (1=r,) PP

0 0

0 0
(l-pl)r2 (l-pl)(l-pz)

Table 4.1. Two-machine 1line,
diagonal block.

lowest level, internal, main-
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The block thus defined appears in table 4.2.

(iii) Three-machine line: both storage levels are initially internal;
during the transition, the first stays constant, while the second loses
a plece (Main-diagonal block in the second level upper off-diagonal
block - see figure 4.4).

The basic blocks of a three-machine line are 23x23 = 8x8 sguare
matrices. It follows from table 2.2 that when initial storages are
internal, the second storage loses a piece only if the second machine is
down while the third machine is up. On the other hand, the first storage
level remains unchanged if the first two machines are either both up
or both down. Since the second machine is known to be down, the first
machine must be down as well. Thus, only one final machine state satisfies
the given conditions: (0 0 1), and only one out of the eight rows is
non-zero. All machine transition probabilities are conditional on
internal initial storages.

The block is thus determined and appears in table 4.3.

As stated earlier, the blocks are arranged in the transition matrix
in a very useful nested block tri-diagonal structure. Two examples for
two~ and three-machine lines are given in figures 4.3 and 4.4 respectively.
For clarity, the blocks in these figures are represented only by the
final machine states corresponding to non-zero rows. It is noted that
corner boundaries, where more than one storage is empty or full, differ
from edge or internal transition blocks. These latter blocks are arranged
in a convenient block Toeplitz form (Grenander and Szego[1958]1), which
greatly facilitates computer implementations of the algorithm described

in section 4.2.2. The block Toeplitz form is visible in figure 4.3, because

the storage capacity is larger than 2 (Thus, internal transitions for initial

storage levels equal to 1,2 and 3 involve identical basic blocks arranged

on the diagonals of the matrix). In figure 4.4, the storages have capacities
N1=N2=2, in order for the diagram to fit on cne page and be readable. Here,
the matrix is essentially subdivided into three second level block-columns

(for n2=0,l, and 2), each of which is made up of three lowest level block-

columns (for n1=0,l, and 2). The lowest level block-columns in the centers

of the larger block-columns would be extended in Toeplitz form if Nl>2'
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(l—rl) (l—rz) (1--1:1)132 0 0
0 0 0 0
rl(l-rz) r.P, (l-rz) P,

0 0 0 6]

Table 4.2. Two-machine line, lowest level, upper boundary,

main-diagonal block.
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by Y ¢

_ internal -

eff. Pl = Pi

Pigure 4.3. Structure of the transition matrix T for a
two-machine case with N=4. (The numbers indicate
the non-zero rows in the block. Eg. 00 - first
row in block is nonzero. Shaded areas indicate
zero blocks. The notation eff.p, denotes the
effective failure probability in that block-

column.)
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4

eff. P3=O

eff. P2=O Eff p2:0
only internal
transition

eff. =0

Figure 4.4. Structure of the transition matrix T for a three-
machine line with N_=N_=2. (Crosses indicate those
blocks which are all-zero blocks because of
boundary transitions. For other notation, see fig.
4.3.)
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Similarly, the middle second level block-~column (That corresponding to
n2=l) would be extended in Toeplitz form if N2>2.

It must be noted that although system states are said to be
internal if all storage levels are greater than 1 and less than Ni-l,
internal transitions are those for which neither storage is empty
(ni=0) or full (ni=Ni). The reason for this difference is evident from
the transition tables 2.1 and 2.2. These require that for a machine to
be able to process a piece, there should be at least one piece in the

upstream storage (i.e. ni>0) and at least one vacant slot in the

downstream storage (i.e. ni<Ni)'
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4.2.2 Solution of the System of Transition Equations

It is shown in section 4.2.1 that the set of equations

(T-I)p = O (4.15)
and

RTE = 1 (4.16)

has a unique solution p, and that (4.15) and (4.16) may be combined and

rewritten in the form

T* = E (4.17)

o]

orx

-1
p = T* (4.18)

Equation (4.17) is to be solved by making use of the sparsity and

structure of the transition matrix T. It is noted that while (T - I) is

of the same block tri-diagonal form as T, the substitution of E? for one
row of (T - I) disturbs this structure. A new matrix T' is defined. This

is a slightly modified version of (T - I) designed to make it non-singular.
The nature of the modification is not of capital importance. In the

program appearing in Appendix A.4, it consists in substituting in only that
part of y? which falls within the main-diagonal block. The rest of y? is
later taken into consideration, by applying the matrix inversion lemma

(See below) on the inverse of T' calculated by the algorithm described

in this section. Thus, the nested block tri-diagonal structure and sparsity

of T is not lost. The following system of equations must now be solved:
T'p = b (4.19)
The matrix inversion lemma (Householder[1965]) is now stated:

Lemma 4.1: Given the non-singular matrices H and G and their inverses

-1 -1 . . . . - .
H and G 7, and the compatible matrices F and G, the following identity
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holds:.

1_.-1 -1

-8ty g gt

E(-G + FH “E) ‘Fu ! (4.20)

This lemma is used below.to show that changing a single row in a
matrix H (whose inverse H-l is known) by defining EG-lF appropriately
amounts to inverting a scalar. In this way, modifying T'—lg_to obtain
T*-lg is shown to be very simple.

The row in T' to be modified is chosen to be the row corresponding
to the location of y? in T*. Thus, its position corresponds to the
location of the 1 entry in the otherwise all-zero b vector. The vector

Q? is defined to be a correction vector such that

T + p_gT = T* (4.21)
Then, by lemma 4.1,
= (0 - b-1aD Tt
N I L TR SR e T (4.22)

T - . . . . .. .
where (1 + Q'T' ;g) is a scalar and its inversion trivial. However, it
-1
is known from equation (4.18) that all of T* = is not needed. This

inverse only appears in (4.18) as post-multiplied by the vector b. Thus,

p =
= (m+b3H
- - T -1 -1.T -1
R T e R R Tt
T -1,
_ 1 - 3T b T'_lg
1+ 37 Ty
-1
- ! 7y (4.23)
T_.-1
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It is noted that the term in the parantheses in (4.23) is a scalar.
Furthermore, T'_l only appears in (4.23) as post-multiplied by b. Since
b is a vector of zeros with one 1 entry, post-multiplying a matrix by

b amounts to reading off one column of that matrix. It will be shown that
because of this, it is useful to substifute E? for one of the first 2k
rows in the (T - I) matrix.

Equation (4.23) has an interesting implication: whatever the slight
modification discussed earlier actually is, it follows from (4.23) that
the result will merely be a scalar multiple of the true probability
vector p. Thus, finding the solution vector p amounts to normalizing
the result obtained by éolving the modified system in equation (4.19).
The denominator (1 + Q?T'-¥g) performs this normalization. As a
consequence of this, it is possible to modify T* in absolutely any way,
as long as the resulting matrix is still block tri-diagonal, and has
become non-singular. The desired result p can then be obtained by
normalizing T'-lg.

For simplicity of notation, the T' matrix is now partitioned into
blocks as seen in table 4.4. Matrices of this form have been studied by
various authors. Disney[1972] solves the two-server gueue with overflow
problem (See also ¢inlar and Disney[1967]) by using the block tri-diagonal
structure of the transition matrix. Evans[1967] proposes a gquadratic

matrix equation of the form
2
B + AK + CK = 0 (4.24)

based on the assumption that the solution vector may be partitioned into

vectors Xi such that

. = Ky. 4.25
Zit1 ¥y ( )
Wallace[1969] develops this algorithm, derives conditions for such a
solution to exist, and proposes an iterative algorithm to obtain the K
matrix. These studies apply to block tri-diagonal matrices of infinite

dimension and block Toeplitz form, except possikly at the lower boundary.
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cen 0
a, ¢ 0 0

B, A C, O . 0
0 B, A, G, - 0
0 .. 0 Byoy 2y.p C
0 et 0 0 Boy 2

Table 4.4. General form of the T' matrix.
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Such matrices are termed by Wallace guasi-birth-death processes.

Solutions of systems of equations with tri-diagonal or block
tri-diagonal matrices have been studied by Hindmarsh[1977], Varah[1972],
and Temperton[l975], in relation to systems of difference equations and
other applications. Navon[1977] presents several algorithms including
an LU-decomposition scheme for block tri-diagonal matrices, and
investigates the numerical stability of such algorithms.

As stated above, the entire inverse matrix T*—1 is not needed,
since it only appears in equation (4.23) as post-multiplied by b.
Nevertheless, an algorithm for computing T"‘_l for a two-machine line
is described in full for completeness. The algorithm is then generalized
to a k-machine line. It is shown that in order to obtain the inverse
of a matrix such as the one appearing in table 4.4, it is necessary to
know the inverses of the main-diagonal blocks. However, it was shown
earlier that in the case of a k-machine line, there are k-1 levels of
nested block tri-diagonal matrices. In other words, the main-diagonal
blocks are themselves block tri-diagonal. Thus, it is necessary to
obtain the full inverse of a block tri-diagonal matrix at all levels
except the lowest and the highest levels. In the former case, the lowest
level (basic) blocks are not tri-diagonal; in the latter, only one column
of the inverse is needed in equation (4.23). This is done by means of the
algorithm described below.

The following matrices are defined for a two-machine system: T!
is the slightly modified non-singular version of (T - I). Thus, it has the
form of the matrix given in table 4.4. It consists of (N+1)2 blocks, each
of which is of dimension 22x22=4x4. Here, N is the storage capacity as in
the earlier discussion. The rectangular matrix Y is defined as a matrix
of dimensions 4(N+1)x4. It is partitioned@ into N+1 blocks of dimension
4x4, as seen below:

Yo

>

(4.26)
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The rectangular matrix E has the same dimensions as Y. It is partioned
into N+l blocks of dimension 4x4, as seen below:

E
Q 8]

E (4.27)

E -
N

Thus, the dimensions of the matrices are compatible, and it is possible

to write the equation
T"Y = E (4.28)

From table 4.4 and equation (4.28), it follows that:

- -+ =
AgY, + C Y E, (4.29)
+ + =
ByY, * ALY, *CY, E,
BJY, +AY, +C Y, = E,
Bg-2tn-2 * Pyai¥y-r TSy T Eyer (4.30)
+ 1 = .

B (Yyq * AY, = By (4.31)

Assuming that AN is invertible, equation (4.31) may be solved to give

Y = A T [E_-B

N N N N-17N-1 ] (4.32)

Substituting (4.32) into (4.30), and assuming once again that the desired
inverses exist, it follows that:

Y = [A - CA B ] [E - CA E_- B 1 (4.33)

-1 7 S En T By-2¥n-2

Equations (4.32) and (4.33) suggest a recursion. Defining the matrices

X, anéd D, as
i i
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X = A I
0 N —1 i=1,..,N (4.34)
Xl = AN—l N—i+lXi—1 N-i S
and
-1 -1
D. = A E. = X E
© ol N i=1,..,N (4.35)
Dy = X By 7 Cyoien Pyl
it may be verified that
Y = p -x"tg Y ; i=0 N (4.36)
N-i i i N-i-1"N-i-1 o ’

The set of equations (4.29) through (4.31) are thus solved backwards, until

equation (4.29), which gives

-1
Y = A E_ -
{ o C

o o YlJ (4.37)

1

From (4.36), it follows that (4.37) can be rewritten as

l l

Solving (4.38) for YO' and factoring,

= - 5 -
Yq (A, - C X1 Byl (B = € By_,] (4.39)
-1
= Xy [EO - C,Dy l] (4.40)
= D 4.41
N ( )

where (4.40) and (4.41) follow from eguations (4.34) and (4.35) respectively.
The recursion is thus complete. Egquations (4.36) and (4.41) are rewritten

as

i=1,..,N (4.42)
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where Di and Xj are defined by equations (4.34) and (4.35).
Now, the matrix E is successively set equal to a set of matrices
which together constitute the identity matrix. This is achieved by

defining the blocks of E as follows:

Ei = I
i=0,1,..,N (4.43)

Ej = 0 i 3=0,1,..,N; j#i

Then, solving equation (4.28) by the recursion formulas defined above
' 1

gives a solution matrix Y which is the i+lSt block-column of T'
Clearly, then, it is only necessary to obtain the inverses of XO,..,XN
in order to find T'-l. However, these blocks may be large in systems
with more than two machines. It is therefore not desirable to use a
direct inversion procedure, since even the best computer implementations
of inversion algorithms involve considerable amounts of computation. It
is necessary to make use of the sparsity of Ci and obtain Xi-l more
efficiently.

It is noted that Ci has few non-zero rows: by a rough estimation,
only about 25% of the rows in Ci are non-zero. 1t is easy to verify

that a product in which Ci appears as a pre-multiplier has its only

non-zero rows in the same positions as those of C,. Thus, the product
L

-1

c. . X T B._ . (4.44)
N-i+l i-1 'N-i

in eguation (4.34) has approximately three quarters of its rows equal to

zero. It follows that only about one guarter of the rows of AN 5 in

equation (4.34) are altered when the term in (4.44) is subtracted from it.

- -1 . C , . L. .
Iz AN i is known, it 1s then possible to use the matrix inversion lemma

. -1 ..
(lemma 4.1) to alter these rows and obtain Xi efficiently. It only

-

. . 1 . .
remains to show that Ai are relatively easy to obtain.

In the general k-machine case, the main-diagonal blocks are themselves
block tri-diagonal. As noted above, this nested structure persists for k-1

levels. This suggests a recursive procedure whereby the inverses of the
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main-diagonal blocks are computed by the algorithm described above.
At the lowest level, as in the two-machine case, the blocks are
basic, in the sense described in section 4.2.1, and their dimensions
are kaZk. The main diagonal blocks represent those transitions in
which none of the storage levels change. They are thus similar to
the blocks discussed in examples (i) and (ii) in section 4.2.1. The
important difference between these examples and the main-diagonal
blocks of T' is that T' is a slightly modified version not of T but
of (T - I) . Thus, thé identity matrix is subtracted from each of the
main diagonal basic blocks. The inverses of these blocks have relatively
simple closed-form solutions. For example, the inverse of the block
described in example (i) of section 4.2.1 (minus the identity matrix)
has the following form. Given that the block is represented by A=[aij]

and its inverse by A-l=[aij},

311 T 3y /b \
aij = (alja44 - a4jal4) /A ;o 3=2,3
qg T TR/ b
3 = T3 /0 | > (4.45)
aéj = (a4jall - alja4l) / A i J=2,3
344 T 2/ 8
aéj = -1 i 3=2,3 /
where
A = 311344 7 ¥14%4 (4.46)

All other entries in A—l are zero. This closed inverse carries over to
larger blocks which have the same form as the block in example (i) of
section 4.2.1. For the three-machine analogous block, for example, all

3 and 4 in the above equations become 7 and 8, respectively; nothing else
is changed.

Here, it is important to note that although the algorithm described
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in this section adopts the notation AO,Al,..,AN for generality, not all
of these matrices are in fact distinct. Basic blocks are defined as the
transition probabilities for given initial and final storage levels. The
important point to note, however, is that these transitions are not
conditional on the precise values of these levels. Rather, it is whether
the initial level was empty, full, or otherwise which conditions the
transition probability. These three possibilities are termed regions.

In a k-machine line, there are k-1 storages, each of which can be in any
of three regions. Thus, there are at most 3}(—l different matrices among

the (N1+l)..( +1) basic main diagonal blocks. This implies the block

N
Toeplitz form zflthe transition matrix. The fact that the number of
different Ai is small is especially important if the storage capacities are
large. The number of distinct matrices among the Ai is independent of
storage capécity and remains small. This is further discussed in section
4.2.3.

It is important to reiterate that the entire '1."'-l matrix is not
needed. In fact, if 2? is substituted for one of the first 2k rows of
(r - I), the problem becomes significantly simpler. In that case, it is
only.necessary to compute a column from the first block-column of T'—l.
This means that the solution Y corresponding to EO=I, Ei=..=BN=O is

sought. Then, the problem becomes

S i=l,..,N (4.47)

where xi are defined, as before, by equation (4.34). The column of Y
corresponding to the 3? row in T' is then equal to T"lg. The solution
vector p is found from equation (4.23).

The problem is now reformulated for the general k-machine transfer
line. The T' matrix for such a line is block tri-diagonal; its main
diagonal blocks are themselves block tri-diagonal, and this persists
downwards for k-1 levels. The lowest level (2l=1) is defined to be the

basic level. Then, the solution to ecuation (4.19) is to be found

, . th . -
recursively; solving the £ Y olevel problem reguires the results of level
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; . . . 1
2-1. The following notation is now established: Ai, Bi and Ci are the

main-, lower off-, and upper off-diagonal basic blocks. At the lth level,
L
the main diagonal block in the ith block-column is Ai; similarly, the

. . .t . L
Zth level upper off-diagonal block in the i h block~-column is Ci' and the

ch level lower off-diagonal block in the ith block-column is Bi' The

2 L % . , . . .
Xi' Ei' and Di matrices are defined analogously. This notation will be

clarified by the example on table 4.5.

At £=1, the inverses of the main-diagonal blocks, (Ai)—l, are found
by explicit inversion, or by means of closed-form solutions such as that
in equations (4.45) and (4.46).

At the %th level, where 2<k-1, the following recursions are defined

. +1, -
in order to calculate (Ai l) l:

RN
Ng i=1,.. N, (4.48)
9 % % 9 -1.2
X' = an° ., -c. . (X ) BT .
i Ng—l Nl i+l Ti-1 N2 i
A
0 0 No i=1,..,N, (4.49)
% L.-1 % 9 %
P T &) By i 7 Gypmin i-1]
and

2 9
Y = D
0 N,
Y{L _ Dz . (XJL . -1 B{l Yg 1=1,..,N£ (4.50)
1 Ng-l N£~1 i-1i-1

where (Xi)-l is found by applying lemma 4.1 on (Ai)—l; for each but the
lowest level, (Ai)—l are the inzefses obtained at the level immediately
below. This is done by setting E, T  successively equal to the identity
matrix I, as stated in equation (4.43).

An example may serve to clarify this procedure: it is desired to
find p for a three-machine transfer line with storage capacities Nl and

) , 1
Nz. Thus, eqguation (4.19) must be solved to obtain T' b.
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-1 -1
Aq cy o ...
-1 -1 -1
B, Ay 5
3 .
A, = .
1

Table 4.5. The Rth level main-diagonal block.
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Finding the inverse of a block tri-diagonal matrix requires knowledge
of the inverses of its main-diagonal blocks. Furthermore, every level
corresponds to a storage, and each storage has three regions: empty, full,
and otherwise. Thus, for a three-machine system, k=3 and there are only
32=9'distinct basic blocks, and 3 distinct second level blocks. The
procedure followed in solving this problem is schematically illustrated
in figure 4.5. The numbers on the arrows indicate the order of the steps
of the recursion. For reasons that directly follow from equations (4.48)
to (4.50), the recursion proceeds from top to bottom and from right to
left in the diagram.

Since only the first block-column of T'_l is needed at the highest
level (at the condition that y? is substituted for any one of the first
2k rows), for f=k-1, the recursion described by equations (4.48)-(4.50)

reduces to:

Xk—l _ Ak-l
0 N1
K1 gkl ookl & 1)_1 X1 i=1,...N _, (4.5D)
1 N, 7% Nk_l—1+l i-1 N ;71
and
k- -1 -
v 1 (Xk 1 ) 1
° Nk-—l
k-1 k-1 -1 k-1 k-1 1=l Ny g (4.52)
Y, = =X ) T B, . Y,
1 Nk—l_l i-1 i-1

Equations (4.48) through (4.52), together with (4.23), completely
determine the solution vector p, i.e. the vector of state probabilities

for a k-machine transfer line.
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4.2.3 Discussion of the Algorithm and

Computer Implementations

The basic blocks represent the state transition probabilities given
the initial and final storage levels. If the storage levels are ordered
semi~lexicographically, then the blocks are arranged in a block tri-
diagonal form. Because of the way in which the states are ordered, each
level corresponds to allowing the level of a particular storage to take
all values from zero to maximum capacity Ni (See figure 4.4).

At each level, all blocks on any given diagonal are equal except
at the upper and lower boundaries (figure 4.6). This is because transition
probabilities are conditional on the adjacent storages being empty,
full, or otherwise. As long as a storage is not empty or full, it
influences the transition probability in the same way, regardless of the
value of its level. Each diagonal matrix is thus in nearly block Toeplitz
form. Since there are only three storage regions, there are three
distinct main-diagonal blocks in any higher level block. Thus, at each
level %, it is not necessary to obtain all (Ai).l in order to compute
(Xi)—l. Only three different (Ai)—1 must be obtained: for i=N£,N£~l, and
0. These are computed in this order because of the way in which eguation
(4.48) is set up. Furthermore, since there are three distinct matrices at
each level, the total number of distinct main-diagonal blocks for all
branches of the recursion at any level £ is given by 3 “". This may be
verified in figure 4.5. At the lowest level (%=1), there are 32=9 different
storage region combinations, and thus there are 9 distinct main-diagonal
blocks. At the second level, there are only 3 distinct main-diagonal blocks.
As storage size (and thus the total number of blocks) increases, the
savings in computation made by the observation that only three inverse
matrices have to be obtained at any level of the recursion becomes more
and more important.

Secondly, it may be noted that on the boundaries, some of the blocks
which (according to the formulation of the nested block tri-diagonal

matrix) should be non-zero diagonal blocks are in fact zero blocks. This




-109~-

ni=O

initial storage
values

Figure 4.6. Location of boundary block-columns
in any main-diagonal block.
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may be verified in figure 4.4. This is caused by the fact that the level

of an empty storage canﬁot go down, and that of a full storage cannot

go up. The positions of these blocks are easily predictable, so that

it is possible to save computation by avoiding multiplications involving
large, all-zero blocks. Furthermore, at the highest level, the upper and
lower main-diagonal blocks are bi-diagonal, instead of tri-diagonal, for
these reasons. This too allows great computational savings, since for those
two cases (out of a total of three distinct highest level main-diagonal

blocks), equations (4.48)-(4.50) reduce to

Y§= (Aﬁ)-lEg

i=1,..,N (4.53)
A S RS T N Ny
Ypo= ) IR =By YL ‘

A third and very important point is that if some storage capacity is
increased from ﬁ& to Né ?t fime level %, then it is only necessary to
recompute (XN ) ,...,(X&,) in equation (4.48) (as well as higher level
matrices).Thegsavings in Computation allowed by this are crucial especially
for large NQ. The reason for this is that increasing the capacity of a
storage amounts to appending new block-columns and block-rows to the matrix
at level L. If the very last storage is being incremented up, then £=k-1
and the only change in the original matrix is in the final block-column,

since transitions with initial storage n are no longer boundary

k-1""k-1
transitions when the capacity is increased to Ni—l > Nk—l' As a result,
only X-matrices with indices beginning at the o0ld storage capacity and at
levels beyond the storage whose capacity is changed need be recomputed.
Since the bulk of computations in the algorithm is the computation devoted
to generating (Xfi')_l (equation 4.48), this is an important consideration
in computer implementations.

The major problem in computer implementations of this algorithm is
not computation time but memory reguirements. Because (Xi)-—l can only be
generated "upwards", i.e. from i=0 to i=N2 (ecuations (4.48)) and are
used "downwards”", i.e. from i=N£ to i=0 (equations (4.49) and (4.50)),
they must all be stored in memorv and can not be computed as needed. This

causes very serious memory problems. At high levels, the X matrices are
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very large. In IBM double precision, the computer program given in
Appendix A.4 regquired 1M bytes for a small (N1=N2=lO) storage capacity
case.

This difficulty can be overcome by reverting to slow memory: this may
be done by creating disk files and storing the unused (Xi)-l matrices in
these files. Since these matrices are not needed at all times, the time
loss incurred by this procedure may not be very significant. A better
way is to use the IBM Virtual Machine System (See references under IBM).
This process allows unlimited virtual memory and enables the program to be
loaded and executed even with large storage capacities.

Computational complexity and error stability studies remain to be

performed for this algorithm.




5. COMPUTATION OF SYSTEM PERFORMANCE MEASURES

Calculating the steady-state probabilities by using the methods
outlined in chapters 3 and 4 is not an end in itself. It is a means for
obtaining certain system performance measures that are of use in
designing transfer lines or job shops. This chapter discusses some of
these important performance measures and how they are obtained from
the state probabilities.

The steady-state (long-time average) efficiency and production
rate of the system are defined and ways of computing them are discussed
in section 5.1. Section 5.1.1 discusses different expressions for
efficiency, as well as various ways to calculate it. Some conclusions
pertaining to the conservation of pieces are derived from these
equivalent methods for obtaining efficiency. The transients of the
system are investigated in section 5.1.2 and their effects on the
production rate of the system are discussed. Some computational
results on the dependence of efficiency on storage size are given and
discussed in section 5.1.3.

Section 5.2 investigates the effect of buffer size on the
performance of individual machines. The asymptotic behavior of forced-
down times as functions of storage size is established.

Section 5.3 studies the dependence of in-process inventory on
storage capacity. It is shown that inventory does not necessarily
increase linearly with storage size, and that in some cases it

approaches an asymptote as storage capacity is increased.
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5.1 Efficiency and Production Rate of the System

5.1.1 Computation of Efficiency

A transfer line can produce a part during a time cycle if and only
if the last machine is operational and the last storage is non-empty.
The efficiency of the transfer line is defined as the probability that
the line produces a part during any c?cle. This probability is equivalent
to the expected vélue of the ratio of the number of cycles during which
the line produces a part to the total number of cycles. The production
rate of the transfer line is the expected number Sf completed parts
produced by the system per unit time. Thus, since all machines have
equal, deterministic service times (Assumption 2.2.2), it follows that

A . .
Production Rate = Efficiency (5.1)

Length of Machining Cycle

Throughout this work (with the exception of chapter 8) the length of a
machining cycle is taken to be one time unit, so that production rate
equals efficiency. These two terms are thus used interchangeably.

.. .. . .th . . .
The efficiency in iseclation of the lt machine in a k-machine

transfer line is defined as

A .
ei 2 average up time (5.2)
average up time + average down time
= (1/py) (5.3)
(l/pi) + (/)
= i (5.4)
gt P

Physically, this is the efficiency of that machine removed from the line
and supplied with an unlimited reservoir of workpieces and an unlimited

sink for processed parts. It is easy to.see that for a one-machine line,
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where assumption 2.2.1 holds, this quantity is equivalent to the
definition for transfer line efficiency given by egquation 5.1.

When the machine operates within an unreliable transfer line,
however, the assumption of unlimited supply of workpieces does not hold,
since the adjacent upstream storage is sometimes empty due to failures
upstream in the line. Similarly, the assumption of unlimited storage
space for machined pieces does not hold, since the adjacent downstream
storage is sometimes full due to failures downstream in the line. Thus,
the actual production rate of the machine in the unreliable line,
defined as its utilization, is lower than its efficiency in isolation.
The utilization of the ith machine in a k-machine transfer line is

defined as

Ei = pla piece emerges from machine i during (5.5)
any cycle at steady-statel :
= = > < .
P[di(t+l) l,ni_l(t) O,ni(t) Ni} (5.6)

The difference between the arguments of ai(-) and nj(-) is required by
assumption 2.2.5. It is clear that the efficiency of the transfer line,
as defined in section 5.1, is equal to the utilization of the last
machine, Ek, as given by equation (5.5). Here, nk(t) is taken to be
non-full, as stated in section 3.1.1. Intuitively, the expected
utilization of all machines should be equal, since pieces are neither
created nor destroyed by the line (Assumption 2.2.4). This proposition
is developed later.

"Another numerical quantity is now defined for the ith machine in
the transfer line:

S, & pla, (t)=1,n, _{£)>0,n, (£)<N,] (5.7)
1 1 1= 1 1

1
It is noted that the difference between Ei and Si is that in the latter,
all events take place at the same time t, whereas in the former, the

machine state and the storage levels are examined at different times.
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Proposition 5.1: Ei = Si

Since from section 2.3.2,

=11 = > < =
= = > < = -
plo, (t+1) lloci(t) 1yn,_, (£)>0,n, (£)<N,] 1-p, (5.9)
it follows that by Bayes' theorem,
E, = r.,pla, (t)=0,n, . (£)>0,n, (£)<N,] +
i i i i-1 i i
(5.10)

(1—pi) p[ai(t)=l,ni_l(t)>0,ni(t)<Ni]

All events in equation (5.10) take place at the same time t. The two

terms on the right hand side of (5.10) may be rewritten as

:E: plsl (5.11)

p[ai(t)=0,ni_l(t)>0,ni(t)<Ni]

sefl
o)
pla, (t)=1,n, _(£)>0,n, (£)<N.] = :E: pls] (5.12)
i i-1 i i .
S€Ql
where
A . , b s<—
Q, = {slo, (©)=3/n,_, (£)>0,n, (t)<N ] 3=0,1 (5.13)

Thus, equation (5.10) becomes

E, = ¢, :E: pls] + (1-p,) :z: pls] (5.14)

sef sEfN
0

Using the same notation, eguation (5.7) may be rewritten as

S, = :E: pls] (5.15)

SEQ;
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It is thus necessary to show that

i 5 riz plsl = piz pls] (5.16)

sef . sefl
o 1

]
i
n
]

= 0 ' (5.17)

Consider the set QO. Since machine repair does not depend on storage
levels, the probability that the system leaves QO in any time cycle

is given by

r. P[Qol = r; :E: plsl (5.18)
sEQO

To get into set QO, which consists of all states in which machine i is
down and the upstream storage is non-empty and the downstream storage
is non-full at the same time cycle, it is necessary that at the
previous time cycle, these storageswere non-empty and non-full,
respectively. This 1s because by assumption 2.2.3, a machine can only
fail while processing a piece, and it can only process a piece if there
is at least one piece in the upstream storage and at least one vacant
slot in the downstream storage. Thus, set QO can only be reached from
set 1, and this takes place if machine i fails. The probability that

the system enters set QO in any time cycle is therefore given by

p., plf1] = p, :E: plis] (5.19)
i i
sefdy

Because of the steady-state assumption (Section 2.2.6), the probability
of the system entering any set of states during a given period must
equal the probability of it leaving the same set during a period of the

same length. Thus, egquations (5.18) and (5.19) give the balance equation

riz plsl = p, Z pls] (5.20)

sef) se€ily
o}
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so that

E, - s, =0 (5.21)
or

E. = 8. : . (5.22)

This proves proposition 5.1. The consequence of this proof is that the
computation of efficiency is considerably simplified.

Proposition 5.1 can also be demonstrated intuitively*. Consider
for the sake of illustration the last machine in a two-machine 1line.
Neglecting transient (zero steady-state probability) states, it may be
verified in the state transition diagram (figure 2.4) that all
transitions to states in which the storage is non-empty and the second
machine is up, with exactly one exception, result in the production of
a piece. Thus, calculating the sum of the probabilities of these states
is equivalent to finding the ratio of the number of transitions that
result in the production of a piece to the total number of transitions.
The only exception is the transition (0,0,1)>(1,1,1). This does not
result in a part because the storage must first become non-empty before
the second machine can operate. However, it is also observed that all
possible transitions to (0,0,1) from other states do result in the
production of a piece. This is the case with the three transitions
(1,0,0)>(0,0,1), (1,0,1)~(0,0,1), and (1,1,1)+(0,0,1). This means that
for every transition to (1,1,1) that does not result in a piece, there
is exactly one transition to (0,0,1) that does. Thus, if the probabilities
of states in which the storage is non-empty and the second machine is up
are summed (thereby obtaining Sz), the (0,0,1)>(1,1,1) transition that is
included in the sum but did not result in a part is esactly counter-
balanced by transitions to (0,0,1) that were not included in the sum

but that did result in a part. Since the sum of the probabilities of

* This demonstration is due to Mr. M. Akif Eyler of Harvard University.
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states which have been reached by a transition that resulted in the

production of a part is Ei, it follows that

E, = §, = :z: pls] (5.23)
1 .
sef

as before.
Proposition 5.2: Si = 'Sj ; all i,j (Proof for k=2).

The proof that all machines have equal utilizations is considerably
more complex. In the two-machine case, it involves closed-form
expressions derived in chapter 3, and explicit relations between X, Yl'
and Y2. Since such relations have not yet been obtained for lines with
more than two machines, the proposition has not yet been proved for
transfer lines longer than two machines. The consequence of this
proposition is that the assumption that pieces are neither created
nor destroyed by the line (Section 2.2.4) implies that all stages in the
line have equal steady-state production rates.

For the two-machine case, the proof proceeds as follows:

Defining the sets

w
|

{s]|o =1,n<n} (5.24)

W
|

{sla2=1,o<n} (5.25)

It is easy to verify from egquation (5.7) that

n
I

P[Bj] i J3=1,2 (5.26)

Introducing the more compact notation

£ {(n<N,1,a2)} (5.27)

>

{(O<n,u1,l)} (5.28)

and defining the intersection of these two sets as
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ne>

B. M B (5.29)

1}

{(0<n<n,1,1)} (5.30)
equation (5.26) may be rewritten as
S. = p[Bj - Ccl + plcC] i J=1,2 (5.31)

Thus, proving that the two machines have equal utilizations is

equivalent to showing that
p[Bl -Cc] = p[82 - C] (5.32)

This is demonstrated as follows: the set on the left hand side of

equation (5.32) is
B, - C = {<o,1,a2>} U {(n<N,1,0)} (5.33)

It is noted that both elements in the first set in this union have

zero steady-state probabilities. Thus,

N-1
p[Bl -Ccl] = j{: pin,1,0]} (5.34)
n=0

Similarly,

B,-C = {<N,al,1)} U {(0<n,0,1)} (5.35)

Again, the elements in the first set of the union have zero steady-

state probabilities. It follows that

N
p(B, - C] = :E: oin,0,1] (5.36)
n=1

The resulits of section 3.2.1 are now used. From table 3.1,
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cx” v

1 ; n=2,..,N-1
pln,1,0] = (5.37)
0 ; n=0,1 .
CXn Y2 ; n=1l,..,N=2
pln,0,11 = (5.38)
0 ; n=N-1,N
and from equation (3.25),
X = Y2 / Yl (5.39)
Thus,
N-1 N~-1
Z P[nllIO] = CX Y (5.40)
1
n=0 n=2
N~-2
+
= o™y (5.41)
1
n=1
N-2
= cx™ vy (5.42)
2
n=1
N
= Z pin,0,1] (5.43)
n=1
It follows that
p[Bl -Ccl = p[B2 - C] (5.44)

which proves the proposition for the two-machine case.
In the general k-machine case, equations (5.24) and (5.25) are

extended to include both upstream and downstream storages:

g, 2 {sla,=1,0<n, .,n_<N,} (5.45)
1 1 1- 1

1771

so that once again,
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S; = P[Bi] (5.46)

Then, demonstrating that all machines have equal steady-state

utilizations is equivalent to proving that
p[Bi -Cl] = p[Bj - C] ;i all i,3 (5.47)

where, as before,

B, M B, (5.48)
1 J
As stated earlier, the proof for the two-machine case involves the
explicit relationship between Xi and Yj given by equation (5.39). Since
this relation is not known to hold for a k-machine line, the proposition

has not been proved for the general case.
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5.1.2 System Transients énd Efficiency

Both the analytical and the numerical methods discussed in the past

chapters give steady-state solutions. In some problems, steady-state

signifies the theoretical description of a system when time is allowed
to épproach infinity and the system itself becomes static as all
transients die down. For example, a released pendulum oscillates for a
certain period of time, but it eventually comes to rest. In stochastic
systems, steady-state does not imply that the system itself is at rest,
but that the probabilistic model of the system has become stationary.
For ergodic systems, one consequence of this is that the system
behavior at steady-state is independent of initial conditions (See

section 2.3.1). Assumption 2.2.6 therefore implies that the system has

been running long enough so that it is governed by steady-state probability

distributions, and the effects of start-up have vanished. Knowing the

system's initial state thus gives no information on its present state.
Essentially, therefore, the practical equivalent of the abstract concept
of steady-state is the long-time average. In practical situations, this
may approach the steady-state values in a time that is relatively short
compared to the mathematical calculation of the time required to
approximate steady-state conditions. When the system has run long enough,

the average efficiency obtained is equal to the steady-state value

computed on the basis of the theory developed in chapters 3 and 4.

How long is "long enough", however, is a question that is difficult S

to answer. The speed with which the system approaches steady-state is a
function of the second largest eigenvalue of the transition matrix (See
section 4.1). The eigenvalues are related to the svstem parameters (the
propabilities of failure andé repair and the storage sizes) and are not

easy to compute. It is possible to estimate how many cycles it would

take for the transients to vanish, given an initial condition, by using

the power method (Section 4.1). The number of iterations the algorithm
neels to converge is a measure of the expected speed with which the system

reaczhes & stationary probability Jistribution.
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There are two maiﬁ consequences of the effect of start-up
transients on the efficiency of the system:

(1) The steady-state efficiency may be calculated, by analytical or
numerical methods, to as many decimal places as the computer is capable
of handling. However, if the start-up transients take very long to
vanish, so that the system does not sufficiently approach steady-

state during finite-time operations, ;his accurate efficiency computed
on the basis of the steady-state probabilities will not reflect the
actual behavior of the system. As a result of this, the model will not
adequately describe and predict the production of the actual system.
(ii) On the other hand, the transients may not dominate enough to
render the model useless, although they may have some effects on the
system. Then, the fact that actual efficiency is close but not exactly
equal to the steady-state efficiency suggests that approximate methods
may be used to calculate with less work an approximate efficiency that
is sufficiently precise for actual (e.g. industrial) applications. This
theme is developed in chapter 6.

Since-no system has vet actually operated for an infinite length
of time, it is important to understand the finite-time, non-steady-state
behavior of the system. The dynamic simulation program described in
section 6.1 was used and runs were made for different lengths of time
and system parameters. Scme results are presented in figures 5.1-5.5.

In one set of runs, the average number of pieces produced pex
cycle was sampled at regular intervals, for several interval lengths.
These are not cumulative averages, but were computed over each non-
overlapping interval. It should be ncted, however, that intervals were
taken consecutively and without long time periods between them. Thus, the
sample efficiencies obtained in this manner are not independent. As
expected, deviations from the mean become smzller as the length of the
time intervals are increased. At the 1limit, an infinite-~length time
interval would give the steady-state eificiency. This is confirmed by

the fact that the cumulative averace =2fficiencyv aprroaches the steady-

[

state value after about 500 time cvcles and does not appreciably

deviate from that value thereafter even though the sample averages
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continue to fluctuate. The important point to note is therefore not that
the output of the system fluctuates, but that the cumulative (long-
time) average converges on the steady-state value. Three examples for a
two-machine line with the parameters appearing in table 5.1 are given

in figures 5.1-5.3. These are for interval lengths of 1, 10, and 100
cycles, respectively. Since the three graphs are drawn to the same
vertical scale, the fact that the magnitude of the deviations from the
mean decrease with interval length is clearly illustrated in these
plots.

A different set of runs consist of simulating systems with
different parameters, keeping the time interval constant. Figures
5.4 and 5.5 illustrate some results for the system parameters given
in table 5.2. For very small failure or repair probabilities, the system
spends long periods of time in few states, while it does not reach
some of the lower probability states during simulations of short
durations. Thus, it does not fluctuate oftenenough in short time periods,
and the cumulative average does not approach the steady-state value
during these short periods. On the other hand, large failure or repair
probabilities imply that transitions take place often, and all states
are visited more or less frequently. The cumulative average approaches
the steady-state efficiency much faster in this case. This experiment
confirms that the applicability of the steady-state assumption to
actual systems depends strongly on the system parameters.

Sections 5.1.3, 5.2, and 5.3 discuss the relations between system
parameters and three basic performance measures: production rate, forced-
down times, and in-process inventory. All computations make the steady-
state assumption. How close such results are to actual values depends on
the system parameters and the length of time +the actual system is

continuously operated.
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Table 5.1. System parameters for dynamic simulation

of system transients.
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pl = 0.001 p2 = 0.002
Case 1: N =4
rl = 0.001 r2 = 0.003
pl = 0.9 p2 = 0.9
Case 2: N = 4
= 0. = 0.8
rl 0.8 r2

Table 5.2. System parameters for dynamic simulation of

system transients.
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Figure 5.4. Sample and cumulative average production rates for
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FPigure 5.5. Sample and cumulative average production rates for
a two-machine line with large probabilities of
failure and repair.
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5.1.3 Production Rate and Storage Size

Studies of transfer lines may be subdivided into three classes, on
the basis of the assumption they make with regard to the capacity of
interstage buffers. These are (Barten[1962]):

(i) No storage: In the case of servers in tandem with no storage space
between them, the machines are most tightly coupled, in that when one
of them breaks down, the entire line must stop. Such lines are often
encountered in industry, as in the case of continuous production lines.
(ii) Infinite storage: In this case, the machines are as decoupled as
possible, as is shown below. Although infinite buffer capacities give
the highest possible production rate for a given set of machines, this
assumption does not have wide applicability to actual situations. Costs
of storage capacity and in-process inventory make even very large buffers
relatively rare in industry.

(iii) Finite storage: In -this case, a limited storage capacity is
provided between machines or stages consisting of several machines.
This is the most common case in industry, as well as in many other
areas.

The no-storage case was treated by numerous researchers, including
Buzacott[1967a,1968], Hunt[1956]), Suzuki[1964]}, Rao[l1975a}l, Avi-Itzhak
and Yadin[1965], and Barlow and Prochan([1975]. Massoc and Smith{1974]
state that adjacent stages with no storage between them may, in some
_cases, be combined and treated as a single machine. This simplifies the
analysis of long transfer lines considerably. The most complete analysis
of the efficiency of systems without buffer storages appears in
Buzacott{1968], where various network topologies are considered.

In the present case, the system consists of k machines in series,
with equal and deterministic cycle times, taken to be 1 time unit. The
derivation of the efficiency of & line with no storages presented
below follows Buzacott[1968]. For a given machine i, where i=1,..,k,
the mean up- and down-times are given by 1/pi and l/ri, respectively.

Assuming that during some long time period T, machine i produces M pieces,
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it follows that during that period, the expected number of breakdowns
is Mpi. Thus, the total expected down time of machine i is Mpi/ri time
units. However, the whole liné is forced down whenever one machine

fails. It follows that

k
T = M+ :E: Mp. / r. (5.49)
=1t

The efficiency of the line is equal to that of any machine, since the
line is up only when all machines are up. As defined in equation 5.1,
efficiency is the ratio of expected up time to total time. Thus,

E(0) M

(5.50)

k (5.51)

where E(0) is defined to be the efficiency of a line with no buffer
storages. This value gives a lower bound to the transfer line production
rate that can be obtained with the given set of machines.

An upper bound is given by the limit of efficiency as the storage
capacities go to infinity. Although this is, as stated earlier, an
unrealistic assumption, it does sometimes give remarkably accurate
results (See Solberg[1977]). Infinite buffer models have been the subject
of considerable research, including Buzacott({1967a,1967b], Hunt([1956],
Morse[1965], and Schweitzer[1976].

A common mistake (Buzacott{[1967b], Koenigsberg[1959], Masso and
Smith[1974], Barten([1962] and others) is to assume that infinite buffers
truly decouple the machines, so that each machine may be considered
independent from all others. It follows then that the efficiency of the
line, E(®), is ecual to that of the least_efficient machine. Basing

himself on Burke[1956], Xoenigsberg[l1952] notes that this is the case
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when machines are reliable and have exponentially distributed service
times, and the input to the line is Poisson. In this case, Burke shows
that the output of a machine is also Poisson, and since an infinite
storage implies that there is no blocking, each stage is indeed
independent. Assumption 2.2.1, however, requires that a machine in
isolation be never starved or blocked. Okamura and Yamashina[1977]
point out that in some cases, the average number of pieces in a storage
approaches a limit as the capacity of the storage increases (See also
section 5.3). In such cases, the storage may be empty and starve the
downstream machine with positive probability. It is thus incorrect to
assume that machines are truly decoupled by infinite storages.

However, this does not invalidate Buzacott's thesis that ﬁhe
production rate of a line with infinite buffers is equal to that of
the least efficient machine. Furthermore, Okamura and Yamashina's
counter argument leaves much to be desired: although they are able to
solve two-ﬁachine lines with storage capacities less than 36 only
(because of memory limitations), they deduce from a graph a value for
E(®) which they say is lower than the efficiency of the least efficient
machine. The assertion that the production rate of a line with infinite
buffers is equal to the efficiency of the least efficient machine is
proved by two different approaches. Mathematical induction is used
below; it is also demonstrated in section 5.2 that in the two-machine
case, the forced-down times of the least efficient machine approaches
zero as storage capacity increases.

To prove the proposition, it is first noted that for a transfer
line with infinite capacity buffer storages, any segment of the line (be
it a single machine or a series of machines and storages) behaves
independently from the downstream part of the line. This is because
blocking can not occur with infinite buffers. Thus, the segment operates
at its efficiency in isolation, i.e. at its highest possible production
rate, without being hampered by what is appended downstream of it.

A storage is defined to be stable if and only if its level
increases without bound as t*® with zero probability (Lavenberg[1975],

Hildebrand[1967]).
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The proof that the production rate of a line with infiniﬁe capacity
buffers is equal to the efficiency of its least efficient machine
proceeds as follows: Concentrating first on the first storage (storage
1), two cases may be considered. Either the first machine is less
efficient than the second one, in which case the storage is stable
(See section 5.3), or else it is unstable.

(1) Storage is stable: Since the first machine is never blocked, it
operates with a production rate equal to its efficiency in isolation.
The second machine can do no better than the first, so that the flow

of pieces through the second machine must be equal to or less than the
efficiency of the first one. If the average rate of flow through the |
second machine were less than that through the first one, the level

in the first storage would increase without bound as t+~. This
contradicts the hypothesis. Thus, for a stable storage, conservation

of pieces (See sections 2.2.4 and 5.1.1) holds, and the production rate
of the downstream machine is equal to that of the upstream one, which

is the least efficient of the two.

(ii) Storage is unstable: By definition, the number of pieces in the
storage increases without bound as t+®. By modeling the level of the
storage as a birth-death process with states é 0,1,2,... and assigning
Pi,i+l' the probability of transition from state i to state i+l to be
greater than pi’.

i-1
being in state O (storage is empty) decreases to zero as t>®. (Note

for all i, it may be shown that the probability of

that this is also true for states 1,2,...). Thus, the probability that
the second machine is starved goes to zero as t>®. Since the second
machine is never blocked, the rate of flow through it approaches its
efficiency in isolation as t*®. In case (i), the first machine is less
efficient than the second one by hypothesis. Here, the second machine is
at most as efficient as the first one. Thus, the assertion has been
proved for storage 1.

Storage i is considered next. It is between machines i and i+l
(See figure 2.1). It is assumed, following the usual induction argument,
that the assertion is true for storage i~l. Thus, the rate of flow through

machine i is equal to the efficiency of the least efficient among machines
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1 to i. Once again, there are two possibilities.

(i) I1If storage'i is stable, conservation of pieces holds by the same

argument as above. Then, the rate-pf flow through machine i+l is equal

to that of machine i. For the storage to be stable, it is noted that

machine i+l must be more efficient than the upstream portion of the

line. Thus, the rate of flow through machine i+l is equal to the

efficiency of the least efficient machine among machines 1 to i+l.

(ii) If storage i is unstable, the same argument as above implies that

the probability that it is empty approaches zero as t3®. Then, the rate

of flow through machine i+l approaches its efficiency in isolation as

t>©, The storage is unstable only if the efficiency of machine i+l

is less than or equal to that of the upstream portion of the line.
Thus, it has been shown that assuming that the assertion holds

for storage i-1 implies that it also holds for storage i. The proof is

now complete. Defining the efficiency of the line E(®) to be the rate

of flow out of the last machine (which may or may not be equal to the

rate of flow into the line, depending on the stability of the storages),

it follows that (Buzacott[1967a,1967b]l):

. r.
min i
E@ =, T o (5.52)
1
1 + max gi_ (5.53)
i=1,..,k r,

1

The lower bound on production rate given by eqguation (5.51) and the

upper bound given by (5.53) are now analyzed. It is noted that for a
perfectly reliable machine, pi/ri -+ 0 and for a completely unreliable
one, pi/ri - o, Thus, if all machines are very reliable, E(0) = E(®) = 1.
On the other hand, if a single machine is much less reliable than all

the others, E(0) - E(«). Since the difference between the upper and lower
bounds indicates how much production can be increased by the addition

of buffer storages, it follows that storages are most useful when each

machine is not extremely reliable and no single machine is much less




-137-

efficient than all others (Buzacott[1967a]). An interesting consequence
is that the production rate of a balanced line, in which all machines
have equal efficiencies in isolation, is likely to improve more by the
addition of buffer storages than that of an unbalanced line.

Although the difference between E(0) and E(®) indicates how much
can be gained by adding storages with infinite capacities to the line,
it is useful to have a measure of how effective a given §torage
configuration (N,,..,N

1 k-1
to breakdowns. The effectiveness of a set of storage capacities for a

) is in reducing the loss of production due

given line with known E(0) and E(®) is defined as

E(Nl'..,Nk"‘l) - E(O) (5.54)

n(Nll"IN ) =
E(®) - E(0)

k-1

(Equation (5.61) follows Freeman[1964] and Buzacott[196%9], rather than
Buzacott[1967b], who takes the denominator to be 1-E(0}). Since

L L ©
E() & E(M,...N_ ) & E( (5.55)

it follows that
0 £ n() & 1 (5.56)

It is clear that n(Nl,.. ) may have identical values for

Nyt

different sets of storage capacities (Nl. ). However, providing

. 'Nk-l
storage space at different locations may have different costs. Thus,

the optimization problem of section 1.1 involves alsoc minimizing cost
for a given n(-).

Although efficiency is known to vary between E(0) and E(®), it is
important to know the rate at which this increase occurs with respect to
buffer capacity. This 1is because there are cases in which very large
buffers can improve production rate significantly; however, in some
of these, most of the improvement is achieved with small buffers, while

larger buffers do not further increase production rate appreciably.
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Okamura and Yamashina[l977] classify curves of efficiency against
storage capacity in three groups: those in which the curve is almost
linear, those in which it displays a marked concavity, and those that
initially rise quickly, but soon approach a limit. These types of
curves are illustrated by the graphs of efficiency against storage
capacity in figure 5.6 (Gershwin[1973b]). These results are for two-
machine lines with the system parameters given in table 5.3.

In case 1, both machines are very efficient. Hence, both E(0)
and E(®) are close to 1 (and to each other), so that there is little
to be gained by the addition of buffer storage between the machines.
Since the increase is very gradual, this case is similar to those
which Okamura and Yamashina call almost linear. In case 2, the machines
are less efficient and neither machine is significantly less efficient
than the other. Thus, the addition of buffer storage can be expected
to improve the line production rate considerably.

Cases 3 and 4 are interesting to compare. The least efficient
machines in these two cases have equal efficiencies, so that the
limiting production rates as the storages increase are equal. However,
the other machines in these cases have different efficiencies: the
second machine in case 3 is more efficient than that in case 4.
Consequently, the first machine is more of a bottleneck in case 3 than
the first machine in case 4. Thus, the difference between E(0) and E ()
is larger in case 4.

On the other hand, for small storages, the two curves have approxi-
mately the same slopes. Thus, while in case 3, n(10)=0.28 and n(20)=0.50,
the effectiveness values for the same storage capacities in case 4 are
n(l10)=0.16 and n(20)=0.27. It is therefore more effective to use
relatively small buffers in case 3, although very large buffers gain
much more in case 4. Case 3 approaches the limiting value fastexr, and
thus falls into the third class described by Okamura and Yamashina.
Case 4, however, displays a marked concavity for a much broader range
of storage capacity, and belongs toc the second group of curves in their

classification. -
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p, = 0.001 p., = 0.001

Case 1:

Case 3:

‘ pl = 0.01 p2 = 0.01
Case 2:

Case 4:

Table 5.3. System parameters for two-machine lines.




-140-

.00 ~ Case number &

limiting values
<F(o)

1
osl

90} | *E(@)

@
O,
|

@
O

Line efficiency

< E(0)

75+

5 i t 1 ] { } i | 1 j
%35 10 20 30 40 50

Storage capacity N

Figure 5.6. Steady-state line efficiency for two-machine
transfer lineg.
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It follows that two numbers are of interest when deciding whether
or not to provide buffer storage between stages: while the difference
between E(0) and E(®) gives the total increase in production rate that
can be achieved by buffer storage, the effectiveness n(+) indicates
what fraction of this total increase is gained by a given storage
capacity.

The difference between E(0C) and E(®) depends on the efficiency in
isolation of each machine in the line, i.e. on the ratio of Py and r,-
The rate at which the efficiency versus storage size curve increases
(which determines n(-)) depends on the magnitudes of these
" probabilities. For example, if pi=ri=0.l, i=1,2, then equations (5.51)
and (5.53) yield that E(0)=0.33 and E(®)=0.50. If pi=ri=0.00l, i=1,2,
E(0) and E(®) have the same values. Thus, the line efficiency can be
increased from 0.33 to at amost 0.50 by the addition of buffers in
both cases. Yet, in the former case, a storage of capacity N=4 yields a
production rate equal to E(4)=0.35938, corresponding to an effectiveness
of n(4)=0.15630; in the latter, the production rate for the same storage
capacity is E(4)=0.33361, corresponding to an effectivenesé of only
n{4)=0.00168. This is not difficult to explain intuitively: little
decoupling can be exercised on the machines in a line by adding a buffer
storage if the machines fail extremely rarely, and when they fail, take
very long to be repaired. In such cases, relatively small capacity
storages empty or f£ill up in a length of time which is small compared
to the total up or down times; their influence on production rate is
therefore negligible. If machines fail often and are repaired easily,

a small capacity storage may improve production rate significantly. On

the other hand, very large storages may improve efficiency significantly

in the former case, since they take longer to empty or fill up. Thus, there
is a certain relationship between the magnitudes of fransition
probabilities and storage capacity. This relation is the basis cf the
S-transformation outlined in section 6.3.

Results have been obtained for a three-machine line by the methods
of section 4.2. Some of these appear in figures 5.7-5.9, where the line

efficiency is plotted against the capacity of one of the storages,
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while the other is varied as a Parameter. System parameters are given
in table 5.4.

In case 1 (figure 5.7), the last machine is most efficient, so that
workpieces produced by the second machine are most often instantly
processed by the third machine. Thus, the second storage is often
nearly empty, and little is gained by providing it with a large
capacity. On the other hand, the efficiency in isolation of the first
machine is close to that of the downstream segment of the line (i.e.
the portion of the line downstream of it, consisting of machine 2,
storage 2, and machine 3). Thus, it is not profitable to provide
storage space between machines 2 and 3, though it is useful to provide
a buffer between machines 1 and 2.

In case 2 (figure 5.8), the first machine is most efficient. Thus,
the first storage is often nearly full, and the downstream segment of
the line operates most of the time as if in isolation. On the other
hand, the efficiency of the third machine is close to that of the
upstream segment of the line (machines 1 and 2, storage 1). Thus, little
is gained by providing the first storage with a large capacity,
although it is useful to have a large storage between machines 2 and 3.

In case 3 (figure 5.9), all machines have equal efficiencies in
isolation, and the effects of added storage capacity are most clearly
visible in this case. Furthermore, it is observed that the production
rate is symmetrical with respect to the orientation of the system.
Since all machines are identical, for example E(2,5) = E(5,2), etc.

These examples indicate once again that storages act best as
buffers to temporary fluctuations in the system. If the efficiencies
of machines are very different, storages do not improve production
rate; if the line is well balanced, the temporary breakdowns are to

a certain extent compensated for by buffer storages.
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~ Case 1:

Case 2:

Case 3:

]

0.1

Table 5.4. System parameters

for three-machine lines.
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Figure 5.7. Steady-state line efficiency for a three-machine
transfer line with a very efficient third machine.
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Figure 5.8. Steady-state line efficiency for a three-machine
transfer line with a very efficient first machine.
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Figure 5.9. Steady-state line efficiency for a three-machine
transfer line with identical machines.
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5.2 Forced-Down Times, Storage Size, and Efficiency

It is suggested in section 5.1.1 that the rates of flow of
workpieces through each machine in a k-machine line are equal at steady-
state; this is proved for k=2. In lines with finite storages, the
utilization of the machines is always lower than their efficiencies in
isolation, since they are occasionally blocked or starved. As storage
capacities are increased, the utilizations asymptotically approach the
efficiency in isolation of the least efficient machine. This is proved
by induction in section 5.1.1. An alternate proof is given ;n this
section, by showing that the forced-down times of the least efficient
machine go to zero as storage capacity is increased.

Often, reliability involves increased cost. Thus, it may be
undesirable to design and build highly efficient components if they
are required to operate within lines involving significantly less
efficient components. Since a good measure of how efficient a given
component is with respect to the rest of the line is its forced-down
times, or alternately the steady-state probabilities that it is idle
or blocked, it is necessary to study the relationship between this
probability, the efficiency, and storage size.

The two-machine case is discussed here. Similar results may be

1.

=

obtained for longer lines as we

Although increasing the efficiency of an individual machine has the
overall effect of increasing the production rate of the transfer line,
this effect is far from simple to calculate. The utilization of the
improved machine (and hence, the production rate of the transfer line)
does not increase linearly with the efficiency of an individual machine.
As is shown below, the effects of system bottlenecks are significant.
Since a transfer line may contain less efficient stages, and the line
production rate cannot possibly exceed the efficiency of its worst stage,
it would appear that the utilization of an individual machine should

approach an asymptote as its efficiency is increased.
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In addition, it is shown in section 5.1.3 that buffer storages
contribute most to the system production rate when the machines are
not extremely efficient and no machine is significantly less efficient
than the others (i.e. the line is balanced). Such observations are
important when designing machines and transfer lines, in that they
may provide guidance in decisions involving reliability, storage capacity,
and cost tradeoffs. A specific example is analyzed here, and some
conclusions are drawn on the effect of buffers and machine efficiencies
on each other and on the production rate of the transfer line.

The parameters considered in the numerical example appear in
table 5.5. The first machine is not altered, while the efficiency of the
second machine is increased (here, this is done by decreasing the
failure probability while keeping the repair probability constant).
The performance measures sought are machine utilization and forced-
down times (alternately, the probabilities of being starved or blocked).

In case 1, the efficiency in isolation of the second machine is very
low (e2=0.15). The efficiency of machine 2 is increased, past that of
the first machine (when el=e2=0.50 in case 3) up to e2=0.85 in case 5.
Thus, the system bottleneck is machine 2 in cases 1 and 2, and machine 1
in cases 4 and 5. This is well illustrated by the graphs of line
efficiency and probability of blocking and starving appearing in figures
5.10-5.13. |

The line efficiency is plotted against storage capacity for each of
the five cases in figure 5.10. In cases 3-5, the value of E(») is the
same, since the least efficient machine is the first one (and it is not
altered). In cases 1-2, on the other hand, the least efficient machine
is the second one. Thus, E(®) changes as e2 is varied. This effect is
clearly seen in figure 5.11, where the line efficiency is plotted

against the efficiency in isolation of the second machine, e for

2'
various values of storage capacity. The production rate increases with

e. until e_ ~ e after which the first machine acts as a bottleneck

2 2 1’
and the production rate approaches an asymptote. Thus, beyond a certain
point, increasing the efficiency of the second machine becomes less and

less effective. This result agrees with those for the flow through
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All cases: pl = 0.1 rl = 0.1
Case 1: 12 = 0.567 r, = 0.1-
Case 2: p2 = 0.2 r2 = 0.1
Case 3: p2 = 0.1 r2 = 0.1
Case 4: p2 = 0.05 r2 = 0.1
Case 5: p2 = 0.018 r2 = 0.1

Table 5.5. System parameters for two-machine lines.
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networks of gueues conducted by Kimemia and Gershwin[1978]. It is
found that in general, when a given attribute is limiting, the flow
through the network increases linearly with that attribute; as the
attribute increases, it is no longer limiting and some other attribute
is. Thus, the flow rate reaches an asymptote.

It is noteworthy that for a certain range of e , it appears

2’
that providing small amounts of storage can improve the production
rate as much as increasing e, for example, e2=0.67 and no storage

gives approximately the same efficiency as e_=0.6 and N=4, or

e2=0.5 and N=10. -This is significant, becausz improving the efficiency
of a machine may involve a great deal of research and capital
investment or labor costs, and may thus be more expensive than
providing a small amount of buffer capacity. It is especially

important that this effect is strongest when the machines have
approximately the same efficiency, i.e. when the line is balanced.
Since this is most often the case in industry (although deliberately
unbalancing a line may at times be profitable - see Rao[1975bl, Hillier
and Boling[1966]), the fact that increasing buffer caﬁacity is most
effective when the line is balanced is of great importance.

Figures 5.12 and 5.13 are also revealing, in that they show the
'dependence of forced-down times on the efficiency of the second machine
and the storage capacity. The probability that the first machine is
blocked (p[N,1,0]) is plotted against storage capacity in figure 5.12.
It is seen that this probability approaches a positive asymptote when
the second machine is least efficient, and hence the bottleneck. It
approaches zero when the first machine is least efficient, so that
as the storage capacity is allowed to increase without bound, the first
machine is fully utilized because it is the system bottleneck. This
result agrees with the findings of Secco-Suardo[1978] and Kimemia and
Gershwin[1978]: as the speed (and thus the production rate in isolation)
of a machine increases, the average size of the gqueue decreases.

Conversely, the probability that the second machine is starved
(p[0,0,1]) is plotted against storage capacity in figure 5.13, approaches

a positive asymptote when the first machine is limiting. When the second
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machine is the system bottleneck, this probability approaches zero
as storage increases.

This may be demonstrated analytically by using the two machine
state probability expressions derived in chapter 3. In the case where
the first machine is more efficient than the second, (pl/rl)<(p2/r2),

so that Y1<Y2 and X>1 (See equation (3.25)). Now from table 3.1,

r +r_-xrr_ - p.TY
p[0,0,1] = Cx —+—2 12 721 (5.57)
Pory

where C is chosen so that the probabilities sum up to one. Thus,

© -
lim -Cl? = Z X" (l+Yl) (l+Y2) + ... (5.58)
No> n=2

where this first term is sufficient to guarantee that C*0 as N°® (since

X>1 and all other terms are positive). Thus, for el>e2,

lim p{0,0,1] = O (5.59)
N~

On the other hand, in the case where the first machine is less

efficient than the second, (pl/rl)>(p2/r2), so that Y1>Y2 and thus,

X<1 (equation (3.25). From table 3.1,

+ - -
N1 Ty T Ey, T I E, T PiT,

p{NlllO] = C D.T
12

(5.60)

Since XN-1+O as N»x for X<1, it is sufficient to show that C does not

tend towards infinity as N is increased. Neglecting terms containing

XN--l (because X<1), the limit for 1/C is written as
[e o]
lim % = Z X" (1+Y ) (1Y) + X(I4Y,)) + .ee ¥
N n=2
+ - - + - -
N It N T - T i U Lory+x, -, -pry
Por Py Py ¥ Py T Py, T PyTy

(5.61)
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Since for X<1,

o0

X
2 ¢ - & (5.62)
n=0

equation (5.61) has a non-zero right hand side. Thus, C is bounded for
el<e2 and

lim p[N,1,0] = O (5.63)
N0

These proofs show once again, as stated in section 5.1.3, that at
least for the two-machine case, the infinite-buffer production rate is
such that the least efficient machine is never forced down. This
implies that it is equal to the efficiency in isolation of the least

efficient machine.
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5.3 In-Process Inventory and Storage Size

The cost of providing storage may increase linearly with its
capacity, in terms of floor space etc. However, the cost incurred by
maintaining in—p;ocess inventory is not linear with buffer capacity.
Calculating the expected number of workpieces in a storage or in the
entire production line therefore involves the use of state probabilities.

The expected inventory in storage i is given by

‘ 1
I, = °e :E: :E:'" :E: p[nl,..,nk_l,al,..,ak]'ni (5.70)

n,=0 n, =0 =0 & =0

Solving the buffer size optimization problem described in section 1.1
involves the cost of maintaining in-process inventory. This cost must
be calculated on the basis of the expected inventory, as given in
equation (5.70).

Two-machine and longer lines are reviewed here.

Okamura and Yamashina{l977] observe that for large enough buffer
capacities, an increase in the capacity does not necessarily imply an-
increase in the expected number of pieces in the storage. This is
illustrated by the results presented in figures 5.14 and 5.15. These are
for a two-machine line with state parameters as given in table 5.5.

In figure‘5.14, the expected number of pieces in the storage is
plotted against storage capacity. In cases 1 and 2, the first machine
is more efficient than the second, and the expected in-process inventory
is seen to increase with storage capacity. In case 2, the two machines
have equal efficiencies, and the expected inventory increases linearly
with storage capacity. In cases 4 and 5, the second machine is more
efficient than the first, and the expected inventory approaches an
asymptote. This is even more evident in figure 5.15, where the expected
in-process inventory as a fraction of the storage capacity is plotted

against storage size. These curves are seen to approach limiting values.
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Figure 5.14. Expected in-process inventory plotted against
storage capacity, for two-machine lines with
identical first machines.
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Figure 5.15. Expected in-process inventory as a fraction of
storage capacity plotted against storage capacity,
for two-machine lines with identical first
machines.
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That the expected inventory approaches an asymptote when the

second machine is more efficient than the first (e2>el) may be proved

analytically by using equation (5.70) and the results of chapter 3.
As in section 5.2, it is first noted that for el<e2, X<1 and C approaches
a limiting value as N> (See equations (5.61) and (5.62)). Furthermore,

for %<1,

lim X ~ (N-1]) = O (5.71)
N>
1im Xty = o (5.72)
N>

For the two-machine case, equation (5.70) may be explicitely written as
N-2
I = }E: cx” (147 ) (14Y,) n + CX + Cxv, +

=2

+ - -
cx F1 T Ty T TiFp T Pohy

= N-1
+ - - + - +
P, Py P, Plpz P2rl CX (N-1)

- - + - -
R S D s W S b s (§-1)
Py Pyt Py T PP, T PiY,
N~-lr +r_ -rr_ - op.Y
+ X S TS i TS b I (5.73)

Pi%s

From equations (5.71) and (5.72), it is seen that the last four terms

approach zero as N»©, Furthermore, since C approaches a constant as

N>, the second, third, and fourth terms also approach constants.

Thus, to prove that I approaches an asymptote as N, it is sufficient

to show that the first term approaches a limiting value. This is done as

follows:
N-2 N-2
D oax® = x .
n=2 n=2
N-2
d n
= X dX X




N-2 2 N-1
= x 2X 1 EN;].)X + X X > (5.74)
‘ (1 - x)
As N>, equation (5.74) reduces to
= n 2X2 X3
lim :E: n X = T -x ° > (5.75)
N> n=2 (1 - X)

Thus, I approaches an asymptote as N>%®.

An important consequence follows from this: In cases with el<e2,
added storage capacity is utilized less and less as the storage capacity
increases. This asymptotic behavior is similar to that exhibited by
production rate as a function of storage capacity (Section 5.1.3). As
N+, increasing the storage capacity becomes less useful and contributes
less to improving the system efficiency. How gquickly the line efficiency
approaches the limiting value is related to the speed with which Ii
approcaches the limit. However, it seems incorrect to say, as Okamura
and Yamashina[1977] do, that in general, curves of efficiency and
expected inventory against buffer size have the same shape. This should
be obvious from cases 1 through 3 in figure 5.14.

While in the two-machine case, the expected in-process inventory
depends on the relationship between the efficiencies in isolation of
the upstream and downstream machines, this is not so in longer lines. In
general, the expected inventory in storage i depends on the efficiencies
in isclation of the upstream segment of the line (machines 1 through i
and the storages between them) and the downstream segment of the line
(machines i+l through k, and the storages between them).

As a consequence, the expected inventory of storage i increases if
the capacity of an upstream storage is increased, since that has the
effect of increasing the efficiency ¢f the upstream segment of the line.
Similarly, the expected inventory in storace i decreases if the capacity
cf a downstream storage 1s increased, since that has the effect of

increasing the efficiency of the downstream segment of the line.
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This is illustrated by the results plotted in figures 5.16 and
5.17 for a three-machine line with parameters given in table 5.6. In
figure 5.16, the capacity of storage 2 is increased, and the expected
inventory as a fraction of storage capacity in storage 1 is seen to
decrease. Since the production rate of the downstream portion of the

line (machines 2 and 3, storage 2) approaches an asymptote as N_-%,

the expected inventory in storage 1 also approaches an asymptotz. In
figure 5.17, the capacity of storage 1 is increased, and the expected
inventory as a fraction of storage capacity in storage 2 is seen to
increase. Again, since the production rate of the upstream portion of
the line approaches an asymptote as N1+W, the expected inventory in
storage 2 also approaches an asymptote.

This has an important consequence: how effective a buffer is
generally depends on its utilization by the system. Thus, if a storage
is very often empty or full, it serves little purpose in the line
(Buzacott[1967a]). It follows that altering the capacities of upstream
or downstream storages affects the contribution of a given storage to
the production rate of the transfer line. It is necessary to consider
this interaction between storages while computing the optimal buffer

capacity allocation for a system.
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Expected in-process inventory(fraction of storage capacity)
in first storage
D
|

-164-

] ! ] 1 | J

Figure 5.16.

5 10 15 20 25 30
Second storage capacity, N,

Expected in-process inventory as a fraction of
storage capacity in the first storage plotted
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storage capacitv in the second storage plotted
against the capacity of the first storage, for
a three-machine line.




6. APPROXIMATE METHODS FOR SOLVING MULTISTAGE
LINE PROBLEMS

An important difficulty in calculating the production rates of
transfer lines with more than two machines and relatively large storages
is that the state space very rapidly reaches intractable dimensions. From
equation (2.22), the number of states for a k-machine line with storage

capacities Nl,..,N is given by

k-1

mo= 2+ .o+ D) (6.1)
1 k-1

Some examples of only moderately large problems are given in table 6.1.

- Considering the fact that certain processes, for example in the

automotive industry, may involve many tens of machines, it becomes

extremely difficult or even impossible to solve the problem exactly,

whether by the analytical methods derived in chapter 3, or by numerical

approaches outlined in chapter 4 (See Buzacott[1969]).

In such cases, approximate methods such as computer simulation are
often used. Simulations can often be expensive and inefficient, although
the particular details of specific systems can better be considered in
simulation than in analytical approaches. A simulation program that
corresponds exactly to the model dexcribed in chapter 2 is reviewed in
section 6.1. This program (See Appendix A.5) was used at various stages
of the research, both for gaining insight into the behavior of the system,
and for checking the validity of analytical and numerical results
obtained.

An aggregate method that lumps two-machine, one-storage segments of
longer transfer lines into almost egquivalent single machines is discussed
in section 6.2. Although the agreement with exact results is best when
the line is unbalanced (rarely the case in practice), the accuracy for
balanced lines may be satisfactory for many applications.

Based on the relationship between the magnitude of failure and repair
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o

k Nl Nz N3 m
2 : 10 - - 44
2 100 - - 404
3 ) 10 10 - 968
3 100 100 - 81,608
4 10 10 10 21,296
4 1100 100 100 16,484,816

Table 6.1. The number of system states in a k-machine
transfer line with buffer storage capacities

Nl, . ,Nk_l.
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probabilities and storage size described in section 5.1.3, the
§-transformation is introduced in section 6.3. This approximate approach
effectively lumps workpieces together, and reduces the capacity of the
storages. The dimensions of the state space are thereby reduced, while
the transformation leaves the line efficiency virtually unchanged.

An intuitive explanation of the transformation is given, followed by

some numerical examples. The transformation. is taken to its limit as

6+0 in section 9.2.
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6.1 Dynamic Simulation of the System

6.1.1 State Freguency Ratios

To test the hypothesis that the solution to a three-machine line
for internal states has a product form (rather than a sum-of-products
form - see chapter 3), the state frequencies w[+] obtained by simulation

were used to calculate the following ratios:

- 1
+n, ’ -
(.&)[n n 2,0Ll;0L2 a ] n (6.2)
M0 0,0 )
i w[n1 NGy ] |
- 1
+ ’ 7 -
w[nl,n2 N0, 4Q, 0 ] a 6.3)
wln,,n Q0 ] )
i 1707 %1859
w[nl,nz,l,az,a3] 6.0
m[nl,nz,o,az,a3]
w[nllnzlalllla3] (6.5)
w[nl,nz,al,o,a3}
m[nl;nzlal,azfl] (6.6)
u)[nl,nZ,OLl,OlZIO]

(where ni and ni+n are all internal).

If there were only one term in

equation (3.13), these estimates would be very close to the true values

for X, and Yj' for long enough simulation runs. X, and ?j were calculated

for all pairs of internal states, and their averages and variances were

computed. These values for the parameters in table 6.2 appear in table

6.3. The variances were seen to decrease but did not vanish.

that 2#1 in equation (3.13), i.e.

This suggests
that the internal state probabilities

have a sum of products, rather than a product form. Similar calculations

were subsequently performed on exact numerical results obtained by the

power method (Section 4.1).

The values obtained confirmed these findings.
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p, = 0.10 r, = 0.20

Nl = 10
p2 = 0.05 r2 = 0.20

N2 = 10
p3 = 0.05 r, = 0.15

Table 6.2. System parameters for dynamic simulation.
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Estimates of Parameters Averages Sample Variances
21 0.937 0.0084
22 0.974 0.0082
Yl 2.46 0.241
g, 3.24 0.426
?3 2.44 0.434

Table 6.3. Estimates of parameters computed by taking ratios

of state frequencies from simulation results.
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6.1.2 System Transients

In order to check the validity of approximate methods, as well as
to see how well steady-state results represent the behavior of the actual
system for finite-time runs, sample averages of production rate over
time intervals of various lengths were calculated. These are the ratios
of the number of pieces produced during a time interval to the interval
length. The cumulative average, i.e. the ratio of the total number of
pieces produced to the total time elapsed was also calculated. these
results are discussed in section 5.1.2. It is shown that while the
cumulative average approaches the steady-state value for long times, the
rate at which it approaches this value depends strongly on system
parameters.

It must be noted that the sample average production rates
calculated in this way are not uncorrelated: although intervals do not
overlap, they follow eachother immediately. More nearly independent sample
averages could be obtained by skipping alternate time intervals. v

Steady-state values may also be misleading when considering the
loading and unloading of the transfer line. Assumption 2.2.1 states that
parts are always available to the first machine and storage space is
always available to the last machine in the line. Thus, the line is
assumed never to be blocked or starved. In practice, however, it is often
the case that workpieces are delivered to and finished parts are removed
from the transfer line area in batches. Thus, in actual systems, there
usually are input and output queues, i.e. external buffers, upstream and
downstream of the line. It is therefore necessary to design these buffers
and schedule deliveries to and from the line in such a way that the
probabilityof starving or blocking the line is very nearly zero.

This may be done by obtaining the distribution of up times and

down times for the transfer line as a whole. The output distribution

determines the probabilities of producing exactly 1,2,...,n,.. pieces
consecutively, and of not producing pieces for exactly 1,2,..,n,.. time

cycles consecutively. The input distribution determines the probabilities

of taking in exactly 1,2,..,n,.. pieces consecutively, and of not taking
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pieces in for exactly 1,2,..,n,.. time cycles consecutively. It is
important to note that these distributions are not uniguely determined
by the steady-state line production rate. For example, a line which
produces an average of 1000 pieces consecutively and is down for an
average of 500 consecutive time c&cles has a steady-state efficiency of
0.667. A line which produces an average of 10 pieces consecutively and
is down for an average of 5 consecutive time cycles has the same steady-
state efficiency. Yet, in the former case, a very large external buffer
is needed to ensure that the line is almost never blocked; in the latter,
a much smaller buffer is sufficient. Furthermore, although the average
rates of flow through the first and last machines are equal (for finite
storages - see section 5.1.1), the input and output distributions are
generally not the same.

A method for obtaining these distributions analytically is
described in section 6.2. These distributions are used in an approximate

approach for finding the production rates of long transfer lines.
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6.2 An Aggregate Method for Obtaining the Production

Rate of Multistage Transfer Lines

6.2.1 Quasi-Geometric Input/Output Distributions of

a Two-Machine Line

Sevast'yanov[1962] describes an approximate procedﬁre for solving
problems involving multistage transfer lines where storage level is
modeled as a continuous variable. He bases his method on the observation
that as articles move in the downstream direction, there is an equal but
reverse flow of "anti-articles", or holes, in the upstream direction. It
may be noted that Gordon and Newell[1967b] independently introduce the
concept of duality on the basis of the same observation in their work on
closed cyclic gqueueing systems. Basing himself of Sevast'yanov's work,
Buzacott[1967b] describes a method for approximating a three-machine
line by a two-machine line: this can be done by dividing the line into
two stages, either at the first storage, or at the second one. Buzacott
states that this method can be applied if the two-stage line up-time
distribution is not far from geometric and the stage repair distributions
are identical.

In order to verify the applicability of the first of these conditions,
the simulation program was used as described in section 6.1.2. The program
was designed to record the numbers of times that in a run of given length,
a two-machine line produced parts for exactly 1,2,..,n,.. consecutive
cycles, as well as the numbers of times that it failed to produce parts
for exactly 1,2,..,n,.. consecutive cycles. These quantities are
normalized to give the frequencies of producing (or failing to produce)
parts for 1,2,..,n,.. consecutive cycles, given that it produced (or
failed to produce) for at least one cycle. Results are plotted in figures
6.1-6.3 for a given two-machine line (See table 6.4) and three different
storage capacities. The logarithms of the frequencies of producing
exactly n parts given that at least one part has been produced are plotted

against n, the number of parts produced. Since the down-times are not
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= 0. = .
pl 10 rl 0.20
= 0.05 = .
p2 0 r2 0.20
Case 1: N = 4
Case 2: N = 8
Case 3: N = 16

Table 6.4. System parameters for output
distributions of a two-machine

line.
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Up-time frequency distribution
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dependent on storage capacities in a two-machine line (down times depend
on the time it takes to repair the last machine or to render the storage
non-empty (i.e. to repair the first machine)), the down-time frequency
distribution is the same for all three cases and appears in figure 6.4.
The logarithms of the distributions are very close to straight
lines. The slopes of these lines depend on the storage capacity in a
way which will be discussed below. This implies that the fregquency
distributions are very close to geometric. Since finite time simulations
by their nature can not give exact steady-state results, it is necessary
to derive the probability distributions analogous to these frequency
distributions analytically. Output processes of single stages and
transfer lines have been studied by various authors (Burke({1956,1972],
¢inlar and Disney[1967], Chang[l1963], Wyner[1974], Aleksandrov[1968]).
These studies include stages with exponential service times, Poisson
arrivals, and overflow processes. However, the output of a two-stage line
with deterministic service times and a finite interstage buffer (as well
as an unlimited supply of workpieces upstream) has not been investigated.

The following events are defined:

QZn é Event that the system fails to produce a (6.7)
piece for exactly n time cycles.
74 2 Event that the system produces pieces for (6.8)
n exactly n time cycles.
5 A % .
@ = U gn
n=1 (6.9)
= Event that the system has failed to produce
a piece for at least one cycle.
o«
a & U wu,
=1 (6.10)
= Event that the system has produced at

least one piece.

-

Corresponding to the frequencies described in section €6.1.2, the following

conditional probabilities are now defined:

A U g )
p fn] & pla 1) ‘ (6.11)
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Py (n] PlD _|D] (6.12)

By equations (6.9) and (6.10),

@/nC 774 (6.13)

D C D ' (6.14)

As a result,

p[@/n,%] p{%n] (6.15)

P[@n:@] P[@n] (6.16)

Using equations (6.15) and (6.16) and Bayes' theorem, it follows from

(6.11) and (6.12) that ’

Pu[n] = p[ﬁ?/n] / plal (6.17)
pd{nl = p[@n] / plD] (6.18)

To compute the unconditional probabilities in equations (6.17) and (6.18),
the analytical expressions for the steady-state probabilities of a two-
machine line (See section 3.2.1) are used.

In order to produce exactly n pieces, the system must start out being
down, i.e. not producing parts. The system starts producing, remains up for
exactly n cycles, and then stops again. This happens either because the
last machine fails or because the storage empties. Similarly, in order to
fail to produce pieces for exactly n cycles, the system must start out
having produced at least one piece. It then stops producing, remains
down for exactly n cycles, and starts producing again. This happens either
because the last machine is repaired or because the storage becomes
non-empty.

The output process of a two-machine line is analyzed below. The state

transitions that result in the production. of a finished piece are studied,
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and it is shown that by modifying slightly theMarkov chain, it is
possible to subdivide all recurre t states into two classes. This
information is then used in computing the probabilities of equations
(6.17) and (6.18).

A simple two-machine line with storage capacity N=4 is used for
illustration. The state transition diagram of the system as described
in section 2.3 is given in figure 6.5 (only recurrent states are included).
The heavy lines represent those transitions during which a part is
produced by the system. It is seen that except for two states, all
states are reached by transitions of only one kind, i.e. either those
that result in the production of a part, or those that do not (See also
section 5.1.1). All states in which the last machine is operational
are reached through transitions that result in the production of a part,
with the exception of the transitions (0,0,1)>(0,0,1) and (0,0,1)>(1,1,1).
All other transitions to (0,0,1) and (1,1,1) result in the production of
a part.

It is possible to modify the Markov chain by splitting states, so
that the states are subdivided into two sets. These sets are defined as

follows:

O
it

{sls is reached by a transition that produces a part} (6.19)

@)
[l

{s!s is reached by a transition that
does not produce a piece}

(6.20)
In the discussion that follows, the system is referred to as being in an
up state at time t if s(t)te, where s(t) is the state of the system.
Conversely, the system is in a down state at time t if s(t)EQO.

As shown in figure 6.6, state (0,0,1) is split into states (0,0,1)'
and (0,0,1)". State (0,0,1)' is reached from (1,0,0), (1,0,1), and (1,1,1).

through transitions that always result in a part. Thus,

(0,0,1)' ¢ Ql (6.21)
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Figure 6.6. Splitting states (0,0,1) and (1,1,1).
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On the other hand, state (0,0,1)" is only reached from (0,0,1)' or from

itself, through transitions which do not result in parts, so that

(0,0,1)" € QO (6.22)
Physically, (0,0,1)' is the first occupancy of state (0,0,1). Since it
has no self-loops, it leads either to (0,0,1)" (all subsequent
occupancies of (0,0,1)) or to outside of state (0,0,1).

A similar argument is made for state (1,1,1), which is split
into two states, (1,1,1)' and (1,1,1)". Here again, (1,1,1)' is the
first occupancy of (1,1,1) coming from (0,0,1). Since it is necessary
for the storage to become nonempty before a part can be produced, no

pieces are produced when (1,1,1)' is reached. Thus,

(1,1,1)' € QO (6.23)

(1,1,1)" € Ql {6.24)
The states of the Markov chain are thus subdivided into two sets,
- as shown in equations (6.19) and (6.20). The steady-state probability
vector of the modified system is denoted by p. The transition matrix
of the modified system is denoted by T.
The steady-state transition eguations invelving the split states

are the following:

pl(0,0,0)'] = (l—rl)r2 pll,0,0] + (l-rl)(l—pz) p(1,0,1]
+ pl(l-pz) pl(1,1,1)') + pl(l-pz) pl(1,1,1)"]
. (6.25)
p[(0,0,1)"} = (I-r)) pl[(0,0,1)"] + (l-rl) p{{0,0,1)"] (6.26)
pl(1,1,1)'] = rl pl{(0,0,1)'] + r1 pl(0,0,1)"] (6.27)
pl(1,1,1)") = rl(l—pz) pil,0,11 + rr, pl1,0,0]

+ (l—p})(l-pz) p{(1,1,1)"'] + (l—pl)(l-pz) pl(1,1,1)"]
(6.28)
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The transition probabilities multiplying the state probabilities on the
right hand side of equations (6.25)-(6.28) comprise the rows corresponding
to the split states in 7.

These equations are simplified by noting that since states (0,0,1)
and (1,1,1) are split to give (0,0,1)', (0,0,1)", (1,1,1)', (1,1,1)",
it follows that

pl0,0,1] pl(0,0,1)'}] + pl[(0,0,1)"] (6.29)

pli,1,1]

pl(1,1,1)'] + pl(L,1,1)"] (6.30)
Furthermore, state (0,0,1) can only be reached through (0,0,1)' and can

only be left through (1,1,1)'; since these states have no self-loops

and (1,1,1)' can be reached from no other state, it follows that
p[(ololl)'] = p[(l'lrl)‘] (6.31)

This equation directly follows from (6.26) and (6.27). Once equation

(6.30) and the results of section 3.2.1 are used to solve (6.28) for

pl(0,0,1)'], the probabilities of all the other split states are
easily computed. The expressions for these state probabilities are given
in table 6.5.

Thus, the vector é is known, and may be used to obtain the output
up- and down-time distributions, as described below. For the sake of
illustration, only the up-time probability distribution is derived. The
down-time distribution is obtained analogously.

The vector g(n) is defined as the probability distribution given
that the system was running for a long time prior to t=0, was in a down
state at t=0, and has been in up states for t=1,..,n. At n=0, g(0) is
therefore the steady-state conditional probability vector given that the

system is in a down state:

A
qi(O) = _ (6.32)
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Table 6.5. Steady-state probabilities of split states

pl(0,0,1)"']

pl(0,0,1)"]

pl(1,1,1)"]

pl(1,1,1)"]

CX

CcX

CX

CX

+ - -
ro+x £ T, - P,
Py
- + - -
(1 rl) rl r rlr pzrl
T Py
rl + r2 - r1r2 - p2rl
Py
- - - - +
r) I, - T, - e,y (1 -p) (- py) +p,ry
Py ¥ Py T PPy T Py P,
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where i denotes the index of the state in the modified system and

o & Z P, : (6.33)

The matrix Q is defined to be a stochastic matrix of the same

dimensions as T. The elements of the matrix are given by

pls(t+l)=3|s(t)=i] / O, if jeQ
q.. & * 1 (6.34)
+ 0 if jeQ
0
where
o, & Z pls(t+l)=k|s(t)=i] (6.35)
* kefd
1
Then, the vector g(+) and the matrix Q are related by
g(n+l) = Q g(n) : (6.36)

The probability pl9/] is the probability of producing at least one
piece (i.e. that the system was in a down state at t=0, and in an up state

at t=1, regardless of the states s(t) for t>1). Thus, it is given by

pl#] = p[s(l)EQl[s(O)EQO] (6.37)
= Z p{s(l)=iis(0)e@o} (6.38)
ite

Defining the vector u such that

A 1
u, =

(6.39)
i

1 if 1eQ
0 if iefd

0

equation (6.38) is rewritten as
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pl@] = u T q(0)

(6.40)

In order to produce exactly one piece, the system must next enter

a down state:

P[qyl] = P[s(2)890,5(1)891,5(0)8901 (6.41)
Using Bayes' theorem, equation (6.41l) is rewritten as
ple,] = p{s(2)sﬂo|s(l)€§21,s(O)EQO}-p[s(l)eﬂl{s(O)eﬂO]-
p[s(o)eQO] (6.42)

The last factor in (6.42) is given by O in equation (6.33), and the

second by pl[9/] in equatims (6.37) and (6.40). The first factor is the

sum of the probabilities of down states at t=2. Defining the vector 4

such that

ne>

0 if i
{ i 1891

1 if iEQO

the first factor in (6.42) is given by
p[s(Z)EQols(l)Eﬂl,s(O)sﬂo] = 4 T g(1)

Thus, (6.42) becomes

P[@Vl] =

and from (6.17), it follows that

1]
fon)
3

K
&

I,
+3

L Q
Q
Q
~
[#]

p (1]

+3

(6.43)

(6.44)

(6.45)

(6.46)

(6.47)
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Equation (6.42) is generalized to obtain the probability of

producing exactly n pieces:

pla) = p[s(n-!-l)&:Qols(n)te,..,s(l)eﬂl,s(O)EQO]

. p[s(l)eszl}s(meszo] + PIs(0) €] (6.48)
Combining (6.48) with equations (6.17) and (6.37), it follows that
A% A%
p ]l = & Fgm-.u Tgm-D...u Tagl.o (6.49)

Note that g(0) is given by equation (6.32).

Equation (6.49) is used to cobtain the up-time distribution pu[n] of
the output of a two-machine transfer line. An analogous method may be
used to obtain the down-time distribution, pd[n].

Some numerical results for pu[n] for the system parameters in table
6.4 are given in table 6.6. The simulation values appear only for

comparison. The use of these distributions is discussed in section 6.2.2.
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- ‘ p, [n]

n analytical simulation
1 0.121909 0.121479
2 0.106641 0.105821
3 0.092271 0.092769

Table 6.6. Probability of producing exactly n pieces
given that the system has produced at least

one piece, for a two-machine line.
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6.2.2 Single Machine Eguivalence of Two-Machine Line

It follows from assumption 2.2.3 that a single machine has
geometric up- and down-time distributions. For a single machine, the

system state is given only by Q. Then,

pla=0] r(L@fPlp

pu[n] o[0=0] = (6.50)
= a-p™tp (6.51)
Pgnl p[a=;{a§1fl;r)n-l = (6.52)
= a0ty (6.53)
Taking the logarithm of these distributions gives
in pu[n] = (n-1) 1In(l-p) + 1n p (6.54)
1n pd[n] = (n-1) 1n(l-r) + In r (6.55)

These functions are linear in n. Thus, graphs of the logarithms of the up-
and down-time distributions against up and down times respectively are
straight lines with slopes 1n(l-p) and ln(l-r) respectively. It is shown
in section 6.2.1 that the corresponding graphs for two-machine transfer
lines are almost straight lines. The fact that they are not exactly
straight may be explained by the following arguments:

A single machine has no "memory". In other words, the past history
of the system does not affect its transition probabilities. In a two-
machine transfer line, the storage acts as a memory. For example, if
the last machine fails, the storage tends to fill up; if the machine is
later repaired but after some time the first machine breaks down, it
takes a longer period of time for the line to stop producing pieces

because the storage is full, due to the previous failure. On the other
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hand, if the first machine fails twice consecutively, the storage has
few parts in it and it takes a shorter time for the line to stop
producing pieces. Thus, the storage provides information on the past
history of the system, and this affects the up- and down- time
distributions.

The transfer line does not produce finished parts if the last
machine is down or if the last storage is empty (See section 5.1.1).

If the storage were never empty, the two machines would be effectively
decoupled, in the sense that.the output behavior of the line would
only depend on the status of the last machine. In that case, the
distributions would be exactly geometric and identical to those of the
second machine. Similarly, if the last mach%ne never failed, it would
have no effect on the output behavior of the system: since service
times are deterministic, it would merely introduce a delay of one
cycle, but would not affect the actual distributions of up and down
times. In that case, the distributions would be determined by the first
machine only, and would be exactly geometric.

Thus, the deviation of the distributions of a two-machine line
from exactly geometric are due to the coupling effects of the two
machines. These effects are insignificant when the machines have very
different efficiencies. From the discussion in section 5.2, it follows
that the probability that the storage is empty decreases as the first
machine is made more efficient. At the limit (el=l.0), the probability
that the storage is empty is zero. The up- and down-time distributions
are then only determined by the second machine and are exactly geometric.

Similarly, the probability that the second machine is down
decreases as the second machine is made more efficient. At the limit
(e2=l.0), this probability is zero. The up- and down-time distributicns
are then only determined by the first machine and are exactly geometric.

A similar argument can be made in the case where the efficiency in
isolation of one cf the machines approaches zero. As the efficiency of
one machine is decreased, the forced-down probability of the other

machine increases (See section 5.2). From assumption 2.2.3, machines cannot
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fail when forced down. Thus, the time a machine spends under repair
becomes insignificant compared to total time as the efficiency of the
other machine is decreased. Consequently, the up~ and down-time
distributions of the line approach fhose of the least efficient machine
as its efficiency approaches zero. |

In general, the up- and down-time distributions of a two-machine
line is closest to exactly geometric when one machine is strongly
limiting, i.e. when the line is not well balanced. In such cases, the
two-machine line may be approximately represented by a single machine.
The failure and repair probabilities of a single machine may be obtained
from the slopes of the graphs of the logarithms of up- and down-time

distributions, as seen in equations (6.54) and (6.55). Analogously, the

failure and repair probabilities of the single machine that is approximately
equivalent to a two-machine line are obtained from the slopes of the
straight lines which best fit the logarithm of the up- and down-time
distributions of the line. It is important to note that the two-machine
line and the approximately equivalent single machine must have equal
efficiencies. Thus, it may be necessary to adjust the p and r values
obtained from the slopes of the distributions in order to obtain the
efficiency of the two-machine line.

The use of this procedure in reducing long transfer lines to
approximately equivalent two-machine lines that can be solved by the

closed-form expressions given in chapter 3 is discussed in section 6.2.3.




-195-

6.2.3 Solution of a k-Machine Line by the
Aggregate Method

It is shown in section 6.2.2 that a two-machine line in isolation
may be approximately represented by a single machine. This suggests a
method for approximately computing the production rate of a k-machine
line by successively lumping together two-machine segments of the line.
This procedure is illustrated by figure 6.7.

If the limiting machine is the second one in the two-machine
segment, appending more machines downstream of it can only serve to
make its utilization even lower. In that case, the output distributions
are still close to geometric.

Often in practice, however, downstream machines are faster oxr
more efficient than upstream ones (See section 7.1.4). This is done
in order to reduce the probability of blocking upstream machines and to
avoid having to use large storages (See section 5.3). In that case, it
is possible to use input up- and down-time distributions, and start
lumping machines from the end of the line towards the beginning

For three-machine lines, the approximation is often accurate
within one or two percent. As stated before, it is worst when the line
is balanced, since the coupling effects of the machines in the line are
strongest then. When one machine strongly acts as a bottleneck, the

approximation is much better.




~196~

4,! ,
el
approximately
equivalent
Machine

Figure 6.7. Reduction of a three-machine line to
an approximately equivalent two-machine

line by the aggregate method.
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6.3 The &-Transformation

It is shown in section 5.1.3 that there is a relationship between
the magnitudes (i.e. not the ratios between them) of failure and repair

probabilities and the buffer capacities required to achieve a given

efficiency.

In the example given in section 5.1.3, two two-machine lines are
considered. These have pi=ri=0.l, i=1,2, and pi'=ri'=0.001, i=1,2,
respectively (The primes are only for clarity and are intended to serve
to differentiate the two lines. This also applies to E(+) and E'(+)).
Both lines are shown to have the same limiting efficiencies, E(0Q)=E' (0)=
0.333 and E(®)=E' (*)=0.500. Yet, in the former line, a buffer of capacity
4 gives an efficiency of E(4)=0.35938, while in the latter, the same
buffer capacity-yields only E'(4)=0.33361. Further investigation reveals
that E' (400)=0.36834, a value which is close to E(4). It is seen that
going from the former to the latter line, the failure and repair
probabilities are multiplied by 10-2 while the storage capacity is
divided by the same number. The resulting efficiencies are close to
eachother. The following proposition is now introduced: °

Proposition 6.1. The 8-transformation: letting

p, = p; ) (6.56)

r. = r, 6 (6.57)
1 1

N = N/3§ (6.58)

For a wide range of §, the efficiency of the original system and that
of the transformed system are nearly equal.

It is observed that the transformed system with the parameters on
the left hand side of equations (6.56)-(6.58) is identical with the
original system with the parameters on the right hand side of these
equations, except that the time cvcles are no& of length 3. Thus, the

fact that the transformation leaves the line efficiency almost
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unchanged can be explained intuitively by the argument illustrated by
figure 6.8. '

At the top of the diagram, a workpiece is shaved by the tool in a
machine. The cycle length is 1, and the probability that a machine fails
or is repaired within a time cycle are p, and ri. The storage size is N;
thus, when full, it takes N cycles to empty. At the center of the
diagram, the workpiece is sliced into 1/6 identical parts. However,
the slices are held together 1/6 at a time. Thus, the sliced parts
are treated exactly as unsliced, i.e. slicing has no consequence. The
probability that the machine fails or is repaired within the time it
takes to process any slice are pié and riG, respectively. Since the
slices are held together, if a machine fails while processing any slice

within a set, the entire set is moved back into the upstream storage

and must be reprocessed (This is a mathematical abstraction; in a real
system, a machined piece need not be machined again). In the third

case, the slices are allowed to go through the system independently.

The probabilities of failure and repair during each cycle are pi5 and riG,
respectively. Because the slices are independent of eachother, if a
machine fails while processing a slice, only that part is moved back

into the upstream storage. Thus, there is no loss of time due to

reprocessing.

A numerical example is illustrated by figure 6.9. The system is a
two-machine line with parameters given by table 6.7. The value of § is
varied from 1.0 to 0.0l. The efficiency of the original system (8=1.0) is
E(4)=0.65764; that of the transformed system (8§=0.01) is E' (400)=0.66892.
As § is changed from 1.0 to 0.01, the line efficiency remains within 0.011.
The line efficiency is plotted against § in figure 6.9. It is noted that
as &0, the curve in figure 6.9 approaches a straight line. This line
can be used to make the O-transformation even more accurate.

It must be noted that E(0) and E(=) are unchanged by the transformation,
since they only depend on the ratios between P; and .o not on their
magnitudes (See section 5.1.3). The difference between E(0) and E(®) is
shown in section 5.1.3 to determine how much can be gained by providing

the system with storage capacity. This difference is also an indicator of
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Figure 6.8. Intuitive explanation of the &-transformation.
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Table 6.7. System parameters for S&-transformation.




-201-

*(0L9° 03 GG9° 3nodge woxy so0b ATuo afeds

TeOT3I8A 9Yy3 eyl 930N) *SUTT SUTYORW-OM] ®© J0F ¢ Isurebe AousaTdTIjd "6°9 2inbrg

099

G99’

049




-202-

how accurate an approximation is obtained by the &-transformation.

Some numerical results appear in table 6.8. In case 1, machine is much
less efficient than machine 1. Thus, the difference between the
limiting efficiencies is E(®)-E(0)=0.00219; the line efficiency stays
constant through the transformation to within 10_5 in this case.

In case 2, neither machine is extremely limiting, and E(®)-E(0)=0.12122.
The line efficiency stays constant only to within 10_2 in this case.

In both cases, however, the approximation is good enough to be useful
in many engineering applications.

The major consequence of the §-transformation technique is that
systems with large storages can be reduced to approximately equivalent
systems with smaller storages. The transformation is thus equivalent
to lumping workpieces together, thereby reducing the capacities of the
storages. Smaller storages mean reduced state space dimensions, and
this significantly decreases the computational burden. This is
illustrated by figure 6.10. The solid curve is the efficiency versus
storage capacity graph for a small system, i.e. a system whose
efficiency rises sharply with small storage capacities. The dotted
curve is the approximate efficiency of the original system, which
has much larger storages and whose efficiency rises more smoothly
with storage size. Since the efficiency of the smaller system at
any storage capacity N is approximately equal to that of the larger
system at storage capacity N/§, where § is the ratio of the failure and
repair rates of the two systems, the efficiency of the large system
may be approximated by that of the smaller system with considerable
savings in coméutation.

As pointéd out in section 4.1, the S-transformation method is also
useful in estimating the state probabilities of a system with large
storages by solving the problem for a system with smaller storages. This
is related to the order of magnitude considerations mentioned in section
4.1 (See also Gershwin and Schick[1978]1). To illustrate this argument, the
two-machine line probability expressions given in chapter 3 are analyzed.

The orders of magnitude of Xi and Yj in eguation (3.25) are related

to the ratios between p, and r. and the relative efficiencies in isolation
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P, r, P, r, N $ E(N) Case
.100 . 700 .700 .100 4 1 0.12499
.020 .140 .140 .020 20 .2 0.12498 1
.004 .028 . 028 .004 100 .04 0.12498
.001 . 007 .007 .001 400 .01 0.12498
.100 .200 . 050 .150 4 1 0.57515
. 020 . 040 .010 .030 20 .2 0.58475
. 004 .008 .002 . 006 100 .04 0.58629 2
.001 . 002 .0005 .0015 400 .01 0.58663

Table 6.8. System parameters and line efficiencies for

various values of §.
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of the two machines. It can be shown that these orders of magnitude are
not affected by the S-transformation (See section 9.2). The numbers of
states for a two-machine system is linear with storage capacity (See
equation (2.22)). Thus, if the orders of magnitude of £[+] in equation
(3.33) do not change for most states, the value of the normalizing
constant C can be expected to change inversely with the number of
states, and thus, with storage size. On the other hand, some of the
boundary probabilities have different orders of magnitude from that of
internal states. These are p[0,0,1}, pl1l,1,1), p[N-1,1,1], and p[N,1,0].
It is seen in table 3.1 that the orders of magnitude of the former two
probabilities have a ratio of l/p2 with the order of magnitude of
internal probabilities; the orders of magnitude of the latter two
probabilities have a ratio of 1/pl with that of the internal probabilities.
From equations (6.56) and (6.57), it follows that these ratios should
change when the system undergoes a §-transformation. This change is
inversely proportiocnal to Ei' and therefore to §. On the other hand, C
is. inversely proportional to N and therefore proportional toc &§. Thus,
the two effects cancel eachother out in these boundary state probabilities.
In consequence, it can be expected that the four boundaxy state
probabilities given above are approximately unchanged by the transformation,
while all other probabilities change proporticnally to S. The numerical
example given in table 6.9 confirms this proposition. The order of
magnitude considerations are discussed with respect to the three machine
case in Gershwin and Schick[1978].

The major limitation on the S-transformation applies to the range'

of 8. Since éi and Ei are probabilities, it is necessary that

Lr. £ 1 (6.59)
1 1

Lio X |

0 <&

Given pi and ri, only a limited range of § satisfies (6.59). Furthermore,
it is necessary that ﬁ, the storage capacity of the transformed system,
be an integer. Egquation (6.58) implies that not all & satisfy this

condition. Conseguently, it may not always be possible to reduce a system
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Case 1: 8=0.5 Case 2: 6=1.0
p;=0.001  r =0.002 p,=0.002  r =0.004
P,=0.0005 r,=0.002 p,=0.001  r, =0.004

N = 400 N = 200

P[0,0,1] = 0.234439 0.234543
pll,1,1] = 0.312898 0.313351
pl399,1,1] = 0.108616 p[199,1,1] = 0.108966
p[400,1,0] = 0.081327 p[200,1,0] = 0.081452

-4 -4
pl100,0,0] = 0.535855%10 0.980038%10
p[100,0,1] = 0.142823x10"° 0.261082x10"°
p[100,1,0] = 0.142954x10"°> 0.261562x10" >
p[100,1,1] = 0.381021X10 > 0.696800x10™ >
Table 6.9. System parameters and some boundary and internal state

probabilities for &-transformation (Note that the ratio
between the left hand side and right hand side sets of
probabilities is 1 in the upper (boundary) sets and §

in the lower (internal) sets).
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with large storage capacities to a smaller problem which is efficiently
solvable. This is especially true if the system with large storage has a
large failure or repair probability or if, in case there is more than
one storage, the storage capacities differ widely. Work should be
directed towards investigating whether or not it is possible to extend
the transformation so that it may be applied to diffefent segments of a
transfer line with different values of §. This approach would also be
useful in analyzing systems where parts are cut or assembled by stages
in the line so that each machine does not process the same average
number of parts (See section 7.1.1).

The limit of this transformation as 6>0 is a continuous system.
It is shown in chapter 9 that the limiting system can be analyzed by
differential equations in the two-machine case (the three-machine or
general k-machine cases are not yet solved). This renders the analysis

of the system considerably simpler.




7. AN APPLICATION OF THE MODEL: A PAPER FINISHING LINE

Although an effort was made to conform as much as possible to
actual systems by choosing the modeling assumptions realistically, the
transfer line model presented here remains an idealized abstraction, a
mathematical tool. The following three chapters are concerned with
applications of the model, discussions of its limitations and
shortcomings, and investigations of possible changes and extensions to
adapt the model to real situations.

One existing system that may lend itself to the transfer line model
is a roll products paper finishing line: here, paper from large rolls is
winded into cylinders of smaller diameter, which are then cut into user-
size rolls. These are then packaged, several rxolls at a time. The system
can be thought of as a three-machine, two-storage transfer line.

Yet, it is shown in section 7.1 that the system does not satisfy
many of the modeling assumptions described in section 2.2. The paper
finishing line is used in the present chapter to illustrate possible
discrepencies between actual systems and the transfer line model and to
discuss ways of relaxing the assumptions that do not hold. Attempts at
modeling the system and a discussion of the models are presented in

section 7.2.

~-208-
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7.1 The Paper Finishing Line

Tﬁe paper finishing line considered here consists of three stages
separated by two storage elements. These components are the following:
(i) The Continuous Winder
(ii) The First-in-last-out Buffer Storage
(iii) The Log Saw
(iv) The Conveyor Belt
{(v) The Wrapper

The system is sketched in figure 7.1. These components differ from
the idealized machines and storages in the transfer line model in a
number of ways. In some instances, the effects of these differences may
be negligible; in some, major model changes may be necessary to account for
these discrepencies. Still others may necessitate an altogether different
approach.

The main discrepencies between the model and the actual system, as

well as possible approximations, are briefly discussed in sections

7.1.1 to 7.1.6.
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7.1.1 The Workpieces

The continuous winder takes in a large roll of paper, known as a
parent roll, which is approximately 10 ft. in diameter and 10 ft. long.
It winds up the paper onto cardboard cores of the same length. Each of
these cores takes the length of paper that makes the output of the
continuous winder to have the diameter of commercially available rolls.
These are termed logs. The log saw takes in these logs two at a time,
and saws them each into about twenty short cylinders, the size of
user rolls. Because the log saw takes in two logs at a time, the buffer
storage between the first two stages stores the logs two at a time.

Its cagacity is typically about sixty pairs of logs. After coming out
of the log saw, the rolls travel on two conveyor belts until they
reach the wrapper. The conveyor belts each have a capacity of about
forty rolls. The final stage wraps the rolls in packages of two or
four.

The simple one-piece-in, one-piece-out machine model introduced
in section 2.1.1 is thus not applicable to this considerably more
complex system. One possible approximation is to take the smallest
unit (the roll or pair of rolls) as the workpiece in the transfer line
model. Everything else is then computed in terms of this smallest unit.
Thus, the continuous winder, for example, processes twenty rolls, rather
than a log; the log saw processes forty rolls, rather than two logs; and
the wrapper processes two or four rolls, rather than a package. A variant
of the d-transformation technigues (Section 6.3) may be used to adapt this
system to the transfer line model. The duration of a cycle in which the
log saw processes two logs 1s equal to that of forty cycles in which
machine 2 processes a unit workpiece. Thus, the probability of failure or
repair during a single roll cycle is equal to 1/40 of the respective
probabilities during a single actual machining cycle in which the log saw
processes two logs. This analysis can be extended to the other stages of

the system as well. :
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It is important to note that this is only an approximation. As
pointed out in section 6.3, therg is an effective change in the
flexibility of the system when the §-transformation is applied. This
is due to the fact that when a failure occurs, there is a loss of
time in the lumped-workpieces case that does not take place in the
case where pieces travel singly through the system. Thus, the
efficiency of the transformed system is not exactly the same as that

of the original system.
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7.1.2 Input to the Line and System Transients

The input to the first stage (the continuous winder) is a large roll
of paper (the parent roll) which takes about one hour to unwind.

The fact that the input to the transfer line is thus in some sense
continuous dows not matter, since the machine uses up discrete segments
of the paper. However, the assumption that workpieces are always present
at the first stage (Section 2.2.1) is not always satisfied: the continuous
winder is starved when the parent roll is being loaded.

Since Markov processes are, by definition, memoryless (Section 2.3.1),
it is not possible to take scheduled down times and other deterministic
events into consideration with the present model. However, if the lengths
of time required to load and unwind a parent roll can deviate signifi-
cantly from the mean value, it may be possible to model this phenomenon

¢ as a stochastic event, by lumping it together with other causes of
failure and repair times. The time to unwind a parent roll may be-
assumed to be random if rolls do not contain the same length of paper
or if this length is variable because of defects in the paper. Since
loading a roll requires human intervention, the time needed to load a
new roll may be assumed to be random if workmen are not always available

at the transfer line. In t%is case, termination of the paper on a parent
roll and loading a new roil can be modeled as random events and be
included in the calculation of the failure and repair probabilities
of the continuous winder along with other causes cf breakdown.

A consequence of the parent roll loading time is that the storages
often empty while the rcll is being loaded, so that the line is

restarted every time. This introduces important transients which Gordon-

Clark[1977] estimates can significantly influence the production rate of

the system for as long as about a third oI the total time the roll takes
to unwind.
This is a more important difficulty than the fact that the continuocus

winder i1s occasionally starved. If no real transients were introduced by
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the loading, it would have been possible to compute the actual production
rate of the line from knowledge of the ideal production rate (i.e.,
assumption 2.3.1 satisfied) and the average loading time of a parent
roll. However, the duration of loading time is such that the line is
restarted with empty storages every time the roll ends. Thus, the
probabilistic model of the line never achieves steady-state. As
suggested in section 5.1.2, transients may have a very important effect
on the efficiency of the transfer line. When the steady-state assumption
(Section 2.2.6) does not hold, the production rate computed by the
methods outlined here may not be representative of the actual behavior
of the system.

It is possible to deal with system transients through Markov
techniques, and in particular, by means of the iterative multiplication
method (Section 4.1). Since the initial condition is known (at t=0,
s(0)=(0,0,1,1,1)), the initial probability vector p(0) could be defined
to have a l-entry corresponding to that initial state. The transition
matrix can then be iteratively multiplied and the probability of
producing a part at each time cycle (i.e. at each multiplication) be
computed by summing up the probabilities of the appropriate states

(Section 5.1.1). Considefing the fact that a cycle has a very short

duration in this system, however, the iteration would have to be performed
a very large number of times and it is therefore doubtful that this
approach would be an efficienct way of cofputing the transient production

rate.
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7.1.3 Rejects and Loss of Defective Pieces

When the continuous winder is turned on, it takes a certain length
of time to reach the operating speed; a number of logs manufactured
during the period of acceleration are defective and must be discarded.
Similarly, the log saw may be preprogrammed to reject the rolls at
certain positions in the logs because the parent roll may be known to
be partly defective.

Both of these events have deterministié results: given the rate of
failure of the continuous winder, it is possible to estimate the
percentage of production lost in the acceleration period. Similarly,
since the log saw is preprogrammed to reject a given quantity of rolls,
this loss too is predictable. However, these events have an effect on the
behavior of the system because they affect the probabilities of storages
emptying out and starving downstream machines. Thus, the loss in
production is more than the mere fraction of rejects out of the total.

The assumption that parts are not rejected or destroyed at any
point in the system (Section 2.2.4) is thus not satisfied. As a result,
the expected flow rates through all the machines are not equal. This
may or may not be neglected, depending on the percentage of rejects in
the total production.

The difficulty may be overcome by extending the model. Non-predictable
rejections (e.g. at an inspection station) may be taken into account by
defining new transitions with positive probabilities, in which storage
levels go down (or fail to rise) even though the appropriate machines
are up and processing workpieces. Predictable losses (e.g. the logs
lost while the continuous winder is accelerating) may be accounted for
by computing the average down-times of machines so as to include the
times when parts are processed but rejected, or by defining new system
states (e.g. acceleration states).

Some of the methods developed in this study may be extended to

obtain the performance results of such a model.




-216-

7.1.4 Machining Times

In order to reduce the probability of filling up storages and
blocking the machines, particularly as large storages can be expensive,
the relative speeds of the machines are designed to increase in the
downstream direction. Thus, the relative speed of machine i+l is
greater than that of machine i. This violates assumption 2.2.2, which
states that all machines run at equal rates.

It is sometimes possible to approximately compensate for this by
adjusting the failure probabilities so that the value of the efficiency
of machine i in the model is equal to the value of the production rate
of the actual machine in the system. This is done as follows: the
production rate in isolation of a machine which operates at the
deterministic speed of Ci and has failure and repair probabilities
pi and ri is given by

Production rate = ¢, £y (7.1)

r. + p.
i pl

This is the product of the speed of the machine and its efficiency
in isolation (See section 5.1.1). For a certain range of Ci' it may
be possible to readjust the failure probabilities p, so that a common

time basis is taken: the slower machines appear to operate at the

same speed as. faster machines, but they are less efficient.

It is important to note that this approach does not give exact
results. The production rate of a line with given storages depends
not only on the efficiencies of individual machines, but also on the
magnitudes of pi and r, (See section 5.1.3). Thus, adjusting these
probabilities while keeping the production rates in isolation of
individual machines constant may introduce significant errors.

The fact that machining times are not only different, but also can

be adjustable, gives rise to an optimal control problem which will only

be touched upon here: the problem of controlling storage levels.

The continuous winder is sometimes operated below its maximum
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speed for two reasons (Gordon-Clark([1977]): the limitation imposed upon
it by the speed of the next downstream machine (the log saw), and the
assumption that higher speed céqses a higher failure rate, which is
undesirable since the continuous winder is difficult to restart. Tests
have indicated, however, that in some cases the continuous winder can
be operated at 20% faster than its present speed (though the failure
rate is likely to increase). Furthermore, it has been acertained that
the continuous winder can also be operated as slowly as 25% of its
present speed.

In addition, .it is known that the crucial part of the line is the
first storage and its adjacent machines, since the wrapper fails
considerably less often (See sections 5.1.3, 5.2). Thus, controlling
the speed of the continuous winder could significantly improve the
production rate of the system.

Such real time control raises a number of interesting questions.
These include:

(i) When the log saw {(or the wrapper) is down and/or the level of

the storage is high, would decreasing the speed of the continuous
winder be profitable? Buzacott{[1969] states that it can be shown by
using linear programming that the optimal policy for operating machines
is never to slow them down. However, restarting a forced down
continuous winder requires operator action and can result in the loss
of several defective logs. Thus, it may be profitable to slow the
continuous winder down so as to decrease the probability that it gets
blocked. 1f so, what storage level should be considered high? How

must all speeds of the continuous winder be computed to give optimal
vield?

(ii) When the parent roll is close to exhausted, would increasing the
speed of the continuous winder in order to fill up the storage improve
the system production rate? This increase would result in providing the
log saw with workpieces to process at least during part of the time in
which a new parent roll is loaded. Considering that higher speed is
likely to mean a higher failure rate, how much faster should it run? If

a failure does occur, when is it more profitable to discard the almost
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empty parent roll and load a new one?
(iii) While the system operates normally, is it profitable to control
the speed of the continuous winder in order to maintain a certain optimal
minimum level in the storage? (From Buzacott[1969], decreasing the speed
in order to maintain a maximum level is known not to be profitable).
(iv) As stated in section 7.1.3, some logs manufactured while the
continuous winder accelerates or decelerates can be defective and are
discarded. How is this effect to be taken into account in controlling
the speed of the continuous winder?

More could of course be said about this important problem, which
may carry over to other systems as well. This question is beyond the
scope of the present work, but is clearly of importance and constitutes

a possible direction for future research.
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7.1.5 The Conveyor Belt

The log saw and the wrapper are connected by a two-channel conveyor
belt with a capacity of about forty rolls each.

It is common in the literature to encounter conveyor belts being
referred to simply as in-process storage facilities (e.g. Richman and
Elmaghraby([1957]). However, these differ from the idealized storage
element considered here, in which a workpiece is available to the
downstream machine as soon as it enters the storage, because of the
delay involved in the transportation of pieces between stages. Pritsker
[1966] observes that a power driven conveyor often corresponds to a
no-storage line: in such a system, the parts are moved along with the
belt at a speed equal to the production rates of the upstream and
downstream machines. Thus, if a downstream machine fails, the conveyor
must be halted. On the other hand, ?ritsker states that a non-powered
conveyor is identical with the limited storage case. It is suggested
below that this is not necessarily true.

It is stated in section 2.2.5 that there is a delay of one cycle
between the time a workpiece is completed at stage i and the time its
processing starts at stage i+l (assuming that the stages are operational
and not forced down). A cohveyor in which a piece leaving machine i
moves fast enough that it reaches machine i+l in at most one cycle may
be considered equivalent to the idealized storage described in section
2.1. If parts move at a slower speed on the conveyor, a different
approach may be necessary to account for the time lost in transportation.
In either case, a conveyor can be thought of as a storage element only
if parts are allowed to accumulate on it, i.e. when the conveyor is not
required to stop if a part reaches a machine which is not ready to take
it in.

Convevor belts have been analytically studied by Kwo[1958] and others,
and numerous researchers have used simulation technigues in their work

(e.g. Kay[1972], Barten[1962]).
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In the case of the conveyor belt in the paper finishing line, it
may be possible to model the conveyor belt as a series of perfectly
reliable machines with limited storage between them. The number of
stages is determined by the time (the number of cycles) needed for a
part to travel from the log saw to the wrapper. However, this
approach has the effect of increasing the number of machines in the

model, thereby increasing its complexity.
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7.1.6 The Failure and Repair Model

Assumption 2.2.3 implies that a forced-down machine is able to
resume production as soon as the upstream storage ceases to be empty
or the downstream storage ceases to be full. In accordance with this
aésumption, the state of a forced down machine is denoted by ai=l,
indicating that it is in good repair.

It is often the case in industrial systems that the upstream
machine is automatically shut down when a storage fills up and blocks
it. In some cases, such as the continuous winder, restarting the machine
requires human intervention and may even be costly and cause loss of
product due to defects. The model as it now stands does not account for
such events, although it can be extended.

For example, it is possible to define a third machine state, forced

down. The transition from this state to the down state (i.e. failure
when forced down) would have zero probability, while the transition to
the up state (i.e. being restarted) would have a probability that may
or may not be equal to ri.

Similarly, the problem of having too few repairmen (or the machine
interference problem - see Cox and Smith[1974]) is ignored here. However,
it is important in actual systems and in particular, in the case of the
paper plant discussed here, where several parallel paper finishing lines
share a limited crew. It is possible to extended the model to account
for this problem: for example, there may be a lower repair probability
when two machines are down simultaneously than when only one machine is
down (See Benson and Cox[1951]).

Lastly, the model assumes that a machine is starved if there are no
pieces in the upstream storage, while in the actual line, the log saw is
not allowed to operate if there is only one pair of logs left in the
storage. Since there 1s always one pair in the storage, it can be
ignored, and the storage capacity 1is given by Nl-l, rather than N..

1

.
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7.2 A Brief Discussion of Some Attempts at

Modeling the System

Although the behavior of a system as complex as the roll products
paper finishing line can probably best be predicted by an extremely
detailed computer simulation, such programs often take a long time to
develop and are very costly, both in terms of manpower and computer
time. Good mathematical models with analytical or relatively simple
numerical solution techniques are therefore extremely useful in
studying such systems.

Gordon~Clark[1977] modeled the system as a semi-Markov process;
one version of his model was based on an 8-state process, where each

state represents a combination of the states of the machines ((0,0,0)

through (1,1,1)). The states thus do not take storage levels into
account in this model. The state residence times and transition
probabilities were estimated from records of the actual operation of
the paper finishing line. If the line were still in the designing stage,
these would have had to be guessed. Transition probabilities may in
some cases be worked out from data from individual machines. However,

the state residence times are more difficult to calculate, since they

involve knowledge of average storage levels. Since Gordon-Clark's
model does not consider storage levels as state variables, the
residence times cannot be evaluated theoretically.

The predicted and actual results were not in excellent agreement.

Among possible reasons for this discrepency, non-geometric actual failure
and repalr rates, dominating transients, and the effects of the past
history on system behavior were proposed. To these may be added the
fact that forced down and failed machines behave differently, a point
that was not taken into account by this model, since storage levels
were not state variables.

This last difficulty may be accounted for by two approaches: by
defining three machine states (operational, failed, and forced down)
instead of two; or by extending the definition of a state to include

at least the three storage regions (empty, full, or otherwise). That the
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model would significantly improve if the above was done is suggested by
the fact that the best agreement between predicted and actual behavior
was for the continuous winder which is forced down least frequently;
the worst agreemenF was for the wrapper, the stage which is idle most
often.

Another approach would be to modify the transfer line model
developed in chapter 2 to account for the discrepencies outlined in
section 7.1. Some modifications proposed to adapt the model to the
paper finishing line are relatively easy to implement, such as
considering the smallest unit {the roll or pair of rolls) as a workpiece.
Assuming that the parent roll loading time has negligible effects on the
system, that rejects amount to a negligible fraction of total
production, that the conveyor is fast enough to be equivalent to a
storage, etc. may give satisfactory results. Some problems may
introduce errors into the computation of system performance measures:
for example, the fact that repair crews are limited in number implies
that the repair probability is reduced when more than one machine fails;
furthermore, even the order in which they fail matters. Still other
issues, such as dominant transients, may require a completely different
approach. A detailed analysis is required to verify the applicability
of the transfer line model presented here to this particular system.

This is clearly beyond the scope of this work, which aims primarily
at answering generic questions as opposed to studying specific systems.
This chapter has tried to show several possible sources of difficulty
which may arise in the application of an idealized mathematical model
to real systems. The following two chapters investigate two qualitatively
different cases, in an attempt to emphasize the flexibility of the

model.




8. APPLICATION OF A TRANSFER LINE MODEL TO
BATCH CHEMICAL PROCESSES

The discrete nature of the Markov chain model of a transfer line
described here allows a wide range of applications, including not only
obvious cases such as assembly and transfer lines in the metal cutting
or electronic industries, but also chemical processes in which batches
of chemicals proceed through stages in the manner of a production line.

A queueing theory approach to batch chemical systems is outlined
following Stover's [1956] early work in section 8.1. Some of the
differences between a model proposed by Koenigsberg[1959] and the
present model are discussed in sections 8.1.1 and 8.1.2.

Applications of the transfer line model to such systems, as well

as a discussion of the results thus obtained, appear in section 8.2.
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8.1 A Queueing Theory Approach to the Study of

Batch Chemical Processes

In an early paper, Stover[1956}* used a queueing theory approach to
estimate the production rate of a chemical plant that was planned to be
expanded. The system consisted of a stage of parallel reactors, followed
by holding tanks, followed by a stage of parallel stills. Stover modeled
the stills as exponential service time servers, and computed the number of
holding tanks and. stills needed to achieve the desired production rate.
Essentially, his model was a single-stage, parallel-server queue, and
technigues existed for its solution.

Basing himself on Stover's work, Koenigsberg[1959] proposed a
schematic representation of a batch chemical process similar to that
presented in figure 8.1. Represented thus, the plant may be studied as
a transfer line, although certain important particularities of the
system are not accounted for by the model as it stands.

Some of the differences between the system and the model are

discussed in sections 8.1.1 and 8.1.2.

*Acknowledgment is due to the Archives of the United States Rubber Company,
Naugatuck, Connecticut, for supplving Mr. Stover's unpublished manuscript.
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8.1.1 Non-Deterministic Processing Times

Stover[1956] reports that maintaining a fixed schedule and production
rate for batches finishing in the stills is not possible because of
unpredictable variations in reaction times. These variations may be due
to fluctuations in feed temperature or concentration, changes in the
activity of catalysts, etc. Thus, batches are modeled as taking random
periods of time to be processed in the stills.

By assumption 2.2.2, the model of a transfer line developed in the
present work involves stages that have deterministic and equal service
times. Reliable lines with random cycle times have been studied by
numerous researchers. Most of this work assumes exponentially
distributed service times (Hillier and Boling{1967], Konheim and Reiser
[1976], Neuts[1968], Muth[1973], Hunt[1956], Hatcher[1969], Knott[1l970a,
1970b]). Rao[1975a] studied two stage lines with normal and Erlangian
service times and no interstage storage; Neuts[1268] considers a line
consisting of two stages, one of which has uniformly distr;buted service
times. Buzacott[l1972)] studied a two-stage line with identical unreliable
machines and exponential service times. Gershwin and Berman[1978] analyze
a two-stage line with exponentially distributed service times and
unreliable machines. Lines with more than three stages have not been
successfully analyzed because of the complexity of the effects of blocking
and starving when storages are full or empty (Okamura and Yamashina([1977]).

| The transfer line model of chapter 2 is extended, following Gershwin
and Rerman[1978], to allow exponerntially Jistributed service times, in
section 8.2. Rao[1975b] states that exponential service time distributions
often do not represent actual svstems, where the service times are closer
tc normal distributions (Vliadzievskii[1952], Xoenigsberg[19538]1). However,
the solution of exponential service time models is an important step

towards *he analvsis of models where the service times are given by Erlang

w

distributicns (See Brockmever, Halstrgm and Jensen[l960]). This is because
a stage with Erang distributed service times may be thought of as a
machine in which a series of distinct overations are periormed on the

workpiece, each of which takes an exponertially distributed length of time.
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(See Wallace and Rosenberg[l1966], Lavenberg, Traiger and Chang[1973],
Herzog, Woo and Chandy[1974]). In other words, an Erlang stage is
equivalent to a series of exponential stages. The importance of this
lies in the fact that Erlang distributions may represent accurately

normal distributions, which themselves best model chemical reaction

time distributions.
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8.1.2 Feedback Loops

The solvent recycling system in figure 8.1 cannot be accounted
for by the present model. Given that the amount of solvent in the system
is constant, such a system could be modeled by a cyclic gqueueing
network of the kind analyzed by Koenigsberg[l958] or Finch[1959].
However, certain additional assumptions make it possible to use the
present model in studying the system in figure 8.1. These are the
following:

(i) If the solvent tank is large enough, the inlet and outlet of the
plant are effectively decoupled. In this case, the last stage is never
blocked because of a failure or blocking in the first stage. Thus,
recycling the solvent does not change the structure of the model.

(ii) It may be assumed that in case either the solvent inlet pump VSl

or the raw material inlet Vm fail, the first stage fails because both
mechanisms must operate for the reactors to be fed. Similarly, if

either Vs or VP fail, the last stage may be assumed to fail.

2

Thus, it may be possible to model VS and Vm as a single machine;

1

similarly, V and VD may be considered a single machine. The condition

s2
for this to hold is that the repair times of Vsl and Vm, as well as those

of VsZ and Vp, are identical. In this case, the failure and repair

probabilities of the single machine eguivalents may be computed as

follows: Given that Vsl fails with probability p and vm fails with

sl
probability pm, rhe single machine eguivalent remains up during a cycle

if both VS and Vm remain up. Thus,

1

P = 1-Q-p.00=-p) : (8.1)

On the other hand, given that V and Vm have egual repair rates r, the

sl
repair rate of the equivalent single machine is simply egual to r. Thus,
the eguivalent machine has geometric up and down time distributions and
the model of Gershwin and Berman{1978] may be applied. A similar

argument can be made for Vsz and Vp.
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(iii) It may be assumed that the amount of solvent in the system is
sufficient so that the first stage is never starved. This assumption
completes the decoupling of the first and last stages in the transfer
line model of the batch system.

It may be noted that by assuming infinite storage capacities,
Secco-Suardo[1978] shows that in a closed network with large numbers
of customers (in a production line, pellets, in the batch chemical
plant, batches of solvent, etc.), one stage always acts as a bottleneck,
so that the system is equivalent to an open network.

By making the above assumptions, the system pictured in figure 8.1

may be treated as a transfer line.
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8.2 The Production Rate of a Batch Chemical Process

8.2.1 The Single Reactor, Single Still Case

As outlined in section 8.1, the transfer line model is extended
to cover a system of the type described by Koenigsberg[1952]. Stover[1956]
studies the system as a single-stage, multiple-server queue; he assumes
that the stills have exponentially distributed service times, and that
the holding tanks comprise a finite queue. If the reactors are also
modeled as having exponentially distributed service times, the single
reactor, single still case can be analyzed by means of the results
derived by Gershwin and Berman[1978].

The system considered here consists of two stages; these are the
reactor and the still. Both stages include all pumps, valves, and other
devices through which batches of chemicals are transfered. The stages
are unreliable in the sense that they occasionally fail, due to
unpredictable failures in pumps, heating or cooling systems, and so on.
A finite number of parallel holding tanks are located between the two
stages. The object of the study is to compute the effects of the
variations in service times on the production rate of the system, and
to see how these effects can be mitigated by the use of interstage
holding tanks.

- As stated in section 8.1.1, the service times are assumed to be
exponentially distributed, although this assumption may not hold for
batch chemical processes. It is hoped that the exponential results
will provide the theory necessary to help analyze and solve Erlangian
systems.

The steady-state probabilities of the system are found by Gershwin
and Berman[1978] by assuming a solution for internal states of the form
of equation (3.13), and substituting the expression into detailed
balance eguaticns for internal states. This development is analogous to

the derivation in chapter 3. Here, however, the stages operate with
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variable service times. The mean service time for stage i is given by
1/ui. A consequence of the fact that the stages are not synchronous is
that the boundaries reduce to n=0 and n=N, instead of n<£1 and naN-1
as in the deterministic service time case. Thus, the states with n=1
and n=N-1 have probabilities with internal form expressions.

For the two-stage exponential service time transfer line, the
internal equations (analogous to (3.21) and (3.23) in the deterministic

case) are the following:

r
1 1
o - - + — = -
ul(X 1) plYl rl + I pl 0 (8.2)
1 1
2
- - + + = - = .
UZ(Xl 1) sz2 r, Y, 1 0 (8 3)
0 (8.4)

+ - -— =
p,Y, +p¥, -y -1,

These constitute a set of three non-linear equations in three unknowns,
and may be combined into a fourth order polynomial in terms of one of
the variables, say Yl. In this case, it is easy to verify that Yl=rl/pl
is a root, so that the polynomial becomes

1 3 2

(y, - —) (Y + B + BY +B.) = 0 (8.5)

1% 2%1 F B3

where Bj' j=1,2,3 are functions of ri and pi, i=1,2.

The cubic polynomial has its roots at

——

Y. = 24-2 cos 8., ; i=2,3,4 (8.6)
1i 3 i
where
1 2
a = 3(382 - 81 )
1

3
(28l - 9Sla + 2783)

.:_w__ (8.7)

¢ = arccos
‘/-—a /27

27

and
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6, = %¢+120(i—-2) ; i=2,3,4 )
(¢ and Qi measured in degrees.)
After Yli are found from équations (8.6) and (8.7), these

values are substituted into (8.2)-(8.4) and Y and Xi are found.

2i
Thus, the solution is of the form of (3.13):

4 o [0 ]
n 1 2
pin,a;,0,) = Zi=l Ci X3 Y13 Yo (8.8)

The coefficients Ci are found by using boundary detailed balance
equations (analoéous to boundary transition equations in section 3.2).

For the root Yl=rl/pl mentioned above, it is found that Y2=r2/p2 and
X=1; the constant C1 corresponding to this root is found to be zero,

as in the deterministic case. This is noteworthy, because the set

Y b4 xl corresponds in both the exponential and the deterministic

11’ "21’
case to a solution that assumes the stages in the system to be

decoupled. That C1=O implies that this is not true.

These results are now used in a numerical example.
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8.2.2 A Numerical Example

The following system is considered: a batch reactor and a still
are separated by N=10 parallel holding tanks. The first stage consists
of the reactor as well as valves, pumps, etc. which serve to transmit
the batches of chemicals; the second stage similarly consists of the
still, as well as pumps etc. Both stages are unreliable, and randomly
fail because of breakdowns in the pumps, in temperature control
mechanisms, and in other unreliable devices. The production rates in
isolation of both stages are equal to 0.5 batches / time unit.

The still has failure and repair rates (in probability / time
unit) equal to p2=r2=1.0. Its service times are exponentially
distributed with mean 1/u2=1.0.

The reactor failure and service rates 123 and ul are varied in
such a way as to hold average production rate constant at 0.5 batches /
time unit. The repair rate (in probability / time unit) is equal to
rl=1.0.

Results for some values of Pl and ul appear in table 8.1. It
is seen that as the efficiency in isolation of the first stage is
increased and its service rate decreased, the line production rate
increases. This suggests that for these system parameters, the
fluctuations in service times influence line production rate more
strongly than the failures in the first machine. This is important,
because in practice, chemical systems are often highly reliable,
although such variations in service times may sometimes be unaveidable.
Random service times can be used to model human intervention in the
processing of batches. Although humans may be highly reliable, it is
clear that variations in service times cannot be avoided. From these
results, it follows that it is more important to control fluctuations in
service times than improve the reliability of the first stage in this
line.

The experiment is repeated this time by varying P, and uz so as to
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Line efficiency(Production rate)

1 1 1
S 1 .1 5 0.432
2 1 .33 1.5 0.435
1 1 .5 1 0.438
.5 1 .67 .75 0.441 .
.11 1 .9 .55 0.442

Table 8.1. System parameters and line production rate
for a two-machine line with exponential
service times.
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maintain the production fape of the second stage at a constant value
equal to 0.5 batches / time unit. The other system parameters are set
at pl=rl=ul=r2=1.0.

The same values as those given for pl and ul in table 8.1 are
assigned to p2 and u2.

The results obtained confirm that efficiency is more important
than service rates (or alternately, reducing variations in service
times is more beneficial than improving efficiency in isolation,
given a constant production rate in isolation) for these system
parameters.

Furthermore, it is observed that the line production rate is
symmetrical with the orientation of the production line. Thus,
when the parameters of the two stages are reversed, the line
production rate does not change. This is the case with deterministic

service time transfer lines also.
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8.2.3 Parallel Reactors. or Stills

. The system discussed in sections 8.2.1 and 8.2.2 is a simple

case of the general class of systems discussed in section 8.1 and
schematically illustrated by figure 8.1. The present state of the
model is not able to deal with networks with non-linear topologies,
such as those involving stages with multiple servers. Ignall and
Silver(1977] give an approximate method to calculate the production
rate of a two-stage, multiple-server system with deterministic service
times. Single stage gueues have been treated by several authors
including Morse{1965], Galliher([1962], and Disney[1962,1963].

Future studies of multichannel stage transfer lines may be
based on defining the system étates as not only the operational
conditions of the machines, but the number of operational machines in
each stage. If each machine has exponentially distributed service
times, it may be possible to represent the stage as a single machine
with Erlang service time distributions (See Lavenberg, Traiger and
Chang([19731).

A different approach may be modeling the number of operatiocnal
machines in any stage as a birth-death process (See also Taylor and
Jackson{1954]). This assumes that the probability that more than one
machine fails simultaneously is small enough to be neglected. The ‘
production rate of the stage at any time can then be expressed as a
function of the number of operational machines in the stage, as well as
_ the levels of the storages upstream and downstream of the stage. These
levels affect the stage 1f fewer batches are available in the upstream
storage than there are operational machines, or if less storage space is
available in the downstream storage than there are operational machines.

A sufficient range of applications exists to make the results of
linear topology production lines described in this work of interest.
However, it is clear that their applicabkility will greatly increase if

these results can be extended to more complex networks as well.




9. APPLICATION OF A TRANSFER LINE MODEL TO
CONTINUOUS CHEMICAL PROCESSES

Although the preceding discussion has centered on discrete transfer
lines (i.e. lines in which discrete workpieces travel through the system),
it is possible to extend the model to continuous transfer lines. In such
systems, the storage level is treated as a continuous variable.

Continuous models are often good approximations to discrete queueing
networks with large numbers of customers (Newell[1971]); in the case
of transfer lines, they can be good approximations to the discrete
system if the storage capacities are very large (Sevast'yanov[1962]).
Since continuous models can be studied by means of differential
equations, the computation needed to obtain the steady-state probability
distribution of the system can be greatly reduced by making this
approximation. In addition, the continuocus transfer line model can be
used in the study of unreéeliable hydraulic systems (Buzacott[1971]) or
continuous chemical processes. Here, fluids or chemicals flow through
series of unreliable stages separated by holding tanks. By using the
steady-state probability distributions, it is possible to find the
relations between the failure and repair rates and holding tank sizes,
and performance measures such as the flow rate through the system} the
amount of material in the tanks, etc.

Two approaches to the problem are discussed here. A differential
equations approach for obtaining the probability density functions is
reviewed in section 9.1. The two-machine discrete line analytical
results of chapter 3 and the §-transformation of section 6.3 are used
to arrive at identical results in section ©.2. A numerical example is

worked out and discussed in section 9.3.
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9.1 The Continuous Transfer Line Model

By assuming that the buffer storage level may be treated as a
continuous variable, Graves[1977] has derived a series of probability
density functions that describe the steady-state probability distribution
of the system states for a two-machine line. These probability density

functions are denoted by f(x.,a ,az), where x is the level of the

1

1 and a2 are the machine states as defined in

section 2.1.2. Graves' derivation is summarized below.

storage (0 4&£x4£N) and o

To obtain the probability density functions £(+), it is necessary
to consider transient local balance equations. Denoting the transient

probability density function by f(x,Q ,t), where t is time, for a

1'%
small time increment A and internal storage level (0<x<N),

£(x,1,1,t+)) = (l-plA‘PzA) £(x,1,1,t) + rlA £(x,0,1,t)

+orh £0x,1,0,8) + 0(A%) (9.1)

where O(Az)Adenotes terms of order A2 and above. Equation (9.1) is

a balance equation on the probability of being in state (x,1,1) at
time t+A. The parameters pi and ri are failure and repair rates, not
probabilities. Thus, for small A, the products piA and riA are the
probabilities of failure and repair of machine i. Given that the
system is in state (x,1,1) at time &, it stays in that state over

the increment A with probability (l-plA)(l-pzA); if the system is in
states (x,0,1) or (x,1,0), the transition probabilities in the small
time increment A are rlA(l-pzé) and (l-plA)rZA respectively. Finally,
the probability of transitioen from (x,0,0) to (x,1,1) is rlArzA. The
terms of order A2 are lumped together as a first-order approximation,
and equation (9.1) directly follows. Letting A+0 and making the
steady-state assumption (i.e. assuming that g—(-)=O), it follows that

dat

£{x,0,1) + r, £(x,1,0) = 0 (9.2)

-p_ - £ ]
( pl pz) f(x,1,1) + ¢ 5

1
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Similarly,

£(x,0,0,t+A) = (1—r1A-'r2A) f(x,0,0,t) + plA f(x,1,0,t)

+ p2A f(x,0,1,t) + O(Az) (9.3)

Again, letting A+0 and making the steady-state assumption, equation

(9.3) gives

In both equations (9.1) and (9.3), the final machine states are such
that the storage levels do not change within the time increment A.
Given that the storage levels are internal, the level goes down by A
in the time increment A if the second machine is up while the first

is down. The balance equation is

£(x-A,0,1,t+A) = (l—rlA—pzA) f(x,0,1,t) + plA f(x,1,1,t)

+ T £(x,0,0,t) + o (9.5)

When A+0 and the steady-state assumption is made, (9.5) gives

S

ax £f(x,1,1)

f(x,0,1) = (‘rl'P2) f(x,0,1) + Pl

+ r, £(x,0,0) (9.6)

Similarly, the differential equation giving the probability density
of internal states with an operational first machine and a failed
second machine is:

L fx,1,0) = (-r,=p)) £(x,1,0) + p_ £(x,1,1)

dx 2

+ ry £(x,0,0) (9.7)

Equations (9.2), (9.4), (9.6), and (9.7) determine the steady-state
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probability density fﬁnctions fo; the internal states. The boundary
probability mass functions are found by using balance equations

analogous to the boundary transition equations of section 3.2. Assumption
2.2.3 states that machines can 6nly fail while processing parts. Thus,

it is not possible for a failed machine to be preceeded by an empty
storage or followed by a full storage.* As a consequence, some
probability mass functions p[+] at the boundaries x=0 and x=N are

found to be identically zero:

p(0,0,0]. p{0,1,01

]
o

(9.8)

[]

it
o

p(N,0,0] p(N,0,1] (9.9)
In setting up the boundary balance equations, it is noted that

boundary transition rates differ from internal transition fates,

because of assumption 2.2.3. For example, the transition (N,1,0)-(N,1,0)
occurs with probability (l—rzA), rather than (l-plA)(l-rzA), since the
the first machine cannot fail when it is blocked. On the other hand,

the transition'(N,l,l)+(N,l,l) occurs with probability (l—plA)(l-pzA),
since the first machine is not blocked as long as the storage is drained
simultaneously by the second machine, even if x=N. As a result, it is
necessary to redefine the terms blocked and starved for the continuous
transfer line. Here, a machine is blocked if its downstream storage is
full and the downstream machine is down. Similarly, a machine is starved
if its upstream storage is empty and the upstream machine is down. These
definiticns differ from those for the discrete line given in chapter 2.

From these conditions, it follows that at the upper boundary (2=N),

piN,1,0,t+A] = (l-rZA) pIN,1,0,t] + p2A pIN,1,1,t]
N
+ J/-f(x,l,O,t) dx + o(AZ) (9.10)
N-A

* This assumption causes the boundary conéitions presented here to differ
slightly from those in the work of Graves.
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The integral in (9.10) accounts for the probability that the first
machine remains up and the second remains down througﬁ the time
increment A. Since the machines operate at unit rate (as before -
note that Graves' results include the case when they operate at

different rates), the limits of the integral go from N-A to N. It is

noted that
N
lim 261,08 50 - £(w,1,0,¢) (9.11)
A0 b -
N-A
Thus, letting A>0 and assuming steady-state, (9.10) becomes
0 = -r2 p[N,1,0] + p2 plN,1,1] + £(N,1,0) (9.12)
Similarly,
2
s pIN,1,1,t+A] = ,(1-plA-p2A) piN,1,1,t] + rzA pIN,1,0,t] + O(A™)
(9.13)

which gives

0 = (-pl-pz) p[N,1,1] + r, p[N,1,0] (9.14)

At the lower boundary (x=0), analogous balance equations are

pl0,0,1,t+A) = (l—rlA) pl0,0,1,t] + plA pl0,1,1,t]
0
. f £(x,0,1,t) dx + 0(A%) (9.15)
A
plo,1,1,t+A] = (l—plA-pzA) pl0,1,1,t] + rlA pl[0,0,1,t]

+ 0% (9.16)

which give
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0 = -r, pl0,0,1]1 + p, pl0,1,1] + £(0,0,1) (9.17)

0 = (—pl-pz) pl0,1,1] + ry pl0,0,1] (9.18)

Equations (9.12), (9.14), (9.17), and (9.18) are the steady-state -

boundary transition equations. These may be simultaneously solved,

giving:
Py *+ Py
pIN,1,0] = _ £(N,1,0) (9.19)
r.p
271
pIN,1,1] = I fw.1,0) (9.20)
Py
-| Py * P,
r.p
152
pl0,1,1]1 = = £(0,0,1) (9.22)
2

Equations (9.19)-(9.20) are found by solving (9.12) and (9.14)
simultaneously; eguations (9.21)-(9.22) are found by solving (9.17) and
(9.18) simultaneously.

The internal balance equations may be solved by first adding (9.2),

(9.4), (9.6), and (9.7) together, giving

£(x,1,0) - g; £(x,0,1) = C (9.23)

ml@
»

Equation (9.23) is solved to give

f(xlllo) = f(XrO,l) + Kl (9-24)
The constant K, is now evaluated. Given that the svstem is in state
(N,2,1) at time t and that the first machine fails during the time
increment & (this is possible, since machine 1 i1s not blocked as long

as machine 2 is operational), it Zollows that
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£f(N,0,1,t+A) = plA plN,1,1,t] + O(AZ) (9.

which gives, as A+0 and steady-state is assumed,

£(N,0,1) = Pl piN,1,1] (9.
This is the third boundary balance equation at the upper boundary.
Adding (9.12), (9.14), and (9.26), it follows that
f(N,O,l) = f(N'lIO) (9.
Similarly, at the lower boundary,
£(0,1,0,48) = pAp[0,1,1,6] + o) (9.
which gives the third lower boundary balance equation,
£(0,1,0) = P, pl0,1,1] (9.
Adding (9.17), (9.18), and (9.29), it follows that
£(0,1,0) = £(0,0,1) (9.
From either of equations (9.27) and (9.30), it follows that Kl=0 in
equation (9.24). Thus,
£(x,1,0) = f(x,0,1) (9.
Using (9.31), equations (9.2) and (9.4) give
— + 9
175
f(x,1,1) = " £f(x,0,1) (9.
Py 7 Py
”r + r ]
£(x,0,00 = |—=—=21| £(x,0,1) (9
Py ¥ Py

25)

26)

27)

28)

29)

30)

31)

32)

.33)
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Substituting (9.32) and (9.33) into (9.6), it is found that

+
-rl-pzq-pl[rl‘QJ+-r2[pf?2] £(x,0,1)
+
P17P, 1

4
~ix £(x,0,1)

1 1
(per p2rl) |:pl+p2 - rz} £x,0,1)

l+
A
= A f(x,0,1) (9.34)
Solving (9.34) gives
£(x,0,1) = K, e MX (9.35)
and from (9.31),
-Ax
£f(x,1,0) = K2 e (9.36)

As Graves notes, if the machines have equal efficiencies, so that
(rl/pl)=(r2/p2), then A=0 and the distribution in equations (9.35) and
(9.36) are uniform.

The normalization constant K2 is found by noting that the sum of
the probability mass functions and the integrals of the density

functions must add up to 1. Thus,

N

1 1l
Z Z / f(x,al,az) éx + pl[0,0,11 + p[0,1,1]

+ piN,1,0] + pIN,1,1] = 1 (.37

The probability distributions of a two-machine line where the storage
level is a continucus variable are thus completely determined. These

functions are summarized in takle 2.1. Continuous transfer lines with
more than two machines give rise o very complex systems ©of equations
(Sevast'vanov[1962], Graves{18771, Gordon-Clark [1977]) which have not

vet been solved.
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Table 9.1. Steady-state probability distributions
for two-stage continuous lines.

P, +p } Y
£(x,0,0) = ;l—:—;z K2 e ¥
1 2
£(x,0,1) = K, M
£(x,1,0) = K, e~ Ax
r. +r
1 2 -AX
£f(x,1,1) = —_— K. e
Pl + P2 2
P[Olopol = 0
p, +p
p[0,0,1] = —————1rp2 K,
‘172
P[OIlIO] = 0
1
plO1,1] = = K,
2
p[NlOlo] = 0]
p[NIOII] = 0 5
p, +p .
prsao) = LTz o
2P
pIN,1,1] = + g &M
Py 2

The constants K2 and A are given by ecuations (9.37) an@a %

(9.34) respectively. S
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9.2 The 8-Transformation and its Limit as &0

In section 6.3, the S-transformation is introduced as follows:

T, é r.§
1 1
= A
p, = pid & (9.38)
N &y /8

The resulting system is equivalent to the original system with cycle
length equal to §, and the efficiency is virtually unchanged by the
transformation.

_The steady-state probabilities of the transformed system are now
computed. The resulting expressions are shown to approach the continuous
results of section 9.1 as &+0.

From equation (3.25),

r. +r_=- (r.r_ +p.r)8

- 1 5 172 T Pohy
Y = {3.39)
1 Py * Py - (PP, ¥ P, )8
and
+ - +
I T b b P F,y)0 (5. 40)
2 Py + Py - (plp2 + plr2)o

where §i are the parameters in equation (3.13) for the transformed
system. Each of the expressions in section (9.39) and (9.40) may be
written as first order Taylor expansions around &=0:

Y. = Y.+ Y..8 + 0(3) ;0 i=1,2 (9.41)

where

PK: |
o
"
—
<t
‘,_l.
—J
O
|
(@]

= ———— ;o i=i,2 (9.42)

jel
o=

+

e’
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and
- a -
¥, < dS[Yl] 8§=0
(r)#7,) (PP, *T P, )= (P, 4P,) (X T +P,T,)
= > (9.43)
(pl+p2)
-1t
Y1 T asLY2 Js=o
+ -
_ Eytr)) pypytrypy) - (pytey) (X Tote 1))
- 5 (9.44)
+
(pl Pz)
Similarly, from equations (3.25) and (9.41),
X = Y2 / Yl (9.45)
Y 4+ Y .8
S 20 21 oy (9.46)
Ylo + Yll6
Using Taylor's theorem, (9.46) becomes
Y Y. Y. -Y ¥
)—( - -20 + 10 21- 220 11 S + 0(8) (9.47)
Y10 Y10

which, by using equations (9.42)-(9.44) and simplifying considerably,

gives

b 1 1

X 1 + (p.r.-p.r) [ + ])6 + 0(8) (9.48)
< 21712 pl+p2 rl+r2

= 1 - X & (9.49)

where A is the same constant that is defined in eguation (9.34). The

definition of internal states for the modified system is derived from

T TTTITOTIIT b i
CPETOTTTIIITI NG i
R SRR AR SR USRI
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equation (2.20). Since the transformation has the effect of dividing
parts into 1/§ slices (See section 6.3), internal states are defined
to be those for which the storage level n/§ obeys the relation

é N-2

2 £ N-2 '
T & 3 _ (9.50)

o3

Equation (3.13) for the transformed system is

n

= Qa a
= .n _ 67122
p[é,al.azl = CX Y~ ¥Y (9.51)
o o
_ _ n/6 = = 1= .= 2
= C (1 A8) (Y10+Y116) (Y20+Y216) + 0(48)
(9.52)
It is noted that
lim (1 - A)S - o™ T (9.53)
&0

For the continuous syétem, the storage level is denoted by x, and the

steady-state probability density function is defined as follows:

3280 0] - B2, ,a)
£(x,a,0,) = PLmgm &y rByd = Py /8y

1 (9.54)

S

For each combination of machine states zi, eguation (9.52) becomes,

as &0,

£(x,0,0) = C e X (9.55)
oM, + 2.7
£(x,0,1) = ce ¥ ——1——+—-2— (9.56)
. | P, * P, |
w [ F1 %5, 7
£(x,1,0) = Cce | =——= (9.57)
p1 + b’z
-ix i SIS
f(xllll) = C e ’ ——— (9-58)
Py * 5.

[
(¥}
w

It is easy to verify that equations 1= (9.58) agree with the probability
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density functions given in table 9.1, with

r. +r
K2 = C —l;:j—ié (9.59)
Py TPy

The boundary state probability expressions of section 3.2.1 are
shown below to reduce to the results of section 9.1 as &»0. It is
noted that in the discrete line, n=1 and n=N-1 are considered boundary
storage levels. In the transformed system, this corresponds to
n/8=1/6 and n/8=(N-1)/8. Thus, as 6+0, the boundary becomes x=0 and
%x=N only.

From table 3.1,

r. +r. -rr =-p.r
p[0,0,1] = cx —+—2 12 21 (9.60)
Pory

For the transformed system, equation (9.60) becomes

_ ¥ +r -rr -p.r
510,0,1] = c3x % 2 _ _1 2 271
Py%y
_ ro+r - (rr +pr)6
I | 2 . é 2 271 (9.61)
Pr, A
Noting that as &0, X»1, the limit as &0 of (9.61) is
X + ¥
p10,0,1] = % L r2 (9.62)
LON]

It is shown in section 6.3 that the normalizing constant C is of the
order of §. This follows from the fact that C is the reciprocal of the
sums of the probability mass functions and the integrals of the density
functions, and that all these functions are of the order of 1/8. Thus,
the expression in (9.62) is bounded as §+0; this applies to all the

other probability mass functions as well.
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Similarly, from table 3.1,

pIN,1,0] = cxVvi .2 i 2 (9.63)

which gives, for the transformed system,

N-6
_ -~ r, +r - (r.,r_ +pr )8
BIN,1,0] = cx & L2 . é 2 12 (9.64)
Py%s
As 60, using (9.53) gives
_ oy 1 tT
pIN,1,0] = %-e N -3——;—3 : (9.65)
Pi%o
Analogously, the limits of
- - +
s6,1,1 - OF £y vr, - (ryry +pr)d (9.66)
i B + - +
.8 Pyt P, - (PP, + P,
N-&
: - - +
- Ne§ e 8 £, + oz, (rlr2 plrz)é
P[T:lrl] = 5 + D _ (P o + p.T )6 (9.67)
31 Py TP 1¥2 T P
(from table 3.1, for the transformed system) become, as §+0, and
using equation (9.53),
r. +r
plO,1,1] = 5 2 (9.68)
Py Py 7By
r. +r
- “AN
pIN,1,1] = —95 R (9.69)
Py Py 7 Py

By using equation (9.5%9), it is easy to verify that eguations (9.62),
(9.65), (9.68), and (9.69) are identical to the corresponding expressions
in table 9.1. Thus, the steady-state probabilities for a discrete two-
machine line outlined in chapter 3 give results that are identical to
those obtained by differential eguaticns when the S-transformation is
applied and 6+0, i.e. when the length of a machining cycle is allowed

to approach zero.
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9.3 The Production Rate of a Continuous Line

Happel[1967] notes that in some continuous industries, down
times are not a major problem becéuse it is possible to make up for
the lost time once the repair is made. He adds, however, that in some
large continuous systems, such as the petrochemical industry, down
time is a more serious problem due to the unavailability of interstage
storage capacity (Goff[1970]). This suggests that in some cases,
particularly when up and down times are not excessively long compared
to the service rates of the stages (See section 5.1.3), storage
elements may make a contribution to the production rate of some actual
continuous systems.

The production rate of a two-stage continuous line where both
stages operate at unit service rates is given by

N

1
E = Z f f(X,Ql,l) ax + P[N,l,l] + p[ollll]
al=0 0"

L 1 Tt 101 1%\ -ax
n —+5\‘ 1+ " +g-'x l+p+p e
P17P, Py P;7P, 1 17%>

where C is obtained by normalizing the probability functions:

1 1
2

2 2

=0 o.=0
%y

N
1
2 J/F f(x,ul,dz) dx + pl0,0,1] +
0

- —

+
17T (1 1 1 TS\ 2
= - + " + 3 1+ " +
P, ¥, Py7P; P1¥P,

+
17 (_; L 2 ) ) ;_<7+ f1tr ) 2 AN (9.72)
+ A\ +
Py o P17P " P17P
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A simple example is considered here. The system consists of a
plug-flow reactor and a distillation column, separated by a holding
tank of known finite capacityT The reactor and distillation column
are taken as unreliable stages in a two-stage continuous line. The
unreliable nature of these stages may be due to failure in pumps, in
heating or cooling systems, or in other devices.

It is assumed that there is no volume change during the reaction.
Thus, the flow rates through the stages are equal. Time is scaled so
that this flow rate is 1 volume unit / time unit.

The system parameters are given in table 9.2. The volume of the
holding tank is varied and the system production rate is computed by
means of equation (2.70). Some values of efficiency for different
storage capacities appear in table 9.3. The discrete line values
corresponding to the same line parameters are also given for
comparison.

It is seen that as in the discrete case, transfer line efficiency
increases with storage capacity, but approaches an asymptote. From
the discussion of the d-transformation in section 6.3, it follows
that the -limiting efficiencies E(0) and E(®) are computed by using
equations (5.51) and (5.53). It is easily verified that the results
in table 9.3 (which were computed by setting N=C and N+ in equation
(9.70)) confirm this.

The results in table 9.3 are also an indication that the
d-transformation is a good approximation; since the continuous line
results are equal to those for a transformed system as 60, the
good agreement between the discrete and continuous line results suggests
that in many cases, it is possible to model a discrete line approximately
by a continuous line, and obtain its efficiency with considerably less

computation by using (5.70).
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Table 9.2. System parameters for continuous line.
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Storage Capacity Continuous Efficiency Discrete Efficiency

0 0.7627 0.7627
0.1 0.7634 -

1 0.7658 0.7695
10 0.7926 0.7899
100 - 0.8315 0.8319
@ _ 0.8333 0.8333

Table 9.3. Efficiency for continuous and discrete lines
for several storage capacities.
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10. SUMMARY, CONCLUSIONS AND FUTURE DIRECTIONS

The aim of the work presented here has been to obtain analytical
and numerical methods in order to quantify the relationships between
design parameters and performance measures in unreliable transfer lines
with interstage buffer storages.

A Markov chain model is formulated (Chapter 2); the states of the
system are defined as sets of numbers describing the operational
conditions of the machines (up or down) and the number of parts
waiting in the interstage queues. The steady-state probabilities of
these states are sought in order to compute various system performance
measures such as expected production rate, in-process inventory, and
idle times.

A closed-form solution is guessed and used in the steady-state
transition equations for obtaining expressions for state probabilities
(Chapter 3). The solution of this system of equations for two-stage
systems has been discussed in the literature. A method is developed to
obtain solutions for longer transfer lines as well. The set of boundary
transition equations is solved algebraically to give a set of expressions
that are used in a sum-of-terms form solution. The numbér of expressions
to be derived changes with the number of stages in the line, but not
with the capacities of interstage buffer storages. Once these expressions
are found, a small system of equations (whose dimensions are linear with
storage capacities in three-machine lines) is solved to obtain the steady-
state probabilities of the system. Nevertheless, this system of equations
is ill-conditioned, and causes numerical problems.

Some numerical methods are derived for obtaining the steady-state
probabilities by using the sparsity and structure of the transition
matrix (Chapter 4). An iterative multiplication scheme is introduced
and analyzed. A recursive algorithm for solving the large system of
transition equations by making use cf the nested block tri-diagonal
structure of the transition matrix is developed and discussed. This

algorithm is general and applies to any number of stages, although computer
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memory requirements are considerable.

The steady—staté probabilities are used to compute exactly the
expected production rate (efficiency) of the system (Chapter 5).
Alternate ways to calculate efficiency are introduced; it is proved
that in the finite storage capacity case, the steady-state rates of flow
through both machines in a two-machine line are equal. The proof is
not complete for longer lines. The effects of system transients on line
efficiency are discussed; it is shown that the extent to which steady-
state values represent the actual performance of the system depends
strongly on the system parameters. The relationship between storage
capacity and line efficiency is investigated. It is demonstrated that
storages contribute most to the system production rate when the line
is balanced. Furthermore, the rate at which storage capacity improves
line production rate depends on the magnitudes of the failure and
repair probabilities of the system. An inductive proof of the
assertion that infinite storage efficiency is equal to the efficiency
of the worst stage is presented.

The felationship>between storage capacity and forced-down times
is investigated. It is shown that the infinite storage production rate
is such that the system bottleneck is saturated. Furthermore, the line
production rate increases almost linearly with the efficiency in
isolation of the system bottleneck until it ceases to be limiting; at
that time, the line production rate reaches an asymptote. For -a
balanced line, it is shown that increasing storage capacity can be as
beneficial as improving the efficiency in isolation of individual
machines, élthough providing buffer capacity may be cheaper than improving
the reliability of machines.

The effect of storage size and machine efficiencies on expected
in-process inventory is studied. The asymptotic behavior of in-process
inventory is demonstrated, and the effects of the relative efficiencies
of upstream and downstream segments of the transfer line on a particular
storage are discussed.

The system efficiency is also computed bv approximate methods

(Chapter 6). These consist in lumping machines and storages together in
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equivalent single stages, thereby reducing the number of stages in the
model; and in lumping wotkpieces together, thereby reducing the
capacities of storages in the model. Both approaches have the effect
of reducing the dimensions of the state space and saving computation
considerably.

The results obtained are discussed with relation to a roll
products paper finishing line (Chapter 7). Possible discrepencies
between the model and actual systems are discussed in the light of this
example. Approximations or changes in the model to account for such
discrepencies are proposed and investigated.

The model is extended to continuous-time systems. In discussing a
batch chemical process in which batches require random processing times,
a two-stage line with exponentially distributed service times is
analyzed and the results are applied to a plant consisting of a batch
reactor and a still, separated by unreliable pumps and parallel holding
tanks {(Chapter 8).

A differential equations approach is reviewed for obtaining the
steady-state probability distributions in the case where the material
traveling through the system is or can be modeled as a fluid (Chapter 9).
A numerical transformation introduced in chapter 6 is taken to its
limits, and these results are shown to agree with those of the differential
equations solution. The expressions obtained are applied to a chemical
plant consisting of a plug~-flow reactor and a distillation column,
separated by unreliable pumps and a finite holding tank.

Directions for future research include more complex, non-linear
system topologies and random processing times. A flexible manufacturing
system in which many types of parts flow through the system in a non-
deterministic order may be modeled as a system where stages have random
processing times. The value of the results presented here will greatly
increase if they can serve as a basis for more work in complex flexible

manufacturing systems.

2
P
P
i
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11. APPENDIX: PROGRAM LISTINGS, I/0 INFORMATION
AND SAMPLE OUTPUTS

A.l Two-Machine Line, Analytical Solution

This program computes the steady-state probability distribution
for a two-machine transfer line by using the closed-form expressions
obtained in chapter 3.

The input is as follows:

First Card: Columns 1-20: Failure probabilities (p., i=1,2)
(Format F10.5) >
Columns 21-40: Repair probabilities (r,, i=1,2)
(Format F10.5) *
Columns 41-70: Lower bound, upper bound, and step size
for incrementing storage capacity.
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FORTKAN IV G1 RELEASE 2.) MAIN DATY = 78191 17/23/43
C ANALYTIC SOLUTION TO TWO-SIATIJON PRORLFY THOOCYY)
0001 INPLICIT REAL%8 (A-h,0-2) TS0II92D
0002 DLMNENSION P2(2004) THUIDI3ID
1,12 (501) THOO ) 4N
1,P2 (501,2,2) + PY(501,2,2) TH0)I5)
1 PN (3) TWI2J560
2093 INTEGER AA,BB,A1,B1,A2,82 TAUJIST
0004 1499 WRITE (6,97) TUNO0340
0175 97 PORMAT (1d1) TRCUYI00
0096 READ(S,6, END=1000) 2,0,k,S,TN,Jd5,KY Taeddu10h
0007 6 PORMAT (4F17.5,311)) =L, 311
0008 gp=1./p Thy 129
000Y UQ=1./0Q THCY 1
2311 YR=1./P TR
0u 11 us=1./s T%S3 00150
0212 WRITE (6,4) P, UP, @, U2, *, UP, S, IS : TUCI N6
0013 4 FORMAT (1H , 204HPARAMLT LR S / W) )u178
150R ¥ = PROBABILITY HIAD 1 50OLS DOWN willL: IT IS 4P = 7.9 , Tr0)3i1%)
1358 == AVERAGEL UZ-TI®F OF HZAD 1 = F12,5/ TeQ 0173
150H 9 = POBABILI1TY HIAD 2 3045 DOWN WHILY IT I3 1D = FY.5 Y TRGIIZI
135 == AVERAGE /P-TIMe OF BEAD 2 = P12.5/ TAUI219
150H R = P2ROBABILITY HEAD 1 5025 0P WHIL: IT I3 MNI¥N = 9.5 y A2
1354 == AVERAGE DOWN~TIME OF HLAD 1 = P12.5/ TA0ul230
1508 5 = PHROBABILITY LZIAD 2 50o5 UP JUILZIT IS DOWs = Fi.5 . THDYN2470
1354 == AVERAGE DOwN-TIMI OF HoAD 2 = $12.5/ Tl 025}
1) TWII02¢
014 A) = /(1. ¢ DP/E + ¢/9) TAOINTY
Q015 AT=P/R Tal3 302725
ou b IF (&/S.GT.P/K) AL=)/S TEOTG290
0017 TOAT = 1./(1. ¢ AI) TWwO 2236
[VBR I dRITE (6,44) AQ,R1 TWINN210
0019 44t FPORMAT ( 2Z8H EPPICILNCY “ITH 10 BUFFLX = P9.5/ TaOD0320
1 34H ZFFICIENCY WITH INPINITE RUFFEE = F9.5) TADIY33)
0123 DO 9999 NN=IN,JN,KN Ta0 20340
0021 YRITE (6,9%) THOICINA
0422 WKITE (6,45) NN Ta0Y)300
0023 45 PORMAT ( T 0379
1 19H STORAGE CAPACITY = IS, Tii PI:C:=3) TR L3
0024 NN1 = NN + 1 THIILI0
07325 NQ=NN=~1 mAOY 4N
0326 4RITE (6,Y8) Tad 20410
0327 93 FORNAT (////) TRVLOU LD
0728 K=U*NNeYy TeOUU43D
0923 AK=K T2 20440
0132 RS=R+S~R*S Tw 320450
0031 PQ=P+O-P*y TRHOONUAN
0332 RSQ=k3-R*Q Ta0Y,477
0033 ASP=RS-S*p TwdIu“Q
0034 PQE=PQ=-Q*k THOIIEYN
035 PQ5=PQ~P*S TH0GI0500
39 36 ¥=r5Q/PQS TH2INH 10
3337 Z=RSP/PUR Tat)n20

Q)3 X=Z/Y TadN0530
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PORTRAN IV 31 RELEASE 2.0 MALN DATS = 78191 17/29/43

0039 I? (NN .GT. IN) GO TO 200 TAOGI540
"D “RITE (6,98) TeCCI58 1
0041 ARITE (6,19) X,Y,2Z TWI9IHAD
0ou2 19 POREBAT ( SH X = F3.5/ TWOCESTH
1 SH Y = FR.5/ THINNGSY D

1 SH 2 = F3.5) TE091590

0043 200 CONTINUE Ta0:)JIAUN
00u4 DO 101 11 = 3,NQ WO 1
045 II1=T1-1 TRONNHL20
(DY 50 101 TI2=1%,2 TH) 1% 30
0a?7 II2=12-1 THODOHY
0ous8 Cno 101 13=1,2 TwO™ .56
0043 II3=13-1 TR L 60
0353 13V PZ(I1,I2,13)=X*sIlivY "=l 2e2ex]I]] TwOONAT
0us1 PZ(1,1,1) = 0. TWIN0o3"
0052 PZ(1,2,1) = 1. TWONETYD
ous3 PZ(1,2,2) = 0. THO0U799)
0054 PZ(2,2,1) = 0. T40307 1)
0055 PZ2(2,1,1) =X TW00UL?29
0056 PL(2,1,2) = X*Z T#02373)
1157 PZ(2,2,2) = X* (S+(1.-Q)=2) /) THO00740
005% P2(1,1,2) = PZ(2,2,2)*PQR/R TRO0O373)
0759 PZ (NN+1,1,1) = 0. Ta00GI75 73
0069 PZ (NN+1,1,2) = 0. } TE2I0TTN
02¢1 PZ(NM+1,2,2) = 0. T"090787
0062 PZ (NN ,1,2) = 0. TA200TYC
0063 AN = X®=*NQ Tw3;23)7
0064 PZ(NN L,1,1) = XN 1900v 16
0365 27 (NN 2261 = ANSY TaD )2}
0066 PZ (NN ,2,2) = XN= (r+{(1.-P)=*Y) /p TAOIVP3IN
Q067 PT(NN+1,2,1) = PZ(NN,2,2)*2QS/S TWO2 sl )
9368 Cc=0 TROLOR 50
ou 69 DO 102 I1=1,NN1 TWOUNHs6)
0079 IQ(TY) = I1=-1 TSON0RT )
0071 DO 102 12=1,2 Tw2204R0
9372 DO 102 13=1,2 T4000499
0073 102 C=C+PZ(11,12,13) TA0307090
0d74 DO 103 Ii=1,NN1 THOS 317
0075 00 103 12=1,2 TAOZU“29
0076 D0 W3 I3=1,2 THIING 3N
0371 103 PZ(I1,12,13)=P2(11,12,1I3)/C TIOUU9Y L
0078 ¥RITL (6,98} THIG09SN
0174 WRITE (6,30 ((((22(11,12,I3),13=1,2),12=1,2), 12(IN), Tw)I096 3
1 I1=1,NN1)) TWIJ067¢

0032 31 PORNAT (30H PHOBADILITY DISTHFIBUTION / TH000930
1/ 10X, 340 0, 12X, 340 v, 12x, 4y g5, 2%,  3i1v 1, TAO0VY30

1 15X, 1HN// TWO1320

1 (6X,4E13.6,115/)) TROO0121D

C 21 = PROB HEAD Y OPERATING TWOI132)

T 22 = PROB HEAD 2 OPEBKATING THOQ1030

C 23 = 2XPECTED NUMBER PYECES IXN (JEUF TWOY 14

C 24 = PRUB QUEUE ENPTY TW00105)

C 25 = PROB QUEDE PULL THOU 1759



FORTRAN IV &1

0081
01782
0083
0084
0085
0086
0087
0088
00R9
0030
0091
0092
0093
0094
9795
0096
0397
009"
Q)93
0100
0101
0192
0103
0104
0135
0106
0107
01178
0139
0119
(AR
o112
Q113
0t14
0115
0116
0117
0118
21198

€120
9121
0122
0123

BRELEASE 2.0

oo NNl

26
7
3
z9

29
15

8

-262-

HAIN
= PROB 0
= PROB 0
= PROB 1

S O—-O

[
o

S g
=
.

DO 7 J=1,K

BB= (J~1) /2

B1=J-1-2%BB

N1=BB/2

AN=N1

A1=BB-2*N1

NP = N1 ¢ 1

P2(J) = PZ(NP,A1+1,B1+1)

IP (A1 .EQ. O .AND. N1 .LT. N¥)
IF (A1 .EQ. 1 .AND. N1 .LT. N¥)

IP (BY .EQ. O .ARD. N1 .3T. 0 )
IP (B1 .EQ. 1 AND. N1 .GT. 0 )
23 = Z3+AN®P2 (J)

IF (N1 .EQ. O ) 24 = 24 +p2(J)

IF (N1 .EQ. NN) 25 = 25 +P2(J)

IP (A1 .EQ. O .AND. Bl .3Q. 0) 26
IP (Al .EQ. O .AND. BY .EQ. 1) 27
IP (A1 .EQ. 1 .AND. B! .EQ. 0} 28
I? (A1 .EQ. 1 .AND. B1 .EQ. 1) 29
CONTINUE

WRITE (6,98)

WRITE (6,20)

PORMAT ( 20H TOTALS

WRITE (6,15) 26,27,28,29

PORMAT (4F15.5)

WRITE (6,98)
WRITE (6,94)

210=23 /A N*100.

WRITE(6,8) 21,22,23,210,24,25
PORMAT (

1 29 H EFPICIENCY EY

129 H EPPICIENCY E2

1 29 H AVEBAGE STORAGE PILL

1 29 H AVERAGE STORAGE FILL (%)

1 29 H PROBABILITY STORAGE ENPTY
1 29 # PROBABILITY STOFASE PILL

HowhoahoH

1)

9999

1000

COHTINUE
50 TO 199
CONTINUE
ZND

DATE = 78191

-

b
22
72

wonon o

21

2
2

n.at nop

45
Z
FA-]

29

P2 (J)
P2(J)
P2(J)
£2(J3)

+ 44

£9.5/
9.5/
P3.5/
F9.5/
P9.5/
F9.5/

17/29/43

+ PZ(NP,AT+1,Ble1) =k
21 ¢ PZ(H?, AT+1,B1+1)= (1.-D)Tx00123D
+ PZ(NP,Al+1,B1¢1) %5

+ PZ(NP,A141,81+1)= (1.-0)T¥021310

TWO2177)
THO01CRD
TEND 109
THO01100
THI01110
TWO01120
TWON1130
TWO01149
TwW001159
THOD 1169
TwO01170
TWO0118)
TWDD 1190
TwW0ON1299)
TWOU 1210
THOII122)
TWO001230
TWON124)
TRO01.50
TWO0 1264
TW001270
TWI0 1230

TW2G 1300

TwO01320
TW0O2133)
Th0013490
THCI1350
TROQ136C
TwOO01379
TRO21380
TWO0 1390
T¥OO01400
TW230141C
THON1420
TWO 21430
TROD 1489
TWOC1450
TROD 1460
THO01470
TRI0 1480
TWOO1490
T¥3 01530
TRO21510
TWO01520
TWO01530
TWO0 1540
THOO01550
TWON1560
THO01570
TWOQ15%9
TWO0 1530
T#0216 3
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A.2 The Boundary Transition Equations Generator

This program is written in the IBM FORMAC Symbolic Mathematics
Interpreter language (See Tobey et.al.[1969], Trufyn[n.d.]l), a
superset of PL/I.

A sample output which includes only the lower boundary corner
and edge state transition equations for a three-machine system with

storage capacities N =N2=10 appears on pages 264- 266.

1
The input to this program is not formatted. The following data

is required, in this order:

K, the number of machines in the line;

i, Pi' ri, the machine indices and failure and repair probabilities
for i=1,..,K.

(Note that i must be an integer, but the failure and
repair probabilities are declared and hence treated
by the program as characters. A sample input may thus
be: 1, "P1", "R1".)

i, N the storage indices and maximum capacities for
i=1,..,K-1.
(Note that i and Ni must be integers. Because Ni are

used as upper limits on several loops in the program,
these can not be given as characters.)
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**stQUATION NO. 1
ZERG = =~ Po( Os 0y O, 1, 1 } ¢ & =~ RL ¢ 1)

1t = RL + 1 ) Pat Oy 1s Os Ly 1}
**®sLQUATION NO. 2 e
28RO = = Pl Oy 1s Oy 1, O} + 1 = RL ¢ 1 ) PO, 1, 0y Ly 1 3 P34+ ( -RI ¢« | 3 1 =RL+ 1P B Ly Op 1, 0
*«*sEQUATION NO. 3
ZERD = =~ Pol Oy 14 Oy 14 1 ) ¢

:'RI : 1 ) Pl Oy 2.-0. 19 01 R3 ¢t =~ RI ¢ 1) P, 1, 0.-0. Co 1 ¥ 22 ¢« [ =P3 ¢ 1 ) = RL* 1) P.C 1y Le 0,0
DUV RZ et -2 e 11 P10, L el BLet - B2 ety
:RléllP.to.z.o.-;:-;‘;O(-P201)|—;;_:-1)¢-uox‘;o.(l.l.n.x.l)
""-Eounmn NO. “ (a4 - TTTTTTTTTTTTTTTTT T
ZERD = « Pol 04 29 04 14 9 ) ¢+ € =~ RY ¢ 1 ) Pol 1y 1y Oy Op 1 ) R2 PI ¢ [ =22 ¢ 1 } Pot 1y Le 1o ty 1 ) PL P3 ¢
STRI o 1) Pet 00 24 Or 1o L0 PY e € - P2 6 1) { = RL ¢ 11 220 1a Ly On 10 1193 o 0 - 83 611 1 <<le11p
:; le 1y Oy Oy O ) R2 ¢ ( -P2 ¢ 1 )V { - R3 ¢+ 1 1) P{
I
--:::EDUATlUN NO. 5 *xs
ITRO 2 = Pol 0y 2, Oy 1o 1 1 ¢+ 4 = R1 ¢+ 1 ) Pol 14 2y Oy Of O 1 R2 R3 4 ( =~ P2 ¢ 1 ) Pul 1y 24 1y 1y & 3 PL 23 &
KUY 1 P00 00 30 00 10 00 R3 e {292 ¢ 10 € <RI e 1) 20t Lo 20 0n 10 01 83 0 ( = p3 s 100 ~ale110
U le 200, 00 11 R2 6 € =92 o L ( = P3 et ) Pl 1o 20 Lo 10 1091 o1 =530 11 ( ~RLe1)but o 30001
ot 1 T
*«st QUATION NO. 6 t:: ------- T

ZEROD = = Pol 1y Oo Or O¢ 1 ) & Pol 1, Ly Ly 14 O ) P2 PL RY +
e 80 1e 10 10 P2 AL e ( =93 ¢ 10 Put Lo Ly 1o 1o 10 82 P14 € -3 o1 IR ot
I T S T U0 et 1 te 2w 00
Tewscouation no. 1 T
ZERD = = Pal 1y Op Lo 1o 1 ) & Pal Oy 1o 2¢ Ly O ) RY QL ¢ P Oy
a T T Tttt T

*¥*EQUATION NO. 8
TRO = = Pol Lo 1y 00 O, O ) ¢ Pl 1, 1

(= Al ¢« 1} Pol Lo 10 Oy Op 1L} PY & | el 1 Lo 1y Ly 2 ) P2 PL ¢ (- ¢ 1yt =Ry &1 )L - R] ¢

1Y P.0 1, 1y O Of O}

SssCQUATION NO.o Q “ew
ZERO = =~ Pal 1y 30 Of O 1 ) ¢ Pl by 29 Lo Lo O ) P2 PL R3 & [ =~ RL ¢
{ = RL &1 % Pal 1y 290 8¢ 00 0 1 R3 & ¢ =P34+ 1 1 Pl 1y 2y Ly 1ls L)
Ce 1oy 1 2 P2 ¢ { ~-R2 e+ 11t =93 &1 ) ~RL* L YPA Ly 2y G 9y 1)

*28EQUATION NO. 10 son
2CRO = = Pot 1y 1y Oy 3o 1 ) ¢ Pl 24 1y 1y 0 0 ) PILR2 RI ¢t ~ RL e 1 ) P00 2, 1, Oy 3y 0 3 22 RY & 7.0 (, Oy 1, D
s 1 1 PL RZ e ( - P3 e L} B0 2, 1y Lle 0O, 1 ) PLRZ e ( = <L ¢ 1 ) 2.0 7 3, 8y 0p 1) RZ » - P o+ L} L - R1l e
1 1 Pel 2y 14 0y 09 1 ) R2 ¢4 =~ P2 41 ) 1 = P3 ¢! 1Pl 2y iy le Lol 320 ¢+t = P2+ 1) =03+ ) [ = RY

« 1) Pel 20 1o O 1e 1)

**sCQUATION NO. 11 evs

ZFROD = = Pol be Lo 1o 1o O ) & Pul O¢ 1y D0 1o 1} PYRL & { =~ K3 & 1 3 »ol O¢ Ly 00 1y 0} RE
«esEQUATION NO. 12 von

IFRC ¢ = Pl 1y bs de 1o 1} & Pl 1y 1y 0y O O ) RZ R3 RL #

= P3 « 1 )V Pl 1y be Q¢ Oy L Y RZRY & ( = P3 ¢ | ) P, 0 G,

essEQUATION NO. 13
2HRG » = Pyl 1o 20 0¢ 00 O F ¢ Pot 1y 20 o Lo (= RL ¢ 1 b 2,0 1o 29 Oy 1e 1) P2 P4 6 0 - 27 ¢} )

IT T T T s ey e oy e
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*ssEQUATIDON NO. 14 .=
2ERD 3 =~ Poi 1y 20 04 Ov 1 )} # Pot 1y 30 Lo 1s» O ) P2 PLR3 & ( = RL ¢+ 1 ) Pot 1y 3, Oy Ly 7 ) P2 R3 ¢ ( - R7 & 1)
C =41 ¢ 1 ) Pet 1y 3, 00 00 O} RI ¢+ [ = P3 ¢ L J Pul 1y 3, 1, Lo 1 VP2 PL ¢+ = P3 ¢ | ) { =R« 10,0 q, 13,

Qe 1y 1 ) P2+ { =R2Z+ 1) =P3 + 11 ( -8R +1 )Pt 1y 3,0, 0,1)

ss2EQUATION NO. 15 A
ZERD =2 = Pof 1o 29 Ce 10 O ) ¢ Pot 24 1o 19 00 1 ) P R2 23 & ( ~ RL ¢+ 1 ) Pol 2, 1o Oy 3¢ 1 ) RZ PYI ¢ { = P2 s 1
Pol 2o 1o Lo Lo 1 Y PLP3 o [ = P2 ¢« 1 ) ( =RL &1 )Pl 2, 1y 0o Loy L } P34 1 = R3¢ | )Pl 2, ls 1y 0s 2} PL

RZ ¢+ L =-RYI &+ 1 ) ( =RL*«1 )Pl 2+ 1y 00 0, 0 R2

sssEQUATION NO. 16 b
LERD = = Pol 1o 24 0v 1, 1 ) ¢ Pol 2y 20 10 0y D) PLR2RI ¢ { = RL +# 1 ) Pol 2¢ 25 00 0y 01 2 8% ¢« { =P2 + 1}
Pol 20 20 10 1o O3 PLRI ¢ & =-P2 ¢ 1 ) 1 = RL+ 1) Pt 2, 1 Pl
RZ+{ =PI s+ 1) 1 =RL+#1 ) Pat 2,200y 001 2R el =P2¢ 11 =P3 ¢ 1 1 Pal 2y 2y 1s lel )Pl et =22

st - P el )L - RL LY PL2y 203, 0. L

*ssEQUATION NO. 17 L
ZERG = = Pol le¢ 24 1o 14 O ) & Pot 1y Lo Oy Op 1 } R2 PYRY @ Pl 04 2, 06 1o 1 3 PIRL + ( = P2 ¢ 1 ) Pt Lo 1y Col
o 1 ) PIRL ¢ ( =~ R3 ¢« 1 ) Pul Ly 14 09 0y 0 ) RZ AL ¢ [ = R3I ¢ 1 1 Pt 3y 2, 00 1y O} RL &+t =P2 ¢ 1 ) ( =P
1Y Pol 1o 1o e 1o 1 ) P3 ot = P2 ¢ )} { -PL ¢ 1 1 ( =133« 11 P, 1, 1, 0

*esCQUATIGN NO. 18 sse
ITRQ = = Pol 14 24 1y 1o 1} & Pol 14 20 0y 00 O ) RZRIRL & Put 04 34 00 Ly 0 ) RIRL ¢ ( = P2 & 1L ) 200 Ly 2, 04 1
» 0 )Y RIRL ¢t = P3 » 1 ) Pot },y, 2, 3¢ 04 1) L1 Pal 0y 30 00 15 L 3 RL & ( =P2 ¢ 1 ) { = P3 s

L) Pal 1y 20 00 1o 1 ) RL ¢ { =22 ¢ 1 3 ( ~PL ¢1 1Pt Ly 20 Ly Lo ORI ¢ =P29 1) =PLe+1 )t =~ P}

¢ 1) Pul le 20 1y Ly 1)

**s£QUATION NO. 19 b
ZERD ¢« Pol 24 Qe Oy O, 1 ) ¢ & = RZ ¢ 1 ) P00 2y 1y 1y 0s 21 PL Q3 ¢ { =22 ¢ 1 ) 1 -1+ 1 )Pl 2, 1y 9, 0, 0

PR3+ 4 = P3 4 L ) Pol 24 Ls le Lo L} PZPL o L - R2 41 ) Vel 2, 0s 1y 0p L} PL e ~-R2 e 1) |

( 2s 1o 1o 06 1 2 PL 2 { = P3 ¢ | ) { <RI ¢

s 11 et -R2Z e+ 1V =Py e+ 1} ~-RLI &
sssEQUATION NO. 20
IERC = = P,{ 2y Oy 1o Or L ¥ » ( = RZ ¢ 1}

= R2 ¢« 1 ) Pol 14 00 0¢ 00 1 ) RL ¢ ¢ = RZ |

s 01 P2 RY ¢ { = PL ¢+ 1 ) Pl 1y Oy 1s 1o 1

-

¢s={QUATIDON NO. 21
LERD 3 = Pol 24 1¢ Q00 00 O 3 & Po( 2, 14 Lo

Pal 24 1o 00 1o L} P2 P3 & |

le 00 0 ) PL ¢ ({ =~ R2 + 1 ) {

*seEQUAT[ONNO. 22 son

LERD = = Pol 29 14 00 00 1 } ¢ Pol 2, 25 1o Ly O ) P2 PL 33 ¢ § = RZ ¢ 1 ) Pul 24 24 le O0v 31V PLRY & (- 31 ¢ 1
5.0 2, 2, 0v 1o 00 P2 RI 0 ( - R2 e 11 1 <RI e 10 20 20 20 34 04 A3 )

;;-0 [ = R2 + 11 ¢ = ---T-;-; -------

TRV i ze 2e0e 2t T e T

$®eEQUATION NO. -
IFRD s - Pal 24 1e O¢ 1,

L) Pedl 30 1y 00 00 1 ) RZ ¢ (=~ P2 o | )}

1) Pel 3¢ Lo 00 he 1}

sSSEQUATION NO. 24 Tee
LERD o = Pl 20 1o by 00 O ) & 2ol 1y 1y Op 1o 1} 92 PY RL o | = ®2 & 1 1 200 {4y 1o Do O L ) 23 20 & =22+ 1
b= 83 ¢ ) Pul e Lo Oy 00 3 ) RL o [ = 81 ¢ 1 3 2,01, e by 1y L} P2 O3 o 1 =@l ¢ | ) ( =RV s |} 2.0 Ly s

s s 0 ) P2
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*=sL QUATION NO. 25 ssw .
TERQ = =~ Pol 2y ¢ Lo O¢ L ) % Pol 1y 20 0s 1y O ) P2ZRIRL ¢ § - R2 ¢1 ) Pol Ly 24 Oy O 0 J RIRL + { = P3 ¢ 1}

Pel 1o 20 Oy 1o 1 ) P2 RL & ( - R2Z* L ) [ =P3 ¢ 1} Pilly, 2,00 0,1 1R &{ =PL 1 )Pl 1, 2, 1, 1y 01} P2

R3 ¢ ( -~ Pl 1}t =~P3 1 ) Pel 1y 24 Lo 1y 1 ) P2 !

™ *#SEQUATION NO. 26 123
ZERD = « Pel 24 1o 10 19 1 ) & Pol 24 1o Os O9p O ) RZRIRYL ¢ Pol 2, 040, Os 1L » RZRL ¢ { =P3 ¢ 1 )} Pal 24 19 Oy O

~

s LIR2RL ¢t - P2 ¢ 1)1 =-P3 ¢ 1 )Pl 2, 1s Oy 1y L VRIL®#{ =-PlL ¢ 1) Pl 21, 1,0, 0)R2RI + ({ =~ Pl +

13 Pl 20 00 15 0y 1) R2Z ¢t = PL &1 )L =#3 ¢ 1 )P {2)1y 1y 0,13 R2Zs( ~P2+11} Ut =PL+1} L =-P3

¢+ 1) Pl 20 1y 1e 10 1}

*s¢EQUATION NO. 27 A
LERD = = Po( 24 29 00 Oy O 3 ¢ Pol 24 29 1o 1o 1 ) P2 PL P3 ¢ { =~ R2 ¢+ 1 } Pl 29 2¢ 1¢ Oy 1 ) PL P3 ¢t =~ RL ¢ 1}

Pl 29 2y 0v 10 1 1 P2P3 ¢ { <~ R2Z 4+ 1)L =RL* 1) Pt 2, 2,00 0,1 )P o ( =R3I ¢ 1) Pt 2, 2¢ ks 1y D) P2

PL ¢+ { -~ R24+ 1) ( ~R3 + 1 ) Pl 29 2y 190, 01} PL ¢+ ( ~R3 ¢ }{ -RIL 1 )Pl 2,2,0, 1, 0)P2es¢ L =-R2

¢+ 1)t =R3 + 1 11 ~RLe*1 )Pt 2,2, Os 0y O

*=ssEQUATION NO. 28 L
IERD = = Po{ 29 24 Oy O0 I } + Pol 24 3y 1y 14 0 ) P2 PLR3 ¢ { =-RZ2 ¢ 1 ) Pl 2, 301, 0, 0 ) Pl RI &+ ( ~-R1 ¢1)

Pel 29 3, Oy 1y 0 ) P2 R3I ¢ { <« R2+ 1 ) =-RI* 1) Pol 203,00 000 ) R3I«{ =1P3 + | )Pl 2y % 1y ty 1) P2

PL ¢ { ~«R2+1 3 P3¢l )Pl 2¢ 3, 140,13 PL ¢ -P3 411 1 =-RL*L P23 0p Lol ) P2+t = R2

¢ 11 -P3 s+l ) ~RL &1 )Pt 2y 3, 000,1)

*s*EQUATION NO. 29 LE A
ZERD = =~ Pol 24 24 00 14 O ) ¢ Pot 3, 1+ 1y Oy 1 ) PL R2P3 & { - RL + 1 1 Pol 3, Ly Oy O, 1 } R2P3 ¢ ( =~ P2 + 1}
Pel 3¢ 19 1y 1y 1D PLP3 ¢ 1 = P2 1 ) ( =-RL*1)PA3, 1y 0b 1y 1 )} P3 e =RI 1) P 3,1, 1y, 0, 01 PL

R2 ¢+ { = RI + 1) -RL+1 )Pl 3,1, O, Oy O ) R2

S*SEQUATION NO. 30 b
ZERO = =~ P,l 24 2¢ 0y 1y 1 ) & Potl 3y 24 1y Oy O ) PLRZ A3 ¢ { - RL * 1 ) Pl 3y 2,0y 0y 0 ) RZRI & ( =~ P2 ¢ 1)

Pol 34 2y 14 1, O ) PLR3I ¢ ( =-P2 e+ 1 ) ( =RiL ¢ 11 Pl 3, 2y 0s 1o 0} RI ¢ { =~ P3 + 1} Pl 3,2, Ly 04 1 | PL

R2 ¢ { = P3 + 1 ) ( ~RL 1 2P, 3, 2,000,101 1 RZet =-P2+ 11t =P3I e )Pl 3, 2,1 sl )PLe+st =092

¢+ 1)t =P3 &+ 1 ) { <Rl &1 } Pl 3¢ 29 O 1y L)

ss¢EQUATION NO. 31 s
ZERD = = Pol 24 290 1¢ 0y O ) & Paf L¢ 29 O¢ 1s t ) P2 PIRL ¢ ( = R2 ¢ 1 ) Pol 1e 20 D9 O 1 1 PS RL ¢ { -R$ ¢ 11}
Pol Lo 29y Op 1o O ) P2 RI ¢ ( = R2 ¢« 1 1t =R3 + 1 ) Pot Ly 2¢ O O O ) RL ¢ { =01 + 1} Pl 1y 2, 1y 14 1 ) P2
P} ¢ { - Pl ¢« 1 ) L -R3I ¢1 )} Pl Ly 29 10 Le D) P2

SSSEQUATION NO, 32 b d
ZJERD = = Pal 29 29 1o Oo 1 ) ¢ Pol 1y 34 Oy 1y O ) P2 RIRL ¢ | = R2 ¢ L ) Pl 1,y 3, 0s 0y D) RIRL ¢ [ =~ P3 & | 1}
Pol 19 3, Oy 1¢e 1 } P2 RL ¢t =~ R2 ¢ L ) = P3 ¢ 1 ) Pa{ le 3, 0s 0, 1 )} RL ¢ = Pl & 1 ) Pol 1y 34 1y 1y O} P2

R3 ¢ ( = PL & 1) ( =~ 03 1 3Pt by 3¢ 1o do L ) P2

*80EQUATION NO. 33 hddd
ZERD = = Pol 24 24 1o Lo O ) ¢ Pol 29 Le Oy Oy L )} R2 PI RL & { = P2 ¢+ 1 ) Pul 2y 1y 04 1y 1 ) ®PIREL ¢ { =R+ 1}
Pal 20 19 0y 04 0 ) R2 R ¢ { =~ Pl ¢ 1 1 Pol 2y 19 1o Op 1 } R2ZPI & ( = P2+ 1 11 = PL o1 ) Pol 20 1e 1¢ 1o 1}
®3 ¢+ { =Pl 4+ L 3t = R3¢ 1 ) P.L 2¢ 1o Yy O0s O} K2

S$SEQUATION NO.

Y4
ISRO & = Pl 24 2¢ le by 1} @ Pot 2, 2, 0, 0y C ¢ R2 RI RY & { - P2 & | RI QL « ( = PY & 1)
Pol 29 20 00 00 1 ) RZRL ¢ ( = P2 ¢ 1t ¢ = P3¢ L} Pl 24 24 0v Ly L) 2¢e 24 1y 0y O ) R2
RY ¢ { = P2 o1 Y { = Pl ¢ 1 ) Pel 2+ 2y 1o 1e O ) RY ¢ { <« PL &} 1 { = P23 ¢ 1) Pel 2¢ 2¢ Ly 00} ) RZ ¢ ( = P2

e b b4 =Pl el )t =PI e ) P2y 2, by Le L
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INPUI TO FORHAC PRECRUCESSOR
BCUKLRY: EROCEDURE CFTIUNS ($AIN;
FORMAC_UGPTIUNS;
GET LISL ()3

Twu: FEEGIN; CEZCLARE NSIOR (N#71),BAXST{N+1),INSTO(N+1),MACHI (N),INMAC(N);

UECLARL {(REPK{(N),FAIL(N)) CHARACTER (N,/10+2) VARYING;:
LECLARE (FLNAL,FRCB) CHARACTER (10#%*i) VARYING;
CECLARF CoR CUARACTZIER (5*N) VARYING:
LCCPFOY: DC J=1 IC N : '
GLI 1iSi (i,FA1L{I),KEER(I));
LNC LCCEBO 1
LOUPUZ: CC J=1 106 N-1;
G3T LIST (I,%AXSI(1+1));
EdL LOCEOZ:
MAKSI (1) =U; NAX3T (N+1)=0;
ASTAT=C%%0; HSIA2=PRUL (MAXST+1) ;
NAXST (N+1)=1;

N3TOR(1)=1; NSICR(¥N+1)=0
INSTO (1) =1; INSIC(8+1)=0
LIER=1;
LOGPA: LU 1nJ1=1 .0 4s5TA2; LOCEB1: DO INRZ2=1 TC NSTA1;
MOUM=IND1-1;
LCCP2: LC IBC3=Z Iu A=1:

NsIdR(l?u3)=NJuF/(“AACI(IVL3+1)+1).
MOUN=NEUd- (((HAXST (LNDs+# 1)+ 1) *N3STCR(IND3))
ENC LOCP.;
NSTCE (%) =NDUA,;
NDUNM=INL2-1;
LCCFJ3: Lu INT3=1 TU B
“RCHI{INC3)=N0UN/ (2%% (N=-IND3)) 3
ROUMSRLU G- (BACHL (IND3) * (Z*#x(N=13013}))
Tl LOGP3s;
INCEX=0;
LGCE3b: LC IND3=2 [0 Ny
If N3TOR(LKD3) > 3 & (HAL3T(IMD3)-3) > NSTOR(INDI)
THEN GC [0 ENCICCEN;
iF 2 >=N310hk(IMNC3) THEY 1uWLDEX=1;
IF NSTCR(IND3) >=(MAXST(INT3)-2) T.JHEN INDLX=1;
ENC LCCE3S;
17 INDLX = O THEN JU TO ENTLOOPT;
LGOr11: CC InLi=2 1C N
LF NSTCR(IND3) == 0O THEN GC TIC 5102,
1F MACUI («n8D3) = 0 THEN oC [u ENLCLOCFEY;
S100: IF NSTCE(LNLJS=-1) = C [HEN SC TUO ENCLCCPIT,
iF INDJ4=¢ 1dEN Cu Tu S107;
1F NSTCR IND3=1;=1 4 MNACHI (IND3-2)=1 IHEN Guo TO ENCLOCP11;
S1CY: LF MACHI(IND3-1)=1 THEN GO 1o ZNCLCCPTI;
LLSE SC TC EMDICLTEN
S102: 1F NSLUB (IwbL3) ==
IF MACHI(inL3) = 1

1r

R R e
-
o
w
[
<
L |
- O
[92]
-
o
[\
u\

ELSE GG 20 S1ug;
51025: IF NSTOR(LND3) == MAXSI(INL3) THEN GC 10 31035;
L7 MACHL (lwi3-1) = 0 TriEN 3C TC ENDLCCPI;
S105: IF NSTCR{INU3I+1)=MAZST(INLZ¢1) THEN GC r"O ENDLOU?211;
IF INC3=w THEN SC TC S10u4;
1P NSTOR(LNDJI+1) = (MAXST(InCI+1) =1, & MACUI (IND3+¢1)=1 THEN GO TO
ENCLCCFE1Y;

S104: IF MACHI(INL3) = 1 THEN GO TU ENMCLCOED;
ELSE SC TC ESNDLCCEIT,
i

51057 LF N31UR(iND3) ~= (5AXSi(INT3)-1;, THEN GC TO ENDLCCP11;
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IP MACHI (INDP3-1) = O THEN ¢C TO S103;

ENDLOGP11: END LGCEVT;

FINAL=*DP. (';
LOOP91: LC 1INL3=2 TC Nj
INT=0; .

51503 I=NSTOon(INL3)/(1C** (INT+1)); IF I=0 THEN GO TO S5151;
INI=INT+1; GC 1C S150;

S151: CBR=NSIOR{INDI)}1I',*;

CHF=SUBSTIR{CtR,5-1INL,2+INT);
FINAL=FINAL| |CHK;
ENC LOCOPS1T;

LCCE1C1: LC INL3=1 IC N-1
CHR=MACHL (IND3) (1%,
CdRk=SUEBSTR(CHR,5,2);
FINAL=FINAL| |CER;
END LQCP101;
CHR=MACHI (N) {}*)"';
CHR=SUEBS1Ik(CHR,9,2) :
FINAL=FINAL| {CEKE; . :

LET (SUK=D) ;

LCOPE: [C 1DLC1=1 TC NSIA2; LOOP4: DO IDDZ=1 TC NSTA1;
NDUS=IDD1-1;

LCOPS: [O IML3=2 IO N-1;

INSIC {(IND3)=NOUM/ (MAXST (INC3+1)+1);
NDUN=NDUM— ( (MAYST (IND3+1)+1) #INSTC(IND3));
ENT LCOEES:

INSTC(N)=NDU;

NDUM=ITL2-1;

LCCPu: CC IND3=1 TOU b;

INMAC (INC2)=NDUL/ (2%% (N-IND3)) ;
MNDUM=NLUN- (I NMAC (IND3)* (2%*% (N-INL3)));
ENT LOCPb;

LOOP61: LC INC3=2 1IC N
IF AES(NSTUR(IND3)-1NSTO(IND3)) > 1 THEN GO TO ENCLOOPY;
ENLC LOCPOET;

LCOP12: CO IND3=Z2 IC N;

IF INSTC(IND3) -= O THEN GO 10 S5202;
IF INMAC(INL3) = O THEN GC TC ENLCLOCEF4;

$200: IF IESTO(IND3-1) = (G IHEM GC TC ENLLOCE1Z2;
1F IN23 = 2 TLHEN GC TC 5201
1F INSTO (IND3-1)=1 & INNAC(IND3-2)=1 THEN GO TO ENDLOOP1Z;

S201: IF INMAC(INL3-1) = 1 THEN GC TO ENCLOCFEU;

ELSe GC 10 ENDICCE1Z:

S5202: IF INSIC(INLC3) -~= 1 THENM GC TO S2025;
IF IMNMAC(IND3) = 1 THEN GU TC ENLLCCE12;
ELSE GU I3 S20C;

S2025: IF 1INSTO(1NL3) -~= MAXST(INL3)} TIHEN GU IO S205;
1F INMAC({1ML3-1) = 0 THEN GO TO ENDLOOF4;

§203: IF INSTO(INw3+1,=MAXST(INC3+1) THEN GC TO ENCLOCP1Z;

IFP IND3 = N QPN GO TG 5204
IF INSTC (LIdD3+1; = {MAXST(INI3+1)-1) & INMAC{INC3+¢1)=1
THEN GU 16 EwDLLCE12;

S2G4: IF INMAC(IND3) = 1 TdFN GG TO0 EMNDLCCPU;
tLSEZ GG TI0 EwDLICP1Z;

$205: IF INSTU(IKD3) == (#AXST({INLC3)-1) IKEM 3C 10 ENDLCOOP12;
1F INMAC(IND3-1) = (0 THEN GO 13 s5203;

ENLLOQUP1Z: M2 LULGEI<;

LET (TRN=1) 3

LOCP7: LU INLC3=1 7O K;

IF INMACINL3) -= 0 THEN 5C TC S€08:

Y




-269~

LET (IRN= ("MACHI {INT3)"*"REPR(INL3) "+ (1-"MACHI (INC3)") * (1="REPR (
INL3) ")) *TRN) ;
GO TO ENDLOOPT;
S608: IF 1INSTO(1ND3) ~= 0 & INSTO(IND3+1) -~= MAXST (INLC3+1) THEN GO TO
S609;
1F MACHI (INLC3)=1 THEN GO TO ENDLOCP7; ELSE GO TO ENDLONP4;
S609: LET(TRN=((1-"MACHI(INC3)")*"FAILI(INC3)"+"MACHI (INL3)"* (1-"PAIL({
INC3) ")) *TRN) ; :
ENCLOOP7: END LOOP7;
LOoQP8: LO INDJI=2 10 N;
IF LNSTO(INL3) == 0 1HEN GC TO $613:
1F INSTO(IND3-1) ~= 0 THEN GC TO S612;
1F NSTOK(INL3) = 0 THEN GC TO ENLCLCCES8; ELSE GO TO ENCLOOPU;
S632: IF NSTOR(iIND3) = MACHI(IND3-1) THEN GO T0 ENDLOQP8; ELSE GO TO
ENCLCOFY
S613: 1F INSTO(IND3) ~= MAXST{IND3) THEN GO TO S615:
IF INSTO(inD3+1) -= MAXST(IND3+#1) THBEN GO TO S614;
IP NSTOR(IND3) = MAXSI(INLC3) THEN GC TO ENDLOOP8; ELSE GO TO
ENCLCOEG;
S6é14: 1F NSTCR (LND3) = (MAXST (INLC3)-MACHILI (IND3)) THEN GO TO ENDLOOPS:
ELSE GC TO ENDLCCPu;
S615: IF INSTC (iINL3-1) = C THEN GC TC S617;
IF INSTO(IaD3+1) = NAXST(IND3+1) THEN GC TC S616;
{P NSTCR (iwD3) = (INSTIC (IND3)+MACHI (INLC3-1)-MACHI(IND3)) THEN GO
T0 ENDLCUP3; ELSE GO T0 ENCLCOPY;
5616: IF NSTCR (LNU3}) = (LINSTO (IND3)+MACHI(IND3—-1)) THEN GU TO ENDLOOCPS:
ELSE GO TO ENCLICCru; -
S617: IF INSTO(IND3+1) = MAXST({INLC3+1) THEN GC TO S618;
IF NSIOR(IND3) = (INSTO(INLC3)-MACHI (INLC3)) TLEN GO TO ENDLOOPS;
BLSE GO TO ENLCICQE4;
5618: IF NSTOR(INL3) -~= INSTO(INL3) THEN GC TO ENDLOOP4;
ENLLOOPB: END LOCPY;
PRCB='P. (',
LCOPY: L[O IND3I=2 IC \;
INT=0;
S152: I=INSTC{IND3),/(10%% (INT+1)); IF I=0 THEN GO TO S153;
INT=INI+1; GC 1C S$152; :
S153: CHR=INSTIO (IND3)i1',':
CHB=SUBSTR(CER,S—INT,2+INT);
PRCE=PRUE} | ChR;
END LOCPY;
LOOF10: LC IND3=1 TC N-1;
CHR=INMAC (IND3)||"',";
CHR=SUESTR (CER,S,2) ;
PROB=PROB| |CHR;
ENC LOOP1U;
CHE=INMAC (N} |1')*;
HR=SUESTR {(CER,5,2)
FROE=FRCB |CiiB;
LET (SUM=SUn+ (TRN*"PRCB") ),
ENDLOGPUY: END LOOP4; ENLC LCCPE;
PUT LIST(*  ***fE(UATICN NO. ‘,ITER,' s=*%') .
PRINT_OUT (ZERO=SUM-"FINAL");
ITER=ITER+1;
ENDLCCP1: END LCOPY; END LOCEFA;
ENC EQUNDRY;:
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A.3 The Power Method Iterative Multiplication Program

This program computes the stéady—state'probability distribution
for a three-machine line by the power method. It is possible to speed
convergence by first solving a small problem and then performing the
8-transformation on the results in order to get an accurate initial
guess for the larger problem.

The input is as follows:

First Card: Columns 1-30: Failure probabilities (p.,, i=1,2,3)
(Format F10.5) *
Columns 31-60: Repair probabilities (r., i=1,2,3)
(Format F10.5) *
Columns 61-64: Storage capacities (N,, i=1,2)
(Format 12) .
Columns 65-67: Value of 1/8 (~> 1, since smaller problems
are to be solved first.) (Format I3)
Columns 68-70: Number of times the §-transformation is
to be performed. (Format I3)
Columns 71-80: Convergence criterion (Note that £+€62
: when the transformation is applied)
(Format F10.5)




FORTRAN 1V Gl

0001

0002
0003
0004
0095
0006
0007
0008
0009
001
0011
0012
0013
0014
001s
0016
0017
0018
0019
0029
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0033
0040
ocel
0062
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RELEASE 2.0 MAIN DATE = 77159 187587139
C =~-~~THREE STATIONS-~-SOLUTION BY SPARSE MATRIX ITERATION
C —-~- AND BOOTSTRAPPING
C -~ ACCELERATE EVERY TENTH STEP
C -~ SCALE MODIFICATION 2
COMMON PeQeP3,RySyRIJNNLJANNZHK

1 sNP{2) LAP({3},AR(3), MNN11,NN21
2 ERRLERR2 4NQ
1 » IX
& s IMy IFACT,AFACT (KK
COMMON /CS/ CL100001}
COMMON /8S/7 1Y(10200,2)
COMMON / 9RTY / Y(1000)
DOURLE PRFCISIUN VY
INTEGCR AA,B88,A1,81,A2,82
NDC 999 =1,1000
- 999 Y([})=0
NG = 10000
ERR2 = 1.8-6
199 CONTINUE
READ (Ss6) P,ylsyPIsRHyS,RIL,NN1,NN2,IFACT,KK,ERR
6 FORMAT (56F1045,212,13,13 ,F10.5)
[F (NN1 +€Q. 0) G0 TO 199
997 [F (NN2 .FQ. 0) GU TO 193
AFACT = IFACT
OC 7000 IM = ],KK
WRITE (6,97)
ST FORMAT (141}
IF (IM E2. 1) GO 1O 9001

FRR = ERR/AFACT JAFACT
P = . P JAFACT
C = & /AFACT
R = R /A&FACT
S = S /AFACT
P3 = P3 JAFACT
R3 = 13 /AFACT

NN1= NNL*[FACT
NN2= NN2¢IFACT
3001 CONTINUE

NNI1 = NN1+ |
NN21 = NN2¢ 1
NP{1) = NNI11
NP{2) = NN21
AP(l) = P
AP(2) = 0
AP(3) = P23
AR(1) = R
AR(2) = S
AR(3}) = R}

NRITE (6,4} PyQsP3,R¢S+RI,NNL,NN2,ERR
4 FORMAT (1% , 20HPARAMETERS

1 aH P =F1%.5/

1 GH Q =F15.5/

1 4H P3=F15,.,5/
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FORTRAN IV 51 RELEASE 2.0 MAIN DATE = 77159 18/58/39
1 4H R =F15.5/
1 4H S =Fl15.5/
1 4H R3=F15.5/
1 4H N1=110/
1 4H N2=110/
1 4H E =E15.5)
00413 WRITE (6,98}
0044 98 FORMAT (//7/1)
0045 "K=8¥NNL11%NN21
0046 IF (K «GT.1000) 30 YO 199
0047 CALL AMAT
0048 9000 CONTINUE
0049 GO T0 199

0050 END




FORTRAN IV 51

o0ocC1
0002

0003
0004
000s
00054

0027
0003
0009
oatn
0011
0012
0013
00L&
0015
0Ql6
0017
0018
o017
0020
0021
0022
0023
0024
002zs
0026
0027
0023
0029
0030
0031
Q032
0033
C0i34
0035
0036
0037
2038
0039
0040
00«1
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RELEASE 2.0 AMAT DATE = 77159

SUBROUTINE AMAT )
COMMON PyQsP34ReSeR3,NNL1JAN2Z,K
«NP{2) JAP{3},AR({3), NN11,NN21

1
2 ¢+ ERRZERRZ2,NQ y IX
4

1

+ 1M, [FACT,AFACT
COMMON NS/ INLyJN2
COMMON /CS/ CL10900)
COMMON /RS/ R{10000,2)
INTEGER AA,88,41,81,A42,82

'8
Ix = ¢
D0 8001 11
DG 8002 12
DD 8003 JNL = NN11
0N 3004 JNZ = 1,NN21
CALL NTRANS (11,12,JNL,INL,D1)
DO 8005 (3 = 1,2
CALL ITRANS {(12413,JN2,IN2,2)
DG 8006 Jl = 1,2
CALL ATRAYMS {1,J1,11+PPL,JN1,JN2)}
IF (PP1 .LT. SRR2) GO TO K006
DO 80CT 42 = 1,2
CALL ATRANS (2,J2,12,PP2,JNL,JN2}
I[F (PP2 LT, TRR2) GO TO 8007
DO 8008 J3 = 1,2
CALL ATRANS (13,J3,13,PP3,IN1,JN2)
AX = PPL¥PP2xPP}
(Ax .LT. ERR2) GO YO 8008
A2 = T342%1244% [ +8K[N2+RINN2LIX(INL-1)-14

!
l

2
2
’

J 342524451 #3% IN2#BENN2 LT (INL=-1)-14
Ix + 1

P{IXy1) =
B{I[X,2) =
ClIX) = &X
CONTINUE
CUNTINUE
CONTINUE
CONTINUE
CCNTINUE
CONTINUE
CONTINUE
CONTINUE
CALL [TER
RE TURN

END

Al
A2

18758739



FORTRAN IV 51

0001
0002

0003
0004
0005
0006
0007

0008
00079
0010
0olL1
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036

0037
0038
0039
0040
0041
0042
0043

0044
0045
0046
0047
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RELEASE 2.0 ITER DATE = 77159

SUBROUTINE ITER

COMMON PeQsP3,yRpSyRIZNNIZNNZHK
1 'NP(2) 4AP(31,AR(3), NN11,NN21

2 ¢+ ERRLZERR2,NQ o IX
4 s IM, TFACT,AFACT, KK

UIMENSION RR1(1000),RR2(1000)

DOUBLE PRECISION RR14,RR2

K2 = K*K

WRITE (6,9} IX,K2

9 FIRMAT (// ¢ THERE ARE’,15,' NON-ZERO ELEMENTS OUT OF A POSSIBLE®,

1 110/7* IN THE TRANSITION MATRIX'//)

1COUNT = 0

IF (IM .NE. 1) GO TO 9000
AK = K

AK = 1./7AK

D0 6 1 = 1,K
6 RRI(I} = AK
8 CALL MATMLT({RR1,RR2}
ICOUNT = ICOUNT + 1
AX = O.
EX = O.
DO 7 1 = 14K
AX = AX +DABS(RRL(I} - RR2{I})
RR11 = RR1(1)
7 8X AMAX1(BX,RR11)
IF (AX JLE. BX*ERR) GO YO 10
TX = AX
DO 3 I = 14K
IF (RR2{I) .LT. ERR2} GO TO 32
RR1I{I) = RR21{I)}
GO 7O 3
32 RRLI(I) = 0.
3 CONTINUE
AX = 0.
00 33 [ = 14K
33 AX = AX + RR1L(1])}
AX = l1./AX
DO 34 1 = 1,K
34 RRI{I)Y = RRI(I) * AX
IF (ICOUNT .EQ. (ICOUNT/10)%10)
1 CALL PRINT (RRI1,NN11,NN21,ICOUNT,TX,8X,0)
GO 1O 8
10 J=0
IF{IMLEQ.KK) J=1
CALL PRINT (RRZ4NNI11,NN21, ICOUNT,AX,BX,J)
RETURN '
S FCRMAY (60X,E£20.8]}
31 FORMAT (3NHIPROBABILITY DISTRIBUTION
1 (BE15.5/1)
4 FORMAT (61101
9000 CALL SCALE (RR14RR2}
GO 10 8
END

[}

18/58/39




FORTRAN IV 51

0001
0002

0003
0004
0005
0006
00C7
0008
- 0009
0010
0011
0012
00113
00L&
0015
0016

RELEASE
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2.0 ATRANS DATE = 77159

SUBROUTINE ATRANS {L1,4L2,L3,PP,UN1,JUN2)

COMMON PeQeP3yRySyRIZNNL,NNZ,K
+NP(2) +AP(3),AR{3), NN11,NN21

AL3 = L3 - 1

IF (L2 «NE. 1) GO TOD 1O

PP = AR(L1)1*AL3 + (1l.-AR{L1})I*(1.-AL3)

- RETURN

1F (L1-2) 1,243

IF (UN1 JEQ. NNL11}) GO TO &

PP = AP(L11*#{1l.-AL3) + (l.-AP{LL1Y)*AL3

RE TURN

PP = AL3

RE TURN

IF (JUN1 FQe 1 .0OR. JUN2 .EQ. NN21) GO TOD 4
G0 70 5

IF (JUN2=1) 44445

END

18/58/39
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FORTRAN IV 31 RELEASE 2.0 NTRANS DATE = 77159 18/58/39
ooecl1 SUBROUTINF NTRANS (A,B,N1,N2,111)
c MODIFIED TG ACCOUNT FGR STORAGE BACKUP
0002 COMMON PyQeP34RySyR3,NN1,NN2,K
1 +NP(2) LAP(3),AR(3), NN11,NN21
0003 COMMON /NS/7 IN(2)
0004 INTEGER A,8
0005 N2 = N1 +
1 fa-1)*1utirpy - (B-1)*IDLIII)
0006 RETURN

0007 END




-277-

FGRTRAN IV 31 RELEASF 2.0 v DATE = 77159 18758739
0001 FUNCTION TUCIX)
0002 COMMON Py0,P3,RySsR3,NNL,NN2,K
1 JNP(2) ,AP{3),AR(3), NNI1,NN21
0003 COMMON /NS/ IN(2)
0004 [F (IXx .E0. 1) GO TO 1
0005 IF CINUIX = 1) oNE. 1 ) 6G 1O 1
0006 216 =0
0007 RETURN
0008 1 IF (INCIX) .EQ. NP(IX)) GO TN 2
0009 =1
0010 RE TURN

0011 END




-278-

FORTRAN 1V 51 RELEASE 2.0 o DATE = 77159 18758739
0001 FUNCTION ID(IX)

0002 COMMON PyQrP3sRySyR3ISNNLINNZsK

1 +NP(2) AP(3),AR(3), NN11,NN21

0003 COMMON /NS/ IN(2)

0004 IF (IX JEQ. 2) GO YO 1

0005 IF (IN(IX « 1) JNE. NP{IX + 1)) GO TO 1
0006 2'1D =0

0007 RETURN

0008 1 IF (INUIX) (EQ. 1 ) GG TG 2

0009 1D = 1

0010 RETURN

o0l1 END

i
v,
3
i
I
v




FORTRAN IV 51

0001
0002

0003

0004
0005
00Cé6
0007
0008
0009
0010
0011
0012
0013
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RELEASE 2.0 MATMLT DATE = T7159

SUBROUTINE MATMLY (21, 22)

COMMON Py0sP3¢Ry1SIR3IPNNLINNZ,K

1 JNP(2) LAP(3),AR(3)}, NN11l,NN21

2 ERR,ERR2,4NQ v IX

COMMON /CS/ C{10000}

COMMON /BS/ B110000,2)

INTEGER 8

DIMENSION Z11(1000),22(10001}

DOUBLF PRFCISION Z1,22

vC 1 I1=1,K
1 22 (I1)=0.

D0 2 1Z = 1,IX
2 12(B(1Z42)) =

RETURN

END

Z2(R{1Z242)) + CULIZY*Z1(BIUIZ,1Y)

18/58/39
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FORTRAN IV 51 RELEASE 2.0 PRINT DATE = 77159 187587139
0001 SUBROQUTINF PRINT (X,N1,N2,11,AA,B8,IFLG)
0002 COMMON / PRTY /7 Y{1000}
0003 DIMENSION X{(1000)
0004 DOUBLE PRECISION X
1 'Y
0005 WRITE (6,1) It
0006 1 FDRMAT (1Hl, 10X, *PROBABILITY DISTRIBUTION -- ITERATION ',
1 1477777 4X,*000', 12X, '001*',12X, *010%*', 12Xy 'Ol1l°,
2 12X,*100%, 12X, *101%', 12X, *110%, 12Xe*'111°//7/7}
0007 N28 = N2#*8
0008 0BG 2 1 = 14Nl
0009 It =1 -1
0010 N281 = N28#*]1
0011 WRITE (6,3) Il
0012 3 FORMAT ([ /710X, *N1 =',137/7)
0013 TF(IFLG.EQel) WRITE{T7,99)(X(N28I+J},J=1,N28}
0014 99 FORMAT{8E10.5)
ools 2 WRITE (6,4)(X(N28I+J),J=1,N28)
0016 & FORMAT (BE1S5.571}
0017 CC = AA/BB
0018 WRITE (6,5) AA.BR,CC
0019 S FORMATY (///' STOP CRITERION: AX =', F17.8, * BX =%, E17.842X,
1 2X
1 YAX/BX =* 4, [E£17.8)
0020 EE = O.
0021 K = N2B*N1
0022 DD = AX
cp23 AX = 0,
0024 DO 1002 I = 1,K
0025 1002 AX = AX + DABS (X(I) - Y{([1}}
0026 IF (Il .LE. 30) GO TO 1000
0027 IF (IT JN%. (11/20)%20) GO 7O 1000
0028 ALAM = AX/DD
0029 EE = ALAM/(1.-ALAM)
0030 1000 CONTINUE
0031 DD 1001 I = 1,K
0032 Y{I) = X{1) = EE*(Y(I) - X{(I))
0033 1001 x{f) = Y(1)
0034 RETURN

0035 END




FORTRAN IV Gl

0001

0002.

00013
00C4
0005

0026
0007
0008
0009
0010
0ot1
0012
0013
0014
ooLs
0016
o017
0018
0019
0020
0021
0022
0023
00c4
0025
00256
0027
0028
0027
0030
0031
0032
0033
00134
00135
2035
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RELEASE 2.0 SCALE DATC = 77159

SUBROUTINF SCALE (RR14RR2)

COMMON PeQiP34RySsRIZNNLJNN2,K
1 sNP(2) +AP{3),AR(3), NNI1l,NN21!
2 » ERRZFRR2,NO s IX
4 » IMy [FACT,AFACT

INTEGER Al, A2

"DIMENSION RR1(10C0),RR2(1000}

DOUBLE PRECISION RR1,RR2
2 WRATI(I)

RAT(1) = AFACT*AFACT

RAT (2) = AFACT

RAT(3) = 1.

NM11 = {NN11-1)/1FACT +
NM21 = (NN21-1)/ITACY +
DG 2 JNL1 = 1,NN11

IN1 = (UNL-1)/1FACT + 1
IF (UN1 .FQ. 2) IND = 2
IF (UN1 .%0Qe¢ 3 .0R. UNL «FQ. &) INl = 3

IF (JN1 .EQ. NN1) [Nl = NMIL -1

IF (JUN1 .CQ. NN11-2 .OR. JN1 .EQ. NN11-3) INl
DO 2 JN2 = 1,NN2}

IN2 = {(UN2-11/1IFACT + 1

IF (JN2 «EQe 2) IN2 = 2

IT (JUNZ .70. 3 .0R. JUN2 .FQ. 4) IN2 = 3

IF (JUN2 .FQ. NN2) IN2 = NM21 - 1

IF (UN2 JFQ. NN21-2 JDR. JUNZ2 .EQ. NN21-3) [IN2

1
1

COoO 2 J1 = 1,2

00 2 J2 = 1.2

DT 2 J3 = 1.2

Al = J3+2€J2+4%J] +8%IN2+B8*NN2L1*(JNL-1)~14
A2 = J342% 2445 )1 +B*IN2+RENM21E((N]I-1)~14
It =1

I[F (UNL LT. 2) 1D = 11 + 1

TP {JdN2 JLTe 2) 11 = 11 + 1

IF (JINL «0Te AN1Y ID = I + 1

IF (JUN2 «5T. NN2Y 1T = 11 + 1

RR1(AL} = RR2(A2}/RATI(II)

CALL PRINT {RRIWNNI1/NN21,0pleylasD)
RETURN

IND

NM1l-2

NM21-2

18/58/739
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A.4 Block Tri-Diagonal Equation System Solver

The present version of this program is for three-machine lines
only. The program can be rewritten in a recursive language (e.g. PL/I)
in order to solve general k-machine lines. The necessary change is
indicated by the dotted line on the flow~chart on page 283.

The program uses the IBM IMSL subroutine LINV2F to invert the
lowest-level main-diagonal blocks. The closed-form solutions for the
inéerses of these blocks may be incorporated in the program (See section
4.2.2).

The input is as follows:

First Card : Columns 1-3: Number of machines (in the present
vesrion of the program, this must be 3)
Column 4: An asterisk (*) in this column supresses

the printing of the probability distribution)

Next K Cards: Columns 1-13: Repair probability of machine (in order)
‘ (Format E13.6)

Columns 14-26:Failure probability of machine (in order)
(Format E13.6)

Next K~1 Cards: Columns 1-5: Storage capacity (in order) (Format I5)

A sample of the output of this program appears on page 284.
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AMAT

—————
l

KSIMAT BCMAT

l
| 3
|

e e

MAIN PHIPSI

PRINT

Flow=chart of the Block tri-diagonal equation system solver.
(The dotted lines indicate the recursions necessary for solving
systems of transition eguations for transfer lines with more
than three machines.)
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3 MACHINES ANID 2 STORABGES.

MACHINE 1 FAILURE FROBARILITY! 0.100000N+00s MEAN UF-~TIME: 0.10000004+02
REFAIR PROBARILITY: 0.20000001400, MEAN DOWN-TIME: 0.500000I'4+01
EFFICIENCY (IN ISOLATION): 0.6666670+400

MACHINE 2 FAILURE FROBARILITY: 0.500000D-01, MEAN UP-TIME: 0.200000D0402
REFAIR FROBARILITY!: 0.200000D+00, MEAN DOWN-TIME: 0.500000D+01
EFFICIENCY (IN ISOLATION)>: 0.800000D400

MACHINE 3 FAILURE FPROBABILITY! 0.5000000-01+ MEAN UF-TIME: 0.2000000402
REFPAIR PROBPARILITY? 0.150000D+00s MEAN DOWN-TIME!: 0.666667D+01
EFFICIENCY (IN ISOLATION): 0.750000D400

STORAGE 1 HAS MAXIMUM CAPACITY: 4
STORAGE 2 HAS MAXIMUM CAFPACITY! 4
FROBARILITY DISTRIKUTION $
Nt = 0
000 . 001 010 011 100 101 110 111 N2
0.0 0.0 0.0" 0.131830400 0.0 0.0 0.0 0.0 0
0.0 0.0 0.425250~02  0.340200-01 0.0 0.0 0.0 0.0 1
0.0 0.0 0.519950-02 0.887450-02 0.0 0.0 0.0 0.0 2
0.0 0.0 0.475150~02 0.76938D-02 0.0 0.0 0.0 0.0 3
0.0 0.0 0.43149D-02 0.0 0.0 0.0 0.0 0.0 4
Ni = 1
000 001 010 011 100 101 110 111 N2
0.0 0.447180-02 0.0 0.0 0.0 0.0 0.0 0.329570-01 0
0.174470-03 0.380440--03 0.0 0.100630-01 0.0 0.0 0.106310-02  0.171330400 1
0.16458D-03 0,392550-03 0.511710~03 0.105480-02 0.0 0.0 0.91719L~02 0.159870-01 2
0.156910-03 0.0 0.492700-03  0.79309[1-02 0.0 0.0 0.833290~02 0,14086L-01 3
0.0 0.0 0.445900-02 0.0 0.0 0.0 0.755190-02 0.0 4
N1 = 2
000 001 010 o11 100 101 110 111 N2
0.0 0.433940-02 0.0 0.0 0.0 0.96877D-02 0.0 0.0 0
t 0.156780-03  0.370920-03 0.0 0.10009D-01 0.45799L-03 0.8197460-03 0.0 0,207280~01 1
: 0,150100~03 0.401450-03 0.507430~03 0.933990-03 0.417200-03 0.738270-03  0,106470-02  0.25207D-02 2
0.1442506-03 0.0 . 0.4561701-03  0.813630-02 0.379920-03 0.0 0.10488N-02 0.148100~01 3
0.0 0.0 0.45398D-02 0.0 0.0 0.0 0.814450-02 0.0 4
N1 = 3
000 001 01¢ o1t 100 101 110 111 N2
0.0 0.422930-02 0.0 0.0 0.0 0.93210L-02 0.0 c.0 0
0,145050~03  0,369550-03 0.0 0.0 0.385730-03  0.739241-03 0.0 0.100521400 1
0.13796D-03 0.409840-03 0.0 0.0 0.356700-03  0.76266[-03  0,478021-02  0.86948[1-02 2
0.13474D-03 0.0 0.0 0.676400-03 0.3335i0-03 0.0 0,429450-02 0.766271-01 3
0.0 0.0 0.383300-02 0.0 0.0 0.0 0.144300-01 0.0 4
N1 = 4
000 001 010 011 100 101 110 1id N2
0.0 0.0 0.0 0.0 0.0 0.797841-01 0.0 0.0 0
0.0 0.0 0.0 0.0 L215870-02  0.44B16D-02 0.0 0.0 1
©.0 0.0 0.0 0.0 0.199770-02  0.422640-02 0.0 0.0 2
0.0 0.0 0.0 0.0 0.18557D-02 0.0 0.0 0.137540-01 3
0.0 0.0 0.0 0.0 $.0 0.0 0.779370-01  C.0 4
.
LINE EFFICIENCY = 0.542540+00
AVERAGE STORAGE FILLS ¢
STORAGE 1 ¢ 0.191100401
STORAGE 2 ¢ ©.15007D401
AVERAGE STORAGE FILLS (FRACTION OF MAXIMUM CAPACITY)
STORAGE 1 ¢ 0.47774D400
STORAGE 2 ¢ 0.3751601400

TOTAL IN-PROCESS INVENTORY @ 0,341160+401




FORTRAN IV G1

0091

0002
00Q3
0308
0005
03106
0007
33978
0009
0019
0011

0012
09013
001«
0415
0116
0017
0718
0J 19
8329
0021
0122
0v23
0724
0u25
oL 2t
0327
Qu2#
0329
0J30
DERA]
0932

(X
Ji34
035
unie
0037

0038
0939
3349

[P D]
2042

1943

0044
0045
QC46
0047

-285~

RFLEASE 2.9 AMAT DATE = 78177 16/645/48

SUBROUTINE ANMAT(INDEX,PINV)

Us**&*30ILDS AND INVERTS LOWEST LZVEL “AIN DIAGONAL BULOCK

INPLICIT REAL®8 (A=H,0-2)

COMNOY P (3),R(3) ,NSTOR (2} ,N,NN,LINIT,5ST,IDUN,NNY,AST R
DIMENSION P (R,8) ,NREGN (4),MAC(3),%ACIN (3},PINV (R,4),WKAREA (100)
¥i=N=1 -

NREGN (1) =2

NREGN (N+ 1) =2

J=INDEX~1

DO 1 I=1,N1

NREGN(N1-I142)=(J/(37=(N1-1))) +1

1 J=J- ((NREGN (N1-I+2) 1) * (3%x (N1-1)))
Ce**seNREGN (L) =1/2/3 IP STORASEZ (I-1) I35 S¥PTY/INTESRNAL/FULL

DO 2 I=1,NN
DO 2 J=1,NN

2 P(L,J)=0.D0

DO 115 L=1, NN
J=L-1

20 3 k=1,N

MAC {K) =/ (2%= (¥-X) )

3 J=J- (MAC(K)*® (2%% (N~K)))

DO 7 J=1,N1

I N=4AC (J)

IF (NkcGN (J).EQ.1) IN=0
LOUT==MAC (J+1)

IF (NKEGN (J+2).2Q.3) IOUT=0
K=NREGN (J+1)

GO TO (4,5,6),K

4 I[P(IN.NE.Q) GO TO 115

Go TO 7

5 IP((1N+IOUT).NE.D) GO TO 115

G0 TO0 7

6 LP{I0OJT.NE.D) GO TU 115

7 CONTINUE

CsxsseNOJ BIILD FOW OP MATRIX

DO 11 I=1,NN
J=1-1
DO 9 X=1,N
SACIN (K)=J/ (2%% (K=K} )
9 J=J-(MACIN(K) * (2% N-K)))

CessseqACIN(I)=0/1 IS THE INITIAL STATE Jr “ACHLYNE I

P(L,I}=1.D0

50 11 J=1,¥

P(L LI)=F{L L, L)*((1.D0=T(J))e* ((1-MACIN(J))=(1=¥AC(T))))} =
1 (R(J) ** ((1-8ACIN (J))*MAC (J)))
IP(NREGN(J) .EQ. 1. OR NREIN (J+ 1) .22.3) 30 T2 10

P(L  ,I)=P(L  ,I)*(P(J)s® (MACIN (J}*(1-%AC(J)))) *

1 ((1.00=P (J)) == (RACIN (J) *8AC (I} ))

30 T0 11

10 IP{({MACIN(J) *{1=MAC(J) )} NE.D) P(L JIV=3.0v
11 CONTINUEZ
115 CONTINUE

DO 12 I=1,NN

MATOIV 16
AAT D020
MATO0N030
SATNONG)
SATINUSC
MAT LJ26)
MAT0N0)78
HA™D 58D
MATNOY)
NATA2O 11U
MATOO11?
MATON120
MAT QU130
BATOU4Y)
MAT"315)
MAT30160
MATC 17D
MATOULIR)
MATOC 199
MAT 00207
MATOO2 10
MATQJ22
MAT0U230
MATNIZ24)
MATOI250
MAT D260
MATOD279
MATIN23)
HAT 03299
MATOO30D
MATOC310
%ATON32Y
MATO%YI3N
MATGO3UD
MATGO3SCQ
NA™0U 360
70379
MATOQ38)
MAT 33330
NATQOU4U0D
MAT 241D
ATO0420
MATO L 3D
YATOUWE O
MATOCUSO
BATOU46Y
MATOJ47D
MAT O3V
4ATOO490
MAT 2)8 )
MATOJR10
¥AT IS )
MATJJ530
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PORTRAN IV G1 EELEASE 2.9 ANAT DATE = 78177 16/43/48

0048 12 P(1,1)=P(1,1)~-1.D0 ®AT00540
0049 IP (INDEX.XE. 1) GO TO 14 MAT 09559
0050 DO 13 I=1,NN MATD0560
0051 13 P(1,I)=1.D0 MATNOSTH
0052 14 CALL LINV2FP(P,NN,NN,FINV,6, NKAREA, IER) MATCO5R0
0053 RETUEN NATI0590
0954 END MATOO06 00

§
{ .
b
g:.'::
f




PORTRAN IV G1

0001

0002
00723
0004
3018
0006
0007
0008
0009
0019
0V 11
0212

0213
00 14
0315
0016

00 V7
0018

0019
0020
0021
0122
0023
0724
0025
0726
0027
0928
0329
0030
0331
0932
)33
Ou3u
0735
02 36
0037
ouls
0339

0040
0341
062
0143
9944

Q745
QJue
0047

RELEASE
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2.0 BCNAT DATE = 78177 1674848

SUBROUTINE BCMAT (MATNN,INDEX,P)

C*»=»»*BJILDS LOWEST LEVEL BLOCKS ZXCEPT MAIN CIAGONAL

1

IMPLICIT BEAL® 8 (A~H,0~3Z)

cosmMoN P(3),R{3),N¥STOR(2) ,N,NN,LINIT,NST,IDUN,NNY ,ASTER
DIMENSION F(8,R) ,NREGN (4),NAC (3),MAZ1N(3),NSTO (2}
Ni=¥-1

NA=NN-1

NKEGN (1) =2

NREGN (N+1) =2

J=INDEX~=1

20 1 I=1,N1

NREGN (N1=I+2) = (J/ (3% (N1=I))) +1
J=J=((NREGH(N1=-T+2}-1) * (3I==(N1~1)))

CoesesNREGN (I)=1/2/3 IF STORAGE (I-1) IS ENPTY/INTZRNAL/PULL

2

J=SATNH
DO 2 I=1,H

HAC (I) =/ (2%= (N-1)

J=Jd= (SAC(I)* (2%* (N=1)))

CesssanqpaC(I)=0/1 IP? FINAL ®MACHIN:E 1 IS DOWN/UP IN INTERNAL CASE NMATRIX

3

DO 3 I=1,N1
NSTO (I)=MAC (I)=~NAC (I+1)

CeaxsxNSTO(I)==1/0/1 TP STORAGEZ I GOES DOWN/CONSTANT/U2 IN THIS “ATXIX

4

wn

7

8
3

DO 4 I=1,NN

DO 4 J=1,NN

® (I,J)=0.D0

poO 135 L=1,8N

J=L

DO S K=1,H

AAC (K) =/ (2% % (N=K})
J=J- (MAC (K) ® (2%% (¥-K)))
DO 9 J=1,N1

IN=8AC (J)

IP(NREGN (J)-EQ.1) IN=0
I0UT=-HAC (J+ 1)
IP(NREGN (J+2) .EQ.3) IOUT=0
R=NREGN (J+1)

GO TO (6,7,3).,K

IP(IN.NEJLNSTO(J)) O TO 135

GO TO 9

IP((IN+IOUT) .NE.HSTO(J)) GO TO 135
GO TO 9

IP(IOUT.NE.NSTO(J)) GO TO 135
CONTINDE

Ce=xsaNOg HBUILD ROW OF MATKHIX

11

DO 13 I=1,NN

J=l=1

DO 11 X=1,N

SACIN(K) =J/(2*%(N=K)}
J=J~ (NACIN (K) * (2%% (¥-X}))

CssevsqACIN (L) =0/1 IS THE INITIAL STATE OP NACHINE I

P( L+¢1,I)=1.00
DO 13 J=1,¥
P(Lel ,I)=P(Le¢1 ,I)#((1.D0-3(J)) **((1=8ACIN(J}}=(1-HAC(J})))*

2ATOUG N
MATOOR 20
HATCNR 3D
MAT 00630
XATOInS)
BATUUGEV
MATO0670
MATDO6RO
MATO00670
HAT VTN
MATI071D
MATI)T2)
MATOI739
MATOA74)
MATI07SV
$ATY0760
MATOGTTD
MATOITHO
MATO0D712
1ATAT3CN
NATI93 1)
MATONH 23
NATNIH 3D
MATUO0P )
AT 4685
MATO0RG)
NATOIRTO
SATO0n A0
XAT2OY 90
LR DUV
SAT00%10
MATII92Y
MATON3D
MATA394N
*AT00952
TATAOYAD
MATOCITD
NATOANG A2
MATUNSAC
2ATT 100
ATV
NATU 120
BATLVT3C
NATONY4D
MATO11IS?
MATOINGY
AT
AT j14180
XATD1uwn
AT 110N
NATO 110
NATN1120
MATUY130
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PORTRAN IV G1 RZLEASE 2.0 BCMAT DATE = 78177 16/48/48

1 (R(J) ** ((V-MACIN(J) ) *HAC (J) ) ) MATO 1140
0043 IP (NREGN (J) .EQ. 1.OR. NRESN (J+1) .E0.3) GO TO 12 MAT 01150
0949 P(L+1 ,I)=F(L+1 ,I)% (P (J)**(BACIN(J)* (1-MAC(J)))) * HATO 1160

1 ((1.D)-P (J)) ** (AACIN (J) *#AC (J))) MATOIITD
0050 GO TO 13 MATO11#0
0051 12 IP((MACIN (J) *{1-MAC(J))).NE.?) F({L+1 ,I)=0.D) MAT 21197
0052 13 CONTINUE MATO1200
0053 135 CONTINUE XATO121)
0054 RETURN MAT01220

0755 END YATH123)




PORTRAN IV G1

00N

0002
0003
0074
0005
0uvde
2337
0008
0009
0010
0011
0012
013
0014
0415
0)16
Qu17
RRRL]
J0 19
9123
0C 21
0022
Qu23
0024
0025
0026
9027
Q028
0229
8332

0031
0032
0033
0934
0035
0d 36
3937
003¢
72339
0040
DRUS]
Quu2
BRLF]
Ouis
0u4s
0046
Q247
onus
Q0us

RELEASE
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2.0 XSINAT DATE = 78177 16,748 /e

SUBROUTINE KSINAT(IND,KSINV)

C*es3*sCONSTRUCTS INVERSE OF SECOND-LEVEL MAIN DIASONAL 310X
Cesxsx«THE PROGRAM ASSUMES THAT THERY AET NO PATHOLOGTCAL CASES
CeesssydITH STORAGE SIZES LESS TUHAN 2

10

11

12

IMPLICIT REAL®*8 (A-d,0-2)

REAL®*2 KSINV

consoN P(3),R(3),NSTOR(2) ,8, NN, LINIT,NST,10UT, NNN,ASTZF
DINMENSION B(8,8),C(8,8), AINV(3,B)

*DIMENSION XINV (8,8,11),D(8,3,11),KSINV(838,88)

DIMENSION DUX1(8,8),D0N2 (3,3),DUN3(8,3),DUNL(3)
INDEX=IND

CALL AMAT (INDEX,AIRY)

DO 10 TI=1,NN

DO 10 J=1,8N

XINV(I,Jd,1)=AINV(I,J)

Jc=0

20 105 I=2,¥

JC=JC+ {(2%= (N-1))

JB=2== (N-1)

DO 20 LOOP=2,LIMIT

IF(LOUP.LE.3) CALL BCMAT (JC,INDEX,C)
IP(LOOP.EQ.2.0R.LOOP, £Q. LISIT) INDEX=I ¥DEX~1
IP{LOOP.EQ.2.08.LOOP.ED. LINTT) CALL G3CMAT (JB,INDEX,D)
DO 11 I=1,NN ’

DO 11 J=1,NN

ouUM1(I,J)=0.D0

DO 11 K=1,NN

DUMT(T,J) =DUMT(I,J) +C(I,K)*XINV(K,J,L00P-1)
DO 12 I=1,H¥

DO 12 J=1,NN

DUM2(I,J)=u.DO

DO 12 K=1,NN

DUNM2(T,J) =0UN2(I,J) +DUNT (I,K) *8 (K,.J}

CexxxeDOM2 IS A SPARSE MATRIX WITH SOMF NUNZEIRO RONS

13

14

15

16

IP (LODP.EQ.2.0R.LOOP. Q. LINIT) CALL AMAT (INDIX,AINV)
DO 13 I=1,NN

DO 13 J=1,NN

XINV (I,J,L00P) =AINV(1,J)

DO 19 I=1,NN

DO 18 J=1,N¥

IP(DUN2(I,J} .EQ.0.D0) GO T 18
53CAL=-1.D0

20 14 K=1,NN

SCAL=SCAL+CUN2 (I,K)*XINV (K,I,LO0P)

DO 15 K=1,NN

DUMG(K) =0.LO

DO 15 L=1,N¥

DUNY (K) =DONY (K) + DUN2 (I,L)*XI¥V {L,K,LD0?)
DO 16 K=1,NN

50 16 Ls=1,N¥

DON3 (K,L) =XINV (X,1,L00P) *CUNG (L)

DC 17 K=1,HN

DO 17 L=1,NN

MATO1249
MATO 1259
MATO1260
MAT01270
MATD1287
MATU12490
HAT7 130
MATD1310
MATO132)
dATO1339
MATN 1340
MATO136%
MATO 1361
MATN137)
MATOI13 20
MATD 136
XATO1407
MATOIY D
MATO1420
AT 143D
AT 21440
MATD145C
ATHINS Y
MATO 147N
MATI14R)
BATO 1490
MATO0 1507
MATO1510
MATO 1520
BATC15390
NATC 1540
MAT 21550
%al01556)
XATC1S7D
M&T01530
RATO1S%)
qAT 0160
MATI 16 10
MATO01620
MAT 1637
MATO10UY
¥ATOIFSO
MATI16AY
HATO 1679
MATN1630
NATC 1642
MATI1797
ATUI71D
MATO 1720
MATO1730
$ATO1740
%ATU1750
MATO 1760
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PORTKAN IV G1 RELEASE 2.0 KSINAT DATE = 78177 16/44 /48
09352 17 XINV(K,L,LO0P)=XINV(K,L,LO0P) -DUN3(K,L) /SCAL MATI177
0351 S0 TO 19 MATD1740
0252 18 CONTINUE MATG179C
0353 19 CONTINUF MATO1292
0054 20 CONTINUE MATO 1R1T
Ce**ssxx?'s DZFINED, COMPUTING D's MATO1°2)
0055 DO 35 IDENT=1,LINIT AATO18 13D
0356 INDEX=IND . SATQIRGD
0057 L=LIMIT-TDENT MAT21¢50
0U58 IP(L.EQ.0) 6O TO 22 MAT ) 1809
035y DO 21 1=1,L AATO1HTD
0069 D0 21 J=1,NN METI 1IR3
0761 DD 21 K=1,NN MATG192%)
0062 21 0(J,K,I)=0.D0O MATC199)
9763 22 L=L+1 MATU1GY D
Jook 00 27 I=L,LINIT MATO1: 20
8065 IF(I.NF.L) GO TO 24 MATI1¢3)
0066 DO 23 J=1,NN MAT Q140
0367 DO 23 K=1,NN MAT 2145 )
09368 23 D(J,K,I)=XINY (J,K,I) YATU1%0Y)
0369 IP (I.7Q.LINMIT) GO TO 27 YATOYRT
0379 IP(I.£Q.1) CALL BCMAT(JC,INDLY,C) i MAT)1EHN
0u71 INDEX=INDEX~-1 YATN10QY
U172 30 TO 27 MATU2IID
0273 24 IF(X.EQe (L#1) JAND.T . NE.2) CALL SCYAL (JC,LNDEX,C) MATO2)1n
Cu74 IF(1.20. (L#2).AND.T.2Q.3) CALL SCYAT(JC,INDEX,C) MAT™2220
007% DO 25 J=1,NN MATO2230
007¢ DO 25 K=1,NN MaTI274)
0u77 DUM1(J,K)=0.D0 MATIZ4L50
0078 DO 25 4=1,NN AAT22060
017¢ 25 DURY (J,K) =DUMI(J,K)=C(JI, ") *2(4,K,I-1) MATN27NTQ
00~0 DO 26 J=1,NN YATQ2020
0931 DO 26 K=1,NN MATNZ I
0Qrl D(J,K,I)=0.D0 MATH2100
DRLE] DO 26 M=1,HN MATCZ2110
U7y 26 D(J,K,I)=D(J,K, 1) +XINV (J,",1)*D0UN1(4,K) YATU2122
0055 27 CONTINUE MATU21 s
CUsxux=D¢3s DEPINED, COMPUTING KSI INV:LSF MATU2140
0986 IKDEX=IND=-2 MAT2159
0087 DO 34 I=1,LIMIT ¥ATO0.167
0088 IF (I.NE. 1) GO TO 30 MATO2YT S
Q089 DO 28 J=1,NN MAT(Z19C
VL] DU 28 K=1,NN NAT2197
0091 28 DU43 (J,K)=D(JI,K,LINMIT) MATORZAY
0092 DC 29 J=1,KR MAT Y2210
0)93 DO 29 K=1,NN MATU222C
09074 29 KSINV(J3, (ICENT-1) *NN+K)=DUM3 (J,K) 4ATU2230
0195 . CALL uUCMAT(JB,INDEX,B) MAT Q2240
0096 INDEX=INDEX+1 . NATN2250
2387 GC TC 34 MAT G220C
angr 30 IP(I.7Q.3) CALL BCMAT (JB,INJLX,B) MATC 2270
0799 DO 31 J=1,NN MAT 0232

0100 DO 31 k=1,NN YATG2260
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FOXTRAN IV G1 RELEASE 2.7 KSINAT DATE = 78177 1R/LG/AR
0101 DUM1(J,K)=C.D0
3102 20 31 L=1,KN
0103 31 DUM1(J,K)=CUNY (J,K)+B(J,L)*dun3 (L,K)
0108 50 32 J=1,NN
0105 DO 32 K=1,NN
0106 20M2 (J,K)=0.D0
0107 DO 32 L=1,NN
0108 32 OUM2 (J,K) =DUM2 (J,K}+XINV (J, L, LINIT+1=1) *CBUATI(L,¥)
0139 DO 33 J=1,NN '
0110 DO 33 R=1, NN
0111 DUK3({J,K)=D(J,K,LIAIT+1-1)~0U42(J,¥)
0112 33 KSINV((L-1)®NN+J, [IDINT=1) S\UN+K) =5UM3I (J,¥)
7113 34 CUNTIVUE
Cesx*¢3LOCK~-COLUMN *IDENT* OF ¥3I INVEIRSL CONPUTED
2114 35 CONTINUE
Cmssxegs] INVEPSL COMPUTED
2115 wETORN
9116 END

MATO2300
AT 22317
AT 2320
MATI2530
MATO2340
NAT 32290
MATO2,561,
2ALD231)
MAL02390
NATN 2390
MRT )40
MATO 2410
MAT D242
MATO2439
MAT 2447
®ATD2454
MAT 2467
PATO2WTG
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FORTRAN IV G1 RELEASE 2.) PHIPSI DATE = 78177 16/85/48

0001 SUBRUUTINE PHIPSI (MATNK,1ND,P) HATO 2449

Ces*#4BUTLDS SECOND LEVEL OFF-DIAGONAL BLJCKS NATD2399

Cw*«s**DRESKENT VEKSION POR THREE MACHINES MAT02500
0002 INPLICIT XEAL*8(A-H,0-Z) HATO2519
0203 COMMON P(3),R(3),NSTOR(2),N,UN,LIMIT,NST,IOUT,NNN,ASTER MAT2520
0004 DIRENSION EC (8,8) MATO253)
2995 DIMENSION P (88,88) MATOL540
0006 DO 1 I=1,NNN MATO2555
0397 DO 1 K=1,NNN MAT 02549
000K 1 °(I,K)=0.C0 AAT0 2579
0009 k=2 MATI258)
0010 J=1 MATG25%0
0011 IF (MATNM. 5Q.2) J=6 MATS26)A
0012 IFLAG=0 MATO261)
0013 2 INDEX=IND MATO2629
014 DG 6 I=1,LIMIT MAT U263
0015 1P (IPLAG. EU.0) GO TO 3 MATO 2540
2716 IF(MATNM.EQ. 1.AND.I.EQ.1) GO TO 5 MAT (2659
0017 IP(NATNM.EQ.2 .AND.I.:Q.LIMIT) GG TH 6 MAT026 67
0)18 3 IF(1.LE.2.0R.I.SQ.LI4I™ CALL DCNAT(J,INDEX, BC) HATOZ67)
0019 DO 4 L=1,HN VAT ) 2640
0029 DO 4 M=1,NN MAT 5267)
0621 4 P((LIATT=-I +K) *NN+L, (LIMIT=I)*NNet)=BC (L,H) NATO27050
0922 5 IP(I.%0.1.0K.1.EQ. (LIMIT-1)) INDEX=INDEX-1 MRTI2710
0023 6 CONTINUE MAT 04720
0024 IF (IFLAG.NE. Q) gETURY AT T30
0025 1PLAG=1 MATI2T30
0026 K=1 242759
0327 IP(BATSN.£Q.2) K==1 MATG2760
0028 J=5 . YATO277Y
029 TP (MATNM.EQ.2) J=2 MATO27%)
0030 306 T0 2 MATO2790
0031 END MAT(C24 )3
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FPORTRAN IV G1 RELEASE 2.0 PRINT DATE = 7R177 16780 740

0001 SUBROUTINE PRINT (STATE) wreey
Ceess»QUTPUTS KESULTS WITH THREE-41ACHINT PUXRAT Pre R YoM
C#ssssCALCULATES AND QUTPUTS EZPICIENCY AT IS g
CwwesxNOTE~-~SLOWEST MOVING INDEX IS *LAST® STORAGE WwILIra
0002 IMPLICIT REAL#*8 (A-H,0-2) T et
0003 CONKON P(3),R(3),NSTORB(2),%,NN,LINIT,NST,IOUT, NNN,AST k Woulre)
0004 DINENSIUN STATE(3080) a7 12079
0005 DATA STAR/'*¢/ WeAdaan
0006 IP (ASTER.NE.STAR) WRITE (IOUT,1) 1Ty on e
0un7 1 PORMAT (1H1,2X,*PROBABILITY DISTRIBUTION :*,// ) WPl
000R N1=NSTOR (1) ¢1 at . v13
0009 N2=NSTOR (2)+1 age e
[*DALY] EPF=0.DC .ty I20 )2
0011 AVG1=0.0D0 ’ TSR]
0012 AVG2=0.0D0 @ Tire %A
0013 20 6 I=1,¥1 ey=230p1
014 NN1=I-1 “@=iiers
0015 NBEGN=NN1%8 AT )N
0316 IP (ASTZR.NE.STAR)SRITZ (L OUT,2) AN1 i
0017 2 FORMAT(1HO,/,10X,*N1 = ¢ ,I5,/,3%,'000",10%,%001°7,1Jx,*312*,123¢, “aTivi)
TO'I11¢,10X,0109¢, 19K, 101, 10K, * 112*, 10X, " 1110, 21,442 ,/) LTE TR
QU IR . 20 b6 J=1,N2 TRT a2y
6019 NN2=J-1 vty
0020 IP(NN2.EQ.0) GO TO & : TS SRR RS
0921 DO 3 K=2,8,2 i),
0022 3 LPP=EPP+STATE (NBEGN+K) TN R
0023 4 DO 4S5 x=1,8 «rT ST
6224 AVG1=AVG1+STATE (NBEGN+«K) NN 1 ‘ IS8 BT
0025 AVG2=AVG2+STATE (NBEGN+X) *NN2 ATV
0126 45 TP (STATE (NBEGN+K).LT.1.D=-12) STATT (N3EGNe¥)=1.00 C R LER
0027 1P (ASTER.NE.STAR) VRITE(LOUT,5) (STATE(NBESN#K) ,K=1,4), 522 LYSEBERE!
0923 S PORMAT (1H ,8E13.5, 11X,14) sATiNNZY
00 2 6 NBEGHN=NBEGN+N1®R LR AR
0u3) WRITEZ (IOUT,7) EFF "I
0031 7 PORMAT(IHO,////,% LINE EPPICIZINCY = ',Z15.5) LT R I
0032 YRITL (IOUT,75) AVG 1,AVG2 “a? ite.
0033 75 PORMAT(1HO,'AVERAGE STORAGE FILLS : ',/,' STOxAGZ V @ ' a7, 10
1 ,r15.5,/,% STORAGE 2 : ',Z15.5) MR
VBL) AGG 1=AVG1/NSTOR (1) ALY
0035 AGG2=AVG2/NSTOR (2) AT
0036 YRITE(IOUT,3) AGG1,AGGS2 AT MY

0037 8 PORMAT (1HO,'AVERAGE STCBAGE FILLS (FRACTION OF ¥AXItUX caf TR N
1,'PACITY) : ',/.' STCRAGE 1 : ',P15.5,/,' STOXASE 2 @ ° CAL b

2,215.5) BT
0038 . TINVRY=AVG1#AYG2 NI

0039 ZRITZ (IOUT,9) ~INVRY . oo
0040 G PORMAT (1HO,'TOTAL IN-2RCCZSS INVENTOAY 1 *,E15.5) ST

0041 RETORY EEE TN

3942 END ATt




PORTKAN IV Gt

0001
0002

9393
0004
3375
0006
0097
000#
0009.
01310

[IN\RR]

09712
0313
0714
0215
0915
0017
0018
0019
0020
0321
09022
0323
0d24
0725
0026
0027
0028
0029
0039
0031

0032
0033
0034
0035
02136
00137

0038
0039
0340
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RELEASE 2.0 MAIN JATE = 78177

Ce*s=¥xMAT N PROGhAR - THREE MACHINZI TWO STORAGE CASE
C****x*HIGREST LEVEL - COMPUTATION OF STAT: VECTOR

16 /48 /48

Cs*s$sTHE PROGRANM ASSUNES THAT THZKFE ARE NO PATHOLOGICAL CASLS

Csess*YITH STORAGE SIZES LESS THAY 2
IMPLICIT REAL*8 (A-H,0-2)
REAL*? KSINV

Ces**x«gARNING - DIMENSIONS MUST Cf READJUSTLD FYOR DIPFZRENT LATA

C#swskXAXIMUM DIMENSION - 3 MACHINES AND 2 STORAGES
Ce*sssMAXINUX DIMENSION - STORAGES N1=1Q,N2=34

co¥MON P(3),R(3) ,NSTOR(2),N,NN,LINIT,NST,IOUT,NNN,ASTER
DIMENSION KSINV (88,88) ,PHT (85,88),PSI(88,68),STATE(3030)
DIMENSION DUN1(88,88),DUN2(88,88),DUM3(88,88),DUN4(83)

DIMENS1ON XINV (88,88,35)
IN=5
I0UT=6
1 READ (IN,2,END=999) N,ASTER
2 PORMAT{I3,A1)

Ce***$ASTEKISK IN COL.4 SUPPRESSTS PRINTING OF PRO3. DIST.

IP{(N.EQ.0) GO TO 91
Cx**x3&«N=) - INCREMENT SECOND STORAG™
NLAST=N
IPLAG=0
NN=2%%N
ISTO=N-1

3 POXMAT (1H1,I3,* MACHLNES AND *,I3," STDLAGES.',//)

DO 310 J=1,N
310 READ(IN,4) R (J),P(J)
4 PORMAT (2BE13.6)
Do 329 J=1,ISTO
320 READ(IN,7) NSTOR(J)
WRITE (IOUT,330)
330 PORMAT (VHO,/////////)
WRITE(IOUT,3) N,ISTO
7 FORMAT(IS5)
DO 5 J=1,K
TINIP=1.D%/P (J)
TINDN=1.DU/R (J)
EPISOL=R (J)/ (R {J) +2(J))
S &RITE(LOUT,6) J,P(J),TINUP,n{J},TIYDN,BFISOL
6 PORMAT (14 ,*MACHINE ',I3,' PAILUR: PROBABILITY:

iP~TINE:*,3X,E13.6,/,14X, *KEPAIR PFOBABILITY: *,S

2-TINE: *,E13.6,/, 14X, *EFPICIENCY (IN ISOLATION):
NST=2**N
DO 8 J=1,ISTO
NST=NST* (NSTOk(J) +1)
8 WRIT: (IOUT,9) J,NSTOR(J)
9 PORBAT (19 ,*STORAGE *,I3,* 4AS MAXIMNUN CAPACITY:
INDEX=3%%ISTO

C#sss#PHEIRE AKE SINDEX' COMBINATIONS OP 'LOWER BOUNDARY',

Cess*xAND 'UPPEE BOUNDAKY' REGIONS POR oACdH STORAGE.
LIMIT=NSTOF (1) ¢1
REN=LTHIT*NN
CALL KSIMAT(INDEX,KSINV)

'L,E13.6,',

MATU3300
MATD3310
MATO3329
MATUL333D
NATN 33490
MAT33350
MATI336)
NATO0317)
MATI333)
MALID3390
MATI34NI
4ATO3410
MATO 3420
MATO3430
NATO3440
MATD345)
MATO3U4u0
MATI3UT )
MATO3U4P 0
Ma™ 3490
MAT0IS00
MATU351)
MATN3520
MAT03530
MATI3540)
®ATD3550
MAT )35%07
MATN357D
MAT353)
MAT035%0
MATU3600
MATO3510
MAT03620
MATU3630
MATG 3040
MATI3050
MAT (3600
MAT 13670
MATG3610
HZAN UMATOIEY D

13.6,', MEAN DCWNMATU3700

YL,E13.6,/)

e 15,7)

MAT?371)
MATO3720
MATUO3730C
XATN3740
MATO3759
MATU3760
KATV3770

VINTERNALY, MATO378¢

¥AT D379
NATO03700
BAT 23810
MATO03P20




FORTRAN 1V G1

ovu
0742
Quas
[ LXT'Y
0045
00ub
0747
004w
04y
0959
0151
0052
0053
0uss
0155
0056
0697
3758
LOEX]
0163
QU6
0162
0Vb3
064
0065
3066
0067
[{NLY]
0J69
0u70
0371
0372
0473
0074
0075
0076
0077
0778
0079
0384
Qo® 1
0982

0963
Q0RUY
QI8%
0V 84
0087
0085
0089
0399
0061
0v92

-295-

RELEASE 2.) NALIN DAT: = 78177

20 10 T=1,NNN
DO 10 J=1,NNN
10 XINV(T,Jd, 1) =KSINV(],J)
L1=NSTOR (2)+1
Loop=1
G0 TO 100
91 READ(IN,92) NUP,NTIN
Y2 POKMAT (2I5)
WRITE (100T,330)
H=NLAST
N1ND=1
43 INDEX=2% (3% (ISTO-1))
IELAG=1
LooP=L 1~}
Li=LieNUP
NSTOR{IST) =NSTOR (TSTO) ¢N Uy
NGT= 26%N
DO 94 I=1,ISTO
94 NST=NST® (NSTOh (I)+1)
RITE(ICUT,3) N, ISTO
DO 95 I=1,N
TIMUP=1.D0/2(1)
TI4DN=1.D0/k (I)
SFPISOL=R (1)/ (R(L)+2(1))
95 JRITE(IOUT.6) I1,P(I),Titue,” (L), IMDN,EFISOL
DO 96 1=1,ISTG
96 MKITE(IOUT,9) I,NSTOL (D)
100 L0OP=LOOP+1
IP(LOAP.GT.L1) 50 TO 20
I® (LOOP.LE.3) CALL PHIPSI (1,INDFX,Pul)
DO 11 I=1,NNN
DO 11 J=1,KNN
2081 (L ,J) =0.D9
DO 11 X=1,NNN
11 DURI(I,J) =DUNT(1,J) +PHL (I,K) *XINV(K,.1,L00p=1)
[P(LOOP.EY.2.0R.LUOP.EQ.L1) INDEX=INDEX- (3¢ ([5T0-1))
IF {LOOP.SY.2.0R.LOOP. Q. L1} CALL PHIPSI (2,INDRX,PSI)
DO 12 I=1,HN¥N
DO 12 J=1,NNN
DN N2 (1,J) =0. D0
DO 12 K=1,NNN
12 DUM2(I,J) =DUN2(I,J)+DuUNT (1,K)*PSI (K,J)

CevsseDUM2 [5 A SPAMSE MATRIX WITi SOML NONZELU ROWS

IP (LPLAG.EQ. 1) CALL KSIMAT(INDEX,KSINY)
LP(IPLAG. EU.1) TPLAG=2
IP (LOOP.EQ.2.CR.LOOP. £Qa L1) CALL KSIMAT (INDLX,KSINV)
DO 13 I=1,NNN
DO 13 J=1,NNN
13 XINV(I,J,L00P)=KSINV(I,J)
DG 19 I=1,NNX
DO 18 J=1, NNN
I° (DUN2(1,J) -:Q.0.D0} GO TO 14
SCAL=-1.D0

16/704d/98

HATO 310
MAT13H4N
MAT 3% 50
MAT) Yy
RATIHTD
MAT i 344
BA D a0
MATO G0
NAT3919
NATH Y5 20
bV A
MAT P4 AN
MNAT 1397
MATH Y00
=AT 13910
NATDY =)
AT 1203
MATIAO M
NATINSTIY
MAT U0
MATGG )Y
MAT 438N
BAT Yuy
MAT VA0
MATOU0?)
MAT LBy
MAT 3Ny
NATYN )
MALOUW110
NAT YA
MAT D& 13N
NATOUT14)
MATIU1S"
AT IU4VHD
MAT Y4178
AT ouled
MAT Yy
MATOUZ 02
SATVR 21D
MAT Q221
MAT SUg Y
MAT 424
MATVE2Y)
MAT U2
MATIG27U
MAT 825"
RATOQ2%)
NATC4 3D
MATC43YD
AT 432
MATOIY4D
MAT I 3UY
MAT 04350
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PORTBAN IV G1 RELEASE 2.0 MAIN DATE = 78177 16,48 /48
0093 DO 14 K=1,NNN MATOL360
0094 14 SCAL=SCAL+DUX2{I,K)*XINV (K,I,LOOP) MATOU3?)
039S DO 15 K=1,NNN MATO43390
0096 DUN4(K)=0.T0 MATO4390
0097 DO 15 L=1, BNN AT 044 20
0098 15 DUMY4(K)=DUNY (K) +DUIM2 (I,L) *XINV (L,K,LOOP) MATO4H410
0099 DO 16 R=1,NNN MAT 04420
0100 DO 16 L=1,NNN MATOU430
0101 16 DUM3 (K,L) =XINV (K,I,LOOP) ¢DUMN4 (L) MATOLUYD
0102 DO 17 K=1,NNN MATOUUSD
103 DO 17 L=1,NNN MATOI44GD
2124 17 XINV(K,L,LOOP)=XINV(K,L,LOO2)~DO¥K3(K,L)/SCAL MATOU4LTD
0105 GO TO 19 MATO4L8D
0106 18 CONTINUE NATOU4Y0
0137 19 CONTINUE MAT 04500
2118 GO TO 100 MAT 04510
3109 20 CONTINUE . MATOYS20
Cesxkeyt5 DEPINLD, NOW COMPUTING THE PIKST COLUNN OP I' INVLESF AT 04530
0110 INDEX=3 MATOU4S 4
0111 DO 34 I=1,L1 MATD455"
G112 IP(I.J¥E.1) GO TO 30 MATOUS56D
0113 DO 28 J=1,NNN MATOES7D
0114 DO 28 K=1,NNN MATCU45920
0115 28 DUN3 (J,K)=XINV (J,K,L1} . BATIU59 )
316 CALL PHIPSI(2,INDEX, PSI) MATIU6DC
0117 INDEX=INDEX+ (3%* (IST0-1)) YATSU61D
0113 G0 TO 325 MATO4E2Q
n119 30 IP(I.EQ.3 ) CALL PHIPSI(2,INDEX,PSI) NATOU4630
2129 DO 31 J=1, NNN. MATO45UN
0121 DO 31 K=1,NKN MATO46H 5D
0122 pOM1 (J,K) =0.D0 BAT J45A0
0123 DO 31 L=1,NNN MATOULTO
J124 31 DUN1({JI,K)=DUN1T(J,K)+PSI(J,L)*DUN3(L,K) MATIUSED)
0125 DO 32 J=1,NNN MAT 046950
0126 DO 32 K=1,NKN NATIUT I
9127 DUM3 (J,K} =0.D0 . MATO4710
2123 DO 32 L=1,NHN MATO04720
2129 32 DUM3(J,K) =DUM3 (J,K)-XINV(J,L,L1¢1-1)*DUNT(L,X) AT 04739
0130 325 DO 33 J=1,NNN MATOUT YD
0131 33 STATE((I-1)*NNN+J) =DUN3(J, ) MATIYTS5)
0132 34 CONTINUE MATOUT 60
Cssss*FIRST COLUNN OF T' INYERSE COXPUTED. MATILTTD
Cxxxk*APPLYING BMATRIX INVERSION LEMMA POk :OWd OF ONi5 AT O04TIHD
0133 SUM=%. DO MAT 24792
0134 I=NN+1 MATOUP QD
0135 DO 35 J=I,NST MATOUR 1N
65136 35 SUM=SUMSSTATE (J) MATO4R20
0137 00 36 I=1,NST MATONS 30
2138 36 STATE(I) =STATE(I) /SuUn MAT 04840
Ces#ssSTATE VECTOR COMPUTED. MATO4850
3139 CALL PRINT (STATE) MAT OuR6N
o140 WRITE{TOUT,330) MATNUSTD

o141 IP(IPLAG.EQ.?) GO TO 1 MATO4B80
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POnTRAN IV G1 KELZASE 2.0 MAIN DATE = 78177 167413 /4R

0142 NIND=NIND+1 MATO439)
0143 IF (NIND.LE.NTIN) GO TO 193 MAT04900
DART] GO TO 1 MATO4919
0145 999 CONTINUE MATNWG 20

2148 IND hAWDERED]
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A.5 The Transfer Line Simulator

This program uses the IBM IMSL function GGUB to generate a
random number; it makes the stochastic decisions by comparing the
magnitude of the random number with the predetermined failure and
repair probabilities.

The input is as follows:

First Card: Columns 1-2: Number of machines (K £ 9)
Columns 3-9: Time limit on simulation run
(Number of cycles)

Next K Cards: Columns 1-2: Index of the machine (i)
Columns 3-7: Probability of failure (pi) (Format F5.3)
Columns 8-~13: Probability of repair (ri) (Format F5.3)

Next K-1 Cards: Columns 1-2: Index of storage (i)
Columns 3-5: Capacity of storage (Ni)

Next Card: Columns 1-2: Option parameter
(0: Transient analysis
1: State frequency ratios
2: Frequencies of producing/not producing
for n consecutive cycles)

Next Card: (Only if Option parameter = 0)
Columns 1-13: Steady~state efficiency (Format E13.6)




FORTRAN IV G1

0001

0002
00u3
0004
0ous
0006

Qu07
0008
00Vy
0010
0011
0012
0J13
QU ly
0315
0v1e
0017
9213
019
0J2)
ovzt
0vl2
0023
0v24
0025
0326
0927
go2s
0)2%
0u30
0031
9032
0u33
0u34
Qu3s
Q)36
0037
0v38
0039
QJ40
U4
0042
Qu43
00uu
QuUK5
[PIVEY )
Qo47
Q044
004y

BalodSE

9y

+0d

401

402

402

w1

295

1
2

1
2

29

FORMAT (I2,
TOTAL=LISIT
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17)

LP(NeGTaVoANLNeLELG) w0 TO 4O
dRITE({1OUT,400) N,LIXIT

FORMAT (14
CALL EXIT

IXx=767

+*INCOBEECT DATA *,I4,2X,1I7)

50 442 I=1,LTT

PULL(1)=0

EMPT (I) =9

PL{b6)=PNUN (d=1)

FT(10)=FNUN(N)

LP(¥.3T.3)

PT(17) =uLASH

LF (N.GT.5) GO TO 1301
FT (1Y) =FNUN(N2)

30 TC 802

FT (1) =FHUM(1)
INC1=2%N=11
PT (1y) =FNUN(INDY)

CONTINUE
NN=N=~1

dRITE(IOOT,101) N, 8N,L1017
POKMAT (1B1,12,' MACHdINeS, *',12,' STORAGES. Tl%:r LIJIT
DU 5 IND1=
BEAD (LN ,2)

1,
1,L081, 0082

PORBAT (12,275.3)
4RITE(IOUT,205) I,DUN81,00%

PORBAT (18

1d242(28,F5.31

IP (0.LT.1.aANL.1.LE.¥) GO T0 &

dRITE (IOVUT,3) I,DUNT,DUAZ
POSMAT (1H
CALL EX1T

,YINCO&RZCT DATA ' ,12,2785.3)

PAIL(I)=CuN1

RzPR (I)=DUN2

U0 B IND1=1,NN
READ (IN,6) I,NC0UN

FCRHBAT (12,

13)

WalTe(IOUT,65) I,NDUB

PORBAT (14

,xzolﬁ)

MAIN DATE = 7819. 14739702
JIMENSION NSTAT( 121, R) ,BACBL (3) (MSTOR({ 4) ,MAXST( 4),
FAIL(3) REPR(3) ,HSTOR(3) ,2I( S),IND( 5),
. SUN( 5),5ub( S),RAT( S),AVG( 5)
UIMENSION PFOUOLL (1J07),28PT(1300)
DINMENSION FT (22) ,FNUN(9)
DATA FNUN/®18 020,030 140 850 560 379 _sge g,
CATA SLASH/* /s, '/
JATA PT/' (W *,',c(2,'X,13',"),3X"',", ', Vo2, 018,
12, '1' e (ZX,','12),','5!,1','7,5X',',P9.','6, ',
' ‘! ', Yot (2X, 1, 'P9.60,%)) Y/
L1T=1000
IN=5
IoUuT=6
HEAD (IN,1,END=9Y®) N,LINIT

'b17/)



FORTRAY IV G1

0050
0051
0352
0053
0954
0055
0956
057
0058
0us59
0us0
0J61
0d62
0063
0064
0065
0066
0067
0068
0069
070
0071
0072
0073
0074
0075
0076
V77
0074
0379
0u80
0081
09282
gus3
ousu

U85
0086
0087
[eDY1:]
[ EE]
0499
Qu9 1
0992
0093
V94
0095
0096
00947
309&
0099
0100
0101

RELEASL

209

212
84

85

1

11

115

12
13

14
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2.0 BAIN DATE = 78192 14/39/92

IF(O0.LTI.I.AND.1.LENN) GO Tu ¥
4R1TE (I0UT,7) I,NDUN

PORMAT (1H ,*INCORRECT DATA *,1.,13)
CALL EX1T

BAXST (I+1)=NDUM

MAXST (N+1)=1

READ (IN,209) IOP

FORMAT (12)

IF (IOP.RE.O0) GO TO BUY
gEAD(IN,210) &FIC

FORMAT (E13.6)

CONTINUE

WxITE(IOUT,85)

FOrMAT (1H0,/)

NSTA1=2%=N

NSTAZ2=1

DO 9 INDI=2,N
NSTA2=NSTA2* (MAXSL (1ND1) +1)

DO v 1INDI=1,NSTA2

0 16 IND2=1,NSTA1

NSTAT (IND1,INL2) =)

DO 11 INDI=1,N

MACHI (IND1) =1

LAST=1

BAXF=0

MAXP=0

N4PT=1

NPART=)

NSTEP=LINIT/1COQ

CALC=D.

FLASI=0.

SUNSy=0.

STEP=NSTEP

IF(IOP.Eye«U) WHKITE(IOUT,¥15) EPIC
FORMBAT (1H ,* TIN.L: PIeCus PHROLUCZD: SANPLE AVIRAGYE: CyMULATIVE
1 AVERAGE: :ZFFICIUNCY=',E13.6,/)
NSTOK (1) =1

NSTOR (N#1) =0

DO 12 INDY=2,N

NSTUR(INDV) =1

NTIML=0

NTINL=NTINE+1

VO 15 IKLti=1,N

IP (MACHIL (IND1)ezCel) GO TO 14
CALL GGUB(IX,1,/NUN)
IP(RSUM.GT.REPR(INDY)) 50 TU 15
dACHI (INDV) =1

G0 TO 15

IP(NSTOR(IND1).LGed) GO T0 15
1P (BSTOK{IND1+1) 4Ly .MAXST (INDY¢1)) GG TO 15
CALL GGUB (KX, 1,KNUN)

IP (ENUNM.G1.PAIL (INDY}) GO TU 15
MACHI (IND 1) =0
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POnTRAN 1V 61  KeLEASE 2.0 JAIN DATL = 78192 1W4/35 02
0192 15 CONTINUE

0103 DO 20 IND1=2,¥

0104 1F (NSTOR (INDT).HE.D) GO TO 16

2105 LF(NSTOR(LAD1=1)}.Ly.U) GO TO 20

0106 MSTOk (IND 1) =HaCHI (IND1-1)

0107 GO TO 20 -

0108 16 1P (NSTOR (IND1).Ne.BAXST (INU1)) GO 10 17

0199 zr(nsroa(xuolol).su.qusr(xsnao1)) GO Tu 20

0110 #STOK (INDT) =NSTUR (IND1)-¥ACHI (I1LD1)

01 GO TG 20

0112 17 L7 (¥SIOK(INDI=1) .E2.0) GO TO 19

0113 IP (NSTCR (IND 1+ 1) .2 XAXST(IND1+1)) <O TC 16

0114 nsrou(lxni)=nsmoa(rxu1;-nAcux(xuuw)«nAcnx(xxot-l)
0115 GO TO 20

0116 18 SSTOR (INL1) =NSTUR(IND1) ¢ dACHI (I5D 1= 1)

0117 GO TU 26

0118 19 IF (MSTOR(IND141) . 5QuNALST(LND 1+ 1)) GO TO 20

0119 MSTOK (INDY) =NSTOR (INL1T)-8ACHL (IND1)

0122 20 CONT1aUL

0121 I7 (LAST.EQ.1) GU TO 204

0122 L8 (NSTUR (M) o NE.J.ANDLSACHI () o EQ.1) GO TO 201
0123 AMPT=4IET+1

0124 GO TO 2us8

0125, 201 IF(MMPT.LE.LIT) GG TU 2u3

0126 WR1TL(10OUY,202) NTINMe,LTT .

0127 2)2 PORMAT (1H ,'2UN S10PPcD AT TIME = '4I7,/% SYST:A DiD JOT PROLUC: F

10k LONGER THAK ',17)

0128 G0 TO 235

0129 <U3 TF(MM2T.GT.MALR) dAXr=a%Pl

0130 LNPT (MMPT) =2APT (NMPT) ¢ 1

0131 LAST=1

0132 NMPT=1

0133 NPART=NPAKT+ 1

0134 GO TO 20%

0135 204 LIF (NSTOK (N) o b weUeUBa HACAL (H) « 20 D) GO TO 2045
0136 AHPT=MNPT 1

U137 NPART=NEAKRT+ 1

0148 GU TO 208

0139 2045 IF (MMPT.LceoLTT) GO TU 207

0140 BITL(1O0UT,2v6) N1INz,LTT ,

0141 206 ZOBMAT(1H ,'RUN STOPPEU Af PMIME = '417,/' SYSTES PUODYCED FOx LONG

16k THAN ',17)

0142 GO TO 2358

0143 2VU7 IF (MMPT.GT.NAXF) AAXF=44PT

0tuu PULL (MMPT) =PULL (MAPT) +1

0145 LAST=( )
0146 4NPT=1 )
0147 4UR CONTINUE

J14y 00 21 Isd V=g, N

0149 21 NSTOK(IND1) =MSTUK (IMD1)

0150 IND1=1

0151 LP(NB.LT.2) GO TO 245

Q152 DC 22 IND3=2,NN
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FORTRAN IV Gt RELzZASL 2.V MAIN vATE = 78192 14739 /0z2
0153 22 INUI=IND1+ (NSTOk (1ND3) *¥(MALST (LND3+1) +1))
3154 225 INDI=1ND1+NSTGE(N)
015Y IND2=1
J156 DO ¢3 IND3=1,N
0157 23 INDZ=INLZ#+({Z2*% (L-INL3)) *dAlnl (1XD3))

91538 NSTAT(IND1,IND ) =aSTAT(INDY,IND2) +1

0159 1F (LUP.NE.O) 6O TO 254

J16y IF (((NTIHAL/NSTL?) ¥*NSTLP) . dL.MTINE) GO TO 234

0161 CALC=CALC+1.

01lu2 DUMI=NERET

3163 DUM2=dTiN:

O1o4 VUA2=UUN1/LUN2

2165 SUBI=0JMr1-ELASIT

Olen FLAST=NPART

0to? DUMI=DUNT/STLT

Gl6s SUISL=SUNSLE (LULT*42)

0loy WRITF(IVUUT,233) HTIho,NPAAT,UJ%1,DU042

G170 <33 POxBRT (Y ,17,10%,I7,4X,b13.0,04,:13.0)

0171 234 CONTLHUY

2172 IF(NXIME.LTILLINIE) GO Tu 13

(VRN iP (IO2 1k ¥) GO TO 235

M4 JUMI=(SUNLC/CALC) - (TLuM2= %)

0175 LUAZL= (SUMS/CALC) - (LFiCe*2)

0170 ABLTL (LGUT,2345) Cale,pudt,puidl .

0177 2345 FORAAL (V2 0, /' VAKLANCE JOF PuludCLION nale (f,FS5.9,"' SALPLZo) ./,
Vo' wiTh oX2iCToD VALUE=CUSULATIVE AVaRAse (', F13.0,/,' ¥ITH _i2.C
JTLD VALUL=ANALYTICAL ZFEICI.GCY :',213.0,//7)

0178 235 COUNTINUE

017y « 51T (10UT,65)

0180 NNN= (2*N) -1

J161 LU YUl INDI=1, hu

0142 Yyl LUD(IND1) =1

0183 VO 9u2 INUI=T N

DR GJU2 LU (NNeLLWEY) =2%% (a=LLL1T)

ul8s IND3=d=2

Uldo IF(INU3.EW.0) GU 16 SU3Y

U147 Ju Y03 INDI=Y,INUS

0184 DO 9¢3 1NUZ=INL1,IND3

G109 YU3 IND(IND1)=IND(ILOT) *(MANST(LLJ2+2)+1y

2199 9335 DO Yu4 1=1,NNN

(RUR FL(l)=v

0192 SUN (L) =0

3193 Yuld Sun (L) =0

0194 JU 28 INDY=1,NSTal

2165 . “U 20 INDZ=1,HSTAN

U146 NDUN=INDY-1

0197 LF(SN.L1.2) GC TO 255 -

0138 SO 25 IMNLI=Z2, NN

2199y NSTUr (INU3) =NDUEN/ (GAKSI(INL3e 1) ¢1)

U4uu <D NLUMENDUM= ((MAXST(IE . 3#1) ¢1) ®8S50k (Z603))y

9221 255 NSTOh (K} =NDUN

002 NLUM=INLc-1

0203 wU 2o INDI=1,nN
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POKTKAN IV 31 &EILEASE 2.V HAALN DATe = 78192 14/39 /02
0274 SACHL (IMD3) =NDUN/ (20= (U-1HDJ))

0205 26 NDUA=NDUM= (MACHL (TNLJD) *®(2%* (N-1XV3)))

0206 STATL=NSTAT(IND1,IND.)

9207 PROB=STATE:/TOTAL

0208 vO 9uS I=1,NNN

U239 9uUS RAI (L) =0C

0210 DU YU6 I=Z,N

0211 IF (NSTCK(1).Lsel.UKNSTOR({1l) «Gie (HAXST(L)=-1)) Gu TC 911
0212 906 CONTLINUR

v213 DU 91) I=1,88N

0214 OUMT=NSTAT(INLY,INLZ)

0215 Iy {I.LE.hN) GO TO 907

0216 LP(MACAIL (I-NN) .2Q.V) GC 10 YW

0217 JUM2=HSTAT (INCT,INC2-IND(IL))

018 LF(DUN2.2¢.u.) O TO 9 W

0219 RAT(1)=CUa1/LUN2

0229 SUM(L)=SUN(I)*RAT(I)

0221 SUa (1) =5k (L) ¢ (kAL (I)*%*l)

0222 EI(I)=FI(I)+1

w23 G0 TIC 91y

9224 907 LF(NSTuUR (i+1).E a2} GO TO 910

0225 N3I=NSTCE(I+1) =1

0226 DO 950 1ND3=2,u3

3227 MU= (N3-1NU3+e1) =1NL (1)

0228 JUNZSNSTAT(INC1-N4,1NDL)

0229 LF{oUM2.2¢C.).) 50 TU 9Y5v

0230 PUL3I=NSTOK (I+1)~-IND3

0231 QUN3=1./DUN3

0232 JIAT (1) =(DUMI/LJAZ) ==o N3

0233 SUS(L)=SUX(1) +XAT (1)

0234 SQR (L) =SIQK(I)+ (RAT (I)*=2)

9235 PL(I)=FI(1)+?

vZ236 $5J LUNTLINJE

V237 910 CONTINUE

0233 911 WBRiTe (ICUT,FT) INDT1,INCZ,(NSTun(l),I=2,5), (BACAI(I),1=1,N),

1 WSTAT(INL1,INDZ} ,PaUE, (RAT(1),1=1,NNN)

0239 28 CONTLINUE

Q4 IF(IUP.NE.1) GG TO 814

0241 . 20 282 I=1,uN

D242 L# (PL(L).¥c.%.) SU IC 2382

0243 dRITE(IOUT,2K1)

0244 81 FORMAT (14U, *LESS THAN 2 cOLLY INTzRNAL STORAGE 53TalTis.t')
0245 . GO T 8125

Qluo 282 CUNTINU:

2247 DU 14 1=1,4MN -
J248 AV (L) =508 (1) /Fi(l)

Qc49 VAR (5Qi (1) /F1 (D) )= (AVS (1) == 2}

[VIRET) - IP(I.GT.NN}) GO TO ¢

0251 41T (1OUT,29) 1,FI(1),AaVs(l),VAE

0252 29 POKMAT('H ,' 5TOrAce ', I<,' (* ,Fued,t POINTS) AVieaAG: : Y,

1 PY.0,"' VakiaNCe : ' ,F9.06)
0253 30 Tu 914

0254 912 LNo1=I-NN
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PORTKAN IV G1 RELEASE 2.0 SALN DATE = 78192 14/39/02
0255 dkITE(L{OUT,313) INDV1,FI(I},AVi(I),VAR
0256 913 PORMAT(IH ,°* MACHINE ', IZ," (*,PR.0,' POINTS) AVIEAGE : 9,

1 F9.6,' VARLANC: : *',¥9.06)
0257 914 CONTINUJE
0258 N1=3
0259 DG 8U5 1IND1=3,X
0260 IND3=¢
0261 UG 8ul4 INDEZ=INDY, N
0262 HUd LNU3=IND3* (4AXST(1Nwu2) +1)
0263 6d5 N1=N1+¢IND3
02064 N2=NSTAZ2-N1¢1
0265 F£1(1)=0
0266 Su¥ (1) =0
0207 Syed (15 =0
02 08 DC 811 1INLI=NT, N2
0269 JO 811 IdD2=1,NSTA1
0279 2Ud1=N3TaT (1 b0 1,13D02)
0471 DUAI=DUNT1/TOTAL
0272 Nodda=IND 1-1
0273 IF(WN.LT.2) GU TO %07
0274 D0 8uh IND3=2,RN
0275 NSTOn (IND3)=NDUMN/(MAAST (INu3¢1)+1)
0276 BU6 NDUM=NOUA- ((MALST (INL3+1) +1) *NSTOK(1ND3))
0277 807 NSTOR (NY=NLUY
02738 NDU3=IND2-1
0279 DG sud LiDp3=1,4
0289 MACHL (IND3)=NLUM/ (2%¥ (N-1ND3))
0281 696 MNOUM=IDUN- (MACHI (END3) #(2%*(N-IRD3)))
02R2 DUM3=1
0283 VU BUY IND3=2,H
0284 CUA2=AVG (LNU3-1)**NSTOK(LsD3)
0285 809 LUA3=DUNM3*DLUNMZ
0286 o0 810 IND3=1,K
0287 OUM2=AVG (IND3+NN) *®«4ACHI (2NJ3)
0288 81) OUM3I=0IN3*DUN2Z "
J2K9 LUGR=LUNT/LUN
0290 SU4(1)=SUM(1)+DUL2
0291 SUE (1) =S k(1) + (DUM2%=2)
0292 811 PL{V)=FI(1)+1
0293 DUSY=53dN (1) /FI (V)
0294 DUM2= (SUR (1) /FI(1) )~ (DUAT1##%2)
0295 WRiTe (IOUT,812) PI(1),DUdT, 0082
0496 812 PURMAT (18 ,'NOBMALIZIKG CUNSTANT (*,P3.0,' 201NTS) AVERAGEL : ¢,
. 1 E12.6,! VAKIANCz : ', F3.0)
0247 6144 IF (JUP.NEs2) GO TO 99
0298 8125 s558=0 -
0299 LFE=U
Q300 o0 813 I=1,MAXF
0301 LFr=EPF+ (1%FULL(I))
0302 813 SSH=SSMePULL (I)
0303 DO B14 1=1,8ALF
0304 14 PULL (L) =FULL (I)/SSH

0305 354=0
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PORTRAN IV G1 RELLASE 2.0 MAIN DATZ = 78192 14/39/02

0300 DO 815 I=1,MAXP

0307 815 SSN=SSNeEMPT (I)

0308 DO 816 1=1,4AXP

0309 816 EMPT (I})=EMPT (I)/SSA

0310 YRITE(IOUT,A17)

0311 817 POBNAT (1H ,*PROBABILITY OF PRUDUCING N PlECLS CUNSLCUTIVELY :*)

0312 DO 818 I=1,MAXP

0313 818 WRITE(IOUT,319) I,FULL(L)

0314 819 PORMAT (14 ,I7,3X,E13.6)

0315 YRITE (100T,820) ‘

0316 820 PORMAT (1H ,'PROBABILITY OF 40T PHODUCING POK N CONS2CUTIVE TINE ST
1EP3 )

0317 DO 821 1=1,MAXE

u3ig f21 dKITi(100T,R19) I, EMPT(I)

0319 FLUG=EFFP/TCTAL

0320 INLI=LPF

0321 WEkITE (IGUT,822) INDY, LIM1T,FPLOG

0322 v<2 PORMAT(1H ,*'THE SYSTEA PHOLUCED *,17,' PLECES IN *,17,%' TINKt STERS
1. LPFICIENCY = ' ,E13,6}

0323 . S0 TO 99

0324 98 CONTLINUE

0325 o ND
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