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ABSTRACT

Applications and experiments involving the hypervelocity deformation of solids are difficult to

devise, implement, and occur on microsecond time scales. As a result, simulations play a large

role in the study of hypervelocity deformation. This study explored a superposition and

reconciliation based approach using cell-centered Lagrangian hydro methods. The reconciliation

forces that are not explicitly calculated for mesh movement were analyzed on an existing

hydrocode by Pierre-Henri Maire (PHM) and a truncated form of the Runnels-Gilman method

(implemented without using the reconciliation forces as additional forces to form a new hydro

method called the Runnels-Gilman method). Results from both the 1D Piston and Saltzman test

problems illustrate that the unaccounted reconciliation forces are acting on the mesh both at

the shock front and behind the shock wave in PHM's method, while in the truncated Runnels-

Gilman method, reconciliation forces are acting only on the vertices at the shock front. In test

problems using PHM's method, reconciliation forces may be capturing the additional forces

that account for more stable density and internal energy solution during shock wave

propagation as compared to the truncated Runnels-Gilman method.
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1 Introduction

1.1 Motivation
New and improved hypervelocity large deformation simulation techniques are needed to

provide robust and numerically accurate schemes to investigate a variety of applications such as

the multimaterial compressible fluid flow for Inertial Confinement Fusion (ICF) [1], [2]. Also, in

the hypervelocity deformation of a solid, the current stress state of the material is dependent on

the time history of its strain, strain rates, and damage. As a result, the solid's history can play a

very large role in the calculation, and the history of each point in a solid can vary significantly

when under extreme loading conditions. For this reason, numerical methods must be used that

maintain the identity of each point in the material, and Lagrangian methods are the leading

method for these simulations. Simulation techniques used to solve hypervelocity large

deformation and finite strain problems are referred to as hydrocodes and were originally

developed for the modeling of defense problems, but have since expanded. Hydrocodes are also

of interest to the fission nuclear field because of their ability to model void growth in ductile

materials and to analyze high strain-rate problems [1].

Lagrangian methods, which allow the grid to move with the material, are of particular

interest because, as mentioned above, these methods allow cells to retain information during the

simulation by tracking the solid material in a single cell and because of their ability to handle

sharp interfaces that are colliding, separating, or sliding. One of the computational and numerical

difficulties in cell-centered Lagrangian hydro methods involves the motion of the vertices of the

mesh, also referred to as nodes. Cell-centered Lagrangian scheme inherently treats cell

interfaces, but the movement of the nodes to maintain material continuity is not achieved without

additional constraints.

12



Lagrangian cell-centered approaches integrate all conservation laws on each cell. The

movement of cells is computed by the flux across the cell boundary, which is often computed

with a one-dimensional Riemann solver that provides information in the normal direction to the

boundary [3]. The obstacle encountered with this method is how to determine movements of the

nodes in addition to cell boundaries to maintain connectivity of the mesh. One method of

maintaining mesh integrity is to compare the Riemann solver velocity to the vertex velocity and

minimizing errors between these. This approach maintains grid continuity, but is an expensive

computational treatment [4].

Another approach to overcome this mesh integrity complication is to use a nodal solver

where the nodal velocity is simultaneously computed with the interface fluxes in an entropy-

consistent Lagrangian scheme, as proposed by Pierre Henri Maire (PHM) [5]. This method has

also been improved to preserve spherical symmetry in a two-dimensional cylindrical geometry

by also utilizing an area-weighted scheme [6]. Although these cell-centered methods provide a

robust approach, the motivation for this thesis is to develop a more thorough understanding of

the forces acting on cells during the nodal solver step and their ultimate impact on hypervelocity

large deformation numerical simulations.
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1.2 Objective
Lagrangian Godunov cell-centered hydro methods often use a one-dimensional Riemann

solution at cell boundaries to provide an estimate of the cell boundaries' velocity and pressure at

each time step as mentioned briefly in section 1.1 [7]. However, since they are one-dimensional

in nature, the Riemann velocities and pressures are incomplete because they do not account for

additional forces that hold the mesh together in two-dimensional situations, which are a focus of

this investigation.

Computational methods deal with the problem of mesh continuity in different ways; this step

is usually called the nodal solver. In particular, two methods will be explored here. A recently

published method by PHM [5], uses a weighted least squares fit to the vertices surrounding

Riemann face velocities to determine the vertex velocity. Thus, the linear momentum of cell

corners are adjusted from the one-dimensional Riemann solution. PHM's method can also be

explained as using a combination of entropy conditions with momentum conservation around a

massless volume. In a method proposed by Runnels and Gilman [8], the vertex velocity is

computed by enforcing conservation of linear momentum surrounding the vertex where each

corner's linear momentum must be adjusted, but the sum remains unchanged.

In both approaches, pressures in addition to the one-dimensional Riemann solution's pressure

are at work. PHM's method solves for the sum of the pressures concurrently, justifying the

solution method as one that satisfies an entropy condition and by reconciling velocities on faces

provided by the Riemann Solver through a weighted least squares fit at the vertices. Runnels and

Gilman are proposing to solve for the Riemann and additional pressures in a separate step using a

momentum conservation argument.
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The objective of this research project is to understand the difference between the one-

dimensional Riemann forces at cell interfaces and the additional forces computed by PHM. The

forces that supplement the Riemann forces are referred to as "reconciliation forces" throughout

this investigation because they are responsible for reconciling nodal motions to maintain mesh

continuity. To improve the understanding of how the nodal solver affects the conservation laws,

a method of analysis is established to explicitly solve for reconciliation forces based on an

argument of linear momentum conservation on the staggered cell. This method also suggests a

fundamentally new hydro method, which here will be referred to as the Runnels-Gilman method,

that is based on the idea of superposition reconciliation forces with Riemann forces.

The new method proposed by Runnels and Gilman is further developed and tested using

well-known verification problems such as the piston, Noh [9], and Saltzman [10] problems. The

fully developed method can then be used to solve the fluid dynamic Equations for compressible

flow. Examples for application of this scheme include simulations where the history and specific

material properties are important and necessary [I I].
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2 Hydrocode Background Information

2.1 Hydrocode History
A code used to solve hypervelocity large deformation problems on materials is often

referred to as a hydrocode. Hydrocodes were originally developed for modeling of defense

problems, and were emphasized in the Stockpile Stewardship and Management Program initiated

by the United States Department of Energy. The purpose of this program was to ensure that the

reliability of the nuclear weapons stockpile of the United States is maintained without nuclear

testing, and thus simulations were studied to fill this gap of knowledge.

Current applications for hydrocodes now extend into a variety of fields of study. In

astrophysics, hydrocodes can be used to simulate the collapse of stars or the impact of a large

meteorite with earth. In materials studies, particularly in the nuclear field, hydrocodes are used in

modeling void growth in ductile materials, the analysis of high strain rate experiments [1], the

multimaterial compressible fluid flow and for Inertial Confinement Fusion (ICF) [12], [2].

2.2 Lagrangian versus Eulerian Methods
The modeling of large deformation in solid mechanics generally employs two techniques

using finite element and analysis: Lagrangian or Eulerian. The main difference between the

Eulerian and Lagrangian methods can be illustrated by how the material flows as compared to

the mesh. In Eulerian codes, the mesh is held immobile while the material flows through it. This

method is preferred for fluid flows that would highly contort the mesh if grids were required to

follow fluid motion through the calculation [13]. In contrast, Lagrangian methods allow the grid

to flow with the fluid. This means that in each cell of the grid, also called a zone, no mass

crosses the boundaries; rather the zone's movement is tracked over time which is important to

accurately capture results when investigating solid materials.
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In the investigation of hypervelocity problems, where a disturbance in a material moves

faster than the propagation of information through the material, stress waves and pressure shocks

are an important part of the solution. Traditionally, explicit time marching schemes are used for

shock simulations because they limit the propagation of information to one zone per time step to

capture the correct physics and provide an accurate solution. The Riemann solution on cell

interfaces in cell-centered hydrocodes provides information for the shock physics [14]. An

alternate method for including the shock physics is to use a flux limiter [1]. The flux-corrected

transport has been further analyzed to understand the diffusive errors introduced by the flux-

corrected process so that it can be applied in general fluid systems, multidimensional problems,

and curvilinear geometry [15].

Since the Lagrangian method allows the mesh to flow with the fluid, it is typically

preferred when the fluid exhibits only small motion. When using the Lagrangian method, the

grid can prematurely break down from a high degree of distortion, causing an early simulation

termination or the production of inaccurate results. In some cases, a mesh remap can be

performed using the method of arbitrary Lagrangian Eulerian (ALE) [16], [17] to remove the

grid distortion and continue the simulation [I].

Since the original implementation of ALE in the 1970s [16], more robust and accurate

techniques for this method have been explored. One such method for executing ALE uses a mesh

remapper that can handle polygonal shaped cells. It further discretizes each cell and

conservatively gathers the momentum, internal energy, and kinetic energy into the discretized

subcells. The subcells are then remapped onto the new subcells of a reformatted Lagrangian

mesh. Density, nodal velocity, and cell-centered specific internal energy values are transferred to

the new mesh. This method was shown to remove unphysical distortion that can occur during
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simulations [18]. Another method that was first developed for one-dimension can be used on

unstructured grids. It uses a finite volume approach that also further divides the cell into smaller

control volumes [19]. This allows for high-order reconstruction of the original cell volume while

being able to remove or reduce spurious vorticity. This method was further developed for both

two- [20] and three-dimensional systems [21].

As will be discussed in more detail in section 2.3, grid tangling caused by vorticity can

form in non-uniform meshes, including the distortion that occurs in one-dimensional non-

rotational flows. Instead of introducing the more commonly used Neumann-Richtmyer model

which can be generalized to two and three-dimensions [22], or a method developed using a

discrete viscosity tensor [23], the vorticity can be removed, or filtered out, using one of two

methods. In the first method, the known flow divergence and the true vorticity computed by the

transport equation are used to reconstruct the velocity. The second, more efficient method,

calculates a new velocity that captures the correct vorticity by subtracting a divergence-free

correction from the velocity. Both of these two methods have been successfully applied in a two-

dimensional shock refraction problem [24].

Another recent study on the formulation of Lagrangian hydrodynamics investigates the

definition of the zonal volume and specifically, how this definition can affect total energy

conservation. The most common method to define a zonal volume is by utilizing a function

based on the coordinate points that define the cell. A proposed method that exactly conserves

total energy uses a time integration of the continuity equation for the volume of the zone. An

investigation of these two definitions showed that there is a slight difference in these two zonal

definitions that can be described as a type of entropy error. It was further demonstrated that this

entropy error is insignificant unless the calculation becomes numerically unstable. Therefore,
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this new zonal definition could be used to indicate when a calculation encounters numerical

difficulties, since this can occur even while the local conservation of total energy still holds

through the calculation [25].

Lagrangian methods are of interest in the nuclear field for the information they can retain

during the simulation, as described in Section 1.1. For example, a Lagrangian hydrocode can

handle the sharp interfaces of the cells (the cell boundaries that hit each other and rub against

each other) so that contact discontinuity can be sharply captured in multi-material flows [26].

Additionally, materials can retain their history since damage and plastic deformation information

can be retained within each cell throughout the analysis. This can further effect how the material

responds to stresses. This information is important in the study of nuclear materials so material

failure can be predicted using the history of the material.

2.3 Cell-centered versus Staggered Grid
Two methods for grid movement are typically used in hydrodynamic codes: cell-centered or

staggered. The staggered grid discretizes the mesh to specify the position, velocity, and kinetic

energy to be associated and centered at the vertices of the mesh. The density, pressure, and

specific internal energy are defined and calculated within each cell [26]. It was first introduced

for one-dimensional flows [12] and then adapted to two-dimensional problems [27]. Although

this method has drawbacks, it has been widely used in the last 40 years [28] with many

improvements implemented in the last ten years. Examples include a unified coordinate system

to prevent premature grid breakdown [29], the Lagrangian Discontinuous Galerkin-type method

[30], and as will be discussed below, various artificial viscosity treatments and anti-hourglass

methods.
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A potential undesirable mode of unphysical grid distortion that can occur with a staggered

grid is referred to as "hourglassing" when it is evident in short spatial grid scales (shown in

Figure 2.1) and "spurious vorticity" when visible in longer lengths compared to the scale of the

mesh [31]. Vorticity and hourglassing are not caused by the characteristics of the flow in the

simulation, but rather from numerical error or an underconstrained grid respectively. This can

occur with the use of quadrilateral or hexahedral grids in two or three-dimensions. Common

methods to combat this problem use subzonal masses, forces [32], pressures, and densities to

prevent unphysical grid movements by providing forces that resist the spurious motion. In

particular, the use of a pressure gradient though the cell is effective for dampening the

unphysical movement [33].

The introduction of artificial viscosity has also led to more robust staggered Lagrangian

schemes [5], [34] and is vital for capturing the correct solutions. This artificial viscosity must be

implemented carefully because it can cause high numerical errors in strong shock calculations

[35].
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Original Mesh Distorted Mesh

Figure 2.1 Hourglass motion in two dimensions where the velocity field direction alternates
at every node (shown for arbitrary node "a" in a mesh). The arrows indicate the direction
of the velocity field, the solid lines the cell boundaries, the dotted lines the proposed
subzonal boundaries, and the solid circles the nodes of the mesh.

In the Godonuv cell-centered method, all conserved quantities are evolved at the cell center.

The original mesh structure is also illustrated by the sketch on the left of Figure 2.1. The

approach in this investigation solves the Reimman problem to determine the face velocities of

the cells, and this is still the popular approach for Lagrangian scheme development [36], [37].

The remaining quantity required to move the mesh is the vertex velocity, which must be

completed while upholding the geometric conservation law.

In an effort to maintain flux discretization compatibility with vertex movement, the nodal

motion can be coherently solved with the fluxes at the faces using a semi-discrete entropy

requirement and this has been shown to be a numerically stable scheme [38] even in two-

dimensional flow on an unstructured meshes [39]. In general, this entropy requirement does not

explicitly mandate the conservation laws to be upheld when the nodes are moved to maintain

mesh continuity. This research studies the cell-centered method, in particular the process covered

by the nodal solver. It also seeks to determine if the semi-discrete entropy requirement scheme
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by PHM [5] upholds conservation of linear momentum over the mass in the cell as the mesh is

propagated in time.
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3 Runnels-Gilman Code Development

3.1 General Approach
The Runnels-Gilman method began development under Dr. Scott Runnels as part of the

LDRD-DR (Laboratory Directed Research and Development) Cell-Centered Lagrange research

project at Los Alamos National Laboratory (LANL). It was coded into what is referred to as the

"DiscoverHydro code" in C++. It was further developed during the 2011 XCP Computational

Physics Student Summer where, as a visiting student, the author became familiar with the

existing code, and began contributing to the development of the reconciliation forces solver and

iteration scheme for implementing reconciliation forces that provide information for moving the

mesh.

The proposed reconciliation and superposition based cell-centered method involves breaking

each time step into three phenomena which are solved for consistently to determine how each

cell progresses with the mesh. These three parts include (1) the forces on each cell that cause a

change in internal energy and linear momentum, giving it a trajectory in space, (2) the

deformation of the cell that occurs from these forces, and (3) the collective work of the

aforementioned processes (cell forces, deformation and trajectory) to keep the mesh connected

[8].

3.2 Governing Equations
Although the goal here is to model solids, gas dynamics equations are the starting point to

serve as a test-bed for the development of hydrocodes. The multidimensional gas dynamics

equations are shown in Equations 3.1, 3.2, and 3.3.

d /1
P - V-u= 0 3.1
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pd (u) - VP = 0 3.2

d 3.3
p -(E) - V - (Pu) = 0

dt

In these gas dynamics equations, p represents the density, u the velocity, E the specific total

energy, and d the time derivative of the material. Equation 3.1 is the volume conservation
dt

Equation, or GCL. The momentum and total energy conservation equations are represented by

Equations 3.2 and 3.3 respectively. For thermodynamic closure, the equation of state is used

where

P = P(p, E) 3.4

In Equation 3.4, E represents the specific internal energy,

E u2  3.5
2

3.3 Grid Construction
In every cell, each of the 4 corners is divided into two "iota," producing 8 iota in each cell

and 8 iota surround each interior node (see Figure 3.1). The velocities on the three corners of the

iota are interpolated from the cell's velocity and the facial velocities. The cell's velocity is

modeled at the cell-center and this is also the velocity of one point of each iota. The point on the

node (vertex) is the vertex velocity, and the point on the center of the face is the average of the

two vertices connected to that face.
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U 2

U 3

Figure 3.1 The grid construct of the mesh showing a sample cell with the 3 point velocities
of "iota i."

Using linear Lagrange polynomials, denoted by #j, these velocities are interpolated to

give an iota velocity, as shown in Equation 3.6. Using the three iota corner velocities, the iota

linear momentum and kinetic energy can be calculated, and the cellular (zonal) linear momentum

is computed by using a vector sum of the values for iota contained in the cell.

3

u! (x, y)= ZuP #j(x, y) 3.6
j=1

3.4 Scheme Development

3.4.1 Conservation Laws on a Cell
To maintain consistency with the physical conservation laws, the rate of change of the

cell volume must be coherently computed with the motion of the nodes to satisfy the necessary

geometric conservation law (GCL), often referred to as the volume conservation equation [26].

For the space discretization, the mass in each cell is described by discrete variables: specific

volume, velocity, and specific total energy which are denoted by Tr, Vi, and E respectively. This
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allows a set of discrete equations to be formulated using an integral over the cell as shown in

Equations 3.7, 3.8, and 3.9. In these equations, mi denotes the mass in the cell defined by the

domain f2i, and P is the pressure given by the equation of state [5].

d
m -( 1)- V -Ndl= 0 3.7

d
m -(Vi)+ P-NdI= 0 3.8

dt jni

d ( 3.9
mi -(E) + 3 PV-Ndl= 0

3.4.2 Riemann Solver
This superposition and reconciliation based method calculates intercellular forces in part from

the Riemann solver, as shown in Figure 3.2. The calculation provides an initial facial trajectory

for each cell based on the pressure and velocity differences of neighboring cells shared faces.

The Riemann solver only provides a velocity in the direction parallel to its own normal, and if

used directly without modification, the mesh would become disconnected at vertices, often

referred to as nodes. A correction is used to reconcile this discontinuity and maintain integrity of

the mesh. In order to achieve this mesh connectivity, the cell may distort or twist to reconnect

nodes, resulting in additional forces that are needed to uphold conservation laws. These forces

are determined in the Runnels-Gilman method through an iteration scheme developed to

conserve linear momentum around each node within each cell [8].
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C C2

N

Figure 3.2 A shared face (in red) between two cells in the mesh with the corresponding
normal forces [8].

For the simple Riemann Solver method, refer to Figure 3.2 above. The cells, C1 and C2,

share a face and contain area-weighted normals in the outward direction (denoted by the

capitalized "N"). Each cell contains a corresponding pressure, pi and P2, and impedance, pi and

p2. By applying the conservation of momentum on CI in the area surrounding the shared face

(shown in red) Equation 3.10 is obtained (a represents the acceleration) [40].

-p 1 Nsi - pfN1 = mn 3.10

= A 1paAti

= P1(uf - u1)A1

By dividing both sides by the area, A1, the area-weighted normals become simple unit normal

vectors (denoted by the lowercase "n") and shown in Equation 3.11.

-Pinsi - pfni = I,1(Uf - u1 ) 3.11

Likewise, a similar Equation (3.12) is derived for cell 2 and shown below.

-P2ns 2 - Pfn2 = P2(Uf - uz) 3.12

As indicated by Figure 3.2, n2 = -nI = -ns2= nsi. Equations 3.11 and 3.12 can be arranged to the

form shown in Equations 3.13 and 3.14.
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(p, - pf)nl = p1l(Uf - ui) 3.13

(-P2 + pf)ni =y2(u - u2 ) 3.14

Solving for the final pressure by subtracting Equation 3.14 (referring to cell 2) multiplied by pi

from Equation 3.13 (referring to cell 1) multiplied by L2, Equation 3.15 is obtained.

pl1 P2 (u1 - u2 ) + (p2P1 + piup 2 )ni 3.15
(P1 + P2)

To solve for the final facial velocity determined by this Riemann solver, one simply adds the two

equations and solve for uf to give Equation 3.16 [8].

(P1 - p2 )n 1 + piu1 + p 2 u2
Uf (/1+/2 3.16

ur (P1 + y2)

A similar method is used to compute the facial pressures and velocities on the external

problem boundaries of the mesh. This is computed using the prescribed Uf or pf provided as a

boundary condition to the calculation. Thus, for a velocity boundary condition, the pressure is

computed using Equation 3.17 and for a pressure boundary condition, the velocity is computed

using Equation 3.18 [8], [40].

Pf = p1 -p1(uj - ulf) -ni 3.17

(p1 - pf)ni 3.18

3.4.3 Computing Linear Momentum and Kinetic Energy
Using the smallest unit of the grid construct (the iota), the linear momentum can be

computed using the three velocity components described in Section 3.3 on the corners of each

28



iota. Thus the linear momentum of each iota becomes a function of the linear interpolation of the

velocity field as shown in Equation 3.19.

.3

L1 (u1 ) = p u[u # (x, y) dA 3.19

Here, Li(u') represents the linear momentum of "iota i," p is the density of the material, and #j

again represents the linear Lagrange polynomials. For simpler notation, one can define a

variable, 4, so that Equation 3.19 can be rewritten as Equation 3.21 [8].

f f p[q$(x,y)]dA 3.20

3

L(u')= ujli 3.21
j=1

After linear momentum is computed for each iota, the linear momentum of each cell (or

zone) is computed by simply summing the linear momentum of each iota contained within it, as

shown in Equation 3.22 where the summation is over all iota "i" in zone "z." In a similar fashion,

the kinetic energy on each iota is computed and shown in Equation 3.23. Again, the kinetic

energy of a zone is determined by summing the kinetic energy of all the iota contained within it,

and is shown in Equation 3.24 [8].

z

Lz= L(u) 3.22

3 - 2

KE1 (ul) = p- x~)d 3.23
1fpY ,('x)d
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z

KEz= KEI 3.24

3.4.4 Conservation of Linear Momentum and Kinetic Energy
Conservation of both cellular momentum and energy is achieved by calculating the

stresses on the boundaries associated with both the Riemann solver and continuity forces. The

Riemann solver provides a stress on the side of the iota connected to the cell face and is denoted

by gfR . This provides a stress for each iota denoted by r' that is a sum of the one-dimensional

stress predicted by the Riemann solver and the continuity force (Oi~con) that accounts for two-

dimensional stresses that are required to maintain continuity of the mesh such that ai = 7 f-R +

,-'n . At the beginning of each time step, the continuity force (or reconciliation force) is first

assumed to be zero, and the conservation equation is imposed using the cell's linear momentum

and shown in Equation 3.25 [8].

z

- Lz = i N' 3.25
dt

Using the forward Euler approximation, a new linear momentum for the cell is

determined for the next time step, but this linear momentum has yet to take into account the

continuity stresses described previously. The facial velocities are calculated from this new linear

momentum, and the mesh may become disconnected. The process of reconciling the vertex

velocities is achieved by imposing that the sum of the linear momentum of all the iota around

each vertex be preserved through this process, as shown in Equation 3.26.

LP(ui-con) = LP(Ui-R) where p = 1, 2., N 3.26
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Equation 3.26 enforces conservation of linear momentum with both the continuity forces and the

Riemann calculated forces around each point in the mesh [8].

Although the sum of the linear momentum of the iota is preserved in this process, each

individual iota's value may have been altered to achieve connectivity and can be calculated as

shown in Equation 3.27 using the basis functions. This in turn, slightly alters the linear

momentum of the cell in which it is contained, which must be accounted for.

AL' = (Ui-con _ i-R 3.27
j=2

This alteration in zonal linear momentum occurs from the uncalculated stresses

developed during the reconnecting process that are not represented in the original Riemann

solver. These stresses compose both tangential and normal stresses between the iota around a

point. First, a local numbering system is established for the iota touching the vertex where each

iota is given a number 1 through ny, where ni is the number of iota touching the vertex. Second, a

numbering system is established for the normal and tangential forces on each boundary. These

numbering systems are shown in Figure 3.3 and Figure 3.4. This results in Equations 3.28 and

3.29 for the net forces in the x- and y-directions respectively, where N represents the area

weighted normal for the intercellular direction and H represents the area weighted normal for the

intracellular direction (hypotenuse of the iota) [8].

FxI= (-fiNi - fi+nHk) + (tiNi + ti+nH) 3.28

FY'= (-fi N - fi+ n Hy ) + (-ti Ni - ti+ n H) 3.29
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By utilizing Newton's third law of motion where the forces on a shared side of an iota are

equal in magnitude and opposite in direction, the numbering system is re-written to reduce the

number of forces to compute. This reduces the number of forces from the original 32 (16 from

each of the normal and tangential forces) to 16 total (8 from both the normal and tangential

forces). These new numbering systems are shown in Figure 3.5 and Figure 3.6.

Figure 3.3 The numbering system for touching a vertex is shown in the shadowed boxes
with the numbering system for the normal on each surface with their sign convention. The
blue lines and red point represent cell boundaries and the vertex respectively [8].
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Vector ID =
Iota ID for intercellular force
Iota ID + 8 for intracellular
force

All vectors point outward



Figure 3.4 The numbering system for the iota touching a vertex with the numbering system
for the tangential forces on each surface with their sign convention [8].

Figure 3.5 The re-numbered normal forces, after utilizing Newton's third law of motion, on
the iota. The force direction notation is kept for the lower numbered iota of a shared edge,
and the force is now equivalent to a compressive or tensile stress [8].

33

Vector ID =
Iota ID for intercellular force
Iota ID + 8 for intracellular
force

All vectors point
counterclockwise



Figure 3.6 The re-numbered tangential forces, after utilizing Newton's third law of motion,
on the iota. The force direction notation is kept for the lower numbered iota of a shared
edge [8].

These additional stresses are not originally accounted for when using only the Riemann

solver but are necessary for maintaining material continuity. They are computed by solving for

the change in linear momentum of each iota during the reconciliation process and solving for the

resulting continuity forces in matrix form [41]. Equation 3.30 shows the calculation for the

change in linear momentum for an iota caused by the reconciliation process and is computed for

the two coordinate directions for each iota around the vertex [8].

AL = LP(ui-con) - LP(Ui~R) where p = 1, 2., N 3.30

A total of 16 vectors are shown in Figure 3.5 and Figure 3.6 which are computed for the

two coordinate directions. The stresses are denoted as w'~'" in Equation 3.31 (computed for

the two coordinate directions), where "p" denotes the point (vertex), the term "con" refers to the

fact that these forces are responsible for the two-dimensional continuity, and A is the matrix

containing the normal direction of the stresses. Thus Equation 3.31 provides 16 equations using
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the change in linear momentum for each iota in the two coordinate directions. To complete the

matrix, two additional closure relations are used to force the intercellular normal forces to sum to

zero in both the x and y-directions. These values are already computed by the Riemann solver, so

the reconciliation forces in addition to the Riemann solution must add to zero. This creates a

non-singular matrix that can be used to solve for the continuity forces because the matrix now

contains 16 non-linear dependent equations to solve for the 16 unknowns [8].

16

A wp-"n = L(ui-con) - Li(Ui-R) where i = 1, 2,..., 8 3.31

j=1

3.4.5 Time Marching Scheme using the Reconciliation Forces

The time marching scheme proposed is first order but implicit. It strives to achieve

consistency between the facial velocities, facial stresses, linear momentum of the cell, linear

momentum around a vertex, and the prediction of the Riemann solver. At each time step, the

steps described in Figure 3.7 are followed. This iteration scheme is the next step to study the

reconciliation process and to create a new hydro method [8].
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Step Inputs Operation Outputs
Initialize ( -) Use Riemann solver with previous f (~f-R

time-step's solution to compute initial
guess to new time-step's facial
velocity and stress.

Initialize None Set initial guess for continuity forces to (~* f =0
zero.

(1) T( + a " i Conservation on the Cell: Using ( (-)
current guesses for facial velocity and

(of stress evolve momentum and intemal
energy of the cell over one time step.

(2) ( -. az), Riemann Solver: Use revised (Hf ) (M''""),
estimates of zonal velocity and stress
at the new time step to compute
revised estimates of facial velocity and
stress.

(3) . ( (uf) Reconcile nodal velocities:(/)
Preserving linear momentum at each
vertex. Output is a revised estimate
for facial velocities.

(4) u Material Continuity Force: Output is (f/-on
an updated iterate for continuity

U f forces.

( f)n-1
(5) (f-con" Convergence Check: Check for (f-"o" =&f n

(o convergence, then update iterate for
4 o)n- 1  continuity stresses. If converged,

proceed to next time step, if rqt, go to
Step (1).

Figure 3.7 Description of the Runnels-Gilman Hydro Method time implicit marching
scheme. This iteration occurs until convergence is reached for the continuity stresses [8].
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4 Pierre-Henri Maire Method

4.1 General Approach
The method devised by Pierre-Henri Maire (PHM) also uses the Lagrangian Godunov cell-

centered hydro method. It was coded according to the description by PHM [5] into the

DiscoverHydro code by Dr. Scott Runnels in order to investigate reconciliation forces that are

acting during the calculation. A one-dimensional Riemann solution is computed at cell

boundaries to provide an estimate of the cell boundaries' velocity and pressure at each time step.

As discussed previously, since they are one-dimensional in nature, the Riemann velocities and

pressures are incomplete and do not account for additional forces that hold the mesh together in

two and three-dimensional situations [5].

PHM's method differs from the Runnels-Gilman method in the nodal solver scheme. PHM's

nodal solver, that deals with the problem of maintaining mesh continuity after using the Riemann

solver, uses a weighted least squares fit to the vertices surrounding Riemann face velocities as

the vertex velocity [5]. In both the Runnels-Gilman and PHM approaches, pressures in addition

to the one-dimensional Riemann solution's pressure are at work. PHM's method solves for the

sum of the pressures concurrently, justifying the solution method as one that satisfies an entropy

condition. These pressures are determined by enforcing the momentum equation on the zero-

mass volume using only pressure forces. PHM's method also uses discontinuous pressures at cell

boundaries while the Runnels-Gilman method has a continuous pressure across the cell

boundary. Thus, the nodal velocity is simultaneously computed with the fluxes on the interfaces

in an entropy-consistent Lagrangian scheme.
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4.2 Governing Equations
As in the Runnels-Gilman method, gas dynamics equations (Equations 3.1, 3.2, and 3.3 for

two-dimensional problems) are obtained in Lagrangian formalism and used in the development

of PHM's method.

4.3 Grid Construction
PHM uses a grid constructed of polygons that do not overlap and an example polygon cell is

shown in Figure 4.1. Here, the vertices are denoted by Mr, where r ranges from one to the

number of vertices of the polygon (which also corresponds to the number of faces). These

indices are computed in a counterclockwise direction with periodic numbering. Looking at an

edge defined by two vertices, such as [Mr, Mri], the length of this edge is given by Lr,r.2 with a

tangent vector in counterclockwise orientation given by Tr,r,2 and a unit outward normal vector

given by Nr,r+2. The frame provides an orthonormal basis (es, ey) that is completed by the vector

defined by ez = e, x ey [5].
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Ney 1  -~

M,

e X X

Figure 4.1 An example polygon cell shape and the notation used for the vertices, unit
outward normal vectors, unit tangent vectors, and the length of the edges [5].

These sign and notation conventions shown in Figure 4.1 produce Equations 4.1 and 4.2.

Lr,r+1Tr,r+1 = MrMr+i 4.1

Lr,r+1Nr,r+1 = Lr,r+1Tr,r+1 X ez 4.2

4.4 Scheme Development

4.4.1 Conservation Laws on a Cell
For the space discretization of the mesh, the mass in each cell is described by discrete

variables as it is in the Runnels-Gilman method described in section 3.4.1 shown again in

Equations 4.3, 4.4, and 4.5 [5].

d F
mi VT di) - I V-Ndl= 0 4.3

d121
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d C
m -(Vi) + i P -NdI = 0 4.4

dt fani

d (4.5
mi d(Ej) +f PV-Nd1= 0

fni

In these Equations, mi denotes the mass in the cell area defined by the domain 2j, and P

is the pressure given by the equation of state. Equations 4.3, 4.4, and 4.5 can be written to

express the discrete face fluxes using the notation shown in Figure 4.1 using a summation. These

face fluxes are shown in Equations 4.6, 4.7, and 4.8 where the volume energy flux is denoted by

V*,r+i -Nrr+1, the momentum flux by Pr*,r+1 Nrr+1, and the total energy flux by (PV)*,r+1

Nr,r+1 for the face given by the vertices [Mr, Mr+1] [5].

Mr-+1

Lrr+1 *-,,+1 -Nr,r+1 = fm V N dl 4.6
Mr

Mr+1
Lr,r+1Pr* r+1Nr,r+1 = f PN dl 4.7

Mr

Lr,r+1(PV),r+1 -Nr,r+1 = 'Mr PV- N dl 4.8

The mathematical definitions of the discrete face fluxes allows Equations 4.3, 4.4, and 4.5 to be

re-written using a summation of these flux equations and are shown in Equations 4.9, 4.10, and

4.11 [5].

R(i)
d

mi (Ti) - Lr,r+1Vrr+1 Nr,r+1 = 0 4.9
r=1

R(i)

mi d (Vi) + Lr,r+1Pr*,r+1Nr,r+1 0 4-10
r=1
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R(i) 4.11

i (Ei) + Lr,r+1(PV)*,r+1 - Nrr+1 = 0
=1

The ensuing steps are then to compute the face fluxes and node velocities while ensuring the

mesh connectivity by maintaining that the cell volume change and mesh motion agrees. To

achieve this, PHM proposes to coherently calculate the node velocities with the face fluxes. This

is accomplished by linking the volume flux V*,r+1 - Nr1r+ to the node velocity V* [5].

Each face connecting two vertices is divided into two equal lengths, subsequently providing

"half-face pressures" for these half-lengths of each face. An example is denoted by P*i in

Figure 4.2. The face fluxes can now be defined by the values shown in Figure 4.2 to provide the

new set of equations shown in Equations 4.12, 4.13, and 4.14 [5].

Y

ey

Y rr r ,

Mri V*-1

X

Figure 4.2 An example

15].
polygon cell shape and the notation used for the half-face pressures
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14.12
Vr1 - (V* + V,-+1 )

1P - .. 1Pr, 1 = -(p*' 1 + P*'t ) 41
2 r,r+I + ,r+},r+1

1 .~ + )4.14
(PV) * = (PD*' 1V* + P*'' V*.12 r,r+r r+ r+1

The nodal solver can then be constructed to solve for the vertex velocity and two half-

pressures around each node. This is done by the global conservation of momentum (by enforcing

the conservation on each vertex individually) and the newly proposed local entropy inequality

described in Section 4.4.3. Consequently, the two constraints of this method used to solve for

the mesh motion are the conservation laws and the dissipation of entropy [5].

4.4.2 Enforcing the Conservation Relations on the Grid
The global conservation of momentum is enforced by summing over all the cells in the

domain and is shown in Equation 4.15 where I denotes the total number of cells in the grid.

i r(i)

mii= - Lr1rr* N-,+Li P*L 1N!. L4.15

To change from cell to node notation (to use the nodal solver proposed), the summation is

altered to be over all of the nodes in the mesh rather than the cells. This is shown in Equation

4.16 where Q represents the total number of nodes in the grid and k represents the cells

surrounding a particular vertex. Therefore, to satisfy the global conservation of momentum,

Equation 4.16 must go to zero, providing Equation 4.17.

d ( AI Q K(q)

miVi = - Y 1 (Lk i + Lk+1 Pqk+'jk+1) 4.16

i=1 q=1 k=1
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K(q)

2 (L, P*' N, + Lk+1 Pq*,'k+1Nk+1) = 0 4.17
k=1

Since V* is a single value for the node M, Equation 4.17 also implies the energy

conservation over the mesh which is shown in Equation 4.18. Similarly, the conservation of

volume is also achieved and shown in Equation 4.19. These equations are further formulated for

the massless volume conservation surrounding the vertices.

Q K(q)
Y1E Lk P, Lk+1 Py,'+1N ) - 0 4.18

i=1 /q=1 k=1

Q K(q) 4.19
- iT i = )]Y'(Lk Nk + Lk+1Nkn -V*
i=1 q=1 k=1

4.4.3 Entropy Inequality

The unique aspect of PHM's method is the introduction of the entropy inequality as a closure

relation used in the nodal solver and enforced coherently with the conservation Equations. By

defining a-r as the time variation of entropy for the cell defined by D2i and Ti as the average

temperature of that cell, Equation 4.20 represents this relation. This equation is computed in two

steps. First, the time variation of the internal energy ( d Ei) is computed by calculating the kinetic

energy variation of the cell and subtracting that from the total energy variation. Then, the

d
pressure work (Pi -Ti) is calculated using Equation 4.3. This allows Equation 4.21 to be used to

enforce the entropy inequality [5].

d d d
miTi (9i) = mi Ei + Pi 1T 1 4.20
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R(i) 4.21
d 1i-p~~N Lp~

m T -(o-) = - L1 Pi - P 'j Nr-1,r + Lr,r+1 Pi - P' 1) Nr,r+12diT t 2ai r- 2,r)rr~

(V* -Vi)

To enforce the entropy inequality, the right-hand side of Equation 4.21 must be positive and

this provides a required condition that the closure relationship must satisfy in the nodal solver

developed by PHM. PHM chooses to use Equations 4.22 and 4.23 as a condition to enforce the

relation to be positive [5].

Pi - P'' = ai(V* - Vi) Nr-1,r 4.22
'r-Tr

P - P*'L 1 = ai(V* - V1)- Nrr+1 4.23

To ensure the positive value of Equations 4.22 and 4.23, ai must be a positive coefficient and

is defined in Equation 4.24. Here, ci represents the isentropic speed of sound and is shown in

Equation 4.25. This allows one to solve for the entropy variation.

ai = pici 4.24

ci= 4.25

Important to note is that, as is typical of Godunov-type hydro schemes, solving Equation 4.21

as described always yields a positive production of entropy. Thus, in the case of an isentropic

flow, this scheme does not conserve entropy [5].

4.4.4 Nodal Solver Method
To solve for the velocity and pressures around a particular vertex in the mesh, the

equations are reformulated to be around a generic vertex denoted by Mq and shown in Equations
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4.26 and 4.27, where ak, Pk, and Vkrepresent the acoustic impedance, pressure, and velocity

respectively of cell 2 k [5].

Pk - P,' - a(V*q - Vk) - N , k = 1, .,K(q) 4.26

Pk - P,'+l - ak (V* - Vk - NY+, k = 1, .,K(q) 4.27

The unknowns now to be calculated for a given vertex in the mesh include a total of 2*K(q)

pressure values and 2 scalar values for V*. A linear system is written to satisfy the velocity

components V* for the vertex M by using Equation 4.17 that provides two scalar relations and

Equations 4.26 and 4.27 that provide an additional 2*K(q) relations to evaluate all the unknowns

[5].

The description of the nodal solver functioning as a weighted least squares procedure in

Section 1.2 comes from the use of the gradient of a quadratic functional created from the closure

relations. By defining v* as the normal velocity that is provided by the one-dimensional Riemann

solver for a specific face [M, Mk], Equation 4.28 is obtained.

= Pk-1 - Pk + ak.14 Vk_1 - Nk- 1 + akVk 4.28
k akl1 + cxk

Using this definition of the normal velocity, the closure relations produce Equation 4.29. The

left-hand side of Equation 4.29 can then be written as a gradient of the quadratic functional

shown in Equation 4.30 where the components of the velocity V* are denoted by (u*, *v). As a

result, the solution to Equation 4.29 is the minimum of the functional F(uq, V*), and therefore

V* is obtained from a weighted least squares method [5].
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K(q)

Lk(a_ + ak) [V* -N~ 1 - -= 0 4.29
k=1

K(q)

F(u*,v*) = Lk(ak._1 + ak) [V* -N -v ] 2 4.30

k=1

The nodal velocity can then be computed using a 2x2 linear system of equations as shown in

Equations 4.31 and 4.32. The coefficients A, B, and C are defined by Equations 4.33, 4.34, and

4.35 respectively, where k again denotes the cells or edges around a specific node M. Finally,

the right hand side of Equations 4.31 and 4.32 is defined by Equation 4.36 where vk is again the

normal velocity given by the Riemann solver in Equation 4.28.

Au* + Cv* = SMx 4.31

Cu* + Bv* = SMy 4.32

K(q) 4.33

A = Lk(pk.-lck_1 + PkCk) (N- ) 2

k=1

K(q) 4.34

B = Lk(pk-1ck_1 + PkCk) (N k1)2

k=1

K(q) 4.35

C = Lk(pk_1ck_1 + pkck)Nkx- NX k'
k=1

K(q) 4.36

SM = Lk(pk.lck_1 + PkCk) v*N k-1

k=1

4.5 Reconciliation Forces Calculation
As described in Section 1.2, PHM uses a nodal solver where the nodal velocity is

simultaneously computed with the fluxes on the interfaces in an entropy-consistent Lagrangian

scheme that conserves momentum around each massless volume. Doing so means that the linear
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momentum of the associated iota are adjusted from what the one-dimensional Riemann solution

would have them be. PHM reasons that the entropy inequality constraint enforces the

conservation laws for the grid, but by using the reconciliation forces solver described in the

Runnels-Gilman method, the forces used to retain mesh continuity will be computed explicitly to

investigate if this entropy-consistent scheme accounts for all the forces used when moving the

mesh.
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5 Piston Test Problem

5.1 Description of 1D Piston Test Problem
The ID Piston Test Problem is a hydrocode test using a constant-state, constant-velocity

shock of infinite strength. This is commonly referred to as the piston-driven shock where the

reference frame is chosen so that the piston (the side positioned at x=O) is initially at rest. The

shock of infinite strength means that the initial pressure of the system (pre-shock pressure) is set

equal to zero (P = PO = 0). Since hydrocodes are developed initially using gas dynamics, the

shock is generated in a perfect gas, and thus y = . The gas is also initially cold so that the

specific internal energy is zero (E0 = 0) and is approximated as such by setting EC = 1. e04

Additionally, the initial density is set as p0 = 1 and the initial velocity for the piston is u0 = 1

[35]. Equation 5.1 provides the value for the pre-shock pressure as well as the initial conditions.

P0 = (y - 1)p 0 0 = 0
5.1

The analytical solution to this classic piston test problem is shown in Figure 5.1 after a time

of t=0.6pts and where S represents the constant shock speed. The values of the post-shock

solution for the velocity, density, specific internal energy, and pressure are u+ = 0, p+

4, E+ = , and P+ = 4 respectively [35].
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Figure 5.1 The exact solution at t=0.6ps to Noh's generic constant-velocity shock problem
(piston test problem).

5.2 Grid Parameters
The piston test problem was completed on a [0,1]x[0,1] mesh in the x and y-coordinate

directions. The parameters were used as defined in section 5.1 with equally partitioned cells in a

mesh comprised of 50x2 cells in the x and y-directions respectively. The results were also

compared with a grid of 20x4 cells and shown to provide similar results for density, pressure,

velocity, and internal energy at t=0.6ps .

5.3 Runnels-Gilman Method Test Results

5.3.1 Results of the Original Piston Test Problem
The piston test problem parameters were implemented using the Runnels-Gilman method and

the reconciliation forces were calculated through the simulation using time step increments of

t=0.001 ps. The plots for density and pressure at t--0.6is for a uniform 50x2 cell grid are shown

in Figure 5.2 and Figure 5.3 respectively. Important to note here is that the Runnels-Gilman

method is being tested without implementing the reconciliation forces as additional forces

acting during the movement of the mesh. Instead, the reconciliation forces are merely being

calculated to determine their presence or absence during the simulation.
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As discussed in section 5.1, the values of the post-shock solution for the pressure and density

are analytically calculated to be 3 Mbar and 4 gm /cm3 respectively. The Runnels-Gilman

method (implemented without the reconciliation forces iteration scheme) provides a pressure of

-4/3 Mbar, a density of -4.11 gm/cm3, and an internal energy -1/2 erg/gm. These values are

comparable to the values of the analytical solution to the constant-state, constant-velocity shock

of infinite strength test problem and summarized in Table 1.

yposition(m

Figure 5.2 A 50x2 grid with dimensions of [O,lx[0,1] showing the density after t=0.6ps
using the Runnels-Gilman method. Note the density is scaled by a factor of 0.1. The density
behind the shock is shown to be near the analytical solution of 4.

As is common in shock capturing simulations, the density plot in Figure 5.2 illustrates a

numerical error that occurs at the front of the mesh that is referred to as "wall heating." This is a

phenomenon not present in experimental results or the analytical solution [42]. Wall heating is

visible in the sharp density decrease in the first few cells of the mesh. In this piston problem, it

does not appear to affect the pressure calculation, which is illustrated in the constant pressure

behind in the shock in Figure 5.3. Shock physics simulations are still being heavily investigated
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to determine the cause of this wall heating and to develop schemes that minimize wall heating

errors [43]. In the Runnels-Gilman method, this phenomenon is illustrated by the density at the

wall of-3.1 gm /cm 3 compared to the density of -4.11' mc 3 at the shock front.

y position (cm])

Figure 5.3 A 50x2 grid with dimensions of [0,lx[0,1] showing the pressure after t=0.6ps
using the Runnels-Gilman method. Note the pressure is scaled by a factor of 0.25. The
pressure behind the shock is shown to be near the analytical solution of 4/3.

5.3.2 Results of the Rotated Grid Piston Problem
To investigate the accuracy of the reconciliation forces solver and the robustness of the code,

the Piston test problem was also run on a rotated grid. This was accomplished by rotating the

mesh by 450 with respect to the origin. This gave a mesh with side lengths of one, but with

corners positioned at (0,1), (1,0), (2,1), and (1,2) as is shown in Figure 5.4. The results of the

simulation are shown in Figure 5.5 and Figure 5.6 for the density and pressure calculations

respectively. The Runnels-Gilman method implemented without the reconciliation forces

iteration on the rotated grid provides a pressure of-4/3 Mbar, a density of ~4.12 gm cm3, and

an internal energy ~1/2 'ergm and is summarized in Table 1. These values are comparable to

51



the values of the analytical solution and the results from the original piston test problem using

the Runnels-Gilman method. This grid rotation did show a small change in the amount of wall

heating compared to the original piston test problem, as the density at the wall was

~2.9 gm/ -

Figure 5.4 The initial grid set-up for the Piston Test Problem on a crooked grid. The arrow
indicates the face of the mesh where the normal boundary condition velocity is placed.
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Figure 5.5 A 50x2 grid on the rotated mesh showing the density after t=0.6ps using the
Runnels-Gilman method. Note the density is scaled by a factor of 0.2. The density behind
the shock is shown to be near the analytical solution of 4.

Figure 5.6 A 50x2 grid on the rotated mesh showing the pressure after t=0.6ps using the
Runnels-Gilman method. Note the pressure is scaled by a factor of 0.5. The pressure
behind the shock is shown to be near the analytical solution of 4/3.
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5.3.3 Reconciliation Forces on the Original Piston Test Problem
The reconciliation forces in this test problem were calculated for each iota in the mesh

around each internal vertex for both the x and y-directions. The net reconciliation forces for the

two coordinate directions were calculated using Equations 3.28 and 3.29. Reconciliation forces

acting on each iota were analyzed by calculating the net reconciliation force acting on each

corner of the four cells that surround a particular vertex as shown in Figure 5.7. The net

reconciliation force on each corner was calculated using the sum of the reconciliation forces of

the iota contained in the corner. Finally, the net reconciliation force acting on the staggered cell

around the vertex was determined using the sum of the reconciliation forces of all the iota

surrounding the vertex.

Cell-Centers

Corner 2 --- Corner4

Corne4 - Corner 3

Vertex

Figure 5.7 Construct of the corners surrounding a vertex that are analyzed. The bottom
left, top left, bottom right, and top right correspond to corners 1, 2, 3, and 4 respectively.

As expected, the sum of all the reconciliation forces around each vertex was zero since the

method used to reconcile the vertex velocities enforces that the sum of the linear momentum of

all the iota around each vertex be preserved during this process (described in Section 3.4.4). In

contrast, each individual corner surrounding a vertex need not sum to zero. The vertices that
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were surrounded by comers enveloping non-zero reconciliation forces were shown to propagate

with the shock front through time. Note that only interior nodes were investigated for the

reconciliation forces. Also, since this test problem involves only a velocity in the x-direction, the

reconciliation forces in the y-direction were shown to be negligible. The shock front at t=O.Ogs in

Figure 5.8 can be detected by inspecting the pressure (plotted in black in the figure). The

reconciliation forces on each corner, which will now be referred to as "corner reconciliation

forces," are also shown in Figure 5.8. Here, it is verified visually that the sum of the

reconciliation forces around each vertex is equal to zero.

Corner I
Corner 2
Corner 3 -

Corner 4
Pressure -

x position (cm)

Figure 5.8 A 50x2 grid with dimensions of [0,1]x[0,1] showing the net forces at t=O.01ps for
corners 1, 2,3, and 4 and the pressure (units of Mbar) using the Runnels-Gilman method.

The reconciliation forces at t=0.6ps were also plotted to illustrate that the non-zero

reconciliation forces propagate with the shock front through the simulation. Figure 5.9 shows the

shock wave at t--0.6pts by plotting the pressure with the corner reconciliation forces (note the
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position of the shock front). Figure 5.9 also illustrates that the sum of the reconciliation forces in

all four corners is also equal to zero, as is expected due to linear momentum preservation during

the reconciling of vertex velocities.

Corner 1
Corner 2
Corner 3 -

Corner 4
Pressure -

x position (cm)

Figure 5.9 A 50x2 grid with dimensions of [0,1]x[0,1] showing the net forces at t=-0.6ps for
corners 1, 2, 3, and 4 and the pressure (units of Mbar) using the Runnels-Gilman method.

5.3.4 Reconciliation Forces on the Rotated Grid Piston Problem
As expected, the sum of all the reconciliation forces around each vertex was again zero while

each individual corner surrounding a vertex had non-zero reconciliation forces surrounding the

vertices at the shock front. The difference in the reconciliation forces values determined in this

rotated grid versus the original piston test problem is due to the existence of reconciliation forces

in the y-direction. This is due to the different velocity boundary condition. In the rotated grid, the

velocity is initiated in both the x and y-coordinate directions in equal magnitude, whereas in the
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original piston problem it is only in the x-direction. This leads to reconciliation forces in the x

and y-directions on the rotated grid that are equal in magnitude. Figure 5.10 illustrates the shock

wave at t=0.0p I s by plotting the pressure with the corner reconciliation forces (note the position

of the shock front). The net forces on corners 1, 2, 3, and 4 for the y-coordinate direction are of

the same magnitude and position as those illustrated in these figures.

Corner 1
Corner 2
Corner 3
Corner 4
Pressure

u.4 )

M. 1 -

0.0 I

fin I

jU'

0.02I

C) 01'

U04.-

0.0"

01.4

Figure 5.10 A 50x2 grid on the rotated mesh illustrating the net reconciliation forces at
corners 1, 2, 3, and 4 in the x-direction (y-direction is the same) surrounding each vertex
and the pressure (units of Mbar) at t=O.01ps using the Runnels-Gilman method.

To illustrate the propagation of reconciliation forces with the shock front through the

simulation, the reconciliation forces at t=0.6is were also plotted. Figure 5.11 illustrates the

shock wave at t=0.6ps by plotting the pressure with the corner reconciliation forces (note the
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position of the shock front). Figure 5.11 verifies visually that the sum of the reconciliation forces

in all four corners is equal to zero.

Corner 1
Corner 2
Corner 3
Corner 4
Pressure -

CI-

Figure 5.11 A 50x2 grid on the rotated mesh illustrating the net reconciliation forces at
corners 1, 2, 3, and 4 in the x-direction (y-direction is the same) surrounding each vertex
and the pressure (units of Mbar) at t=0.6ps using the Runnels-Gilman method.

5.4 PHM Method Test Results

5.4.1 Results of the Piston Test Problem
The piston test problem was simulated with PHM's method through the DiscoverHydro code,

the plots for density and pressure after t=0.6Rs, using time steps of t=0.001 ss, on a 50x2 uniform

cell grid are shown in Figure 5.12 and Figure 5.13 respectively.

As discussed in section 5.1, the values of the post-shock solution for the pressure and density

are analytically calculated to be Mbar and 4 gm cm 3 respectively. PHM's method

58

x position (cm)



implemented in the DiscoverHydro code provides a pressure of-4/3 Mbar, a density of

-4.02 gm cm3, and an internal energy ~1/2 erg/gm- These values are also comparable to the

values of the analytical solution and summarized in Table 1. These figures also correspond to the

figures published by PHM [5].

Figure 5.12 A 50x2 grid with dimensions of [0,l]x[0,1] showing the density after t=0.6ps
using PHM's method. Note the density is scaled by a factor of 0.1. The density behind the
shock is shown to be near the analytical solution of 4 with a density of 3.3 at the wall.
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Figure 5.13 A 50x2 grid with dimensions of [0,lx[0,1] showing the pressure after t=0.6ps
using PHM's method. Note the pressure is scaled by a factor of 0.25. The pressure behind
the shock is shown to be near the analytical solution of 4/3.

Parameter Analytical Runnels-Gilman Runnels- PHM's method
Value (original piston Gilman (original piston

problem) (rotated grid) problem)

P+ [m/cm3 4 4.11 4.12 4.02

P+ [Mbar] 4 4/3 43 4/

Wall heating 4 3.1 2.9 3.3

( [ gm/ ] at the wall) I I I

Table 1 A comparison of the solutions of the Runnels-Gilman
the rotated grid) and PHM methods to the analytical solution

(both original grid setup and
for the piston test problem.

5.4.2 Reconciliation Forces Calculation
As expected, the sum of the reconciliation forces of all the iota around each vertex was zero

and similar to the results seen in the Runnels-Gilman method, some individual corners

surrounding interior vertices had non-zero reconciliation forces. Note again that only interior
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nodes were investigated for the reconciliation forces. Also, since this test problem involves only

a velocity in the x-direction, the reconciliation forces in the y-direction were shown to be

negligible. Figure 5.14 illustrates the shock wave at t-O.O ps by plotting the pressure with the

corner reconciliation forces (note the position of the shock front). The vertices with corners

enveloping non-zero reconciliation forces propagated with the shock front through time, but a

distinct difference as compared to the Runnels-Gilman method was that the reconciliation forces

were also acting behind the shock front. This is shown in Figure 5.14 because non-zero corner

reconciliation forces are calculated back to the vertices at the front of the mesh. Figure 5.14 also

illustrates that the sum of the reconciliation forces in all four corners is equal to zero.

Corner 1
Corner 2
Corner 3
Corner 4
Pressure

If

V x position (cm)

Figure 5.14 A 50x2 grid with dimensions of [O,1lx[0,1] showing the net forces at t=0.Olps
for corners 1, 2, 3, and 4 and the pressure (units of Mbar) using PHM's method.
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To investigate the reconciliation forces at the end of the simulation, the plot in Figure 5.15

illustrates the shock wave at t=0.6ps by showing the pressure (note the position of the shock

front) with the corner reconciliation forces. The results shown here more clearly illustrate that

the vertices affected by the reconciliation forces include all internal vertices behind the shock

wave.

Corner 1
Corner 2
Corner 3
Corner 4
Pressure

x position (cm)

Figure 5.15 A 50x2 grid with dimensions of [0,1]x[0,1] showing the net forces at t=0.6ps for
corners 1, 2, 3, and 4 and the pressure (units of Mbar) using PHM's method. Note that not
only the vertices at the front of the shock wave have cell corners that have reconciliation
forces.
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6 Saltzman Test Problem

6.1 Description of Saltzman Problem
Saltzman's shock tube problem is similar to the piston test problem [5] in that it simulates the

movement of a planar shock using a Cartesian grid, but instead of using cells of uniform size,

they are distorted prior to the start of the calculation. The purpose of this is to test the robustness

of the hydro method when the grid is not perfectly aligned with the fluid flow [5].

Again, as similar to the piston test problem, a shock of infinite strength is generated in a

perfect gas (y = ). The gas is also initially cold so that the specific internal energy is zero
3

(E0= 0) and is approximated as such by setting E0  .e -0 4 . The initial density is set asp 0 =

and the initial velocity for the piston is uO = 1.

6.2 Grid Parameters
The Saltzman problem was completed on a [0,1 ]x[0,0. 1] mesh in the x and y-coordinate

directions. The parameters were used as defined in section 6.1 in a mesh comprised of I 00x 10

cells in the x and y-directions respectively. The cells were then distorted and stretched by using

the mapping shown in Equation 6.1 [5]. Figure 6.1 shows the initial rectangular mesh with

distorted cells at t=O. Cells the shock wave has not disturbed from their original position are

colored blue. The color red indicates cells the shock wave has reached or passed through during

the simulation. The red and yellow lines illustrate the x and y-axis directions respectively.
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y position (em)

x position (cmI)

Figure 6.1 The initial (t=O) rectangular [0,1]x[0,0.1] mesh with distorted cells used in the
Saltzman test problem.

xstr = x + (0.1 - y) sin(xir)
6.1

Ystr = Y

6.3 Runnels-Gilman Method Test Results

6.3.1 Results of the Saltzman Test Problem
The Runnels-Gilman method implemented in the DiscoverHydro code without the

reconciliation forces iteration scheme for the Saltzman problem crashes shortly after t = 0.4ps

due to unphysical tangling of the mesh. The mesh becomes increasingly distorted over time as

the shock wave propagates and is illustrated in Figure 6.2 after t=0. 1p s, Figure 6.3 after t-0.2ps,

Figure 6.4 after t=0.3ps, and Figure 6.5 after t=0.4ps.

yposition (cmI)

x position (cmI)

Figure 6.2 The cell shape and configuration in the mesh after t=O.lps for the Saltzman
planar shock test problem using the Runnels-Gilman hydro method.
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y position (cell)

x position (cmne)

Figure 6.3 The cell shape and configuration in the mesh after t=0.2ps for the Saltzman

planar shock test problem using the Runnels-Gilman hydro method.

y position (cm)

x p~ositionl (cm)

Figure 6.4 The cell shape and configuration in the mesh after t=0.3ps for the Saltzman
planar shock test problem using the Runnels-Gilman hydro method.

y position (cmn)

x position (cml)

Figure 6.5 The cell shape and configuration in the mesh after t=-0.4ps for the Saltzman

planar shock test problem using the Runnels-Gilman hydro method.
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Instead of plotting the results at t=0.6ps as in the piston test problem, the Saltzman test

problem results are shown at t=0.4[is since this is just before the Runnels-Gilman hydrocode

crashes from grid tangling. At t=0.4pts, the density shows a peak behind the shockwave of~6.0

m /CM3, but the density at the shock front is near the analytical value of 4 gm/cm3and this is

seen in Figure 6.6. Figure 6.7 shows the pressure behind the shock has a peak of-4/3 Mbar, but

with an average value at the shock front of-0.9 Mbar as compared to the analytical solution of

4/3 Mbar. The internal energy values vary widely, from 0.3-34 erg/gM, likely due to the high

grid distortion. These values are compared to the results from PHM's method and the analytical

values in Table 2. The large mesh distortion and tangling with this method may indicate an

underconstrained grid.

Figure 6.6 A 100x1O grid with dimensions of [0,1]x[0,0.11 showing the density after t=0.4ps
using the Runnels-Gilman method. Note the density is scaled by a factor of 0.1
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Figure 6.7 A 100x1O grid with dimensions of [0,lx[0,0.1] showing the pressure after
t=0.4ps using the Runnels-Gilman method. Note the pressure is scaled by a factor of 0.25.

6.3.2 Reconciliation Forces Calculation
The reconciliation forces for the Saltzman test problem using the truncated Runnels-Gilman

method (again implemented without using the reconciliation force iteration scheme) were

calculated for each iota in the mesh touching an internal vertex for both coordinate directions.

The net reconciliation forces for an iota surrounding the vertex were calculated using Equations

3.28 and 3.29. These reconciliation forces acting on the iota were then used to calculate the net

reconciliation force on each corner of the four cells that surround a particular vertex as shown in

Figure 5.7 and described in Section 5.3.3.

Reconciliation forces are acting in both coordinate directions for this test problem, as is

expected since the cell shapes are distorted and the grid is not perfectly aligned with the fluid

flow. The reconciliation forces for each of the four corners in both the x and y-directions are

shown in Figure 6.8 and Figure 6.9 respectively at t=O. I ps. These figures also illustrate how the
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sum of the four corner reconciliation forces around a vertex is equal to zero for both coordinate

directions. Additionally, small reconciliation forces are calculated behind the shockwave, which

is likely due to the unphysical mesh distortion and cell tangling that occurs behind the shock

front through the calculation, which can be seen in Figure 6.6.

Figure 6.8 and Figure 6.9 also illustrate the slightly varying values for the reconciliation

forces for vertices positioned at approximately the same position on the x-axis. These variations

are due to the cell distortion that is performed on the mesh as described in section 6.2 prior to

initiation of the shock. Since reconciliation forces are dependent on the length of the sides of the

iota, the slight differences in cell sizes and shapes cause the reconciliation forces to vary as well.

Also note that the reconciliation forces calculated in this Saltzman test problem are smaller than

the Piston test problem due to the smaller cell size.
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Corner 1
Corner 2
Corner 3 -

Corner 4

x position (cm)

Figure 6.8 A 100x1O grid with dimensions of [0,1]x[0,0.1] showing the net forces in the x-
direction at t=O.lps for corners 1, 2, 3, and 4 using the Runnels-Gilman method on the
Saltzman problem. The vertices affected are those located at the shock front as shown.
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Corner 2
Corner 2
Corner 3
Comer 4

x position (cm)

Figure 6.9 A 100x1O grid with dimensions of [O,1lx[0,0.1] showing the net forces in the y-
direction at t=O.lps for corners 1, 2, 3, and 4 using the Runnels-Gilman method on the
Saltzman problem. The vertices affected are those at the shock front.

6.4 PHM Method Test Results

6.4.1 Results of the Saltzman Test Problem
The results from the Saltzman test problem using PHM's method implemented in the

DiscoverHydro code illustrates the robustness of the method since the simulation can be run for

t>0.6ps. At t=0.6ps, the Saltzman test problem provides a density peak of~4.7 gm cm3, but the

density behind the shockwave oscillates around the analytical solution of 4 gm/cm3and is

shown in Figure 6.13. Also, the pressure behind the shock is -4/3 Mbar, but with a peak at the

shock front of-1.5 Mbar as compared to the analytical solution of 4/3Mbar and shown in Figure

6.14. The internal energy was also found to vary behind the shock front, with values from 0.5 to

0.67 erg/gm and the higher energies being at the front of the mesh. These results are presented

in Table 2 to compare to the Runnels-Gilman method as well. The Saltzman test problem
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illustrates how cell distortion affects the results of the calculation since these results are not as

close to the analytical solution as the piston test problem. Figure 6.13 and Figure 6.14 also agree

with the figures published by PHM [5]. The mesh is shown in Figure 6.10 after t=0.2pis, Figure

6.11 after t=0.4pis, and Figure 6.12 after t=0.6pis to illustrate how the cell shapes change through

the simulation.

yposition (cm])

x positionj (cmi)

Figure 6.10 The cell shape and configuration in the mesh after t=0.2ps using PHM's
method for the Saltzman planar shock test problem.

ypositi>n (cmn)

x position (cml)

Figure 6.11 The cell shape and configuration in the mesh after t=0.4ps using PHM's
method for the Saltzman planar shock test problem.
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y position (cmn)

x nositionl (cmI)

Figure 6.12 The cell shape and configuration in the mesh after t=0.6ps using PHM's
method for the Saltzman planar shock test problem.

Figure 6.13 A 100x1O grid with dimensions of [0,1]x[0,0.1] showing the density after t=0.6ps
using PHM's method. Note the density is scaled by a factor of 0.1. The density behind the
shock oscillates around the analytical solution of 4.
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Figure 6.14 A 100x1O grid with dimensions of [0,lx[0,0.1] showing the pressure after
t=0.6ps using PHM's method. Note the density is scaled by a factor of 0.25. The pressure
behind the shock is near the analytical solution of 4/3, but also has a sharp peak at the
shock front.

Parameter Analytical Runnels-Gilman PHM's Method
Value (Saltzman problem) (Saltzman Problem)

P+ gm 4 Peak: 6.0 Peak: 4.7
Shock Front: ~4 Shock Front: -4

E+ eT 1/2 0.3 to 30 0.5 to 0.67

P+ [Mbar] 4/3 Peak: 4/3 Peak: 1.5

Shock Front: -0.9 Shock Front: - 4/3
Table 2 A comparison of the solutions of the Runnels-Gilman and PHM methods to the
analytical solution for the Saltzman test problem.

6.4.2 Reconciliation Forces Calculation
The reconciliation forces for the Saltzman test problem using PHM's method were also

calculated for each iota surrounding an internal vertex of the mesh for both coordinate directions

using Equations 3.28 and 3.29. The net reconciliation force on each corner of the four cells that

surround an internal vertex were also calculated. As expected, the sum of the reconciliation
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forces of all the iota around each vertex was zero, and like the results seen in the Runnels-

Gilman method, each individual corner surrounding a vertex did not always sum to zero.

The reconciliation forces for each of the four corners in both the x and y-directions are shown

in Figure 6.15 and Figure 6.16 respectively for t=O.1Ips in the simulation. Reconciliation forces

are also acting in both coordinate directions for this test problem, as is expected due to cell shape

distortion. Also, the smaller cell size, due to the finer mesh, results in smaller reconciliation

forces than seen in the Piston test problem. These figures also illustrate how the sum of the four

corner reconciliation forces around a vertex equals zero. A significant difference from the

Runnels-Gilman hydrocode results is that the reconciliation forces calculated for mesh continuity

using PHM's method affect vertices on the cells behind the shock wave and at the shock front.

Corner 1
Corner 2
Corner 3
Corner 4

x position (cm)

Figure 6.15 A 100x1O grid with dimensions of [0,1]x[0,0.11 showing the net forces in the x-
direction at t=0.1ps for corners 1, 2, 3, and 4 using PHM's method on the Saltzman
problem. The vertices affected are those at the shock front and behind the wave.
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Corner I
Corner 2
Corner 3 -

Corner 4

~j /

Figure 6.16 A 100x1O grid with dimensions of [0,1]x[0,0.1] showing the net forces in the y-
direction at t=O.1 ps for corners 1, 2, 3, and 4 using PHM's method on the Saltzman
problem. The vertices affected are those at the shock front and behind the wave.

To investigate the results at the end of the simulation, the reconciliation forces at t=0.6is

were also plotted. Figure 6.17 and Figure 6.18 show the net forces on corners 1, 2, 3, and 4 at

t-0.6pts for the x and y-coordinate directions respectively to demonstrate that the sum of the

forces in all four corners is equal to zero for each vertex. Again, note the difference in the

reconciliation forces calculated for the mesh as compared to the Runnels-Gilman method. In

PHM's method, the vertices affected by reconciliation forces are those both located at the shock

front and the behind the shock wave as well.

Figure 6.17 and Figure 6.18 also illustrate the different values for the reconciliation forces

around vertices, even at same position along the x-axis in the mesh. This is due to the cell

distortion that is performed on the mesh as described in section 6.2. The values for the
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reconciliation forces are dependent on the lengths of the iota sides, so the slight differences in

cell sizes and shapes cause the forces to be slightly different on each iota.

Corner I
Corner 2
Corner 3 -

Corner 4

UN

0.
I-
0

x position (cm)

Figure 6.17 A 100x1O grid with dimensions of [O,1]x[0,0.1] showing the net forces in the x-
direction at t=0.6ps for corners 1, 2, 3, and 4 using PHM's method on the Saltzman

problem. The vertices affected are those at the shock front and behind the wave.
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Corner 2
Corner 3
Corner 4

oo

-7e

x position (cm)

Figure 6.18 A 100x1O grid with dimensions of [0,1]x[0,0.1] showing the net forces in the y-
direction at t=0.6ps for corners 1, 2, 3, and 4 using PHM's method on the Saltzman
problem. The vertices affected are those at the shock front and behind the wave.
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7 Conclusions
To understand the difference between the one-dimensional Riemann forces at cell interfaces

and the additional forces that are included in the final forces computed by PHM, a reconciliation

forces solver was developed to determine the additional forces not explicitly calculated in both

PHM's method and the Runnels-Gilman method for maintaining mesh continuity. This solver

was used to explore the reconciliation forces that are at work for two test problems: the original

1 D Piston test problem and the Saltzman test problem.

It was determined that the 16 equations produced from using the change in linear momentum

for each iota in the two coordinate directions produced a singular matrix, where two rows were

linear combinations of the remaining 14 equations. Therefore, to complete the matrix, two

additional closure relations are used that enforces that the intercellular normal forces add up to

zero in both the x and y-directions. These values are already computed by the Riemann solver, so

the reconciliation forces in addition to the Riemann solution should add to zero. This creates a

non-singular matrix that was used to solve for the continuity forces. Therefore, the reconciliation

forces calculated are forces acting in addition to the Riemann solution.

The findings from this investigation are summarized below:

ID Piston Test Problem:

* Both the Runnels-Gilman and PHM hydro methods calculated the density, pressure, and

internal energy values to be near the analytical values for the test problem.

" In the truncated Runnels-Gilman method (without the reconciliation forces iteration

scheme), the reconciliation forces were present in the x-direction for each of the four
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individual corners of cells surrounding an internal vertex of the mesh. These

reconciliation forces were found to be only acting at the shock front.

* PHM's method showed reconciliation forces in the x-direction for each of the four

individual corners of cells surrounding an internal vertex. These reconciliation forces

were acting both at the shock front and behind the shockwave. PHM's method produced

a density value closer to the true analytical value and with less wall heating than the

truncated Runnels-Gilman method. The reconciliation forces may be capturing the

additional forces producing a more stable density solution to occur as the shock wave

propagates through the mesh.

Saltzman Test Problem:

* The truncated Runnels-Gilman method crashes before the simulation reaches t=0.6ps,

and the results were analyzed at t=0.4ps. At this time, there is significant grid tangling

behind the shockwave and the solution has values near the analytical solution for the

pressure and density while the internal energy value varies significantly (the high values

for internal energy were located behind the shock wave where the grid was tangled).

* The truncated Runnels-Gilman method calculated reconciliation forces present in both

the x and y-directions for each of the four individual corners of cells surrounding an

internal vertex of the mesh. These reconciliation forces were again found to be only

acting at the shock front.

* PHM's method ran the simulation through t=0.6ps and results were near the analytical

values, but not as accurate as the I D Piston test problem.

* PHM's method showed reconciliation forces in both the x and y-directions for each of the

four individual corners of cells surrounding an internal vertex. These reconciliation forces
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were acting both at the shock front and behind the shock wave. The PHM method was

robust and produced internal energy and density values closer to the true analytical value.

Compared to the high-degree of grid tangling that the Runnels-Gilman produced behind

the shockwave, PHM's method had a low amount of cell tangling. The reconciliation

forces may be capturing the additional forces that result in a more stable density and

internal energy solution behind the shock wave and producing decreased grid tangling.
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8 Future Work

8.1 Additional Study of Reconciliation Forces
Reconciliation forces should be studied further in additional verification test cases using

different grid configurations, coordinate systems, and initial conditions. These would be able to

examine use of current hydro codes to determine if they uphold the conservation laws.

An example test problem to further analyze reconciliation forces is the Multimaterial Sod's

Shock Tube Problem. In this problem, a shock tube contains two separate regions, each having

different densities and pressures, typically one of high pressure and density and one with low

pressure and density. Initially, these regions are in a constant state with both fluids at rest. At a

time t>O, the partition separating the two fluids is broken and the subsequent wave is simulated.

In Lagrangian schemes, the density is usually below the analytical calculation while the internal

energy is greater [44]. This makes the calculation of reconciliation forces for this problem of

interest because it has the potential to indicate why the internal energy is greater than it should

be.

The Noh test problem introduces a new verification technique by using a cylindrical

geometry rather than the more common rectangular grid. Radial symmetry is preserved by

meshing the cylinder using triangles near the center and quadrangles throughout the rest of the

geometry. The test case is the implosion of this cylinder with a unit radius [5]. This would enable

another test for continuity forces in a grid using a different coordinate system.

In Kidder's test case, a cylindrical shell grid is simulated for isentropic compression with a

perfect gas [5]. This test problem was developed for hollow shell compression to further study

inertial confinement fusion, and accordingly the analytical solution has been calculated for

comparison. It has been developed so that it can be tested for problems having either planar,
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cylindrical or spherical symmetry [45]. This type of test case is also believed to contain

numerical diffusion observed by the change in the answer to the calculation due to higher mesh

refinement, which makes it a case of interest in the study of additional forces that may not be

accounted for [5].

A more recently proposed test case involves a perturbation of the isentropic Kidder

compression. This tests the hydrocode ability to reproduce the growth of hydrodynamic

instabilities. There is an approximate analytical solution for perturbations amplified in the linear

regime, that was first developed in the study of imploding plasma shells [46]. Testing a

hydrocode method's ability to uphold the conservation laws while testing mesh perturbations is

of interest since this simulation has a very small amplification over time [47], [5].

8.2 Runnels-Gilman Hydro Scheme Development
The completion of the implementation of the Runnels-Gilman method requires further

development as evidenced by the results of the Saltzman test problem. The reconciliation forces

appear to be a substantial and necessary component in providing an accurate solution, as

evidenced by the inaccurate solutions when they are not included. The inability of the current

code, to calculate a shockwave to t=0.6ps using a mesh containing distorted cells illustrates the

fact that the scheme may need to incorporate additional grid constraints. By implementing the

reconciliation forces that are calculated as additional forces into the Runnels-Gilman method, the

development of a new hydro scheme should be pursued.

As discussed earlier, the mesh quality can be improved by implementing the rezoning and

remapping procedure known as arbitrary Lagrangian-Eulerian (ALE). Specifically, employing

this method in the Saltzman problem when cells begin to entangle would likely improve results
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and allow the simulation to extend to t=0.6ts and beyond. Future work to implement standard

ALE schemes into the methods presented here should be pursued.

83



9 References

[1] J. D. Lindl, Inertial Confinement Fusion, New York, 1998.

[2] S. Weber, et al., "Modelling of Laser-Plasma Interaction on Hydrodynamic Scales: Physics

Development and Code Validation," 2003.

[3] B. Einfeldt, "On Godunov-Type Methods for Gas Dynamics," Siam Journal on Numerical

Analysis, vol. 25, pp. 294-318, 1988.

[4] D. J. Benson, "Computational methods in Lagrangian and Eulerian hydrocodes,"

Computational Methods in Applied Mechanics and Engineering, no. 99, p. 235-394, 1992.

[5] P.-H. Maire, "A cell-centered Lagrangian Scheme for Two-Dimensional Compressible Flow

Problems," SIAM Journal on Scientific Computing, vol. 29, no. 4, 2007.

[6] P.-H. Maire, "A High-Order Cell-Centered Lagrangian Scheme for Compressible Fluid

Flows in Two-Dimensional Cylindrical Geometry," Journal of Computational Physics, vol.

228, pp. 6882-6915, 2009.

[7] R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-Value Problems, New

York: Interscience Publishers, 1967.

[8] S. Runnels and L. Gilman, "Superposition- and Reconciliation-Based Cell Centered Hydro

Method," LA-UR-06002, 2011.

[9] W. F. Noh, "Noh," Journal of Computational Physics, vol. 78, p. 72, 1987.

84



[10] J. Saltzman and C. P., "LA-UR-85-678," Los Alamos National Laboratory, Los Alamos,

NM, 1985.

[11] S. P. Schofeld, R. V. Garimella, M. M. Francois and R. Loubere, "A second-order accurate

material-order-independent interface reconstruction technique for multi-material flow

simulations," Journal of Computational Physics, vol. 228, pp. 731-745, 2009.

[12] J. VonNeumann and R. D. Richtmyer, "A method for the numerical calculations of

hydrodynamical shocks," Journal of Applied Physics, no. 21, pp. 232-238, 1950.

[13] T. J. R. Hughes, W. K. Liu and T. K. Zimmermann, "Lagrangian-Eulerian Finite Element

Formulation for Incompressible Viscous Flows," Computational Methods in Applied

Mechanics and Engineering, vol. 29, pp. 329-349, 1981.

[14] 1. G. Cameron, "An Analysis of the Errors Caused by Using Artificial Viscosity Terms to

Represent Steady-State Shock Waves," Journal of Computational Physics, vol. 1, pp. 1-20,

1966.

[15] D. L. Book, J. Boris and K. Hain, "Flux-Corrected Transport. II. Generalizations of the

Method," Journal of Computational Physics, vol. 18, no. 2, pp. 248-83, 1975.

[16] C. Hirt, A. A. Amsden and J. L. Cook, "An Arbitrary Lagrangian-Eulerian Computing

Method for All Flow Speeds," Journal of Computational Physics, vol. 14, pp. 227-253,

1974.

[17] P.-H. Maire and B. Nkonga, "Multi-scale Godunov-type method for cell-centered discrete

Lagrangian hydrodynamics," Journal of Computational Physics, vol. 228, pp. 799-821,

85



2009.

[18] R. Loubere and M. J. Shashkov, "A subeell remapping method on staggered polygonal grids

for arbitrary-Lagrangian-Eulerian methods," Journal of Computational Physics, vol. 209,

no. 1, pp. 105-138, 2005.

[19] Z. J. Wang, "Spectral (Finite) Volume Method for Conservation Laws on Unstructured

Grids," Journal of Computational Physics, vol. 178, pp. 210-251, 2002.

[20] Z. J. Wang and Y. Liu, "Spectral (Finite) Volume Method for Conservation Laws on

Unstructured Grids 1I. Extension to Two-Dimensional Scalar Equation," Journal of

Computational Physics, vol. 179, pp. 665-697, 2002.

[21] Y. Liu, M. Vinokur and Z. J. Want, "Spectral (finite) Volume Method for Conservation

Laws on Unstructured Grids V: Extension to Three-Dimensional Systems," Journal of

Computational Physics, vol. 212, pp. 454-472, 2006.

[22] M. L. Wilkins, "Use of Artificial Viscosity in Multidimensional Fluid Dynamics

Calculations," Journal of Computational Physics, vol. 36, pp. 281-303, 1980.

[23] J. C. Campbell and M. J. Shashkov, "A Tensor Artificial Viscosity Using a Mimetic Finite

Difference Algorithm," Journal of Computational Physics, vol. 172, pp. 739-765, 2001.

[24] J. K. Dukowicz and B. J. A. Meltz, "Vorticity Errors in Multidimensional Lagrangian

Codes," Journal of Computational Physics, vol. 99, pp. 115-134, 1992.

[25] A. L. Bauer, D. E. Burton, E. J. Caramana, R. Loubere, M. J. Shashkov and P. P. Whalen,

86



"The Internal Consistency, Stability, and Accuracy of the Discrete, Compatible Formulation

of Lagrangian Hydrodynamics," Journal of Computational Physics, vol. 218, pp. 572-593,

2006.

[26] P. Maire, R. Loubere and P. Vachal, "Staggered Lagrangian Discretization Based on Cell-

Centered Riemann Solver Associated Hydrodynamics Scheme," Communications in

Computational Physics, vol. 10, no. 4, pp. 940-978, 2011.

[27] P. Whalen, "Algebraic limitations on two dimensional hydrodynamics simulations," J.

Comput. Phys., no. 124, pp. 46-54, 1996.

[28] M. L. Wilkins, "Calculation of Elastic-Plastic Flow," Methods in Computational Physics,

vol. 3, pp. 211-263, 1964.

[29] W. Hui, P. Y. Li and Z. W. Ki, "A Unified Coordinate System for Solving the Two-

Dimensional Euler Equations," Journal of Computational Physics, vol. 153, no. 2, p. 596-

637, 1999.

[30] R. Loubere, J. Ovadia and R. Abgrall, "A Lagrangian Discontinuous Galerkin-type method

on unstructured meshes to solve hydrodynamics problems," International Journalfor

Numberical Methods in Fluids, vol. 44, pp. 645-663, 2004.

[31] E. J. Caramana and R. Loubere, "'Curl-q': A vorticity damping artificial viscosity for

essentially irrotational Lagrangian hydrodynamics calculations," Journal of Computational

Physics, 2005.

87



[32] E. J. Caramana, D. E. Burton, M. J. Shashov and P. P. Whalen, "The construction of

compatible hydrodynamics algorithms utilizing conservation of total energy," Journal of

Computational Physics, no. 146, pp. 227-276, 1998.

[33] E. Caramana and M. J. Shashkov, "Elimination of Artificial Grid Distortion and Hourglass-

Type Motions by Means of Lagrangian Subzonal Masses and Pressures," Journal of

Computational Physics, vol. 142, p. 521-561, 1998.

[34] K. Lipnikov and M. Shashkov, "A mimetic tensor artificial viscosity method for arbitrary

polyhedral meshes," International Conference on Computational Science, pp. 1915-1923,

2010.

[35] W. F. Noh, "Errors for Calculations of Strong Shocks Using an Artificial Viscosity and an

Artificial Heat Flux," Journal of Computational Physics, vol. 72, pp. 78-120, 1978.

[36] R. Loubere, P.-H. Maire and P. Vachal, "A second-order compatible staggered Lagrangian

hydrodynamics scheme using a cell-centered multidimensional approximate Riemann

solver," International Conference on Computational Science, pp. 1925-1933, 2010.

[37] J. K. Dukowicz, M. C. Cline and F. L. Addessio, "A General Topology Godunov Method,"

Journal of Computational Physics, vol. 82, pp. 29-63, 1989.

[38] B. Despres and C. Mazeran, "Lagrangian gas dynamics in two dimensions and Lagrangian

Systems," Arch. Rational Mech. Anal., vol. 178, pp. 327-372, 2005.

[39] P.-H. Maire, "A High-Ordered Cell-Centered Lagrangian Scheme for Two-Dimensional

Compressible Fluid Flows on Unstructured Meshes," Journal of Computational Physics,

88



vol. 228, pp. 2391-2425, 2009.

[40] P. L. Roe, "Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes,"

Journal of Computational Physics, vol. 43, pp. 357-372, 1981.

[41] L. E. Malvern, Introduction to the Mechanics of a Continuous Medium, Englewood Cliffs,

NJ: Prentice-Hall, Inc., 1969.

[42] H. M. Glaz, P. Colella, I. I. Glass and R. L. Deschambault, "A Numerical Study of Oblique

Shock-Wave Reflections with Experimental Comparisons," Proceedings of the Royal

Society London A, vol. 398, pp. 117-140, 1985.

[43] W. J. Rider, "Revisiting Wall Heating," Journal of Computational Physics, vol. 162, pp.

395-410, 2000.

[44] G. A. Sod, "A Survey of Several Finite Difference Methods for Systems of Nonlinear

Hyperbolic Conservation Laws," Journal of Computational Physics, vol. 27, pp. 1-31, 1978.

[45] R. Kidder, "Laser-Driven Compression of Hollow Shells: Power Requirements and Stability

Limitations," Nuclear Fusion, vol. 16, pp. 3-14, 1976.

[46] S. J. Han and B. R. Suydam, "Hydrodynamic Instabilities in an Imploding Cylindrical

Plasma Shell," Physical Review A, vol. 26, pp. 926-939, 1982.

[47] P.-H. Maire, J. Briel, L. Hallo, Olazabal-Loume and M., "Hydrodynamic Instabilities in

Cylindrical Geometry. Self-Similar Models and Numberical Simulations," in Proceedings of

the 31st EPS Conference on Plasma Physics, London, 2004.

89



[48] M. Shashkov and B. Wendroff, "A Composite Scheme for Gas Dynamics in Lagrangian

Coordinates," Journal of Computational Physics, vol. 150, pp. 502-517, 1999.

[49] R. Liska and B. Wendroff, "Composite Schemes for Conservation Laws," SIAMJournal on

Numerical Analysis, vol. 35, pp. 2250-2271, 1998.

90


