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Abstract

Large scale solar neutron and neutrino flux experiments require many tons of bulk liquid organic scin-
tillator to take spectroscopic data of these energetic particles. However, material and chemical concerns
make such experiments both challenging and costly. In their work, Winn and Raftery prepose a method
of water-based scintillator as a viable alternative to liquid organic scintillator. Investigation into the
light yield and light attenuation of this material is conducted, providing promising results. The scintil-
lator pair PPO and POPOP serve as the primary and secondary fluor for the bulk scintillator, dissolved
in Triton-X surfactant to fix the issue polar/non-polar solubility. A scintillator mixture comprised of
3.000 grams PPO, 0.075 grams POPOP, 240.0 grams of Triton-X diluted in deionized water is identi-
fied to produce optimal light yield. The relationship of response of the water-based liquid scintillator
to Sodium-22 (22Na) 511 keV gamma source and Americium-24 Beryllium (AmBe) 2-10 MeV neutron
source is explored by taking pulse area spectra data at scintillator-surfactant concentrations of 0.5%,
1.0% and 2.0%. An analysis of light yield reveals an increasing linear correlation between observed count
rates and increasing scintillator-surfactant concentration. Systematic error inherent in the experiment is
discussed and suggestions for future work are proposed.

Thesis Advisor: Richard Lanza
Title: Senior Research Scientist of Nuclear Science and Engineering
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1 Introduction

1.1 Motivation

In recent years, organic liquid scintillators have been used in large scale physics experiment investing solar

neutron and neutrino fluxes. Large quantities of scintillator are required to see light from energy deposition

by these energetic particles. Due to the immense size of the detectors required by such investigations,

unloaded or metal loaded organic liquid scintillation has been the optimal choice for large underground

apparatuses [Yeh et al., 2007]. Table 1 shows a comparison between these large-scale physics experiments

[Bowles et al., 2001, Chen, 2008, Suekane, 2010].

Experiment Name Location Scintillator Chemical Experiment Cost Est.

Low Energy Neutrino Spectroscopy (LENS) USA 100 tons 8% In-115 $70 M
High Precision Reactor for Double Chooz France 200 tons 1% Gd unspecified
Sudbury Neutrino Observatory (SNO+) Canada 1000 tons 0.1% Nd $10 M

Table 1: Comparison of Large Scale Neutrino Experiments

Yet significant problems resulting from the use of liquid scintillator have made such experiments both

challenging and costly. From the perspective of material demands, these experiments require the preparation

of hundreds of tons of sensitive detection material. Scientists must also carefully identify all compatibility

issues related to the scintillator composition. Furthermore, the cost of the organic liquid scintillator com-

pounded with immense volume required to achieve the desired energy spectrometry results in significant

financial burden.

To alleviate complications associated with organic liquid scintillators at large volumes, Water-based

liquid scintillation (W-LS) has been proposed as an alternative. In W-LS, purified H20 is used as the bulk

solution in which a small concentration of scintillator is dissolved [Winn and Raftery, 1985]. Consequently,

large quantities of water-based liquid scintillator would be significantly less expensive compared to the same

volume of liquid organic scintillator, and compatibility issues with the solution would decrease [Yeh et al.,

2007].

Two characteristics are important in defining a successful liquid scintillator: high light yield and long

attenuation length. Light yield in a liquid scintillator is a measure of the amount light produced in the

scintillator as a function of incident radiation. Organic liquid scintillators boast percent light yields in the

range of 30-50%. For W-LS, the percent light yield is much lower (>10% depending on the scintillator

concentration) due to the use of water as the bulk solvent [Yeh et al., 2007]. Yet what W-LS lacks in light

yield, it makes up for in attenuation length, or distance at which the light traveling through a medium has

been attenuated by 63% (1-1/e) [Dai et al., 2008]. Purified liquid scintillators report attenuation lengths of

8



about 15 m while water-based liquid scintillators can achieve attenuation lengths of 80 to 100 m. A water-

based scintillator using a PPO/POPOP fluor pair suspended in a Triton-X surfactant has been proposed by

Winn and Raftery as a viable option for large scintillator requirements [Winn and Raftery, 1985].

1.2 Thesis Objectives

The objective of thesis work will be to investigate the light yield of the scintillator proposed by Winn and

Raftery with respect to increasing scintillator surfactant concentration. This investigation seeks to produce

the following results:

Bulk spectra and coincidence spectra of the scintillator response to radiation sources

A comparison of experimental spectra to predicted particle interaction with the scintillator

Analysis of detector light yield with increasing scintillator-surfactant concentration

1.3 Report Overview

" Theoretical Background explains the theory of principles explored during this investigation. Radi-

ation interaction in liquid organic scintillators will be introduced, and details regarding PPO/POPOP

scintillator used in this experiment will be provided.

" Experimental Design will detail the specifics of the the H2 0 apparatus used throughout this inves-

tigation, as well as the data collection method required for spectra production.

" Experimental Methods outlines the step-by-step process of detector calibration and data collection

for investigation.

* Results provides the raw spectra collected throughout the experiment and the manipulation of these

spectra to produce significant data for comparison. The experimental light yield of this scintillator will

be analyzed.

" Discussion presents the comparison of spectra data collected within this investigation as well as

theoretically expected outcomes. Systematic sources of error and suggestions for future work will be

briefly discussed. Finally, a conclusion for this investigation is presented.
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2 Theoretical Background

2.1 Radiation in Liquid Organic Scintillator

2.1.1 Overview

The fluorescence process in a liquid organic scintillator is the result of transitions in the energy level struc-

ture of scintillator molecules. Absorption of kinetic energy from a radiation particle passing through the

scintillator excites the electrons of a molecule from the ground state, Soo, to higher energy states (Si, S2, S3 ,

etc.) . For organic scintillators, the energy spacing between Soo and Siois in the range of 3 or 4 eV, setting

the lower bound for the required kinetic energy deposition needed to induce electron excitation. The atom

in its excited state consequently seeks to releases this excess energy, resulting in a photon emission. This

emission is referred to as "prompt fluorescence" and occurs on the time scale of nanoseconds.

Singlet Triplet

S2

Phosph rcence

Figure 1: Energy Levels for an Organic Scintillator
adapted from [Knoll, 1979]

Scintillator is transparent to the majority of its own emissions. Figure 1 explains this phenomenon. To

excite the electron to the Si state, kinetic energy is absorbed by the molecule at a range of energies greater

than or equal to the energy level gap between Sio. However, the excited atom emits photons at energies

lower than the minimum energy requirement for electron excitation, except for the Sio to Sooemission. This

results in minimal energy overlap between the absorption and emissions spectra for organic scintillators, as

depicted by 2. The small overlap in absorption and emission spectra represent a range of emitted photon

that may be re-absorbed within the scintillator.

In addition to photon emission, organic scintillators feature other de-excitation modes that available

10



Emission a1;5b
F r : m Absorption
1R.0.2

<oveo ovm l
0 40 0,4$
0.20- 0,24
000* ,- - . ol 0.00

210 250 290 330 370 410 40 490 M~ 70 610
Wavelength(nm)

Figure 2: Sample Absorption and Emission Spectra for an Organic Scintillator
adapted from [Knoll, 1979]

do not involve light emission. Any de-excitation that does not produce light, either from alternative de-

excitation modes or re-absorption by the scintillator, is grouped under the term "quenching". The greater

amounts of quenching in a scintillator result in lower scintillation efficiency ( fraction of incident radiation

energy converted into visible light, of the material).

In addition to the primary fluor, a secondary fluor known as a wavelength shifter may be introduced.

The function of the wavelength shifter is to absorb the photons produced by prompt fluorescence from the

primary fluor and re-emit that light at longer wavelengths. This interaction minimizes self-absorption in the

scintillator and provides a closer match to the spectra sensitivity of a photomultiplier tube. Liquid organic

scintillators are produced by dissolving these organic scintillator pairs in an appropriate bulk solvent[Knoll,

19791.

2.1.2 PPO/POPOP Scintillator Pair and Triton-X Surfactant

This investigation focuses on the water-based liquid scintillator proposed by Winn and Raftery. The recipe

for this scintillator features water as the bulk solvent with a scintillator pair as solutes. This combination

produces a safe and economical bulk scintillator. Table 2 summarizes characteristics of the two scintillators

chosen, 2,5-Diphenyloxazole ("PPO") and 1,4-bis(5-phenyloxazol-2-yl) benzene ("POPOP").

Name Molecular Formula Absorption Band Emission Band Cost [Pla-Dalmau et al., 2001]

1PPO C1 5HujN0 280-340 nm 330-440 nm $160 per kilogram
POPOP C2 4 H 16 N 2 0 2  200-390 nm 380-460 nm $1,000 per kilogram

Table 2: Characteristics of PPO/POPOP Scintillator

11
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Figure 3: Absorption and Emission Spectra for PPO/POPOP
adapted from Universidad Nacional de la Plata (http://www2.fisica.unlp.edu.ar/~veiga/scintillators.html)

PPO and POPOP were chosen based on their respective absorption and emission spectra, with the

absorption band of POPOP (acting as wavelength shifter) closely matching the emission band of PPO

(acting as primary fluor). This scintillator pair also features absorption bands far from water absorption

bands to reduce the amount of internal quenching in the bulk scintillator. Furthermore, the peak wavelength

for light transmission in water is 440 nm, which is well matched to PPO/POPOP emissions. Figure 3 depicts

the absorption and emission spectra for PPO and POPOP. The ratio of POPOP:PPO is set at 1:40. This

mitigates the expense difference between the two scintillators while maintaing a light yield comparable to a

1:20 ratio.

The PPO and POPOP molecules are both non-polar, making it difficult to dissolve the solutes directly

in deionized water (a polar solvent). Thus, Triton-X, a common detergent, is used to help dissolve PPO and

POPOP. The tails of the surfactant form a cluster of approximately 50 molecules into which the fluor can
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dissolve. Then, the polar heads of the surfactant dissolve into water. Concentrations ranging from 0.5%-3%

of the Triton-X, and PPO/POPOP mixture are explored [Winn and Raftery, 1985].

Expected results of light yield with increasing scintillator-surfactant concentrations are depicted in Figure

4. Generally, increasing the scintillator-surfactant concentration of the bulk scintillator results in an increase

in count rate for the detector.

Relative Counting Rates for 3 Triton
Concentrations vs PPO Concentration

200-

o 2% Triton Conc.

1% Triton Conec
100 -

Ix50 - 0 5% Triton Conc.

0.25 0.5 0.75 1
PPO Concentration (gm/I)

Figure 4: Count Rates for Increasing Scintillator Concentration (Winn and Raftery)

2.2 Radiation Sources

2.2.1 Gamma Source: 2 2Na

The sodium isotope 22Na undergoes a radioactive decay, emitting a positron with maximum energy 545 keV.

The half-life of this isotope is 2.6 years. This positron travels a short distance inside the source, eventually

annihilating with an electron. This interaction results in the creation of two photons with energies of 511 keV

traveling away from eachother at 1800. Placing a source directly in between two detectors will induce one

pulse event in each detector at the same time. A coincidence system can be created in which a pulse detected

in one detector opens a data collection window in the other detector. Consequently, the data resulting from

a coincidence run should be the result of only the two 511 keV gammas interacting with each detector.

13



2.2.2 Neutron Source: Am-Be

241 237 4'Am - Np + He + 7

9Be + 4He 2C + 1n +7

Figure 5: Americium-241 Beryllium Decay

Figure 5 shows the decay process by which the Americium-241 and Beryllium interact to produce neutrons.

Americium-241 decays to Neptunium-237 with a half life of 432.2 years, emitting an alpha particle and a

gamma ray. The alpha particle then encounters a Beryllium-9 molecule, combining to produce Carbon-12,

a neutron, and a gamma. The neutron is emitted at energies in the range of 2-10 MeV. Though the neutron

and gamma are not repeatedly emitted in directions exactly 1800 opposite eachother, probability dictates

that neutrons and gammas will sometime be emitted in opposite directions. Applying collimation to either

end of this source focuses the resulting gamma and neutron beams, increasing the probability of detecting

coincident gamma and neutron events in opposite directions. A coincidence system can be built such that

a gamma detector on one end of the source triggers the collection window for the neutron detector at the

other end.

2.2.3 Beta Source: Detector Limitations

The investigation the scintillator performed by Winn and Raftery features the response of the detector to 90 Sr

beta source. A similar source was acquired for this experiment, but a quick calculation of beta attenuation in

PVC revealed that the radiation would not be able to traverse the piping material encasing the scintillator.

It was then proposed that the 90Sr source be lowered directly into the liquid scintillator through the valve

at the top of the apparatus. Unfortunately, the source was too large to fit through the opening. Though it

would have been preferable to compare this investigation's detector90 Sr response to results received by Winn

and Raftery, we did not want to compromise the detector by making modifications allowing for an opening

into which the source could be submerged.

14



3 Experimental Design

3.1 Design Introduction

This section will describe the experimental apparatus and data collection system employed in this investiga-

tion. A basic diagram of the full experimental system is depicted in Figure 6. The target of the investigation,

a water-based liquid scintillation detector (H20 detector), was set up to gather bulk spectra data and co-

incidence spectra data with the NaI detector. The following sections describe the experimental detector in

greater detail, as well as the data analysis system implemented in this investigation.

High Voltage
Supply Expednental Anaesi

Dehecdnr Software
- HV

+ HV
Radioaciv

Na Detector Source

Figure 6: Diagram of Experimental Design

3.2 Apparatus

3.2.1 Detector Design

The H2 0 detector design for this investigation is depicted in Figure 7. This "home-made" detector is

comprised of a 2' long PVC pipe (6" inner diameter) containing the bulk scintillator. A valve at the top of

the apparatus allows the scintillator to be loaded and unloaded with relative ease. A 6"-1" piping junction

is fitted on top of the 6" PVC pipe with water-proof glue to couple the two fixtures. A 6" pipe cap is fitted

to the bottom of the apparatus with an adjoining metal juncture creating a waterproof seal between the

cylinder and a 6" photomultiplier tube (PMT). The apparatus is positioned vertically to allow the lens of

the PMT to be in direct contact with the scintillator at all times. The scintillator is contained in a cylinder

2'2" long with 6" diameter. This constitutes a possible scintillator volume of 12.04 liters.

While a range of apparatuses could have been used to house the scintillator, this pre-assembled detector

was chosen based on the ease with which scintillator could be loaded and unloaded. To prevent data

15



SpgotW h
ball-In-socinet valve

Ph

6" to 1" pipe jrcton

6" PVC piping

6" pipe cap w/ metal
attachment for Pr

otomupHe tube

Figure 7: Detector Design Schematic

disruption by light leaks, black tape is wound around the base of the detector and tin foil covers the length

of the PVC pipe and valve opening. The detector is situated on a pre-assembled metal frame that lifts

the PMT off the ground so two leads (one for the high voltage supply, one for the data collection) may be

attached to the base. The fully assembled apparatus can be seen in Figure 8.

3.2.2 Photomultiplier Tube (PMT)

Photomultiplier tubes are detectors sensitive to light produced by radiation in scintillator materials. Photons

propagated through the scintillator are focused by the lens of the PMT to a photocathode housed in a vacuum

envelope. The incident light initiates the discharge of one photoelectron. The voltage applied to the PMT

draws this electron towards the first dynode of a cascade, where some number of secondary electrons are

emitted. These electrons are then focused and accelerated to the next dynode, creating more electrons. At

the end of the dynode cascade, the gain of the signal is between 103 to 108. This resulting signal is now large

enough to be read by electronic equipment Green [20001.

The PMT used in this experiment is a 6" RCA model with a 14 dynode cascade and a maximum

16
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Figure 8: Picture of Experimental Detector

voltage rating of + 2100 V, resulting in a signal gain of approximately 108 Kleinknecht [1998]. This gain

amplification makes an auxiliary amplifier unnecessary. Because the PMT is submerged in a liquid composed

of mostly water, the bulk scintillator will charge is a negative high voltage is applied. Consequently, a

positive high voltage is applied to the PMT keeping the lens at ground. The high voltage is supplied used

for this investigation is a Caen NIM module N1470, featuring a 8kV/3mA output range and 4 programmable

channels. The operating voltage for the RCA PMT is identified in section 4.1.1 of this document.

3.3 Thallium-Doped Sodium Iodine Detector NaI(Tl)

A Bicron NaI(Tl) detector is required in this investigation to detect coincident gamma events created by

the 22 Na gamma source and the AmBe neutron source (see sections 2.3.1 and 2.3.2 for an explanation of

17



coincidence detection). This is a popular inorganic scintillator for gamma detection, featuring high light

yield and a linear correlation between energy deposited and light created in the material. The detector

measures 4"x4"x4" (LxWxH), a smaller volume than the experimental H20 detector. A voltage of -1700 V

is applied to the NaI(Tl) detector by the same Caen module high voltage supply.

3.4 Data Collection

3.4.1 Oscilloscope

The pulses resulting from radiation interaction with the scintillator are viewed on a Tektronix Digital Phos-

phor Oscilloscope (DP04045). This oscilloscope is capable of rapidly sampling the pulses produced by the

detector to create plots depicting voltage over time (i.e. waveforms) for four different inputs. This specific

model is capable of sampling at a rate of 5 giga samples per second (5 GS/s). The oscilloscope also features

a manual trigger that applies a threshold to isolate pulses above a certain voltage and register pulse coinci-

dences from multiple inputs. The data from the waveforms displayed by the oscilloscope can be individually

selected and saved to a USB drive, however the scope is not capable of performing any analysis on the

collected waveforms. Although pulse analysis is not possible, the Tektronix DP04045 is a useful tool for

qualitatively analyzing how the system is functioning (see section 4.2).

3.4.2 Digitizer and Analysis Method

The digitizer used in this investigation is a Caen NIM mod V1720 featuring 8 input channels, 12 bit process-

ing, and sampling at a rate of 250 mega samples per second. Like the oscilloscope, the digitizer is capable

of rapidly sampling pulses to produce waveforms depicting voltage versus time. The digitizer then saves

these pulses and analyzes the waveform data with respect to either pulse height (the maximum voltage the

waveform achieves) or pulse area (the integral of the waveform). A C++ data analysis program is used to

call and analyze the data produced by the digitizer.

For this investigation, a specific code was written by Zach Hartwig to analyze the pulses from the digitizer.

Figure 9 is a visual representation of how the waveforms are analyzed. A sample window of a few nanoseconds

is selected, and an average pulse height is obtained to identify the baseline signal for the pulse. Then, a

threshold is applied at a certain height off the baseline such that small fluctuations in the signal are ignored.

If a pulse passes through the digitizer with a voltage greater than the threshold, the data from this pulse

18



voltage

Base Signal Window

Theeshold

Pulse Height
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Figure 9: Method of Pulse Analysis

is saved as a waveform. The height and area are then calculated upon completion of data collection, and

histograms of the pulse height and pulse area are constructed from the data. These two spectra will depict

information about the voltage of measured pulses, and consequently, the energy deposited into the scintillator

by the radiation.
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4 Experimental Methods

4.1 Pre Data Collection

4.1.1 Initial Apparatus Investigation

Prior to starting the pre data collection, the H 20 detector contained a scintillator with unknown composition

and characteristics. In order to confirm that the experimental detector was functioning properly, data was

obtained using this unknown mixture to ensure the that there were no obvious light leaks in the system and

that the PMT was fully functioning.

After the system was assembled, the oscilloscope was used to qualitatively identify the optimal voltage

for the H 2 0 detector. Scanning the time and amplitude scale, small pulses were observed on a nanosecond

timescale as the high voltage supply reached 1500 V. The voltage was slowly raised to 1700V, showing more

pulses of various heights. Using the trigger, large pulses were isolated at a rate of roughly two pulses per

second. Based on the detector's area and the rate of occurrence, these pulses were assumed to be cosmic

rays entering the system. Other pulses registered by the oscilloscope were smaller in magnitude and were

most likely the result of other background radiation. The voltage was then slowly raised to + 2100V (the

maximum voltage suggested by the PMT) which resulted in too much noise at the base line. Finally, an

operating voltage of + 1900 V was chosen for good pulse amplification and low background noise.

To ensure that the detector was operating appropriately, a Cobalt-60 source was placed near the appa-

ratus. This resulted in a higher count rate, with large pulses at the same relative signal height (photopeaks)

as well as smaller pulses occurring at a range of lower energies (Compton edge). A pulse height/pulse area

spectrum will to confirm this qualitative assessment of detector response to radiation.

4.1.2 Ringing in Signal

Throughout the initial investigation and continuing for the rest of the data collection, a pronounced "ringing"

was detected in the background signal. The ringing displayed a specific frequency, appearing in Figure 10,

encased in an envelope with its own specific frequency, appearing in Figure 11. The wavelength was calculated

for both the ringing and envelope, resulting in Xringing= 10 ns and )envelope= 1 ps, which correspond to

frequencies of fringing= 100 MHz and fenveiope= 1 MHz. It was determined that the most likely source of this

ringing was AM and FM radio signals.
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Figure 11: Envelope Sample
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Depending on the pulse produced by the detector, the interference of the ringing effect in the baseline was

found to either produce negligible interference or drastically compromise either the pulse are or pulse height.

In Figure 12, the first wave form is the result of a large pulse that saturated the oscilloscope around .77 V,

most likely the result of a cosmic ray. Because the pulse size is comparatively much larger than the ringing,

the pulse height and area are not compromised. The second waveform is an example of a smaller pulse, most

likely due to background radiation. Here, the pulse height seems to be intact, but there are obvious effects

of the ringing on the pulse area. Third waveform is another example of a smaller pulse due to background

radiation. However, in this example the pulse height is drastically effect by the ringing. Without correction,

this will result in inaccurate pulse height analysis.
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Figure 12: Sample Waveforms
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4.1.3 Pulse Heigh Spectra (PHS) versus Pulse Area Spectra (PAS)

A quick investigation was initiated to identify which pulse spectra, height or area, will produce a greater

difference between background and source measurement data. First, two background spectra was collected

from the H2 0 detector for pulse height and pulse area. The detector consistently produced a high pulse rate

due to the large size of the scintillator chamber. Even during a background measurement, a run of about

15 minutes produced around 1,000,000 events. Figure 13 shows the two background spectra received when

analyzing pulse height or pulse area.

PHS Background PAS Background

1....................1412

10 - - - - -- 10

10 200 4W0~0 600 100lo 1200 1400 10 iZ~a0 Aw"Q *60mJ '5b .w1O

Figure 13: PHS/PAS Background Comparison

The AmBe source was then placed near the bottom of the detector angled upward such that the collimated

radiation interacted with a maximal amount of the scintillator. Figure 14 compares the resulting PHS and

PAS collected overlaying the previously collected PHS Background and PAS Background.

PHS - AmSe

I
(3

PAS - AmBe

Figure 14: PHS/PAS AmBe Source Comparison
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The PHS for the AmBe source shows variation from background in the 500-800 range, however the counts

in each channel vary between 2 and 20 counts out of the total 1.2 million counts collected. This indicates

that there is little difference in height of pulses resulting from neutron radiation. By comparison, the PAS for

the AmBe source shows a distinct departures from the background spectra in the channel range of 2500 to

9000. Here, the counts in each channel vary by one order of magnitude. This consequently implies that there

is a large difference between the area of pulses created by neutron radiation and the area of pulses created

by background radiation. Therefore, a pulse area spectrum was determined to be superior in providing a

distinction between the background data and source data for this detector.

4.1.4 Scintillator Preparation

Before mixing the scintillator, the specific amounts of PPO/POPOP, Triton-X, and deionized water were

identified. Given that the detector holds 12.04 L of liquid, calculations were made using 12 L of deionized

water as the bulk solvent in which 0.5%, 1.0%, and finally 2.0% of scintillator. An optimal concentration

of 0.25 g/l was identified for PPO based on Figure 7 in Winn and Raftery. The paper also suggests that

little difference in the light yield for ratios of 1:20 and 1:40 of POPOP:PPO. Thus, POPOP concentration in

the solvent was set at 0.00625 g/l. The scintillator was then mixed into 240 g of Triton-X (density assumed

to be 1) to reach 2% scintillator-surfactant concentration in 12 L. The final mixture requirements for the

experiment are outlined in Table3.

Mixture Requirements Experimental Values Error

PPO 3.000 grams 3.0916 0.00005 grams
POPOP 0.075 grams 0.0768 t 0.00005 grams
Triton-X 240.0 grams 250 grams ± 5 grams
DI H2 0 12 L 12 L t0.5 L

Table 3: Experimental Scintillator Mixture

A properly ventilated chemical lab was used to mix and measure the scintillator. The PPO and POPOP

powder were measured on a digital scale and then mixed together at the bottom of a 500 mL glass beaker.

Triton-X was then poured in over the scintillator powder. The viscous material was gently mixed and then

left to sit for a few days to allow complete emulsion of the scintillator.

After the initial investigation of detector (see section 4.2.1), the detector was unloaded, cleaned, and

reloaded with 12 L of deionized water. 60 grams of the scintillator-surfactant mixture were loaded into the

detector to achieve the desired 0.5% concentration. Once all the data was collected for this concentration, 60

grams more of scintillator were loaded into the detector to reach 1.0% scintillator-surfactant concentration.

More test were conducted, and the final 120 grams of scintillator were loaded to reach 2.0%.
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4.2 Detector Response Investigation

4.2.1 Bulk Spectra Measurements with 2 2Na and Am-Be Source

The objective of the bulk spectra measurements are to collect background and source data for a certain

number of total counts. This method of max count collection is used instead of data collection with a set

time because the bulk spectra will ultimately be normalized to an area of 1 and proportionally compared,

making the exact timing of the data run superfluous.

Beginning at 0.5% scintillator-surfactant concentration, a bulk background spectrum was taken from the

H20 detector operating at 1900 V. Next, a collimated 2 2Na source was placed on a table 10" away from

the detector surface, and a bulk spectra was collected until a similar count rate was achieved. Finally, the

AmBe source was positioned on the table as close to the detector as possible (approximately 1" away) with

the horizontally collimated neutron beam perpendicular to the central vertical axis of the H20. Spectra

was again collected for a specific number of counts. After collecting the coincidence spectra at 0.5%, the

scintillator-surfactant concentration was raised to 1.0% then ultimately 2.0%, repeating the same three

spectra measurements. This resulted in a total of 9 sets of bulk pulse area spectra collected from the H2 0

(3 background, 3 with 22Na, and 3 with AmBe).

4.2.2 Coincidence Spectra Measurements with 2 2 Na and Am-Be Source

The objective of the coincidence spectra measurements are to collect background and source data only

occurring when both the H20 and NaI(Tl) detectors registered pulses. It is imperative for each data set

to be collected for the same amount of time so the coincidence event rates could be compared without any

ambiguity. Due to the need for coincidence to register an event, the count rates throughout these spectra

are much lower than those seen in the bulk spectra measurement, consequently requiring a much longer run

time .

After the 3 bulk spectra measurements were collected at 0.5% scintillator surfactant concentration, the

NaI(Tl) detector was situated 17.7" away from the detector and a coincidence spectra was taken. After 1

hour and 40, it was decided that enough events had been collected for comparison (see section 5.3 for count

rate). Then, the 2 2Na was positioned in between the two detectors, 10" away from the H20 detector and

7.7" away from the NaI(Tl) detector. These distances are not arbitrary, but rather the result of a calculation

to match the solid angle for the source for each detector. Coincidence data was then collected for 1 hour and

40 minutes. Finally the AmBe source was positioned in between the H2 0 detector and the NaI(Tl) detector,

mimicking the orientation used in the bulk spectra measurements, and coincidence data was collected from

the source for 1 hour and 40 minutes. This process was repeated for the two increased scintillator-surfactant
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concentrations, resulting in a total of 9 coincidence spectra measurements.
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5 Results

5.1 Spectra Measurements

To compare the data collected for varying scintillation concentrations, each bulk spectrum was normalized

such that the area under the curve is equal to 1. In doing so, the bulk spectrum displays the percentage

of pulse areas instead of definite counts. This analysis allows for comparison across multiple run times and

count rates.

Figure 15 depicts the change in the background bulk spectra with various scintillator concentrations. As

the scintillator increases from 0.5% to 1.0%, there is an increase in pulses with an area of about 1250 V.

However when the scintillator is increased to 2.0%, the percentage of small pulse areas in the range of 500

V to 1000 V greatly increases, consequently reducing the proportion of pulse areas 1000 V and higher.

Normalized Background Spectra

104 - 0.5% Scintillator

-- 1.0% Scintillator

2.0% Scintillator
10

0

10 ....

0 2000 4000 6000 8000 10000 12000 14000
Pulse area (ADC)

Figure 15: Normalized Bulk Background Spectra (0.5%, 1.0%, 2.0%)

Figure 16 shows the progression of the pulse area spectra response by the detector to 511 keV gammas

from the 22 Na source. At 0.5% scintillator concentration, the introduction of the gamma source results in a

higher percentage of 1000 V pulse areas when compared to the background spectra. Increasing the scintillator

concentration to 1.0% results in an increase of 1500 V to 7000 V pulse areas. This increase in pulse area

percentages closely mimics the background spectra. The final increase in scintillator concentration to 2.0%

continues to increase the percent the range of pulse areas from 1000 V to 10000 V.
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Figure 16: Comparing Bulk Background Spectra to AmBe Spectra (0.5%, 1.0%, 2.0%)
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Figure 17: Normalized Bulk Spectra for 22 Na Source (0.5%, 1.0%, 2.0%)

A direct comparison of bulk pulse area spectrum resulting from the 22 Na source is depicted in Figure 17.

No clear trend can be identified with respect to increasing scintillator concentration, though the spectrum

shape for each set of data appears to be uniform.

The progression of pulse area detector response to neutrons from an AmBe source is seen in Figure 18.

At 0.5% scintillator composition, the greatest percentage of pulse area occurs in the 1000 V to 2000 V range,

which is greater than the percentage of background pulse areas occurring at this range. As the scintillator

concentration is increased to 2.0%, the percentage of pulse areas with lower energies around 700 V surpasses

the percentage of low pulse areas for the background measurement.
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Figure 18: Comparing Bulk Background Spectra to AmBe Spectra (0.5%, 1.0%, 2.0%)
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Normalized AmBe Spectra
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Figure 19: Normalized Bulk Spectra for AmBe Source (0.5%, 1.0%, 2.0%)

When comparing the pulse area response to neutrons from an AmBe source, as shown in Figure 19, it can

be inferred that with increasing scintillator concentration, the percentage of pulses with large areas decrease

as the percentage of pulses with small areas increase.

5.2 Coincidence Measurements

Figure 20 depicts the results from H2 0 detector data taken in coincidence with NaI(Tl) detector when

exposed to the 22Na gamma source. The first figure shows the pulse area coincidence spectra received from

the detector, while the second figure shows the background subtracted response. Subtracting the background

from the data results in a more narrow peak, removing most counts with pulse areas 2000 V and higher. The

background-subtracted spectrum's maximum peak height and peak average both occur at approximately

1250 V.

Figure 21 depicts the results from H2 0 detector data taken in coincidence with NaI(Tl) detector when

exposed to the AmBe neutron source. The first figure shows the pulse area coincidence spectra received from

the detector, while the second figure shows the background subtracted. Subtracting the background from
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the data results in an overall slight decrease in pulse area counts, however the spectra retains its shape. The

background-subtracted spectrum's maximum peak height occurs at approximately 1300 V, while the peak's

average occurs at approximately 1750 V.
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Figure 20: 22Na Coincidence Spectra (0.5%, 1.0%, 2.0%)
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Figure 21: AmBe Coincidence Spectra (0.5%, 1.0%, 2.0%)

The counts collected in each data sample were recorded and placed in Table 4. This data is then

graphically expresses in a Figure22. A linear regression is applied to the AmBe, 22Na, and background
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Scintillator-Surfactant Concentration (%) 0.5% 1.0% 2.0%
Background Counts 145 307 215

AmBe Source Counts 627 1223 2522
1Na Source Counts 84 228 646

Table 4: Observed Count Rates for Coincidence Data

count data, and the R2 values are displayed. Both the AmBe and 22Na show a linearly increasing trend

with R 2values greater than .99. By comparison, the data for background counts shows a linear trend at a

constant rate, however the R2value for this regression is 0.06 indicating an insignificant correlation.

Count Rates for Coincidence Data
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Figure 22: Trend in Coincidence Count Rates for Scintillator
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6 Discussion

6.1 Findings

6.1.1 Bulk Pulse Area Spectra Comparison

On a general level of analysis, there are noticeable differences between the spectra collected with 22Na and

AmBe and the background spectra. While this suggests that there is some response of the H2 0 detector to

radiation, it is difficult to discern precisely what these trends indicate. In both the22Na and AmBe data,

the increase in scintillator concentration from 0.5% to 1.0% correlates to an increase in percentage of pulses

with smaller areas. This indicates that the PMT registers more low area pulses when exposed to gamma

and neutron radiation and consequently more low energy light is produced in the scintillator Unfortunately,

the origin of the radiation creating the low energy light cannot be identified with certainty by this spectra

comparison. While it would be satisfying to assume that this trend is a direct result from 511 keV gammas

and neutrons interacting with the scintillator, other interactions such as background radiation or reflected

light within the detector may be the cause.

6.1.2 Coincidence Data and Event Certainty

The coincidence measurements provide a clearer picture of how the H2 0 detector responds to the 22Na gamma

source and the AmBe. Both Figure 20 and Figure 21 show a high concentration of pulses at lower energies,

with average peak energy at approximately 1250 V for 22 Na data and 1750 V for AmBe data. Because of the

timing required for an event to be in coincidence and the subtracting of a background coincidence spectra,

it can be said with certainty that these pulse area spectra are the direct result of 511 keV gammas and

neutrons interacting with the detector. For bulk spectra 22Na data, any pulse area greater than 2000 V is

concluded to be the result of background radiation, while any pulse area greater than 3500 V in the AmBe

bulk spectra data is concluded to be the result of background radiation.

A comparison of coincidence spectra count rates to bulk spectra count rates indicates that while the

scintillator is producing large amounts of light, the majority of this light is due to background radiation. For

the 2.0% concentration scintillator data, an AmBe coincidence sample time of 100 minutes resulted in 2522

counts, or 0.42 counts/sec. The same scintillator concentration received approximately 1.2 million counts in

a sample time of 15 minutes, resulting in a count rate of 1333 counts/sec. Comparing the two count rates

shows that 99.97% of all counts received by the detector are due to background radiation.

A qualitative analysis of the shape of the pulse area spectra for both the 22Na and AmBe coincidence

data also provides a better understanding of detector response. In both cases, the peak of the pulse area
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spectra is at low energies, with higher energy counts occurring with statistically negligible frequencies.

However, the 22Na coincidence spectrum features a much more concentrated peak. Furthermore, as the

scintillator concentration increases, the pulse shape appears to remain concentrated while the height of the

pulse climbs. Because the detector is responding only to gamma rays at exactly 511 keV, an increase in

scintillator concentration should increase the occurrence of light at this specific energy rather than increase

the energy of light in the detector. The spectra received from the 22 Na coincidence data (Figure 20) supports

this interaction.

By contrast, the AmBe coincidence spectra features a peak with a sharp rise and a gradual fall. As the

scintillator concentration increases, the height of the peak increases and the area of the peak grows leftward

towards higher pulse areas registered. In these spectra, the detector is responding to neutrons emitted from

the AmBe source with energies ranging from 2-10 MeV. An increase in scintillator concentration will increase

the density of the material through which the neutrons are traveling, consequently increasing the amount of

energy deposited by neutrons in the scintillator. The deposited energy increase should corresponds to greater

pulse area, expanding the pulse area spectra towards the left. Again, the coincidence spectra received from

the AmBe coincidence data (Figure 21) supports this interaction.

6.1.3 Concentration Effect on Light Yield

As seen in Figure 22 the number of counts collected by the detector when exposed to radioactive sources

increases with increasing scintillator concentration. Furthermore, the number of counts increases linearly

with increasing scintillator concentration. This confirms the fundamental knowledge regarding how light is

created in scintillators, however it is important to compare this trend to work done by Winn et al. in their

investigation of this scintillator (Figure 4).The data, depicted in Figure 23, shows count rates higher than

this experiment's coincidence data and lower than this experiment's bulk spectra. However, the increase in

count rates seems to be slowing to a plateau as scintillator concentration is increased. This differs from the

linear trend in counts shown in this investigation.
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6.2 Systematic Problems with the Experiment

6.2.1 The Apparatus

The geometry of the detector was not optimal for this analysis. On the most basic level, the sheer volume

of the detector allows for greater interaction of background radiation when the data should have been

analyzing radiation from the sources. Furthermore, while it can be asserted that the inner geometry of the

PVC pipe is cylindrical, the piping junctures lead to uncertainties due to light reflection in the detector.

To the investigator's knowledge, there is no focusing of light towards the PMT at the bottom of the tube.

Consequently, it would be possible for light to reflect off the walls of the tube many times before reaching

the PMT, allowing for noticeable effects of light attenuation.

Ringing frequency effects inherent in the detector also were unaccounted for throughout this investigation.

As explained in section 4.2.2 of this document, the ringing sometimes had noticeable effects on the pulse

received by the digitizer, creating uncertainty in the pulse height analysis.
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6.2.2 Data Collection

For the most part, data collection throughout this investigation was subject to little error. However after

the conclusion of experimentation, a realization that the 22 Na source was left uncollimated throughout the

work. Setting up a simple structure of lead blocks to collimated for the22Na source would have resulted in

focusing the two 511 keV gamma rays oriented in opposite directions of each other. This would lead to higher

counts for the coincidence data and provide a more complete understanding of the H20 detector response

to 511 keV gammas

6.3 Suggestions for Future Work

While this investigation revealed the response of PPO/POPOP scintillator to background, gamma, and

neutron radiation, the scope of is only a narrow sampling of the full characterization for this detector.

One suggested course of future investigation is to tilt the detector onto its side such that the pipe's

central axis is horizontal instead of vertical. Orienting the detector horizontally could positively effect many

of the unintentional negative aspects of this investigation. In this orientation, placing the collimated source

at the end opposite of the PMT would allow for a greater length of radiation interaction with the material

while simultaneously reducing the interaction length for cosmic rays. Furthermore, a horizontal orientation

would allow for an easy measurement of light attenuation for the scintillator. Data could be taken placing

the source at increasing distances away from the PMT, and resulting count rates could be compared to

understand the amount of light attenuation in the scintillator material.

6.4 Conclusion

The purpose of this thesis work was to investigate the effects of increasing scintillator-surfactant concentration

on pulse area spectra and light yield with in the detector. Bulk pulse area spectra were collected, providing

minimal insight into the scintillator's response. A comparison of coincidence pulse area spectra revealed

that not only is the detector responding to gamma and neutron radiation sources in different manners, but

that these responses appear to correlate to theory regarding gamma and neutron radiation interactions with

material. A light yield analysis was performed on the coincidence data revealing a highly linear correlation

between scintillator-surfactant concentration and count rate. Though this data differed from results reported

of light yield in this scintillator by Winn and Raftery, more knowledge is required of the experimental method

for obtaining these results. Overall, this thesis work is the beginning of a promising investigation into the

viability of water-based liquid scintillator for large scale spectroscopy experiments.
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