
FPGA-Aided MAV Vision-Based Estimation

by

Dember Alexander Giraldez

S.B., E.E.C.S., M.I.T., 2010

Submitted to the Department of Electrical Engineering and Computer
Science

in Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology ARC IVES

June 2011
© 2011 Massachusetts Institute of Technology.

All rights reserved.

Author
Department of Electrical Engineering and Cow4uter Sciog '

May 20, 2011

C ertified by
Nic as oy

Associate Yxafssor
Thesis Supervisor

C ertified by

Senior Member of Technical Staff, C. S.
Richard Madison

Draper Laboratory
Thesis Supervisor

I->

Accepted by...
Dr. Christopher J. Terman

Chairman, Masters of Engineering Thesis Committee

FPGA-Aided MAV Vision-Based Estimation

by

Dember Alexander Giraldez

Submitted to the Department of Electrical Engineering and Computer Science
June 30, 2011

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

The process of estimating motion trajectory through an unknown environment from a
monocular image sequence is one of the main challenges in Micro Air Vehicle (MAV)
navigation. Today MAVs are becoming more and more prevalent in both civilian and
military operations. However, with their reduction in size compared to traditional
Unmanned Aircraft Vehicles (UAVs), the computational power and payload that can
be carried onboard is limited. While there is ample research in motion estimation
for systems that are deployed on the ground, have various sensors, as well as mul-
tiple cameras, a current challenge consists of deploying minimalistic systems suited
specifically for MAVs.

This thesis presents a novel approach for six-degrees of freedom motion estimation
using a monocular camera containing a Field-Programmable-Gate-Array (FPGA).
Most implementations using a monocular camera onboard MAVs stream images to
a ground station for processing. However, an FPGA can be programmed for feature
extraction, so instead of sending raw images, information is encoded by the FPGA
and only frame information, feature locations, and descriptors are transmitted. This
onboard precomputation greatly reduces bandwidth usage and ground station pro-
cessing. The objectives of this research are (1) to show how the raw computing power
of an FPGA can be exploited in this application and (2) to evaluate the performance
of such a system against a traditional monocular camera implementation. The under-
lying motivation is to bring MAV systems closer to complete autonomy, meaning all
the computation needed for estimation and navigation is carried out autonomously
and onboard.

Thesis Supervisor: Nicholas Roy
Title: Associate Professor

Thesis Supervisor: Richard Madison
Title: Senior Member of Technical Staff, C. S. Draper Laboratory

3

4

Acknowledgments

This thesis was prepared at The Charles Stark Draper Laboratory, Inc., under an

Internal Research and Development program.

Publication of this thesis does not constitute approval by Draper of the findings

or conclusions contained herein. It is published for the exchange and stimulation of

ideas.

First I would like to thank my advisor, Nick Roy, for giving me the opportunity

to work with him. I think he saw my enthusiasm for working in this area from the

time I first approached him. What I have learned working with him far exceeds what

I could have imagined when I first stepped in his office.

From Draper Lab, I would like thank my supervisor Richard Madison, Paul DeB-

itetto, Peak Xu, the rest of the Cognitive Robotics Group and Linda Fuhrman for

the opportunity to work with them.

I would like to thank Javier Velez for his dedication to my project from day one,

as well as Abe Bachrach, Daniel Maturana, Piotr Mitros, and the rest of the group

for always listening and offering ideas. I would also like to thank Gim Hom for his

support, especially in the early stages of this project.

I would like to thank my parents, Nora and Dember, and my brother, Diego, for

their constant support, for always believing in me, and for all their phone calls to see

how I was doing. They always made sure I never felt like I was too far away from

home. I would also like to thank my friends for making MIT fun. I would like to thank

Aubrey for her constant encouragement and for truly making my time at MIT one I

will never forget. Aubrey -Thanks for always being there whenever MIT dealt me a

character building blow and for making the simplest things so neat: from grabbing

lunch from the food trucks to working until dawn to finish a class assignment -and

then snowboarding at 8 a.m.!

Finally, I would like to dedicate this work to my aunt Ana, who passed away while

I was at MIT. My aunt and uncle have helped my family tremendously and without

her I would not have had the privilege of attending MIT.

5

6

Contents

1 Introduction

1.1 FPGAs and Hardware Trends .

1.2 Thesis Organization. .

2 Related Work

2.1 Autonomous Flight in Unknown Environments

2.2 SLAM using MAVs .

2.3 Previous Work at Draper .

3 Design

3.1 System Overview .

3.2 H ardw are .

3.2.1 Elphel Smart Camera . .

3.3 Feature Matching

3.4 Harris Corner Detector

3.4.1 Mathematics

3.5 Estimation

3.5.1 Correspondences

3.5.2 Camera Dynamic Model

3.5.3 Point Representation

3.5.4 Measurement Model

3.5.5 Putting it all together: E

3.6 Basic Simulation

13

14

15

17

17

18

19

21

21

24

25

27

27

28

30

30

32

34

35

36

39

xtended Kalman Filter (EKF)

7

4 Implementation 43

4.1 FPGA 43

4.1.1 Elphel-353 Stock FPGA Design 44

4.1.2 In-FPGA Feature Detection 45

4.1.3 Harris Corner Detector . 49

4.1.4 Parallelism . 52

4.2 Estimation . 52

4.3 Modularity . 53

4.3.1 Edge Detector . 53

5 Evaluation 55

5.1 Validation . 55

5.2 Simulation . 56

5.3 Matlab Harris Corner Detector . 56

5.4 Baseline Performance . 58

5.5 Performance Using FPGA . 63

5.5.1 Raw speedup . 64

5.5.2 Lateral Motion . 65

5.5.3 Different Velocities . 68

5.5.4 Forward Motion . 70

5.5.5 Non-Planar Motion . 71

5.5.6 Lighting . 72

5.5.7 Limitations . 73

5.5.8 Bandwidth Reduction . 74

6 Conclusion 75

7 Future Work 77

7.1 SIF T . 77

7.2 Considerations Going Forward . 78

8

List of Figures

System Diagram. .

N exys 2 Board .

Rolling Shutter Effect. .

Elphel-353 Smart Camera .

Detector, Descriptor and Correspondences

Features and descriptors for two different frames

R ansac R esults .

Basic EKF simulation results without integrating measurements

Basic EKF simulation results integrating measurements

3-10 Basic EKF Cov X

3-11 Basic EKF Cov Y

Elphel-353 System Diagram

FPGA Design Overview

Sliding Window Behavior

Source Image for Edge Detection .

Edge Detector Output

5-1 Simulation using Icarus Verilog and

5-2 Original Test Image

5-3 High threshold corner detection . .

5-4 Medium threshold corner detection

5-5 Low threshold corner detection . .

GTKW ave. 56

. 5 7

. 5 8

. 5 8

. 5 9

5-6 ETH Image Sequence Performance with features .

9

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

22

25

26

27

28

30

33

40

40

41

41

45

47

49

54

54

4-1

4-2

4-3

4-4

4-5

60

.

.

5-7 ETH Image Sequence Performance without features 60

5-8 Baseline X, Y, Z error . 61

5-9 Baseline roll, pitch, yaw error . 61

5-10 Frames with illumination differences 62

5-11 Baseline velocity error . 63

5-12 Baseline angular velocity error . 64

5-13 Frames corresponding to lateral motion 66

5-14 Lateral motion: Error along x-axis. 66

5-15 FPGA frames corresponding to lateral motion 68

5-16 Lateral motion: Error along x-axis using FPGA 68

5-17 FPGA frames corresponding to lateral motion at higher velocity . . . 69

5-18 Lateral motion: Error along x-axis at higher velocity using FPGA . . 70

5-19 Forward motion . 70

5-20 FPGA error along y-axis . 71

5-21 Infinite depth of features . 71

5-22 Bright Lighting vs. Dim Lighting Performance 73

10

List of Tables

4.1 Aptina image sensor supported resolutions and frame rates. 46

4.2 JPEG compressor supported resolutions and frame rates 46

11

12

Chapter 1

Introduction

Imagine a disaster area such as the one struck by hurricane Katrina in 2005. In a

matter of hours, the landscape changed completely: previous maps of the area no

longer applied, thousands were missing, and an extensive search and rescue operation

began. It is well known that the U.S. has an extensive fleet of UAVs, such as the

predator, but with a wingspan of 48 ft, these vehicles can only be used at high altitudes

for general reconnaissance. It would be useful to be able to deploy MAVs, measuring

just 12in x 12in, so that swarms of these vehicles could search the area, going into

buildings looking for survivors while also mapping the new landscape. Making this

capability a practical reality is the underlying motivation behind this thesis.

Currently, an obstacle to making this scenario a reality is the amount of sensors

required onboard MAVs and the computational power that has to be deployed along-

side for successful operation. The focus of this research is on the implementation

of a system that uses a single sensor, a monocular camera, for position and veloc-

ity estimation of the MAV, along with an onboard Field Programmable Gate Array

(FPGA) that harvests the potential of hardware to perform expensive computations

onboard, reducing the amount of data that needs to be transmitted to a ground sta-

tion. The FPGA performs feature extraction from images, which is a crucial, but

computationally expensive part of autonomous navigation.

A goal of this thesis is to show that it is possible to have a lightweight FPGA

onboard a MAV that performs feature detection on an incoming video stream and

13

outputs just feature information for processing at a ground station. This alleviates the

need to send the whole image stream (which is expensive in terms of bandwidth and

latency), and also takes care of the feature detection computation, which otherwise

would be performed at the ground station. FPGAs continue to grow in capacity and

decrease in cost, so this thesis also hopes to show how raw hardware can be properly

designed to aid in computationally expensive processes. This thesis also shows the

whole end-to-end process for autonomous position and velocity estimation, showing

how FPGAs can be integrated successfully and quantifying their performance against

traditional implementations.

1.1 FPGAs and Hardware Trends

Since their introduction in 1985, FPGAs have steadily gained popularity in academia

and the electronics industry. An FPGA is basically an integrated circuit with thou-

sands or millions of logic blocks that can be programmed by the user. Since FPGAs

are reprogrammable, they have a huge advantage over Application Specific Integrated

Circuits (ASICs), which can only be designed and manufactured once. Recent re-

search has shown that FPGAs can provide significant performance increases in com-

puting, especially in applications best suited for hardware acceleration such as those

that use integer or fixed-point data types, as well as those that benefit from massive

parallelism [6]. Feature detection, which was implemented on the FPGA, processes

images entirely, so it greatly benefits from being able to parallelize this process. Also,

the fact that many feature detectors operate on grayscale images that consist of in-

teger pixel values between 0 and 255 provides yet another reason for experimenting

with FPGAs in this domain.

FPGAs consume significantly less power than even low-voltage consumer grade

CPUs. To get an idea of power consumption, at full capacity the Spartan3e FPGA

(used in this project) consumes 0.257 Watts [26]. In comparison, a low-voltage Intel

Pentium M processor consumes 12 Watts [7]. On a MAV, power is very limited since it

comes from batteries that are part of the payload, so this was yet another motivation

14

for exploring the use of FPGAs.

Finally, there is another trend that motivated the use of FPGAs. FPGAs consist

of many logic gates that can be programmed to be "wired together" (as if on a

breadboard to illustrate the simple case). In parallel to other technology trends,

the number of gates per chip has greatly increased over the last few years while

the cost per gate has decreased [18]. In the near future, FPGAs are expected to

expand and offer even more computational resources at higher densities. That is

another reason that motivated this project, since the best way to prepare is to exhaust

the capabilities of today's FPGAs. This thesis shows that some algorithms can be

successfully ported to hardware, but as FPGAs evolve, the complexity of algorithms

that can be implemented in hardware will increase as well. Section 7.1 discusses

the viability of implementing more complex feature detectors in hardware such as

SIFT [20]. One of the goals of this thesis is to offer a glimpse into that future

application.

1.2 Thesis Organization

This thesis is organized as follows: Chapter 2 provides a brief overview of the current

state of this particular area of research and highlights some previous work that is

directly related to the work done for this thesis. Chapter 3 is an overview of the

design for the whole system: It describes design considerations in hardware and also

covers the main concepts behind the implementation of feature detection and feature

matching. Then, it provides an overview of motion estimation by describing the nec-

essary components. Chapter 4 describes the implementation of the system, discussing

design decisions and describing the major components. Chapter 5 contains the eval-

uation of the system. It includes a description of the setup used to establish baseline

performance and also the process of obtaining truth measurements for comparison.

Chapter 6 summarizes the main findings of this thesis and Chapter 7 provides ideas

and considerations for further research.

15

16

Chapter 2

Related Work

2.1 Autonomous Flight in Unknown Environments

A system for autonomous flight through unknown indoor environments was demon-

strated successfully by Bachrach, He and Roy [2]. The work consisted of outfitting

a quadrotor helicopter with a Hokuyo laser rangefinder, laser deflecting mirrors for

sensing altitude, a monocular camera, an inertial measurement unit (IMU), a Gum-

stix processor, and the helicopter's internal processor. The system used an EKF for

data fusion and a high-level SLAM implementation. Successful results were obtained

consisting of autonomous exploration of many different indoor environments. This

work served as motivation for the work in this thesis, as it showcased all the sensors

needed for successful autonomous navigation and the extensive amount of computa-

tion required at each time step. This led to the exploration of using different hardware

to perform onboard computations and the idea of adding an onboard FPGA was born.

This thesis takes this idea even further, in that it attempts to use a monocular camera

as the only onboard sensor and a FPGA to aid in some of the heavy computation,

more specifically, feature detection.

17

2.2 SLAM using MAVs

Simultaneous Localization And Mapping (SLAM) is a technique that allows a robot to

build a map of an unknown environment, while simultaneously estimating the robot's

location in the map using information gathered from its environment [8]. SLAM has

been a challenge in MAVs due to the limitations in sensors that can be put onboard.

On ground vehicles, SLAM is very successful due to the odometry information ground

vehicles are able to obtain [2]. However, these odometry sensors, for example mid

to long range laser rangefinders, cannot always be placed on a MAV due to payload

restrictions. Another consideration is that extra instrumentation onboard can affect

the vehicle's dynamics, further stressing the vehicle's control and stabilization system.

For air vehicles, an alternative is to implement SLAM using stereo cameras or even

a single monocular camera as the sole sensor.

One of the disadvantages of SLAM is that it is very computationally intensive,

and therefore it is generally not an option to perform SLAM onboard the vehicle.

Currently, the computation normally occurs at a ground station and the results,

which consist of the map and vehicle position estimate, are transmitted back to the

vehicle. However, transmission bandwidth tends to be an issue, especially if the

vehicle is transmitting live video or a stream of high-resolution images.

Monocular SLAM

An important consideration is the case of Monocular SLAM. In traditional SLAM,

different types of sensors such as laser range finders or sonar can be used to obtain

3D information about the environment. These types of sensors provide both range

and bearing measures for each measured point, providing extensive information to

reconstruct the environment's geometry. However, in the realm of MAVs, where

payload and resources are limited, it is not always practical to have so many sensors

onboard. The SLAM problem needs to be solved using a single camera.

18

2.3 Previous Work at Draper

The work for this thesis took place at The Robust Robotics Group in MIT's Com-

puter Science and Artificial Intelligence Laboratory (CSAIL) and at The Cognitive

Robotics Group in the Charles Stark Draper Laboratory. At Draper, the work builds

on existing research described in [22]. The paper describes an implementation of a

UAV navigation system for flying autonomously when GPS signal is lost. The system

implements an EKF to fuse information from the IMU, as well as information from

feature detection, in order to create a six degrees of freedom navigation solution. For

feature detection the implementation uses Lukas-Kanade [21] features. For naviga-

tion, four features are used by the filter and between 16-20 are kept in reserve. This is

because finding 1 or 20 features costs the same, so it does not cost more to calculate

extra features to keep, as opposed to having to dynamically find a new one when a

tracked feature is lost.

19

20

Chapter 3

Design

The main problem this thesis is trying to solve is position and velocity estimation of a

MAV. This chapter describes all the steps necessary to go from a sequence of images

to the position and velocity estimate. Since an important aspect of this thesis is

the application of hardware acceleration, there are both hardware and software com-

ponents. This chapter provides an overview of the system, with major components

shown in Figure 3-1 (Page 22). Then this chapter discusses the hardware and how the

Elphel Smart Camera [11] was chosen as the main hardware component. Section 3.3

explains the reason for feature detection and provides an overview of the ideas behind

it. Section 3.4 explains the Harris corner detector and provides the mathematical ba-

sis behind it. Section 3.5 explains the process of position and velocity estimation using

the EKF and the incorporation of observations obtained from one frame to the next.

Although the EKF is described mathematically, the derivation is not provided in this

thesis. [25] provides thorough derivations of both the Kalman filter and the EKF.

Finally, Section 3.6 provides the results from implementing a simple 3 d.o.f. EKF,

which was used implemented as a first step towards the 6 d.o.f. implementation.

3.1 System Overview

The system diagram in Figure 3-1 (Page 22) provides an abstraction of the system

as a whole. The following presents a description of each component:

21

Figure 3-1: System Diagram.

22

" Image Sensor: The image sensor captures the images to be processed using a

5Mpix Aptina sensor.

" Feature Detection: The camera extracts features using the FPGA. It outputs

feature locations and the corresponding descriptors. Features (a set of points in

the image) are important because they will be used to figure out transformations

from one frame to the next. The transformation is important because it is

essentially made up of movements, whose estimation is a goal.

" Timestamper: The timestamper keeps track of which frame features corre-

spond to and also applies a timestamp that is unique to a set of features. The

timestamp is important for comparison against other measurements, for exam-

ple those from a laser rangefinder. It can also facilitate the velocity calculation,

since one can compute the change in position over time.

" EKF Prediction: At this stage the filter (EKF) makes a prediction of the state

estimate and of the covariance. The state of the camera consists of position,

orientation and respective velocities. Feature information is also added to the

state vector. The filter gives a prediction, or belief, of the camera state. The

objective of the next couple of steps is to refine this belief.

" RANSAC: To generate the transformation describing motion from one frame

to the next, a model is tested against all the correspondences, or matches be-

tween features. However, normally there are too many inaccurate feature corre-

spondences to simply compute the transformation using all the correspondences.

RANSAC [13] allows testing of different transformations in order to find one

that minimizes the number of outliers present in the transformation model.

" Make Observation: The observation consist of recording the new location

of a previously tracked feature. This step relies on available features, and can

initialize/delete features as necessary.

" EKF Update: The filter uses the observation to update its prediction, re-

sulting in a more accurate state and covariance estimate. The state estimate

23

contains the updated position and velocity estimate, which is the goal of each

iteration and the goal of the system.

9 SLAM: This module keeps track of the map with observed features and also

keeps track of the trajectory of the camera/MAV by using the measurements

and its model for camera motion.

3.2 Hardware

One of the challenges of working with hardware is that it is very difficult to choose

the ideal device. With FPGAs, there are state-of-the-art devices that offer millions

of gates, plenty of onboard memory, and many extra components (USB connectiv-

ity, video I/O, Ethernet port(s), audio I/O, LCD screens etc.). However, with these

offerings, size and weight of the board increase, as well as the cost and power con-

sumption of the board. Since this research requires a piece of hardware that can

be mounted onboard a MAV, size, weight, and total power consumption were key

considerations. Another consideration was whether open-source tools could be used

to develop, program and simulate the FPGA.

For the first prototype, Digilent's Nexys 2 FPGA board (Figure 3-2 was used. This

board had a Xilinx Spartan3e FPGA along with a VDEC1 video decoder for NTSC

analog video. This board could be programmed using Xilinx's free Webpack IDE, and

had reasonable weight, size, and power requirements. However, two main difficulties

surfaced using this board: One was integrating the analog video decoder with the

rest of the system and the second was its memory I/O capability. In asynchronous

mode, the fastest speed for the memory controller was 12.5MHz. However, to run

at 640 x 480 resolution refreshing at 60Hz, the pixel clock (the rate at which each

individual pixel is updated) had to be at least 25.175MHz. Therefore it turned

out the memory was not fast enough to keep up with all the pixels going in. After

encountering these issues, the need for a different FPGA package was determined.

24

Figure 3-2: Nexys 2 board from Digilent, measuring approximately 5in x 5in.

3.2.1 Elphel Smart Camera

After considering many different options with FPGAs, the group that stood out

consisted of "smart cameras". Smart camera is a general term for a camera that offers

the functionality of a regular digital camera, as well as some other components inside

it, such as flash memory, an FPGA or even a CPU. Many smart camera manufactures

target industrial customers and work with clients to build custom-cameras. The

challenge consisted of finding a camera that provided open access to its components.

After speaking with several vendors, the camera that offered the best set of features

was the Elphel-353 Smart Camera [11], which had a Xilinx Spartan3e FPGA with

1200K gates, an Axis ETRAX FS CPU, 64MB of system memory, 64MB of image

memory, and an Aptina 5MPix CMOS sensor. Furthermore, Elphel provided open

access to both the FPGA code and the CPU code, giving the user absolute control

over the camera's functions. The open source code, plus the digital sensor, made this

a very attractive choice.

The only drawback about this camera is that it uses a rolling-shutter, as opposed to

a global-shutter, which is the preferred capture method used in robotics applications.

25

The problem with the rolling-shutter is that image acquisition happens sequentially:

the image is scanned starting from the upper-left pixel, traversing the picture from

left to right and top to bottom until the lower-right pixel is captured. The result

is that not all parts of the image are captured at once. This poses a problem when

there is motion involved, since scenes can change while the image is being captured.

The resulting images can show bends where they do not exist, or objects wobbling

for example. Figure 3-3 (Page 26) shows this effect:

Figure 3-3: Green lines highlight the rolling-shutter effect. The vertical lines on the
cars are tilted in opposite directions, when they should be parallel to each other
(Elphel).

A global shutter captures a whole image at the exact same instant by controlling all

the photo sensors at once. The problem with global shutters is that they require wide

data paths and high transfer rates in the underlying components, since all the pixel

information for a frame is acquired instantly. However, at some point in the future,

there should be a suitable global shutter for this camera and the rest of the system is

expected to work with the updated shutter. After evaluating the specifications, the

benefits of the camera outweighed the rolling shutter drawback, and implementation

proceeded using the Elphel-353.

26

Figure 3-4: Elphel 353 Smart Camera (Elphel)

3.3 Feature Matching

The basis for autonomous navigation of any vehicle consists of understanding its

environment, since aside from controlling the vehicle's dynamics, essentially a path

has to be planned and obstacles need to be avoided. One way to "understand" the

environment is to recognize certain points or features of an image from one frame or

scene to a subsequent one. These known features provide an anchor around which

motion estimation can be done. The following are the three main components that

provide useful information from one frame to the next:

1. Detector: Attempts to independently find the same set of points (features)

from one frame to the next.

2. Descriptor: Encoding for a given feature that is used as a basis for comparison.

It can consist for example of an encoding of the local neighboring window of

pixels. It can also include the expected location of the feature in the next frame

in order to narrow down the search space for correspondences.

3. Correspondence: Based on the descriptor for one image, attempts to find the

most similar descriptor in a subsequent image, possibly resulting in a match.

3.4 Harris Corner Detector

For feature detection in hardware, I implemented the Harris Corner Detector [16].

The Harris corner detector is an established feature detection algorithm that is highly

27

Figure 3-5: Detector, Descriptor and Correspondences (6.865 Course Slides)[15].

parallelizable and can be implemented using integer arithmetic (two requirements for

successful FPGA implementations). The Harris corner detector essentially works by

comparing adjacent gradients (in this domain gradients consist of the difference from

one pixel to the surrounding eight) throughout the image. The basic idea behind the

corner detector consists of the following three scenarios:

1. Flat: No change in pixel intensity along any one direction.

2. Edge: Change in pixel intensity along any one direction.

3. Corner: Change in pixel intensity along two opposing directions.

3.4.1 Mathematics

In a more rigorous way, the Harris corner detector can be interpreted as a window-

averaged (over window w) change of intensity (I, and Iy) obtained by shifting the

image pixels by [u, v], illustrated in Equation 3.1:

E(u, v) = w(x, y) - [I(X + U, Y + V) - I(X, Y)]2 (3.1)
x~y

28

A Taylor series approximation then gives a quadratic form for error as a function of

image shifts:

+ uIly - J(x, y)] 2 (3.2)

- [u,v] -M -[
where:

M = 5w(x, y)

Matrix (3.4) is often called the structure tensor or in this particular context, the

Harris Matrix.

Carrying out the eigenvalue analysis of this matrix results in the intensity change

of the shifting window. This yields a measure of the corner response:

R = det(M) - k - trace2 (M) (3.5)

= A1A2 - k. (AN + A2) 2

where k is an empirical constant, usually in the range 0.04 - 0.06[15].

The response, R, can tell us what we need to know about the particular pixel:

1. If R is large: Found a corner.

2. If R is negative with large magnitude: Found an edge.

3. If |R| is small: Found flat region (no feature).

29

xly

SS w(x, y) - [UIx + vIY]2

x y

=(u v)5w(X' y) -X IIX1l:y Iyu

u

VJ

IxI

I IY
IXIIxL xl

(3.3)

(3.4)

3.5 Estimation

One of the main goals of this project is to integrate feature detection in hardware with

state (position and velocity) estimation using a single camera. So far the framework

for feature detection has been described. Next is the framework for state estimation

from a monocular image sequence.

3.5.1 Correspondences

The camera provides feature locations and descriptors for each frame. In essence,

what happens next is illustrated in Figure 3-6.

Feature matchn

desc Dintss des

Figure 3-6: Features and descriptors for two different frames. Detected points are
shown in the first pair of images. The second pair of images contains intensity patches
corresponding to the detected features. Intensity patches between images can be
compared to find correspondences between the two images [15].

For each feature point, the most similar point in the other image is found based

on the the feature descriptor, which is the n x n intensity patch around the feature.

Bad matches, such as those caused by ambiguous features where there are too many

similar points, should be rejected. Rejection happens using a threshold. For similarity

30

~ntr ~o let

to be considered a match, there cannot be too many points below the predetermined

threshold. To find the best matches, there are some options [15]:

1. Exhaustive search: For each feature in image 1, compare to all the features

in image 2.

2. Hashing: Compute a short descriptor from each feature vector (useful when

larger feature descriptors are used).

3. Nearest Neighbor Techniques: K-tree and their variants.

This implementation uses a multihypothesis approach, since chances are a feature

in frame n + 1 will show up near its previous location in frame n. However, this is not

necessary to match all the features, but only those for which there is high confidence of

a match. Features are compared using a threshold on their sum of squared differences

(SSD). The following is computed:

SSD(Patchl, Patch2) < th (3.6)

for all features and the result consists of all the matches. The threshold in this case

is set experimentally.

Transformation T

At the image level, given good matches, we need to look for possible transformations

of the points from one frame to the other. The transformation is a key component

in estimating motion from one frame to the next, since it models how the image

changed. This transformation consists of translation, scaling and the affine changes

the image could have undergone from one frame to the next. We want to compute T'

such that XframeiT' Xframe2, where x consists of the set of points for the specified

frame. A problem is the difficulty of matching a transformation model to all the

correspondences between images. Since correspondences are found using a threshold,

there is an embedded tolerance for error, so a perfect transformation is highly un-

likely. Ideally, a transformation would be found using only perfect correspondences,

31

or at least those that produce the best transformation model. RANSAC, a sampling

technique, can be used to provide the next best thing: a transformation using only

the best correspondences.

RANSAC

Random Sampling Concensus[13] is a well-established technique that can be used to

estimate the transformation in a model that contains points that fit the model (inliers)

and points that do not fit the model (outliers). Ideally, the features found from one

frame to the next would model the transformation exactly. In practice however, there

will be many candidates for the best transformation. The best transformation is the

one that minimizes the number of outliers from one frame to the next, providing a

best fit for the model. The implementation of RANSAC in this project works as

follows:

Algorithm 1 RANSAC implementation
while T not found do

Select f our f eature points at randorn
Compute transf ormation T
Compute inliers where || p', Tpi | < E

end while
Keep largest set of inliers
Recompute least - squares T estimate on all of the inliers

Figure 3-7 (Page 33) shows results obtained after implementing Algorithm 1 in

Matlab.

3.5.2 Camera Dynamic Model

Since the goal of this thesis is position and velocity estimation, there needs to be

a model of the object's motion, in this case the camera (which is the same as the

MAVs dynamic model, since they are rigidly attached). Research has shown that

for the case of pure visual estimation from a monocular image sequence, a constant

velocity model provides enough information for smooth hand-held motion[10]. The

model works as follows: Camera state is composed of a position r, an orientation q,

32

Figure 3-7: Ransac results. Inliers are shown in blue while outliers are shown in red.

33

linear velocity v and angular velocity w. These can be referred to a static co-ordinate

system W, but also to the co-ordinate system with the pose of camera as the origin

Ck.

xwXCk

w
rCk

w

vw

W~k

(3.7)

Since constant velocity is assumed, the

transitions:

'r WrCkl1

q
f V

Vk+1

WCk+1

1 V and Q represent zero-mean

difference between frames.

Gaussia n

following equation can be used to model

r + (v+ VW)At

qW x q((c- cgqi ><q(WCk + QC)At)

vy+Vw

WCk - QC

velocity noise while At represents the time

3.5.3 Point Representation

Points in the image can be represented using either (a) Euclidean Point Parameteri-

zation or (b) Inverse Depth Parameterization. Euclidean point parametrization uses

only the x, y, z location of the feature to keep track of its location. Inverse depth pa-

rameterization adds more information about the feature, resulting in a more accurate

description at higher computational cost. The following are the two representations:

* Euclidean Point Parameterization: In this case, a point is represented as:

xi = (xi yi zi), (3.9)

'As a sidenote, if the implementation had access to motion sensors, then the model would not
rw

need to estimate velocities and the camera state would simply be xk = iW Ck

34

(3.8)

* Inverse Depth Point Parameterization: In this case, a point is defined by

the 6 state vector:

yi=(Xi yj zi 02 #i pi)T (3.10)

where y encodes the ray from the first camera position from which the feature

was observed. xi, yi, zi represent the camera center. 0, and #i represent the

azimuth and elevation. The point's depth along the ray di is encoded by its

inverse pi = 1/di [4].

3.5.4 Measurement Model

A measurement model allows the system to relate the parameters of the physical

world to what is captured through the lens of the camera. As Forsyth states, the

measurement model allows "to establish quantitative constraints between image mea-

surements and the position and orientation of geometric figures measured in some

arbitrary external coordinate system" [14]. The purpose here is to estimate the po-

sition (u, v) where the feature is expected to be found. The measurement model

used in this implementation is a pinhole camera model (as described in [4]). Both

Euclidean and inverse depth points can be transformed to the camera reference frame

ha = (h, hy hz)T:

o Euclidean:

ho = hc,= R(qci) - (yv - r'i) (3.11)

o Inverse Depth:

ha = hC = R(qcw) -(pi((xi yj zi)T - rw) + m(64, #i)(3.12)

where R(qc) represents a rotation matrix that is computed from q and m is the

conversion function from azimuth-elevation angles to a unit vector.

35

At this stage the points can be projected using the standard pinhole model [14],

since the camera does not directly observe h', but instead uses its projection, which

is modeled next:

h =d,) (3.13)
U U 0 dyh)

where (uo, vo) is the camera's principal point (center coordinates), f is the focal length

and do, dy the pixel size. h then can be used to narrow down the possible locations of

the feature in the next frame, since it predicts a feature location (u, v). The actual

measurement, the observation zi = (u,v), is obtained by the feature detector.

3.5.5 Putting it all together: Extended Kalman Filter (EKF)

The Extended Kalman Filter (EKF) is what brings all the previous parts together

to produce the motion estimates. The main idea consists of having a probabilistic

feature-based map. At any given timestep, this map contains an instant snapshot

of current estimates of the state of the camera (Illustrated in Equation (3.7)), as

well as the features being successfully tracked from one frame to the next and their

respective uncertainties. Features that are occluded or simply not available in one

frame are kept around as candidates for a set number of frames. If the feature is

not seen after the preset number of frames, it is deleted. The map is initialized and

is updated continuously by the EKF in subsequent steps -constantly evolving. The

camera motion model (Equation (3.8)) is used to update camera motion. Features

are also updated during camera motion and feature observation. When a new feature

is found, the state of the map is enlarged; if necessary, features can also be deleted.

The state : is then composed of the camera and all the map features. The

covariance matrix P estimates a first order uncertainty distribution showing the size

of possible deviations from the values in x (estimating mean and covariance assuming

a Gaussian distribution).

36

/w\
xcWCk P X1 P2 ...

11 XyY i P P~ j y y P Y 2 . . . (- 4
x = Y2 , YiX Y11 Y12 (3.14)

PY2X PY2Y1 PY2Y2..

yn

Prediction

The first step in the EKF loop is to produce predictions R, and P. Since features are

assumed to be static, this operation only concerns states and covariances related to

the camera after time period Atk. For the covariance calculation, Jacobians f andax
are used.

ax

XCk(k+1|k) = fv(kR(kjk), Atk) (3.15)

Si(k+1|k; = Si(kjk), Vi

Of Of T
P(k+1|k) = P(klk) - Qk

Ox ax

Measurement/Observation

During operation, the FPGA is constantly providing feature locations and descriptors

for the current frame. At each new EKF time step, correspondences between features

are found and features are tracked, and the transformation from frame to frame

is found using RANSAC. Using the measurement model described in Section 3.5.4,

positions of features relative to the camera can be estimated. Specifically, equations

(3.12) along with (3.13) are used to estimate the position of a point feature relative

to the camera, given x .

Feature Initialization

From the first observation of a feature, no depth information can be obtained since

there is no other information besides the observed 2D position of the feature in the

image. Therefore, feature parameters need to be initialized somehow. For feature

37

initialization, this implementation uses the approach suggested by Civera [4]. The

main idea is to assign a Gaussian prior in inverse depth which assumes the feature

will be in front of the camera, and account for all possible locations with different

probabilities (even infinity, which is given a negligible probability). However, the

end-point of the ray where the feature might be is most likely at the current camera

location estimate:

(Jsi Qii)T = f wc (3.16)

The direction of the ray can be computed from the observed point, expressed in the

world coordinate frame:

hw = R(q)(u V 1)T (3.17)

Parameters 0 and # (azimuth and elevation) can be computed as follows:

0; arctan (Nh , h)
Z (3.18)

#; arctan (-h , hW2 + h(.2)

Parameter po (representing depth) is set empirically such that the 95% confidence

region is on the ray tracing from the camera to infinity. Civera [4] set po = 0.1, op =

0.5 and that is the value used in the implementation. Finally, the state covariance

matrix, pNew is initialized as follows:

kknew = J 0 Ri 0 JT (3.19)

0 0 or

where J is the Jacobian and R is the image measurement error covariance, defined

as (as described by Davison in [9]):

R = 2 0 0

R0 Aa2 e 0)(3.20)
0 0 Acv

38

where ap,e,v are the pan, elevation and (symmetric) vergence angles respectively.

Updating EKF and Maintaining the Map

The last step in the EKF loop is the update. Once a measurement zi (the observation

of (u,v)) of a feature has been returned, the Kalman gain W and the filter update

can be performed.

W =P S- 1 (3.21)

Xnew = Xold + W(zi - hi) (3.22)

Prjew = Pold - WSWT (3.23)

A feature is deleted if after a preset number of attempts to detect and match a

feature that should be be visible, the process fails more than 50% of the time. The

corresponding entries from the state and covariance matrices are removed, and the

map is pruned.

The next section describes a basic EKF simulation, used as a starting point for

building the EKF as described in this section.

3.6 Basic Simulation

In the first EKF simulation, the state vector consisted of the 3 d.o.f. camera pose:

(x, y, 0). A predetermined range for landmark observation was set, and observation

information from landmarks was added to the state vector as landmarks were encoun-

tered. Since the main objective was to validate the performance of the EKF, factors

such as data association were simplified by assigning recognizable ID's to landmarks.

Figures 3-8 and 3-9 (Page 40) show the actual path traversed by the camera and the

EKF path estimate obtained from the simulation. Figure 3-8 shows the estimated

path without using measurements. Since the EKF cannot use any measurements to

update its initial prediction, the estimate diverges from the true path traversed by

the camera. Figure 3-9 shows the estimated path integrating measurements. In this

39

case the EKF uses landmark observations to update its predictions and output accu-

rate estimates. The actual and estimated paths only differ slightly, which is expected

because some Gaussian noise was added in the simulation. However, the error is very

small (almost unnoticeable at times), showing the EKF is estimating the camera pose

correctly.

Figure 3-8: Basic EKF simulation results without integrating measurements

True path and katman path

-Actual Path
EKF Path

40.- - + Landmarks
Waypoints

30 -.

20 - -- - - - - - --..... ..-- - --

1 0 . .

- 1

~2t

-30 .. *..

80 -60 -41 -20 0 20 40 60
X Distance (meters)

Figure 3-9: Basic EKF simulation results integrating measurements

Figures 3-10 and 3-11 (Page 3-10) illustrate the covariance of x and y respectively.

40

_1 1 .1 "1 1. .1 J.

A covariance of zero means two variables are uncorrelated. In this case however,

covariance increases as the simulation advances, meaning the variables are highly

correlated. This is the expected behavior for covariance, since estimates should be-

come fully correlated as the simulation advances.

1500 2000 2500 3000
Time Step

Figure 3-10: Covariance of x

1500 2000 2500
Time Step

Figure 3-11: Covariance of y

41

42

Chapter 4

Implementation

The implementation of the system is distributed across two main components: The

smart camera (FPGA and CPU) and a separate computer (ground station). The

FPGA interfaces with the image sensor, computes features and outputs feature lo-

cations, and descriptors. The FPGA can also output the original image, either raw

or JPEG compressed. The CPU inside the camera handles all communications and

provides an interface between the memory and the Ethernet port (camera output). A

ground station is used to find correspondences between features seen in consecutive

frames and to perform estimation of the camera pose and velocity.

4.1 FPGA

One of the benefits of the Elphel 353 camera is that it has available had many open-

source modules implemented in the FPGA, as well as many drivers and programs

stored in memory to be run by the CPU. Figure 4-1 provides an overview of the

camera components, including optional add-ons'. The following sections will describe

the hardware and software implementations in detail, starting with the relevant parts

already in the camera and then describing modifications and components added to

the design.

'Only the base camera was used for this implementation, but possible add-ons include a hard-
drive, a compact-flash memory adapter and an extra board with expansion ports.

43

4.1.1 Elphel-353 Stock FPGA Design

Some definitions:

" Fixed Pattern Noise (FPN): This corresponds to pixel noise, which is a

weakness of CMOS sensors (Used in the Elphel Camera) 2. This is caused by

"different DC and gain offsets in the signal amplification" [28]. A hardware

module in the FPGA mitigates this effect.

" Vignetting: This refers to the uneven amount of light that permeates the

optical system of the camera. The result is a lighter image in the center that

gets darker in the periphery. If the illumination distribution is known, then this

undesirable effect can be compensated [29]. A module in the camera implements

vignetting compensation.

* Gamma Correction: Gamma correction refers to compensating for nonlin-

earities in the camera's sensor, resulting in slightly different pixel values given

the same light stimulus [12]. This effect is compensated by a module in the

FPGA.

In the stock camera design, the main purpose of the FPGA is to carry out JPEG

compression. The image sensor outputs directly to the FPGA, and as the image is

stored in the 64 MB SDRAM for the first time, it undergoes vignetting compensation,

gamma correction and histogram calculation. Then the memory controller acts as the

main administrator of pixel data. The controller has four channels 3 that multiplex

data access according to a preset priority (Incoming pixels using channel zero have

the highest priority). Each channel has its own timing behavior and requirements

that adapt to function properly with the memory controller.

Once a portion of the image is stored, the controller uses channel two to send

20 x 20 pixel tiles to the JPEG compressor. The controller also sends the raw image

2 CMOS (Complementary metal-oxide semiconductor) sensors, as opposed to CCD (charge-

coupled device) sensors are easier to integrate with other hardware components and are therefore

more prevalent in custom hardware designs [28].
3 In this context, a channel corresponds to dedicated data input and/or output paths accessing

the SDRAM chip.

44

to the CPU SDRAM using channel three, so the uncompressed image is available as

well. The compressed tile is then sent to the CPU where it is stored in a 19 MB

circular buffer, along with the other tiles corresponding to the same image. When

the circular buffer has a full frame, output for that frame is ready to be read by the

CPU so the frame reaches the Ethernet port.

Figure 4-1: Elphel-353 System Diagram (Elphel)

Frame Rates

The following tables (Table 4.1 and Table 4.2) illustrate resolutions and the corre-

sponding frame rates supported by the image sensor and the JPEG compressor.

4.1.2 In-FPGA Feature Detection

This section describes my custom design for the camera's FPGA. Although part of

the focus of this work has been the implementation of corner detection in hardware,

45

Resolution Frame Rate
(FPS)

Full Resolution 5mp 15
1920 x 1080 (Full HD) 30

1280 x 720 (HD) 60

Table 4.1: Aptina image sensor supported resolutions and frame rates.

Resolution Frame Rate
(FPS)

Full Resolution 5mp 2
1920 x 1080 (Full HD) 27

1280 x 720 29
640 x 480 30
320 x 240 33

Table 4.2: JPEG compressor supported resolutions and average frame rates.

the underlying research is the feasibility of carrying out feature detection on FPGAs.

Therefore the design had to be modular from the beginning, such that different feature

detectors could be swapped in and out as necessary. This modularity will also pave the

way for more complex implementations in the future. A feature detector such as SIFT

is significantly more complex than the Harris corner detector, but the implementation

in hardware has the potential to offer tremendous speedup vs. the implementation in

CPU architectures.

The following is a description of FPGA modules in the design. Figure 4-2 (Page

47) shows the feature detection design implemented on the FPGA. The image sensor

module, vignetting gamma correction and the histogram were not changed from the

stock design. Since the memory controller was very tightly coupled to support all

four channels, the design leaves the four channels in place. Next is an explanation in

more detail of two new key modules: the Double Buffer and the Sliding Window.

46

CAMERA

Figure 4-2: FPGA Design Overview

Double Buffer

In order to maximize the frame rate of the system (or when the output is a feature,

the rate of features per second), it is important not to stop the stream of pixels coming

from the image sensor due to resources being tied up by previous pixel processing.

A naive approach to image processing would be to store a whole frame in memory,

process it (in this case extract features), and then request the next frame. However,

47

constantly processing pixels is much more efficient and this is where the double buffer

proves useful. In this case, a set of logic gates can be used to store a portion of the

incoming image, while another set is used to process the previously stored portion

of the image. This parallelism means that the total frame rate is constrained by the

longer of these two operations, not the sum of the two operations.

Given a window of n x n pixels, a buffer of size n2 bytes is necessary to store all

the pixels in the window. A double buffer scheme implements two of these buffers;

buffer 1 can be used to store incoming pixels, while buffer 2 holds the pixels from

the previous n x n set of pixels. Since buffer 1 is storing incoming pixels, buffer 2

can be used for processing. Once processing is done in buffer 2, the roles switch and

now buffer 2 can store incoming pixels while buffer 1 feeds pixels for processing.

A variable size window of pixels is particularly important because different pixel

operations require different sets of surrounding pixels. Two dimensional edge detec-

tion requires a 3 x 3 window at a minimum, while Harris corner detection requires

at least a 5 x 5 window. The main consideration however to deciding whether the

double buffer is needed is to evaluate the computational need of the operation of the

time. The system currently waits approximately 200 cycles between sets of pixels, so

if 200 cycles provide enough processing time, a single buffer can be used (processing

pixels as they are read from memory). However, if a window is needed, using a buffer

is required since pixels are produced by the sensor sequentially, from left to right and

from top to bottom. However, operations like 1D edge detection can be performed

on the incoming set of pixels, and an example of this is shown in Section 4.3.1.

Sliding Window

Many feature detection algorithms require analysis of a given pixel and the pixels

around it. In order to gather the required pixels for processing, a sliding window of

pixels can traverse the image, processing pixels as it slides (either sideways or from

top to bottom). In this implementation the sliding window is organized as an n x m

array of pixels that are read from the buffer. After processing the current window, the

window shifts by adding more values and copying old values to their update locations.

48

Figure 4-3 illustrates this process with numbers assigned to unique pixels.

Slide

5 6 7 8 19
10 11 12 13 14
15 16 17,18,19
20 21 22 23 24

t

20 21122 23 24
New pixels

t+1

Figure 4-3: Sliding Window showing transition from t to t + 1 for a 5 x 5 window.

Values correspond to unique pixels.

4.1.3 Harris Corner Detector

For the FPGA implementation, the Harris Corner detector was split into six parts:

gradient computation, Harris matrix, corner response, threshold computation, local

maximum response, and finally output feature location and descriptor.

Sliding Window for Harris Corner Detector

The sliding window for the Harris corner detector has dimensions 5 rows x 16 columns.

The minimum requirement for the detector to work is a 5 x 5 window. The buffer

in the implementation holds 16 x 16 pixels, so it is more efficient to have a window

that just slides down as opposed to down and horizontally. Another benefit of having

16 columns is that it is a multiple of 4, which is important because each memory

read can retrieve at most 4 bytes4 (4 pixels). In this case a row can be updated in 4

memory reads (16 pixels).

4The width of the memory is 32 bits. Therefore the width of intermediate buffers is also 32 bits,
creating a 32-bit pipeline and allowing 4 pixels to be read at once.

49

5 6 7 8 9
10 11112113114
1516 17118 19

Gradient Computation

The first step of the algorithm is to compute image gradients I, and Iy. In this

case, all the gradients around the pixels for which the corner response is required

are computed. The gradient computation is equivalent to convolving the 3 x 3 pixel

matrix 5 with horizontal and vertical gradient operators. Since finding a gradient is

equivalent to finding a derivative, a derivative operator such as the Sobel operator

can be used. This step results in the following two calculations:

PO P1 P2 -1 0 1 Po Pi P2 -1 -2 -1

P3 P4 P5 -2 0 2 and P3 P4 P5 0 0 0 (4.1)

P6 P7 P8 -1 0 1 P6 P7 P8 1 2 1

This computation is ideal for an FPGA because it can be done completely using

combinational logic where the latency is just the propagation delay of the signal. For

example, the computation of I. is simply (p2 - p0) + ((p5 - p3) << 1) + (p8 - p6)),
6where the shift by 1 bit is equivalent to multiplying by two

Harris Matrix

The next step is to build the Harris Matrix (Equation (3.4)). For this step, the

following are needed:

I 2, E 2, I2IXy. (4.2)
,yEW x,yEW x,yCW

Once the sliding window is ready (meaning pixels have been loaded), summations

shown in (4.2) can be computed since the gradient calculation is practically instant

(taking only the propagation delay). Since the FPGA can implement the adder circuit

needed for this computation, the summation outputs are available in the next cycle.

5This is the 3 x 3 pixel matrix surrounding the pixel for which we want the response.
6Using bit shifts whenever possible as opposed to multiplying is preferred because FPGAs have

a limited number of available multipliers (The Spartan3e has only 28 multipliers).

50

Corner Response

Once the Harris Matrix is built, the next step is to calculate the corner response,

shown in Equation (3.5). In terms of the matrix components, this is equivalent to the

following equation:

R(x, y) = 2 12 _2 -- k .(I - 12)2 (4.3)
x,yEW x,yEW x,yEW x,yEW x,yEW

In order to meet timing constraints, equation (4.3) is solved in three clock cycles.

During the first and second cycles, a- and / are computed and on the third cycle, 3 is

subtracted from a to produce R. Since division and multiplication should be a power

of two whenever possible, k = 1/8. This division is computed by performing a 3-bit

right shift, since this is equivalent to dividing by 8 = 2.

Threshold Computation

From the corner response, the module determines whether the pixel is a corner by

comparing the response to a threshold. This threshold varies depending on factors

such as lighting conditions, distance of features, focus of camera, etc. and is therefore

set experimentally. If the response is above the threshold, then the pixel is considered

a corner; if it is not above the threshold, it is discarded.

Local Maximum Response

To prevent too many features conglomerating in small areas of the image, the system

keeps the point of locally maximum R as the detected feature point. This means

keeping only pixels where R(x, y) is bigger than R for all the local neighbors. In this

implementation, the neighborhood is defined as the local 16 x 16 window.

Output Feature Location And Descriptor

After computing local maximum responses, features are known to the system. There-

fore, once it is determined that a given pixel is a corner, the location of the pixel

51

and the 5 x 5 intensity patch around it is saved to a sector in memory organized as a

circular buffer. The memory driver constantly scans this circular buffer and outputs

features as they are received. Although features and corresponding intensity patches

could be outputted directly, having an intermediate buffer (Assuming the buffer is big

enough to hold the necessary amount of data) helps prevent the problem of features

being found at a faster rate than the CPU can transmit the required bytes consisting

of previous feature information. It also provides more flexibility for implementing

intensity patches of different sizes. In some similar implementations 7 x 7 all the way

to 15 x 15 intensity patches are preferred[9].

4.1.4 Parallelism

One of the strongest advantages of FPGAs is their ability to process data in paral-

lel. Unlike a CPU, which runs processes sequentially, the FPGA can replicate many

identical modules that can perform the same computation in parallel. This imple-

mentation takes advantage of this parallelism when it computes the Harris response

for a given pixel. Once the 16 x 16 pixel window is loaded, 14 5 x 5 sub-windows of

the 16 x 16 window are loaded into 14 different instantiations of the Harris module.

This parallelism is also shown in Figure 4-2. Since the modules are identical, their

latency is the same, so 14 corner responses are obtained at once. To find a local

maximum, a current maximum of the response is stored and that value is compared

against the newly calculated responses. If a new maximum is found, then the current

local maximum is updated, along with the corresponding descriptor.

4.2 Estimation

I implemented the estimation system described in Section 3.5 in Matlab using my

own modules and the open-source libraries from OpenSLAM [24]. Inputs can be

a sequence of images, live images from the Elphel camera in this case, and feature

locations and descriptors. Matlab functions take care of the parsing of raw byte

data coming from the Elphel camera, for the case of feature location and descriptor

52

input. Details on the testing setup, marshalling, and obtaining truth measurements

are described in Section 5.5.

4.3 Modularity

A key consideration when designing this system was modularity. The system had to

be easily extensible, since a future goal consists of having an FPGA that can deploy

different feature detectors depending on the specific need. A good way to test a

system's modularity is to see how easy it is to exchange similar components. In this

case an edge detector was swapped for the corner detector.

4.3.1 Edge Detector

In order to test the modularity of the design, the Harris corner detector was swapped

for an edge detector. This proved to be very straightforward, since the pipeline

needed was almost the same. Some modules, such as those that derive gradients,

could be reused. The result, illustrated in Figure 4-4 and Figure 4-5 (Page 4-4),

could be accomplished essentially in real-time, since pixels were processed as the

sensor produced them, only needing the three previous pixels to produce a pixel

output.

53

Figure 4-4: Source image for edge detection.

Figure 4-5: Image showing edges.

54

Chapter 5

Evaluation

Evaluation took place in stages. The first step was to validate some of the modules and

general functionality (such as the double buffer, sliding window, etc.) in simulation.

The implementation of the Harris corner detector was also validated by replicating

it in Matlab. Having a copy in software was useful for getting an idea of how values

within the module scale and to fine-tune the required constants (threshold and gain).

The estimation components of the system were also simulated. First, an EKF

Matlab simulation was implemented using a simplified 3 d.o.f. model [25]. Then the

6 d.o.f. implementation of EKF SLAM in Matlab was used to validate the whole

system pipeline and establish some measures of performance. The system was first

tested using pre-stored images along with the software implementation of the Harris

corner detector. Then the whole system using both the FPGA and the camera was

tested. Position and/or velocity error were measured for each scenario and constitute

the main measure of performance.

5.1 Validation

Simulation tools were used initially to validate the overall system flow and the actual

implementation of the Harris corner detector. A second validation method consisted

of a software implementation that mimics (to the extent possible) all the steps taken

by the FPGA.

55

5.2 Simulation

Since compiling FPGA designs can take significant amounts of time (approximately

30 min. for this design), synthesizing and testing after every change is not a viable

option. Simulation is a much better alternative. Simulation was key in verifying that

the double buffer, sliding window, and corner responses among other modules were

functioning as expected. Although most Verilog simulators are part of commercial

offerings, only open-source tools were used. Icarus Verilog was used for Verilog sim-

ulation. GTKWave, another free tool, was used to interpret and display simulation

results. Figure 5-1 shows a screenshot of the simulation environment for the Harris

corner detector.

Sgnals waves

veril(7:6]=255
veri2[7:0 =255
ver13[7:] =255

veri4(23:61 -xxxxx
en buf=1

local_index[7:1 80
next[1:O]1=11
four[1:61 =6

val2[31:] =EFEEEDEC
val[31:6] 46669996

subl=0
sub2 -0
sub3-6
sub4=0

harris
win ready-1
four2[1:61 =11
four[1:61 -0

tight 12:S 4 0

gx1(7:6] =255
gyll[7:6]=255

xx_sum1I9:01 =2FB68
xy_suml[19:61=311EB
yy sum1[19:6] =4F605

corner module
first teru[23:6]461566

secondteru[23:01 =1737248
c_out[23:0] 401823

mm addressing
nblocks[17:S] 98303
sdram a(16:6 ,492

page number-06
actual address=145

sdrama line inc[2:1-3
sdrama top left(8:6]=GW6

preline[4:(]16

Figure 5-1: Simulation using Icarus Verilog and GTKWave.

5.3 Matlab Harris Corner Detector

A Matlab implementation was used to test the Harris corner detector implementa-

tion and get an idea of the results. The corner detector was implemented the same

56

way as the hardware implementation to the extent possible (without using Matlab

optimizations or built-in functionality that would be different from the hardware im-

plementation, for example image filtering or convolution). This was also very useful

for getting an idea of how numbers scale (meaning which typically whats orders of

magnitude are involved) during the necessary calculations. For testing using the Mat-

lab implementation, numbers were first capped at 32-bits, and then adjusted to use

fewer bits for certain steps. The FPGA has 18 x 18 bit multipliers with 36-bit output,

so the corner response calculation had to be adjusted accordingly. Also the FPGA

can implement at most 16-bit comparators, which matters due to the comparison of

corner responses against a threshold. Some precision had to be sacrificed for the cor-

ner response calculation, since the maximum possible value exceeds 16-bits. However,

the software implementation showed that as long as the threshold was adjusted prop-

erly, results were similar in the scaled down version. Figures 5-2, 5-3, 5-4 and 5-5 [5]
show some results using the Matlab implementation with different thresholds for the

corner response R.

Figure 5-2: Original Test Image

57

Figure 5-3: High threshold: 8940 corners

Figure 5-4: Medium Threshold: 4828 corners

5.4 Baseline Performance

To establish baseline performance, the implementation described in Chapter 4 was

deployed in Matlab. A set of images, camera calibration information, and Viconi

1A motion capture system.

58

Figure 5-5: Low Threshold: 1965 corners

truth data were obtained from the publicly available dataset[19] published by the

Computer Vision and Geometry Laboratory at ETH Zurich. Figure 5-6 (Page 60)

shows four consecutive frames captured from the sequence of images. The imple-

mentation tracked features using the software implementation of the Harris corner

detector. The minimum number of features tracked was set such that at least fifteen

features per frame were tracked. Features being tracked are shown in red. Most of

the features tracked are shown in all four frames, demonstrating that the implemen-

tation successfully predicts a feature's next location and finds it in the next frame.

Figure 5-7 (Page 60) shows the source images for Figure 5-6 (Page 60).

Figure 5-8 (Page 61) and Figure 5-9 (Page 61) show the error for x, y, z and roll,

pitch and yaw respectively. These correspond to the position, meaning elements 1-7

in the state vector (corresponding to x, y, z and the four elements of the orientation

quaternion). For ease of interpretation, the quaternion was converted to Euler angles

representing roll, pitch, and yaw.

The results are satisfactory. Over 100 frames, error does not diverge. When the

error attempts to diverge, for example around frame 18 in the x-error (Figure 5-8),

the EKF uses new measurements to reduce the error since it eventually returns to

almost 0 percent error (around frame 30). Another interesting observation is that

59

Figure 5-6: Starting from top left going clockwise are frames 22, 23, 24 and 25.
Features being tracked are shown in red. The elapsed time from frame 22 to frame
25 was 0.1332 seconds.

Figure 5-7: Image sequence used in Figure 5-6, but without features.

60

X Error

-20 10--. --- 2 30 40 - - 6 - 70 - 0 9
0 10 20 30 40 50 60 70 80 90 100

Frame
Y Error

0 10 20 30 40 50 60 70 80 90 100

Frame

Frame

Z Error

S 20 - - -- - -- -- - -- - -- :

0 .- . -- -- - - - - - --

-2 0 -- -- -- -- -. -i-- -- - i - ..-- -- - --. .i- --. .- - -

EL ;~i
0 10 20 30 40 50 60 70 80 90 100

Frame

Figure 5-8: Error for X, Y and Z (first three terms of state vector).

Roll Error

2 0 --------- -- .. .-. .. .-A -..--- -.-- - .. --.

-2 0 .- --- -.. ---..-..-.-.--.-- -.---- --.-.- ..-- -. -

0 10 20 30 40 50 60 70 80 90 100
Frame

Pitch Error

2 20 --

u J..

D 20 -2 -0-0 10 20 30 40 50 60 70 80 90 100
Frame

Yaw Error

S20.............. .

S01

CD 20'.. :. . . .

EL 0 10 20 30 40 50 60 70 80 90 100

Frame

Figure 5-9: Error for roll, pitch and yaw (elements 4 - 7 in the state vector).

61

error sometimes increases for a given set of frames. For example, again looking at

x-error, error is close to zero between frames 63 and 75. However, starting with frame

85, it goes briefly to 20 percent error and then starts going back to close to zero over

fifteen frames. This behavior over roughly 15 frames could be attributed to a feature

that is being tracked inaccurately. It is important to remember that comparison

between features is done using the descriptor and a threshold, so if the threshold is

low enough for a feature that is not the intended match, a false match could result,

introducing error.

Looking at the image sequence between frames 85 and 95, shown in Figure 5-

10 (Page 62), an observation is that illumination in one area of the image changes

noticeably. There are also some lights that are on in one frame and then are either

turned off or occluded. The Harris corner detector is not able to handle illumination

changes, so this could account for some of the error encountered in the corresponding

section of the sequence. The area around each light (red circle) is also very similar,

which could have resulted in a false match from one frame to the next, especially

considering that one of the lights is occluded in the transition.

Figure 5-10: Frames 90 and 91 show changes in illumination in a specific area (red
arrow) and possible occlusion (red circle), which the Harris corner detector is not able
to handle.

Figure 5-11 shows the velocity error, which is close to zero for the most part and

62

does not diverge. A favorable factor was that while taking the images, the camera

was kept meticulously at constant velocity. Figure 5-12 (Page 64) shows the angular

velocity error, which is the error in roll, pitch and yaw. The error is close to zero for

the most part and does not diverge. The fact that the error is close to zero for all

six measures of velocity and none of them diverge verifies that velocity estimation is

working correctly.

X Velocity Error

OL 20

0 - --- - - --- ----
a)-20......................:1......... I '*''a 0 10 20 30 40 50 60 70 80 90 100

Frame
Y Velocity Error

O 2 0 - -. . . .- .-.-.-.-.--.-- --- -.-..- - .

0
a

0 10 20 30 40 50 60 70 80 90 100
Frame

Z Velocity Error
..20..................20 - - - - -- -- - - -

0-

0 10 20 30 40 60 60 70 80 90 100
Frame

Figure 5-11: Velocity error.

5.5 Performance Using FPGA

To test the performance of the FPGA, a Hokuyo laser rangefinder was used to estab-

lish truth measurements. The Hokuyo works by emitting a laser around a 240 degree

radius that goes out to a maximum range of four meters and calculates displace-

ment based on the return time of the laser. For synchronization and communication,

63

Roll Angular Error

LP 2 0 -------- -------. -----.. -. .. .---.. .-. .. .-. .. .-.- -.-.--..-- -- - .

0-

...................-2 0 -1 - --- - ---- ---- -- - -- - - -I

0 10 20 30 40 50 60 70 80 90 100
Frame

Pitch Angular Error

2 20

4---

-20 -- -- --... -.... --............ - -......-- --
a 0 10 20 30 40 50 60 70 80 90 100

Frame
Yaw Angular Error

S20 - - - - - -..................

0- -

CD

~ -2...........................
a 0 10 20 30 40 50 60 70 80 90 100

Frame

Figure 5-12: Angular velocity error.

the LCM (Lightweight Communications and Marshalling [17]) library was used. The

FPGA was programmed to output feature locations and descriptors corresponding to

a specific frame. This information was requested by the Matlab module and then pro-

cessed. Timestamps were used to compare estimated values (from the EKF) against

laser obtained measurements. For scan matching, which is "the problem of register-

ing two laser scans in order to determine the relative positions from which the scans

were obtained" [23], the open-source Fast and Robust Scan Matching Library[1] was

used. The output of the scan matcher is a pose that can be compared to the motion

estimate.

5.5.1 Raw speedup

An important measure when evaluating the FPGA implementation is the raw speedup

obtained when compared against a CPU implementation. For this test, the latency of

64

the software implementation of the harris corner detector was compared against the

latency of the Harris corner detector module in the FPGA for a 320 x 240 pixel image.

The software implementation was tested on a computer with an Intel i5 M520 CPU

running at 2.40GHz and 4.0GB of RAM. Initial loading of the image into memory was

not taken into account in either case. The Matlab implementation took, on average,

2.4703 seconds from start to finish of the Harris corner detector. On the FPGA,

computation of all the corners takes approximately: 100 cycles per 16 x 16 window

(20 cycles for initial load + 9 cycles each time the window slides down) + 200 cycles

between pixel windows = 300 x 300 total tiles in a 320 x 240 image, results in 90,000

cycles. At 100 MHz (the clock speed of the FPGA), 90,000 cycles are equivalent

to 90, 000 cycles x lsecond- = 0.9 milliseconds. The FPGA implementation for100,OOO,OO0cycles

the Harris corner detector is over 2,500 times faster, attesting to the potential of the

FPGA. At higher resolutions, the speedup is of the same order of magnitude since

the FPGA can handle many more tiles without much extra overhead.

The next section discusses findings and results obtained during testing with the

FPGA.

5.5.2 Lateral Motion

The first test consisted of lateral motion along the x-axis. First, the software im-

plementation established a measure for baseline performance using the Harris corner

detector. During this test, camera motion was restricted to just the x-axis. The

Hokuyo laser, attached to the camera, recorded truth measurements. Timestamps

were assigned as close as possible to the time of the camera sensor output, and also

on arrival of the Hokuyo measurement. Figure 5-13 (Page 66) shows some frames

recorded during the experiment. Features that were being tracked are market in red.

Some features were successfully tracked during the whole frame sequence or for most

of it, for example, the one on the white cable in the middle of the image, or the one

at the lower-right corner of the monitor. Figure 5-14 (Page 66) shows the error in the

x-direction. The error does not diverge and it is relatively small. The largest devia-

tions are in the middle of the sequence, but in subsequent frames the error is reduced.

65

This means measurements are being useful and the EKF is successfully updating its

belief.

Figure 5-13: This sequence contains frames 1, 10, 16 and 28 of the simulation.

X Error

-- ... -- -..-.---.--.----.--.-.-.---.-

-.-.--. .- -. .- -. .-- - --. ..- - ..-.- ..-- -- -- .

-.

-.-.-. ...-. ..-.

0 5 10 15
Frame

20 25 30

Figure 5-14: This shows the lateral error reading.

66

0

0.5

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

-0.5

FPGA Harris Corner Detector

After establishing baseline performance, the camera ran using the FPGA Harris cor-

ner detector during lateral motion. The most important part is that the system

implementing the FPGA Harris corner detector worked. However, results were not

as expected. Figure 5-15 (Page 68) shows the error in the x-direction. The error does

not diverge and it is relatively small. The largest deviations are in the middle of the

sequence, but in subsequent frames the error is reduced. This means measurements

are being useful and the EKF is successfully updating its belief. shows some images

taken during the test with feature points being tracked marked in red.

With each image shown, in this case frames 2, 8, 13 and 20, the number of features

being tracked increased. The most likely cause is that features are not being matched

effectively in certain frames, so the system resorts to initializing new features when

matches to old features are not found. However, some features do show from frame to

frame, for example many of the features on the monitor shown in frame 2 continue to

be tracked. Since we know from earlier testing that matching given features locations

and descriptors works, the most likely cause is in the FPGA. One possibility is that

some accuracy in detecting features is being lost due to the approximations that are

part of the FPGA compatible Harris corner detector.

Figure 5-16 (Page 68) shows the error measured during the test. Although it

diverges initially, it is able to use new measurements to reduce the amount of error

between the actual position and the predicted one. The error also supports the claim

that some features are being tracked correctly (otherwise the error would just diverge).

The spots where error grows correspond to when the system cannot match old features

and needs to initialize new ones. Frame numbers with larger error coincide with frames

that introduce many new features. This observation comes from comparing the error

plot to the sequence of images containing the overlay of tracked features.

67

Figure 5-15: This sequence contains frames 2, 8, 13 and 20 taken during the test.

0.3

0.2k... -............

0.1 - --

8~ 0

-0.2

- -.-.-. -.--. .- - - -..-.

-. . .--- --. ...-.-.-.-. .- -.

- -.---1 -. ..- . -. . -..

0 2 4 6 8 10 12 14 16 18 20
Frame

Figure 5-16: Measured error along the x-coordinate.

5.5.3 Different Velocities

Another set of tests consisted of running the system at a different camera translational

velocities. However, it turns out moving the camera at different velocities is not as

68

X Error

.

- -.. . ..

-.-. .-.-

-0.1 -

important as the camera being able to capture small transitions from frame to frame.

If in one frame the camera captures a set of features, and then it moves so fast that in

the next frame the camera cannot match any of the old features, the system will not

yield good results. Also, at higher velocity error can grow faster and faults are evident

faster. Figure 5-17 shows how the number of features increases much faster (takes

about half the number of frames) compared to the lateral translation case illustrated

in Figure 5-18.

Figure 5-17: This sequence contains frames 2, 4, 5 and 7 taken during the test.

Figure 5-18 shows the error measured during the test. The number of tracked

features is not enough to produce accurate estimates, so error begins to diverge.

69

0.2

0.16

0.1

0.05

0

-0.06

-0.1

-0.15

-0.2

X Error
........ II

..

...

........................

.............
...........

....

...
.....

........

.............
.. - -

..

3 4 6
Frame

Figure 5-18: Measured error along the x-coordinate.

5.5.4 Forward Motion

Another test using the FPGA was forward motion. Figure 5-19 shows a frame cap-

tured during the process. Figure 5-20 (Page 71) shows the associated error. In this

Figure 5-19: Sample frame taken during forward motion showing tracked features.

case error seemed to diverge. This makes sense however, considering the Harris corner

detector is not scale invariant, so features are lost as their relative size changes. Red

arrows in Figure 5-21 indicate features with infinite depth uncertainty, meaning those

features could not be tracked from frame to frame and were left with infinite depth. A

higher frame rate however would mitigate this weakness of the Harris corner detector,

as changes in scale would be very small and features would be tracked during longer

70

Ux

frame sequences.

Y Error

. . .- .

0 2 4 6 8 10 12 14 16
Frame

Figure 5-20: Measured error along the y-coordinate (forward direction).

p

-4 -3 -2 -1 0 1 2 3 4

Figure 5-21: Black triangle indicates camera location at frame 20. Red arrows indicate
features with infinite depth uncertainty.

5.5.5 Non-Planar Motion

Although non-planar motion performed well on the simulation with the sequence of

images, it did not perform the same way during the experiments. One possible reason

71

0U 0

-0.2

-1

0.2F

is the fact that the image sequence reflects very small transitions between frames,

while in the experiments, transitions were more abrupt. With very small differences

in orientation, the hardware was able to keep track of features to a limited degree.

Another consideration is that the Harris corner detector is not rotation invariant, so

possibly a rotation invariant detector such as SIFT would have performed better. As

an experiment, I ran a test using the images from the camera with a FAST corner

detector, but the results were not satisfactory either. This also supports the theory

that the frame rate was not fast enough so that there are only small changes between

frames.

5.5.6 Lighting

Running tests under different lighting levels yielded similar results given that illumi-

nation levels did not change. The lens of the camera can be adjusted to let in different

amounts of light, allowing for equalization of different lighting conditions. Since the

threshold to compare against the Harris corner response is set before running a test,

the threshold could be adjusted to yield good results under most reasonable lighting

conditions. However, different lighting levels in a sequence of frames posed a problem

because the resulted in different intensity patches around features that should have

been matched, but consequently could not be determined equal. Camera exposure,

which controls the total amount of light that is let into the camera, was another

factor related to lighting. Most cameras implement an auto-exposure mechanism,

so that the level is adjusted depending on the specific setting. However, changing

exposure results in different pixel values being recorded for the same image, which

again poses a problem in the matching stage. To prevent this problem, exposure was

set once in the beginning and then left unchanged for the rest of the session under

similar lighting conditions. One important point is that a bright environment allows

for faster exposure, which minimizes the chance of having blur or another distortion

in the particular frame.

72

Bright Lighting vs. Dim Lighting

With exposure locked however, different results were obtained under bright lighting

when compared to dim lighting. Figure 5-22 shows the results for both scenarios.

Under bright lighting, matches can be more easily found as shown by the convergence

of the error when it seems to diverge.

04 04

01 0

-01 -0 1

.02 -02

-0. -

-04 -4

0 05 1 5 Z n5 .05 4 !5 5 0 05 1 Z1S 3 351 5 4 45 5

Figure 5-22: Error shown under two different lighting conditions. The figure on the

left shows the error under bright lighting, while the figure on the right shows the error

under dim lighting.

5.5.7 Limitations

Experiments exposed some of the limitations of the implementation. One bottleneck

is in communication. Since the FPGA and CPU are synchronized and the FPGA out-

puts through the CPU, output is delayed by processing time on the CPU. Currently

output is acquired through http requests to the camera, which is relatively slow. An

ideal way of communication would be to have direct memory access from the CPU,

coupled with LCM running onboard. The main task behind this would be writing

a new memory driver for the CPU. Currently, the driver that accesses raw data in

memory is slow. Also, initial trials with the embedded image patches did not work

as expected, probably because of the small patch size. For testing, patches had to be

taken from the images. The main limitation against larger patches was the availabil-

73

ity of memory (buffers) onboard the FPGA, since buffers are restricted in size. The

FPGA also posed limitations, the main one being its available resources. While in

theory it seemed like the size would be enough, replicating modules for parallelism

and synchronization significantly increases the amount of logic resources required. A

big obstacle were the limits on buffers and multipliers (only 28 available multipliers).

Another barrier is how the design is synthesized. In a couple iterations of synthesis,

the design failed even though requirements were under the limits. This was because

the placement process of the logic gates attempts to meet the placement and timing

requirement , but in practice, this is not always possible. In one instance the error

pointed that buffers had been placed too close to each other, and other placements

could not be found.

5.5.8 Bandwidth Reduction

Bandwidth usage was effectively reduced by limiting the camera output. For a res-

olution of 640 x 480 308 KB are needed to transfer a frame. If the camera is only

outputting features and the number of features is capped at, for example, 500, then

the required output is 4 Bytes * 500 = 2 KB (4 Bytes are used to encode a feature's

location). If image patches are included, the number increases based on the size of

the patch but is still significantly less than the original amount of data.

74

Chapter 6

Conclusion

The main accomplishment of this thesis is successful integration of a monocular cam-

era, small-factor FPGA, and separate computer system to do motion estimation. The

system for feature detection, finding correspondences, filtering and map management

also performed successfully. There were cases that did not perform well using the

FPGA, such as non-planar motion and relatively high speed transitions, but as more

robust feature detectors are ported to the FPGA, these problems should be less evi-

dent. At the beginning of this project, the Robust Robotics Group had very limited

experience with FPGAs. Now there exists an extensible, modular platform for further

research in the area. Furthermore, all the tools used for this research were either free

or open-source, which is not that easy in hardware development. The group is also

well positioned to take advantage of increases in FPGA capacity. Another drawback

was the camera rolling shutter and its sequential access to memory. However, it is

just a matter of time until a sensor that enables each photosensor with direct memory

access becomes available. Finally, this work is a great example of what can be accom-

plished when the fields of electrical engineering and computer science are fused into

one. Both CSAIL and Draper believe in this interdisciplinary approach, and both

labs will without a doubt keep benefiting from pushing these boundaries.

75

76

Chapter 7

Future Work

Since this project started as an exploration of the feasibility of combining a camera

with an FPGA for image processing, the doors have been opened to a much wider

array of possible implementations. The following sections discuss some interesting

and particularly useful uses for the FPGA, as well as some considerations that should

be taken into account in the future.

7.1 SIFT

Scale-Invariant Feature Transform (SIFT)[20] provides a more robust method (com-

pared to the Harris corner detector) to extract distinctive features. Some of the

strengths of SIFT are its ability to deal with different scales, different illumination

levels, addition of noise and affine distortion. However, the steps needed to go from an

input image to the 128 element descriptor are computationally expensive. Although

there are many proposed architectures, analysis by Cabani in [3] estimates needing

230 buffers (2972 Kbits of on-chip RAM) and 344 multipliers (ranging from 9 to 24

bits) just for a multiscale Harris corner detector (which is embedded in SIFT). As a

reference, the Spartan3e FPGA used in this project has 28 18 x 18 bit multipliers and

at most 36 dedicated on-chip RAM modules, each with capacity of 18 Kbits [27].

A more viable alternative to harness the power of hardware would be to im-

plement a hybrid design that performs only certain operations on the FPGA. This

77

project has show gradient computation is highly parallelizable and very efficient in

hardware, making implementation of Difference of Gaussians, used in SIFT, a pos-

sible implementation. SIFT requires building an image pyramid that is filtered at

different resolutions. Filtering is also another highly parallelizable operation on the

FPGA, making the pyramid building step another suitable candidate for FPGA im-

plementation.

7.2 Considerations Going Forward

Going forward, there are some key points that should be kept in mind when developing

a system like the one in this project. The goals of this project were to develop an

FPGA solution that was small (in terms of size of the board, since the main purpose

was to be mounted onboard a MAV), fast, and accurate. Going forward, a better

approach would be to develop some of the ideas described in this chapter using a full-

size development board, that provides the necessary I/O (output pins, LCD screen,

push-buttons) for debugging and testing. On the software side, some tools to consider

are System Generator, a tool that allows development in Matlab using Simulink and

translates the design to hardware; and Bluespec, a package that provides a set of

tools to create synthesizable FPGA models.

78

Bibliography

[1] Abraham Bachrach. Fast and robust scan matcher. http: //code .google. com/
p/frsm/, 2011.

[2] Abraham Bachrach, Ruijie He, and Nicholas Roy. Autonomous flight in unknown

indoor environments. International Journal of Micro Air Vehicles, 1(4):217-228,
December 2009.

[3] Cristina Cabani and W. James MacLean. A proposed pipelined-architecture for

fpga-based affine-invariant feature detectors. In Proceedings of the 2006 Con-

ference on Computer Vision and Pattern Recognition Workshop, CVPRW '06,
pages 121-, Washington, DC, USA, 2006. IEEE Computer Society.

[4] J. Civera, A.J. Davison, and J. Montiel. Inverse depth parametrization for

monocular slam. Robotics, IEEE Transactions on, 24(5):932 -945, oct. 2008.

[5] Javier Civera, Oscar G. Grasa, Andrew J. Davison, and J. M. M. Montiel. 1-

point ransac for extended kalman filtering: Application to real-time structure

from motion and visual odometry. J. Field Robot., 27:609-631, September 2010.

[6] Katherine Compton and Scott Hauck. Reconfigurable computing: a survey of

systems and software, 2002.

[7] Intel Corporation. Microprocessor quick reference guide. http: //www. intel.

com/pressroom/kits/quickreff am. htm, 2003.

[8] A.J. Davison. Real-time simultaneous localisation and mapping with a single

camera. In Computer Vision, 2003. Proceedings. Ninth IEEE International Con-

ference on, pages 1403 -1410 vol.2, oct. 2003.

[9] Andrew J. Davison and David W. Murray. Simultaneous localization and map-

building using active vision. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 24:865-880, 2002.

[10] Andrew J. Davison, Ian D. Reid, Nicholas D. Molton, and Olivier Stasse.
Monoslam: Real-time single camera slam. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 29:1052-1067, 2007.

[11] Inc Elphel. Model 353 overview. http: //www. elphel. com/353_overview, 2011.

79

[12] H. Farid. Blind inverse gamma correction. Image Processing, IEEE Transactions
on, 10(10):1428 -1433, oct 2001.

[13] Martin A. Fischler and Robert C. Bolles. Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated cartography.
Commun. ACM, 24(6):381-395, June 1981.

[14] David A. Forsyth and Jean Ponce. Computer Vision: A Modern Approach.
Prentice Hall, us edition, August 2002.

[15] William T. Freeman. 6.865 advanced computational photography lecture 14: Im-
age features. http://stellar.mit. edu/S/course/6/sp10/6.815/index.html,
April 2010.

[16] C. Harris and M. Stephens. A Combined Corner and Edge Detection. In Pro-
ceedings of The Fourth Alvey Vision Conference, pages 147-151, 1988.

[17] A.S. Huang, E. Olson, and D.C. Moore. Lcm: Lightweight communications
and marshalling. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ
International Conference on, pages 4057 -4062, oct. 2010.

[18] H. Krupnova and G. Saucier. Fpga technology snapshot: current devices and
design tools. In Rapid System Prototyping, 2000. RSP 2000. Proceedings. 11th
International Workshop on, pages 200 -205, 2000.

[19] Gim Hee Lee, M. Achtelik, F. Fraundorfer, M. Pollefeys, and R. Siegwart.
A benchmarking tool for may visual pose estimation. In Control Automation
Robotics Vision (ICARCV), 2010 11th International Conference on, pages 1541
-1546, dec. 2010.

[20] David G. Lowe. Distinctive image features from scale-invariant keypoints. In-
ternational Journal of Computer Vision, 60:91-110, 2004.

[21] Bruce D. Lucas and Takeo Kanade. An iterative image registration technique
with an application to stereo vision (darpa). In Proceedings of the 1981 DARPA
Image Understanding Workshop, pages 121-130, April 1981.

[22] R.W. Madison, G.L. Andrews, P.A. DeBitetto, S.A. Rasmussen, and M.S. Bot-
tkol. Vision-aided navigation for small uavs in gps-challenged environments.
AIAA Infotech at Aerospace Conference and Exhibit, December 2007.

[23] Edwin B. Olson. Real-time correlative scan matching. In ICRA '09, pages 4387-
4393, 2009.

[24] Cyrill Stachniss, Udo Frese, and Giorgio Grisett. Openslam. http: //openslam.
org/, 2011.

[25] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics (In-
telligent Robotics and Autonomous Agents). Intelligent robotics and autonomous
agents. The MIT Press, September 2005.

80

[26] Inc Xilix. Xilinx spartan-3 web power tool version 8.1.01. http: //www. xilinx.

com/cgi-bin/power-tool/powerSpartan3, 2003.

[27] Inc Xilix. Xilinx spartan-3e fpga family: Data sheet. http: //www. xilinx. com/

support/documentation/data-sheets/ds312.pdf, 2009.

[28] K. Yonemoto and H. Sumi. A cmos image sensor with a simple fixed-pattern-

noise-reduction technology and a hole accumulation diode. Solid-State Circuits,

IEEE Journal of, 35(12):2038 -2043, dec 2000.

[29] Wonpil Yu. Practical anti-vignetting methods for digital cameras. Consumer

Electronics, IEEE Transactions on, 50(4):975 - 983, nov. 2004.

81

