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Abstract

Polyelectrolyte multilayered (PEM) coatings were fabricated to incorporate and release the
small, hydrophilic antibiotic gentamicin from implant surfaces for infection control. The use of

a cationic hydrolytically cleavable poly(p-amino ester) rendered these films biodegradable,
yielding both diffusion-based and surface-erosion based release of this therapeutic. The Layer-
by-Layer (LbL) assembly platform was used to create conformal, micron scale reservoirs with
highly tunable drug release. Film release profiles were engineered through film architecture
design and post-processing crosslinking techniques. Delivery of gentamicin was sustained for
weeks, which is a significant improvement from previous gentamicin-releasing LbL systems. To
gain better insight on the mechanisms of release and aid in rational film design, a theoretical
treatment of the physical system was performed. These results include an analytical
mathematical model describing the release of drug per surface area of film as a function of time
as well as a computational model that simulates the time-dependent concentration profiles in
these LbL systems.

These erodible, antibiotic coatings were demonstrated to be bactericidal against
Staphylococcus aureus, an infectious microorganism that is highly relevant to implant-related
infections. Film degradation products were generally nontoxic toward MC3T3-E1
osteoprogenitor cells. A reproducible in vivo rabbit bone infection model was developed to test
the PEM coatings against sterile, uncoated placebos; subsequent in vivo experimentation
demonstrated the proof-of-principle that an antibiotic-eluting LbL film can efficaciously treat a
pre-existing implant-related infection.

One further application was studied which combined the release-based mechanism of
these erodible films with a permanent, contact-killing LbL film. This combination has the
treatment benefit of an initial burst release of antibiotic, prevents biofilm formation, and
reduces the probability of developing antibiotic resistance due to the prolonged presence of
sublethal concentrations of gentamicin.

Thesis Supervisor: Paula T. Hammond, Bayer Professor of Chemical Engineering
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Chapter 1 Introduction

1.1 Incidence, Economics, and Drug-Device Combinations

Most implanted devices are associated with orthopedics as over 800,000 joint replacements are

performed in North America each year-reflecting a 200% increase between 1999 and 2002

alone [1, 2]. Primary joint replacements (also known as arthroplasties) are typically performed

on patients with arthritis or major injury to alleviate pain and restore motion to the joint.

These operations add up to an annual expenditure of $1.4 billion in the United States for total

hip arthroplasty and $2.59 billion for total knees with 2/3 of these costs being offset by

Medicare [3]. As expected, the number of revision surgeries is also on the rise at 17.5% for hips

and 8.2% for knees [1]. Since revision surgeries require extended use of hospital resources and

surgeon time, subtracting 1% from each of these values would have saved $112.6 million and

$100 million for hips and knees respectively [1, 4].

In order to promote implant success, there has been rising interest in the design and

implementation of combination devices. According to the United States Food and Drug

Administration, a combination device is an apparatus that includes two or more regulated

components (i.e. drugs, devices, or biologics) that are combined and produced as a single entity

[5]. Drug-device combination products have garnered increasing attention from both

pharmaceutical and medical device companies as a general strategy to address persisting

complications in clinical practice. Coordinated design of such devices has the potential to

greatly improve both device performance as well as the associated quality of life for the

patient. Since efficacy of a drug-device combination is generally not a linear combination of

adding existing technologies together, these products can offer synergistic advantages over

administering both the drug and device separately in their conventional forms.

This thesis focuses on the incorporation of the small, hydrophilic antibiotic gentamicin

into polyelectrolyted multilayered (PEM) surface coatings for tunable, local, and sustained

delivery from implants based on Layer-by-Layer (LbL) assembly. These films are specifically
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designed to treat an existing implant-related infection. Among the attractive features of LbL

(which are discussed at length in section 1.6), the critical advantage that places LbL on the

cutting edge of existing technologies is its potential to release multiple therapeutics,

simultaneously or sequentially, and thus allow for smart design of local therapeutic delivery

from drug-device combinations for optimized treatment. For the stated case of orthopedic

implants, the pertinent set of complications that could be addressed include pain,

inflammation, infection, and long term loosening of the implant. The work presented herein

was conducted under a financial support parcel whose overarching aim was to develop a thin

film solution to address this precise set of complications. Nevertheless, the end goal of a multi-

therapeutic product necessitates design and optimization of individual therapeutic systems.

The work in this thesis specifically addresses the antibiotic delivery component for the

treatment of infection.

1.2 Outline of Thesis

Chapter 1 highlights the problem of device-associated infections, introduces the benefits of

local drug release, and explains how polyelectrolyte multilayered (PEM) coatings stand out from

competing technologies as an approach to addressing these issues. Using orthopedic implants

as the model substrate for these combinations, the goal of this research was to develop an

antibiotic coating that would be capable of eradicating an existing device-associated infection in

a direct exchange arthroplasty. In orthopedics, the conventional method to treat device-

associated infection is a two-stage process involving removal of the infected device, radical and

extensive debridement of dead or infected tissue, local insertion of a high-concentration

antibiotic-eluting spacer, six weeks of intravenous antibiotic therapy, and a follow-up surgery to

re-implant a new sterile device. An antibiotic coating that is sufficiently effective against an

existing infection would promote a one-stage re-implantation procedure that calls for direct

exchange of the infected implant with a new, drug-coated implant without the need for

antibiotic therapy or a second surgery. To this end, design of the coating requires burst-release

of drug to immediately eradicate existing infection followed by weeks of sustained local

delivery as phrophylaxis. Chapter 1 outlines the work that has been done toward this goal, and

outlines the specific aims of this thesis.
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Chapter 2 articulates the strategies and details of achieving the desired release profile

from PEM films using an engineering-driven, application-focused approach. Among the

techniques for controlling the loading and release of gentamicin are: liposome encapsulation,

complex film architectures, thermal crosslinking, and the 'sponge' effect. The films are shown

to load substantial amounts of cargo, retain drug activity upon release, and have some level of

biocompatibility with osteoprogenitor cells.

Chapter 3 offers a theoretical view of the release behavior of gentamicin from the PEM

systems. A simple mathematical framework is developed and applied to describe the drug

release as a function of time. Using the model, predictions are made regarding the tenability of

release profiles by changing drug concentration, film thickness, and drug diffusivity.

Chapter 4 presents a reproducible in vivo bone infection model using New Zealand

White rabbits. The model was designed to simulate a contaminated one stage arthroplasty

where the animals were intentionally given implant-related infection using a Staphylococcus

aureus surface-colonized peg, which was press-fitted into a drilled defect in the rabbit femur.

This model set the foundation for an in vivo clinical comparison between film-coated implants

and sterile, uncoated placebos; results are discussed in detail in Chapter 5.

Chapter 6 builds upon the work in the first five chapters and demonstrates the

versatility of LbL systems. This chapter focuses on a side project which combines two

independent film architectures that each has unique bactericidal functionality. The

combination films are first release-killing, and then become contact-killing upon exhaustion of

the therapeutic cargo. Although this dual mechanism concept is demonstrated for releasable

gentamicin, it can be extended to other therapeutics offering a powerful, multi-functional

design for drug-device combinations.

After thesis summarization in Chapter 7, Chapter 8 is appended as a capstone that

integrates the technology described in this thesis with a broader commentary regarding the

state U.S. healthcare, and describes a new enabling technology that may help recent medical

developments penetrate the market.
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1.3 Advantages to Local Delivery of Drugs

Local drug delivery offers significant advantages over systemic drug delivery. Among the most

important are smaller overall doses, less susceptibility to the development of resistance, and

avoidance of systemic drug exposure, which can be toxic [5]. The reduced dosages correlate

with reduced costs. Furthermore, therapeutic entities such as genes and proteins cannot be

delivered through standard alimentary or parenteral tracts due to harsh conditions in the

former and rapid clearance in the latter. With respect to antibiotics in drug-device

combinations, there can be the added benefit of direct mitigation of device-associated

infections. Local antibiotic delivery systems should be designed to initially provide effective

doses of drug straight to the target site to combat elevated post-operative infection risk, and

then maintain therapeutic levels of release over prolonged periods of time to undermine any

latent infection [6]. The release kinetics are to be uniquely designed for a particular drug,

device, implant site, and disease, while ensuring that device performance is not impaired.

1.4 Implant-related Infection and Biofilms

Over two million nosocomial infections occur in the United States annually with an average

hospital cost around $15,000 [5]. More than half of these are associated with implanted

devices [3]. Implant-associated infection can occur due to any implanted medical device such

as minimally invasive contact lenses, to temporary urinary catheters and endotracheal tubes, to

permanent cardiac valves and orthopedic implants [7]. Specifically for orthopedics, the

economic and health related penalties to treat an implant-related infection add up to a total

cost of about five to seven times that of the initial surgery, longer hospital residency with

limited mobility, and the potential for skeletal defects, limb shortening, renewed disability, and

death [8, 9]. Today, with the increased use of medical devices and onset of a major orthopedic

implant market due to the aging baby-boomer population, the need to address the common

clinical problem of hospital-related infection is paramount.

Pathogens can be introduced to the implant surface by exogenous organisms on the

skin, non-sterile surgical tools, the local environment, or even systemically circulating bacteria,

which can become spontaneously pathogenic upon attachment to the implant surface. The
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latter is particularly concerning since such an event can take place at any time (even years) after

implantation. Upon attachment, the bacteria rapidly proliferate and create a protective

mucopolysaccharide matrix known as a biofilm [10]. Within the biofilm environment

therapeutics have a lower diffusion rate and bacteria have decreased metabolism, each which

lends to enhanced antibiotic resistance [11]. The biofilm allows sessile colonies to

communicate more effectively, exchange genetic material (thus allowing antibiotic-resistance

transfer), and elude host humoral response. Biofilms can propagate infection by giving rise to

planktonic satellites that can travel to other, non-colonized surfaces. Due to the fact that

mature biofilms generally do not respond to administered therapeutics or host immune

responses, their existence generally requires removal of the implant before local and systemic

treatment can become effective [12]. The two major drug-device combination strategies that

are currently employed to control infection include the use of drugless anti-adhesive materials

that prevent bacteria attachment and direct incorporation of drugs into or onto a medical

device [13].

1.5 Orthopedic Implants and Osteomyelitis: Opportunity

Among the millions of orthopedic implants inserted annually, bone-implant integration is a

common clinical problem that leads to bone resorption, loosening, and opportunistic infection.

One study demonstrated the presence of bacteria in over 72% of implants extracted for aseptic

loosening [14]. Despite the standard pre-operative procedures that include antibiotic

prophylaxis, antimicrobial shower, shaving, and application of disinfectants, infection rates on

the order of 1% still persist. Therefore recent efforts have been directed at integrating drug

delivery with these devices to accelerate bone formation and healing while also treating

infection [15].

Osteomyelitis is the inflammatory response and accompanying bone deconstruction

caused by an infecting microorganism. It is commonly associated with the existence of a

biofilm. Staphylococcus aureus is the single largest contributor to osteomyelitis and accounts

for two-thirds of operative specimen isolates [16]. Conventional therapies to treat

osteomyelitis are often inadequate due to limited blood supply to the skeletal tissue and poor
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drug penetration into the infected bone [17]. Simply increasing the systemic dosage can cause

toxic side effects and is therefore not a resolution. Thus, local drug delivery from the surface of

implants is attractive since it poses a viable alternative to systemic techniques.

The gold standard technique to control orthopedic implant infection is the use of

antibiotic loaded bone cement (ALBC). ALBC uses poly(methyl methacrylate) (PMMA) (also

known as acrylic) that has been loaded with clinically relevant antibiotics such as gentamicin,

vancomycin, or tobramycin [18-21]. One study that surveyed the Scandinavian arthroplasty

registers followed up on more than 240,000 total hip replacements, and reported a 50%

reduction in the infection rate using these cements [22]. The use of pre-blended bone cement

has been widely accepted in Europe for decades, and became approved for use in the United

States in 2003. Bone cements typically release their therapeutic cargo in bi-phasic manner.

First, there is a burst release of drug that takes place on the order of one day followed by a

much longer tail of incomplete release that lasts for weeks. The release behavior of these

systems is controlled by the loading ratio of drug to polymer, bulk porosity of the cement,

surface area, and roughness [23-25].

There is substantial in vivo evidence that these cements perform superior to unloaded

cements with respect to infection prevention [5]; however, despite the positive advantages to

using ALBC, there are some drawbacks that have been elucidated. Pharmacokinetic studies

suggest that elution of gentamicin from PMMA cements is imperfect; less than 50% of the total

cargo is released within 4 weeks, after which continuous release was ceased [26-28]. Diffusive

elution of drug from cements often has unstable and unpredictable release kinetics [29, 30].

This can lead to large fluctuations in the local drug concentration causing local tissue toxicity, or

worse, emergence of drug-resistant pathogens [31]. In the event of infection or failure, revision

becomes very difficult, requiring the removal of the cemented nonbiodegradable PMMA before

osteogenesis can help fill the defect site. In such a procedure, bone substance is lost, and

residual PMMA debris can cause fibrous encapsulation and foreign body response [32]. Also,

the polymerization reaction is highly exothermic [33], which limits the types of therapeutics

that can be delivered from bone cement (e.g. growth factors would be denatured). This heat,

along with any residual methacrylate monomer poses toxicity issues for healthy bone cells [34].
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For ALBC specifically, drug release leads to the formation of pores within the cement matrix,

which provides a highly favorable environment to harbor any remaining bacteria [31]. Finally,

ALBC is well-mixed, thus negating the opportunity for smart design of complex or sequential

release profiles of individual therapeutics. As of 2007, only five ALBC composites were

approved for clinical use by the United States' Food and Drug Administration, and their use is

restricted to prophylaxis rather than treatment of existing infection [16]. If the traditional 11%

usage rate of ALBC in primary arthroplasties were increased to 50%, the economic effect of

replacing plain cement with ALBC-requiring an average increase of $300 per packet-was

estimated to increase the overall health care costs in the United States by $117 million [35].

This would be offset by the savings salvaged from a supposed lower overall infection rate.

Given the current prevalence of total joint replacements, the infection rate would need to be

reduced from 1.5% to 0.3% (i.e. 80% reduction in incidence rate).

These drawbacks leave open a window of opportunity for the development of a next-

generation therapeutic coating. Currently, there is no approved coating for the treatment of

existing infection. Recent alternative materials for use as drug releasing surface coatings

include hydroxyapatites [36], biodegradable poly(L-lactic acid) [37], poly(lactic-co-glycolic acid)

[38], sol-gels [39, 40], biodegradable polyhydroxyalkanoates [41], and others. Release rates

from materials that depend on rate of surface degradation can be accurately tuned by changing

the coating composition. Overall, there is need for an implant coating with tunable, release-

based infection control that does not present host toxicity issues or inhibit incorporation of

other delicate therapeutics such as anti-inflammatory agents and growth factors while

imparting a permanent biofilm-resistant functionality. To date, no such combination film meets

all of these specifications.

1.6 Layer-by-Layer Films for Drug Delivery: Solution

The true birth of LbL assembly took place in 1966 with a publication authored by Ralph Iler who

studied the buildup of charged inorganic colloidal multilayers at DuPont [42]. After a couple

relatively latent decades, the 'modern age' of this technology began as it was thrust into the

limelight during the '90s [43], in part by Gero Decher's publication in Science [44]. Decher
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pioneered the general use of polyelectrolytes for multilayered systems [45, 46] and helped

publish the first textbook on this subject in 2003 [47]. LbL assembly of alternately charged

polyelectrolytes has now become a well-established method for 'bottom up' engineering of

surface coatings [48]. PEM films have the potential to make an important impact in the medical

world as a drug delivery vehicle. They produce conformal coatings on most surfaces [49-51]

with nanometer thickness precision [52] and highly tunable drug loading [53]. Functional

components are incorporated into the film at the exact layer of interest [44-47, 54] so that

these films can be engineered to deliver multiple different drugs with complex release profiles

[48, 55]. The LbL fabrication process is simple, economical, and gentle. One of the major

advantages to this technique is the all-aqueous fabrication condition, which allows for the

integration of biologically active materials such as proteins [56], DNA [57], peptides [58, 59],

and enzymes [60] without denaturing or loss of function. Additionally, as with any local drug

delivery system, lower doses are required, less systemic drug exposure is endured, and for

antibiotics, resistance is mitigated [5].

As a result of the rising interest in drug-device combinations, coatings for orthopedic

implants are an excellent application for localized drug delivery and prevention of infection [40,

61]. This provides an opportunity for PEMs to be incorporated onto the surfaces of these

prostheses, and make an unparalleled impact since PEMs can be built with painkillers [62, 63],

antibiotics [53], and growth factors [64-66] to sequentially deliver the exact treatment

necessary for optimal recovery. PEMs will release their therapeutic components upon

degradation, and can be designed to do this in specific settings such as in the presence of

enzymes [67-69], small molecules [70-72], reducing agents [73], electrochemical potential [74,

75], and most importantly for the proposed application, aqueous physiological environment

[76].

To address the latter mechanism of degradation, Professor David Lynn and colleagues

have designed a class of hydrolytically degradable synthetic polycations, which can serve as

both a structural component in a PEM film and a transient element that is cleaved by water,

hence facilitating disassembly [48, 77, 78]. By adjusting the hydrophobicity of these

polycations, the degradation rates and corresponding release rates can be tuned [79]. As a
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result, the use of these polycations for drug delivery applications has been the topic of several

recent publications [63, 80-83]. Degradable PEM films are currently the only thin film drug

coating technology that enables large payload, tunabilty, sustainable release, and the potential

for delivery of multiple therapeutic agents with co- or sequential release profiles.

1.7 Specific Aims of Thesis

The work presented in this thesis describes the engineering of a thin film that erodes in top-

down fashion when subjected to physiological condition via the use of a hydrolytically

degradable poly(P-amino ester). This allows the antibiotics payload to be released locally with

precise dosage and timing. Films are designed to be highly conformal, functionalizable,

biocompatible, easy to process, and economical. The specific drug of interest for this work is

the small hydrophilic molecule gentamicin, which previously faced the problem of premature

diffusion out of PEM films [53]. The application of interest is the treatment and prevention of

orthopedic implant-related osteomyelitis, which generally develops as a result of S. Aureus.

This research involves the design, construction, and characterization of films that can be

applied to orthopedic implants such that they effectively kill S. Aureus when placed in

physiological condition. To advance this technology, the proposed research is broken down

into three specific aims:

1. Demonstrate control over dosage and release rates of gentamicin from polyelectrolyte

multilayers with the particular objective of attaining release duration on the order of

weeks

2. Establish reproducible bone infection model in vivo

3. Demonstrate in vivo efficacy of gentamicin-releasing, PEM coated prostheses
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Chapter 2 Engineering PEM Coatings for the Prolonged

Release of Antibiotics

2.1 Designing the Antimicrobial Film Using Electrostatic Layer-by-Layer

Self-Assembly

With respect to film components, the design of layer-by-layer systems for the release of

antibiotics in physiological environment has three basic functional requirements that must be

addressed: (1) incorporation of a therapeutic, (2) a mechanism of release, and (3) any other

materials necessary to permit stable layer-by-layer film growth without compromising

biocompatibility. Gentamicin sulfate is a small, water-soluble aminoglycoside antibiotic with

five amine groups that are protonated at low pH to a maximum charge of +5.0 (Figure 2-1, left),

and thus easily incorporated into thin film systems that rely on electrostatic interactions [53].

Gentamicin has a minimum inhibitory concentration below 0.156 pg/mL against S. aureus

UAMS-1 (Figure 2-1, right) which is consistent with literature values for other strains of S.

aureus [84]. Because gentamicin is nephrotoxic and ototoxic at elevated systemic levels, the

low concentration necessary for local delivery via LbL systems is advantageous.
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Figure 2-1. (Left) Structure of gentamicin. Sites protonated in fully charged state are indicated. Information on

R1 groups and their relative content percentages can be obtained from Mediatech, Inc. (Lot #: 61098046).
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(Right) In vitro efficacy of gentamicin sulfate against S. aureus (ATCC 49230) in CMHB over a 16 h incubation

period at 37 "C. Data represent the mean ± standard deviation of triplicate samples.

To enable hydrolytic breakdown in physiological environment (37 *C, pH 7.4), a class of

polycations known as poly(@-amino esters), which are easily synthesized by stepwise

conjugation of bis amine monomers to diacrylate esters was used [78]. These polymers

undergo hydrolytic cleavage of their ester bonds to eventually yield their original biocompatible

monomeric units, and have been successfully incorporated into multilayer films for controlled

release [76, 85]. The specific choice of the polymer species shown in Figure 2-2, which is

defined in this thesis as Poly 1, is due to its relatively slow degradation rate, biocompatibility,

and high charge density [76]. The amines present along the backbone of Poly 1 are protonated

at neutral to low pH, yielding the positive charge necessary for the buildup of electrostatic LbL

systems. Neither Poly 1 nor its small molecule degradation products were found to be

cytotoxic toward fibroblastic NIH3T3 cells [78], monkey kidney Cos-7 cells [80], or even murine

pre-osteoblast MC3T3 cells [53].

Poly 1
0 0

Figure 2-2. Structure of Poly 1.

Both of the functional components-gentamicin and Poly 1-are positively charged

under standard deposition conditions (pH 5.0). Therefore, an anionic component is required to

allow for the stable growth of the LbL film. The biopolymer hyaluronic acid (HA) had previously

been employed for this purpose [53]; however, films built with HA result in highly diffusive

systems that rapidly lose their payload before complete film degradation occurs. The standard

therapeutic regimen for antibiotics requires prolonged presence at high concentrations.

Relevant timeframes for treatment tend to be on the order of weeks. To this end, two major

efforts were set forth in this thesis: (1) encapsulation of gentamicin inside of large, charged

liposomes to limit its diffusivity within the PEM matrix and prolong its release, and (2)

examination of alternative film architectures.
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2.1.1 Liposomes

Liposomes initially gained popularity as a drug delivery vehicle to protect and control the

release of its cargo [86]. There has been specific interest in the direct coating of implants with

liposome-encapsulated therapeutics to enhance the duration of their local drug release [87].

Gentamicin has been studied as one particular candidate for liposomal drug delivery [88]. A

major advantage to the use of liposomal gentamicin is the fact that its biodistrubution in vivo

can be controlled via the use of liposome surface charge [89]. A second advantage is that

liposomes can assist the intracellular delivery of gentamicin, whose hydrophilic nature generally

inhibits its flux across the lipid bilayer of cell membranes [90-92]. This is important in light of

the fact that Staphylococcus aureus, the pathogen responsible for approximately 80% of all

human osteomyelitis cases, has been shown to thrive intracellularly and subsequently develop

antibiotic resistance [93]. When these osteoblasts die, the viable bacteria are released and can

re-infect new cells [94]. Finally, In vivo treatment of osteomyelitis via the use of liposomal

gentamicin has recently shown some success [95].

It was hypothesized that the encapsulation of gentamicin in a large enough

biodegradable and biocompatible material could prevent easy diffusion of the small molecule

within LbL film architectures and hence prolong its release. The use of liposomal carriers in

PEM films has been a relatively recent development in controlled release technology [96-98].

Although liposomes are favorable for delivery of hydrophilic drugs, micelles can be used as an

extension to this technology for hydrophobic cargoes [81, 99]. Unless working with

crosslinkable lipids [100], liposomes are typically stabilized with a polyelectrolyte shell in order

to prevent rupture and self-assembly of the lipid bilayer in a flat conformation on the surface of

the growing LbL film [101]. The choice of polyelectrolyte and relative charge density of the

liposome surface are also important in achieving effective deposition of liposomes onto the

surface of growing LbL films. Specifically, depending on the relative strength of polyelectrolyte-

polyelectrolyte interactions compared to those of the polyelectrolyte-liposome interactions,

stripping of the polyelectrolyte stabilizer may occur in place of liposome deposition [102]. With

proper system design, successful incorporation of intact liposomes into polyelectrolyte

multilayers with unique cargoes has been reported [103, 104].
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2.1.1.1 Experimental

2.1.1.1.1 Materials

Poly 1, a poly(-amino ester), was synthesized as previously described [78]. Silicon wafers (test

grade n-type) were purchased from Silicon Quest (Santa Clara, CA). Linear poly(ethyleneimine)

(LPEI, 23966-2, Mo = 25 kDa) was purchased from Polysciences, Inc. Nonradiolabeled

gentamicin sulfate (GS) purchased in powder form were from Mediatech, Inc. (Herndon, VA).

Sodium hyaluronate (or hyaluronic acid (HA), Mn = 1.7 MDa) was purchased from Lifecore

Biomedical, Inc. (Chaska, MN). Dioleoylphosphatidylethanolamine (DOPE), N-succinyl-DOPE, N-

glutaryl-DOPE, polyethylene glycol (PEG)-Ci-ceramide, and extrusion materials were purchased

from Avanti Polar Lipids (Alabaster, AL). Poly (sodium 4-styrenesulfonate) (PSS, M, = 1 MDa), 3

M concentrated sodium acetate buffer (pH 5.2), poly (L-lysine) (28 kDa), and cation-adjusted

Mueller Hinton Broth (cMHB) were purchased from Sigma-Aldrich (St. Louis, MO). 3 H-GS (250

pCi total, 1 mCi/mL in ethanol, 200 pCi/mg) and 14C-cholesteryl hexadecyl ether (CHE, 250 pCi

total, 0.1 mCi/mL in toluene, 55 mCi/mmol) were obtained from American Radiolabeled

Chemicals, Inc. Staphylococcus aureus (S. aureus) was acquired from ATCC (25923, Manassas,

VA). Dialysis membranes were purchased from SpectraPor (Rancho Dominguez, CA). Fetal

bovine serum (FBS) was purchased from Invitrogen (Carlsbad, CA). Modified simulated body

fluid (m-SBF) was prepared as described previously [105]. All materials and solvents were used

as received without further purification.

2.1.1.1.2 Encapsulation of Gentamicin in Liposomes

Relevant liposome compositions include DOPE-N-succinyl-DOPE-PEG-C 16-ceramide (69:30:1

molar ratio) and DOPE-N-glutaryl-DOPE-PEG-C16-ceramide (69.5:30:0.5 molar ratio).

Encapsulation of drug was performed according to a previously reported method [90, 92].

Briefly, lipids were mixed in chloroform and the solvent pulled off by rotary evaporation. Dried

lipid films (representing 25 mg of total lipid) were rehydrated by the addition of 1.0 mL of 50

mg/mL GS in 100 mM sodium acetate buffer, pH 5.0. For liposome characterization

experiments in the absence of GS, rehydration was performed without drug. After extensive

vortexing, the mixture was subjected to five freeze-thaw cycles and eleven extrusions through a
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0.1 pm pore size filter using the mini extruder. The repetitive freeze-thaw cycles were used to

achieve drug distribution equilibrium by physical disruption of the phospholipid bilayers. The

extrusion was used to produce uniform liposome sizes (Figure 2-3). The final product was

diluted and non-encapsulated drug was dialyzed out using a cellulose membrane with 8 kDa

cutoff.

2.1.1.1.3 Stabilization of Liposomes with PLL

Liposome solutions (1 mL) containing 0.2 mg/mL lipid were slowly dropped into an equal

volume of agitated PLL solution (104- 0.2 mg/mL) at room temperature. Dynamic light

scattering and zeta potential measurements were performed on samples at various times after

fabrication using a Zeta-PALS (Brookhaven Instruments Corp.) at room temperature. Samples

were stored at 4, 25, or 37 *C.

2.1.1.1.4 Imaging

Atomic force microscopy (AFM) was performed with a Veeco Nanoscope V with Dimension

3100 and accompanying software. Scanning electron microscopy (SEM) was conducted with a

JEOL JSM-6060 and accompanying software.

Figure 2-3. (Left) AFM and (right) SEM images of liposomes on a silicon surface.
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2.1.1.1.5 Preparation of Electrolyte Solutions

Dipping solutions containing Poly 1 and HA were prepared at 2 mg/mL in 100 mM sodium

acetate buffer and pH-adjusted to 5.0 with 1.0 N sodium hydroxide. Free GS was prepared at

10 mg/mL in 100 mM sodium acetate and pH-adjusted to 5.0. Stabilized, liposome

encapsulated gentamicin (PLL-Lipo-GS) was prepared at 0.4 mg/mL with respect to lipid content

as described in sections 2.1.1.1.2 and 2.1.1.1.3. LPEI and PSS dipping solutions were prepared

at 2 mg/mL in ultra pure water and pH adjusted to 4.25 and 4.75 respectively. All solutions

were prepared with water from a Milli-Q Plus (Bedford, MA) at 18.2 MO.

2.1.1.1.6 LbL Deposition

All films were constructed on silicon as follows according to the alternate dipping method [44].

Substrates were rinsed with methanol and ultra pure water, dried under nitrogen, and plasma

etched in oxygen using a Harrick PDC-32G plasma cleaner at high RF power for 75 seconds.

Layer-by-layer thin film deposition was performed either by hand or using a Carl Zeiss HMS

Series Programmable Slide Stainer. A nondegradable bilayer of LPEI/PSS was deposited first by

immersion of the plasma treated substrates in LPEI for 30 minutes followed by a single ultra-

pure water rinse, and finally in PSS for 30 minutes followed by a single ultra-pure water rinse.

The degradable films were deposited on top of this PSS-terminated surface. The tetralayer

architecture of [Poly 1/HA/GS/HA]n was constructed by alternate dipping in Poly 1 or GS for 9

minutes followed by a cascade rinse of three 100 mM sodium acetate baths for 10, 20, and 30

seconds, and then into HA for 9 minutes followed by a similar rinse cycle. When dipping PLL-

Lipo-GS, a 35 min dip cycle and a single 30-second rinse bath were used. The process was

repeated n times depending on the desired experiment. All polymer solutions and gentamicin

solutions were completely replaced every 25 and 50 tetralayers, respectively.

For films used in drug release experiments, the GS solution was spiked with 25 pL 3H-GS

per 50 mL dipping solution yielding a 0.5 pCi/mL product. No other part of the LbL deposition

process was changed.

2.1.1.1.7 Sample Sizes and Data
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Sample sizes are indicated in figure captions. Data are presented as mean ± standard deviation

unless otherwise specified.

2.1.1.2 Results and Discussion

2.1.1.2.1 Stabilization of Liposomes with PLL

Initial efforts were dedicated toward liposome fabrication and stabilization, followed by

determination of drug loading, efficacy against S. aureus, and finally deposition of liposomes

into erodible LbL films. To determine the optimum mixing ratio of liposomes to PLL, it was

necessary to determine how much PLL was required to fully reverse the surface charge on the

liposomes without yielding excess polymer. N-succinyl-DOPE and N-glutaryl-DOPE are

negatively charged lipids and PEG-C 16-ceramide was used as a surfactant to prevent aggregation

of native liposomes. Increasing the concentration of the cationic PLL led to the behavior seen in

Figure 2-4 (left), where the average particle diameter was small at low and high mass ratios of

PLL to lipid, but rapidly became very large near a mass ratio of 0.1. This suggests that at a mass

ratio near 0.1, there was significant aggregation of neighboring vesicles due to bridging via the

PLL polymer chains. It has been shown that larger PLL chains allow for greater charge

overcompensation on the vesicle surface (which arises due to their loopier conformation upon

adsorbance), and therefore reduces this effect of aggregation [106]. The zeta potential data

are consistent (Figure 2-4, right) as this mass ratio corresponds to the charge transition regime,

which precludes the aggregation as the charge neutrality allows the liposomes to come into

closer proximity with each other.
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Figure 2-4. (Left) Average diameter of liposome-PLL complexes formed using PLL with molecular weight of 28

kDa as a function of mass ratio. (Right) Zeta-potential measurements of the same samples. Data represent the

mean ± standard deviation of multiple measurements performed on a single prepared sample for each point.

A similar experiment was conducted for gentamicin-loaded liposomes, and it was found that

this transition occurs earlier, which was likely due to the presence of the positively charged

gentamicin on the outer shell of the liposome surface thus requiring less polymer for complete

surface charge reversal.

2.1.1.2.2 Shelf Life of Liposomes

Using the proper mass ratio of PLL to lipid to stabilize the liposomes as suggested by the zeta

potential information, the shelf life of these carriers was studied. Determination of shelf life

was important to ensure that performance of liposomes fabricated from the same batch could

be accurately compared after different durations of storage. It was important to ensure that

the integrity of the liposomes would not be rapidly compromised when placed into

physiological condition. Liposomes stored at 4 *C maintained their size and surface charge for

over two months after fabrication (Figure 2-5, top). Liposomes stored at room temperature or

37 0C maintained their size and surface charge for the full two weeks studied (Figure 2-5,

middle). The polyelectrolyte shell adds about 30 nm to the diameter of the native liposomes,

and completely reverses the surface charge. A repeat of the shelf life experiment at 4 "C was

conducted in the presence of FBS (Figure 2-5, bottom). The FBS contains proteins, which can be

isoelectric in nature and therefore provide a favorable environment for individual lipids to form

complexes, hence degrading the vesicle carriers. The loss of material from each liposome

causes a reduction in the average measured particle size. The zeta potential for the

unstabilized liposomes was reduced to about -20 mV.
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Figure 2-5. Diameter and zeta potential of liposomes stored at 4 "C without serum (top), 25 and 37 "C without

serum (middle), and 4 *C with serum (bottom) as a function of time. Data represent the mean ± standard

deviation of multiple measurements performed on a single prepared sample for each point.

2.1.1.2.3 Activity of Gentamicin-Loaded Liposomes
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By measuring radioactivity of the 14C-CHE and 3 H-GS both before and after dialysis, it was

determined that the initial loading of drug was approximately 0.07 mg-GS/mg-liposome. This

compares to about 0.22 mg/mg for the model formulation that served as the basis of this work

[92]. Unstabilized liposomes charged with gentamicin slowly released their cargo over time.

The rate of release was highly dependent on the storage temperature (Figure 2-6). When

stored in the refrigerator, the liposomal formulations lost about half of the initially loaded

gentamicin over the course of four months, or less than 0.5% of the initial value per day. At

room temperature, the liposomes lost over 4% per day. Although PLL-stabilized liposomes may

provide for longer drug retention, the LbL deposition process generally requires days, which

corresponds to measurable drug loss and subsequent incorporation of free gentamicin into the

growing LbL films.
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Figure 2-6. Gentamicin loss as a function of time for unstabilized liposomes stored at various temperatures in

100 mM NaOAc, pH 5.0. One sample was prepared and re-measured throughout the experiment for each

temperature.

A microdilution assay was used to determine the minimum inhibitory concentration

(MIC) of unstabilized GS-loaded liposomes (GS-Lipo) against S. aureus. As shown eariler with

the FBS, the liposomes also rapidly degraded in the presence of the nutrient-rich cation-

adjusted Mueller Hinton Broth. Therefore, the GS-Lipo were separately prepared in 100 mM

NaOAc before being assayed and compared to an assay control of pristine NaOAc buffer

without GS-Lipo (Figure 2-7, top). The exact liposome concentration was unknown since it was

determined that during dialysis of gentamicin, about 2% of the total liposome content was also
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discarded; hence, the values in Figure 2-7 represent a slight over-estimate of the MIC. The

sodium acetate buffer was nontoxic towards S. aureus at all concentrations investigated in this

experiment. The drug-loaded liposomes yielded an upper bound of the MIC at 78.13 pg/mL

(with respect to lipid mass). This corresponds to about 5.5 pg/mL of drug content, which is an

order of magnitude higher than the MIC for free gentamicin. Possibilities for the discrepancy

include: variability in the determined gentamicin content of liposomes (leading to an

overestimate), overestimate in the liposome concentration used in the microdilution assay, and

the fact that some of the positively charged gentamicin is complexed with the negatively

charged lipids thus rendering it less active.

When PLL-stabilized liposomes were used for a similar assay, the MIC was reduced to

about half the value of unstabilized case (Figure 2-7, bottom). The antibiotic nature of

polycations has previously been documented [107, 108], and the PLL control (containing free

polyelectrolyte without liposomes) yielded efficacious results alone at high enough

concentration (i.e. 0.625 mg/mL).
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Figure 2-7. Determination of the MIC of GS-Lipo (top) and PLL-GS-Upo (bottom) against S. aureus. Data

represent the mean t standard deviation of triplicate samples.

2.1.1.2.4 Performance of Liposome-LbL Films

After determining that the stable, GS-loaded liposomes could be synthesized while maintaining

activity against S. aureus, it was necessary to begin incorporating the liposomes into

polyelectrolyte multilayered films. To this end, initial efforts were aimed at comparing the

performance of the PLL-Lipo-GS to free gentamicin using identical film architectures.

Specifically, 50 tetralayer films were built with either [Poly 1/HA/GS/HA] or [Poly 1/HA/PLL-

Lipo-GS/HA]. Two major metrics were considered: release kinetics and total drug loading.

Looking at the release curves depicted in Figure 2-8,1 the release rate was distinctly slower for

liposomal gentamicin (i.e. duration was increased almost twofold from the case of free drug);

however, the total drug load of the liposomal films was substantially reduced (more than 25x)

from the case of free gentamicin. Although this comparison was conducted using only one

particular LbL system, the general findings are expected to apply to most systems. Liposomal

carriers are much bigger than the small-molecule gentamicin, and according to the Einstein

diffusivity relation, their diffusivities should scale with the inverse of the particle size, which

I Neither film architecture continued to release drug beyond the final data point shown.
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leads to slower release kinetics. The reduction in total drug load was initially thought to

correlate to sub-optimal packing of the liposomes on the film surface. To test for this,

liposomal films with two tetralayers were constructed and imaged with the AFM (Figure 2-9). It

was found that the liposomes did not form a close-packed network on the surface; however,

the packing density was significant and likely would not allow for more than a 3-4x increase.

Assuming that the total drug loading of a liposomal LbL film scales linearly with the total

liposome loading, then the liposomal films would still contain about 7-8x less drug than the

case of free gentamicin. Therefore, the discrepancy can be explained by the fact that the large

size of the liposomes required a substantial film volume that could otherwise be occupied by

free drug. Furthermore, the more diffusive nature of gentamicin is actually beneficial in

achieving large drug loadings since more drug can be driven into the film throughout the

deposition process.
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Figure 2-8. Cumulative gentamicin release for [Poly 1/HA/GS/HA]so plotted on the left ordinate and [Poly

1/HA/PLL-Lipo-GS/HA]5o plotted on the right ordinate. Data sets represent values from one sample each.
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Figure 2-9. AFM phase image of [Poly 1/HA/PLL-Lipo-GS/HAh.

With respect to the application of existing implant-related infections, the necessity of

large drug loading trumps that of the enhanced release kinetics. Without being able to virtually

eradicate the existing infection with a bolus of drug, there is no need for prolonged presence of

antibiotics since the bacteria will continue to thrive. It has been shown that a 2x increase in

release duration comes at the cost of total drug payload. As a result, the liposomal LbL delivery

of gentamicin, although possible, may not be the best route of antibiotic administration for the

current application.

2.1.1.3 Conclusions

The use of liposomes in LbL films is promising for controlled release as a general platform, but is

most appropriate for therapeutics that do not require significant mass loading while requiring

significant control on release characteristics. For the case of antibiotics, large quantities of drug

are both necessary and more important than prolonged release duration. Therefore, the

liposomal LbL system studied here fell short. Although liposomes are capable of enhancing the

release duration of gentamicin, their substantial mass compromises a significant amount of film
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volume that could otherwise contain free drug. The use of liposome-mediated delivery of

gentamicin is an attractive route for intracellular delivery of drug and therefore is still relevant,

but this mechanism of gentamicin delivery from LbL films for the treatment of existing implant-

related infection is not endorsed based on the data presented here.

2.1.2 Alternative Film Architectures

Given that the liposomes decreased the total loading of gentamicin in polyelectrolyte

multilayered films, an effort was put forth to screen for the best performing film architecture

with respect to loading and release duration. To remain consistent with the specifications for

antibiotic implant coating design, films must be able to deliver their cargo at a rate that is

capable of eradicating existing infection, control any latent infection in the surrounding tissues,

prevent future colonization of the implant surface, and meet biocompatibility requirements.

Consequently, the materials and architectures considered within the following section were

chosen due to their biocompatibility and prevalence in LbL systems. The following screening

experiments uncover the importance of some of the chemical considerations (with respect to

material choice and film architecture) that form a basis for rational film design.

2.1.2.1 Experimental

2.1.2.1.1 Materials

Poly 1 and Poly 2 were synthesized as previously described [78]. Poly 2 contains two additional

methylene units within the repeat unit when compared to Poly 1. Silicon wafers (test grade n-

type) were purchased from Silicon Quest (Santa Clara, CA). Linear poly(ethyleneimine) (LPEI,

Mn = 25 kDa) was purchased from Polysciences, Inc. Phosphate buffered saline (PBS) and

nonradiolabeled gentamicin sulfate (GS) purchased in powder form were from Mediatech, Inc.

(Herndon, VA). Sodium hyaluronate (or hyaluronic acid (HA), Mn = 1.7 MDa) was purchased

from Lifecore Biomedical, Inc. (Chaska, MN). Poly (sodium 4-styrenesulfonate) (SPS, Mw = 1

MDa), poly(acrylic acid) (PAA, Mw = 1.25 MDa), PAA (25% in water, M" = 50 kDa), dopamine

hydrochloride, chitosan (CHI, medium molecular weight), and 3 M concentrated sodium acetate

buffer (pH 5.2) were purchased from Sigma-Aldrich (St. Louis, MO). 1-ethyl-3-[3-
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dimethylaminopropyl]carbodiimide hydrochloride (EDC) was purchased from Thermo Fisher

Scientific (Waltham, MA). 3 H-GS (250 iCi total, 1 mCi/mL in ethanol, 200 ptCi/mg) and 14C-

cholesteryl hexadecyl ether (CHE, 250 tCi total, 0.1 mCi/mL in toluene, 55 mCi/mmol) were

obtained from American Radiolabeled Chemicals, Inc. Dialysis membranes were purchased

from SpectraPor (Rancho Dominguez, CA). Modified simulated body fluid (m-SBF) was

prepared as described previously [105]. All materials and solvents were used as received

without further purification.

2.1.2.1.2 Synthesis of PAA-DOPA

Functionalization of the carboxylic acids on the PAA backbone required the use of the EDC zero-

length crosslinker. The reaction ratio was set to achieve 50% dopamine functionalization. Four

grams of PAA solution (25% in water) was added to 1.077 g of EDC and 1.318 g of dopamine in

45 mL of PBS (10 mM, pH 5.5). The pH of the reaction mixture was re-adjusted to 5.5 and the

reactants were allowed to mix for at least one hour at room temperature. After reaction, the

mixture was dialyzed extensively through a 12-14 kDa cutoff membrane and lyophilized.

Overall functionalization was determined to be 30% by nuclear magnetic resonance (NMR).

Reaction and characterization were kindly performed by Dr. Byeong-Su Kim.

2.1.2.1.3 Preparation of Polyelectrolyte Solutions

All solutions were prepared at 2 mg/mL in 0.1 M NaOAc and pH adjusted to 5.0. The GS

solution was spiked with 5 pL 3 H-GS per 50 mL dipping solution yielding a 0.1 p.Ci/mL product

without significantly changing the concentration of the GS dip bath. LPEI and PSS dipping

solutions were prepared at 2 mg/mL in water and pH adjusted to 4.25 and 4.75 respectively

with 1 M sodium hydroxide and 1 M hydrochloric acid. All solutions were prepared with water

from a Milli-Q Plus (Bedford, MA) at 18.2 MO.

2.1.2.1.4 Polyelectrolyte Deposition

All polyelectrolyte LBL thin films were constructed as follows according to the alternate dipping

method [44]. Substrates were rinsed with methanol and ultra pure water, dried under

nitrogen, and plasma etched in oxygen using a Harrick PDC-32G plasma cleaner at high RF
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power for 75 seconds. Layer-by-layer thin film deposition was performed using a Carl Zeiss

HMS Series Programmable Slide Stainer. A nondegradable bilayer of LPEI/PSS was deposited

first by immersion of the plasma treated substrates in LPEI for 30 minutes followed by a single

ultra-pure water rinse, and finally in PSS for 30 minutes followed by a single ultra-pure water

rinse. The degradable films were deposited on top of this PSS-terminated surface by alternate

dipping in a cationic species (i.e. Poly 1, CHI, or GS) for 9 minutes followed by a cascade rinse of

three 100 mM sodium acetate baths for 10, 20, and 30 seconds, and then into the anionic

species (i.e. PAA, PAA-DOPA or HA) for 9 minutes followed by a similar rinse cycle. All polymer

solutions and gentamicin solutions were completely replaced every 25 and 50 tetralayers,

respectively.

2.1.2.1.5 Release of Gentamicin

Films were immersed into 3 mL of modified simulated body fluid (m-SBF) [105] in a tightly

capped Falcon tube maintained at 37 "C. Degradation environments were kept sealed from the

ambient to minimize evaporative loss. A 1 mL sample was extracted from the Falcon tube at

predetermined time points and replaced with 1 mL prewarmed m-SBF in a manner so as not to

mechanically disturb the hydrated film. The time points were selected with a greater frequency

at early times to reflect the kinetics of release. Each extracted sample was mixed with 5 mL

ScintiSafe Plus 50% (Fisher Scientific, Atlanta, GA) prior to GS quantification. The resulting

mixtures were analyzed using a Tricarb Model 2810 TR liquid scintillation counter (Perkin Elmer,

Waltham, MA). The raw data in disintegrations per minute (DPM) was converted directly to pg

of drug using the DPM value for the dipping solution (10 mg/mL). Total release from the film at

the ith timepoint was calculated by the following equation:

m, = (C, x 3 mL) + (1 mL) C
j=1

where mi (pg) is the the total cumulative mass of GS released from the film at the time of

measurement i, C; (ptg/mL) is the concentration of sample i (which is multiplied by a total of 3

mL in the Falcon tube), and the summation term adds up the total extensive quantity of

gentamicin removed in each of the i-1 former aliquots.
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2.1.2.2 Results and Discussion

2.1.2.2.1 Enhancing the Loading and Release of Gentamicin

The choice to cease troubleshooting of the liposomal LbL systems and redirect research efforts

of this thesis toward alternative architectures was, in part, driven by the results of an

experiment inspired by the work of Salomski and Kankare [109]. Their study showed that

(CHI/HA)n films built up exponentially in the absence of PAA, but that by periodically inserting a

layer of PAA into this growing film, the growth characteristics were shifted toward linear

growth. Specifically, (CHl/PAA)n and (CHl/HA/CHI/PAA)n yielded strictly linearly growing films,

while insertion of PAA every 16th layer allowed the film to grow exponentially between PAA

deposition steps, but reset the buildup rate to almost zero after each PAA step. They

concluded that PAA likely acted as a diffusion barrier in this system. Therefore, this concept

was applied to the (Poly 1/HA/GS/HA)n system with the goal of controlling the diffusion of the

small, hydrophilic gentamicin and consequently enhance release duration. (CHI/PAA) was

alternated with (Poly 1/HA) every other tetralayer leading to the overall film architecture (Poly

1/HA/GS/HA)(CHI/PAA/GS/PAA)n. Comparing films with equal total number of layers (i.e. 100

tetralayers to 50 octolayers), the (CHI/PAA) barrier yielded films with an order of magnitude

increase in total loading and release duration (Figure 2-10, left) from the traditional tetralayer

architecture of (Poly 1/HA/GS/HA) [53].

Films with the octolayer architecture (Poly 1/HA/GS/HA)(CHI/PAA/GS/PAA) were then

compared to counterparts with dopamine-functionalized PAA (Figure 2-10, right). It was

hypothesized that the addition of bulky side groups to PAA would further enhance its

functionality as a diffusion barrier. Over the timescales studied, the dopamine-functionalized

samples led to significantly reduced total loading compared to the pristine PAA, and negligible

release rates were achieved after about 24 hours. It is possible that the more hydrophobic

nature of the dopamine side groups compared to that of the former carboxylate groups

provided a less favorable environment for gentamicin to enter the film. Regardless, these initial

concept experiments elicited the necessity of a more thorough architecture screening to

optimize the choice and order of film components.
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Figure 2-10. (Left) Release profile of (Poly 1/HA/GS/HA)(CHI/PAA/GS/HA)n with n = 25 and n = 50. (Right)

Comparison in total drug release between (Poly 1/HA/GS/HA)(CHI/PAA/GS/HA)n and (Poly 1/HA/GS/HA)(CHI/

PAA-DOPA/GS/HA)n at n = 25 and 50 octolayers. Data sets represent values from one sample each.

2.1.2.2.2 Screening for a Best-Performer

Experiments were designed to achieve strong reproducibility so as to confidently uncover the

best-performing film architecture. Each experiment involved the batch fabrication and

characterization of one sample set. A sample set is defined as one sample from each type of

film architecture. Release quantities from each sample set were normalized to the maximum

release value of the best performing film architecture in that particular set. For each

comparison, three separate repeat experiments, each normalized to their own best-performer,

were conducted completely independently.

In the first comparison (Figure 2-11, left), the total release decreased according to (Poly

1/PAA/GS/HA)50 > (CHI/PAA/GS/HA) 50 > (CHI/HA/GS/HA)50 . Analyzing the latter two

architectures first, the substitution of PAA for HA yielded substantially greater release. This

result was already observed for films incorporating Poly 1 instead of CHI (Figure 2-8 compared

to Figure 2-10, left). The charge density along the backbone of PAA is greater than that of HA,

which leaves significantly more accessible charges for gentamicin to interact with during its

deposition step. Substituting in Poly 1 for CHI further enhanced the release. Poly 1 is a

hydrolytically degradable polycation while CHI is stable in water. Consequently, the CHI-based

films are non-erodible in aqueous buffer and release their drug in diffusive manner. The Poly 1
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films, however, are able to erode completely and additionally release strongly bound drug.

Although it is difficult to draw firm conclusions concerning release kinetics when comparing

these 50 tetralayer architectures, it is expected that at larger tetralayer numbers, the erosion-

based release of films incorporating Poly 1 will become more apparent at later times relative to

the diffusion based release.

In the second comparison (Figure 2-11, right), the total release decreased with (Poly

1/PAA/GS/PAA)50 > (Poly 2/PAA/GS/HA)50> (Poly 1/HA/GS/PAA)50. It was hypothesized that the

position of PAA within the repeat structure of the multilayered stack would play a role in

attaining higher loads. While placement of PAA directly before a drug deposition step would

allow gentamicin to access a larger number of carboxylates than HA and therefore load

gentamicin more densely into the growing film, placement of PAA directly after a drug

deposition step was expected to limit the amount of previously loaded gentamicin from

diffusing out of the film. Separately, it was hypothesized that the use of Poly 2 in place of Poly

1 would enhance release duration due to the presence of the additional ethylene group in the

repeat unit making the backbone more hydrophobic and hence resistant to hydrolytic

degradation; however, it was also expected that the same hydrophobic nature of Poly 2 might

limit the total loading of the hydrophilic drug. It was found that despite the increased

hydrophobicity of Poly 2 compared to Poly 1, the placement of PAA within the repeat structure

of the multilayered stack dominated the drug loading characteristics. Comparing (Poly

1/PAA/GS/PAA)50 and (Poly 2/PAA/GS/HA) 50, the former had better total drug load and similar

(if not more prolonged) release duration. In addition to the repelling effect of the Poly 2

hydrophobicity on gentamicin loading compared to Poly 1, the HA may have allowed more drug

to diffuse out of the film throughout the LbL buildup process than PAA. Furthermore, the

comparable release kinetics of these architectures despite the use of Poly 1 in the former

alludes to the stabilizing behavior of PAA over HA in these systems.
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Figure 2-11. (Left) Comparison in total drug release between (Poly 1/PAA/GS/HA)50 , (CHI/PAA/GS/HA)50, and

(CHI/HA/GS/HA)50. (Right) Comparison in total drug release between (Poly 1/PAA/GS/PAA)50 , (Poly

2/PAA/GS/HA)so, and (Poly 1/HA/GS/PAA)50 . Each data set contains information from one sample. Data sets

were generated in batches of three-one of each film architecture-and normalized to the maximum release

value for that particular batch. Thus, each graph contains three independent repeat experiments. Data sets

represent values from one sample each.

Extending upon the results shown in Figure 2-10 and Figure 2-11, a final screen for a

best-performing architecture was conducted (Figure 2-12). There are two major takeaways

from this experiment. First is that increasing the HA content of the multilayer film relative to

the PAA content decreases its ability to load and retain gentamicin. Second is that the CHI

substitution for Poly 1 doesn't add any noticeable benefit to the total release. Therefore, the

definitive architecture for use as an antibiotic implant coating as a result of these screening

efforts was (Poly 1/PAA/GS/PAA)n.
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Figure 2-12. Comparison in total drug release between (Poly 1/PAA/GS/PAA)50, (Poly 1/PAA/GS/PAA)(CHI/

PAA/GS/HA) 25, (Poly 1/PAA/GS/HA)50, and (Poly 1/PAA/GS/HA)(CHI/PAA/GS/HA)2 5. Data sets were produced in

a similar manner to those presented in Figure 2-11 and contain values from one sample each.

2.1.2.3 Conclusions

Beyond the obvious biocompatibility issue, the single most important issue to address when

designing antibiotic coatings for implantable medical devices is the ability to eradicate an

infection. Second to this is the prolonged presence of antibiotics near the implant surface to

prevent any possibility of biofilm formation. Therefore, with respect to total release of

gentamicin from polyelectrolyte multilayers, the best performing system studied here was (Poly

1/PAA/GS/PAA)n. This architecture significantly enhanced the ability of the LbL films to load

drug over previously published systems [53]. PAA provides a higher density of carboxylates per

length of polymer than HA, thus presenting a greater number of ionic sites to bind gentamicin.

Poly 1 imparted erodible functionality (compared to CHI) which allowed near-100% release of

the loaded drug. Comparisons in release kinetics were less conclusive since films with limited

numbers of tetralayers were used in these studies. In theory, prolonged durations should be
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attainable by increasing the total number of layers in the film and rates can be tuned by choice

of the erodible polycation [79].

2.2 Characterization of the Performance of [Poly1/PAA/GS/PAAJn

The work presented in this section has been reproduced from the published manuscript

entitled "The effectiveness of the controlled release of gentamicin from polyelectrolyte

multilayers in the treatment of Staphylococcus aureus infection in a rabbit bone model" by

Joshua S. Moskowitz, Michael R. Blaisse, Raymond E. Samuel, Hu-Ping Hsu, Mitchel B. Harris,

Scott D. Martin, Jean C. Lee, Myron Spector, and Paula T. Hammond (Biomaterials, vol. 23, pp.

6019-30, 2010) with permission from Elsevier.

PAA has been used in its bulk form as both a gentamicin delivery vehicle in an in vivo

osteomyelitis model [110] and an orthopedic implant coating to enhance the biocompatibility

of titanium-based surfaces [111]. Unlike HA, PAA can act as a diffusion barrier within multilayer

films [109], and has a much larger glass transition temperature (Tg) (106 0C compared to about

14 "C), thereby resulting in mechanically more rigid films that release the relatively diffusive

gentamicin over a longer timescale. A set of GS release experiments directly compared PAA to

HA using the architecture [Polyl / Anion / GS / Anion] 50; the polyanions are compared in Figure

2-13. The 1.25 MDa PAA films (n = 4) incorporated about 7.5 times more GS than the 1.7 MDa

HA films (n = 8). This could be partly due to the difference in charge density along each

respective polymer backbone (i.e. difference in total charges per mass of repeat unit for each

polymer). Given identical polymer concentrations by mass in the fully charged state, the PAA

would have approximately 5.26 times more charge than the HA. This results in comparatively

less interaction and bonding of HA with GS in the multilayer films.
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Figure 2-13. (Left) Cumulative amount of gentamicin released from [Poly 1 / Anion / GS / Anion]50 films. (Right)

Normalized plot shows differences in release kinetics. Data sets represent the mean ± standard deviation of n =

4 samples for 1.25 MDa PAA, n = 6 for 100 kDa PAA, and n = 8 for HA.

The screening experiments also sought to determine the benefit of using 1.25 MDa PAA

over 100 kDa PAA. It was found that the high molecular weight PAA (n = 4) did indeed

incorporate greater amounts of drug than the low MW counterpart (n = 6), but not by a

significant margin. Subsequent experiments utilized the 1.25 MDa PAA.

2.2.1 Growth, Erosion, and Release of [Poly 1/PAA/GS/PAA]n.

One of the major advantages to LbL systems is that the thickness of the films can be tuned

according to the total number of layers deposited. Since drug is cyclically incorporated

throughout the growth process as one of the structural components, the total drug loading

scales with thickness and is therefore also tunable (but not independently). The [Poly

1/PAA/GS/PAA]n architecture resulted in stable and reproducible film growth up to 200

tetralayers (Figure 2-14).
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Figure 2-14. (Left) Growth curve for [Poly 1/PAA/GS/PAA]. SEM images are provided for the circled data

points. Thicknesses were measured by profilometry at four predetermined points on each substrate and

averaged over three replications. The error bars represent the average root mean squared roughness from

triplicate samples and quadruplicate measurements per sample. (Right) SEM images of the growing film on a

silicon surface at (A) n = 25, (B) n = 50, (C) n = 100, and (D) n = 200 layers. White arrows mark the film edge.

Nota bene: the scale changes between (B) and (C).

Several studies have sought to explain differences in observed growth behavior of LbL

systems [112-117]. The simplest systems grow solely in linear fashion as polyelectrolytes in

solution interact only with the oppositely charged outermost layer of the growing film. Bilayer

thicknesses during basic linear growth range from the nanometer scale to tens of nanometers.

Exponential growth is generally observed when there is at least one diffusive component that

absorbs into the bulk of the growing multilayer film, and each subsequent deposition cycle

leads to increased increments of material absorbed. Based on the data, for which the average

bilayer thickness is on the order of 150 nm, it is hypothesized that the films begin building in

the exponential regime due to the diffusive nature of gentamicin (477 Da). After the film is

grown beyond a threshold thickness-which takes place before the 25 tetralayer data point-

there is a transition from the exponential regime to a secondary linear regime. This occurs

when the film becomes so thick that the time provided for diffusion (i.e. 9 minute dip cycles) is

less than the time necessary for the gentamicin to access the entire thickness of the film via

diffusion. As a result, this diffusion-limited growth curve appears despite the presence of a

57



diffusive component, but exhibits much larger bilayer thicknesses. Details of this transition and

how to control its onset are described elsewhere [115, 116]. One implication of this behavior is

that it is expected that the concentration of gentamicin is greatest in the diffusion zone of the

film (i.e. the outermost region), which therefore contributes to an initial burst-release behavior

of drug.

The surface roughness increases with the total number of deposited tetralayers until

about n = 50, after which it remains relatively constant (8.6 ± 1.6 pm) as observed both with

profilometry and scanning electron microscopy (data not shown). The unusually high values of

roughness in the current system are likely a result of significant interdiffusion of PAA, which is a

weak polyanion with a solution dissociation constant (pKa ~ 6.5) [118] that lies above the

deposition condition (pH = 5.0), and the small positively charged molecule gentamicin. The

combination of this interdiffusion and some small amount of film dissolution during the

assembly period is a likely cause of some diffusive loss of material from the film, which

introduces roughness during the deposition process.

2.2.2 In Vitro Activity against Staphylococcus Aureus

One of the deliverables of this study was to confirm the killing efficacy of these LbL constructs

against S. aureus in an in vitro assay and further ensure that the ethylene oxide (EtO)

sterilization procedure does not change release kinetics, since sterilization is required for all

implantable medical devices. Kirby-Bauer disk diffusion assays provide both qualitative

information and a quantitative estimate of the amount of gentamicin that has diffused through

agar by measuring the zone of inhibition (ZOI). In Kirby-Bauer disk diffusion assays, agar plates

were inoculated with exponentially growing S. aureus in cation-adjusted Mueller Hinton Broth

(CMHB) at 108 CFU/mL, and incubated with the sample at 37 'C for 16-18 hours. The diameter

of the inhibition zone was measured in millimeters. [Poly 1/PAA/GS/PAA] 200 + [Poly 1/PAA/GS]1

films were grown on identical titanium rods with dimensions similar to those used in the in vivo

experiment (Chapter 5). One of the rods was subjected to EtO sterilization while the other was

left unsterilized. Each rod was pressed into a separate agar plate and BD Sensi-Disc standards

with 10 ig of gentamicin were used to ensure that the ZOls could be accurately compared. The

58



ZOI was virtually unchanged by the 12 hour EtO cycle, which supports the fact that EtO is an

effective way to sterilize the LbL system without altering film loading or release kinetics.

Furthermore, the Kirby-Bauer diameter, which is the diameter of the ZOI minus the linear

dimension of the eluting agent (e.g. the rod), was approximately 22.8 mm in comparison to the

18.1 mm generated by the Sensi-Disc standard (Figure 2-15); in vitro diameters that exceed 15

mm are generally regarded as a good predictor of effective treatment against S. aureus [119].

Figure 2-15. Untreated (left) and EtO treated (right) titanium rods coated with [Poly 1/PAA/GS/PAA]200 + [Poly

1/PAA/GS]1 produced a baseline zone of inhibition of 25.6 mm (measured perpendicular to the long axis of the

rod) against S. aureus after overnight incubation at 37 *C. As a control, the sample is referenced to a

commercially available BD Sensi-Disc. The lighter color at the rod surface is a result of the ruptured agar and not

the presence of bacteria. The scale bar is in centimeters.

2.2.3 Cytotoxicity toward MC3T3-El Cells.

2.2.3.1 MTT Assay Details

The MTT stock solution was prepared in minimum essential medium alpha (a-MEM) without

the phenol red pH indicator at a concentration of 5 mg/ml and stored at -20 "C. The working

MTT solution (0.5 mg/ml) was prepared immediately before use by dilution of the stock MTT

solution in a-MEM growth medium without phenol red. The MC3T3-E1 culture medium was

replaced by the appropriate volume of the MTT working solution and incubated at 37 *C and 5%

C02 in humidified air for exactly 4 hours. The MTT culture medium was gently aspirated at the
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completion of the 4-hour incubation period. The formazan metabolic precipitate produced

within the MC3T3-E1 cells was dissolved with the addition of dimethyl sulfoxide to the cultures

and shaking of the plates. The homogenous purple solution was distributed into clear 96-well

plates (100 pL/well) in 4 to 6 replicates. The absorbance reading of the MTT solutions were

performed at 570nm with 630nm reference wavelength using a BioTek PowerWave XS

Microplate spectrophotometer which reports data as the difference in absorbance between the

test and reference wavelengths. Control well (containing 100 Pl of DMSO) and blank wells were

always included on each 96-well plate and this absorbance reading (typically measuring 0.045)

was subtracted from all MTT absorbance readings.

2.2.3.2 Live/Dead® Viabil ity/Cytotoxicity Details

The recommend working solution of 2 pM calcein and 4 pM ethidium homodimer-1 was

prepared in PBS and supplemented with 0.2 mg/ml Hoechst 33342. In brief, MC3T3-E1 cultures

were rinsed with warm PBS and then incubated with an appropriate volume of the modified

Live/Dead* Viability/Cytotoxicity Kit working solution for 30-60 minutes at 37 "C. The dye

solution was gently aspirated from cultures, rinsed with PBS, and the cultures were fixed with

10% formalin at room temperature for 15 minutes in the dark.

2.2.3.3 Results

MTT assays were run to determine the cytotoxic effect of these films against MC3T3-E1 murine

cells, subclone 4 with high osteoblast differentiation and mineralization activity. The

experiment was designed to mimic an overcompensated situation where films were eluted at

370C for one week (=70% of cargo, Chapter 5) into a small buffer reservoir forming a more

concentrated test sample relative to what would be experienced in vivo. The experiment was

repeated in triplicate for films of 100 and 200 tetralayers, and results compared to a negative

control of untainted minimum essential medium (alpha) buffer. Since the in vivo environment

is both a larger reservoir and an open system, the concentrations of degraded material

achieved in this in vitro experiment should exceed those that would be experienced by the

same films in vivo barring any local gradients at the film surface that would exist in any

antibiotic film-eluting system.
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There was no statistical difference in metabolic activity of the cells between the control

and 100 tetralayer elution buffers in this assay (single tailed student's t-test assuming equal

variances, Figure 2-16A). However, the 200 tetralayer elution buffers did cause a significant

reduction in the metabolic activity of the cells. Upon further investigation via the Live/Dead*

assay and direct imaging with fluorescence microscopy, it was confirmed that the 100

tetralayer films were benign towards the MC3T3-E1 cell line and present no apparent

biocompatibility issues (Figure 2-16B). In contrast, the 200 tetralayer elution buffer (Figure

2-16C) caused a clear reduction in cell viability as a result of the increased concentration of

eluted material. Dead cell percentages were calculated for each test group from cell counts of

the fluorescent images (Figure 2-16D). The discrepancy between the reduced metabolic activity

(~70% reduction) and the cell viability (~25% reduction) suggests that the metabolic activity per

cell is also reduced. These cytotoxic effects must be a result of either Poly 1 (or degradation

products), GS, PAA, or complexes. Past studies have determined the biocompatibility of Poly 1

towards a variety of cell lines [53, 78, 80], and PAA is an FDA-approved, biocompatible material

that has been studied for use as a surface coating to enhance the biocompatibility of titanium

implants [111]. It is well-known that GS is nephrotoxic and ototoxic at elevated systemic

concentrations, which reinforces one of the main benefits of localized drug delivery systems. A

200 tetralayer film contains roughly 600 pg/cm 2 of GS (Chapter 5), which after one week would

have eluted about 450 lpg/cm 2 of drug (i.e. 70%) into the 4.5 mL/cm 2 of buffer, yielding a 100

pg/mL solution of GS. Isefuku et al. determined that GS concentrations above 100 pg/mL

caused reduction in osteoblast alkaline phosphatase activity which is necessary for proper

enzyme function [120]. At higher concentrations of GS, osteoblast cell proliferation was

affected. Likely the GS-whether complexed or not-is likely the culprit for the onset of the

observed cytotoxic effects of the 200 tetralayer elution buffers.
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Figure 2-16. (A) MTT metabolic activity of MC3T3 cells after 16-18 hr treatment in elution buffer normalized to

negative control (i.e. cells incubated in standard medium). The p-value was computed using a single-tailed

student's t-test assuming equal variances, and data represent the mean ± standard deviation for three different

samples. Images of MC3T3 cells subjected to 16-18 hr treatment in (B) 100 and (C) 200 tetralayer elution buffer.

Live cells are represented by a blue nucleus surrounded by green cytoplasm. Dead cells are represented by a red

nucleus. (D) Percentage (and standard deviation) of dead cells calculated from triplicate images. Scale bar hash

marks are spaced 100 pm apart.

2.3 Post-Processing Techniques for Controlled Release

2.3.1 Crosslinking

It was hypothesized that by creating a lightly crosslinked network throughout the degradable

films, the diffusion pathways for gentamicin would become much more tortuous and hence

prolong its release kinetics. Both thermal and ultraviolet radiation techniques were initially

62

0 (Control) 100



considered as candidates for achievement of crosslinking. For thermal crosslinking, films were

placed into a Shel Lab vacuum oven. For ultraviolet crosslinking, films were treated in a

Spectroline UV Crosslinker Select Series. Release profiles for films with varying treatments are

shown in Figure 2-17. Ultraviolet crosslinking treatment of 1 hour under intensity greater than

4 mW/cm 2 did not noticeably alter the release kinetics from the as-made samples (Figure 2-17,

right). The thickness and roughness of these samples-about 15 pm and 3 pm, respectively-

likely scattered the UV light such that only the outermost surface received any significant

crosslinking. Hence, the effects of UV radiation were not studied further.

As for thermal crosslinking, both time and temperature proved to be important

parameters with respect to tuning the final film behavior. Films baked for 30 minutes at 130 0C

or less had little effect on release behavior; however, increasing the temperature to 140 *C and

160 *C respectively led to an incremental increases in the release duration of gentamicin. Films

baked at 130 *C for 2 hours had a similar effect. These effects are clear indications that physical

(i.e. dehydration) or chemical (i.e. amide or anhydride formation) changes have taken place

within the bulk of the film.
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Figure 2-17. Release profiles of [LPEI/SPS]ho+[Polyl/PAA/GS/PAA]so treated with various crosslinking conditions

in PBS at 37 *C. Data sets represent the mean ± standard deviation of triplicate samples.

To test for the existence of covalent bonding between gentamicin and PAA (i.e. amide

formation), the bioactivity of drug released from untreated, 140 *C (30 minutes), and 170 0C (30

minutes) films was tested against S. aureus 25923 (Figure 2-18). 50 tetralayer samples were

released into cation-adjusted Mueller Hinton Broth, measured for gentamicin content using
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liquid scintillation counting, and then applied directly to bacteria cells at different dilutions. All

experiments were performed in triplicate. The untreated samples yielded a minimum

inhibitory concentration (MIC) of about 0.1 pg/cm3 (Figure 2-18, A) which was consistent with

literature values [53, 82, 84]. The 140 *C samples yielded an MIC that appeared to be slightly

lower than this value (Figure 2-18, B) indicating that full bioactivity is retained after 140 *C heat

treatment for 30 minutes. The slight decrease could potentially be a result of complexing

phenomena that allow the drug to more effectively permeate the bacterial cell membranes.

The 170 *C samples had no observed MIC within the concentration range studied (Figure 2-18,

C), indicating that the MIC has been shifted higher by more than an order of magnitude. This

shift is consistent with the fact that the gentamicin was covalently binding with another

component of the film-likely through amide formation between the primary amines on

gentamicin and the free carboxylic acids on PAA-thus rendering it inactive.
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Figure 2-18. Microdilution assays determining the minimum inhibitory concentration of drug eluted from A)

untreated films, B) films heated at 140 *C for 30 minutes, and C) films heated at 170 *C for 30 minutes. All

graphs are normalized to the negative control. All data represent the average values of three separate

measurements from a single sample. Similar results were observed for two additional repeat experiments each

using a separate sample (data not shown).

The erosion characteristics of the films was studied by immersing the films into PBS at

37 C and three unique behaviors were observed between untreated films and heat treated

films at 140 "C (30 minutes) and 170 0C (30 minutes). The untreated films were found to anneal

such that the films transitioned from being macroscopically rough (i.e rms roughness of 3 Ipm)

to macroscopically smooth (i.e. rms roughness < 1 tm). This suggested that bulk

rearrangement of the film components was possible, which is reminiscent of a lack of a

crosslinked network. The initial erosion rate proceeded at about 10%/2 hours (data not

shown). Unlike the untreated samples, there was no observed change in the roughness of the

140 "C samples when placed into the erosion medium, which pointed to the existence of some

degree of crosslinking. These samples did, however, undergo initial erosion rates that were

similar to the untreated samples. Therefore, the crosslinking was likely of the hydrolytically

reversible anhydride type between carboxylic acids along the PAA chains. The similar initial

erosion rates yet different release rates between untreated samples and 140 'C samples

suggest that the effective diffusivity of gentamicin in the polymer matrix has been enhanced in

the case of the latter. Samples baked at 170 *C did not exhibit any significant erosion behavior

even when placed in 60 *C release medium or exposed to 1M sodium hydroxide. Further, these

films tended to float off the silicon substrate and remain intact in solution. Such mechanical

durability can be attributed to the formation of amide bonds. Release from these films was,

consequently, diffusion based.

Samples of [LPEI/SPS]10+[Poly1/PAA/GS/PAA] 25 were built on infrared transparent silicon

for analysis via a Nexus Fourier Transform Infrared spectrophotometer (Figure 2-20). The

formation of anhydrides (red dashed lines at about 1800, 1750, and 1030 cm1, Figure 2-20, left)

became quite apparent after high 170 *C temperature treatment, which was consistent with

previous observations in the heat treatment of PAA [121, 122]. Additionally, a significantly

more pronounced amide peak corresponding to the carbonyl stretching in CONH was observed
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near 1650 cm1 (blue dashed line, Figure 2-20, left) [123, 124]. Peaks at about 1715 (carbonyl

stretching of COOH), 1550 (asymmetric stretching of COO~), and 1400 (both COOH and COO-)

cm 1 (green dashed lines, Figure 2-20, left) were correspondingly diminished, as expected.

While the existence of noticeable crosslinking peaks helped to confirm the observed physical

behavior of samples treated at high temperature, there was less conclusive FTIR evidence for

these conclusions at 140 *C. Although it was possible that crosslinking could have taken place

to a less detectable extent, one significant observation was that the signal from hydroxyl

stretching (broad peak centered near 3300-3400 cm', Figure 2-20, right) was considerably

reduced in the case of the 140 *C samples when compared to the untreated samples. This

could be attributed to thermal dehydration of the films, which could potentially restrict the

ability of water to quickly access the bulk of the film when placed into aqueous medium, thus

slowing the diffusion-based drug release process as well as limiting the ability of the film to

undergo the same rapid annealing rearrangements that were observed in untreated films.

C-H stretch,
alkanes

Air

0-H stretch,
170 c, overnight N-H stretch -140 *C, 30 min

-140 c, 30 min
-- No Treatment

1900 1700 1500 1300 1100 900 3500 3000 2500 2000

Wavenumber(1/cm) Wavenumber(1/cm)

Figure 2-19. FTIR spectra of one sample first untreated, then baked at 140 "C for 30 minutes, and finally baked

again overnight at 170 C. (Left) Spectra between wavenumbers 900 and 1900, and (right) spectra between

wavenumbers 2000 and 3800. Data were selected as characteristic examples amongst six repeat experiments.

All data sets were reported used a minimum of 32 scans.
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2.3.2 Sponge Effect

Using the model system (Poly 1/PAA/GS/PAA)50 , the effect of increasing concentration of the

gentamicin dip bath was studied. It was found that beyond the initial burst release phase, the

kinetics of release were not substantially altered by the concentration of the gentamicin dip

bath (Figure 2-20). Beyond the first day, the rates of release were found to be approximately

zero order and relatively similar regardless of the gentamicin concentration. There are several

inferences that can be made. With each drug deposition step, a fraction of the drug entering

the film will interact with the existing free ionic sites and form electrostatic bonds. The number

of molecules forming electrostatic bonds with the growing multilayer film is independent of the

concentration of the gentamicin dip bath. The remainder of the drug is driven into the

multilayered stack due to the chemical potential of the dip bath and remains nonspecifically

bound within the film. This quantity increases with increasing concentration of the dip bath

until the point where the film becomes completely saturated with drug. Upon rinsing, much of

this nonspecifically bound drug diffuses out of the film; however since both the diffusion and

the rinse cycle are time-dependent processes, the diffusion process may not be complete on

the timescale of the rinse cycle. As a result, the bolus release of drug that is observed during a

release experiment is highly correlated with the concentration of nonspecifically bound

gentamicin and therefore highly correlated with the concentration of the gentamicin dip bath

(and duration of the dip time). The linear release phase is correlated with the electrostatically

bound drug, which is relatively constant per area when comparing samples with an equal

number of deposition steps.
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Figure 2-20. Effect of increasing the concentration of the gentamicin dip bath on release kinetics in (left) ultra

pure water and (right) modified simulated body fluid. The differences in total release quantities were a result of

the pH of the release medium as discussed in more detail in Chapter 3. Data sets represent the mean ± standard

deviation of triplicate samples.

To further investigate the diffusive release that takes place throughout the timescale of

a rinse cycle, the release of three separate films with the (Poly 1/PAA/GS/PAA)n architecture

were compared to counterparts that contained an additional three layers-(Poly 1/PAA/GS) 1-

without a final rinse cycle (Figure 2-21). It was found that this technique predominantly

affected the burst release phase, and yielded a total increase in drug loading on the order of

20%. As described earlier, by simply changing the concentration of gentamicin in this final

deposition step, this "sponge" technique could potentially be used to tune the burst release

phase without significantly changing release kinetics.
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Figure 2-21. Effect of ending on a drug deposition step without
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Chapter 3 Theoretical Treatment of Drug Release from PEM

Coatings

3.1 Introduction

The goal of this theoretical treatment is to derive an analytical function to describe mass of

drug released per area of film (Q) as a function of time, which is based on physically relevant

processes. The approach is to first solve a highly simplified abstraction from the true physical

system, and then incorporate any necessary complexities later. Although previous work has

described the drug release from surface and bulk eroding polymer matrices, emphasis was

placed on development of an immediately useful model for erodible thin films that does not

require the use of finite element analysis [125, 126] or many parameters [127]. After

development of this initial theoretical treatment, a numerical description of the drug-releasing

system based on finite differences is coded in MATLAB for comparison to the analytical

derivation.

3.2 The Mathematical Framework

To begin, the assumption is made that the film components are homogeneously distributed

throughout the bulk of the film and that each mechanism of release works completely

independently:

(3-1) Q(t) = Q(t)erosion + Q(t)diffusim + Q(t)ejection + Q(other

Here, Q(t) is the drug released per area of film. The release mechanisms of erosion, diffusion,

and ejection are the only significant phenomena described in literature that are relevant to

most drug releasing LbL systems. Film erosion and drug diffusion-based release are the most

widely studied release mechanisms. Ejection is the pH-induced release of film components

when subjected to media that are of a different pH than the film deposition conditions causing

charge mismatch and subsequent equilibrium-seeking behavior [128]. To simplify the current

problem, it is assumed that Q(t)other is small, and that release experiments are conducted at the

deposition conditions hence negating the mechanism of ejection:
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(3-2) Q(t) = Q(t)erosion + Q(t)difin .

To effectively parse out the contributions from each release mechanism and help

validate the model, release experiments should be conducted at the most stable conditions

possible to promote surface-based erosion over bulk degradation. Therefore, to determine

these conditions, a set of [Poly 1/PAA/GS/PAA]50 were built with growth characteristics shown

in Figure 3-1.

30.00

25.00 R2 = 0.9916
E
: 20.00

4 15.001

"E 10.00

5.00

0.00

0 5 1015 2025 30354045 50
Tetralayers (n)

Figure 3-1. Growth curve of [Poly 1/PAA/GS/PAA]n used for model validation. Measurements were made on

triplicate samples and error bars indicate the rms roughness values (note: use of standard deviation of thickness

would have yielded much tighter error bars). For the thickness measurements, all coefficients of variation were

less than 0.5.

When determining the effects of ionic strength and pH on degradation behavior, these drug

releasing tetralayer samples were compared to all-polyelectrolyte samples of [Poly 1/PAA] 100. It

was found that ionic strength does not significantly impact degradation behavior of the

erodible films until sufficiently high concentrations of salt were added (>300 mM, Figure 3-2,

left). Ionic strength does not play a role in hydrolysis of Poly 1, but does impact the rate at

which ionic bonds can be broken, which is an important step in the erosion process. Within a

factor of three from the 100 mM deposition conditions, film stability was virtually independent

of ionic strength. According to Figure 3-2, right, film degradation is most stable in the pH range

of 4.0 to 5.5, which was expected as this represented the vicinity of the deposition conditions;

however, upon further investigation of the relative thickness/roughness (which is a metric of

film smoothness), it was found that pH 5.0 uniquely allows the bilayer films to erode in the

70



most stable manner (Figure 3-3, left). Again, this was expected as it corresponds to the exact

deposition condition and minimizes the effect of material ejection from the film surface, which

can induce roughness. The inconclusive results and large coefficients of variation for the

tetralayer films (Figure 3-3, right) were caused by the limited number of samples studied for

each data point (i.e. n = 3). The coefficients of variation for the pH 5.0 and 5.5 samples were

0.64 and 0.50 respectively. Based on these results, it is reasonable to hypothesize that the

deposition condition is the most stable for studying film degradation and drug release.
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50 Tetralayers [Poly1/PAA/GS/PAA]

None 100 mM 300 mM 1M
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pH of 100 mM Acetate Buffer

Figure 3-2. Effect of ionic strength (left) and pH (right) on erosion of [Poly 1/PAA]1OO and [Poly 1/PAA/GS/PAA]50.

Measurements represent the mean ± standard deviation of triplicate samples.
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Figure 3-3. Effect of pH on the relative thickness/roughness (i.e. smoothness index) of [Poly 1/PAA]1OO (left) and

[Poly 1/PAA/GS/PAA]so (right) after erosion in 100 mM NaOAc for 19 hr at 37 *C. Measurements represent the

mean ± standard deviation of triplicate samples.
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3.2.1 Defining Erosion-Based Release

The fundamental scaling analysis that can be conducted for hydrolytically erodible drug release

systems is a comparison between the relevant timescales of water diffusion through the sample

matrix versus the rate of hydrolytic degradation. This determines if the sample matrix is bulk-

eroding or surface-eroding. For this, a dimensionless Deborah number E is used and is defined

as:

(3-3) E =X)

4Dff ln[(x)]-ln l/ NA(N -1)p

where the numerator relates to the timescale for water diffusion and the denominator relates

to the timescale for hydrolytic degradation [129]. Large values of e suggest that water takes a

long time to diffuse relative to the reaction, leaving water excluded from the bulk of the matrix,

thus suggesting that the matrix is surface-eroding. Small values suggest that the diffusion time

is relatively short and that the reaction takes place everywhere throughout the matrix,

suggesting that the matrix is bulk-eroding. For an example system, <x> represents the film

thickness (20 im), Deff represents the diffusivity of drug in water (10~8 cm2 /s), M, is the number

average molecular weight of the erodible polymer (6 KDa), N is the degree of polymerization

(32), p is the polymer density (1 g/cm 3), and A is the first-order rate constant of polymer

degradation (1.925 x 10-' s-1) [78]. Using these arguments, e takes a value on the order of 10-4

suggesting bulk-erosion. However, this analysis is likely an oversimplification for systems

studied in this thesis.

Drug that is released as a result of erosion is considered to be strongly bound drug (i.e.

drug that is electrostatically bound to the bulk of the film and not free to diffuse out of the film

without accompanied erosion). It is not released until the film itself dissociates. Many

processes govern the rate of film erosion. A simplified version is shown in Figure 3-4 where

water diffuses to the ester bonds, hydrolysis begins, ionic bonds break and re-form, and

dissociation of unbound material leaves the film surface. Film erosion is thus affected by pH,

ionic strength, and temperature of the erosion medium as well as the material properties of the

structural components making up the LbL film. Tentatively, it is assumed that mean field theory
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applies for erosion-based release. Specifically, whichever mechanisms govern erosion should

take place uniformly across the surface of the film and the overall effective erosion rate can be

estimated to be a constant. This is somewhat supported by the kinetic erosion data shown for

[Poly 1/PAA/GS/PAA]5o in 100 mM NaOAc buffer (pH 5.0, Figure 3-5A), although a true

representation of the erosion rate should consider the total mass lost as opposed to thickness

reduction. Since only three samples were used to determine each data point, it is not

conclusive whether erosion is truly linear or higher order. Using a simplified one-parameter

model for erosion-based release, the rate constant (which is a function of the erosion

conditions and film characteristics) can be measured experimentally. For linear erosion, the

film thickness (h) is reduced at a constant rate (Reff) according to

dh
(3-4) A=-R 1

dt

(3-5) h(t) = ho -R Rfft

where ho is the intial film thickness. For first-order erosion, h would be reduced according to

dh
(3-6) =-R h

dt

(3-7) h(t)=hoet R.

Whether zero-order or first-order, Reff holds an Arrhenius relationship with temperature (Figure

3-5C and Figure 3-5D). In the real multilayered system, it is possible that the erosion

characteristics may change with time due to the development of inhomogeneities. Therefore,

Arrhenius plots showing the interpolated data from Figure 3-5A are conducted for the first day

(Figure 3-5C) as well as for the entire erosion timeframes studied (Figure 3-5D)

Assuming for now that the erosion behavior is adequately represented by the linear,

zero-order approximation, the total release per area as a function of time becomes

(3-8) Q(t) = refft + Q(t)diffsion

(3-9) r = CGS Re

where reff is an effective rate of release of drug per area per time and CGS is the concentration of

strongly bound gentamicin, which is assumed to be homogeneous throughout the film. reff
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contains all necessary rate-limiting information behind the true mechanism of erosion as it

governs the overall process of erosion shown in Figure 3-4.

H20 H20 H20
H20

H20 H20 H20 Water diffuses to Hydrolysis
ester bonds

__________________~\ 2 H20-

A Break Ionic Bonds

Physically
desorb from

the film

a a a

4
H f~f

( / J

Figure 3-4. (Clockwise from top left) Initial state with the LbL film immersed in aqueous environment; water

diffuses into the film as predicted by scaling arguments; hydrolysis takes place at rates that are dictated by local

pH and temperature; simultaneously, ionic bonds continue to break and re-form at rates that are controlled, in

part, by the concentration of salts (collision theory); after sufficient hydrolysis, it becomes kinetically possible

for all remaining ionic bonds to break such that material can dissociate from the film surface.

The assumption of independent release mechanisms is valid if the timeframe for

diffusive release is sufficiently shorter than the timeframe for erosion-based release. This

would allow the mathematical treatment of the diffusion process to assume constant thickness

and the erosion process to assume homogeneous distribution of material. Diffusion would

dictate Q(t) at short times and erosion would dominate Q(t) at longer times. Figure 3-5B shows

the corresponding release profiles for samples that were eroded at 4 and 37 *C. At 4 0C, the

drug release effectively ceased after 100 hours, whereas at 37 *C, the release continued

linearly. These match the behavior of their corresponding samples in Figure 3-5A.

Furthermore, the diffusive burst of drug at 37 *C appears to subside very quickly relative to the

prolonged linear erosion-based release phase.
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Figure 3-5. Top: (A) Kinetic erosion profiles of [Poly 1/PAA/GS/PAA]so in 100 mM NaOAc pH 5.0 at different

temperatures, and (B) corresponding release profiles. All measurements represent the mean ± standard

deviation of triplicate samples. Bottom: Arrhenius relationships for the erosion rate constant (Reff) using zero-

order (linear) or first-order (exponential) interpolated representations of the data sets in (A). (C) The Arrhenius

relationship for the first day of erosion or (D) the full duration studied.

3.2.2 Defining Diffusion-Based Release

Mathematical treatment of diffusion assumes that the drug is well mixed throughout the film,

the film is homogeneous and inert, and there is no film erosion. The physical problem is

described in Figure 3-6. Drug that is released as a result of diffusion is considered to be weakly

bound drug (i.e. drug that is not ionically bound within the bulk of the film and thus able to

diffuse freely throughout the film). The film initially contains a concentration of weakly bound

drug, CO, while the infinite medium outside of the film initially contains no drug. As drug is

released, the concentration within film is assumed to quickly equilibrate and therefore remain
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homogeneous with a value of Ca.2 Ca is a function of time as it is depleted throughout the

release process. Far away from the film surface, the drug concentration remains at zero.

Assumptions
1. Film homogeneous matrix
2. C(z,) =0

Increasing time 3
4. C(0,t) = C.
5. No film erosion

z=0 z

Figure 3-6. Physical diffusion problem describing drug release from film into infinite medium.

The Fickian diffusion governing equation is:

aC 02C
(3-10) - = D

where C is the concentration of a chemical species, t is a time coordinate, z is a spacial

coordinate, and D is the effective diffusivity of drug. The initial and boundary conditions are

shown in Figure 3-6. The particular value of interest in determining Q(t)idffusion is the flux across

the film-solution interface (N). To determine an analytical form for flux, it is first necessary to

determine the order-of-magnitude penetration depth of drug into the surrounding medium.

This scaling analysis is analogous to that done by William M. Deen in his textbook [130]:

DKC KC
(3-11) a ~ a"

at t

a2KC, KCa
(3-12) "

az 2 52

where K is a partition coefficient and Ca is the average drug concentration remaining in the film.

The concentration of drug in the LbL film depletes over time as drug is released diffusively and

2 Assuming a diffusivity on the order of 10-6 cm2/s and a film thickness on the order of 20 pm, the estimated time

for drug to diffuse completely across the full film thickness would be about 1 s.
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is therefore not a constant (Figure 3-7). A simple mass balance suggests that the concentration

of remaining drug in the film at any given time (Ca) is equal to the total initial concentration Co

minus the amount that has been released Q(t) diffusion/h, where h is the total film thickness:

(3-13) Ca = K Co Q- h5 n

Ca = average concentration of drug remaining in film
C(x,t) CO = initial concentration of drug in film

Qa= mass of drug released per area of film
h = thickness of film
K = partition coefficient

Increase Time
Co -

Average Ca = K(CO - QI / h)

0=0

z = 0 z

Figure 3-7. The average concentration of drug remaining in the film depletes with time as drug mass is released.

The partition coefficient accounts for the preference of drug to remain in the film versus the infinite medium at

equilibrium.

Substituting these scaling estimates into equation (3-10) and solving for 6 yields 6 ~ (Dt) 1 / 2 . The

diffusion length over which the concentration drops from KCa to zero is 6. Flux is defined as

mass of drug released per area per time. Therefore, the flux of drug out of the film can be

approximated to scale proportionally to the concentration drop that takes place over diffusion

distance 6. Using the standard 6 = 2(Dt)1 /
2 for the one-dimensional diffusion length,

(3-14) N 0 = -D-- -D - -D =D( "=D(
az =0 Az 9 -0 (5 21D~t

dQ, 11 KC D K

(3-15) dQd"fSsi" = N,| = D a K a

d2t 2151 t 2
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Plugging equation (3-13) into (3-15) yields a simple ordinary differential equation. The initial

condition is no drug release. The system to be solved is:

(31)dQdiffusion D )1/2 K Qdifuio
dt t 2 h

(3-17) Qdiffusion (0) 0

This can be done by hand by separation of variables, integration, and rearrangement:

(3-18) diffusi on = dt

CO - Qdif"sion 2 t
h

(3-19) -h In CO - ho =K Dt 1 + C'

(3-20) CO - =dffusion K Dt 1/2

h )- h)

where C' is an arbitrary constant. Using the initial condition, C' = Co. Thus, the overall solution

to this diffusion problem becomes

(3-21) Qdi,,,sion = hCO I- exp K Dt 1/2

1 (- h

which yields the final form

(3-22) Qdiffusion = A[I -exp -Bt" 2

This solution contains physical information about the system, and is a more accurate

representation of the diffusion contribution at longer times than the theoretical treatment by

Higuchi [131] who derived the famous square root relationship with time:

(3-23) Q= (2A - eC)Ct.

The square root relationship can be recovered from equation (3-22 by using a Taylor series

expansion. After plugging the diffusion solution back into the total release equation (3-2), and

simplifying with arbitrary constants A, B, and C,
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(3-24) Q(t) = refft + hCo 1 - exp K Dt

(3-25) Q(t) = Ct + A 1 - exp -Btu 2

(3-26) A = hCo

(3-27) 
B =

h

(3-28) C=reff

This resulting three-parameter analytical equation fits most available poly(P-amino ester)

erodible system data sets fairly well (see section 3.4).

3.3 Model Predictions

A total of ten different analytical equations were ultimately considered in this thesis as

candidates to fit the release data from hydrolytically degradable LbL films. Of these, the model

developed above was the only non-phenomenological equation that addressed both major

mechanisms of release, and it generally yielded the best fit amongst the other

phenomenological equations. The resulting functional form contained three parameters.

Parameter C (3-28) contains information on the erosion rate, while parameters A and B (3-26)

and (3-27) respectively) contain information on the magnitude and rate of diffusion. In the

simple treatment presented here, it was assumed that these parameters did not change with

time and that the overall equation was valid until the film completely eroded. Figure 3-8 top,

left shows one particular least-squares regression of this model applied to (Poly

1/PAA/GS/PAA) 200 + (Poly 1/PAA/GS) 1, the architecture used in the in vivo study described in

Chapter 5. The model fit the data relatively well with R2 = 0.9968. Figure 3-8A, B, and C show

the effect of increasing each of the parameter values while holding the others constant.

Looking at B and C, it becomes clear that the early stage and late stage kinetics are dominated

by diffusion and erosion, respectively.
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Figure 3-8. (Top, left) Model (3-25 fit to the release data from the (Poly 1/PAA/GS/PAA) 200 + (Poly 1/PAA/GS)1

architecture described in Chapter 5 via a least squares regression. (A) Effect of increasing parameter A, (B) effect

of increasing parameter B, and (C) effect of increasing parameter C.

Although the assumption of constant film thickness for the diffusion problem was

inherently false, it may still be applicable to systems whose diffusion mechanism takes place on

a much shorter timescale than erosion. This way, the contribution of diffusive release becomes

quite small relative to erosion before parameters A and B can change significantly, and the

contribution of erosion-based release remains small while the film is rapidly changing

composition due to diffusion. In the case of linear erosion (equation (3-5)), the time to 5%

reduction in film thickness (ts%) is

O.05ho 0.05CGSho 0.05CGSho
(3-29) ff =S= .

Ref ref C
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Before this time is reached, it is assumed that h ~ ho. To determine if the contribution of

diffusive release has become small enough, there are two relevant methods. First, is to

compare the diffusion rate to the erosion rate and calculate the time to which the rate of

diffusive release becomes approximately 5% of the rate of erosion-based release (tsma1):

(3-30) dQdiffs ion =B xp(-Bt2)
dt 2 (

(3-31) dor'"i'" = C
dt

AB
(3-32) exp(-Bt,,,,, 2 ) = 0.05 C.

2, tsmall

If tsmall is t5%, then the assumption of independent mechanisms can hold since with 95% of the

film thickness still present, the contribution of diffusive release has already become small

compared to the erosion-based release. Second, is to calculate the time to which the rate of

diffusive release reaches 95% of its final value (t95%release)

(3-33) Qdiffnsion = A [I - exp(-Bt1/2)]

(3-34) 0.95A = A 1- exp(-Btl/2)

(3-35) t 95 /,,,,,, = Bn(0.05))

If t95%release is smaller than t5%, then diffusion has nearly reached completion before any

significant erosion has taken place. Of course these analyses can be improved by using time

dependent parameters (A(t), B(t), and C(t)), but regressed parameters can give an estimate on

the validity of these assumptions.

Overall five different physical constants are represented in A, B and C. The

concentration of diffusive drug, Co, only affects the magnitude of diffusion-based release

(Figure 3-9). Co can be tuned by changing the concentration of the drug deposition bath during

the final deposition step (see chapter 2.3.2 Sponge Effect). This enables control on the

magnitude of total loading without otherwise affecting the release kinetics. The partition

81



coefficient, K, and effective diffusivity of drug, D, appear only in parameter B and therefore only

affect the diffusion rate. K depends on the chemical nature of the drug as well as the interface

between the film and the release medium (and is thus determined experimentally). It is

expected that the K = 1 for films that become well hydrated in aqueous environment (equation

(3-3). The effect of D on the drug release profile is shown in Figure 3-10. Highly diffusive drug

particles have a more pronounced burst release as the film quickly reaches its erosion-based

release phase. Less diffusive drug particles get released over a much longer timescale. In

theory, diffusivity can be controlled by either encapsulating the drug in larger carriers, or

careful selection of the other polyelectrolyte components in the LbL system. The thickness of

the multilayered film, h, plays a dual role (Figure 3-11). When holding drug concentration

constant, the total drug release quantity scales linearly with the total film thickness.

Separately, the diffusive release rate increases with decreasing film thickness. This is

reminiscent of the Fickian diffusion length where thicker films will require longer timescales for

the drug to diffuse across, and hence longer times before said drug can contribute to

cumulative release.

00

co

0 -- Model 10

100+ Date
-- Co-> 2Co

Tine (Hours)

Figure 3-9. Model prediction of release profile after increasing the concentration of diffusive drug by'a factor of

2 while keeping all other values constant. Model 10 is the non-phenomenological model described in this

chapter.

The erosion-based release rate, reff, is an experimental constant that determines the slope of

the linear release phase. As an improvement to the model, a more detailed mathematical

treatment of the rate limiting steps governing erosion-based release should be incorporated
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into ref. Likely these parameters will include the ionic strength, temperature, and pH of the

erosion medium, as well as the chemical nature of the hydrolytically degradable polymers in

the system.
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Figure 3-10. Model prediction of release profile after increasing (left) and decreasing (right) the diffusivity of the

drug by a factor of 10 while keeping all other values constant.
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Figure 3-11. Model prediction of release profile after increasing (left) and decreasing (right) the thickness of the

LbL film by a factor of 2 while keeping all other values constant.

3.4 Validating the Analytical Model for Existing Systems

Although the ultimate test of model validation would be its ability to accurately predict release

profiles for new systems, the initial metric of validation here was to A) ensure satisfactory fit to

currently available data sets and B) determine if the outputted parameters and trends for these
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existing systems make sense. To this end, the model was first tested against a set of poly(p-

amino ester)s (AB1, A2, A3, and A4 from Figure 3 of Smith et a/. [791). These polycations

differed by the number of methylene groups per repeat unit of the polymer backbone (i.e. 3, 4,

6, and 9 respectively). The polycations were alternately layered with 14C-dextran sulfate and

allowed to elute into a phosphate buffered solution at room temperature. In all four cases, the

fit to the data was very good with R2 > 0.99 (Figure 3-12). These polymers were chosen based

on their increasing hydrophobicity, which correlated with slower degradation and slower

release rates as would be expected in an aqueous environment. The sole exception was A4

(Figure 3-12, bottom right), which bulk destabilized and fell apart on a much shorter timescale.
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Figure 3-12. Clockwise from top left: Release of dextran sulfate (DS) from erodible films made with (AB1/DS) 20,

(A2/DS) 20, (A3/DS) 20, and (A4/DS) 20.

These plots were normalized to their final release quantities and re-regressed with the model.

The trend in erosion-based release rates outputted by the model followed the trend in
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hydrophobicity, as expected: reff,AB1 = 10.7 x 10-3, reff,A2 = 5.5 x 10-3, and reffA3 = 2.7 x 10-3 1/cm 2_

s. Furthermore, the model also predicted a significantly higher fraction of diffusive release for

A4 than for the other polycations; parameter AA4 = 0.70, which was more than two times the

parameter A value for the other polycations. This is suggestive of the bulk destabilization that

was observed experimentally.

The strongest validation efforts conducted thus far have been directed at two systems

for which there was enough information to back out diffusivity values based on the output

parameters (Figure 3-13). Assuming K ~ 1, the predicted diffusivity could be calculated from the

outputted B parameter given the initial thickness measurement, h. Using this method, the

model predicted Dgentamicin = 1.5 x 10-6 cm2/s (Figure 3-13, left) and Dvancomycin = 5.0 x 10~8 cm2/s

(Figure 3-13, right). These values agreed well with the literature values of 2.3 x 10-6 cm2/s for

gentamicin in 2% agar [132] and 4.7 x 10-8 cm2/s for vancomycin in 25% w/w Poloxamer 407 in

water [133].
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Figure 3-13. (Left) (Poly 1/PAA/GS/PAA) 200 + (Poly 1/PAA/GS)1 with R2 = 0.997 and (right) (Poly 1/Chondroitin/

Vancomycin/Chondroitin)6 0 with R2 = 0.994.

3.5 Possible Extensions to the Analytical Model

The most immediate extension to the current mathematical model would be to incorporate the

changing film thickness h into the diffusion treatment. Although intuitively simple, this yields a

much more complex mathematical integration of:
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(3-36) dQ-ir in _ ) K CO - "ffsio
dt t) 2( regft,

(3-37) Qdiffusion (0) = 0.

Using MAPLE, this system was solved to be

(3-38) Qdiffsio, = COK Dt 1/2 - exp - -D1/ Ei K -1
rff rof _ t _ r L t )

where Ei(x) is the exponential integral. In modeling, there is a general tradeoff between

accuracy and usefulness. Although less simple to work with, equation (3-38) only requires one

additional parameter to solve when performing a least squares regression and should

marginally increase the quality of the fit. Since the second term of this solution is small as t

approaches zero, the form of the overall solution still upholds Higuchi's square root relationship

of release versus time at early times. Moreover, in a non-erodible system where reff = 0, the

system again recovers this relationship. Finally, if the drug is non-diffusive, if the concentration

of diffusive drug is zero, or if the drug partitions perfectly into the film (i.e. K = 0), then Qdiffusion

does not contribute to the overall release.

The next extension would be to correct for the effective diffusivity D of drug in the

polymer matrix. Since the chemical nature of the matrix changes with time as the hydrolytically

degradable polymer is cleaved, the effective diffusivity is also expected to change. One way to

do this is to allow:

(3-39) D = D, - exp(kt)

where Daq is the drug diffusivity in free water, e is the porosity of the polymer matrix, r is the

tortuosity of the polymer matrix, and k, is the polymer chain scission rate constant [134, 135].

The effective erosion rate, reff, although used as an independent parameter in the

present theoretical treatment, is not a physical parameter of the system. Therefore, a

quantitative representation of reff would yield a more universal analytical solution. Specifically,

it would be beneficial to write reff as a function of erosion medium characteristics (i.e. ionic
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strength, pH, temperature, and concentrations of other components, etc.) and film chemistry

(i.e. degradation characteristics of the poly(p-amino ester) [136],3 charge density of the

polyelectrolytes, ionic bond strengths, etc.).

Finally, all of the theoretical work described in this chapter was aimed at expressing

drug release per area of film as a function of time. Once an adequate analytical equation has

been developed, the next logical step would be to develop a Lotka-Volterra model [136] of

antibiotic predation on bacteria (e.g. S. aureus) in a site of infection. Such a model would need

to combine the results from this chapter with the predicted transient pharmacokinetics that

describe uptake by the body, uptake by cells, and general clearance, and apply them against the

inherent growth rate of bacteria [137] as well as the potential buildup of antibiotic resistance

[138]. Development of an accurate predator-prey model would be a powerful predictor as to

whether a particular coating could treat a particular infection, and would lay the framework for

intelligent film design.

3.6 Numerical Treatment of Diffusion-Based Release

To numerically code the diffusion-based release, the system was divided into an array of finite

elements. 10% of these elements were used to spacially describe the concentrations within the

film, and 90% of these elements were used to spacially describe the concentrations in the

medium. Element size for the film (zfilm) was chosen based on the total film thickness and total

number of desired elements to describe the film. More elements give greater accuracy and

resolution, but require greater computational time. The initial condition was set up such that

all of the film elements had a uniform concentration of drug while all of the medium elements

had zero drug. Inputs for the system were Co, D, h, (each as defined earlier) and "ratio" which

designates the ratio of aqueous diffusivity (D) to that of the drug in the polymeric matrix of the

film (Dfilm). The partition coefficient was assumed to be 1. At each time step, the entire

concentration vector was updated via an iterative process using the formula:

3 Antheunis et al. summarize the existing degradation models for hydrolytic degradation of aliphatic polyesters,

and propose a new autocatalytic equation.
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(3-40) C+a, = C, + (At)DC"

where the size of the time step (At) is determined by

1\2 2i>~

(3-41) At = medium 1 z 2

D 2 Df_1 2)

Thus the medium element size (zfilm) is inherently set by the time step, D, and "ratio". C' was

calculated using second-order accurate finite difference formulae. Central differences were

used for values of C" away from the system boundaries and film-solution interface. Forward

difference and backward difference formulae were used for the boundaries, and uniquely

derived central differences were used for the film-solution interface taking into account the

non-uniform grid spacing for simulations that utilize "ratio" values not equal to 1. In each

iteration the total mass in the system is summed up and compared to the initial mass in the

system so that discrepancies (i.e. introduced error) can be corrected by rescaling the entire

system to its initial value. No flux boundary conditions were enforced by averaging the values

of the two elements next to each boundary, and redistributing the mass evenly before the next

iteration. Finally, the total released drug (i.e. the drug residing in the medium elements) was

summed up and stored in a Qdiffusion vector while the total simulation time was stored in a

parallel time vector. All masses were outputted at the end of the simulation for bookkeeping.

MATLAB code is available in the Appendix: MATLAB Code for Numerical Treatment of Drug

Release.

The trends predicted by this numerical model as a result of changing each of the three

parameters Co, D, and h followed the expected outcome. Figure 3-14 (left) shows the effect of

increasing initial drug concentration and Figure 3-14 (right) shows the effect of decreasing

aqueous diffusivity. In both cases, the plots have been curtailed in time for easier comparison.

The sole effect of increasing initial concentration is to increase the total amount of drug

released without changing release kinetics (i.e. normalized plots align exactly). The effect of

decreasing the aqueous drug diffusivity is to decrease the kinetic rate at which the system

approaches 100% release. Figure 3-15 shows the effect of increasing the total film thickness for

two different cases: one where the mass in the system does not change (left), and the other
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where the total mass in the system scales with the film thickness (right). When holding the

mass in the system constant, the thickness parameter acts similar to aqueous drug diffusivity

and only affects the rate at which the system approaches 100% release. Thinner films achieve

this value faster than thicker films. When allowing the mass in the system to scale with the film

thickness, the result becomes identical to Figure 3-11 where thicker films release more drug,

but at a slower rate.
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Figure 3-14. (Left) Effect of increasing initial drug concentration in

parameters constant. (Right) Effect of decreasing the aqueous drug

parameters constant.
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Figure 3-15. (Left) Effect of increasing the total film thickness (h) while holding all other parameters constant.

(Right) Effect of increasing total film thickness (h) while allowing the total mass of drug in the system to scale

with film thickess.
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Figure 3-16 shows the space-time development of the drug concentration profile for an

example system. This simulation was ran for a 20 micron film with 50,000 pg/cm 3 of drug (i.e. a

total loaded mass of 100 pg/cm 2) and an aqueous drug diffusivity of 4 x 10-10 cm2/s. Six profiles

are shown between times 00:00:00 (hh:mm:ss) and 13:53:20, which correspond to total release

quantities of 0, 6, 13, 28, 52, and 76 pg/cm 2 of the original 100.
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Figure 3-16. Space-time concentration profile of drug. Initially all drug is loaded into the first 20 microns of the

system. The six plots shown here range from t = 0 to t = 14 hours.

To compare the numerical and analytical models, outputs from numerical simulations were fitted with

were fitted with a least squares regression using the analytical model from section 3.2.2. An example fit is

example fit is shown in Figure 3-17, however visual evidence alone does not confirm that the physical parameter

inputs to the simulation accurately correspond with the physical meaning of the analytical solution parameter

outputs. Therefore the simulation was run seven different times by varying the input parameters, and regressed

with the analytical model each time. The expected values of analytical parameters A and B were computed

from the simulation inputs and compared to the analytical parameter fitted outputs from each regression.

These data are shown in Table 3-1. Comparison between Simulation Inputs and Analytical Fit Outputs.
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Figure 3-17. Example analytical fit of the simulated first 1.8 minutes of release from a 20 micron film eluting

drug with an aqueous diffusivity of 4.0 x 10- cm 2/s and an initial film concentration of 50,000 pg/cm 3.

In all cases, the fitted parameter A was within 2 pg/cm 2 of its expected value and the

fitted parameter B was within a factor of 1.3 of its expected value while the coefficients of

determination were all near 1.0. This indicates that the physical meaning of parameters A and

B and mathematical functional form derived via the analytical treatment must hold some

degree of accuracy (i.e. A must be proportional to Co and h and B must be proportional to D1

and h1). Additionally, it was found that the fitted parameter B consistently underestimates the

expected value. This could be due to error during the scaling analysis, which assumed that the

diffusion length 6 was equal to 2(Dt)1 2. The prefactor 2 was arbitrarily selected due to its

occurrence in other analytical solutions [130], but may not have been entirely accurate.

Regardless, both models agree well with each other and fit release profiles relatively accurately.

Table 3-1. Comparison between Simulation Inputs and Analytical Fit Outputs.
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MATLAB Simulation Analytical Fit

Cn (pg/cm3) D (cm 2/s) h (pm) Expected A* Expected B Fitted A Fitted B R_

50000 4.OOE-08 20 90 0.100 90.6 0.083 0.997
25000 4.OOE-08 20 45 0.100 45.3 0.083 0.997
100000 4.OOE-08 20 180 0.100 181.1 0.083 0.997
50000 4.OOE-07 20 90 0.316 88.1 0.278 0.998
50000 4.00E-09 20 90 0.032 90.6 0.026 0.997
100000 4.OOE-08 10 90 0.200 88.8 0.170 0.998
25000 4.00E-08 40 90 0.050 88.2 0.044 0.998

* Equilibrium values are expected to be 90% of the total initial mass since only 90% of the total elements in the

simulation are defined as the elution buffer.
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Chapter 4 Design of a Reproducible In Vivo Bone Infection

Model

The work presented in this chapter has been reproduced from the published manuscript

entitled "The effectiveness of the controlled release of gentamicin from polyelectrolyte

multilayers in the treatment of Staphylococcus aureus infection in a rabbit bone model" by

Joshua S. Moskowitz, Michael R. Blaisse, Raymond E. Samuel, Hu-Ping Hsu, Mitchel B. Harris,

Scott D. Martin, Jean C. Lee, Myron Spector, and Paula T. Hammond (Biomaterials, vol. 23, pp.

6019-30, 2010) with permission from Elsevier.

4.1 Introduction

Osteomyelitis, or the inflammatory response to an infecting microorganism that causes

bone damage, is a disease that can occur on any bone at any age. Acute osteomyelitis occurs

on the order of days to weeks and involves the formation of sequestra, or separations of dead

bone from the surrounding live bone. As the body tries to repair the sequestra, new bone is

formed such that the sequestra are enveloped. The new bone is called involucrum and makes

the delivery of systemic antibiotics extremely difficult. Chronic osteomyelitis is a robust

infection lasting months to years, and is characterized by prolonged existence of pathogens,

inflammation, sequestra, and fistulous tracts. Relapses and clinical signs lasting for longer than

10 days are clear signs of chronic osteomyelitis [9, 139]. One of the major introductory routes

of these microorganisms into the human body is postoperative sepsis after orthopedic surgery.

In 2001, over 100,000 fracture-fixation devices resulted in infection within the United States

alone [140]. Additionally, it has been estimated that the 500,000 joint replacements

conducted annually in the United States have had infection rates on the order of 1% despite the

utilization of sterile medical practice and systemic antibiotics [16, 141]. The economic and

health-related penalties for enduring such an infection are enormous.

The current gold standard treatment in the United States is a two-stage re-implantation

process. Specifically, the patient will endure two additional surgeries requiring debridement of

dead and dying tissues, removal of the infected implant, insertion of a high-concentration
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antibiotic spacer, 6 weeks of intravenous antibiotic therapy, and re-implantation of the missing

device. This directly results in longer hospital residency, prolonged pedestrian immobility, the

possibility of skeletal defects and limb shortening, and a total cost estimate that can exceed five

times that of the initial surgery [8]. Although relatively effective at eradicating infection, such a

two-stage process is a tremendous burden on any patient who has to endure it. Therefore the

development of a drug-delivery coating that could introduce a confident one-stage re-

implantation procedure would be a paradigm shift that would significantly impact the lives of

patients who need revision arthroplasty.

Staphylococcus aureus is the infecting pathogen responsible for about two thirds of

chronic osteomyelitis clinical isolates [16]. S. aureus is a Gram-positive coccus that has

developed more resilient strains which are resistant to antibiotics such as methicillin (MRSA)

[142], and more recently vancomycin (VRSA) [143]. Among the list of antibiotics that are

efficacious against S. Aureus [144], gentamicin has been selected as the drug of interest in this

study, in part due to its broad bactericidal spectrum. Its mechanism of bactericidal activity is its

ability to disrupt protein synthesis by binding to the 30S subunit of the bacterial ribosome

[145]. It has a low minimal inhibitory concentration (MIC) against not only S. aureus (0.25

pg/mL for ATCC 25923) but also other osteomyelitis-relevant classes of bacteria such as

Pseudomonas (1 ptg/mL for ATCC 27853) and Enterobacteriaceae (0.5 p1g/mL for ATCC 25922)

[84]. Furthermore, gentamicin has already been shown to be successful in inhibiting the

viability of S. Aureus both in vitro [146] and in vivo [147]. The standard systemic dose of

gentamicin is about 3 mg per kg of bodyweight per day [148]. Since increased doses could lead

to unnecessary toxicity and antibiotic resistance, local delivery systems become tremendously

attractive.

Before studies can be conducted to find new ways to treat osteomyelitis, one must be

able to establish a reproducible bone infection in vivo. To this end, animal models using mice

[149], rats [150, 151], guinea pigs [152], chickens [153], rabbits [154], dogs [155], pigs [156],

and goats [157] have all been reported and include S. Aureus as the pathogenic agent. Rabbits

are by far the most widely used animal model since they are more prone to infection than other

animals, relatively inexpensive, and generally preferred to rats due to the larger nature of their
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skeleton, which is necessary for fixation devices [158]. Goats are an excellent model for testing

human sized implants, but pilot scale studies should first be conducted on a smaller animal

model. S. Aureus can be introduced via inoculum or a colonized foreign body. This study uses

the latter approach as it is more directly relevant to the application of a contaminated implant

during primary arthroplasty, and it provides an implant surface onto which bacteria may form a

biofilm. Eradication of sessile bacteria colonized under a robust biofilm requires orders of

magnitude higher concentration of antibiotics than planktonic bacteria in the same medium

[159, 160].

4.2 Experimental

4.2.1 Materials

Cation-adjusted Mueller Hinton Broth II (CMHB, 90922) was purchased from Sigma-Aldrich (St.

Louis, MO). Sterile, deionized water was obtained from Mediatech, Inc. (Herndon, VA). Bacto

agar and Brucella broth with 20% glycerol were purchased from BD (Franklin Lakes, NJ). All

materials were used as received without further purification. S. aureus UAMS-1 (ATCC 49230)

is a human clinical isolate from a chronic osteomyelitis case [161]. All anesthesia and sampling

tools including needles, Vacutainers, SurgiLube, bandages, sutures, sterile cups, lactated

Ringer's solution, isoflurane gas, pentobarbital, and medications including ketamine, xylazine,

buprenorphine, and meloxicam were supplied by the E25 animal facility. Surgical tools

including drill, saw, scalpels, scissors, forceps, and clips were supplied by Dr. Hu-Ping Hsu.

Rabbits were purchased from Covance (Princeton, NJ).

4.2.2 Colonization of Implants.

Poly(methyl methacrylate) (PMMA) cylinders were fabricated by the MIT Central Machine Shop

to be 8.0 mm long and 2.8 mm in diameter. The cap of each peg, defined here to be the top 1.0

mm of the shaft, had a 3.0 mm diameter. A 1.0 mm diameter hole was drilled perpendicular to

the axis of the rod just under the cap. These rods were suspended from the lid of a glass jar

using stainless steel 3-0 gage wire threaded through the 1.0 mm hole and subjected to EtO gas

for sterilization. Under sterile condition 150 mL CMHB was added to this jar, which completely
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immersed all suspended rods. S. aureus was grown overnight in CMHB (via toothpick

inoculation) and added to the jar at a dilution ratio of 1:1000 (150 pL). The bacteria were then

allowed to surface colonize the acrylic pegs overnight.

The following day, the suspended pegs were subjected to three consecutive 150 mL

sterile water baths, each rinse lasting 60 seconds without agitation. After air drying, the

suspended pegs were stored at -80 *C. All surface colonized pegs were prepared less than one

week prior to use.

4.2.3 Approval of In Vivo Procedures.

The Committee on Animal Care (CAC) at MIT approved all experiments and animal care

procedures. All experiments involving animals were conducted under in a sterile field at a

facility certified by the Association for Assessment and Accreditation of Laboratory Animal Care.

Sample-size estimation was done using GPower with a significance level of 5% and a minimum

power of 80% [162]. These parameters suggested that at least six rabbits should be used to

determine the reproducibility of infection. Six male New Zealand White rabbits were enrolled

for the development of the bone infection model with weight range of 2.64 to 3.13 kg (mean

and standard deviation, 2.85 ± 0.19).

All rabbits were allowed to acclimate to the facility for a minimum of one week prior to

their first operation. They were housed in separate cages in a climate-controlled facility with

free access to antibiotic-free food including commercial pellets, hay, and water. Each rabbit

was examined by a veterinarian prior to each operation.

4.2.4 Experimental Bone Infection Model.

Anesthesia was induced by intramuscular doses of ketamine (35 mg/kg) and xylazine (5 mg/kg).

The rabbits were additionally administered a subcutaneous (SQ) dose of buprenorphine (0.03

mg/kg) and meloxicam (0.2 mg/kg). The left hind leg of each rabbit was shaved from the ankle

to the hip and prepared with alternating Betadine scrub and 70% isopropyl alcohol (IPA).

Anesthesia was maintained throughout the operation using 2% isoflurane gas with oxygen at 1-

1.5 L/min via an endotracheal tube. Lactated Ringer's solution was administered through a
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catheter inserted into the cephalic vein, at an initial rate of 10 mL/kg-hr and then tapered

according to observed hemodynamic parameters. A straight medial side incision approximately

3.5-4.0 cm was centered on the knee joint line. The skin and soft tissue were dissected to the

deep investing fascia. A small longitudinal incision was made at the front portion of the

superior attachment of the medial collateral ligament (approximately 10 mm above a branch of

popliteal artery) to release the periosteum and expose the medial femoral condylar surface.

Using a sterile drill bit, a defect about 8.5 mm in length was drilled parallel to the axis

connecting the medial and lateral condyles (Figure 4-1A, B, and C). Irrigation was maintained

throughout drilling to remove particulate matter. Blood loss was monitored, and animals

received three times the estimated loss in Lactated Ringers solution throughout the procedure.

After saline joint lavage and hemostasis, one S. aureus colonized peg was press-fit into the

defect (Figure 4-1D). The exposed face of the peg and surgical wire were then cleaned

thoroughly with alcohol wipes with the aim of preventing infection unrelated to the bone. The

surgical site was closed in layers using 3-0 interrupted sutures for the investing fascia, 3-0

sutures for the superficial fascia and subcutaneous tissue, followed by reapproximation of the

skin with a subcuticular stitch using an uninterrupted 4-0 suture (Figure 4-1E, F, and G). A

subcutaneous dose of Lidocaine (2 mg/kg) was delivered at the surgical site while closing. Each

animal was monitored closely until full recovery from anesthesia was observed. Postoperative

analgesia was achieved with three subcutaneous doses of buprenorphine (one every 8-10

hours) and two doses of meloxicam (one every 24 hours). Animals were monitored daily for

food intake, stool and urine output, and behavior. The residence time allowed for the

development of bone infection was four days.

97



Figure 4-1. (A and B) MicroCT images of the rabbit femur. The drill site is marked with the red X'. (C) Drilled

defect in the medial femoral condyle of the left hind limb. (D) Defect site with implant set in place. (E and F)

Closing of the surgical site. (G) Closed wound.

4.2.5 Analysis of Infection.

Rabbits were given preanesthesia via intramuscular doses of ketamine (35 mg/kg) and xylazine

(5 mg/kg). Blood was then drawn from the heart and stored in Vacutainer tubes with

anticoagulant (ethylenediaminetetraacetic acid (EDTA) for complete blood counts or heparin

for blood cultures) or serum separator elements (for blood chemistry, C-reactive protein, and

gentamicin assays). This was followed by euthanasia using an intravenous dose of

pentobarbital (120 mg/kg) injected into the marginal ear vein. Each left knee joint was

prepared with Betadine solution, the implant extracted, and stored in a sterile vial. The

infected region of each femur was then extracted aseptically by cutting perpendicular to the

distal metaphysis axis at about 5.0 mm from the proximal edge of the drilled defect. All soft

tissue was debrided from its surface, and the entire outside surface of the bone was sterilized

using 70% (v/v in water) isopropyl alcohol wipes without disturbing the defect. The bone was

then weighed, snap-frozen in liquid nitrogen, and homogenized using a BioPulverizer (BioSpec,

Bartlesville, OK). The well-mixed powder was then added to 5 mL of Brucella broth and stored
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at -80 *C before analysis. Quantitative culturing was initiated after 1 to 4 days of storage. As a

control, contralateral femurs of placebo subjects (n = 5) were prepared in a similar manner.

Complete blood counts, blood cultures, and microbiology were performed at the

microbiology lab within MIT's Division of Comparative Medicine. Blood chemistry was

determined by Idexx Laboratories, Inc. (North Grafton, MA), and gentamicin assays were

conducted at the Veterinary Medical Center of Cornell University (Ithaca, NY). All explants were

rolled and streaked on trypticase soy agar plates with 5% sheep blood (VWR International), and

incubated overnight to determine the qualitative extent of surface colonization. The bone

homogenates were thawed, vortexed vigorously for 30 seconds, serially diluted, and plated to

determine the concentration of bacteria in the homogenate (colony forming units (CFU)/mL).

Plates with the largest countable number of bacteria were used in the statistical analyses, and

subsequent dilutions with greater than 20 CFU were averaged in with this value. Since the

sensitivity of this assay is 10 CFU/mL (corresponding to 1 CFU on the undiluted plate), a blank

undiluted plate was assigned half the value of the experimental uncertainty (i.e. 5 CFU/mL).

4.2.6 Statistical Analysis

Raw data of bacterial populations were not normally distributed and therefore required

nonparametric statistical methods. Log-transformed CFU data were analyzed with parametric

statistical tests. All statistical analyses were conducted using a Type I error rate of 0.05, single-

tailed testing. Power analyses were performed with the use of G-Power. The Mann-Whitney

U-test (nonparametric) was performed in StatView (SAS Institute Inc.). F-tests for variances and

subsequent t-tests for means were computed using the Analysis Toolpack in Microsoft Excel.

Statistical power greater than 0.80 and p-values smaller than 0.05 were considered to be

significant. Sample sizes are indicated in figure captions. Data are presented as mean +

standard deviation unless otherwise specified.
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4.3 Results and Discussion

4.3.1 Reproducibility of the Bone Infection Model

The bone infection model was designed to reproducibly simulate a primary surgery that

introduces implant-related osteomyelitis. Although less frequent than the use of bacteria

inoculum, foreign bodies have been used in past in vivo studies to help increase the rate of

infection due to facilitation of biofilm formation on the implant surface and greater resilience of

bacteria within [158, 163]. In this study, PMMA rods were intentionally surface colonized via

submersion into S. aureus culture. These rods were then introduced to their subjects by press-

fitting into a drilled defect in the medial femoral condyle of the left hind limb. Since soft tissue

infection was not relevant to this study, an attempt was made to sterilize the exposed cap of

each rod with alcohol wipes after press-fitting. The incubation time for propagation of infection

within the local bone was set to four days.

Infection of S. aureus was successfully contained near the defect site. As a result, blood

cultures from all rabbits were negative. Five contra-lateral femurs were extracted and

homogenized. Plating of these suspensions also yielded negative cultures. After the

pretreatment period, the surgical sites were re-opened and PMMA rods extracted to determine

surface colonization. Results of these cultures indicated the presence of S. aureus exclusively as

the infecting agent. The plates provide a qualitative metric on the extent of surface

colonization of the explanted rods (Figure 4-2), and suggest the existence of infection within

the defect site.
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Figure 4-2. Blood agar plates of explanted PMMA rods that were rolled down the center of the plate and

streaked for qualitative analysis of device surface colonization. Each plate corresponds to one rabbit. Each

white dot corresponds to a single CFU.

As a result of the inflammatory-infectious response, body weight decreased

significantly. Including the animals used for the in vivo experiment described in Chapter 5, the

rabbits lost an average of 9.1 ± 3.3% of their bodyweight (with a maximum of 15.4% and

minimum of 3.0%, n = 33) throughout the bone infection period. The correlation of this trend

with the existence of infection has been documented in other studies [164, 165]. Although all

thirty-three rabbits underwent the pretreatment infection model, only six rabbits were

euthanized without re-implantation for quantitative analysis of bone cultures and blood

chemistry of the bone infection model. These six rabbits had their infected femurs prepared

into a homogenate for determination odf CFU/mL by serial dilution. The total CFU present

within the extracted bone was back-calculated using the bone concentration in the

homogenate (g/mL) and total bone extracted from the rabbit (g). The mean number of

logio(CFU) per defect site for these six rabbits was 6.36 ± 0.94, which confirms a reproducible

and highly infected defect site.4

4 The standard deviation is reminiscent of general exponential growth behavior in bacteria, and is relatively narrow

considering the highly variable nature of in vivo experiments.
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Complete blood counts (n = 9) and blood chemistry (n = 6) data were generated for healthy rabbits prior

healthy rabbits prior to the pretreatment period. These values were compared to those of the infected animals

infected animals after the pretreatment period (n = 6 for both CBC and blood chemistry). Twelve metrics proved

Twelve metrics proved to be statistically significant in differentiating these two groups (i.e. they resulted in a

resulted in a post hoc power greater than 80% given a maximum allowable a error rate of 5%, (Table 4-1. Bone

Infection Model: Significant Blood Changes

). These changes must either be a result of surgical trauma, or infectious complications. Since

the aim of this model was to solely create an infected bed of bone for use in testing the film-

coated implants, only parameters that convincingly related to a bacterial infection were of

interest. The strongest data in support of this were the total CFU counts, weight loss, the

positive explant cultures, and leukocyte counts. The increased leukocyte concentration (p-

value < 0.01) is directly related to the presence of infecting microorganisms. Additionally, there

was an increase in the proportion of neutrophilic leukocytes in the infected rabbits (50% vs.

30% in healthy rabbits), which is highly reminiscent of acute bacterial infection. Despite the

fact that the statistical power associated with this increase was less than 80%, an F-test for

variances and subsequent t-test for means assuming equal variances yielded a p-value less than

0.03.

Table 4-1. Bone Infection Model: Significant Blood Changes

Healthy Rabbits

Asp a etra i e lU n 1 0 2Standard Pooled Effe 1t .91Power
MeticUnis vergeDeviation Deviation EfcSie(a =0.05)

Leukocytes 10^ 3/mm3 5.79 0.96 1.35 1.51 0.86
Hematocrit % 42.82 5.09 4.58 1.55 0.87

Erythrocyte Mean Cell Volume fl 66.10 3.86 3.20 2.34 0.99
Alkaline Phosphatase IU/L 102.67 24.03 17.44 3.54 1.00
Aspartate Transaminase IU/L 12.50 2.17 12.40 1.84 0.91
Creatine Kinase lU/L 814.17 318.64 780.65 3.78 1.00
Albumin g/dL 3.93 0.20 0.21 2.62 0.99
Globulin g/dL 1.55 0.08 0.12 3.15 1.00
Calcium mg/dL 14.05 0.64 0.56 2.31 0.98
TC02 (Bicarbonate) mEq/L 32.00 1.67 1.58 1.80 0.89
Albumin/Globulin Ratio 2.57 0.22 0.19 4.48 1.00
Lipase lU/L 421.17 78.79 71.34 1.88 0.92
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4.3.2 Limitations to the Model

In this investigation, the greatest weight was placed on developing a bone infection model that

can be used to generate proof-of-principle efficacy data from antibiotic LbL films in an in vivo

environment. Additionally, it was important to maintain relevance to the application of

conducting a one-stage direct exchange procedure to replace an infected prosthesis. There are

two major limitations to this model. First, the infection procedure is non-quantitative. The

PMMA rods were allowed to incubate overnight in S. aureus broth with the aim of growing a

biofilm throughout the surface of the implant. As a result, the number of CFU in the bacteria

challenge to the defect is unknown. Although inoculation models generally inject a known

quantity of bacteria, the decision to use the colonized implant was made since it more

accurately simulates the specific clinical case that the antibiotic coatings are designed to treat.

Moreover, not only is the resulting challenge at the end of the bone infection period more

important than strict control over the initial inoculation quantity, but also propagation of

bacteria in an in vivo environment will differ from subject to subject regardless of the

introductory method and exact quantity. The second limitation to this model is that

subcutaneous infection local to the defect site is very difficult to control. Subcutaneous

infection was not relevant nor treated in this study and caused unnecessary burden on the

animals, ultimately resulting in weight losses that sometimes required sacrifice before later

time points could be studied (i.e. greater than one week). Since the implants were press-fitted

into place, their colonized cap remained exposed to the subcutaneous environment. Despite

vigorous attempts to sterilize the exposed surface with alcohol wipes, infection of the local soft

tissues remained a great challenge. The presence of infection external to the site of interest

unfortunately made comparison of between the blood data of placebo and treatment groups

very difficult since treatment was restricted to the bone defect site. Soft tissues were

meticulously cleaned and removed from the bone prior to homogenization and did not

significantly affect the bone cultures, which were the primary metric of efficacy in this proof-of-

principle study. Future work may consider sealing off the implants using bone wax [166], and

perhaps additionally deliver systemic antibiotics to better control soft tissue infection. There
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was an intentional omission of systemic antibiotics in this study in order to clearly attribute

noticeable reductions in CFU counts to that of the antibiotic LbL films.

4.4 Conclusions

The in vivo bone infection model described in this chapter, which involved four days of bone

incubation with a S. aureus surface-colonized PMMA peg, was successfully reproduced over six

animals. It thus provided an interface through which the antibiotic films could be evaluated.

This infection model is an example of acute osteomyelitis due to the short incubation time;

development of a local soft tissue abscess, sepsis, and morbidity make longer incubation times

challenging and hence development of a chronic osteomyelitis extension to this model requires

further consideration. Regardless, the primary deliverable sought from this study was

achieved.
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Chapter 5 In Vivo Evaluation of Antibiotic Polyelectrolyte

Multilayer Coatings

The work presented in this chapter has been reproduced from the published manuscript

entitled "The effectiveness of the controlled release of gentamicin from polyelectrolyte

multilayers in the treatment of Staphylococcus aureus infection in a rabbit bone model" by

Joshua S. Moskowitz, Michael R. Blaisse, Raymond E. Samuel, Hu-Ping Hsu, Mitchel B. Harris,

Scott D. Martin, Jean C. Lee, Myron Spector, and Paula T. Hammond (Biomaterials, vol. 23, pp.

6019-30, 2010) with permission from Elsevier.

5.1 Introduction

Past clinically relevant treatment techniques that have released gentamicin locally in vivo

include bone cement [18, 167], bioactive sol-gel glass [39], injectable polymers [168], polymer

coatings [150, 151], and poly(methyl methacrylate) (PMMA) beads [31, 142, 169, 170]. For the

specific application of orthopedic implant surfaces, the relevant technology platform is a

surface coating with the most widely studied material for this use being antibiotic loaded bone

cement (ALBC). ALBC is accepted in the United States for prophylactic use only; however,

internationally, ALBC has been used in one-stage revision procedures where the infected

implant is directly exchanged with a sterile, ALBC coated implant in a single operation. A review

by Jackson and Schmalzried condensed data from twelve different reports totaling 1,299

infected hips that were revised using a one-stage process (almost 99% of which included ALBC)

[171]. The overall success rate determined from these revisions was about 83%. The main

drawbacks from using antibiotic loaded bone cement are: 1) the PMMA reaction is highly

exothermic which causes local tissue damage, 2) un-reacted methyl methacrylate is toxic [34],

3) cemented revisions make future removal much more tedious and difficult to prevent bone

damage, and 4) current levels of antibiotic delivery from these cements are insufficient for FDA

approval of the direct exchange process, while increased loading malevolently affects the

mechanical integrity of the cement [172]. Furthermore, bone cements are not able to

incorporate multiple therapeutic agents with individualized release rates, and the heat of the

polymerization reaction prohibits the incorporation and release of fragile therapeutic agents
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such as growth factors due to denaturation. As a result, the two-stage process requiring six

weeks of intravenous antibiotic therapy and local antibiotic-eluting PMMA beads remains the

accepted therapy in the United States to fight S. Aureus infection arising from implant-related

osteomyelitis [16]. One study utilized these beads to heal osteomyelitis in 92 out of 100

patients [170] while a second reported a 90.4% success rate in 405 patients [173].

The goal of this thesis was to develop a drug delivery coating that could help enable the

one-stage re-implantation procedure to the United States. Broadly, the coating would need to

first provide both analgesics and sufficient levels of antibiotics to eradicate an existing bone

infection, then facilitate new bone formation to ensure intimate contact between the bone and

implant surface, and finally prevent biofilm formation. The approach was to develop a

biocompatible and biodegradable implant coating constructed from polyelectrolyte multilayers.

PEM films could potentially directly address the major downfalls of ALBC since they can be

designed with biocompatible components to biodegrade without exothermic concerns. Since

long term mechanical integrity of the film is unnecessary for an erodible system (as it is for

ALBC), gentamicin loading and release specifications can be met without mechanical tradeoff

concerns. Furthermore, the chief advantage for the use of PEM films in the present application

is that they can incorporate multiple functional components at very specific regions within the

layered film architecture, which can enable complex and individualized release rates for each

type of cargo [55]. Therefore, there is an opportunity for PEM films to be incorporated onto

the surfaces of prostheses to make an unparalleled impact since painkillers [62], antibiotics[53],

and growth factors [64, 66] can be incorporated into the film. Upon surface erosion, this

coating would be able to deliver each therapeutic agent with individually optimized release

profiles to synergistically provide optimal recovery.

The objective of this chapter is to evaluate the antibiotic component of this conceptual

multi-drug film, in vivo. Although the onset of research efforts directed at development of PEM

coatings for titanium implants has begun [174, 175], this is the premier study that

demonstrates proof-of-principle that an LbL coated implant can locally deliver small hydrophilic

antibiotics to efficaciously treat a S. aureus-related bone infection in vivo. The LbL architecture

used in the following in vivo experiment is the first such architecture capable of long-term
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release of gentamicin (i.e. greater than 30 days), which not only improves upon sustained

durations reported in other small-molecule LbL systems [53, 62, 103], but also makes these

films competitive with existing technologies [39, 168, 176].

5.2 Experimental

5.2.1 Materials

Poly 1, a poly(B-amino ester) depicted in Fig. 1, was synthesized as previously described [78].

Silicon wafers (test grade n-type) were purchased from Silicon Quest (Santa Clara, CA). Medical

grade titanium dowels were received from Titanium Industries (Rockaway, NJ). Linear

poly(ethyleneimine) (LPEI, 23966-2, Mn = 25 kDa) was purchased from Polysciences, Inc. Poly

(sodium 4-styrenesulfonate) (PSS, 434574, M, = 1 MDa), Poly(acrylic acid) (PAA, 306215, MV =

1.25 MDa), 3 M concentrated sodium acetate buffer (S7899, pH 5.2) were purchased from

Sigma-Aldrich (St. Louis, MO). Sterile, deionized water and nonradiolabeled gentamicin sulfate

(GS) purchased in powder form were from Mediatech, Inc. (Herndon, VA). 3H-GS (250 pCi total,

1 mCi/mL in ethanol, 200 iCi/mg) was obtained from American Radiolabeled Chemicals, Inc.

Bacto agar and Brucella broth with 20% glycerol were purchased from BD (Franklin Lakes, NJ).

Concentrated castile soap and 70% v/v isopropyl alcohol pads were kindly donated by Triad

Medical (Hartland, WI). All materials and solvents were used as received without further

purification.

5.2.2 Preparation of Polyelectrolyte Solutions

Dipping solutions containing Poly 1 and PAA were prepared at 2 mg/mL in 100 mM sodium

acetate buffer and pH-adjusted to 5.0 with 1.0 N sodium hydroxide. GS was prepared at 10

mg/mL in 100 mM sodium acetate and pH-adjusted to 5.0. LPEI and PSS dipping solutions were

prepared in ultra pure water and pH adjusted to 4.25 and 4.75 respectively. All solutions were

prepared with water from a Milli-Q Plus (Bedford, MA) at 18.2 MO.
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5.2.3 Polyelectrolyte Deposition.

In vitro experiments utilized silicon substrates. Films for in vivo use were built on titanium pegs.

All polyelectrolyte LBL thin films were constructed as follows according to the alternate dipping

method [44]. Substrates were rinsed with methanol and ultra pure water, dried under

nitrogen, and plasma etched in oxygen using a Harrick PDC-32G plasma cleaner at high RF

power for 75 seconds. Layer-by-layer thin film deposition was performed using a Carl Zeiss

HMS Series Programmable Slide Stainer. A nondegradable bilayer of LPEI/PSS was deposited

first by immersion of the plasma treated substrates in LPEI for 30 minutes followed by a single

ultra-pure water rinse, and finally in PSS for 30 minutes followed by a single ultra-pure water

rinse. The degradable films were deposited on top of this PSS-terminated surface. The

tetralayer architecture of [Poly 1/Anion/GS/Anion]n was constructed by alternate dipping in a

cationic species (i.e. Poly 1 or GS) for 9 minutes followed by a cascade rinse of three 100 mM

sodium acetate baths for 10, 20, and 30 seconds, and then into the anionic species (i.e. PAA or

HA) for 9 minutes followed by a similar rinse cycle. The process was repeated n times

depending on the desired experiment. All polymer solutions and gentamicin solutions were

completely replaced every 25 and 50 tetralayers, respectively.

For films used in drug release experiments, the GS solution was spiked with 25 PL 3 H-GS

per 50 mL dipping solution yielding a 0.5 iCi/mL product without significantly changing the

concentration of the GS dip bath. No other part of the LbL deposition process was changed.

Films prepared on titanium pegs for the in vivo work were grown to

[Polyl/PAA/GS/PAA] 200 + [Polyl/PAA/GS]1 and allowed to air dry without a final rinse.

Additionally, these implants were subjected to a 12-hour cycle of ethylene oxide (EtO) gas for

sterilization in an Anprolene AN74i cabinet (Andersen Sterilizers, Inc., Haw River, NC).

5.2.4 In Vitro Characterization of Drug Release and Film Erosion

Films used for drug release experiments were stored at 4 'C until use. Films with 3H-GS were

immersed into 3 mL of modified simulated body fluid (m-SBF) [105] in a tightly capped Falcon

tube maintained at 37 *C. Degradation environments were kept sealed from the ambient to

minimize evaporative loss. A 1 mL sample was extracted from the Falcon tube at
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predetermined time points and replaced with 1 mL prewarmed m-SBF in a manner so as not to

mechanically disturb the hydrated film. The time points were selected with a greater frequency

at early times to reflect the kinetics of release. Each extracted sample was mixed with 5 mL

ScintiSafe Plus 50% (Fisher Scientific, Atlanta, GA) prior to GS quantification. The resulting

mixtures were analyzed using a Tricarb Model 2810 TR liquid scintillation counter (Perkin Elmer,

Waltham, MA). The raw data in disintegrations per minute (DPM) was converted directly to pg

of drug using the DPM value for the dipping solution (10 mg/mL). Total release from the film at

the ith timepoint was calculated by the following equation:

i-I

m1 = (C, x 3 mL) + (1 mL) C,
j=1

where m; (pg) is the the total cumulative mass of GS released from the film at the time of

measurement i, C; (ig/mL) is the concentration of sample i (which is multiplied by a total of 3

mL in the Falcon tube), and the summation term adds up the total extensive quantity of

gentamicin removed in each of the i-1 former aliquots.

Films used for erosion experiments were constructed with the architecture [Poly 1 / PAA

/ GS / PAA]200. As in the release experiments, these films were immersed into 3 mL of m-SBF in

a tightly capped Falcon tube maintained at 37 *C. At each predetermined time point, a

minimum of three films were removed from the m-SBF and allowed to air dry. The dry state

thicknesses were scratched with a razor blade and their thickness measured by profilometry at

four predetermined locations using a KLA-Tencor P-16 Profilometer. Triplicate measurements

were made on each film.

5.2.5 Approval of In Vivo Procedures

The Committee on Animal Care (CAC) at MIT approved all experiments and animal care

procedures. All experiments involving animals were conducted under in a sterile field at a

facility certified by the Association for Assessment and Accreditation of Laboratory Animal Care.

Sample-size estimation was done using GPower with a significance level of 5% and a minimum

power of 80% assuming one-sided alternate hypothesis (i.e. antibiotic films should decrease

infection when compared to the placebo group) [162]. These parameters suggested that at
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least six rabbits should be used per test group per time point. Twenty-seven male New Zealand

White rabbits were ultimately enrolled in the present study with weight range of 2.50 to 3.78

kg (mean and standard deviation, 3.07 ± 0.34) and were randomized into four test groups: (1)

four day placebo (n = 6), (2) four day treatment (n = 6), (3) seven day placebo (n = 7), and (4)

seven day treatment (n = 8).

All rabbits were allowed to acclimate to the facility for a minimum of one week prior to

their first operation. They were housed in separate cages in a climate-controlled facility with

free access to antibiotic-free food including commercial pellets, hay, and water. Each rabbit

was examined by a veterinarian prior to each operation.

5.2.6 Removal of Colonized Rod and Insertion of a Test Implant.

Four days after their initial surgery, 27 rabbits were anesthetized and prepared for a second

surgery as described previously (Chapter 4). After thorough debridement of the subcutaneous

and soft tissue abscess, each acrylic peg was removed (Figure 5-1A and Figure 5-1B) and placed

into a sterile vial for microbiological analysis (see 5.2.7 Sampling Schedule and Analysis of

Infection).

The 27 rabbits were divided into four test groups: four day sterile implants (n = 6), four

day LbL coated implants (n = 6), seven day sterile implants (n = 7), and seven day LbL coated

implants (n = 8). Each test implant was carefully press-fitted into the bone defect (Figure 5-1C

and Figure 5-1D). Implants with antibiotic films were dipped in sterile water for less than one

second in order to hydrate prior to insertion. Castile soap solution was prepared by adding one

0.3 oz. packet to 1.0 L of sterile water [177]. The subcutaneous and soft tissue areas were

thoroughly irrigated using this solution without disturbing the implant or defect. All animals

were sutured, dosed with postoperative analgesia, and monitored daily as described above.
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Figure 5-1. (A) Opened defect site with infected PMMA implant exposed. (B) The PMMA implant has been

extracted leaving a void. (C) Without washing the defect site, a titanium sample implant is press-fit into the

void. (D) Anterior-posterior radiograph showing the placement of the titanium peg in the medial femoral

condyle of the left hind limb.

5.2.7 Sampling Schedule and Analysis of Infection.

Sampling schedule and expected propagation of bacteria in the defect site are depicted in

Figure 5-2. The bone infection model described in Chapter 4 comprises the first four days of

the study for each rabbit, after which a second surgery is performed which directly exchanges

the infected acrylic implant for either a coated (treatment) or uncoated (placebo) titanium

implant. Animals are euthanized at either 4 or 7 days after re-implantation. Details of infection

analysis are described in Chapter 4.
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Figure 5-2. Schematic of the hypothesized magnitude of infection in the defect site as a function of time. The

initial surgery described in Chapter 4 is conducted at day -4. The direct exchange described in this chapter is

conducted at day 0. All n-values correspond to the total number of animals euthanized in that particular test

group.

5.2.8 Statistical Analysis.

Raw data of bacterial populations were not normally distributed and therefore required

nonparametric statistical methods. Log-transformed CFU data were analyzed with parametric

statistical tests. All statistical analyses were conducted using a Type I error rate of 0.05, single-

tailed testing. Power analyses were performed with the use of G-Power software. The Mann-

Whitney U-test (nonparametric) was performed in StatView (SAS Institute Inc.). F-tests for

variances and subsequent t-tests for means were computed using the Analysis Toolpack in

Microsoft Excel. Statistical power greater than 0.80 and p-values smaller than 0.05 were

considered to be significant. Sample sizes are indicated in figure captions. Data are presented

as mean ± standard deviation unless otherwise specified.
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5.3 Results and Discussion

The primary aim of this thesis was to design films that could treat an existing bone infection.

Accordingly, the desired release profile contains an initial burst release of drug over the first

few days to sterilize the infected implant site, followed by a prolonged zero-order release that

prevents surviving bacteria from multiplying and re-colonizing the surface of the implant. The

extended release should last weeks to allow the patient's immune system enough time to

resolve any latent infection. Therefore, films were built with [Poly 1/PAA/GS/PAA] 200 + [Poly

1/PAA/GS] 1 for a total of 803 individually deposited layers (on top of the nondegradable

baselayers). The 200 tetralayers were used to achieve long-term release. The final adsorption

step of gentamicin allowed excess GS to permeate and load into the film without a final rinse.

This provided a means of incorporating excess unbound drug available for immediate diffusive

release upon immersion into a physiological environment (approximately 20% increase in total

drug load from the 200 tetralayer films), which would be followed by gradual surface-erosion

based release of the remaining drug-containing film.

5.3.1 Release and Erosion Characteristics of Treatment Samples

The films (n = 3) released approximately two thirds of their total load within the first three days

in m-SBF maintained at 37 "C (Figure 5-3). This aqueous buffer closely models the conditions of

human blood plasma without the biological components [105]. Likely, there are three major

factors contributing to this burst release: 1) excess unbound drug diffuses out of the film, 2) m-

SBF has a pH of 7.4 which causes some de-protonation of the amines on GS molecules that

were originally loaded into the film at pH 5.0, thereby reducing the charge state of GS to

approximately +3.5 [178] and facilitating the release of loosely interacting molecules, and 3) the

salts present in the m-SBF diffuse into the film and compete for the same ionic sites as the GS,

which further enhances drug release. Since the films exhibit super-linear growth behavior with

gentamicin as one of the key diffusing species, it is anticipated there is a GS-rich diffusion zone

at the film-solution interface [115, 116]. It is likely that the rapid loss of GS from this region of

the film may trigger subsequent film instability and deconstruction, leading to faster release

than would be expected from hydrolysis of Poly 1 alone. This is, in part, supported by
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assessment of film erosion data (Figure 5-3A). Films were grown to 200 tetralayers and

immersed in m-SBF. They were removed at pre-determined time points and their dry state

thicknesses determined by profilometry on at least triplicate samples with triplicate

measurements per sample. Film thickness decreased rapidly during the burst release phase of

drug elution, followed by relatively linear erosion behavior consistent with zero-order release.

The effects of the three putative mechanisms noted above are expected to play an important

role primarily during burst release phase, as the zero-order release phase pertains to strongly

bound drug and the stabilized film, which erodes due to hydrolytic degradation of the

polycation.
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Figure 5-3. (A) Normalized film erosion from [Poly 1 / PAA / GS / PAA]200 films and normalized GS release from

[Poly 1 / PAA / GS / PAA] 2 o + [Poly 1 / PAA / GS ]1 films. Erosion values are normalized to initial film thickness

with the error bars representing the normalized rms roughness averaged over triplicate samples. Release values

are normalized to the final release quantity (582 pg/cm 2) with error bars representing standard deviation of

triplicate samples. Release data have truncated for convenience of comparison. (B) Cumulative antibiotic

release from [Poly 1/PAA/GS/PAA]200 + [Poly 1/PAA/GS]1 films in m-SBF at 37 "C before (replotted from (A)) and

after an effective dose of ethylene oxide gas. Inset contains data from the first three days. All values are
reported as mean ± standard deviation of triplicate samples.

Beyond day three, the films continue to release drug in a relatively linear fashion until

their expiration at 5.5 weeks (Figure 5-3B). The average total loading of these films exceeded

550 pg/cm 2. This compares favorably against the rapid release architectures based on

hyaluronic acid [53]. From days 3 to 13, the films released over 11 pg/cm 2/day, and during the

subsequent four weeks, the films released over 4 pg/cm2/day. The diffusivity of gentamicin in
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different environments including collagen, agar, and mucus, has been reported to be on the

order of 10-6 cm2/s [132, 179], which would translate to a local linear velocity that is less than 1

cm/hr. If this is consistent with the drug behavior in the local joint, then the concentration of

drug would exceed the MIC of gentamicin against S. aureus for over five straight weeks from

the initial implant date. The linear release phase observed in the films is indicative of a

controlled, surface-erosion based release that is consistent with the observed zero-order

erosion behavior in Figure 5-3A. Theoretically, if the drug concentration throughout the film

thickness is constant, and no gradients develop within the film during release, then the

normalized film thickness and released drug amounts should total to 100%; as shown in Figure

5-3A, these data are consistent with the model of linear scaled release.

Any implant or medical device inserted into the body of a human or animal must be

sterilized in order to prevent the possibility of subsequent infection. The three most popular

sterilization techniques used clinically include autoclave, gamma irradiation, and ethylene oxide

(EtO) gas. The autoclave creates a moist heat environment that rapidly destructs the

hydrolytically degradable films. Gamma irradiation was not investigated since it is not generally

applicable to LbL systems due to potential crosslinking or scission issues which could change

release kinetics [180-183]. Ethylene oxide (EtO) gas treatment is a room temperature process

that subjects the film to a highly effective killing agent without chemically changing the film

components, and therefore film performance is preserved. The films were subjected to a 12

hour EtO cycle and subsequently stored for at least 24 hours to allow any residual gas to

dissipate from the film. After comparing sterile and non-sterile films in triplicate, EtO gas

appeared to have virtually no effect on release kinetics, and did not significantly alter the total

loading of gentamicin in the LbL films (p = 0.48) (Figure 5-3B).

In order to prevent any possibility of shrouding the effect of the antibiotic films in

treating existing bone infection, two major relevant clinical procedures that would otherwise be

used in a real operation were intentionally omitted: the use of systemic antibiotics and

debridement of the bone defect. After the four day pretreatment period described in the

previous chapter, twenty-seven rabbits underwent a direct exchange operation in which either

an uncoated titanium implant (placebo, n = 13), or film-coated titanium implant (treatment, n =
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14, Figure 5-4A and Figure 5-4C) replaced the incumbent, S. aureus-colonized PMMA rod.

There was no other tampering of the defect site. Soft tissue complications were considered

irrelevant to the primary goal of treating the local infected bone. Consequently, to reduce

unnecessary burden on the animals, all abscesses were drained of pus, and both infected and

necrotic soft tissues external to the defect site were thoroughly extracted before a final wash

using castile soap solution. These procedures were conducted with an implant in place and

care was taken to ensure that the implant site was not disturbed. All blood cultures

(detectability limit, 10 CFU/mL) performed in this study were sterile indicating that none of the

animals were septic.

5.3.2 Local Infection Quantifiaction

Six animals from each of the placebo and treatment test groups were euthanized four days after direct

after direct exchange. Films were not completely eroded at this time point (Figure 5-4B and Figure 5-4D). Total

Figure 5-4D). Total colonization of devices in the treatment group was substantially lower than that of the

that of the placebo group (Figure 5-5A). Five of six animals (83%) in the placebo group had >200 CFU of S. aureus

on their explanted titanium device compared to zero of six animals in the treatment group (maximum of 22

CFU). Total CFU counts in the bone homogenates confirmed gross infection in six of six animals from the

placebo test group, whereas three of six animals in the treatment group yielded sterile bone cultures (Figure

5-5C and Table 5-1. Raw CFU Data from Bone Homogenates.*

). A Mann-Whitney U-test comparing the underlying distributions of raw CFU data at the four

day time point indicated that the reduction in CFU counts due to the antimicrobial LbL films was

statistically significant (p < 0.004) when compared to those of the placebo test group. This was

further verified by analyzing the log-transformed data via an F-test for variances (p > 0.15) and

subsequent t-test assuming equal variances (p < 1 x 10-8). At four days after direct exchange,

the antibiotic films decreased the average bacteria burden by an average of almost five orders

of magnitude.
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Figure 5-4. SEM images of the PEM film on a titanium implant (i.e. substrate) before implantation (A and C), and

after 4 days incubation in the defect site (B and D).

One week after direct implant exchange, the remaining fifteen animals were euthanized (placebo n = 7 and

(placebo n = 7 and treatment n = 8). Films were still not completely eroded at this time point (data not shown).

(data not shown). A qualitative assessment of the total surface colonization of the explanted devices on day

devices on day seven indicated that the LbL coatings continued to prevent re-colonization of the implant surface

the implant surface when compared to the placebo films (Figure 5-5B). Five out of seven animals (71%) in the

placebo group had S. aureus colonization that exceeded 200 CFU on their explanted devices compared to zero

out of eight animals in the treatment group (maximum was 190 CFU). This result is favorable since infectious

complications become much more robust and hostile if biofilm formation occurs on the implant surface. While

all animals in the placebo test group had sizeable CFU counts, two of eight animals (25%) in the treatment group

did not have detectable quantities of bacteria. The Mann-Whitney U-test (p < 0.03), F-test (p < 0.05), and

subsequent t-test assuming unequal variances (p < 0.02) confirmed that the two order of magnitude reduction in

CFU counts was statistically significant (Figure 5-5C and Table 5-1. Raw CFU Data from Bone Homogenates.*
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). There was no significant decrease in CFU count from day four to day seven within the

placebo group. In this case, the staphylococcal infection is only controlled by the host immune

system since no antimicrobial agents were introduced during the direct exchange procedure.
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Figure 5-5. (A) Blood agar plates of explanted titanium rods that were rolled down the center of the plate and

streaked for qualitative analysis of device surface colonization. Each plate corresponds to one rabbit. Each

white dot corresponds to a single CFU. Explants from the four day treatment group (top row) are compared to

explants from the four day placebo group (bottom row). None of the sterile plates are depicted. (B) Explants

from the seven day treatment group (top row) are compared to explants from the seven day placebo group

(bottom row). (C) Final counts (Mean ± SD) of log-transformed Staphylococcus aureus CFU data in femoral

condyles at day zero and after direct exchange. Raw data are available in Table 5-1. Raw CFU Data from Bone

Homogenates.*
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Table 5-1. Raw CFU Data from Bone Homogenates.*

Day0 Day4 Day7
- Placebo Treatment Placebo Treatment

(n=6) (n=6) (n=6) (n=7) (n=8)
69316 965890 <100 37974 <100

619909 1640307 <100 351712 <100
2726860 5968565 <100 395446 48782
4357991 13320000 107 1883778 51988
18073728 17418853 246 2305662 51994
22406365 24410566 285 5714794 153463

- - - 6722259 351552
- - - 1899258

Each value corresponds to total femoral colonization of one animal. The randomized data are reorganized

in increasing value. The values were determined by dividing the CFU/mL of the serial diluted homogenates

by the bone concentration (g/mL) and then multiplying by the total bone mass (g). Undetectable CFU values

were assumed to be half the detection limit (i.e. 5 CFU/mL) and are labeled here as <100.

The increase in variance and magnitude of infection for the treatment group between days four

and seven, however, was significant (F-test, p < 0.005 and t-test, p < 0.01). The increase in

variance can be attributed to the fact that unsaturated bacteria populations tend to have non-

steady state behavior. Specifically, they will either continue to propagate until all available

resources are utilized, or be killed off in the presence of bactericidal agents until the population

is eradicated. This behavior is evident in MIC assays since the wells of the microtiter culture

plate are either turbid or clear, depending on the antibiotic concentration used in each well. In

the case of the rabbits, six of the eight subjects in the treatment group were not completely

eradicated of bacteria at day seven. If the rate of bacteria propagation exceeds the rate of drug

treatment, then the animal would not be cured and eventually endure bacterial infection

similar to those of the placebo group. Since the in vitro elution profile of these LbL films yields

a monotonically decreasing drug release rate, and since the bolus release phase has already

passed by day four, it is unclear whether the release rate of the remaining drug in the uneroded

film would be sufficient to clear these six animals of infection at later time points. Regardless,

the final CFU counts at equilibrium would be either near zero or on the order of 106 (according

to the infection model), which is the reason for the observed difference in variances. The
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increase in magnitude of infection at day seven could have further been a result of a potential

re-seeding issue due to the growing subcutaneous infection adjacent to the defect site.

Antibiotic resistance of the bacteria from the seven day treatment group has been ruled out

after testing their susceptibility to gentamicin (Figure 5-6).
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Figure 5-6. Antibiotic susceptibility of bacteria recovered from four of the six infected rabbits in the seven day

treatment group. Each number (17, 25, 40, 41) corresponds to one animal. Data represent mean ± standard

deviation of triplicate measurements per sample.

5.3.3 Local Gentamicin Quantification

Both serum and the supernatants of centrifuged bone homogenates were sent to Cornell

University's College of Veterinary Medicine for gentamicin quantification by fluorescence

polarization immunoassay (FPIA). As expected, there was no detectable amount of gentamicin

in any serum or placebo homogenate sample that was analyzed in this study (detection limit =

0.27 pg/mL). The four day treatment group had 60.5 ± 34.9 pg GS (maximum 83.2 ig,

minimum 18.4 pg, n = 6) remaining in the condylar region of the femur after removal of the
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coated device. The seven day treatment group had one animal with significantly higher GS

quantity than the other seven animals (i.e. 259.1 pig), which was likely due to residual film that

detached from the titanium implant surface upon extraction and therefore remained in the

defect site after implant removal. After omitting this outlier data point from further analysis,

the seven day treatment group had 23.4 ± 15.8 pg GS (maximum 57.9 pg, minimum 12.1 p1g, n =

7). Since it was not clear whether the GS would be efficiently flushed away from the surgical

site on the timescale of one week, a two-tailed t-test was conducted to compare the means of

the four- and seven-day treatment groups. The significant decrease (p < 0.05) in GS quantity at

seven days in comparison to four days implies that the rate of uptake of drug by the body

exceeded the rate of elution by the LbL coatings over these three days. This result is important

in light of the in vitro cytotoxicity assays, which determined that without sufficiently fast

pharmacokinetics, gentamicin concentrations could potentially reach locally toxic levels. As

expected, this was not the case for the in vivo study; however, the homogenized GS quantities

at both four and seven days after implantation do continue to exceed the MIC of GS against S.

aureus (i.e. 0.1 pg/mL) (assuming that the condylar region of a single rabbit femur has a volume

on the order of milliliters).

Following the results of the in vitro release profile, it was expected that the initial

differences in CFU counts between each test group at day four since this corresponds to the

conclusion of the burst release phase. Under the condition of complete eradication, the day

seven comparison should have expanded these differences. However, under the condition of

incomplete eradication (as is the case in some of the animals in this study), the bacteria were

able to re-propagate under the diminishing antibiotic release rate of the LbL films and re-

establish gross infection. The bone infection model was designed to present a major bacteria

challenge with a 100% infection rate [158], and address this infection solely with the use of the

antibiotic films. In a real revision operation of an infected implant site, the role of systemic

antibiotics and defect management are tremendously important. The current standard of care

for patients undergoing orthopedic surgery requires receipt of a preoperative systemic dose of

a cephalosporin antibiotic, which is capable of diffusing out of capillary beds to assist with

infection control [184]. Additionally it is well known that adequate surgical debridement and
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cleaning of a previously infected defect site before insertion of a new implant are the single

most important practices in infection control [21, 185]. In practice, the irrigation procedure

generally involves a high pressure rinse of soap or antibiotic solution [177, 186] to help forcibly

remove any sessile infectious microorganisms. Although the current bone infection model

omits the use of these practices, investigation of follow-up times greater than one week may

benefit from co-delivery of systemic cefazolin [184], and cleaning of the defect site (e.g. with

hydrogen-peroxide and povidone-iodine solutions) [164] while being careful to account for

proper controls. Under this revised procedure, the bacterial burden placed on the LbL films

would be reduced and the seven day treatment group may have yielded a greater rate of

eradication.

5.3.4 Limitations to the Study

The results presented here have achieved the primary aim of this study, which was to generate

proof-of-principle data that support a reasonable measure of efficacy of an antibiotic eluting

LbL system in vivo. There are a few key limitations to the present study. Histological and

micro-computer tomographical analyses, which would yield additional information on bone

healing and local host responses to the bacterial infection and antibiotic coatings, were not

conducted, and dose response was not examined in this study. Although they were deemed

beyond the scope of this study, these experiments will be necessary when assessing long-term

viability of this approach. As noted above, the bacterial challenge was high and the one-stage

re-implantation did not involve any systemic antibiotics or cleaning of the infected bone defect

as would be done in an actual clinical case. Nonetheless, it was demonstrated that remediation

of bone infection takes place over the course of days. Future work that addresses multi-

component release or aims to treat an existing infection in a larger animal model with human

sized implants can use an infection model that employs a smaller inoculum challenge or

supplements the treatment with systemic antibiotics and proper debridement, to better

represent a more realistic clinical situation.

The most immediate issue witih the [Poly 1/PAA/GS/PAA]n LbL architecture that should

be addressed is its mechanical integrity. PAA is a polymer with a Tg well above room
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temperature rendering it brittle in the dry state. Therefore these films are relatively fragile and

must be handled with care in order to avoid shattering; however, brief hydration via a rapid dip

cycle in sterile water (i.e. less than 1 second) allows the films to hydrate and become more

hydrogel-like, which permits easy insertion into the defect site. The implications of this

problem are that scale-up, transportation, and handling could present unnecessary difficulties.

This opens an avenue of future work directed at gathering mechanical data as a result of

substituting various ratios of PAA for a more pliable biocompatible polyanion.

5.4 Conclusions

The sequence of developing a technology, determining its in vitro performance, developing an

in vivo model, and demonstrating in vivo efficacy is an iterative process. Specifically, this study

describes the performance of only one film architecture in one experimental model, and now

given this information, it is possible to re-design both the films and the model. The results

described here are favorable and have achieved the aim of the study. The erodible LbL film did

indeed release enough active antibiotic into the locally infected site to yield statistically

significant treatment when compared to the placebo. However, It is also clear from the study

that improvements can be made to both the film architecture and the model. Although the

data at four days were quite favorable, there appeared to be a rebound in the infection at

seven days. The film architecture design of 803 layers was a best-guess for the first past at this

experiment, and the choice to omit systemic antibiotics and significant debridement and lavage

of the defect site was due to the concern of achieving sterility that could not be attributed to

the antibiotic films with certainty. The burst release phase of the drug is most important at

eradicating infection, and the prolonged release is primarily used for prevention. The burst

release can be enhanced by increasing the concentration of drug and dip time for the final

deposition step. In a 2.0 version of the study, it would be advantageous to increase the

quantity of nonspecifically bound drug in the coating during the final deposition step, especially

if no changes are made to the animal model. Furthermore, the use of an in vivo model

requiring intravenous antibiotics and greater maintenance of the defect site would provide a

cleaner interface to test the films, hence allowing observation at much later time points. In
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hindsight, incorporation of these ideas into the experimental plan would minimize the

possibility of infection rebound.
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Chapter 6 Dual Functional Bactericidal Coatings

Work done in this chapter was done jointly with Jessie Wong. A corresponding manuscript

entitled "Dual Functional Polyelectrolyte Multilayer Coatings for Implants: Permanent

Microbicidal Base with Controlled Release of Therapeutic Agents" by Sze Yinn Wong, Joshua S.

Moskowitz, Jovana Veselinovica, Ryan A. Rosario, Ksenia Timachova, Michael R. Blaisse, Ren~e

C. Smith, Alexander M. Klibanov, Paula T. Hammond has been reproduced in part with

permission from JACS, vol. 132, pp. 17840-8, 2010. Copyright 2010 American Chemical Society.

6.1 Introduction

Recently, there has been great interest in developing drug-device combinations to address

various medical applications [5, 1871. Examples include cardiovascular prostheses [5, 188],

orthopedic implants [82, 150], stents [189], biosensors [190], and electrical leads [191]. The two

primary causes of implant failures are adverse foreign body response and implant-related

infection, each which could benefit from such combination therapies. Focusing on the latter,

implant failure due to device-associated infection adds up to approximately 1 million cases

annually [192]. Of these, catheter-associated urinary tract infection represents the most

prevalent example accounting for about 40% of all nosocomial infections [193], and orthopedic

implant-related infections including both joint prostheses and fracture fixation devices

represent the most costly example ringing up close to $2 billion (USA) in annual treatment

expenditures despite their lower infection rate [192]. Regardless of the implant type, the basic

pathogenic mechanism for infection is that of bacterial colonization of the device surface,

which can lead to the development of a biofilm. A biofilm is a matrix of sessile bacteria

consisting of about 15% bacterial cells by mass and 85% hydrophobic exopolysaccharide fiber

matrix [194]. Biofilms can damage surrounding tissues and give rise to planktonic bacteria cells

that spread infection. The biofilm environment prevents the bacteria from being easily

targeted by normal therapeutic levels of antibiotics [159, 160]. Current engineering approaches

to biofilm control include the use of drug-device combinations that elute high concentrations of

antibiotics locally in an effort to eradicate planktonic bacteria before biofilm formation, and the

use of ultrasonic energy [195] or weak DC field [196] to disrupt an existing biofilm hence
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making it more susceptible to standard treatment. As the persisting search for biofilm-resistant

materials continues, the release of local antibiotics from implant surfaces remains the most

common strategy for prevention; however, the standard release kinetics of many antibiotic-

releasing systems is problematic. Generally, the initial burst-release phase is efficacious in

achieving eradication; however, this is often followed by a monotonically decreasing rate of

elution that eventually exposes any existing bacteria to sub-lethal concentrations of antibiotic,

hence allowing the development of resistant strains. In theory, having a permanent

microbicidal surface coating that does not lose its functionality would prevent bacterial

attachment thus preventing biofilm formation.

Polyelectrolyte multilayer films have been studied extensively for applications in drug

delivery since the assembly process can be conducted at pH and temperature conditions that

are gentle to biological molecules such as antibiotics, growth factors, and painkillers [53, 63,

65]. PEM films can be easily incorporated onto the surfaces of implants to provide controlled

and localized drug delivery of these therapeutic agents. In this work, films are constructed using

the layer-by-layer deposition technique [44], in which oppositely charged species (polymers,

molecules, nanoparticles, etc.) are adsorbed sequentially onto an initially charged substrate.

PEM films are additionally attractive because of their simple and economical fabrication

process. They can be built on most geometries with nanometer scale control over thickness

and surface properties [52, 112]. Consequently, the amount of material loaded is highly

tunable, which is a very attractive characteristic for drug delivery because many treatment

regimens overload the body with drug in hope that a small amount of drug will actually be

delivered to a specific area of the body. Owing to its versatility, LbL technology has been

already been applied to a broad range of fields including drug delivery [53, 63, 65, 81, 83, 197],

membranes and electrodes for energy applications [198, 199], and electro- or magneto-

responsive surfaces [200, 201], and remains an attractive candidate for implant coatings.

In this chapter, a bifunctional platform made of a permanent microbicidal PEM thin film

combined with a hydrolytically degradable PEM film that releases an antibiotic is presented.

This dual-functional combination film would maintain the benefits of conventional drug-

releasing systems while adding the significant advantage of long-term biofilm prevention. The
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proposed construct in this work could find a promising future as next-generation surface

coating for implants.

6.2 Experimental

6.2.1 Materials

Poly(2-ethyl-2-oxazoline) (Mw of 500 kDa), 1-bromododecane, iodomethane, tert-amyl alcohol,

poly(acrylic acid) (PAA; Mn = 239 kDa), poly(sodium 4-styrenesulfonate) (SPS; Mw = 70 kDa), 3

M concentrated sodium acetate buffer (NaOAc; pH 5.2), 1,4-butanediol diacrylate, and other

solvents and common buffers were purchased from Sigma-Aldrich (St. Louis, MO). PAA (Mw =

50 kDa) and linear poly(ethylenimine) (LPEI; Mn = 25 kDa) were purchased from Polysciences

(Warrington, PA). 4,4-trimethylenedipiperidine was acquired from Alfa Aesar (Ward Hill, MA).

Gentamicin sulfate (GS) and phosphate-buffered saline (PBS; pH 7.4, 137 mM NaCl, 2.7 mM KCI,

10 mM Na2HPO4) were purchased from Mediatech, Inc. (Herndon, VA). Tritium-labeled

gentamicin (3 H-GS; 250 p.Ci total, 1 mCi/mL in ethanol, 200 p.Ci/mg) was obtained from

American Radiolabeled Chemicals, Inc. Silicon wafers (test grade n-type) were procured from

Silicon Quest (Santa Clara, CA). Cation-adjusted Mueller Hinton Broth II (CMHB) and BactoAgar

were obtained from Difco BD (Franklin Lakes, NJ). Alpha minimum essential medium (a-MEM),

fetal bovine serum (FBS), penicillin/streptomycin solution, fluorescein conjugated albumin from

bovine serum (BSA) , MTT (tetrazolium [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium

bromide) assay kit, and Live/Dead Viability/Cytotoxicity kit for mammalian cells were all

purchased from Invitrogen (Carlsbad, CA). All reagents were used without further purification.

MC3T3-E1 murine preosteoblasts, Staphylococcus aureus 25923, and Staphylococcus

aureus 33592 with gentamicin resistance were all retrieved from ATCC (Manassas, VA).

6.2.2 Synthesis of Polymers

Poly(@-amino ester) Poly 1 was synthesized as previously described [78]. Briefly, a solution of

4,4-trimethylenedipiperidine (34.1 mmol) in 50 mL anhydrous tetrahydrofuran (THF) was added

to the diacrylate monomer (34.1 mmol) dissolved in an equal volume of anhydrous THF. The

reaction mixture was purged with nitrogen and stirred for 48 hours at 50'C. Afterwards, the
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reaction mixture was cooled to room temperature and precipitated into cold hexanes. Polymers

were collected via filtration.

Linear N,N-dodecyl-methyl-LPEI (DMLPEI; Figure 6-1) was synhesized as previously

described [202]. In short, LPEI (Mw of 217 kDa) was produced in house by deacylation of 500

kDa poly(2-ethyl-2-oxazoline) [203]; the product was dissolved in water, precipitated with

aqueous potassium hydroxide, filtered, and washed repeatedly with water. The resulting

deprotonated LPEI was alkylated first with 1-bromododecane (96 h at 95 "C) and then with

iodomethane (24 h at 60 "C) to produce the end product DMLPEI. Polymers were collected and

dried under vacuum prior to NMR.

H3C C12H25

Figure 6-1. Structure of DMLPEl (compliments of Jessie Wong).

6.2.3 Preparation of Polyelectrolyte Solutions

Solutions of Polyl, GS, and PAA were prepared at 2 mg/mL in 0.1 M NaOAc. Dipping solution of

DMLPEI was prepared at 1 mg/mL in 1-butanol. Polyl, GS, and PAA solutions were pH adjusted

to 5.0. For films used in GS release experiments, the GS solution was spiked with 5 IL 3H-GS per

50 mL dipping solution yielding a 0.1 pCi/mL product without significantly changing the

concentration of the GS dip bath. LPEI and PSS dipping solutions were prepared at 2 mg/mL in

water and pH adjusted to 4.25 and 4.75 respectively with 1 M sodium hydroxide and 1 M

hydrochloric acid. All solutions were prepared with water from a Milli-Q Plus (Bedford, MA) at

18.2 MO.

6.2.4 LbL Film Assembly

Films were assembled as previously described [108]; briefly, LbL films were assembled on

silicon substrates using a programmable Carl Zeiss HMS slide stainer. Substrates were cleaned

with methanol and ultra pure water, dried under nitrogen, and plasma-etched in oxygen using a

Harrick PDC-32 G plasma cleaner on high radiofrequency for 1 min and then immediately
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immersed into the first polycation solution (i.e. DMLPEI or LPEI depending on the experiment)

for at least 10 min. Samples were either prepared with nondegradable bilayers of the

bactericidal DMLPEl/PAA or the non-bactericidal LPEI/PSS. For the former, a cascade rinse cycle

of three 1-butanol rinse baths (1 min, 30 s, 30s) followed by three water baths (1 min, 30 s, 30

s) was used after deposition of DMLPEI, and the reverse cycle of water then 1-butanol after

PAA. For the latter, a cascade rinse cycle of three water baths (10 s, 20 s, and 30 s) was used

after each polyelectrolyte dipping.

For the combination films, (Poly 1/PAA) 5 was first deposited onto (DMLPEI/PAA) 10 in

order to facilitate uniform buildup of subsequent GS-containing films. Then deposition of the

tetralayer architecture (Poly1/PAA/GS/PAA)n was performed as previously described [197].

Films with (DMLPEI/PAA) 10(Polyl/PAA)5(Poly1/PAA/GS/PAA) 20 were used for drug release and

film degradation studies. Characterization of the growth of (Poly1/PAA/GS/PAA)n films on top

of (DMLPEI/PAA) 1o(Polyl/PAA)5 films, was done with n = 5, 10, 15, 20 and 30 (Figure 6-2). As a

control in the efficacy studies comparing films with the bactericidal base layer functionality (i.e.

(DMLPEI/PAA) 10) to those without bactericidal functionality, the architecture

(LPEI/PSS) 10(Polyl/PAA/GS/PAA) 20 was used.

(FM I/PAA/GS/PAA)n

( /PAA) 5

(DMLPEI/PAA), 0
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Figure 6-2. Schematic of the combination film with the permanent bactericidal base film deposited first, the

erodible adhesion film deposited second, and the erodible GS-eluting film deposited on top (courtesy of Ksenia

Timachova).

6.2.5 Characterization of Film Growth, Erosion, and Release

After film deposition, all films were allowed to air dry. For film growth, thicknesses of the

(DMLPEI/PAA) 1 o films were measured using a spectroscopic ellipsometer (Woollam M-2000D).

All thickness measurements were made at five different points on each film and averaged over

three separate films. Roughness measurements of films were generated using a surface

profilometer (KLA Tencor P-16). Thickness measurements of films were verified using the

surface profilometer. In the case of (DMLPEl/PAA) 1 (Poly1/PAA) 5(Poly1/PAA/GS/PAA)n

combination films, both thickness and roughness measurements were performed by

profilometry at four predetermined locations per film using a Veeco Dektak 150 surface profiler

and averaged over three separate films.

For degradation studies, samples were immersed into 10 mL of PBS in a tightly capped

Falcon tube maintained at 37C. At each time point, films were removed from the PBS, allowed

to air-dry and measured. All dry state thicknesses were determined via profilometry at four

locations and averaged over at least three films.

For GS release experiments, samples were immersed into 20 mL of PBS in a tightly

capped Falcon tube maintained at 37*C. Degradation environments were kept sealed from the

ambient to minimize evaporative loss. A 1 mL sample was extracted from the Falcon tube at

each predetermined time point and mixed with 5 mL ScintiSafe Plus 50% (Fisher Scientific,

Atlanta, GA) prior to GS quantification. The resulting mixtures were analyzed using a Tricarb

Model 2810 TR liquid scintillation counter (Perkin Elmer, Waltham, MA). The raw data in

disintegrations per minute (DPM) was converted directly to pg of drug using the DPM value for

the dipping solution (2 mg/mL). Total release from the film at the ith timepoint was calculated

by the following equation:

(6-1) m, = (C,) + (1 mL) C
j=1
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where m; (pg) is the the total cumulative mass of GS released from the film at the time of

measurement i, C; (pg/mL) is the concentration of sample i (which is multiplied by the total

volume V; remaining in the Falcon tube as of the ith measurement), and the summation term

adds up the total extensive quantity of gentamicin removed in each of the i-1 former aliquots.

6.2.6 Bactericidal Activity of Films

Two assays were used in these studies, a mediaborne assay and a Kirby Bauer assay, each as

previously described [53, 108]. All experiments were conducted in triplicate. Briefly, for the

mediaborne assay, S. aureus 25923 with no gentamicin resistance was grown up overnight at

37*C in CMHB. The culture was then centrifuged at 2,700 rpm for 10 min, washed, re-

suspended in fresh CMHB media, and diluted to 106 cells/mL. Film-coated substrates were

compared to blank Si controls by incubating with the bacterial broth at room temperature for

various durations: 15 min, 30 min, 1 h and 2 h promoting bacteria adhesion onto the surface. A

separate two-week experiment was done where every three days, the solution in each Petri

dish was refilled with 2 mL of fresh CMHB media to replace fluid loss due to evaporation in the

incubator, and to provide fresh nutrient for the bacteria to thrive. After the two weeks, each

sample was removed and rinsed three times with fresh medium to remove any nonspecifically

bound bacteria from the surface. Each sample was then incubated overnight at 37*C under a

slab of agar imaged the following day.

To determine if protein adsorption would compromise the microbicidal activity of

(DMLPEI/PAA) 1 o films, films and blank silicon substrates were incubated in 100 Mg/mL

fluorescein conjugated albumin solution at 37*C for 1 h. Films were then removed, rinsed thrice

in fresh PBS, and imaged via fluorescent microscopy. These samples were further tested with

the mediaborne assay using the 2 h incubation time.

For the Kirby-Bauer assay, S. aureus was grown overnight at 37"C in CMHB and re-

inoculated the following day; agar plates were streaked with the exponentially growing S.

aureus at 108 cells/mL. Tests compared blank silicon, contact killing (DMLPEI/PAA) 10, release-

killing (LPEI/PSS) 10(Polyl/PAA/GS/PAA) 20, and dual functional (DMLPEI/PAA) 10(Polyl/PAA)5

(Polyl/PAA/GS/PAA) 20 after increasing degradation times of (Poly1/PAA/GS/PAA) 20. Zones of
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inhibition (ZOI) were imaged. To further distinguish the unique functionality of the

nondegradable, contact-killing (DMLPEI/PAA)io surface, a GS-resistant strain of S. aureus

(33592) was used to perform a separate Kirby-Bauer assay.

6.2.7 In Vitro Cytotoxicity: Adhesion and Proliferation of Cells

Films were tested with murine pre-osteoblast cells (MC3T3-E1) which were seeded on

(DMLPEI/PAA) 1o and compared to uncoated glass slides. Cells were grown in c-MEM

supplemented with 10% FBS and 1% penicillin/streptomycin at 37"C with 5% CO2. Substrates

were placed in the bottom of 6-well plates and each well seeded with 150,000 cells and 3 mL of

media. To investigate cell adhesion to the surface of the films, two sets of experiments were

performed in parallel: cells in media with FBS and without FBS. Cells were cultured for 6 h on

substrates and cell adhesion investigated by examining morphology (via light microscopy); for

metabolic activity (via MTT assay), cells were cultured on samples for 3 h in normal growth

media, and 3 h in growth media containing 10% MTT. Substrates were transferred to new 6-

well plates to quantify only those cells which were adherent to the substrate. 1 mL of dimethyl

sulfoxide was added to solubilize the resulting purple formazan crystals. 100 pL aliquots from

each sample were placed into a 96-well microtiter plate and absorbance measured at 570 nm

with a 690 nm correction. All samples were measure in triplicate. Cell metabolic activity was

calculated relative to the negative control (uncoated glass slide). Proliferation experiments

requiring the same experimental procedure were conducted on the same set of films at days 1,

3, and 7 in FBS-enriched media.

6.2.8 Sample Sizes and Data

Sample sizes are indicated in figure captions. Data are presented as mean ± standard deviation

unless otherwise specified.
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6.3 Results and Discussion

6.3.1 Design of Combination Films with Dual Functionality

The primary aim of this study was to design a combination film that could exhibit adaptable

dual functionality with a permanent microbicidal base film, (DMLPEI/PAA) 10, and a

hydrolytically degradable top film made with cationic poly(P-amino ester) Polyl that is capable

of incorporating and releasing drugs. In this work, this concept was demonstrated using a

model system with the small, hydrophilic antibiotic gentamicin as the example therapeutic to

eradicate infection at an implant site before unveiling a biofilm-resistant surface. The

permanent microbicidal base film was built up via electrostatic interaction between a positively

charged, hydrophobic polymer DMLPEl (a quaternary ammonium salt), and PAA as the

polyanion. Previous work has shown that the microbicidal property of DMLPEI can be

maximized in a nanometer-scale LbL film by the choice of polyanion, assembly conditions, and

post-processing techniques [108].

Poly(B-amino ester)s are a class of polycations that have different hydrolytic

degradation rates at physiological condition (37C, pH 7.4) depending on the particular polymer

used [78, 79]. As a result of hydrolytic cleavage of the ester bonds, these polymers have been

successfully incorporated into PEM films as an erodible component for controlled release [53,

63, 65, 79, 83, 108, 197]. In this work, the use of Poly 1 is advantageous as it allows tunability

of the bolus release of gentamicin and thus can help eradicate an existing infection. The need

for long term release of gentamicin is reduced due to the presence of the underlying

microbicidal permanent film.

6.3.2 Characterization of Combination Films: Growth, Erosion, and Release

The thickness and roughness of the microbicidal base film (DMLPE/PAA) 10-26.4 ± 4.5 nm and

6.8 3.9 nm, respectively-were measured before buildup of the erodible

(Poly1/PAA)5(Poly1/PAA/GS/PAA)n films. Ten bilayers was used in the base film to achieve

100% microbicidal activity and provide a uniform platform for buildup of the subsequent drug

releasing layers. (DMLPEI/PAA)n films had previously been shown to exhibit an initial lag
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growth phase where only beyond 4.5 bilayers did the film start growing linearly with complete

surface coverage [108]. The thickness and roughness of the combination film

(DMLPEl/PAA) 1 (Poly1/PAA) 5(Poly1/PAA/GS/PAA)n was then measured and the growth curve

depicted in Figure 6-3. The (Polyl/PAA)5 adhesion layer was deposited after the microbicidal

base film to help initiate and facilitate uniform deposition of the (Poly1/PAA/GS/PAA)n film. The

(Polyl/PAA)5 adhesion layers increased the total thickness and roughness of the growing film to

75 ± 18 nm and 30 ± 13 nm, respectively. Without the intermediary layers of (Polyl/PAA)5,

there was no film growth of (Poly1/PAA/GS/PAA)n directly on top of (DMLPEl/PAA) 10 . We

hypothesized that the hydrophobic nature of the highly interpenetrated (DMLPEI/PAA) 1o film

surface (water contact angle of 850 ± 20) reduced the ability of the hydrophilic GS molecules to

wet and adsorb onto the surface. Adding the buffer layers provided a more hydrophilic surface

and reservoir (water contact angle of 67* ± 3*) for the small, diffusive GS molecules to establish

themselves within the film. The GS-film exhibited linear growth with micron-scale thickness

(average of 0.50 ± 0.05 lim per tetralayer). The large roughness of the

(DMLPEI/PAA) 10 (Poly1/PAA)s(Poly1/PAA/GS/PAA)n was a likely result of significant

interdiffusion within the film architecture, as well as both film dissolution and diffusive losses

that occur during the deposition process. The film thickness increased faster than the surface

roughness during film growth leading to increasingly smoother films (relative to the total

thickness) at greater tetralayer numbers.

212

4 I
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Number of Bilayers

Figure 6-3. Growth curve and roughness of (Poly 1/PAA/GS/PAA)n on top of (DMLPEI/PAA)10(Poly 1/PAA)5. Data

represent the mean ± standard deviation of triplicate samples.
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Degradation of GS-releasing films was linear and complete erosion of films occurred on

the order of hours (Figure 6-4, left). Release studies were performed with the same film

architectures that were used in the degradation experiments. One of the major advantages of

LbL systems is that the quantity of drug incorporated into each film can be tuned according to

the total number of deposited layers thus making the LbL technology platform a versatile way

to address different applications and drug delivery specifications. The 20 tetralayer GS-

releasing films incorporated about 70 pig/cm 2 of the antibiotic and released over period of 6

hours, with approximately 90% delivery during the first 2.5 hours (Figure 6-4, right); this burst

release of antibiotic is critical to control an existing gross infection at an implant site, and

hopefully prevent re-propagation. It should be noted that the underlying

(DMLPEI/PAA) 1o(Polyl/PAA)s film, without the topmost (Poly1/PAA/GS/PAA) 20 film, can load 6.3

± 0.8 lpg/cm 2 of gentamicin suggesting that these molecules are able to diffuse through the

underlying layers of permanent film. As for the biofilm issue, it is important to minimize the

prolonged release of sub-lethal concentrations of GS as this can lead to increased likelihood of

the bacteria developing antibiotic resistance, which can make future treatment significantly

more problematic; hence, the bactericidal base film provides an attractive alternative to

sustained delivery.

100 70

.80 ,60-
60
50

60 1-

10

E c
W 40 03
E 

a

20

0 1 2 3 4 5 6 7 1 2 3 4 5 7 8
Time (hours) Time (hours)

Figure 6-4. Degradation profile (left) and GS-release profile (right) of combination films. Data represent the

mean ± standard deviation of triplicate samples.
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6.3.3 Bactericidal Activity

Activity of GS released from (DMLPEI/PAA)1(Polyl/PAA)s(Polyl/PAA/GS/PAA) 20 combination

films was tested via Kirby-Bauer assays and compared to a control of

(LPEI/PSS) 10(Polyl/PAA/GS/PAA) 20 (Figure 6-5). Zones of inhibition (ZOls) developed around 0

min, 15 min and 2 day samples. Each time corresponds to the duration for which the sample

was immersed in phosphate buffered saline (PBS) at 37*C. Since the microbicidal base film only

kills bacteria directly in contact with it, the ZOls around the erodible GS films directly indicated

that the GS was indeed released from the films and confirmed that it was still active. The

smaller ZOls associated with the 2 day sample in comparison to the 0 min and 15 min samples

are reminiscent of a depleting source. Furthermore, the comparatively thicker base of

(DMLPEI/PAA) 1 0(Poly 1/PAA)5 yields a sample with slightly larger ZOI than its (LPEI/SPS) 1 O

counterpart after 2 days of erosion. In the case of the former, the larger reservoir for

gentamicin sulfate (harboring 6.3 0.8 Ig/cm 2) likely contributes to this effect.

Bar*
ubtrat 0 min 15 min 2 days 3 days 4 dys

Figure 6-5. Kirby Bauer assays of GS-releasing films eroded for increasing amounts of time in PBS at 37*C. Row 1

shows (LPEI/SPS)IO(Poly 1/PAA/GS/PAA) 20 and row 2 shows (DMLPEI/PAA)1O(Poly 1/PAA)s(Poly 1/PAA/GS/

PAA) 20. All samples were tested with GS-susceptible S. aureus except for the 4-day samples. This figure was

reproducible over three replications (data not shown) and was produced in collaboration with Jessie Wong.

After the hydrolytically degradable top films had completely eroded, it was important to

demonstrate that the newly exposed microbicidal (DMLPEI/PAA) 1 0 base films were still

efficacious against S. aureus. Figure 6-5 reveals that the 3 day samples with the microbicidal
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base film show 100% direct contact killing of S. aureus whereas films with the standard base

film of (LPEI/SPS) 10 did not show any measurable efficacy relative to the uncoated silicon

substrates. To further distinguish the unique functionality of the microbicidal base film and

ensure that the observed efficacy was not caused by any remaining ionically bound gentamicin,

a GS-resistant strain of S. aureus was used to determine the efficacy of a completely eroded

(DMLPEI/PAA) 10(Polyl/PAA) 5(Polyl/PAA/GS/PAA) 2o film after immersion in PBS at 37 *C for four

days (Figure 6-5, far right). The underlying bactericidal base film again yielded 100% contact

killing.

As mentioned earlier, biofilm formation on the surface of an implant is one of the

biggest causes of implant failure. Therefore, it is advantageous to prevent the formation of

biofilms on the surface of medical implants in the first place. Here, the use of the microbicidal

base film (DMLPEI/PAA) 1o is proposed as a long term surface coating for medical implants to

prevent bacterial attachment, with the added versatility of tunable release of therapeutic

agents via a degradable LbL film on top to provide additional medical functionality, when

required. To this end, (DMLPEI/PAA) 1o films with completely eroded top films were tested

against mediaborne S. aureus and found to be effective in preventing bacterial attachment

relative to blank silicon substrates for up to two weeks. The blank silicon substrates were

shown to be significantly colonized by bacteria after just 15 min incubation in bacteria solution

(Figure 6-6).
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15 min 30 min 1 hour 2 hours 2 weeks

Figure 6-6. Mediaborne assay with increasing time of incubation in S. aureus broth; top row shows bare silicon

substrates; bottom row shows (DMLPEI/PAA) 0 films with degradable top films completely eroded (courtesy of

Jessie Wong). This figure was reproducible over three replications (data not shown).

Another major issue with implants is protein adsorption from blood plasma onto these

foreign surfaces, which changes their chemistry. Therefore, cells at the surface of biomaterials

are not necessarily in direct contact with the material itself. To show that the microbicidal

functionality of the base film would not be compromised by protein adsorption to the surface,

(DMLPEI/PAA) 1o coated substrates and blank glass slides were incubated in solutions of

fluorescently tagged albumin for one hour (Figure 6-7, top). The coated films contained

noticeably less protein than the uncoated controls. Then, the albumin treated samples and

uncoated silicon controls were tested with the mediaborne assay (1 hour incubation time); film

coated substrates were still 100% effective in preventing bacterial attachment, while the blank

substrates were heavily colonized (Figure 6-7, bottom). This demonstrated that the permanent

microbicidal base film functionality was not compromised even after being subjected to the

presence of protein and thus would still prevent formation of biofilms, which further lends to

the fact that this film could potentially serve as a long term implant coating.
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Bare glass slide

Bare substrate

(DMLPEI/PAA)10 coated

(DMLPEVPAA) 10

Figure 6-7. (Top) Samples incubated with fluorescently tagged albumin for 1 hour at 37*C. The intensity of

green color correlates with the concentration of albumin. (Bottom) Samples incubated with albumin solution

and then subjected to the mediaborne assay. This figure was reproducible over three replications (data not

shown) and was prepared by Jessie Wong.

6.3.4 Cytotoxicity: Adhesion and Proliferation of Cells on Films

To investigate the cytotoxicity and interaction of cells with these films, murine pre-osteoblast

cells (MC3T3-E1) were seeded onto glass coated with (DMLPEI/PAA) 1 o and compared to

uncoated controls. There was no measurable difference in adherence of cells to film-coated

substrates relative to uncoated glass slides, regardless of the presence of serum in the media.

As mentioned before, protein has been shown to adsorb to surfaces; hence, the use of serum-

free media ensured that cells were exposed to the surface of the films and not a protein coated

surface. An MTT assay, which measures metabolic activity of cells, was compared to
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morphology data and found to be consistent. Cell proliferation was investigated via seeding

and culturing cells directly on (DMLPEI/PAA) 10 films for 1 day, 3 days, and 7 days. Both

microscopy (Figure 6-8) and MTT data (Figure 6-9) show little difference in proliferation on

(DMLPEI/PAA) 10 compared to blank glass substrates. Therefore, while bacteria cells are not

able to colonize surfaces coated with these films even after two weeks incubation in

concentrated S. aureus broth, cells were able to attach and divide normally on the microbicidal

(DMLPEI/PAA) 10 films, indicating no apparent cytotoxicity associated with these films.

Day 1
A

B

Day 3 Day 7

Figure 6-8. Microscope images of MC3T3-E1 cells seeded on (A) blank glass substrates or (B) (DMLPEI/PAA) 10.

Images are representative images selected from triplicate samples and at least triplicate images per sample.

Scale bar hash marks represent 100 pm.
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Figure 6-9. MTT data showing metabolic activity of cells seeded on (DMLPEI/PAA) films compared to an

uncoated control. There is no statistical difference between any data pair. Data represent mean ± standard

deviation of triplicate samples.

6.4 Conclusions

The versatile film architecture presented in this chapter could potentially be used to impart

long term microbicidal functionality to a surface while remaining capable of supporting release-

based, erodible LbL systems for further therapeutic benefit, depending on the application of

interest. It is therefore an alluring, complementary architecture that naturally extends upon

the aims of this thesis. Specifically, it is now possible to combine the ability to eradicate an

existing infection and maintain prolonged bactericidal functionality without risking the

possibility of imparting antibiotic resistance. This is demonstrated in this chapter via the

release of gentamicin as a specific example of controlled release of a therapeutic from a

hydrolytically degradable film built on top of the permanent microbicidal base film. The films

were shown to be non-cytotoxic to MC3T3-E1 murine osteoprogenitor cells as cell adhesion and

proliferation were not significantly affected compared to negative controls. The most important

observation from this study was that bacteria cells were unable to colonize the surface of the

microbicidal (DMLPEI/PAA) 1 o film despite the film surface allowing adhesion and proliferation of

mammalian cells, thus showing that this microbicidal base film could find a promising future as

surface coating for various implants to help reduce the likelihood of biofilm formation.

141



Chapter 7 Outlook

7.1 Summary

The work in this thesis has advanced the state of antibiotic releasing, hydrolytically erodible

PEM systems (which in 2008 was in its infancy [53]). These systems can now deliver

therapeutically relevant drug quantities over clinically relevant durations. After screening

through an array of biocompatible film architectures (Chapter 2), it was determined that PEM

films constructed with the biodegradable poly(p-amino ester) Poly 1 and the synthetic

polyanion PAA in the particular order [Poly 1/PAA/GS/PAA]n were able to incorporate more

drug and sustain release over a longer duration than any other architecture studied in this

thesis. Films based on this best-performing architecture were shown to be generally benign

toward murine pre-osteoblast cells, and release active drug capable of killing S. aureus in vitro.

The use of liposome-encapsulated gentamicin was found to significantly inhibit drug loading

relative to direct loading of native gentamicin. Drug release profiles were highly tunable using

the crosslinking and "sponge" techniques. The former, which was studied via the use of heat

and ultraviolet radiation, tended to demote the burst release phase in favor of slower release

rate and greater overall release duration. The latter directly contributed to the magnitude of

the burst release phase until a point of saturation.

In Chapter 3, a simple theoretical treatment to describe drug release from multilayered

films was developed with the goal of predicting expected profile trends due to changes in drug

concentration, film thickness, drug diffusivity, and film erosion rates. An analytical model was

derived from simple scaling arguments and regressed against existing data sets, capitulating

results that were in most cases consistent with expectations and literature. As an addition, an

equally simple numerical treatment was coded in MATLAB using finite differences to describe

the diffusive release of drug from a thin film. These models were developed using a set of

simplified assumptions and are thus significant abstractions from true physical experimental

conditions. Despite this, they hold value in their ease of use while fitting most data sets quite

well. Furthermore, these efforts set a foundation for further theoretical advancement.
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Two of the major successes of the work presented herein were the development of a

reproducible bone infection model through which antibiotic PEM coatings could be tested

(Chapter 4), and subsequent in vivo determination of efficacy of the specific PEM constructs of

interest (Chapter 5). The infection model was designed to mimic a primary joint arthroplasty

with the goal of a 100% contamination rate using the osteomyelitis-pertinent pathogen S.

aureus. This infection model was used to perform the in vivo experiment, which was designed

to resolve any observable statistical difference between an antibiotic-releasing, PEM-coated

implant and an uncoated, sterile placebo. Although the experiment omitted the use of

perioperative intravenous antibiotic therapy and thorough debridement of the infection site,

the PEM coatings significantly reduced the bacterial challenge in the bone and on the implant

surface at both day four and day seven after direct exchange. As this was only the first iteration

of in vivo experimentation utilizing antibiotic-eluting PEM films, these results suggest a

promising future for these systems.

Chapter 6 exhibits the versatility of LbL technology. Individual PEM systems, whose

unique functionalities were combined by simple layering, yielded a dual-functional bactericidal

film with both transient release-kill and permanent contact-kill capabilities. This concept

expands upon the work presented in the previous chapters and alludes to the possibility of an

orthopedic implant coating that can not only treat an existing infection, but also prevent

systemically circulating bacteria from ever colonizing the surface of the implant, even years

after implantation.

In summary, this thesis expounds upon the use of different strategies to tune the

release of gentamicin from LbL films and demonstrates the feasibility of using these films as

antibiotic coatings for orthopedic implants. Consequently, three avenues of investigation that

would immediately benefit these PEM systems for the application of orthopedic implants are

outlined below.
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7.2 Future Work

7.2.1 Delivery of Multiple Agents

First and foremost, the overarching advantage of the LbL platform over competing technologies

is the possibility of using its inherent nano-scale architecture to deliver multiple therapeutic

agents with complex release profiles (e.g. pulsatile or sequential release). By layering in each

component of the film sequentially, one can theoretically design these PEM films in bottom-up

fashion such that upon top-down degradation, each therapeutic agent would be released

according to its own loading profile. By careful choice of materials and growth parameters, this

would enable a hypothetical film that combines analgesics, antibiotics [197], anti-inflammatory

agents [63], and growth factors [65], each with unique timescales of release into the same

device coating. Such control would then make co-delivery of multiple therapeutic agents

relevant since analgesics and anti-inflammatory agents can be delivered immediately upon

implant placement to mitigate pain and foreign body response, while antibiotics are delivered

over the course of weeks to manage infection, and growth factors on much longer timescales to

promote osteogenesis and integration of tissue with the implant surface.

When combining individually optimized film architectures into a single coating, the

primary challenge to overcome will be prevention of interlayer diffusion whereby film

components move through the bulk of the hydrated film as a result of local concentration

gradients. Such mass transport could destroy the desired layered structure and defeat the

objective of attaining sequential, pulsatile, or other complex release profile. To this end, work

has begun to control this phenomenon using crosslinked polyelectrolyte barrier layers [55], but

interdiffusion remains a significant challenge and presents opportunity for future research.

7.2.2 Revamping the In Vivo Model

Given the success of the in vivo experiment in this thesis, there are now multiple avenues of

future work worth exploring, all of which require a revamped infection model. The model used

in this study intentionally deviated from the standard clinical practice of providing systemic

antibiotic therapy and thorough debridement of the defect site in order to inarguably prove
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that the reduction in bacterial challenge was effected by the PEM constructs. Further

development of these systems for eventual use in humans will require consideration of follow-

up times beyond one week to ensure that infection has indeed been eradicated and that bone

can integrate with the implant. In the next iteration of this study, it is recommended that the

model include intravenous antibiotics and/or thorough debridement of the infection site similar

to the work done by Alvarez et al. [164]. They were able to reproducibly decrease the

infectious burden by using a three step wash consisting of saline, hydrogen peroxide, and

povidone-iodine and hence were able to follow up on their treatment group out to 12 weeks

without any need to perform premature euthanasia due to morbidity. It is expected that by

incorporating such clinical control measures into the current model, a higher treatment success

rate could be achieved. Pending favorable results from this revamped model, the immediate

necessary experiment would be the co- or sequential delivery of gentamicin with bone

morphogenic protein 2 (BMP-2, which is being studied concurrently in the Hammond Lab) for

both infection treatment and implant integration. BMP-2 is a growth factor that would spur the

healthy ingrowth of bone against the implant [204]. Finally, scale-up considerations are ever-

present when studying orthopedics in small animal models, and therefore there is need to

conduct similar experiments in greater-weight bearing environments (e.g. a goat model).

7.2.3 Biodegradable Polyanions

Both of the functional components used in the best-performing film architecture explored as a

part of this thesis were cationic (i.e. Poly 1 and gentamicin). Consequently, a substantial

amount of film mass was dedicated to polyanionic "filler" that had limited role other than to act

as a biocompatible electrostatic glue to hold the film together. Although a vast library of

biodegradable poly(p-amino esters) has already been developed [77], the existence of anionic

counterparts [203] is much less prevalent. By layering gentamicin directly with a degradable

polyanion, it may be possible to attain even higher loadings than what has been exhibited here.

Moreover, co-utilization of multiple erodible components would further enhance the ability to

tune the release of these systems. These benefits alone motivate an attempt to synthesize new

classes of biodegradable polyelectrolytes with a focus on anionic species.
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7.3 Conclusions

This thesis has shown that the small, hydrophilic antibiotic gentamicin can be delivered in

appropriate concentrations from PEM implant coatings over prolonged periods of time and

effectively treat a gross Staphylococcus aureus infection in vivo. This work can be extended to

small, hydrophilic molecules in general, and sets the stage for the development of more

advanced LbL systems that will soon incorporate multiple therapeutic agents that can be

delivered with individually designed release profiles. While some significant and potentially

unforeseen challenges still remain, LbL holds much promise as a drug delivery platform for

drug-device combinations and may soon boost the success rates of orthopedic prostheses as

well as implantable medical devices at large.
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Chapter 8 Capstone

8.1 Introduction

The thesis herein describes the design, development, synthesis, and effectiveness of

polyelectrolyte multilayered implant coatings for the controlled release of antibiotics in a local

physiological environment. It presents a biomedical materials perspective toward

understanding, analyzing, and overcoming the technical challenges of this technology. The

thesis technology is motivated primarily for use in orthopedic revision surgeries involving total

knee or total hip arthroplasties to enable an effective one-stage process where the patient will

have a defective or infected implant replaced in a single surgery. Currently, such procedures

require patients to undergo a two-stage process. The two-stage process is presented as non-

ideal from the perspective of the patient, citing a list of undesirable attributes including:

" Two highly invasive surgeries within a six-week period

" Longer hospital residency with limited mobility

e A total economic cost of about five to seven times that of the initial surgery

" Potential for skeletal defects, limb shortening, renewed disability, and death

Revision surgeries require extended use of hospital resources and surgeon time. While

implementation of the thesis technology is aimed at addressing these issues, wide-scale market

adoption of a new medical technology presents a unique set of challenges (e.g. cost

considerations, resource management issues, information dissemination, incentive

compensation management, effectiveness of competing technologies) that may inhibit efficient

market penetration. This capstone takes a much broader perspective to A) better understand

the challenges behind adoption of a new medical technology, B) discuss the role of the current

macroeconomic healthcare landscape, C) present an enabling technology as a potential solution

to simulating human behavior change and adoption of the new medical technology, and D)

discuss the enabling technology's promise and challenges.
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8.2 Payers, Providers, and Patients-Adoption of a New Medical

Technology

The healthcare arena consists of three camps, each which has its own set of interests and each

which has the power to block the acceptance of a new medical technology: payers, providers,

and patients. Payers may choose not to cover a particular pharmaceutical or technology, which

would generally make it unaffordable for patients. Such a decision is primarily dependent on

the cost and effectiveness of the new treatment regimen in comparison to competing

treatments. Providers may choose not to adopt a new form of treatment due to their individual

financial incentives, resource preferences, or beliefs about the new technology. As long as the

physician practices medicine in a previously acceptable way, it may be difficult to enforce

change. Patients ultimately have some choice with respect to their delivery of care: to the

extent that illness or injury allows, the patient can sometimes choose which medical center,

physician, and treatment (or no treatment) to receive. This is influenced by out-of-pocket costs

and access to information on alternatives.

Any change to existing protocols in healthcare will need to satisfy the needs of each of

these camps, separately. Payers want to control spending and limit their costs. Providers have

a moral obligation to provide proper treatment to patients in need. They aim to avoid

malpractice, and can leverage their expertise to influence the coverage of payers who will

ultimately compensate them for their work. Patients want to limit physical and financial

burden and may exercise control over their treatment regimen to achieve this end.

As new medical technologies or pharmaceuticals are developed with strong supporting

data suggesting improvements to cost or safety, it may seem intuitive that patients opt for the

newest treatment regimen, payers start covering it in their insurance policies, and providers

adopt it as a new standard in their practice. However, wide-scale roll-out may not be as simple.

First, if given the option, patients may be hesitant to elect the newest procedure if the

incumbent technology is more well-known or well-accepted. Competing technologies are

marketed to patients differently and may influence their decisions. In the specific case of the

thesis technology, the prospect of significantly reduced physical burden (i.e. one surgery rather

than two) suggests that patients will not present a strong barrier to adoption. Second, payers
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may be reluctant to cover a new medical technology in their insurance policies. Even if clinical

trials appear to be highly successful, the results of the original study may not extrapolate

nationally to other patients and physicians. New treatments that do not lead to overall better

outcomes can cause repeat procedures, which drive up medical costs. As an example, Johnson

and Johnson's DePuy hip implants were recalled in 2010 as a result of their high failure rate

[205]. Upon favorable comparison with incumbent technologies such as antibiotic-loaded bone

cement, payers will likely not inhibit adoption of the thesis technology since the one-stage

reimplantation has already gained strong traction internationally. Third, physicians who have

been performing their procedures repetitively in a specific way for many years may not be

willing to change without strong incentive. Additionally, the prospect of potential malpractice

that can accompany implementation of new surgical procedures may act as a further

disincentive to adoption. The thesis technology may help facilitate cultural acceptance of the

one-stage reimplantation in the United States, but adoption by surgeons would still require

behavior change, which may slow its market penetration.

To gain widespread adoption, a new medical technology will be first used by a core set

of early-adopting physicians who are the most open-minded and willing to consider such

cutting-edge procedures. Given that only one third of patients who receive critical care in the

United States actually receive it from a physician who is board-certified to perform critical care

[206], the supply of early-adopting physicians trained in critical care is even more extremely

limited. It is critical to increase the patient reach and mentorship of these physicians as much

as possible to drive market penetration of any new technology. This issue highlights the crux of

a macroeconomic medical care imbalance that is rapidly gripping the United States: the

demand for critical care medicine is on pace to severely outweigh the supply.

A new enabling technology in the field of telemedicine has been developed to directly

address this problem. The tele-intensive care unit (also known as tele-ICU or eICU) enhances

the reach of physicians trained in critical care medicine. It aims to make healthcare services

more effective and efficient and can play a key role in achieving rapid market penetration of a

new medical technology.
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8.3 Growing Supply and Demand Imbalance in Healthcare

Nationally, ICUs treat 6M of the oldest and sickest patients each year. They are associated with

the highest mortality rates and costs in healthcare ($107B or 4.1% of the $2.6T annual US

healthcare bill) [207]. More than half of ICU patients are over 50 years old, with the likelihood

of needing ICU treatment increasing significantly with age [208]. Compounding this issue,

about one in five Medicare patients were re-admitted to a hospital within 30 days of discharge,

accounting for $18B in 2007 [2091. Given the aging baby boomer population with increasing life

expectancy, ICU demand is projected to dramatically increase between now and 2030 to about

54M ICU case-days per year-a tripling from 2006, which corresponds to 4.2% compound

average growth rate (CAGR) in demand. This significantly outpaces the growth in ICU bed

supply, which is currently experiencing 2% CAGR. These ICU beds cost on the order of $1M

each, and most hospitals are unable to afford new beds.

Intensivists are medical professionals who are board-certified to practice critical care

medicine (such as pulmonologists, anesthesiologists, surgeons, etc.). They are in extremely

limited supply and most clinicians who work in ICUs are not certified in critical care medicine. A

critical illness or injury is one that affects vital organ systems in a way that significantly

increases the probability of rapid and life-threatening deterioration in a patient's condition

[210]. As of 2010, less than 15% of all ICUs were able to provide intensivist care [206], and

intensivists currently only see about one third of all patients requiring critical care (with the

balance being seen by other medical professionals) [208]. It has been estimated full-time

intensivist staffing in metropolitan areas alone could conservatively save over 54,000 lives each

year [211]. Intensivists are able to find issues faster and treat them more thoroughly than their

non-certified counterparts.

The severity of the supply-demand imbalance of intensivists is expected to worsen over

time (Figure 8-1) [208]. The baseline analysis assumes that intensivists continue to provide care

to only about one third of all ICU patients, as was the case in 1997. In an ideal world,

intensivists provide care to 100% of all ICU patients.
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This imbalance and its consequent adverse effects have been formally recognized by the

Leapfrog Group. The Leapfrog Group is the leading national association of health care

purchasers and advisory board to mostly Fortune 500 organizations with purchasing power of

$59B-they mobilize this resource toward making 'giant leaps' in health care quality, safety,

and value [212]. Leapfrog recently added a quality standard requiring that ICUs be covered by

intensivists who are dedicated to the ICU, seven days per week during daytime hours. These

intensivists must return notes >95% of the time within five minutes of being contacted when

off site, and must make arrangements for the patient to be visited within five minutes by a

certified professional [213]. In 2010, a survey indicated that only 34.5% of hospitals fully meet

this standard.

Increasing the supply of intensivists is nontrivial. There are a limited number of

physician resident and fellowship positions. As a result, medical schools cannot simply increase

enrollment. Additionally, the high cost of medical school combined with cuts to graduate

medical education funds has incentivized many potential physicians to opt for other career

paths or end up pursuing only the highest paying physician specialties [210].

Increasing the local bed-to-intensivist ratio is also not a nationally viable option to

expand intensivist coverage. One study of 2,492 patients demonstrated how leading ICU

quality metrics (i.e. mortality and ICU length of stay (LOS)) are affected by increasing the

number of beds covered per intensivist from 7.5 to 15 [214]. Although the study found that

there was no significant difference in patient mortality, ICU LOS was significantly longer for



patients being treated by intensivists in the 15:1 ratio. The insignificant mortality outcome was

caused by the fact that ICUs are staffed with residents and fellows 24 hours per day and seven

days per week. The significant ICU LOS outcome was speculated as a potential effect from

larger bed to intensivist ratio-specifically, that information overload can lead to more

confusion and error. Despite this limitation, most hospitals employ a staffing model that uses

on-site intensivist teams to provide critical care (Figure 8-2).

Intensivist= Care Team = ICU bed = Database =

Each hospital staffs intensivist(s) who are physically present and perform services.

Hospital Current model: Hospital

Intensivists see 515
cases per day

t Hospital Hospital Hospital

Figure 8-2. Most hospitals aim to staff their own local intensivist teams to provide critical care. According to the

study by Dara et aL., these hospitals should staff more than one intensivist per 15 ICU beds. Clipart was used

with permission from Arcadia Solutions (Burlington, MA).

8.4 Enabling Intensivists to Reach more Patients

To address the lack of patient exposure to intensivists, one near-term solution is to improve the

efficiency of existing resources. Tele-ICU is an enabling technology platform that can expand

the reach of intensivists by allowing them to act as remote-advisors for bedside clinicians.

Consequently, the tele-ICU can also play a strong role in driving market acceptance of new

medical technologies.
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8.5 The Tele-ICU Platform

"Tele-ICU can be defined as the provision of care to critically ill patients by remotely located

health care professionals using audio, video and electronic links to leverage technical,

informational and clinical resources."

Craig M. Lilly, MD, Director, eICU Support Center, UMMMC [207]

Tele-ICU is an enabling technology that extends the reach and effectiveness of

intensivists. Local clinician teams balance their time between several different patients. These

teams are exposed to distractions, alarms, and their immediate task of providing critical care to

a particular patient while simultaneously monitoring status changes to other patients within the

same ICU. Some status changes require immediate attention as rapid deterioration in a

patient's health can happen on the order of minutes. Early detection of critical status changes

and patient prioritization are an important challenge for the great majority of clinician teams

that do not roster a board-certified intensivist.

The tele-ICU improves the ability of local bedside teams to adequately care for their

patients primarily through collaboration with highly-skilled and respected remote intensivists.

This is especially important for the two thirds of ICU patients who currently do not receive their

care from clinicians with critical care certification, and provides an easy entry point for early-

adopting intensivists to confer expertise on new medical technologies to local bedside teams.

While local clinicians monitor bedside alarms of patients located physically in different rooms,

the tele-ICU technology provides the support of a remotely located intensivist with access to all

medical information, laboratory results, cutting-edge decision-making software, and intelligent

alerts on physiological trends for all patients at one work station [215]. Tele-ICU physicians

have access to electronic detection of non-adherence to daily goal sheets and can conduct

audits as necessary to ensure that best practices are carried out. This technology platform

provides an ever-present source of critical care expertise and an additional level of clinical

surveillance that allows local clinicians to effectively manage their priorities and provide the

highest quality care to their patients.
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The tele-ICU uses an interconnected set of audio and video technologies. The central

command center (or 'support center') is a remote, physical location where intensivists are given

virtual access to ICU information from several hospitals. Each local ICU bed is connected to the

support center to enable real-time two-way audio and video correspondence. The support

center computers collect live vital signs, electronic medical records, current treatment

statistics, recent lab test and imaging results, notes, and other physiological status updates

from each patient currently occupying a connected ICU bed. This information is presented on a

set of monitors with built-in computer-managed decision support algorithms, alerts, and

suggested treatment patterns. The tele-intensivist is given access to all possible information

needed to help local care teams make decisions and deliver high-quality care (Figure 8-3).

Tele-ICU Model: Supply is Expanded

Intensivist= Care Team = ICU bed= Database=

The command center model allows one intensivist to manage multiple ICUs (75-100 beds).

Hospital Hospital

Hospital Hospital Hospital

Figure 8-3. The tele-ICU model allows intensivists in a centralized command center to access all patient

information from connected ICU beds to help assess patients and make decisions on critical care. The tele-ICU

does not replace local bedside care teams. It enhances them with additional coverage and support of an off-site

intensivist. This is particularly important for healthcare systems that do not currently employ local intensivists.

Clipart was used with permission from Arcadia Solutions (Burlington, MA).
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8.5.1 Market Penetration of Tele-ICU Technology

As of 2010, there were 41 active command centers. Command centers can be licensed to

monitor up to 500 beds [207] translating to a maximum of 20,500 beds that can covered by

existing command centers, or 24% of all ICU beds in the United States. These 41 command

centers cover an average of 141 beds each, or 5,800 beds (6.8% of total) across 249 hospitals

(7.6% of total). The locations of the command centers are presented in Figure 8-4.

Since 2000, five command centers have been deactivated. While the exact reasons for

deactivation are not matters of public record, common barriers to successful tele-ICU

implementation are discussed below in section 8.8 Implementation and Barriers.
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Figure 8-4. Market penetration

and location of the 41 active

command centers in 2010.

Data were extracted from

[207].

0 Activated command centers

Source: NEIHI, 2010
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8.5.2 Vendor Alternatives for Tele-ICU Technology

The first player in the tele-ICU market was Philips VISICU. VISICU currently holds the most

dominant position with about 85% market share [216]. Cerner and iMDSoft are the two other

prominent vendors of tele-ICU-related equipment in the United States. Advanced ICU Care is

an outsourcing alternative for healthcare systems that want tele-ICU coverage, but are unable

to finance their own command center. Advanced ICU Care is currently the largest independent

provider of tele-ICU services in the United States.

8.6 Driving adoption of the Tele-ICU Platform

Tele-ICU gained significant traction with the controlled study conducted at the University of

Massachusetts Memorial Medical Center (UMMMC) in collaboration with the Massachusetts

Technology Collaborative (MTC) and the New England Healthcare Institute (NEHI) published in

2011 [215].

MTC and NEHI became interested in tele-ICU in 2003 as a potential candidate

technology for their FAST initiative (i.e. Fast Adoption of Significant Technologies). The FAST

initiative focuses on identifying new technologies that improve healthcare quality and reduce

cost, but currently exhibit low market penetration. Once a candidate is identified, MTC and

NEHI focus their resources on driving widespread acceptance. To qualify, a new technology

must meet the following criteria:

1. Address a significant portion of the population.

2. Improve outcomes for patients.

3. Generate a net savings to the health care system.

4. Have low penetration.

5. Offer addressable barriers.

6. Have more than one manufacturer.

Four of these criteria were already satisfied by the tele-ICU platform. First, ICUs address 6M

critically ill patients each year. Second, FAST surveys conducted in 2006 indicated that only

about 6% of all ICU beds were covered by tele-ICU technology. Third, barriers associated with
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successful tele-ICU implementation are seemingly addressable-several tele-ICU systems had

already been successfully installed throughout the United States. Finally, there were at least

four major players in the tele-ICU market. Two criteria were not yet satisfied: although

intensivist coverage of ICUs leads to improved outcomes and cost savings, it was still to be

determined if tele-intensivist staffing could achieve similar results.

As UMMMC made the investment to install the first tele-ICU command center in

Massachusetts, MTC and NEHI recognized this as an opportunity to investigate tele-ICU's ability

to meet criteria 2 and 3. A timeline of events is provided in Figure 8-5.

(2000)-1* tele- CU (2003)-MTC and NEHI (2006)-Tele ICU (2007-2008)-UMMMC extends

installed by Sentara in become interested in Tele IcU. reviewed by FAST coverage to two community
Norfolk, VA (VISICU). Only three systems exist. Expert Panel. hospitals (10 beds each).

2010

2000
(2005)-UMMMC begins (2008)-FAST Expert Panel
installing command center. structures rapid demonstration

to take place at UMMMC.

(2005)-Leapfrog determines that only 21% of (2006-2007)-UMMMC
patients needing intensivist get to see one that meets extends coverage to its 7
standards. Only 33%of hospitals meet standards. ICUs (96 beds).

Figure 8-5. Timeline of events leading up to and through the UMMMC study by Lilly et al.

8.7 Disseminating Best Practices with Tele-ICU

UMMMC's experiment studied two primary outcome metrics: patient mortality and hospital

length of stay (LOS). The goal of the study was to determine if tele-ICU would enable the local

ICUs to better adhere to best practice protocols and improve their quality of care. MTC and

NEHI set benchmarks for successful improvement of patient outcomes. Their mortality target

was a 10% reduction in severity adjusted mortality with no increase in hospital mortality rates

of discharged patients. Their LOS target was a 12 hour reduction from the initial average LOS

(i.e. without tele-ICU support).
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Data were collected from both UMMMC's seven ICUs and two separate community

hospitals totaling 116 beds. These data were collected for about 6 months prior to tele-ICU

installation and 6 months post tele-ICU installation.

The purpose of studying two separate types of medical settings was intentional due to

fundamental differences in their ICUs. The academic medical center averaged over 13 beds per

ICU (96 total beds) and had special allocation for medical, surgical, trauma, transplant, and

cardiac use. For the thesis technology, the academic medical center is the more relevant

environment. The community hospitals averaged 10 beds per ICU and were mainly used for

patients admitted from the emergency department (i.e. surgical practices were not routinely

performed procedures). UMMMC was a referral center for patients with high risk of death

when local hospitals do not have the resources to treat such extremely complicated patients.

The community hospitals referred their most severely ill or injured patients to UMMMC.

The primary similarity between UMMMC and the community hospitals was that both had

excess capacity-UMMMC had occupancy rates in the 80-90% range while the community

hospitals had occupancy rates in the 40-50% range-and neither had full intensivist staffing.

The UMMMC study concluded that effective tele-ICU implementation throughout the

state of Massachusetts could conservatively save 350 lives and $122M for payers on an annual

basis. Tele-ICU coverage enabled local bedside teams to treat a much sicker patient mix. The

158



mean APACHE" score at UMMMC increased by about 30%, post-implementation, while each of

the two community hospitals increased by 14% and 18% respectively. Despite the increased

severity in patient mix, UMMMC experienced a 20% decline in observed ICU mortality rate and

13% decline in observed hospital mortality rate. ICU observed LOS decreased from 6.4 days to

4.5 days, a 30% decline. In the community hospitals, the severity-adjusted LOS dropped 40%

and 16%, respectively. Adherence to best clinical practices significantly increased at all three

sites for measures taken against stress ulcers and deep vein thrombosis (Table 8-1).

Additionally, measures taken toward cardiovascular protection increased from 80% adherence

to 99%, and prevention of ventilator-associated pneumonia increased from 33% to 52%. These

numbers were achieved despite the fact that both community hospitals experienced

significantly higher occupancy and patient volume due to their ability to address more complex

cases with the tele-ICU support.

Table 8-1. Increase in adherence to best clinical practices at UMMMC and each community hospital (this page)

[215], and Sutter Health (next page).

Pre Post Change Pre Post Change

_ .UMMMC 83% 96% 16% . UMMMC 83% 96% 16%

5 Hospital 1 70% 87% 24% . E Hospital 1 70% 85% 21%
W > cu 0

$ Hospital 2 93% 97% 4% _ L Hospital 2 91% 99% 9%

Severity adjustment is done using acute physiological and chronic health evaluation (APACHE) scores, which is

now in its fourth iteration (APACHE IV). Each patient admitted to an ICU is evaluated based on their diagnosis,

heart rate, body temperature, blood pressure, etc. and given an APACHE score, which ranges from 0 to 71

reflecting an immediate risk of mortality from <5% to >85%. Higher APACHE scores correspond to higher risk

patients and consequently higher predicted mortality rates, so comparing raw mortality rates (i.e. without severity

adjustment) before and after tele-ICU implementation may not be an apples-to-apples comparison in the event

that there is a significant change in the average health of patients being admitted. Therefore, when comparing

pre- and post-tele-ICU observed mortality rates, it is important to express these numbers relative to the predicted

mortality rates. As an example, if the observed mortality rate remains constant through the installation of a tele-

ICU and the patient population being treated becomes twice as sick, then although the observed mortality rate has

not changed, the severity-adjusted mortality rate will have clearly improved.
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Best Clinical Practice for Patients Diagnosed with Sepsis: Pre-Tele-ICU -Tele-ICU

Antibiotic administration within 2h 51% 79%

Lactate measurement 49% 55%

Baseline lab blood draw 78% 84%

Blood culture before antibiotic administration 63% 74%

The results at UMMMC provide two significant implications for the thesis technology.

First, their study is an example of effective knowledge sharing with two differing healthcare

environments. In most cases, the antibiotic coating technology studied in this thesis will be

applied to the surface of orthopedic implants that are used in pre-scheduled arthroplasties,

which are often conducted at academic medical centers. Academic medical centers are not

excluded from the reach of the tele-ICU platform. Second, with the support of remote-

intensivists, community hospitals are able to admit a more severe patient mix. To the extent

that the tele-ICU platform enables community hospitals to undertake more trauma-related

cases, it is conceivable that tele-ICU can facilitate deployment of the thesis technology on the

surface of implants used in open reduction internal fixation procedures.

The improvements resulting from tele-ICU implementation at UMMMC are consistent

with the findings of peer tele-ICU-adopting health care systems including:

" Reduced severity-adjusted mortality rates

e Reduced ICU LOS

* Reduced Hospital LOS

* Improvement in best practice compliance

" Increased mean APACHE scores

e Higher patient throughput

e Higher patient occupancy

e Risk management and cost avoidance

e Significant savings to payers

e Payback within one year
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The major theme behind the tele-ICU platform is dissemination of knowledge and expertise on

evidence based medicine, including new medical technologies, to a variety of care settings.

Among health care systems with installed command centers, Ministry Saint Clare in Wisconsin

significantly outperformed the APACHE predictive outcomes in ICU mortality (33%

improvement), hospital mortality (26% improvement), ventilator days (40% improvement), ICU

LOS (37% improvement), and hospital LOS (41% improvement) [217]. It achieved near perfect

compliance in best-practice protocols involving ventilator-associated pneumonias, central line

catheter infections, gastric stress ulcers, and life threatening blood clots. Sentara and Maine

Medical Center reduced observed mortality rates by 27% and 20%, respectively. Avera Health

decreased severity-adjusted mortality by 29%. Memorial Hermann Health System reduced

mortality in all five of its ICUs despite a worsened case mix. Sutter Health improved a variety of

best clinical practices (Table 8-1), and demonstrated saving 56 lives in a 30-month period at one

facility due to increased adherence to screening for sepsis on admission. Advocate HealthCare

cut preventable incidence of ventilator-associated pneumonia by 85% by improving compliance

with best-practice protocols [206]. Citing the ability of its tele-ICU system to transmit data at

high speeds and generate intelligent alerts, Indiana Health saved 655 additional lives between

2005 and 2010 [218]. The University of Pennsylvania Health System studied the effects of its

tele-ICU on 2,811 patients over three years and found statistically significant decreases in ICU

mortality (8.4% to 3.1%), hospital mortality (11.1% to 6.0%), ICU LOS (3.75 day reduction), and

hospital LOS (4.43 day reduction) [212]. Resurrection Health Care diminished mortality by 41%

and LOS by 38%, resulting in 1,700 fewer ICU days than prior to tele-ICU implementation [219].

In a large study of more than 10,000 patients across multiple hospitals contracting with

Advanced ICU Care, there was a 40% reduction in ICU mortality, 25% reduction in ICU LOS, 17%

increase in the number of ICU cases, and continuous process improvement procedures that

minimized complications, maximized efficiency, and improved both patient and staff

satisfaction [217].

Despite the abundance of healthcare systems reporting significant improvements, not

all healthcare systems were able to achieve strong improvements in ICU-related metrics. It is
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required that the tele-ICU system be seamlessly integrated with the work streams at the site of

care. One review article points out two studies that took place in Texas and Illinois,

respectively, that experienced little gain from their newly installed technology as a result of

limiting the tele-ICU from intervening in delivery of care to life-threatening emergencies [212].

8.8 Implementation and Barriers

8.8.1 Perceptions of Tele-ICU

Despite the positive medical benefits apparently offered by the tele-ICU, this technology has

not propagated rapidly throughout the United States. Berenson et al. visited 12 different

hospital systems throughout the country, five which had installed tele-ICUs and seven which

had not, to conduct interviews regarding adoption of this technology [220]. Amongst tele-ICU

implementers, the biggest motivation to invest in the technology was the possibility of

improving clinical quality, patient safety, and reach of their ICU staff. They were interested in

maintaining a reputation for quality and innovation, and tele-ICU implementation was an

opportunity to build deeper relationships with smaller, more remote hospitals. This fact

highlights the direction of knowledge flow: tertiary care centers tend to be the most open-

minded toward adoption of new medical technologies, and by establishing relationships with

smaller hospitals through the use of tele-CU, the larger academic medical centers directly

propagate adoption by the remote hospitals. Decision-makers' awareness and visitations to

existing successful tele-ICUs systems bolstered their decision to invest in tele-ICU. Expectations

of cost savings from reduced complications and LOS were not major factors in the purchase

decision, and most did not consider payer or purchaser expectations other than the Leapfrog

Group.

Non-implementers (almost all of who were aware of VISICU's product) could not justify

the "limited potential benefits" against start-up and operating costs. They felt that their

current ICU staffing adequately met their needs and preferred to keep their operations

exclusively on-site. Some non-implementers felt that tele-ICU would be most useful in crisis

situations, which tended to be uncommon. There was uncertainty whether tele-ICU would
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alter clinical decisions, and concern that the technology could create unnecessary overreaction

to minor issues. Initial conditions (e.g. mortality rates and average LOS) play a strong role in

determining the overall success of a tele-ICU implementation; therefore, tele-ICU oversight may

not be as important to top performing ICUs. Finally, the lack of third-party reimbursement for

installation and operation was seen as a disincentive, given the challenges over quantifying

return on investment. Despite these issues, many non-adopters valued the data management

(i.e. presentation and analysis) capabilities of the VISICU system when compared to their

currently installed IT systems.

For both implementers and non-implementers, most of the 12 hospitals had undertaken

initiatives to improve their ICU performance. This was primarily done through addition of

intensivists and adoption of ICU-specific quality improvement initiatives. On average, the 12

hospitals were implementing at least six initiatives to improve best practices and avoid

complications. Over two-thirds of these hospitals reported meeting the Leapfrog standard for

intensivist staffing. Although the opinions about the necessity of 24/7 intensivist staffing of the

ICU were somewhat mixed, the general consensus was that intensivists should be accessible at

all times. The major barrier to installing tele-ICU for achieving this end was the capital

requirement for implementation, operation, and staffing.

8.8.2 Operation

Patients undergoing critical care can experience clinical conditions that change rapidly-the

tele-ICU helps manage care and ensures that patients have access to proper intensivist

expertise, when needed. Local clinicians stay focused on delivering bedside care and

communicating with families while remote clinicians keeping 24/7 watch over the vital signs

and health trends of all patients in the local ICU.

The ICU gives the remote intensivist convenient access to all relevant patient

information to help local bedside teams make decisions, as necessary. Remote intensivists view

live bedside waveforms on a series of monitors (Figure 8-6). The VISICU software is equipped

with automated surveillance tools that employ sophisticated algorithms to analyze and

evaluate live patient physiological data, laboratory results, medication lists, and charted
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information in the patient's electronic medical records to help provide earlier detection of

complications. Patients can exhibit vital signs that do not necessarily trigger standard bedside

alarms, but where the tele-ICU software is able to identify a deteriorating trend [220].

Figure 8-6. VISICU tele-ICU station. Image was extracted from Google Images.

Static-free audio and high-resolution video equipment are installed at the command

center and each local ICU bed to allow real-time communication between the two locations.

Cameras are able to assess skin color, breathing patterns, pupil size, labels on equipment, and

ventilator settings. Although the command center can initiate a communication, the local

bedside teams request the immediate presence of the tele-ICU team by pressing a red tele-ICU

emergency button located on the wall in the local ICU room. In some healthcare systems,

bedside physicians can indicate their preferred level of involvement from the remote-

intensivists by selecting a category level ranging from 'monitor and report only' to 'full

intervention by remote intensivist' [221].
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The intensivist coverage by tele-ICU provides a redundancy that ensures consistent

execution of best practices bundles (or checklists), which can sometimes be missed when

bedside staff become busy or distracted within the ICU. It is important that tele-ICU programs

have a process for systematically reviewing and improving current best practice protocols to

ensure compatibility between the remote and local care teams, and that such protocols

continue to deliver the most efficient and high-quality care for patients. As an example,

Advocate HealthCare System screened every mechanically ventilated patient twice per day to

ensure that all five components of its ventilator-associated pneumonia bundle were

completed-if missed, the tele-intensivist would write a computerized physician order entry

(CPOE) to complete the bundle or call a bedside clinician to resolve the issue. Within three

months, Advocate HealthCare was more than 99% compliant [221]. This review process is also

a critical opportunity to discuss how new medical technologies can improve existing care

regimen, as well as how to incorporate them into existing work streams.

Tele-ICU teams make routine virtual rounds, which include reviewing vital signs and

trends over the last few hours, current waveforms, new lab or other diagnostic test results,

nursing flow-sheet documentation (including assessments and interventions), physician notes,

care plan updates, respiratory therapy flow sheet data, and alerts. Virtual rounds may involve

interventions with the local care team, if necessary [206]. Rounds are prioritized in order of

patient acuity. The software distinguishes between the most critically ill patients ('red'),

moderately ill patients ('yellow'), and the most stable patients ('green') [221]. Virtual rounds

do not typically require audio or visual capabilities. They occur immediately after new

admission (for initial tele-ICU assessment), during assessments at the beginning of a shift, when

requested by local care teams, and in the event that a patient's condition has substantially

changed. In the event that an alarm is triggered as data are processed through the decision

support software, tele-intensivists critically evaluate its cause (e.g. respiratory distress,

impaired oxygenation status, hypotension, tachycardia) and intervene as necessary [209]. Shift

lengths for tele-nurses are usually 12 hours, and shift lengths for tele-physicians range from 9

to 12 hours [221].
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Tele-ICUs can be staffed with shared and/or dedicated positions. Dedicated positions

help maintain team cohesiveness and mitigate scheduling issues; however, lack of intensivist

exposure to the bedside ICU can reduce clinical competence over time [206]. Shared positions

can improve job satisfaction by balancing the intensity and emotion of the bedside ICU with a

more casual environment and provide exposure to many more patient cases; however, shared

positions may create loyalty and scheduling challenges since such clinicians report to two

separate managers. With respect to propagating a new medical technology, shared positions

may offer stronger support toward market penetration; shared positions allow early-adopting

intensivists to drive acceptance of the new technology on both ends of the tele-ICU platform.

Locally, they work with bedside care teams to help enact behavior change, make purchase

decisions, and demonstrate surgical procedures, and then use this experience in the command

center to offer better guidance remotely. Tele-ICU command centers should be staffed with

medical professionals who are well respected and have strong leadership and communication

skills.

8.8.3 Barrier 1: Costs

Costs are the first major potential barrier to implementation of a tele-ICU. For decision-makers,

the high costs associated with implementing tele-ICU must be justified. As of 2010, no major

third-party payers covered installation or staffing of the tele-ICU command center. Therefore,

each healthcare system is responsible for analyzing whether or not the tele-ICU makes

economic sense given that it must fund the project internally.

Most existing command centers have capacity for accommodating new ICU bedstt . The

most cost effective way to propagate the tele-ICU technology is to use this capacity rather than

build new command centers. The cost to equip a satellite hospital with all necessary hardware

and software for communicating with a command center is between $300,000 and $500,000

[207], or about $30,000 to $50,000 per ICU bed. This sum includes software licensing,

implementation fees, ICU hardware, build-out of network and infrastructure, and project

tt The national average is 141 beds per command center out of a maximum of 500.
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management efforts. Annual operating costs are about $40,000 per ICU bed per year, 25-50%

of which is related to staffing. Staffing models generally allocate 80-125 patients per tele-

physician and 30-35 patients per tele-nurse. At the maximum capacity, this equates to 5-7 tele-

physicians and 14-17 tele-nurses (or physician assistants) [206, 211].

Command centers cost between $6M and $8M. Two thirds of this investment is related

to building out the physical tele-ICU support center and servers, licensing and implementing the

tele-ICU technology (e.g. from VISICU), and other equipment costs. The balance consists of

network and infrastructure costs, utilities, upgrades to patient monitoring systems, project

management fees, and other miscellaneous costs (including travel expenses, marketing,

supplies, etc.). The annual operating costs for a command center range between $1M and

$3M, with about 90% of this allocated to salaries and benefits. Professional salaries range from

$28/h to $50/h for tele-nurses and from $165/h to $200/h for tele-physicians [221].

8.8.4 Barrier 2: Data Integration

Data integration is the second major potential barrier for tele-ICU implementation. The remote

care team must be able to access all relevant patient information in a single interface, which

requires a standard data format. This is an industry-wide challenge that is being addressed by

the not-for-profit firm Health Level Seven International via its HL7 standards for data

interoperability. There are many cases where VISICU is not entirely compatible with local data

systems. For example, one healthcare system claimed that "half the nurses' time is spent

moving data from point A to point B to make it available" [220]. In a second example, remote

physicians at both Aurora Health and the University of Pennsylvania Medical Center are

required to physically alternate between multiple electronic medical record interfaces (e.g.

Allscripts, Epic, eClinicalWorks, etc.), each which corresponds to the choice of the respective

local hospital. In even less technically advanced locations, documentation systems may still rely

on paper records, requiring the use of fax transmissions and other means of data sharing [212].

Other examples of data that are not traditionally importable are: volume of intravenous fluids

administered, ventilator settings, and in some cases, medication lists. Smart alerts on drug

interactions or mechanical ventilator problems become useless if the underlying data are
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unavailable to the VISICU system. Data that are compatible with HL7 standards can be directly

imported into the VISICU software. Data integration issues in healthcare continue to be a

primary destination for investment and collaboration with healthcare consulting firms.

Finally, to meet security standards established in the Health Insurance Portability and

Accountability Act (HIPPA), all data must be properly encrypted before secure transmission

between the local ICUs and the command center.

8.8.5 Barrier 3: Change Management and Relationships

Implementation of tele-ICU technology requires local clinicians to relinquish some of their

autonomy to intensivists who support them from the remote unit. MTC and NEHI cite two vivid

examples of local physicians who took drastic measures to impede the usefulness of this

technology: one who hung clothing over the local camera, and the other who physically

removed the camera from the wall. Consequently, change management and relationship issues

are widely identified as the third major potential barrier to successful implementation of a tele-

ICU system.

For healthcare systems that have implemented tele-ICU, staff acceptance is a daily

concern. Prior to adoption, nursing staff tend to present the strongest resistance. On average,

they hold neutral views toward the perceived usefulness of the technology. It has been found

that in some cases, nurses intentionally avoid the help of tele-nurses while waiting for a tele-

physician to become available before seeking advice. Other issues include resentment due to

oversight, more frequent interruptions, and increased workload (although such issues were

location and participant-specific) [222].

The tele-ICU technology is counterproductive and uneconomical unless clinicians on

both sides of the technology-remotely and at the bedside-use it cooperatively. Health care

systems must place a focus, and communicate from the beginning, the importance of

collaboration amongst all impacted parties. ICU staff should be required to participate early in

the planning stages of designing and implementing the tele-ICU. It is important for hospital

administrators to generate widespread support for the tele-ICU prior to rollout. Careful

thought must be placed on staffing-those with the best communication skills are top
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candidates for remote-ICU staffing. Absolute agreement on best-practices for treatment

procedures must be established between local and remote teams to avoid conflicting advice

during active duty. A team approach can facilitate process improvement initiatives to ensure

best practices are up to date and evidence-based medicine is followed throughout the ICU for

the benefit of all patients being treated [217]. At Sentara, for example, the protocol for

monitoring glucose levels was reworked eight times using VISICU-generated data [223].

These efforts must be coordinated with versatile and supportive IT and clinical

engineering departments, who are dedicated to keeping the system online and making

improvements to the technology [218]. Tele-ICU consumes a significant amount of bandwidth;

Ministry Saint Clare initially dedicated a separate Ti line to support the constant data flow. It is

imperative to have detailed disaster plans to mitigate downtime during potential power

outages, weather crises, and other complications [224]. Authors Jarrah and Van der Kloot

suggest "dedicated, program-focused IT personnel, hospital-based information technology

services collaboration, and 24-hour centralized technical support" [212].

The following steps will help develop a strongly supportive environment for hosting a

tele-ICU system and maintain a healthy culture. First, installation of a formal orientation

program will allow all staff to meet each other and visit the various ICUs and command center.

New hires should be given this opportunity, and continuing education programs should be

provided annually as refreshers. Second, regular, shared meetings, retreats, and holiday events

that include both remote staff and local staff will help build camaraderie. UMMMC holds bi-

weekly meetings between tele-ICU leadership and key ICU personnel to discuss critical care

activities and financial issues [221]. Third, formal staff liaison positions should be created.

These positions act as points of contact for needs that may arise from either party. Fourth,

there should be a problem-solving committee and task force with appointments from the

remote staff, the local ICU staff, hospital executives, administrators, and the IT and clinical

engineering departments. This committee should hold regular leadership meetings and must

be given the authority to enact change. Fifth, it is important to identify opportunities for

shared research projects related to the tele-ICU technology. News related to these projects
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should be communicated broadly. Finally, it is important to maintain clear lines of

communication amongst impacted parties. Newsletters, feedback through public

dissemination of outcome data related to the tele-ICU, and recognition programs that reward

excellence in tele-ICU/ICU behaviors are three examples that can help maintain strong morale

[206].

Change management and relationship issues can present a potential barrier to the

adoption of any new technology that requires buy-in from humans. Highly successful

implementations of the tele-ICU platform correlate well with overcoming these challenges and

present a suitable environment for rapid adoption of cutting-edge medical developments.

8.8.6 Lifestyle Improvements Using the Tele-ICU

Tele-ICU increases the options for managers to allocate staff responsibilities. It helps to offset

some of the burden of continuously monitoring patients, so that bedside staff can focus more

of their time on other important tasks such as meeting with patients' families, collecting patient

information, and accomplishing activities related to quality care protocols. The assurance that

patients are being vigilantly monitored along with fewer (if any) night and weekend calls offers

a better quality of life for intensivists-a fact that has helped the Ministry Saint Clare Hospital

recruit intensivists much more effectively post tele-ICU installation [217]. UMMMC added their

tele-ICU system, in part, to address the fact that their on-call intensivists would field telephone

calls with limited information and to try and offer advice on a patient's proper care. The tele-

ICU system provided much more accurate guidance during these off-hours [218]. Also, rather

than paging a physician and waiting for a call back, nurses know that they have instantaneous

access to an intensivist. As a result of these improvements, one hospital manager at Ministry

Saint Clare pointed out that both intensivists and hospitalists have commented that "if the tele-

ICU program weren't in [their] hospital, they wouldn't be either" [217].

In the absence of beeping pagers, alarms, distractions, and other interruptions,

physicians in the tele-ICU can focus much more carefully as they study the details of the most

severely ill patients. Automated problem identification can be more effective than human

analysis of a patient in person, especially if the presence of fatigue. According to one intensivist
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at Sentara Health-the goal is to have every 'red' patient reviewed by a doctor or nurse at least

every hour, but if tele-ICU alerts are firing, such reviews can be much more persistent [223].

The tele-ICU provides welcome job progression for medical professionals who prefer to

avoid intense action at the bedside, but would be willing to apply their accumulated ICU

experience in the command center. This provides such experienced professionals the

opportunity to assist newly trained bedside nurses who "frequently begin their career working

the night shift when fewer resources are available" [221]. Young et al. found that among

residents training in healthcare systems with implemented tele-ICU, two-thirds wanted to do a

tele-ICU post-residency [222]. In highly successful implementations of this technology,

knowledge sharing is both encouraged and widely accepted as part of the culture making these

settings more suitable to initial adoption of new medical developments such as the thesis

technology.

8.9 Financial Impact and Payback

UMMMC determined that it recovered its initial fixed costs within the first year. On a per-case

basis, revenues were slightly reduced due to decreased LOS-payers generally compensated

UMMMC on a per diem or pay-per-service model. Costs, however, experienced an

approximate 20% reduction. The net effect was a $5,400 savings per case, or $25M annually

(4,600 cases) [207]. Sentara Health found that the cost per ICU case fell about $3,000 (25%)

mainly due to a dramatic plunge in complications related to nosocomial pneumonia and

bloodstream infections-both of which occur much more often in the absence of intensivists

who can identify subtle changes in patient condition. More complications equate to more

tests, more treatments, and longer stays in the ICU at 3x the cost of an average non-ICU bed. In

Sentara's case, the average ICU stay dropped almost a full day from 4.4 to 3.6 allowing it to

recover its initial fixed costs of $1.6M within six months [225].

With the support of the tele-ICU, community hospitals treat more severe cases locally

rather than transfer them to larger tertiary care centers. In UMMMC's study, the community

hospitals improved their ICU retention rate-the fraction of patients who were admitted to the

ICU relative to the total number presented-by an average of 23%. This more efficient use of
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hospital resources corresponded to an increase in the occupancy rate by 45%. The improved

patient throughput and ability to accept more severe cases directly impacted profits:

Community Hospital 1 experienced an increase in profits from $3,000 per case and 565 cases

per year to $4,000 per case and 791 cases per year ($1.45M annually), and Community Hospital

2 experienced an increase from $5,000 per case and 539 cases per year to $9,000 per case and

806 cases per year ($4.55M annually). In both cases, payback occurred in less than one year.

The cost-savings associated with treating a patient in the tertiary care center as opposed

to the local community hospital is estimated using matched pairs. 449 pairs of patients with

similar diagnosis, age, and timeframe of hospitalization were matched: one who was treated at

a local community hospital and one that was treated at UMMMC. It was found that patients

treated at UMMMC cost $10,000 more, on average, than at the community hospitals. Given

the post-tele-ICU decline in transfer rates of 23%, payers could save an estimated $2.6M per

year just by treating these patients in the community hospital. Scaled to all 33 hospitals in

Massachusetts with 10+ beds, the estimated savings reaches about $80M.

The analysis above does not include cost-savings due to:

" Physically transferring patients between medical centers

e Decreased staff turnover

e Increased adherence to evidenced based medicine and best practice guidelines

" Preventable claims settlements

e Rapid identification of patients ready for discharge

e Not having to build new ICU beds at $1.5M each to accommodate more patients

at tertiary medical centers

In each case, the additional savings favor tele-ICU implementation. For example, Avera Health's

tele-ICU contributed to a 37.5% decline in patient transfers to academic medical centers, saving

$1.25M including $1M on air transportation for 160 patients that were able to stay in their

hometown hospital [206, 212]. Maine Medical Center saved over $1M via a 56% reduction in

turnover of registered nurses. Resurrection Health observed a 7% reduction in blood

transfusions in 6 months translating to $11,200 in savings and over $5M in preventable claims
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settlements [219]. Advocate HealthCare's reduction of ventilator-associated pneumonias saved

about $28,000 per case, and paired with a reduction in the annual incidence rate of 87 cases

over three years, the total savings amounted to almost $2.5M per year [221]. Via Christi Health

System implemented a teaching intervention that allowed avoidance of an estimated $240,000

in non-reimbursible patient care costs under changing Medicare and Medicare reimbursement

rules [206]. Baptist Health saved an estimated $3M in streamlining the patient discharge

process.

When exclusively considering savings due to reduced LOS, tele-ICU is still a financially

sound investment. A sensistivity analysis below (Table 8-2) uses the UMMMC scenario of $6M

initial capital costs, $5,400 saved per case, and the national average of 141 beds per command

center. The inferior case scenario uses $8M for the initial capital cost and only 1/5 of the

observed $5,400 saved per case. Two highly conservative assumptions are made:

1. [For inferior case only] All ICU cases presented to all ICU beds after initial investment are

assumed to be 'severe' or 'very severe' (using proportions from 2007 National Trauma

Data Bank (NTDB))

2. ICU bed occupancy of 68%, consistent with the 2005 rate [226]

The NTDB has four separate severity rankings: minor, moderate, severe, and very severe.

These are associated with average ICU LOS of 0.4, 1.2, 3.6, and 7.6 respectively. Therefore

more severe patients require a greater proportion of hospital resources. Assumption 1 over-

estimates the average LOS for all patients to be 5.4 days, meaning that patient turnover is slow.

Less than 28% of all cases included in the 2007 NTDB report were 'severe' or 'very severe'. The

true average LOS across all patients in the NTDB is 2.0 days. Assumption 2 can be interpreted

that each ICU bed is only occupied 248 days per calendar year.
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Table 8-2. Sensitivity analysis for payback. (Top) Fixed costs. (Bottom) Variable Costs.

Command Center (CC) Investment
Net Savings per Case
Cases Needed for Payback
Average Beds per CC (2010)
Cases Needed per Bed for Payback
Average Severity-Adjusted LOS (2007)
Days of ICU Use for Payback
Average Days per Year Used (2010)
Payback (Months)

Annual Operating Cost
Net Savings per Case
Cases Needed for Payback
Average Beds per CC (2010)
Cases Needed per Bed for Payback
Average Severity-Adjusted LOS (2007)
Days of ICU Use for Payback
Average Days per Year Used (2010)
Payback (Months)

UMMMC
$6,000,000

$5,400
1111
141
7.9
2.0
16

248
1

UMMMC
$1,000,000

$5,400
185
141
1.3
2.0

3
248

0.1

In the UMMMC scenario with 141 beds per CC, all costs are recovered within the first

two months. In the inferior case scenario, the initial capital costs are recovered slightly over

one year and positive return on investment is generated during the third operating year. The

profit potential escalates with increasing number of covered ICU beds and occupancy rates.

The financial benefit of installing a command center to cover less than 60 beds may not justify

the initial costs, and therefore it makes more sense for smaller healthcare systems to partner

with existing command centers [221].

The average cost of an ICU per day is $2,400 (2010 Dollars) [227, 228]. Although

marginal costs tend to decrease with increasing LOS, in the absence of cost accounting data

reduction in ICU LOS is used as a rough proxy to estimate order-of-magnitude annual savings

based on patient throughput [221]. In four separate studies, the average estimated annual

savings based on ICU LOS reduction alone was substantial (Table 8-3) [215, 225, 229, 230].
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Table 8-3. Estimated savings based on reduction in average LOS, total patient throughput, duration of study,

and average cost of ICU per day.

Health System Patients Average LOS Estimated Time Annualized
In Study Reduction (Days) Savings (mo.) Savings (Est.)

Sentara 2,140 0.72 $ 3,700,000 6 $ 7,400,000
Avera 5,146 1.71 $ 21,400,000 30 $ 8,560,000
UPenn 2,811 3.75 $ 25,600,000 36 $ 8,533,333
UMMMC 6,290 1.90 $ 29,000,000 29 $ 12,000,000

Collectively, the measurable improvements that have been widely reported to

accompany successful implementation and rollout of a tele-ICU system more than justify the

investment, and collateral benefits can be equally magnanimous.

8.10 National Support and Outlook for Tele-ICU

This technology has accumulated support from several influential figures in the healthcare

space. First, the Leapfrog Group recently adjusted its standard for intensivist care in ICUs.

Specifically, intensivist coverage of a distant ICU from a command center facilitated by tele-ICU

technology now meets its standard for intensivist staffing [213]. Second, MTC and NEHI have

called for all academic medical centers in the state of Massachusetts to implement this

technology by 2014 and all hospitals with >10 ICU beds to adopt the technology by 2015 [207].

Third, Kathleen Sebelius, the United States' Secretary of Health and Human Services visited

Norfolk, VA last summer (2011) to promote Sentara's innovative move into the tele-ICU space

as a major example in her hospital safety initiative whose goal is to cut hospital-caused harms

by 40% and hospital readmissions by 20% by 2014 [231]. Finally, in April 2011, the Association

of Critical Care Nurses launched their CCRN-E certification, which is an extension of the

standard critical care registered nurse (CCRN) certification [209]. The CCRN-E is the first

credential specifically for the tele-nurse and a major step toward recognizing the need and

importance of remote medicine in critical care.
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8.11 Conclusions

There is a fundamental and growing imbalance between the supply and demand for critical care

medicine. Improving the outreach of existing intensivists through the use of tele-ICU has been

demonstrated repetitively in proof-of-principle studies at a multitude of health care systems

with often highly encouraging results. This technology benefits all three major parties in the

healthcare arena. Patients can more frequently access the resources that they need and

receive top-quality care. Payers are the beneficiaries of substantial cost savings as a result of

process improvements in the ICU. Providers are able to treat more total patients, and more

efficiently manage severe patients. With the adoption of any new technology involving

collaboration between humans, there are unique implementation-related challenges that

require careful consideration. It is important to achieve sufficient buy-in amongst all impacted

parties, develop the necessary technical support to overcome data integration issues, and

provide continuous process improvements and updates to the system while facilitating a

culture where best-practices are shared, good behaviors are rewarded, and positive outcomes

are publicly lauded. The tele-ICU, like implant coatings or any medical technology, is aimed at

maximizing healthcare quality while minimizing physical and financial burden to patients and

payers. It is an enabling technology that plays a significant role in extending the reach of

intensivists, and consequently, a potentially useful tool toward rapidly disseminating new

medical technologies and capturing market share.
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Appendix: MATLAB Code for Numerical Treatment of Drug

Release

Simulate.m
June 25, 2010
Joshua Moskowitz

Input variables: None

Outputs: this program will simulate the time-space concentration profile
of the film system and output total release as a function of time.

function Simulate ()

disp ('---------------------------
disp('Decreasing Drug Diffusivity')

disp ('---------------------------)
[Cl, xl, timel, Qdiffusionl] = Qdiff
[C2, x2, time2, Qdiffusion2] = Qdiff
[C3, x3, time3, Qdiffusion3] = Qdiff
[C4, x4, time4, Qdiffusion4] = Qdiff
[C5, x5, timeS, Qdiffusion5] = Qdiff

(20,
(20,
(20,
(20,
(20,

4
2

1
5
2

.0*10^

.0*10^

.0*10^

.0*10^

.5*10^A

-7)
-7)
-7)
-8)
-8)

100,
100,
100,
100,
100,

1)
1)
1)
1)
1)

disp ( '-------------------------
% disp('Increasing Film Thickness')

disp ('--------------------------I)
[C6, x6, time6, Qdiffusion6] = Qd
[C7, x7, time7, Qdiffusion7] = Qd
[C8, x8, tiine8, Qdiffusion8] = Qd

% [C9, x9, time9, Qdiffusion9] = Qd
[C10, x10, time10, Qdiffusion10]

iff (2.5
iff (5,
iff (10,
iff (15,
= Qdiff

5.0*10^(-7), 100, 1);
5.0*10'(-7), 100, 1);
5.0*10^(-7), 100, 1);
5.0*10^(-7), 100, 1);

(20, 5.0*10^(-7), 100,

I ----------------------
')

'Increasing Drug Content')
' ----------------------- 'I)
x11,
x12,
x13,
x14,
x15,

timel 1,
timel2,
time13,
time 14,
time 15,

Qdiffusionll]
Qdiffusion12]
Qdiffusion13)
Qdiffusionl4]
Qdiffusionl5]

Qdiff (20,
Qdif f(20,
Qdiff (20,
Qdiff (20,
Qdiff (20,

5.0*10^
5.0*10^
5.0*10^
5.0*10^
5.0*10^A

(-7)
(-7)
(-7)
(-7)
(-7)

10,
20,
40,
80,
160,

1);
1) ;
1);
1);

S----------------------' 
)

'Increasing Diffusivity Ratio')
' ----------------------- '1)
x16,
x17,
x18,
x19,
x20,

time16,
timel7,
time18,
time19,
time20,

Qdiffusionl6]
Qdi ffusionl 7]
Qdiffusionl8]
Qdiffusionl9]
Qdiffusion20]

Qdiff (20,
Qdiff (20,
Qdiff (20,
Qdiff (20,
Qdiff (20,

5.0*10^
5.0*10'
5.0*10'
5.0*10'
5.0*10^

(-7)
(-7)
(-7)
(-7)
(-7)

100,
100,
100,
100,
100,

177

1);

disp(
disp(
disp(
[C11,
[C12,
[C13,
[C14,
[C15,

disp(
disp(
disp(
[C16,
[C17,
[C18,
[C19,
[C20,

0.1)
0.5)
1);
5);
10);

,
,
,
,
,



%----------------------------------

%Plots for changing each parameter as stated above

%Figure 1,3,5,7: Concentration profiles

%Figure 2,4,6,8: Mass released as a function of time

%----------------------------------

%figure (1);
hold on;

% plot(xl,C1, 'b')

% plot(x2,C2, 'r')
% plot(x3,C3, 'r')

% plot(x4,C4, 'c')

% plot(x5,C5, 'k')
% ylabel('Concentration ug/cm^3');

% xlabel('Distance from Film Surface (um)');

% title('Effect of Decreasing Diffusivity');
legend('4E(-7)', '2E(-7)', 'lE(-7)', '5E(-8)' ,'2.5E(-8)', 'Location',

'Best');

figure(2);

hold on;
plot(timel/60/60,Qdiffusionl, 'b')

% plot(time2/60/60,Qdiffusion2, 'g')
plot(time3/60/60,Qdiffusion3, 'r')

% plot(time4/60/60,Qdiffusion4, 'c')
plot(time5/60/60,Qdiffusion5, 'k')
ylabel('Mass Released ug/cm^2');

xlabel('Time (Hours)');

title('Effect of Decreasing Diffusivity');
legend('4E(-7)', '2E(-7)', '1E(-7)', '5E(-8)' ,'2.5E(-8)', 'Location',

'Best');

% figure (3);
hold on;
plot(x6,C6, 'b')

plot(x7,C7, 'g')
% plot(x8,C8, 'r')

% plot(x9,C9, 'c')
plot(xlO,ClO, 'k')

% ylabel('Concentration ug/cm^3');
% xlabel('Distance from Film Surface (um)');

% title('Effect of Increasing Film Thickness');

% legend('2.5 um', '5', '10', '15' ,'20', 'Location', 'Best');

figure (4);

% hold on;

plot(time6/60/60,Qdiffusion6, 'b')
% plot(time7/60/60,Qdiffusion7, 'g')
plot(time8/60/60,Qdiffusion8, 'r')
plot(time9/60/60,Qdiffusion9, 'c')
plot(timel0/60/60,Qdiffusionl0, 'k')
ylabel('Mass Released ug/cm^2');

% xlabel('Time (Hours)');

title('Effect of Increasing Film Thickness');

legend('2.5 um', '5', '10', '15' ,'20', 'Location', 'Best');
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figure(5);

hold on;

plot(xll,Cll, 'b')
plot(x12,Cl2, 'g')

% plot(x13,Cl3, 'r')

plot(x14,C14, 'c')
plot(x15,C15, 'k')
ylabel('Concentration ug/cm^3');
xlabel('Distance from Film Surface (um)');
title('Effect of Increasing Drug Concentration');
legend('10 ug/cm^2', '20', '40', '80' ,'160', 'Location', 'Best');
axis([0 150 0 20000]);
figure (6);

hold on;
plot(timell/60/60,Qdiffusionll, 'b')
plot (timel2/60/60,Qdiffusionl2, 'g')
plot(timel3/60/60,Qdiffusionl3, 'r')
plot (timel4/60/60,Qdiffusion14, 'c')
plot(timel5/60/60,Qdiffusionl5, 'k')
ylabel('Mass Released ug/cm^2');
xlabel('Time (Hours)');

% title('Effect of Increasing Drug Concentration');

legend('0ug/cm^2', '20', '40', '80' ,'160', 'Location', 'Best');

figure (7);

hold on;
plot(x16,C16, 'b')

plot(x17,C17, 'g')

plot(x18,C18, 'r')
% plot(x19,C19, 'c')

plot(x20,C20, 'k')
ylabel('Concentration ug/cm^3');

xlabel('Distance from Film Surface (um)');
title('Effect of Increasing D/Dfilm');
legend('0.1', '0.5', '1', '5' ,'10', 'Location', 'Best');
axis([0 100 0 40000]);
figure(8);

hold on;

plot(timel6/60/60,Qdiffusionl6, 'b')
plot(timel7/60/60,Qdiffusionl7, 'g')

% plot(timel8/60/60,Qdiffusionl8, 'r')
plot(timel9/60/60,Qdiffusionl9, 'c')
plot(time20/60/60,Qdiffusion20, 'k')

% ylabel('Mass Released ug/cm^2');
xlabel('Time (Hours)');

title('Effect of Increasing D/Dfilm');
axis([0 300 0 100000]);

legend('0.l', '0.5', '1', '5' ,'10', 'Location', 'Best');
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%Use the following for comparison to analytical model

%-- ------ -- -- -----------------

[Cl, x1, timel, Qdiffusionl] = Qdiff(20, 4.0*10^(-7), 100, 0.1);

% ------ ----------------------------

%CALCULATE LEAST SQUARES FIT-TO ANALYTICAL FUNCTION

%Qdiff = a*(1-exp(-B*x^(1/2)))
% ----------------------------------

xO 10 = [35 .1];

[EQ_10, FVAL10, EXITFLAG10, OUTPUT10] = fminsearch(@(x)EQUATION_10(x,

Qdiffusionl, timel, length(Qdiffusionl)), x0_10);

disp(['Pre-exponential parameter A ', num2str(EQ_10(1))]);

disp(['Exponential parameter B ', num2str(EQ_10(2))]);

for i = 1:length(timel)
ModellO(i) = EQ_10(1)*(1-exp(-EQ_10(2)*timel(i)A0.5));

end
figure(100);
hold on;
plot(timel, Qdiffusionl, 'b');

plot(timel, ModellO, 'r');
ylabel('Mass Released ug/cm^2');

xlabel('Time (Seconds)');

legend('Finite Differences', 'Analytical Fit', 'Location', 'Best');

figure (101);
hold on;
plot(xl,C1, 'b')
ylabel('Concentration ug/cm^3');

xlabel('Distance from Film Surface (um) ');
------------------------------

%Calculate Pearson's R

%1. Compute X - Xmean and Y - Ymean

%Construct data and model vectors consisting of A) scaled raw data minus the

%mean of the scaled raw data, and B) the model data minus the mean of the

%model data:
FiniteDiffs = Qdiffusionl - mean(Qdiffusionl);

ModellO_Pearson = ModellO - mean(ModellO);

%2. Calculate XY

%3. Calculate X^2
%4. Calculate Y^2

for i = 1:length(Qdiffusionl)
datamodell0(i) = FiniteDiffs(i)*ModellO(i);
datasquare(i) = FiniteDiffs(i)^2;
modellOsquare(i) = ModellOPearson(i)^2;

end
R10 = sum(datamodell0)/(sqrt(sum(datasquare))*sqrt(sum(modellosquare)));
R10square = R10^2
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function [C, x, time, Qdiffusion] = Qdiff(h in, D in, Co in, ratio-in)

%Input initial parameters

h = h in; %um
D = D in; %Aqueous Diffusivity of drug cm^2/s
Dfilm = D/ratio in; %Matrix Diffusivity of drug cm^2/s...
Dfilm <= D

Co = Co in/(0.0001*h); %ug/volume of film in ug/cm^3
Film = 20; %number of film elements

Medium = 9*Film; %number of medium elements
elemFilm = h/10000/Film; %element size in film (cm)
timestep = (1/Dfilm)* (elemFilm/2)'2;%time to diffuse 1 element in Film in
seconds... t <= (1/D)*(elementsize/2)^2

elemMedium = 2*sqrt(D*timestep); %element size in medium (cm)
fulltime = 50; %numsteps*timestep, or total duration of
simulation

numsteps = floor(fulltime/timestep);%number of simulation time steps to take

%Set up initial conditions

%1. Concentration vector C(x,0)

%2. C''(x,0)

%Initialize C,
C = zeros (Film + Medium,1);
% C(x,0) = [Film Film FilmiMedium Medium Medium Medium Medium Medium Medium
Medium Medium Medium Medium Medium Medium Medium Medium]

[Co Co Co 10 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 01
for i = 1:Film

C(i) = Co;
end
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%Initialize C'' (x,O)

%Need to take into account the Film/Solution Interface

%These values are the coefficients that pop out of Taylor expanding

%with different element sizes

k1 = elemFilm;
k2 = (elemFilm + elemMedium) / 2;
k3 = kl + k2;

k4 = klA2*k2/2 + kl*k2^2/2;
k5 = elemMedium;

k6 = (elemFilm + elemMedium) / 2;
k7 = k5 + k6;

k8 = k5^2*k6/2 + k5*k6^2/2;

for i = 2:Film-1
Cprime2(i) = (C(i+l) - 2*C(i) + C(i-1)) / (elemFilmA2);

end
for i = 2:Medium-1

Cprime2(Film+i) = (C(Film+i+l) - 2*C(Film+i) + C(Film+i-1)) /
(elemMedium^2);

end

Cprime2(Film) = (kl*C(Film+1) - k3*C(Film) + k2*C(Film-1)) / k4;

Cprime2(Film+l) = (k6*C(Film+2) - k7*C(Film+1) + k5*C(Film)) / k8;

Cprime2(1) = (-C(4) + 4*C(3) - 5*C(2) + 2*C(1)) / (elemFilm^2);

Cprime2(Film+Medium) = (2*C(Film+Medium) - 5*C(Film+Medium-1) +
4*C(Film+Medium-2) - C(Film+Medium-3)) / (elemMediumA2);

Cprime2 = Cprime2';

%Keep track of total initial mass

sum1 = 0;

for i = 1:Film+Medium

sum1 = sum1 + C(i)*elemFilm;
end

disp(['Total initial drug: ', int2str(suml), ' ug/cm^2']);

% ----------------------------

%----------------------------

%Iterate the diffusion process
%-----------------------------

t = 0;

%Needed to index the total release values and total mass at each iteration

counter = 2;

time = zeros(1,numsteps);
Qdiffusion = zeros(l, numsteps);
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TotalMass = zeros(1, numsteps);
TotalMass(1) = sum1;

while t < fulltime
%Recalculate C(x,t + timestep)
for i = 1:Film

C(i) = C(i) + timestep*Dfilm*Cprime2(i);
end

for i = 1:Medium

C(Film+i) = C(Film+i) + timestep*D*Cprime2(Film+i);
end

%DUMP THE ERROR

CurrentMass = 0;

for i = 1:Film

CurrentMass = CurrentMass + C(i)*elemFilm;

end

for i = 1:Medium

CurrentMass = CurrentMass + C(Film+i)*elemMedium;
end

for i = 1:Film+Medium
C(i) = C(i)/CurrentMass*suml;

end

%NO FLUX

AVG1 = (C(1) + C(2)) / 2;
AVG2 = (C(length(C)) + C(length(C)-1)) / 2;
C(1) = AVG1;
C(2) = AVG1;
C(length(C)) = AVG2;
C(length(C)-1) = AVG2;

6Recalculate C''(x,t + timestep)

for i = 2:Film-1
Cprime2(i) = (C(i+1) - 2*C(i) + C(i-1)) / (elemFilm^2);

end

for i = 2:Medium-1
Cprime2(Film+i) = (C(Film+i+1) - 2*C(Film+i) + C(Film+i-1)) /

(elemMedium^2);
end

Cprime2(Film) = (kl*C(Film+l) - k3*C(Film) + k2*C(Film-1)) / k4;
Cprime2(Film+1) = (k6*C(Film+2) - k7*C(Film+1) + k5*C(Film)) / k8;
Cprime2(1) = (-C(4) + 4*C(3) - 5*C(2) + 2*C(1)) / (elemFilm^2);
Cprime2(Film+Medium) = (2*C(Film+Medium) - 5*C(Film+Medium-1) +

4*C(Film+Medium-2) - C(Film+Medium-3)) / (elemMedium^2);
Cprime2 = Cprime2';

%Keep track of what's in the film and what's been eluted

%Fill in Qdiffusion(t)
eluted = 0;

183



for i = 1:Medium
eluted = eluted + C(Film + i)*elemMedium;

end

FilmMass = 0;

for i = 1:Film

FilmMass = FilmMass + C(i)*elemFilm;
end
time(counter) =t;

Qdiffusion(counter) = eluted;
TotalMass(counter) = eluted + FilmMass;

counter = counter + 1;

t = t + timestep;
end

%----------------------------------

%-----------------------------------

%Keep track of total final mass and report

% ----------------------------------
sum2 = 0;
sum3 = 0;

sum4 = 0;

for i = 1:Film

sum3 = sum3 + C(i)*elemFilm;
end

for i = 1:Medium

sum4 = sum4 + C(Film + i)*elemMedium;

end
sum2 = sum3 + sum4;

sum3

sum4

disp(['Total final drug: ', int2str(sum2), ' ug/cm2'1]);
disp(['Total film drug remaining: ', int2str(sum3), ' ug/cm^2']);

disp(['Total eluted drug: ', int2str(sum4), ' ug/cm^ 2']);

disp(' ');

%Keep track of losses due to error propagation

figure(10)
plot(time, TotalMass);

xlabel ('Time (seconds)');

% ylabel ('Mass in System (ug)')

%--------------- -----------------

'Set up distace vector for concentration profile
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for i = 1:Film

x(i) = i*elemFilm*10000;
end

for i = 1:Medium

x(Film + i) = Film*elemFilm*10000 + i*elemMedium*10000;
end

return;

%EQUATION 10

%This is the TENTH cost function to be normalized
%EQUATION 10 ==> Scaled Release = a*(1 - exp(-b*time^0.5)) + c*time

%INPUTS: x is the variable vector (i.e. the "a", "b", and "c")
%y is the release vector y

%t is the time vector t

%s is the total number of data points to minimize residuals with
%OUTPUTS: a sum of squares difference between the model and data
%.,---------------------------------------

function sum10 = EQUATION_10(x, y, t, s)

%Create two column vectors of zeros with total number of elements as the
%data set.

f = linspace(0,0,s);

f f';
g = linspace(0,0,s);

%Go through the data set and subtract the model value from the raw data
evalue at each time point (this is stored in f. Square each result and
%store in g.

for i = 1:s

f(i) = y(i) - (x(1) * (1 - exp(-x(2)*t(i)^0.5)));
g(i) = f(i)^2;

end

%Start the sum counter at zero

sumlO = 0;

%Add all values in g vector and return
for i = 1:s

sumlO = sumlO + g(i);
end

return;

%I ----------------------------------------
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