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Abstract

Magnetic reconnection is a rapid reconfiguration of the magnetic field lines in a plasma

that converts stored magnetic energy into particle energy in a wide range of environ-

ments. It is a source of energetic particles in the solar corona and wind, and in

planetary magnetospheres. Disruptive reconnection in laboratory fusion experiments

rapidly deconfines the plasma. While reconnection alters the global magnetic field

and plasma properties, it depends on small-scale local electron dynamics. Particu-

larly in collisionless plasmas, velocity-space anisotropy of the electrons plays a leading

role in governing the energy exchanges and shaping the currents that develop during

reconnection. The anisotropy results from an electric field parallel to the magnetic

field that tends to accelerate electrons towards the site of reconnection. In this the-

sis, the equations of state that describe the main anisotropy of the electrons during

collisionless reconnection are derived. The equations of state give the components

of the electron pressure tensor parallel and perpendicular to the magnetic field as

functions of the plasma density and magnetic field strength. Through comparison to

numerical solutions of the kinetic plasma equations of motion starting from a variety

of initial conditions, several predictions and consequences of the equations of state

are tested. The electron pressure anisotropy feeds back on the magnetic geometry

of the reconnection region and drives narrow current layers. The dynamics depend

on the plasma parameters, and electron heating is most extreme when the electron

pressure is much smaller than the magnetic field pressure.
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Chapter 1

Magnetic Reconnection

Magnetic reconnection is a fundamental process in plasmas that converts magnetic

energy into particle energy through a rapid reconfiguration of the magnetic field lines

[1-4]. While reconnection alters global plasma properties, it depends on small-scale lo-

cal electron dynamics. Particularly in collisionless plasmas, velocity-space anisotropy

of the electrons plays a leading role in shaping the currents and governing the energy

exchanges near reconnection sites. In this thesis, equations of state that describe

the main anisotropy of the electrons are derived. In addition, several predictions are

tested, including how the electron pressure anisotropy feeds back on the magnetic

geometry of the reconnection region and how these effects depend on the plasma

parameters.

A few possible reconnection scenarios are sketched in Fig. 1-1. In (a) and (b) on

top, oppositely directed, open field lines merge. Note that in (a) plasma from the

left and right is initially not connected by field lines, but in (b) those regions may

lie on the same field line. This topological rearrangement is what is implied by the

term reconnection. Reconnection may also occur in closed field line configurations.

For example, in the bottom figures, magnetic islands encircled by closed field lines

either (a) separate or (b) coalesce. The field lines in these cartoons are shown in a

single plane, with reconnection occurring at magnetic nulls where the magnetic field

goes to zero. Reconnection is also possible, however, when there is a guide magnetic

field, a component of magnetic field out of the plane. In guide field reconnection, the
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Fig. 2

(ai) (b)

Fig .3

(a) (b)

Figure 1-1: Some possible reconnection scenarios reproduced from Ref. [1].

magnetic field is typically sheared, and only certain components reverse direction.

The total magnetic field need not go to zero.

Reconnection was first proposed as a dynamical process in the solar corona [5].

The magnetic fields associated with sunspots are hypothesized to interact and drive

currents in the solar plasma depending on the complicated 3D field geometry. A

cartoon from Giovanelli's paper is reproduced in Fig. 1-2. The energy stored in the

solar magnetic fields is substantial. The magnetic energy density in the corona is

typically much larger than the thermal energy density of the plasma, with 3 < 1%

(where 3 is the plasma thermal pressure normalized to magnetic pressure). It is

assumed that solar flares and other eruptive solar phenomena derive their energy,

which can be upwards of 1032 ergs for a single large flare, from the magnetic field.

Reconnection is the best candidate for transfering magnetic energy into the plasma,

and it likely produces high-energy electrons in the 10s to 100s of keV range [6, 7].

Although there is still no complete model for how solar reconnection occurs, there

is ample evidence for reconnection and concomitant electron and ion energization

during flares and coronal mass ejections [8-10].
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Fwa. z.-Magnetic feld and current distributiou in agrooing bipolar spot group.

Figure 1-2: Magnetic field lines associated with currents on the Sun's surface (Ref.

[5]).

Reconnection also couples the solar wind to Earth's magnetosphere [1]. The

Earth's global dipole field prevents most of the flux of charged particles in the solar

wind from entering Earth's atmosphere, but reconnection can allow magnetic field

lines from the interplanetary magnetic field to become connected with Earth. This

process is most prevalent around the magnetopause, the boundary between the solar

wind and Earth's magnetopshere where the solar wind dynamical pressure is roughly

equal to the magnetic pressure of Earth's dipole field. Meanwhile, on the night side,

Earth's magnetosphere is stretched into an elongated tail by the solar wind. A cur-

rent layer is induced in the neutral sheet, where the magnetic field is weak and across

which the field changes direction. Already 46 years ago, it was pointed out that this

configuration could be unstable to a reconnecting mode and that the reconnection

could produce energetic electrons [12]. The reconnected field topology is illustrated

in Fig. 1-3.

Several spacecraft orbiting Earth, equipped with magnetic and plasma measure-

ment instruments, have diagnosed magnetospheric reconnection. Evidence for re-

connection has been detected around the magnetopause, for example, by the ISEE

satellites [131. More detailed measurements suggested that the POLAR spacecraft

17
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Figure 1-3: Reconnection in the geotail driven by the interaction with the solar wind.
(Top: ESA. Bottom: Ref.[12].)
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Figure 1-4: Geotail and Equator-S measurements of flows believed to be driven by
reconnection in Earth's magnetopause. (Ref. [15]).

flew through a reconnection diffusion region [14], where localized kinetic effects are

essential. Geotail and Equation-S measurements indicated reconnection outflows in

the magnetopause, and some data are plotted in Fig. 1-4 from Ref. [15]. The recon-

nection signature is the intense plasma flows of opposite direction, which are posited

to be composed of exhaust plasma accelerated by reconnection. In the magnetotail,

there is ample evidence for reconnection from the Wind spacecraft [16] and the four

Cluster spacecraft [17]. THEMIS, WIND, and Cluster measurements include full elec-

tron particle distributions, which will be shown to develop characteristic anisotropies

in the following chapters [17-25]. The Magnetospheric Multiscale (MMS) mission will

be launched in a few years, and it has the explicit goal of measuring in higher resolu-

tion the characteristics of the electron diffusion region during magnetic reconnection

[26]. In more distant environments, the Voyager 2 spacecraft collected data suggesting

reconnection occurs both in the far solar wind [27] and in the dayside magnetosphere

of Uranus [28].

Plasma fusion experiments are also subject to reconnection. Sawtooth oscillations

in the core temperature are regularly observed in tokamak plasmas and were first

noted on the ST tokamak [29]. Sawteeth are a series of intermittent rapid drops in the

core temperature, inferred from X ray emission from hot electrons. Between these fast

losses of core thermal energy, comparatively slow reheating of the core. Some of the

first measurements are shown in Fig. 1-5, where the traces follow the characteristic

sawtooth pattern. An early model by Kadomtsev [30] attributes sawteeth to an

19
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FIG. 1. Experimental arrangement of x-ray detec-
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Figure 1-5: Sawteeth in the ST tokamak (Ref. [29]) and disruptive instabilities in the

PLT tokamak (Ref. [31]).

internal resistive kink mode that forms a magnetic island through reconnection when

the safety factor q, the number of poloidal field line windings per toroidal winding,

drops below one in the plasma core. The mode is resonant at the q = 1 surface, and it

causes a large magnetic island to form and shift the hot core outwards, transporting

thermal energy. The detailed predictions of the model are incorrect, but sawteeth

almost certainly involve reconnection. More violent, but related to sawteeth, are

disruptive instabilities [31], which rapidly dump the stored energy in the tokamak.

Evidence for an m = 2 mode is evident in the tomographic X ray data from a

disruption on the PLT tokamak in Fig. 1-5. The island structure is clear evidence that

reconnection changed the initial magnetic topology of nested toroidal flux surfaces.

Basic plasma physics experiments have also documented reconnection in detail.

Several laboratory experiments are devoted to studying magnetic reconnection. At

MIT, VTF experiments have diagnosed reconnection with a guide field in the col-

lisionless regime in a toroidal device [32]. It was later found that this reconnection
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Figure 1-6: Equatorial cross-section of the VTF device during two discharges showing
the inductive electric field oc aAg/&t, which illustrates the 3D localized onset of
reconnection in the experiment (Ref. [33]).

could be fully 3D, with non-axisymmetric onset [33]. The inductive reconnection elec-

tric field in VTF during non-axisymmetric reconnection is plotted in Fig. 1-6, which

shows cross sections of the equatorial plane of the device at various times during

a plasma shot. Furthermore, electrostatic turbulence is prevalent during reconnec-

tion in VTF, and non-linear disturbances such as electron holes have been observed

and characterized [34]. Reconnection has also been observed in a linear discharge

plasma at UCLA [35]. There, reconnection was driven by the magnetic attraction of

interacting current channels. At PPPL, driven reconnection experiments without a

guide field are performed on the toroidal MRX device [36]. A notable result was the

identification of Hall physics signatures, particularly a signature quadrupolar mag-

netic field perturbation [37]. Sirnilar Hall fields were also observed in the Swarthmore

Spheromak Experiment, where 3D effects have been studied by merging two sphero-

mak plasmas [38]. At Los Alamos, the Reconnection Scaling Experiment observes

multiple flux tubes merging during 3D evolution in a linear chamber [39]. Finally,

reconnection has also been observed in laser-produced high-energy-density plasmas.

Because of the intense density and temperature gradients produced on laser illumi-

nated metallic foils, megagauss magnetic fields may be generated, and these fields

have been observed to undergo reconnection [40-42].

Despite the large amount of observational data, there are gaps in the theoretical

understanding of reconnection. On large scales, high-temperature plasmas are gener-

ally very good electrical conductors, with a classical collisional resistivity that scales
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as r oc 1/T,3 . In the ideal limit where resistivity and other effects are neglected, the

electric field in the plasma frame is zero,

E+ u x B = 0. (1.1)

This condition places stringent constraints on the evolution of the magnetic field,

which evolves as though it were frozen into the plasma flow u [43]. For example, any

two plasma fluid elements that are connected by a magnetic field line continue to

be connected by magnetic field lines in an ideal plasma. The magnetic helicity and

related field-line linking numbers, global quantities that depend on the topology of

the magnetic field, are also conserved [44, 45]. Processes that break these topologi-

cal constraints include Taylor relaxation [46] (which breaks the first constraint, but

conserves helicity) and reconnection (which breaks both). By breaking the frozen-in

law, these phenomena involve plasma evolution towards lower energy states that are

inaccessible through ideal motions. During reconnection, particularly in collisionless

plasmas, the breaking of the frozen-in condition is tied to small-scale electron dy-

namics. The modeling of reconnection in this case is difficult because reconnection

couples kinetic, non-ideal electron-scale processes to the global plasma evolution.

An immediate consequence of Eq. 1.1 is that the electric field parallel to the

magnetic field Eli = E -B/IB I = 0. A necessary condition for reconnection in an open

field line system without neutral points (where B = 0) is that the parallel potential,

bil(x) = jE-dl , (1.2)

not be everywhere zero [47, 48]. In 1.2, the integral is taken along the magnetic field

line out to an ambient ideal plasma where Ell = 0. This result follows directly from

Maxwell's equations, and it makes no assumptions about how Ell is supported by

the plasma. As will be shown in the next chapter, <bl arises naturally in a different

context when considering the adiabatic motion of magnetized electrons near sites

of reconnection. In fact, <I typically becomes far larger during reconnection than

required simply by Maxwell's equations and the change of magnetic field topology.
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The existence of a parallel electric field and a non-vanishing <Il in a plasma is

strongly tied to the electron dynamics. Recasting the electron fluid momentum con-

servation equation in the form of a generalized Ohm's law gives, for a quasi-neutral

hydrogen plasma,

1 1 me
E + u x B = r/J + -J x B - - V -P + metJ, (1.3)

ne ne ne 2

where u is the mean flow speed of the ions. The non-ideal terms on the right-hand

side are neglected in the ideal MHD approximation. They take into account resis-

tivity, the Hall effect, the divergence of the electron pressure tensor P, and electron

inertia. Resistivity can support a parallel electric field, and Ohmic heating will occur.

As shown below, collisional resistivity alone is typically far too small to account for

observed reconnection rates. The Hall effect reflects the fact that the electrons and

ions move separately, and it is the electrons that typically carry most of the current.

This alters the magnetic field structure of the reconnection region [49-52]. But Hall

physics neither allows the magnetic topology to change, because the field remains

frozen into the electron flow, nor is it necessary for reconnection to be fast [53]. Elec-

tron pressure tensor effects are very important during collisionless reconnection, and

the equations of state of this thesis describe the main anisotropy of the electron pres-

sure tensor during magnetic reconnection. Under most of the conditions considered

in the following chapters, the pressure does not in itself allow the magnetic topology

to change. It is found, however, that electron pressure gradients balance large paral-

lel potentials <bil, and parallel electron heating accounts for a substantial portion of

energy gained by the plasma. The electron inertia in Eq. 1.3 is often negligible, but

it can play a role in small-scale reconnection that seeds other instabilities [54].

Although the focus of this thesis is on reconnection in collisionless plasmas (rq = 0),

it is worth considering some models for reconnection based on breaking the frozen-

in law through resistivity alone. The resistive models were the earliest models for

reconnection, and they highlight some of the complexity of modeling reconnection

that carries over into the collisionless regime. A useful parameter for quantifying the
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importance of resistivity is the Lundquist number,

S = IOLVAIfven/r7. (1.4)

Physically, S compares the time for an Alfven wave to cross a plasma system of

size L to the resistive diffusion time scale. A diffusive process would therefore oc-

cur over a time oc 1/S. The Lundquist number can range from ~ 102 to ~ 107 in

high-temperature laboratory plasmas, and it can exceed 1020 in astrophysical plas-

mas. Reconnection observed in weakly collisional, high Lundquist number plasmas is

generally much faster than diffusive scaling would imply. This is true even if the clas-

sical collisional resistivity is replaced by a reasonable anomalous resistivity induced

by turbulence [55].

An early mechanism for resistive reconnection faster than diffusion was proposed

by Sweet and Parker [56]. They suggested that reconnection could occur between

solar coronal loops, as sketched in Fig. 1-7 reproduced from Parker's original paper.

The Sweet-Parker model combines an assumption about the magnetic geometry with

dimensional arguments to arrive at a reconnection rate faster than purely resistive

diffusion. The reconnection rate, defined as the plasma inflow speed normalized to

the upstream Alfven speed, was found to scale as

Vin/VIfven = I/V5. (1.5)

For high Lundquist number S plasmas, this is significantly faster than a purely dif-

fusive oc 1/S process. For typical solar parameters, however, it is still several orders

of magnitude too slow. The Sweet-Parker time for typical solar flares, for example,

is on the order of months, whereas solar flares may release the majority of their

energy in minutes. The geometry imposed by the model is illustrated in Fig. 1-7.

The Sweet-Parker reconnection rate is limited by a bottleneck effect because the in-

flowing plasma is released as exhaust in a thin outflow channel. The Sweet-Parker

current sheet is very narrow and elongated, with an aspect ratio that also scales as

6/L = Vin/VAlfven = I//5. The Petschek model [57] attempts to overcome the geo-
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Figure 1-7: Parker's picture of Sweet's mechanism on the Sun [56].

metric constraints of the Sweet-Parker model, but as originally formulated it requires

a somewhat delicate configuration of multiple slow mode shocks to accelerate the

plasma.

Another influential contribution to reconnection theory within the resistive MHD

framework was analytical work on tearing modes [58]. A tearing mode is an exact lin-

ear instability of a resistive plasma. Tearing modes release the stored global magnetic

energy of the plasma configuration through a motion that would lead to singularities

in the ideal case. Resistivity becomes dominant in a narrow boundary layer, while

the external bulk plasma motion is nearly ideal. The parameter that characterizes

stability is A', which measures the curvature of the magnetic field perturbation as

the difference in (5a)- 1(d5J/dx) across the resistive boundary layer. Instability re-

quires A' > 0. This parameter depends on the boundary conditions, global plasma

equilibrium, and especially on gradients in the current density. The reconnection rate
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is limited by the small scales of the resistive layer in which magnetic diffusion may

occur. Similar to the Sweet-Parker model, tearing modes grow on a hybrid time scale,

with a growth rate - oc S- 3/5 . Several of the results in the following chapters are

based on reconnection in a thin current sheet with a strongly peaked current density

profile, and the current density gradients act as the source of free energy. Although

reconnection in those cases is not resistive, the parameter A' is made large because it

remains a good measure of the free magnetic energy available to drive reconnection

[59].

Moving beyond purely analytical results, numerical simulations have been able

to study how reconnection evolves non-linearly. Early simulations were based on

fluid models, and the results are somewhat limited by the scope of the modeling as-

sumptions. These fluid simulations included models of the sawtooth oscillation in

tokamaks [60]. Some results from these 2D resistive fluid simulations are plotted in

the top of Fig. 1-8. The reduced fluid model found qualitative agreement with the

Kadomtsev picture, but improved numerical models better resolved the discrepancies

between simulation and experiment [61, 62]. For collisionless reconnection where in-

herently kinetic effects are important, particle-in-cell (PIC) codes are a useful tool

for solving the full Vlasov-Maxwell system of equations. The PIC method is closer

to a first-principles model, but it is computationally extremely demanding. Never-

theless, with present computing resources, it is now possible to study the evolution

of reconnecting current sheets in 3D. An example of 3D PIC output from Ref. [63] is

included in the bottom of Fig. 1-8. A broad comparative study of various simulation

methods was undertaken by multiple groups in the Geospace Environmental Mod-

eling (GEM) magnetic reconnection challenge [64]. These studied reconnection in a

current sheet geometry applicable to Earth's magnetic tail. The general conclusions

were that single-fluid, two-fluid, and kinetic codes found fast reconnection rates that

were relatively insensitive to the dissipation mechanism and Vin/VAlfven ~ 0.1. The

resistive MHD codes, however, required a localized or current-dependent resistivity.
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t~283 * 29.8

Figure 1-8: Top: An early fluid simulation of the m = 1 mode in a tokamak (Ref.
[60]). Bottom: A recent fully-kinetic, three-dimensional simulation of a reconnecting
current sheet (Ref. [63]).

27

I



Outline of the Following Chapters. Chapter 2 reviews derivations for the

electron phase space density including the important effect of electron trapping, which

plays a major role in modifying the electron anisotropy. This model is due to Egedal

[65, 66]. The remaining chapters introduce the new results that constitute the core

of this thesis. Equations of state based on the solution of the kinetic equation are

derived in Chapter 3. The equations of state are then applied to an analysis of fully

kinetic PIC simulations carried out on the code VPIC, provided by Daughton and

other collaborators [67]. The simulations treat reconnection with a strong guide field

(Chapter 4) and zero guide field (Chapter 5). Chapters 3-5 are based on papers by Le

et al. [68-70]. Chapter 6 covers intermediate regimes, including an important new one

that is observed in simulations that implement the true physical proton-to-electron

mass ratio. These results have not yet been published elsewhere. Chapter 7 extends

the application of the new equations of state to geometries beyond 2D Harris sheet

reconnection. In particular, density asymmetries, 3D evolution, and island merging

topologies are considered. The application of the equations of state to asymmetric

geometries is detailed in a paper by Egedal, Le, et al. [71], and a manuscript on

electron heating during island merging is under preparation by Le et al. Chapter 8 is

a summary that emphasizes new results obtained during research for this thesis.

Appendices treat new analyses of (A) CGL temperature fluctuations induced by

magnetic island merging and (B) the inclusion of collisions in PIC simulations of

reconnecting current sheets, and Appendix C reviews some basic principles underlying

the PIC simulation scheme.
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Chapter 2

Electron Distributions

During collisionless reconnection, electron kinetic effects dominate in a localized dif-

fusion region. The gradient length scales in this region typically fall below the ion

inertial length di = c/wpi, roughly the smallest scale at which the MHD formulation

is valid. On these scales, electron and ion dynamics decouple. A hallmark of the

electron diffusion region is anisotropy of the electron phase space distribution, which

usually becomes highly elongated in the velocity direction parallel to the magnetic

field. This chapter reviews a model that accounts for the main anisotropy of the elec-

tron distribution. A principal contribution to the anisotropy comes from an electric

field parallel to the magnetic field. The parallel electric field Ell creates an effective

potential that traps most thermal electron guiding centers. This is accounted for

in an approximate analytical solution of the Vlasov equation, which was originally

derived to describe Wind spacecraft measurements and was motivated by analysis of

experiments on the VTF device [65, 72].

Because the distribution serves as a foundation for the equations of state of the

following chapters, two different derivations will be presented. The first makes use of

an analogy with 1D dynamics and emphasizes the general phenomenon of adiabatic

particle trapping as applied to solutions of the kinetic equation (see, e.g., Ref. [73]).

The second begins with a generic reconnection geometry and describes how the pop-

ulations of trapped and passing electrons fill out the particle phase space. This is

the picture presented in Ref. [66], and it shows more concretely how the processes of
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electron acceleration and trapping occur during reconnection.

The framework relies on a few assumptions about the time and length scales.

These assumptions are often well-satisfied for electrons during reconnection. First,

the magnetic field is assumed to be sufficiently strong to validate the guiding-center

approximation. This implies the results will hold when there is a strong guide mag-

netic field and away from the neutral sheet in anti-parallel reconnection. The guiding

center approximation requires gradient scales to be smaller than the particle Larmor

radius and time variation to be slower than the cyclotron frequency. In the context

of reconnecting current sheets, the most stringent requirement is usually that K > 1,

where the parameter K is defined in Ref. [74] as

r = Rmin/Pe,max , (2.1)

for a minimum magnetic field line radius of the curvature Rmin and a maximum elec-

tron gyroradius Pe,max. When the the condition , > 1 is met, the perpendicular en-

ergy is determined by the conservation of the first adiabatic invariant p = mv 2 /2B.

It is the parallel motion that requires a more careful treatment and is more sensi-

tive to the details of the reconnection process. The parallel motion of a single electron

follows from an effective Hamiltonian [75, 76]

1 2
H11 = ± + pB + D, (2.2)

where <D is a potential. Because the parallel motion follows from an effective ID

Hamiltonian, it is completely analogous to 1D particle motion. The ID case will be

presented first because it relatively simple and it highlights the physics of adiabatic

particle trapping in a kinetic equation. A second demonstration of the mechanism

will focus on a more concrete reconnection geometry.

The essential complication is that electrons become trapped by a time-varying

effective potential. Trapping here means that the particle parallel velocity vil reverses

sign at bounce points. Magnetic trapping results from the usual mirror force asso-

ciated with the conservation of p in the presence of magnetic field gradients. More
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importantly, substantial trapping occurs due to the magnetic field-aligned electric

field Eli. This is parametrized by the parallel potential of Eq. 1.2 reproduced below:

lh(x) = E - d. (2.3)

Again, the integral is taken along the instantaneous magnetic field lines from a point

inside the reconnection region to the ambient ideal plasma where E - B = 0. The

effective potential <bIl contains contributions from inductive electric fields for which

V x E $ 0, and it should not be confused with the ordinary electrostatic potential.

Physically, e4bll measures the work done by the electric field on electrons that exit

or enter the reconnection region in a single shot along a magnetic field line. The

parallel potential <bil seen by the electrons is time-varying, both due to explicit time

dependence of the electromagnetic fields and because electrons will sample different

spatial regions as they convect with field lines through a reconnecting current sheet.

In general, the motion of a particle in a time-varying potential is not integrable,

and the trajectory can only be determined numerically. For applications to reconnec-

tion, however, the time variation is in practice slow compared to an electron transit

time. The adiabatic approximation is therefore often applicable for the parallel motion

as well as the perpendicular motion. Under conditions typical of reconnection, the

requirement for applicability of the adiabatic approximation for the parallel motion

is that the electron thermal speed be greater than the Alfven speed, Vthe > VAlfven-

In this case, the parallel motion is also determined by an adiabatic invariant [77],

Jii = fmvlidl, (2.4)

where the integral follows a trapped particle guiding center along the magnetic field

between consecutive bounces. Assuming the adiabatic limit for trapped electrons

allows a general approximate solution of the Vlasov equation.

To begin, consider particle trapping in a one-dimensional, time-dependent poten-

tial well of depth U(x, t), such as the generic potential -U(x) at a time t plotted in

Fig. 2-1. This theory is concisely outlined in Ref. [73] and is perfectly analogous to
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Figure 2-1: One-dimensional distribution function for particles trapped in a potential
that varies slowly in time.

electron guiding center parallel trapping in the adiabatic limit. The characteristics of

the Vlasov equation,

a a 1 9U 9
(- + -+ -- )f(t, x, v) = 0, (2.5)
at 8x m 8x v

are particle orbits in the potential -U(t, x). Assume for simplicity that the initial

distribution depends only on kinetic energy, f.(E). Then the distribution function

at a time t is given by f(x, v) = f,(E.), where E0 (x, v) is the initial energy of a

particle that arrives at the point x with velocity v at time t. Assume also the potential

develops on a time scale slow compared to the bounce or transit frequency of thermal

particles across the well, so that the adiabatic approximation applies. The initial

energy of a particle E then does not depend on the details of the time-evolution or

spatial structure of the potential well, and the Vlasov equation admits a relatively

simple solution.

Two classes of particles are treated separately. Passing particles have sufficient

energy to escape from the potential well. In the adiabatic limit, their motion is not

affected by the time variation of the potential. Because the transit time of a passing

32



particle is so short, the potential may be treated as effectively static. Therefore,

passing particles gain a fixed energy U while in the potential well, and E,, = S -

U. Trapped particles, on the other hand, have motion determined by the adiabatic

invariance of Ji1 . Consider the case where the potential is initially absent, and it then

grows slowly. Just as the potential begins to develop, the well is extremely shallow.

Only particles with very low energy will therefore be trapped. In the limiting case

where the potential varies very slowly, the trapped particles must have initially been

very nearly at rest with zero kinetic energy. Based on this consideration, the trapped

portion of the distribution will be flat and have a value of fo (0), corresponding to

the fact that trapped particles must have all initially had negligible energy (EOO = 0).

The distribution thus takes the form:

f,(E - U) , E - U > 0 (passing)
f(x, v) = (2.6)

f£(0) , E - U < 0 (trapped)

To verify the analytical expression of Eq. 2.6, the distribution of particles in

the generic well illustrated in Fig. 2-1 is evaluated by numerically computing a large

sample of particle orbits. The initial distribution f& () is taken as Maxwellian for this

specific example. The theoretical distribution function and the numerically computed

one are plotted in Fig. 2-1. Following Eq. 2.6, the distribution is flat up to the

trapped-passing boundary, which corresponds to a particle kinetic energy equal to

U. It then falls off as a Maxwellian shifted by the energy U. The oscillations in

the numerically computed distribution result from the finite bounce frequency of the

trapped particles, and the deviations from the adiabatic solution become smaller as

the time variation of the potential gets slower.

Analogous electron trapping occurs during collisionless reconnection for the elec-

tron motion parallel to the magnetic field. A generic reconnection geometry near an

X line is illustrated in Fig. 2-2. The reconnection region is assumed to be embedded in

an ambient plasma with fairly uniform density and magnetic field strength. Assuming

in addition that the electron distribution in the ambient plasma is isotropic in velocity
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Figure 2-2: Reconnection geometry with typical passing (red) and trapped (blue)

electron orbits and the phase space density fe.
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space, so that f, = f,(E), it is only necessary to track changes in an electron's en-

ergy as it moves through the reconnection region. The phase-space density at a point

near the X line will then be f(x, v) = f,(E.), where E. is the initial total kinetic

energy an electron in the ambient plasma before it reaches the point x with velocity

v. Assuming the electrons are magnetized, the magnetic moment p = my2 /(2B) is

conserved and an electron's perpendicular energy decreases proportionally to B as it

approaches the diffusion region. The electrons gain energy from the parallel electric

field, the direction of which tends to accelerate electrons towards the reconnection

region [78].

As in the 1D case, trapped and passing electrons must be treated separately.

A typical passing orbit is illustrated in red in Fig. 2-2(b). It enters and exits the

reconnection region essentially along a single magnetic field line in a single pass. A

typical trapped electron orbit [like the blue one in Fig. 2-2(b)], on the other hand,

repeatedly bounces in its parallel motion along the field line and vil changes signs.

The passing electrons convect into the reconnection region with the field lines as

reconnection proceeds and draws magnetic flux in from the top and bottom of the

figure and out from the X ling along the sides.

To illustrate how the trapped and passing electrons fill out phase space, a flux

tube is highlighted in Fig. 2-3. This flux tube contains three electron populations:

two populations of passing electrons that enter the reconnection from the left and

the right in a single shot along the magnetic field lines, and the trapped electrons

that convect into the region with the magnetic field lines as they reconnect. The

energy gain of a passing electron moving along single field line into the region is

given by the acceleration potential and is e4 bi. The trapped electrons, meanwhile,

are characterized by the fact that they initially have negligible parallel energy. The

following form of the electron distribution function results:

f,(E - ebil) , passing

f(x,v) = (2.7)

f.(pB,) , trapped
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Figure 2-3: Trapped and passing particles in a flux tube populate different regions of

velocity space.

The trapped-passing boundary is given by

E - e)ii - pB.. = 0 ,(2.8)

which expresses the physical condition that marginally trapped electrons deplete their

parallel energy (Eii ~ 0) as they barely escape along the flux tube away from the

reconnection region. The parallel energy is lost to both the magnetic mirror force

and the electric force along a magnetic field line. In this model, the passing particles

exhibit a Boltzmann-like response to the potential 4@.

Contours of f from Eq. 2.7 are plotted in Fig. 2-2, where the trapped (blue) and

passing (red) contributions are color-coded. The asymptotic opening angle of the

trapped region in velocity space grows wider as the magnetic field strength decreases

compared to the upstream value. The passing region is similar to the standard loss

cone in a magnetic mirror, and the angle is

cot(0) = V = /1 - B/Bo. (2.9)
V 1
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Figure 2-4: Electron distribution observed by Wind during reconnection.

As the parallel potential <bil varies, the distribution also becomes more elongated

in the parallel direction, reflecting the heating and acceleration due to the parallel

electric field. The trapped-passing boundary intersects the vil-axis where

|V -= . (2.10)m

The value of the parallel potential may be inferred from observed electron distri-

butions. For example, the theoretical form for f was originally derived to account

for the anisotropy observed in the electron distribution during reconnection by the

Wind spacecraft [65, 66]. An example electron distribution observed during magne-

totail reconnection is depicted in Fig. 2-4. The theoretically predicted contours of the

phase space density are overlaid in black. They are based on an inferred parallel po-

tential of ~ 1kV. The elongation is consistent with this value, and the corresponding

trapped-passing boundary is given by the magenta lines.

Summary. This chapter reviewed previous results mainly by Egedal. An adia-

batic solution of the Vlasov equation describes the main anisotropy of the electrons

during magnetic reconnection. The central feature is the trapping of electrons due to

the magnetic mirror force and, more importantly, a parallel potential <bii. Electron

distributions measured by spacecraft during magnetospheric reconnection agree with

the theoretical model.
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Chapter 3

The Equations of State

In order to understand how the electron anisotropy feeds back on the structure of

the diffusion region, it is helpful to incorporate the anisotropy into a fluid model.

Corresponding to the elongation of the particle distribution described in the previous

chapter, the electron pressure tensor P develops strong anisotropy. In particular, the

parallel pressure component p = B -P. B/B 2 often becomes many times larger than

the perpendicular components. A fluid closure based on the solution of the Vlasov

equation is derived here. The fluid model yields equations of state for the parallel and

perpendicular electron pressure components that depend only on the plasma density

and magnetic field strength.

Obtaining a fluid closure for a plasma generally requires assumptions about the

plasma parameters and the relevant time and length scales. In the collisional regime,

where particle mean free paths are shorter than gradient length scales, the Bragin-

skii closure may be appropriate [79]. The Braginskii equations form a closed set of

fluid evolution equations, but they rely fundamentally on the short mean free path

assumption. Collisions tend to drive the particle distribution towards a Maxwellian

in velocity space and to smooth out velocity space gradients. The main concern of

this thesis is collisionless plasmas, where the mean free path is formally infinite. The

collisionless regime is relevant especially to high-temperature, low-density plasmas

found naturally in space. Discrete binary particle interactions become less impor-

tant as the number of particles per Debye volume becomes larger, which scales as
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nA3D T3/ 2  1/2. In laboratory fusion experiments nA3 is typically ~ 107 - 109 ,

while in space plasmas it can greatly exceed 1010.

An accurate fluid description based on equations of state does not exist in general,

but rather it depends on additional constraints on the dynamics. One method of

obtaining a fluid closure in the collisionless regime is to extend linear theoretical

results [801. The main advantage of this method is to capture, at least qualitatively,

Landau damping and other inherently kinetic plasma effects. While this approach

leads to a consistent model, it cannot correctly capture strongly non-linear evolution.

Another pair of equations of state for a collisionless plasma were derived by Chew,

Goldberger, and Low [81]. One assumptions of that model is that the magnetic field is

strong, so that a formal expansion in 1/wi is justifiable, where wi is the ion cyclotron

frequency. More crucially, the CGL model closes the fluid equations by assuming that

there is no parallel heat conduction, an assumption that is not typically justified. The

CGL equations of state give the parallel and perpendicular pressure components of

the plasma pressure tensor in terms of the density and the magnetic field strength.

They take the form
d (p B2d n =0 (3.1)

d (P1- \) -0 (3.2)
dt nB

As described below, the equations of state derived in this thesis for the electron

pressure approach the CGL scaling in the deeply-trapped limit where most electrons

follow trapped orbits.

From a solution for the particle phase-space density, any fluid quantity may be

found. For the slightly simpler 1D case of particles adiabatically trapped in a well

of depth U, the lowest order even moments of the distribution f of Eq. 2.6 for the

density and pressure are

5(x, v) = - fdv = eUqf(U1/ 2)+ (12 (3.3)
noe f V"7
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f(x, v) = Jmv2f(x, v)dv = e (/2) + 2(1/2 + 3/2 (3.4)

where = U/T, h = n/n, p = p/n.T. and T(() is the complementary error

function,

= e- 2 dz. (3.5)

The functions n(U) and p(U) are plotted in Fig. 3-1. It is worth noting also that the

density and pressure are consistent with steady-state fluid momentum balance, and

they exactly satisfy the relation

ap au
0= + n a. (3.6)

In a collisional plasma where the velocity space distribution relaxes to a Maxwellian,

both the density and pressure would scale as exp(U). For collisionless adiabatic

trapping, on the other hand, the density asymptotically scales as n oc U1 / 2 , which

is a far weaker dependence. One result is that very large potentials U are required

to build up the particle density. This will explain why, in the following treatment

of reconnection geometries, much larger parallel electric fields and parallel potentials

develop in collisionless plasmas than previously thought possible.

The density and pressure thus depend only on the local value of the potential

-U. It often proves useful to eliminate the potential -U and work only with the

fluid quantities n and p. Each relationship is one-to-one and, in particular, a given

value of U corresponds to a unique density n. The pressure is therefore implicitly a

function only of the density, p = p(n). The inversion n(U) => U(n) used to eliminate

the potential -U in favor of the density n cannot be performed analytically, but

the relation is readily inverted numerically. The final relationship p(n) is plotted in

Fig. 2-1, and it is the desired equation of state in the one-dimensional case.

The qualitative dependence of the pressure on density may be understood as
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Figure 3-2: One-dimensional equation of state: pressure p as a function of density n.

follows. When U is negative (a potential hill), there are no trapped particles and

the equation of state becomes the usual isothermal one: p = nT,. The fast passing

particles effectively transport heat, and there can be no gradients in the temperatures.

In the other extreme, for a large U that traps a significant fraction of the particles,

p(n) approaches up to a multiplicative factor the adiabatic equation of state for a one-

dimensional gas: p/p,, ~ 7r/6 x (n/n,) 3 . This adiabatic equation of state (where

adiabatic here means that there is negligible heat flux) is reached because the trapping

of particles effectively limits their ability to transport thermal energy. Essentially the

same limits hold for the parallel electron pressure in the guiding center approximation.
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Following methods similar to the ID case, moments of the guiding center distri-

bution of Eq. 2.7 may be used to yield equations of state. For the guiding center

motion, the perpendicular energy is tied to conservation of the adiabatic invariant

p = mvi 2 /2B, while parallel motion is affected by the magnetic mirror force and

the parallel potential <bii. Because the electron pressure is assumed to be symmetric

around the magnetic field direction to a good approximation, the electron pressure

tensor has only two independent components. If b = B/B is the unit vector in the

direction of the magnetic field, the electron pressure tensor is P = piE[+ (Pil - p1)Eb.

In a reference frame with the first axis aligned with the magnetic field, it takes the

form

p11 0 0

[P] = 0 Pi 0 , (3.7)

where

pil mevil 2f d v (3.8)

p = J v 2 f d3 v. (3.9)

Besides the distribution f, in the ambient plasma, the expression for f in Eq. 2.7

depends only on B and <bii. Its moments are therefore also functions of these two

quantities. For example, assuming a Maxwellian ambient plasma with temperature

T. and density n,, the density moment of Eq. 2.7 is explicitly given by

ni _ 2 2 u/b,( )n _ 2(1 - b),' + euT(V) - be b) (3.10)

for u = eD 1bi/TO > 0 and b 1 - B/B > 0, and I is again the complementary

error function. Likewise, the two pressure moments Pii and pi are functions of only

the local values of <Ii and B.

Similar to the 1D example, the relationship between n and <bil can be inverted,

at least numerically. This yields <bIi as a well-defined implicit function of n and

B. The function <bi (n, B) then serves to eliminate <il numerically in favor of the
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more convenient variable n. The result of re-expressing the parallel pressure pii and

perpendicular pressure p1 in terms of the density is a pair of equations of state.

Schematically, the procedure is to make the following inversions and substitutions:

n(il1 , B) -4 Dii(n, B) (3.11)

pil( 4 i1, B) = pl (@i1 (n, B), B) -+ p1 (n, B) (3.12)

p((D 1, B) = p1 (,D (n, B), B) -+ p1 (n, B) (3.13)

The end result is a pair of CGL-like [81] equations of state that give pii and p' of the

electrons as functions only of the local plasma density n and magnetic field strength

B [68].

The qualitative aspects of the new equations of state are similar to the 1D case.

For few or no trapped particles at low densities, the equations of state approach

the isothermal approximation p = nT, which is the equation of state for infinite

heat conductivity. This reflects the fact that passing electrons rapidly transport heat

along the field lines. Meanwhile in the deeply trapped regime at higher densities, the

equations of state approach the CGL scalings pil oc n3 /B 2 and p' oc nB. The CGL

equations of state assume zero heat conductivity, and this limit is approached in the

new equations of state because trapped electrons do not move freely along the field

lines. Fig. 3-3 illustrates how the equations of state interpolate smoothly between

these two regimes.

Weakly collisional plasmas are generally excellent electrical conductors along the

magnetic field owing to the high mobility of the electrons. Therefore, although field-

aligned potentials are a generic feature of magnetic reconnection [47], it is surprising

from a theoretical perspective that parallel electric fields can accelerate electrons to

high energies. It follows from the model presented that the parallel electric field is

balanced by gradients in the electron pressure. Associated with the elongated phase
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Figure 3-3: The equations of state.

space distributions, the electron pressure becomes highly anisotropic, generally with

the parallel pressure pii several times larger than the perpendicular pressure p1 .

The substantial pressure anisotropy, which results from the combined effects of

Ell and the gradients in B, alters the electron momentum equation and the resulting

generalized parallel Ohm's law. Within the model, the parallel electric field Ell is

balanced by the electron pressure tensor P:

-neEli = -V - P = -Viipil + (pill - p-)VI ln B (3.14)

where V11 = (B/B) - V. The strong density dependence of the trapped electron pres-

sure, p1 oc n3 /B 2 , allows significant parallel electric fields to develop: for a doubling

of the density and a magnetic field strength reduced to half its boundary value, there

is roughly a factor of twenty-four enhancement in dpii/dn over the isothermal or adi-

abatic approximations that are used extensively in other fluid models [62, 82, 83).

Furthermore, the pressure anisotropy provides an additional contribution.

The dependence of the pressure components pii and pi on the density is plotted in

Fig. 3-3 for a few values of the magnetic field. Note that for B/Bo = 1 the parallel
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pressure curve p1 (n, B = BO) is identical to the one-dimensional pressure curve p(n)

of Fig. 3-2. Most thermal particles are passing when <b1 is small or negative and

B/BOO ~'.- 1, and the perpendicular and parallel pressures both approach isothermal

forms, pjj = p1 = nTOO. In the opposite limit when a large fraction of particles are

trapped (large <bil and B/Bo < 1), the equations of state approach CGL-like double-

adiabatic scalings. This is evident in the following approximate form of the equations

of state assuming a Maxwellian fO. (given as Eq. 4 of Ref. [68]):

Pil = F(a/2) x h + F(a-1 /2) x ,

(3.15)

pL = F(a) x h5+ F(a-') x 55 ,

where h = n/nO, B = B/BOO, p = Pil/Po, p1 = pI/pO, a = 13/52, and F(x) = (1+

x)- 1 . In the following chapters, the equations of state serve as basis for studying the

electron diffusion region in magnetic reconnection with and without a guide magnetic

field in both open and closed field line topologies.

Summary. Originally published by Le et al. in Ref. [68], new equations of

state based on the solution for the electron phase-space density are described. The

equations of state interpolate between an isothermal condition when there are no

trapped electrons to CGL-like scalings when most electrons are trapped. Due to the

strong density dependence of the parallel pressure pl oc n3, strong electron pressure

anisotropy is expected to develop during magnetic reconnection with p1l > pi.
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Chapter 4

Strong Guide Field Regime

A guide magnetic field is a component of magnetic field out of the reconnection plane.

If there is a sufficiently strong guide field, the equations of state derived in the previous

chapter describe the electron pressure tensor throughout the reconnection region. It

should be pointed out, however, that gyrophase-dependent terms that fall outside the

scope of the theory are observed in kinetic simulations in a small region measuring

a few de across directly near the X line. These terms are typically important for

breaking the frozen-in condition [84].

Details of how the equations of state operate in the strong guide field regime are

discussed in this chapter. First, it is found that the parallel potential <bIl develops to

control the electron density and maintain quasi-neutrality. Due to electron heating

in the parallel electric field that produces <bii, the electron pressure then becomes

anisotropic following the equations of state. The parallel electron pressure often

becomes several times greater than the perpendicular pressure. Finally, the electron

flows required by the model are found, including electron currents induced by the

strongly anisotropic pressure.

To verify the theoretical predictions, fully kinetic particle-in-cell (PIC) simula-

tions were carried out on the VPIC code by Daughton at Los Alamos [67]. PIC codes

allow a numerical solution of the equations of motion for a collisionless plasma. VPIC

solves the relativistic electromagnetic Vlasov-Maxwell system of equations with rela-

tively few ad hoc modeling assumptions. Some details of the numerical methods are
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described in Appendix C. All of the kinetic simulation data presented in this thesis

were provided by Daughton or his collaborators, and the simulations were all carried

out using the VPIC code. The code was run on several different machines, including

Roadrunner at Los Alamos, Jaguar at Oak Ridge, NASA's Pleiades, and Kraken at

NICS.

The initial conditions of the simulations presented in this chapter contain a Har-

ris sheet [85]. This is an exact Vlasov-Maxwell equilibrium, and it also served as

the basis for the simulations performed during the GEM challenge [64]. The Harris

configuration depends on only a single spatial coordinate, and both the electron and

ion velocity space distributions are drifting Maxwellians. The original Harris sheet

consists of a magnetic field that reverses direction 1800 due to current in the plasma

layer. In the frame where E = 0, which is where the electron and ion drift speeds are

equal in magnitude and opposite in direction when T = T, the magnetic field and

density are given by

B, = Bo tanh(z/A)

By = Bg

B, = 0 (4.1)

n = o + nb,
cosh2 (z/A)

where nb is a uniform background density, Bg is a uniform out-of-plane guide field,

and the scale length A is typically taken around the order of an ion inertial length di so

that reconnection will be in the kinetic regime. Thin sheets tend to be more unstable

because the tearing mode A' parameter from the Introduction is larger. The addition

of the background guide field Bg will mean that magnetic field shears through an

angle less than 1800, unlike in the original Harris formulation.

The simulation is translationally symmetric in the z-direction and has a total

domain of 3072 x 3072 cells = 569de x 569de, where de = c/wpe is the electron inertial

skin depth. The initial Harris sheet is characterized by the following parameters:

mi/me = 360, Ti/Te = 2, Bg = 0.5Bo, wpe/wce = 2, background density= 0.3no (peak
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Figure 4-1: Profiles from a PIC simulation of reconnection with a strong guide field
along with sample particle distributions.
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Harris density), and Vth,e/C = 0.2. The code uses open boundary conditions for the

particles and fields [67]. Magnetic reconnection with a single X line evolves from a

small initial perturbation. The data presented are from a time-slice with quasi-steady

reconnection when the fields are evolving slowly. The out-of-plane current density J2,

the plasma density n, and the magnetic field strength B from this time-slice are

plotted in Fig. 4-1(a-c).

The parallel electric field Eli is usually small in a plasma, and the parallel compo-

nent of the electric field in the simulations is roughly an order of magnitude weaker

than the perpendicular component. Even so, when integrated over the ion-scale

lengths of the density structures, Eli forms an parallel potential OP (Fig. 4-2) that

reaches nearly (lI ~ (4 - 5)Te/e. This implies that the majority of thermal electrons

follow trapped orbits. The PIC code tracks roughly 2 x 109 electrons, allowing the

full electron phase-space distribution to be reconstructed. Except in a small region

directly around the X-line, the distribution is gyrotropic to within - 5%. In Fig. 4-

1(d-g), the gyro-averaged distributions are plotted as functions of vil and v1 at the

four points marked in Fig. 4-1(a). The distributions become increasingly anisotropic

as the region of large PIi is approached. This broadening of the electron distribution in

the parallel direction is well-described by the model and follows closely the predicted

dependence on the local values of 4I and B.

Comparison with the superimposed level lines of the analytic solution for f(n, B)

of Eq. 2.7 shows that the model correctly predicts the broadening and flattening

of the distribution. Note that while the model for f assumes the current sheet is

embedded in a uniform ambient plasma, computational constraints limit the size of

the region that can be simulated. Therefore, while the original model in Ref. [66] used

a uniform f, far from the X-line (in the shaded boxes in Fig. 2-2(a)), the PIC code

allows f at the edges of the simulation box to vary in order to eliminate gradients

in the density, flow, and pressure tensor at the boundary. To approximate the PIC

code's boundary values for f, f, is taken as a Maxwellian in the inflow region and,

for passing electrons that originate in the outflow region, f. a bi-Maxwellian with

n = 0.33no and 7]i = 2TL = 2Te.
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Figure 4-2: Parallel potential in a PIC simulation of reconnection with a guide mag-
netic field.

Fig. 4-1(c) shows that during magnetic reconnection with a guide field regions of

enhanced plasma density develop along two of the separators. The density pertur-

bations typically form at length scales over which the ions and electrons are decou-

pled. In order to maintain quasi-neutrality, an electric field parallel to the magnetic

field accelerates electrons (which are magnetized on these scales) into regions with

enhanced density of ions (which are not magnetized) and traps electrons in those

regions. It Follows from the first moment of Eq. 2.7 that the electron density scales

as n oc (e4iI/Te) 1/ 2 for large 4ii > Te/e neglecting magnetic effects. This is a rela-

tively weak response compared, for example, to a collisional Boltzmann gas in which

the density increases exponentially with a potential -U as n oc exp(U/T). Given

the new equations of state, very large parallel potentials are therefore required to

accommodate increases in density. The role of Di1 in regulating the electron density

is reflected in the fact that (i1 (Fig. 4-2) is localized to the regions of enhanced den-

sity [Fig. 4-1(c)]. Due to the open boundary conditions, Gli need not vanish at the

simulation edge, so the integration constant is fixed by matching to 4l (n, B) at the

midway point of each field line. e411 reaches a maximum of 4 - 5T, implying that

the majority of electrons in regions of enhanced density are electrically trapped.

As shown in the previous chapter, in addition to regulating the electron density,
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Figure 4-3: Comparison of direct PIC simulation results to the equations of state,

which predict the pressure and parallel potential profiles based on the PIC density

and magnetic field strength.
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the parallel electric field heats the electrons in the parallel direction. Because the

guide field is strong enough to magnetize the electrons nearly everywhere, this parallel

heating should be captured by the equations of state. In fact, both the parallel and

perpendicular components of the gyrotropic pressure tensor are well-described by the

equations of state. To show that the parallel potential 4i1 is consistent with the model,

its computed profile is compared to the predicted profile based on n and B in Figs. 4-

3(a,b). Also in Fig. 4-3 are similar comparisons of the parallel and perpendicular

pressure profiles, both from the PIC code and predicted by the equations of state based

on the values of n and B from the simulation. The parallel and perpendicular pressure

profiles, calculated using I (n, B), agree well with the pressures obtained directly

from the PIC simulation. In the outflow region, the parallel pressure reaches nearly

five times its boundary value, yet our fluid model differs from the PIC simulation

by less than ~ 20% throughout the simulation domain. This pressure corresponds

to a parallel temperature of ~ 4T, and it agrees with a scaling predicted by our

model, Til - (2/3) x (ebil + T), valid for large 4i. Similarly, while the perpendicular

pressure drops to half its boundary value, the numerical results and our model agree

everywhere to within a few percent. The parallel heating by Eli, along with the

adiabatic perpendicular cooling associated with the conservation of p in a decreasing

magnetic field, leads to the pressure anisotropy pli/pi ~ 7rh 3/125 2 predicted by the

equations of state. In this case, the electron pressure becomes strongly anisotropic

and the maximum ratio of nearly pilp' - 5 predicted by the equations of state is

reached in the simulation.

The parallel pressure from the PIC simulation and from the new fluid model are

plotted in Fig. 4-4 as functions of y along a cut 30de to the right of the X-line (the

same cut used in Fig. 4-1(d-g)). For comparison, Fig. 4-4(b) presents similar plots

based on data from another PIC simulation with a mass ratio of mi/me = 180, but

otherwise identical. Most notably, agreement between the fluid model and the PIC

simulation improves for the higher, more physically realistic mass ratio. As the mass

ratio increases, the electron bounce and transit times become comparatively shorter,

and it approaches the limit in which the fluid model is exact.
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Figure 4-4: Comparison of equation of state for the parallel pressure to simulation
results at two different mass ratios.

As noted in Ref. [68], the distribution function of Eq. 2.7 is formally only the

zero-order term in an expansion f = f(0) + f( 1)(U/Vthe) + f( 2 )(U/Vthe) 2 + ... , where u

is the mean flow speed. Even moments, such as the density, n = f fd 3 v, the parallel

pressure, p1 = f mv fd 3 v, and the perpendicular pressure, pi = (1/2) x f mVf d3v,

can be obtained by direct integration. On the other hand, the fluid flow u, an odd

moment, must be found using another method. The flow may be deduced form the

momentum conservation equation, which relates the first-order flows to the zero-order

pressure. The perpendicular electron current jeI = -neuel is obtained by considering

force balance in given electric and magnetic fields. Neglecting inertia and assuming

a gyrotropic pressure tensor, momentum balance requires a perpendicular electron

current given by

ExB 1 1
jei ~ -ne B 2  + B b x Vp + Bb x (pli - p)s, (4.2)

where r = b - Vb is the magnetic field curvature vector. The perpendicular electron

current is thus composed of three pieces: the first term in Eq. 4.2 stems from the
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Figure 4-5: Prediction for the parallel electron current compared to PIC results.

E x B drift, and the remaining currents arise from grad-B and curvature drifts and

the magnetization current. The last term is especially important near the X-line,

where the magnetic field lines are tightly curved and the parallel pressure is often

several times greater than the perpendicular pressure (again, reaching pil/PI ~ 5

in the above simulation). Once the perpendicular electron currents are known in a

given magnetic geometry, the parallel current jell = je -b follows from the steady-state

electron continuity equation. Along each magnetic field line, the continuity equation

V -j, = 0 becomes the following differential equation for jell:

jel= -jIegV - b - V -jei, (4.3)

where 1 parametrizes the length along the field line. The result of integrating this

equation is compared to the parallel current directly computed by the PIC simulation

(Fig. 4-5). The boundary condition is fixed by matching to the PIC values at the

point where each field line enters the simulation domain.

Because the new fluid closure applies nearly everywhere during reconnection with

a strong guide field, it can be incorporated into fluid codes that model guide field

reconnection. Ohia of the VTF group has already implemented the new equations of

state in two-fluid simulations performed on the HiFi framework developed by Lukin

of NRL. By including the strong pressure anisotropy predicted by the equations of

state, the new fluid code agrees much better with PIC simulation results. The pressure

anisotropy is necessary to reproduce the elongated, narrow current layers that form
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Figure 4-6: Comparison of kinetic simulation to fluid simulations, with and without
the new equations of state.

in kinetic simulation. Fig. 4-6 compares results of a PIC simulation of reconnection

with a strong guide field to fluid code runs with and without the new equations of

state. The out-of-plane current forms an elongated channel in the PIC simulation

and the code that uses the new fluid closure, but the current profile is very different

in the run that employs a simple isotropic, isothermal fluid closure for the electrons.

Summary. The equations of state hold nearly everywhere during reconnection

with a strong guide field, as shown by Le et al. in Ref. [68]. In the kinetic regime,

ions and electrons decouple at small scales (below di), and a parallel potential 4in1 de-

velops to maintain quasi-neutrality. Besides trapping electrons in regions of enhanced

density, 4ii heats the electrons in the parallel direction and leads to strong pressure

anisotropy with pil > pi. The pressure anisotropy drives strong, but localized, elec-

tron currents. All of the predictions are borne out in fully kinetic PIC simulations

carried out on the VPIC code by Daughton [671.
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Chapter 5

Neutral Sheet Reconnection

Neutral sheet, or anti-parallel, reconnection refers to the situation where the magnetic

field shears through 1800 across a plasma current layer, and the total magnetic field

B therefore passes through zero. Reconnection in this configuration has long served

as a model for the dynamics of the plasma sheet in Earth's magnetic tail [12]. One

characteristic of the electron dynamics during anti-parallel reconnection is strong

electron temperature anisotropy with T11 > TL that develops in the inflow region.

Another feature is a system of electron-scale Hall currents that produce a signature

magnetic field structure observed in spacecraft measurements, numerical simulation,

and laboratory experiments [16,37,38,52,67,86]. In kinetic simulations, a jet of outflow

electrons [88-90] streaming faster than the E x B speed produces a quadrupolar Hall

magnetic field. It is shown in this chapter how the electron temperature anisotropy,

which is described by the equations of state, and the Hall magnetic field sustain each

other and that both are functions of the upstream 3e (the ratio of electron fluid and

magnetic pressures).

An important difference from guide field reconnection is that in anti-parallel re-

connection the magnetic field goes to zero, so that electron orbits cannot be treated

as magnetized within the neutral sheet. Even as reconnection proceeds, regions of

very weak magnetic field persist around neutral points. In principle, this precludes

the use of the equations of state, which assume that the electrons remain magnetized.

Upstream from the neutral sheet, however, the electrons are magnetized. Because
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this geometry contains regions where the electron are magnetized and where they

are not, this configuration provides a test of the limits of validity of the equations of

state. Furthermore, it turns out that the electron temperature anisotropy predicted

by the equations of state just outside the neutral sheet, where the electrons are still

magnetized, imposes useful relationships between the upstream electron pressure and

the Hall magnetic fields.

To explore the application of the equations of state to anti-parallel reconnection,

PIC simulations were performed to study the electron diffusion region around an X

point [69]. Fig. 5-1 shows field profiles from one such simulation. As in the simulations

with guide field, magnetic reconnection with a single X-line evolves from a small initial

perturbation, and the data are shown a time after the reconnection rate has saturated

and reached a quasi-steady state. The PIC code is translationally symmetric in the

z-direction and has a total domain of 2560 x 2560 cells = 400de x 400de. The initial

state is a Harris neutral sheet (Bguide = 0) with gradients in the y direction and is

characterized by the following parameters: mi/me = 400, Ti/Te = 5, wpe/wee = 2,

and background density = 0.3 no (peak Harris density).

The density n is fairly uniform in the vicinity of the X-line, while the value of B

becomes very low (Fig. 5-1(a,b)). The quadrupolar out-of-plane Hall magnetic field

B2 is shown in Fig. 5-1(c). The focus here is on the inner electron diffusion layer

near the X-line where strong electron currents out of the plane jz and in the outflow

direction j, (Fig. 5-1(d,e)) move in a narrow channel. The electrostatic potential <b in

Fig. 5-1(f) is negative throughout the outflow region, consistent with perpendicular

electric field measurements of a reconnecting current sheet in the magnetotail [91].

This in-plane potential tends to accelerate ions into the outflow. The parallel potential

<bil, on the other hand, is more important for the electron dynamics and contains a

contribution from the out-of-plane inductive reconnection electric field E2. As seen

in Fig. 5-1(g), 4Dil is therefore positive, reaching nearly <ii ~ 4Te/e, and it traps a

large fraction of the inflow electrons.

As mentioned above, the equations of state derived for guide-field reconnection

also apply in the anti-parallel case to the inflow region where the electrons are mag-
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Figure 5-1: Profiles from a PIC simulation of neutral sheet reconnection.
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Figure 5-2: Pressure ratio and magnetic field strength with a typical trapped electron

orbit.

netized. They agree with the PIC simulation to within - 10% up to a layer a

few de = c/wpe wide. The temperature anisotropy in the inflow region is substan-

tial: for the present simulation, the maximum upstream temperature ratio is almost

'I/TL ~ 7 (see Fig. 5-2(a)). In the outflowing exhaust where the equations of state

are inapplicable, however, the temperature becomes nearly isotropic. The velocity-

space isotropy results from electrons effectively being pitch-angle scattered during

their passage through the very weak magnetic field. The magnetic field strength B

is plotted in Fig 5-2(b) along with an example trapped electron orbit. The electrons

repeatedly cross the region of weak magnetic field where pL is not conserved, and this

loss of pitch angle coherence leads to a nearly isotropic pressure tensor.

In the Sweet-Parker and other resistive models, the reduced Ohm's law E+u x B =

r/J is essential for determining the reconnection rate. By analogy, it has been typical

in reconnection research to focus on electron momentum balance in the direction
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of the reconnection electric field due to its role in breaking the frozen-in condition.

To understand the structure of the electron jets and diffusion region in anti-parallel

reconnection, it proves most fruitful to instead consider perpendicular momentum

balance. In the electron diffusion region, the electrons carry essentially all of the

current and therefore nearly all of the J x B force exerted on the plasma. Due

to the substantial current in the electron jets, the magnetic field lines are tightly

curved. This corresponds to a strong perpendicular magnetic tension force, indicated

schematically in Fig. 5-3. It turns out this is the largest electromagnetic force on

the electrons by at least an order of magnitude, and it is balanced by the electron

pressure anisotropy.

The importance of the temperature anisotropy is highlighted by steady-state elec-

tron momentum balance written in the form

0 = Vi { (B 2/2o +p1} 5ij + (p|| - p - B 2 IO)b b} + F, (5.1)

where the electron pressure tensor Piy is used to define pi = .1{Pi (oij - bibj)} and

Fi contains the electric field, non-gyrotropic pressure, and inertia contributions. Be-

cause the field lines are sharply curved, Vibibj is large. The corresponding tension

is balanced by the anisotropic electron pressure, such that just outside the extended

electron jets (p1l -p -B2/po) 0. In fact, a similar condition must hold immediately

outside any steady-state, one-dimensional current layer with a normal magnetic field

[92, 93].

For the present geometry, consider x-momentum balance for a differentially narrow

fluid element extending ~ 4de across the outflow jet (for example, the small shaded

box in the top of Fig. 5-4). Eq. 5.1 is integrated over the electron layer using the

divergence theorem for the terms in brackets. The largest contributions come from

B 2 bxby and (pil - ps)bxby evaluated immediately outside the jet and are plotted in

Fig. 5-5. Also plotted are smaller contributions from x gradients in the stress tensors

and flow velocity integrated across the layer (along the sides of the shaded box), where

the full non-gyrotropic electron pressure tensor is taken from the code. Although
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Figure 5-3: The magnetic tension and electrical forces acting on an electron fluid

element in an outflow jet.

relatively small, inertia and the (comparable) electric force influence the internal

structure of the electron jets, and they become important where the flows peak and

then terminate roughly 4 0de downstream from the X-line.

Thus, although the electrons acquire a significant outflow velocity within the jets,

which can exceed the upstream thermal speed Vthe, it is clear from Fig. 5-5 that

the tension portion of the J x B force associated with B2 bibj (sketched in bottom

of Fig. 5-4) is much greater than the force required to accelerate the electrons. The

magnetic tension force is largely balanced by the anisotropic electron pressure, and the

relevant outside terms approximately cancel: p1l -p_ ~ B 2/Io. This level of pressure

anisotropy with p1l > pi is also the threshold for the electron fire hose instability.

Several scaling laws may be derived from the main result from force balance con-

siderations, that p1 - p1 ~ B 2/po immediately upstream from the electron jets.

Combined with the equations of state pil(n, B) and p±(n, B), this condition deter-

mines parameters of the electron diffusion region. Fig. 5-6 shows pl1 - pi and B 2 /P

as functions of y along a typical cut 15de to the right of the X-line using both the sim-

ulation data and the equations of state. The solution to p11 (n, B) - pi(n, B) = B2

(where the blue and green lines in Fig. 5-6 intersect) gives the value of the magnetic

field strength immediately outside the electron jet, denoted here by BH-
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In each of the simulations, the density is approximately uniform with h ~s 1. Using

this result, BH is then only a function of the ratio of electron to magnetic pressure

at the inflow boundary, #eoo = 2popeo/B2. This relation is shown in Fig. 5-7(a).

Following from the asymptotic limits of the equations of state, an approximate form

valid for small 5H is
BH (_3p3\o1/4 (5.2)

12 )

Kinetic simulations confirm the above relationship. The scaling law is compared

to three PIC simulations of reconnecting current sheets, each using a mass ratio of

mi/me = 400, but with varying electron #,3o. BH is evaluated where the out-of-plane

electron current reaches 40% of its maximum (roughly (2 - 4de from the peak) and

is marked in Fig. 5-7(a) for the three numerical studies. The middle simulation is

a run on the code P3D with fully periodic boundary conditions [88], and the others

implement open boundary conditions on VPIC [67].

Similarly, the equations of state provide an estimate for the maximum electron

temperature ratio 11I/T 1 . As visible in Fig. 5-6, the equations of state break down

slightly before B reaches the predicted value of BH. Empirically, it is found that

evaluating the equations of state at 1.25BH (which corresponds to a point where the

equations of state are still valid) gives a good estimate for the maximum TI/T1 in

agreement with the three simulations. The scaling plotted in Fig. 5-7(c) is approxi-
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The temperature anisotropy in the inflow region is largely due to particle trapping

by the parallel electric field, or equivalently <b1. Fig. 5-7 plots the prediction for 4

at the point of maximum temperature anisotropy upstream from the electron outflow

jets, obtained from the relationship <Il = <b (n, B) with n = n, and B = 1.25BH.

Note that for low #eo, the low value of BH induces a large <bI, scaling roughly as

1 [( h )11 - 1(5.4)
Teoc 2 #e,0 2 '

and the majority of inflow electrons are trapped. Because #e is often very low in

Earth's magnetotail, electrical trapping in the inflow region is likely a crucial mech-

anism for creating the upstream electron temperature anisotropy with Ti > T1 ob-

served by both the Cluster and Wind spacecraft near reconnecting current sheets [94].

The plasma beta is also often very low above active regions of the solar corona [95].

Large parallel potentials could therefore possibly generate the electrons with large

parallel energies associated, for example, with Type III radio bursts during solar

flares [96]. The model, however, requires some generalizations for #eo < 0.01 to

account for effects of a very large <bll > 1OTe/e [97].

Based on the scaling of <bIl with #e derived above, Egedal proposed in Ref. [98]

that kinetic simulations run at lower #e more typical of the magnetotail would better

match the strong electron heating observed, for example, by the Cluster spacecraft

during a reconnection even on October 1st, 2001 [94, 99]. The pressure in that event

became extremely anisotropic, and the details of the electron distribution in Fig. 5-8

are consistent with a parallel potential of ~ 10OTe. To test the proposal that more

realistic values of #e are necessary to reproduce the observed heating, a PIC simula-

tion with an upstream value of #e ~ 0.003 has been carried out. In order to eliminate

boundary effects, the simulation domain is very long in the outflow direction. The

profiles of the density n, parallel electric field Eli, and parallel potential <bI are plotted
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Figure 5-7: Predicted scaling laws and values from three simulations.

in Fig. 5-9. The parallel electric field Ell exhibits substantial fluctuations, including

bipolar electrostatic structures that are most likely electron holes. These fluctuations

are superposed on a large-scale coherent field that integrates up to a significant paral-

lel potential <bll. In fact, the simulation confirms that the parallel potential becomes

extremely large (e4Pbl ~ 100T,) under these plasma conditions. Surprisingly, 4Dil ex-

tends over much longer length scales than previously thought possible, and it is not

limited to localized de scales. This mechanism can therefore populate large volumes

of the magnetotail with energetic electrons.

For a given &e,, the equations of state predict a unique value for BH - In turn, this

value of BH imposes the value the net current in the electron layer through Ampere's

law. This implies another result consistent with the simulations: the magnetic field

strength is nearly uniform along the current sheet. While its magnitude is roughly

constant, the magnetic field's direction rotates along the outflow jet, producing the

characteristic Hall field B_, in agreement with earlier descriptions [52]. This result

is somewhat surprising because the total electron current is therefore independent of

the reconnection electric field. Unlike the current density in resistive models, where

J = E/rl, the electron current at the X line and in the electron jets in this kinetic

regime is insensitive to the strength of the electric field. This has been verified in
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Ref. [100] by artificially varying the reconnection electric field within the narrow

electron layer in PIC simulations. When the field Ey is doubled or set to zero within

the layer, the current density profile changes somewhat. On the other hand, the total

integrated electron current remains the same, and it is determined by the level of

external anisotropy.

Based on the known total current, a simple model describes the currents in the

electron jets. Approximate the outflow jet as a sheet with current density 2K and

with the magnetic field immediately outside given by B = ey x poK + Byey. Along

the outside of the jet, IBy| 2 <|K 1|2 for tens of de, and the uniformity of BH (and ne)

thus imply that

u2 + u ~ (BH/ne6)2 = = const. (5.5)

where ue is the electron flow in the sheet and 6 is the current layer half width.

The simulation suggests that this inflow velocity is roughly constant along the

layer, which allows a solution for the outflow velocity components. To determine uex,

we first consider mass conservation:

6-u Ue constant, (5.6)

from which it follows that uex = u, (x - xo)/L. Using Eq 5.5, we then find uez

u, 1 - ((x - Xo)/L) 2 , where x = x0 corresponds to the X-line. The characteristic

length L is not predicted by the model, and it depends on the reconnection rate and

other external factors.

The equations of state thus yield a relatively simple fluid model for the gross fea-

tures of the electron layer during anti-parallel reconnection. The internal structure

of the layer, however, is determined by the complex structure of the electron phase

space distribution. While global momentum balance is ensured by the external pres-

sure, electron kinetic effects, including highly non-gyrotropic pressure, govern local

momentum and energy balance. Below are results obtained by Ng et al. in Ref. [1001.

In that paper, high-resolution electron distributions are calculated in the electromag-

netic fields from the PIC simulation by tracing many (a few million) sample electron
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Figure 5-10: Simple model for the electron currents in a jet.

orbits from points within the electron layer [100]. The resolution is enhanced over

the PIC results, and it has been verified that the calculated distributions reproduce

the lowest-order moments, namely density and current, that act as sources for the

electromagnetic fields.

As mentioned above, the electron distribution outside the electron layer is given

by Eq. 2.7, and it is highly elongated parallel to the magnetic field. Within the layer,

the electron distribution is more complicated. Isosurfaces in 3D velocity space of the

electron distribution plotted in Fig. 5-11(a) are reproduced from the paper by Ng

et al. [100]. The distribution is separated into two distinct populations, formed by

electrons with positive or negative velocity across the layer in the z direction. It also

becomes filamented into a series of fingers, which maintain the elongated character of

the external distribution. The fingered structure is related to the bouncing motion of

electrons within the inner layer. Trajectories of electrons with zero (red), one (blue),

and two (magenta) bounces are plotted in Fig. 5-12, superposed on contours of the

Hall electric field E, that borders the electron layer. Electrons that bounce more

times pick up energy in the out-of-plane y direction, and the energetic tail of the
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Figure 5-12: Electron bouncing motion generates finger-like phase space structures.

triangular distribution is composed of electrons that bounce many times within the

layer and are accelerated out of the plane. The fingers in Fig. 5-11(a) are color-coded,

and the color corresponds to the number of bounces within the layer.

In addition to a rich velocity space structure, the electron distributions have spatial

gradients that are especially important for understanding local momentum balance

within the electron layer. The distributions in Figs. 5-11(b,c) are from points slightly

above and below (0.33de away from) the X line. The small shift between the two

populations of electrons leads to pressure gradients that balance the local electric

field. Similarly, pressure tensor gradients are present due to the relative orientations

of the distributions at points the left and right, plotted in Figs. 5-11(d,e) at 5de from

the X line. For comparison, distributions from the PIC code are plotted in Figs. 5-

11(f,g). While they have the same density, velocity, and pressure moments as the

orbit tracing results, there are too few sample particles in the PIC code to resolve the

detailed finger-like structures that arise in the electron phase space.

Summary. The equations of state originally derived for guide-field reconnection

apply to the inflow region of the anti-parallel case. As described by Le et al. in

Refs. [691 and [70], the equations of state link the electron pressure outside the re-

connection region to the characteristic strength of the Hall magnetic field BH through

a momentum balance condition, p1l - pi : B1. Following from the dominant terms
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of the electron momentum balance equation integrated across the electron layer,

dV(J 1 x B) f dA - (pil -)bb, (5.7)

the volume-averaged perpendicular electron current is significant. Upstream temper-

ature anisotropy and the curvature of the Hall magnetic field drive perpendicular

electron currents beyond the E x B drift speed, and these currents in turn generate

the Hall magnetic field. The equations of state set the parameters of this model

in terms of the upstream magnetic field and electron pressure. An important new

prediction is that the parallel potential scales as <Dil oc #-2, and electron heating is

therefore greatest in low- 3e plasmas.
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Chapter 6

Guide Field and Mass Ratio Scans

Previous chapters dealt with the cases of a strong guide field and zero guide field.

A strong guide magnetizes electron orbits, and the pressure tensor is well-described

by the equations of state throughout the reconnection region. In anti-parallel re-

connection, on the other hand, the inflowing electron pressure becomes marginally

firehose unstable and drives a collimated jet of outflowing electrons. Meanwhile, the

exhaust electron pressure is nearly isotropic because pitch angle coherency is lost as

electrons repeatedly pass through a region of very weak magnetic field where the or-

bits are chaotic and p is not conserved. Models of reconnection in Earth's magnetic

tail often assume that the initial magnetic field lines in the plasma sheet are precisely

anti-parallel [12, 101]. Generic configurations, however, include a finite guide compo-

nent of the magnetic field, meaning that the magnetic field shears through an angle

less than 1800 and does not pass through zero. The presence of even a small guide

field component in realistic configurations calls into question the relevance of exactly

anti-parallel models. This chapter explores how the fully evolved reconnection geom-

etry depends on the strength of the guide field in configurations that range from the

anti-parallel to the strong guide field regime.

Studies of reconnection with varying guide fields have previously been performed,

both in Hall MHD fluid simulations [102] and in kinetic PIC simulations [103]. More

recent kinetic simulations, however, demonstrate that the results are sensitive to the

ion-to-electron mass ratio that is implemented numerically [104]. Due to the neces-
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sity of greater spatial and temporal resolution for a fixed system size and simulation

length measured on ion scales, the computational time required for an explicit PIC

simulation in d spatial dimensions scales as (mi/me)(d+)/ 2 [1051. To limit compu-

tational requirements, many previous PIC studies use mass ratios mi/me < 100

[1061. Because they are so computationally intensive, large simulations at the physi-

cal proton-to-electron mass ratio of mi/me = 1836 have only recently become feasible

even in 2D. The simulations of Ref. [104] were performed on an implicit code (which

sacrifices some accuracy at small scales for reduced computation time), and explicit

simulations performed on VPIC and presented in this chapter have confirmed some

of those findings.

A series of PIC simulations provided by Daughton vary both the guide field

strength and the numerically implemented ion-to-electron mass ratio. Qualitatively

different electron current structures evolve depending on the mass ratio. The new

results help sort out which are artifacts of the numerical parameters. An example

of where this may be important in making contact with observational data comes

from Cluster spacecraft measurements. The Cluster spacecraft recorded evidence for

an extended jet during reconnection in Earth's magnetosheath in the presence of a

guide field of ~ 16% of the upstream reconnecting field. In Ref. [107], this electron

jet is compared to an anti-parallel PIC simulation run that used a mass ratio of only

mi/me = 25. Based on the new scans of guide field and mass ratio presented in this

chapter, it is rather unlikely that the simulation described in Ref. [107] suffices to

explain the observational data. The observed jets may be more similar to an entirely

new regime found in the present simulations. With intermediate guide fields at the

physical proton-to-electron mass ratio, a very long (> 15di) electron current sheet

driven by pressure anisotropy is embedded in the reconnection exhaust.

The new simulations vary the guide field and use three different ion-to-electron

mass ratios of mi/me = 100, 400, and 1836. Each case is translationally symmetric

in the y direction. The system sizes and the duration of each simulation are listed

in Table 6.1. (Note that when mi/me is varied, a system of fixed size in terms of

di changes size measured in de oc v/me/midi. The initial conditions again contain a
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Table 6.1: Simulation parameters.
Mass Ratio Box Size Final Time

mi/me di x di de x de cells 1/Qcio
100 40 x 20 400 x 200 2560 x 1280 43
400 20 x 20 400 x 400 2560 x 2560 25
1836 20 x 20 857 x 857 5120 x 5120 25

Harris sheet whose unperturbed magnetic field B has components

B= Bo tanh(z/A)

By Bg (6.1)

B= 0,

where A = 0.5di and the uniform guide field Bg is chosen from

Bg/Bo E {0, 0.05,0.07,0.14,0.2,0.28,0.4,0.57,0.8}. (6.2)

The Harris sheet plasma parameters are the same as those used in the previous chapter

on anti-parallel reconnection: Ti/Teo = 5, and wpe/wce = 2. This is superposed on a

slightly cooler uniform background plasma with density nb = 0.22no (no is the peak

Harris density), Ti/Te = 5, and Vthe/C = V/T/mc2 = 0.13. The density profiles in

the final time slice of each simulation are plotted in Fig. 6-1.

First, it is useful to determine when the equations of state apply near the re-

connection region. As described in previous chapters, the equations of state hold

essentially everywhere for strong guide fields and in the inflow for zero guide field.

In any case, the inflow electron pressure obeys the equations of state independent

of the guide field as long as the mass ratio mi/me is large enough to allow a fast

electron bounce frequency. For the chosen background density and temperature, the

ratio of upstream electron to magnetic pressures is 3e = 2ponbTe/Bo2 ~ 3%. In most

of the simulations, the ratio of components pil/pi reaches ~ 10 upstream from the

X line. This level of anisotropy is consistent with the scaling pii/pI~ (4#3)-1/4 of

the previous chapter. The ratio pilpI is plotted near the end of the simulation for
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each of the runs in the scan in Fig. 6-2. Although the peak value varies somewhat

depending on the density profile (plotted in Fig. 6-1, the equations of state are valid

in the inflow region for each of the simulations.

In the reconnection exhaust, the level of electron pressure anisotropy does depend

on the value of the guide field. In Fig. 6-2, there is a fairly abrupt transition between

cases where the exhaust pressure is isotropic and cases where strong anisotropy devel-

ops following the equations of state. Recall that during anti-parallel reconnection, the

equations of state do not hold in the exhaust because the magnetic field becomes very

weak. The conservation of the adiabatic invariant p breaks down, and the pressure

becomes approximately isotropic. As a guide field component is added, the electron

orbits will eventually become adiabatic. As mentioned in the introduction, the invari-

ance of p requires that the electron Larmor radius p, be smaller than the magnetic

field line radius of curvature RB [74],

-- < 1(6.3)
RB

The ratio pe/Rb, where pe = Vthe/Qce is based on the upstream temperature, is plotted

in Fig. 6-3. It is found empirically that the electron pressure becomes nearly isotropic

when pe/Rb ~ 0.15 in the central region of weak magnetic field. This falls in line with

the theoretical predictions of Ref. [74]. A value of pe/Rb ~ 0.15 corresponds to a

value of the parameter h = V/RB/pe introduced in Ref. [74] in the range , ~ 2 - 3,

and for this parameter regime the electron orbits are expected to become chaotic. In

the kinetic regime of interest, the adiabatic or non-adiabatic nature of the electron

orbits strongly influences the structure of the electron currents that develop.

Focusing on the cases with very weak guide field, the scan of parameters helps

determine when the upstream pressure anisotropy may drive electron currents in an

inner collimated layer near the X line during anti-parallel reconnection. Goldman

et al. find in Ref. [104] that these inner electron jets can be deflected even for very

weak guide fields. The deflection is most pronounced at higher mass ratios mi/me,

and guide fields of - 5% may nearly eliminate the inner electron jets at the physical
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proton mass ratio. This result is confirmed by the parameter scan performed on

VPIC. The exhaust electron flow ue, and out-of-plane flow Uey from the simulations

are plotted in Figs. 6-4 and 6-5. The inner electron jets are mostly deflected by a

guide field as low as B. = 0.05Bo at the physical mass ratio mi/me = 1836, although

they form at B = 0. 14BO even at a fairly high mass ratio of mi/me = 400. Jets

form at still higher guide fields at mi/me = 100. Care must therefore be taken when

comparing PIC results to detailed spacecraft observations, particularly because very

few previous simulations employ realistic mass ratios.

As visible in Figs. 6-4 and 6-5, the inner electron jets form at very weak guide

fields. Although the basic structure of the inner jets is similar to the anti-parallel

case, the guide field does modify the electron currents. In particular, a portion of

the guide field may be shielded from the region immediately around the X line by

asymmetries in the electron current. Some details are described below, and they are

based on the runs at mi/me = 400. For this mass ratio, inner electron jets form up to

a guide field of Bg = 0.14Bo. These runs correspond, at least qualitatively, to results

at the proton mass ratio mi/me = 1836 with guide fields Bg < 0.05Bg. Plotted

in Fig. 6-7(a,b) is the pressure anisotropy pi/pI for guide fields of Bg = 0.05 and

0.14Bo. Consistent with the equations of state, it reaches pi/P' ~ 9. The magenta

contours in each case indicate where the electron pressure is nearly firehose unstable,

with pil - pi - B 2 /po = E for e chosen as 0.5% of the upstream magnetic pressure.

The anisotropy drives the jets of outflowing electron current, plotted are plotted in

Fig. 6-7(d,e), similarly to the exactly anti-parallel case.

In terms of the orbits of individual electrons, electrons oscillate across the inner

layer when it forms. This type of bouncing trajectory, denoted a meandering orbit in

Ref. [108] is similar to the ones plotted in Fig. 5-12. Following the results of Ref. [74],

this class of electron orbits exists when the parameter pe/RB > 1. The values of

Pe/RB are re-plotted in Fig. 6-6 with the color scale altered to show runs for which

Pe/RB exceeds one. This condition empirically provides a good predictor for the

existence of an inner electron jet.

At guide fields higher than 0.15Bo at mi/me = 400, there is an abrupt transition
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(mi/me = 400).

in the structure of the electron region around the X line. Specifically, the narrow inner

electron layer does not form. This occurs well before the guide field is strong enough

to magnetize the electron orbits at the reconnecting field reversal, as evidenced by

the high values of pe/RB in Fig. 6-3. The values are not high enough, however, to

enable electrons to follow bouncing orbits near the X line (See Fig. 6-6). Figure 6-7(c)

shows results from the simulation with a guide field of 0.2B0 , the lowest guide field for

which an extended electron layer does not form at mi/me = 400. Note also that the

level of anisotropy is reduced, and the region of strong pressure anisotropy is shorter

along the outflow and does not reach as far into the x-line region in the inflow. There

is therefore practically no layer where the firehose condition is met, and there is no

collimated electron outflow jet in this case [see Fig. 6-7(f)].

When they do form, the extended electron layer and jets leave observable traces

in the magnetic and electric field profiles near the X line. Anti-parallel reconnection

is marked by the emergence of characteristic Hall fields, in the form of a quadrupolar

perturbation of the out-of-plane magnetic field B.. If an electron jet forms, the out-of-

plane magnetic field rapidly changes sign across the electron layer due to the current

carried by the outflowing electrons. Indeed, the steep gradient in B. at the center
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of the electron diffusion region helped identify jets in data gathered by the Cluster

spacecraft [107]. A similar magnetic field structure is observed for guide fields where

an electron layer forms, as in Fig. 6-8(a) for B_, = 0.14Bo. In contrast, in Fig. 6-8(b)

at the higher value of B. = 0.2Bo where no jets form, there is a relatively broad

region of weak out-of-plane field.

In addition to a magnetic field perturbation, a strong inward pointing electric

field E2 is associated with the electron region in anti-parallel reconnection. This

electric field maintains quasineutrality by preventing an overabundance of electrons

from accumulating within the electron layer. The electric field E2 in Fig. 6-8(a),

where a guide of field of 0.14Bo is included, has a structure almost identical to that

of purely anti-parallel reconnection. At higher guide fields, however, the electron

layer is absent and the electric field profiles lack the signature extended formation

[Fig. 6-8(d)].

In exactly anti-parallel reconnection, the outer part of the Hall current loops Je

are carried almost purely by electron flows parallel to the magnetic field. With the

addition of a guide field By, however, there are additional electron currents in the

x direction. Perpendicular E x B motion arises due to the out-of-plane field By

crossed with the intense electric field normal for the electron layer E_. The ions

are unmagnetized on the length scales of the layer, and the electron E x B motion

therefore results in a net electrical current. Figure 6-9(a) shows the electron current

Jex along a cut 20de to the right of the x-line in a simulation of exactly anti-parallel

reconnection. The parallel component of this flow is also shown, and it accounts

for essentially all of Jex. With a guide field B, = 0.14Bo, on the other hand, the

E x B motion cancels some of the parallel current on one side of the electron layer as

illustrated in Fig. 6-9(b). In particular, the currents that would add to the external

guide field are reduced, and this is the main mechanism for expelling guide field from

the x-line. The inner electron jets thus form at very weak guide fields, although

a weak guide field breaks a symmetry of the layer and distorts the electron current

distribution somewhat. As noted in Ref. [104], however, there are major discrepancies

when the physical proton mass ratio is implemented that are hard to reconcile with
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Cluster observations [107] for example.

At the higher physical mass ratio, the electrons remain magnetized even for rel-

atively weak magnetic fields. In fact, a new regime that may be more relevant to

the spacecraft observations opens up when the physical proton-to-electron mass ratio

is implemented. For this intermediate guide field, the reconnection exhaust includes

very long magnetized electron current layers. At guide fields of - 15 - 50% of the

upstream reconnecting field, a long electron current layer develops embedded within

the exhaust. The electron outflow velocity ue, and out-of-plane velocity u,, from the

proton mass ratio run with a guide field of B. = 0.28B 0 are plotted in Fig. 6-10.

While the inner electron layers are typically localized to regions < 100de long, the

new magnetized current layers at mi/me = 1836 become > 6 00 de - 15d long and are

limited in the present runs by the size of the simulation domain. As noted previously

in this chapter, the Cluster spacecraft gathered evidence for an extended electron

layer in the magnetosheath of > 60d, in length [107]. Based on the current scan of

parameters, it is more likely that that current layer was of the type described here,

rather than an extremely long inner electron layer.

In the regime identified here, the equations of state hold in the exhaust, and it
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is therefore possible for the electron pressure to remain anisotropic where the mag-

netic field is relatively low. The result is an extended region where the electrons are

close to the firehose stability threshold. The electron pressure anisotropy normalized

to (twice) the magnetic pressure, (pil - pi)/(B2 /o), is also plotted in Fig. 6-10.

The value one corresponds to the marginal firehose condition, where electron pres-

sure anisotropy balances magnetic field tension. Following the results of Cowley in

Ref. [921, a 1D steady state current sheet with a normal magnetic field is only possi-

ble if the upstream plasma is marginally firehose unstable. Insofar as the elongated

electron layer is almost 1D (with an aspect ratio of - 60) and quasi-steady state, it is

reasonable that the current layer can only be sustained when the electrons are nearly

firehose unstable. The equations of state, and the heating mechanism on which they

are based, describe how this layer of strong anisotropy forms as a natural part of the

reconnection process.

At stronger guide fields, the reconnection geometry takes on the features presented

in the chapter devoted to the strong guide field regime. The equations of state

continue to hold in the exhaust, and the electron pressure typically becomes highly

anisotropic. When the guide field is strong enough, however, the electron pressure

does not overtake the tension of the guide magnetic field and it does not reach the

marginal firehose condition pil - pi - B 2f/p ~ 0. This prevents the formation of

an elongated electron layer embedded in the center of the exhaust. Rather, the

electron outflow tends to align with a pair of diagonally opposed separators. In the

lower panels of Fig. 6-4, these are the enhanced electron flows along the top left and

bottom right separators. The pair of separators that exhibits enhanced currents is

the one where the density is larger. (See the density profiles are plotted in Fig. 6-1.)

The increased density is related to ion polarization drifts [1091, and if the direction

of the guide magnetic field is reversed, the opposite pair of separators will therefore

have enhanced density and electron currents.
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Summary. The diagram in Fig. 6-11 summarizes schematically where the var-

ious regimes for the electrons lie in the space of guide fields and mass ratios. Four

qualitatively different regimes are identified:

(1) At the lowest guide fields, inner unmagnetized electron current layers develop,

and they are depicted symbolically in Fig. 6-11. Electrons may follow meandering

orbits near the X line because pe > RB. Note that while inner jets form even at

substantial guide fields for reduced mass ratios, the inner jets only form in very nearly

anti-parallel magnetic geometries at the physical proton mass ratio. The exhaust is

isotropic because the electrons are not magnetized near the magnetic field reversal.

(2) At a threshold guide field that depends on the mass ratio, inner electron jets do

not form. The the exhaust electron pressure, however, may continue to be isotropic.

(3) The electron Larmor radius becomes smaller relative to the current sheet width

at higher mass ratios. As a result, the equations of state apply in the exhaust for

lower guide fields B9 at higher mass ratios mi/me. In fact, by Bg/Bo ~ 0.2 the

equations of state provide a good approximation of the electron pressure tensor at

the proton mass ratio mi/me = 1836. For the proton mass ratio, the electron exhaust

may remain magnetized even with fairly weak guide fields. A new regime exists in

which electron pressure anisotropy supports a very long magnetized current layer,

near which the electron pressure approaches the firehose instability threshold.

(4) At the highest values of Bg, the electron pressure cannot compete with the

tension of the guide field. The long magnetized current layers do not form, and

the electron outflow tends to be concentrated along one pair of diagonally opposed

separator field lines.

90



Magnetized exhaust
Current along one separator

Magnetized exhaust
Long current layer
(-15d)

Magnetized inflow only

No current layer

0

Magnetized inflow only
Short inner current layer

__ __ (-100d)
I e

100 400
m./m

i e

1836

Figure 6-11: Reconnection regimes for different guide fields and mass ratios mi/me.
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Chapter 7

Extensions

The previous simulation results were based on the Harris sheet configuration. This

configuration has symmetric plasma conditions above and below the plasma current

layer. The additional 2D symmetry of the evolution is imposed so that the problem is

amenable to direct computation. In this chapter, these symmetries are relaxed. First,

cases with a density difference across the plasma layer are considered. Next, fully 3D

evolution is allowed by moving to 3D volumetric simulation. Finally, an entirely

different initial geometry is considered that is based on two magnetic islands. While

the Harris equilibrium depends only on one spatial variable, the island equilibrium

is 2D and the unstable current sheet forms as a natural result of island motion and

merging.

The equations of state are based on fairly general electron orbit properties. Asym-

metries in the plasma conditions enter in the boundary conditions placed on the elec-

tron distribution. Although this makes the application of the equations of state less

straightforward, electron trapping and its resulting pressure anisotropy are important

effects also in asymmetric kinetic reconnection. The equations of state also rely on

assuming that magnetic field lines extend into an ambient ideal plasma. For island

merging, this topological assumption is not necessarily met. It turns out, however,

that the electrons in regions around the X line are still largely governed by the par-

allel potential. The equations of state therefore also lay a foundation for modeling

anisotropy during island coalescence.
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Figure 7-1: Magnetopause reconnection geometry.

7.1 Asymmetric Current Sheets

In the Harris sheet simulations in the previous chapters, the plasma conditions are

identical above and below the initial current sheet. Asymmetries in the plasma density

and the magnetic field strength across the plasma sheet, however, are not uncommon.

At Earth's magnetopause, for example, the density is typically one or two orders of

magnitude higher on the magnetosheath side than the magnetosphere side (the ge-

ometry is drawn in Fig. 7-1 reproduced from Ref. [71]). Reconnection has long been

recognized to occur at the magnetopause due the interaction of Earth's magnetic

field with the variable solar wind magnetic field [1101. In a series of magnetopause

crossings by the THEMIS spacecraft when reconnection signatures were detected,

the magnetosheath plasma had a density of 10 - 30 times larger than the magne-

tospheric plasma density [111]. Also in the geotail, which is often nearly up-down

symmetric near the plasma sheet, there can be significant density asymmetries. The

Wind spacecraft in the distant (- 90RE) geotail observed evidence for reconnection

with a small magnetic field asymmetry of ~ 15%, but a large density asymmetry of

nup/nold > 10 [112].

Large asymmetries in the plasma conditions will alter the magnetic geometry and

currents of the reconnection region. Some initial investigations of 2D asymmetric
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reconnection within a fluid framework found that generally the X line and flow stag-

nation point are spatially separated. Scalings for various quantities were derived using

an analysis similar to that of Sweet and Parker [113] and were generalized to include

compressibility [114]. Kinetic simulations further showed that electron pressure ef-

fects are not necessarily localized to de length scales [115], but rather they may extend

across the density gradient.

A key result for asymmetric reconnection is the fact that the electron heating and

pressure anisotropy are usually larger on the magnetosphere side of the magnetopause,

where the density is lower and the magnetic field strength is greater [71]. This is

consistent with the general prediction of the equations of state for weak guide field

reconnection that the parallel potential and the resulting electron heating are larger

in small #e plasmas. The parallel potential and the electron pressure anisotropy are

plotted in Fig. 7-2. The simulations also demonstrate that the parallel potential

on reconnected magnetic field lines has a net drop across the magnetopause. The

parallel electric field tends to point towards the lower-density magnetosphere. This

slows the flux of electrons from the high-density magnetosheath into the low-density

magnetosphere.
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7.2 Reconnection with Fully 3D Evolution

The previously presented PIC simulations are all 2D with an assumed translational

symmetry in the out-of-plane direction. Reconnection in nature, however, is 3D. The

importance of gradients in the third direction will vary depending on the plasma ge-

ometry, but in any case, accounting for 3D evolution greatly complicates descriptions

of reconnection. Even defining reconnection in 3D is problematic. The topology of

3D field lines is vastly more complex than in the 2D case, where the field lines always

lie on neatly arranged flux surfaces. Nevertheless, reconnection certainly occurs in

3D, and it has been studied experimentally by considering the interaction of plasma

flux ropes [39]. VTF experiments demonstrated that even in a nearly-axisymmetric

toroidal device, the inherently 3D structures that develop can be crucial for the onset

of reconnection [33].

The magnetic field of the solar corona is 3D and rather complex, and its topology

has long been studied [116]. The topology may be characterized by the magnetic

skeleton, which consists of the magnetic nulls (points where the total magnetic field

B = 0) and the spine field lines that connect them [117]. These are 3D analogs of the

X line, which is a 2D structure that is not stable in 3D. An isolated magnetic null

has been detected in association with geomagnetic activity in Earth's magnetotail

based on simultaneous data from the four Cluster spacecraft [118]. Reconnection

in 3D, however, can also occur without a magnetic null. The magnetic geometry,

particularly the shearing rate or how fast the magnetic field changes direction across

a layer of plasma current, is at least as important as the field line topology. The

notion of a quasi-separatrix layer [119] was introduced to describe layers of intense

magnetic shear that are unstable to reconnecting instabilities. Quasi-separatrix layers

have been identified during reconnection in linear plasma experiments [120].

PIC simulations of 3D reconnection with well-separated ion and electron masses

have become feasible within the past couple of years. Kinetic electron dynamics

in collisionless reconnection play a large role in determining how 3D current sheets

reconnect [63]. Particularly when there is a guide magnetic field, the current sheet is
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Figure 7-3: Two fluxropes in a 3D PIC simulation.

unstable to a number of reconnecting modes. In 2D, the main tearing instability will

result in a set of magnetic islands around the center of the initial current sheet. In 3D,

the current breaks apart into flux ropes of finite length that may lie at oblique angles to

the initial current. The flux ropes are coherent vortical magnetic structures sustained

by electron currents. A pair of flux ropes, from a large-scale VPIC simulation of 3D

reconnection provided by Daughton, is illustrated in Fig. 7-3.

The electron current layers and flux ropes that form during 3D reconnection are

affected by the electron pressure anisotropy. In the 2D case, the anisotropy drives

narrow electron current channels. These may be susceptible to 3D instabilities. The

equations of state make no assumption about the dimensionality of the magnetic field,

and they may be expected to hold also in 3D. Two tests of the equations of state in

a 3D reconnection simulation with a strong guide field are presented in Figs. 7-4 and

7-5.

This simulation uses a mass ratio of mi/me = 100 because higher mass ratios in

3D currently require prohibitively long computation times. The mass ratio is high
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enough for adiabatic electron trapping to occur, and the electron pressure becomes

highly anisotropic. The ratio pil/pi is plotted in Fig. 7-4 both directly from the PIC

simulation and based on evaluating the equations of state using the PIC density n

and magnetic field strength B as input. In either case, the ratio reaches pil/p' - 4.

Two different slices of the 3D simulation are plotted. The top two plots come from

a slice at y = 41d, (the simulation box is a total of 700de long), and the region of

strongest anisotropy is along diagonally opposed field lines similar to a 2D case. The

bottom two plots are from another slice at y = 4 10de, and here the large flux rope

structure is apparent. In 2D, the island would be of infinite extent. In this 3D case,

the island has a finite length in the initial current direction and does not appear in

the top slices at y = 41de. An important implication is that electrons in the flux

rope structure may escape along field lines, while electrons in 2D magnetic islands

are confined within the island.

As additional verification that the electron pressure obeys the equations of state,

Fig. 7-5 shows p1 and pi evaluated on isosurfaces of magnetic field strength. Following

the equations of state, each should then be only a function of the density. The PIC

data from isosurfaces are two different values of the magnetic field (B = 0.85 and

1.15B.) are plotted as functions of the density n, and the predictions of the equations

of state are also plotted. The PIC data are more scattered in 3D than in 2D, likely

because of turbulence that is only possible in 3D and because field lines may connect

regions that initially had different plasma conditions. The equations of state, however,

capture the general scaling of the pressure components and provide good estimates

for the total pressure anisotropy.

The above simulation is a symmetric reconnection study. The equations of state

also reproduce fairly well the electron pressure anisotropy that develops in 3D simu-

lations of asymmetric reconnection. Results from a 3D reconnection simulation with

a density asymmetry of 10 are presented below. As in the 2D case, the strongest

anisotropy and most significant populations of hot electrons tend to reside on the

low 3e side of the current sheet. Fig. 7-6 shows a test of the equations of state in a

3D asymmetric VPIC run. Slices of the pressure ratio plii/pi within the simulation
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Figure 7-4: Ratio pjj/pi in a 3D PIC simulation.
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Figure 7-5: Test of the equations of state in 3D on isosurfaces of magnetic field
strength. Pressure moments from the PIC data (green and blue) are compared to
predictions of the equations of state based on the PIC density and magnetic field
strength.

volume are drawn, and a cut through the initial symmetry direction is selected. This

cut lies in the magnetospheric, low #, portion of the domain. The predictions of the

equations of state for the electron pressure tensor components based on the PIC den-

sity and magnetic field strength are plotted along this cut superimposed on the direct

PIC results. In agreement with the equations of state, the parallel pressure rises to

~ 6 times its ambient magnetopsheric value and the ratio of pressure components

reaches pilpi ~ 3.

101

Pil (b) E-L(a)



pi v. n

U

p vs. n

0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5
rmi 0 mo

Figure 7-6: Test of the equations
density.

of state during 3D reconnection with asymmetric

102

2.5

400,

300

200,

100

0,
0 0

200 200

400 400c

wl 1000 1000 xx.o

CL

2

1.5

0.5



7.3 Island Merging

In many environments, reconnection is time dependent and leads to formation of

plasmoids or islands. In fact, current understanding of reconnection both in the col-

lisionless and collisional regimes indicates formation of many interacting secondary

islands [67, 121]. Observational evidence of plasmoid interaction comes from coronal

mass ejections (CMEs) in the interplanetary medium. Interestingly enough, obser-

vations exhibit evidence of energetic electron generation when CMEs merge [122].

Since the plasma beta within CMEs is typically small, it was suggested that the heat-

ing mechanism captured by the equations of state are likely important for producing

energetic electrons [123].

In non-ideal plasmas, magnetic islands may also merge to form larger islands.

This process necessarily involves magnetic reconnection, and island merging releases

magnetic energy into the plasma in the form of bulk flows and thermal energy. A large

current sheet may be unstable to the plasmoid instability, which tears large systems

into a series of multiple current filaments or plasmoids [124, 125]. These plasmoids

may then merge, and additional electron heating takes place as the magnetic island

field lines reconnect. Such large, unstable current sheets may form during solar flares.

As the flare emerges, reconnection may occur at the underlying coronal loop. An

observational signature of the resulting electron heating is the X-ray emission at

coronal loop tops during flares [9]. The flare motion may induce a large current sheet

in its wake. This current sheet may then filament into multiple magnetic islands

[126], and the islands can merge as the bulk flows convect them towards one another

[127]. A cartoon of this scenario is reproduced in Fig. 7-7. In addition, coronal mass

ejections may collide in the interplanetary medium, and radio bursts associated with

energetic electrons have been observed as the CMEs interact [122].

In applying the equations of state to island merging, a new complication arises. In

the previous cases based on Harris sheet reconnection, the field line topology is open.

As a result, the integral defining the parallel potential <D1 could be continued out to

the edge of the simulation domain. The major difference is in the topology of the
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Figure 7-7: Cartoon of plasmoids formed in the corona (reproduced from Ref. [127])

magnetic surfaces, which in this case are closed and do not extend out to an ambient

ideal plasma. In principle, <Ii is an integral along field lines and could be ill-defined

in the case of closed field lines. And in fact, due to non-vanishing loop voltages, <bil

is formally not single-valued. It turns out, however, that localized structures develop

in (bi, and the adiabatic heating of trapped electrons in these local parallel potential

wells plays an important role in magnetic island coalescence. A PIC simulation of

island merging, performed on the code VPIC by Karimabadi [123], demonstrates that

a localized acceleration potential <bil can exist on closed field lines, and the heating

mechanism studied previously in open topologies operates also in closed topologies.

To study island merging numerically, there are two commonly used sets of inital

conditions. One is a Harris sheet with an imposed initial perturbation that causes

tearing with multiple 0 and X points. The islands centered on the 0 points may

then interact. The simulation presented here is initialized with a Fadeev equilibrium

[128, 129], which is a 2D exact equilibrium. The magnetic field follows from a vector

potential given by

AY = Ayo ln[cosh(kz) + E cos(kx)], (7.1)
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and it consists of a chain of magnetic islands along the x axis. The plasma pressure is

generally higher within the islands, and pressure balance is achieved in the simulation

by increasing the plasma density inside the islands. This simulation uses periodic

boundary conditions in the x direction and covers two of the initial islands. They are

shown in Fig. 7-8. The plasma current and density are peaked within the islands, and

the current filaments attract one another and eventually merge. During this process,

significant electron heating occurs at the X line between the two islands. The other

time slices in Fig. 7-8 show the islands after reconnection has begun and after the

islands have almost completely merged. At the end of the island merging simulation,

~ 16% of the dissipated magnetic energy goes into heating the electrons (~ 64% goes

into heating the ions, ~ 18% is carried by ion flows). Because the density of the

background is low, the vast majority of this energy is gained by electrons near the

islands.

To investigate whether trapping in a parallel potential 4i is important during

island merging, the values of <ii are calculated from the electromagnetic fields of the

PIC simulation. The values of <bll obtained in the PIC code are plotted in Fig. 7-

9(a), which shows the region around the X line between the two merging islands. The

parallel potential <il is enhanced along two diagonally opposed separators, a structure

characteristic of reconnection in the presence of a guide magnetic field and observed

in a previous chapter on strong guide field reconnection. In these regions of higher

density, <bil ~ 5Teo, implying that nearly all of the thermal electrons here follow

trapped orbits. Both the spatial structure and the magnitude of the potential are

consistent with the increased parallel electron temperature, which peaks at Teil ~ 4 To

and is plotted in Fig. 7-9(b).

The phase space density of electrons as a function of energy f(E) for pitch an-

gles parallel and perpendicular to the magnetic field at the point marked by a dot in

Fig. 7-9 is plotted in Fig. 7-10(a). The energy distribution is characteristic of particles

trapped in a parallel potential, and it agrees with the form in Eq. 2.7. The perpen-

dicular distribution is a Maxwellian. The parallel spectrum, meanwhile, is fairly flat

up to an energy of E - e4bil ~ 4Teo and then falls off as a shifted Maxwellian.
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Figure 7-8: Magnetic island coalescence: density and sample field lines.
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Another feature of this closed geometry is the generation of a cool core surrounded

by a warmer plasma. Spectroscopic measurements suggest the presence of similar

configurations during some solar CMEs [130]. Hotter plasma surrounds the cooler

island in the simulation as magnetic flux is reconnected and the heated trapped

electrons are convected away from the X line. Once downstream, the exhaust electrons

can stream along field lines and fill the regions outside the magnetic islands. Over

the course of the simulation, a thermal electron freely streaming along the magnetic

field lines could encircle a single island 3 - 4 times. As visible in Fig. 7-9(b), the

temperature in the volume of plasma surrounding the islands is roughly twice the

island temperature.

The equations of state for the parallel and perpendicular electron pressure tensor

components are also tested. In the previous Harris sheet reconnection scenarios, the

electron pressure near the X line becomes anisotropic with pl/ pI > 1. This is also the

case near the X line between the merging islands. The predictions of the equations

of state are compared to the PIC simulation results in Fig. 7-9(c-d). Because some of

the electrons were pre-heated before becoming trapped in the pictured time-slice, the

ambient temperature anisotropy of p1l/pi - 2 was taken into account in the boundary

conditions used in the equations of state. The good agreement between the equations

of state and the PIC output reflects the fact that particle trapping in <bIl is largely

responsible for the electron heating between the islands.

Following the results of [70], the value of <II and the resulting electron energies

depend strongly on the upstream electron 3e. For the simulation parameters in the

plasmoids upstream of the X line, this has a value of 3e - 10%. Meanwhile, values

of ne 10 10cm 3 , Te ~ 101K, and B ~ 10G more typical of the solar corona give a

lower value of #e 0.1%. Although the precise scaling of [70] is based on reconnec-

tion without a guide field, the general trend is expected to carry over into regimes

with guide fields. The peak electron parallel temperature Teil should therefore be

substantially greater at the lower values of #e more typical of the solar corona. In

fact, in recent simulations of reconnection in a low 3 e plasma, bulk electron ener-

gization occurs up to ~ 100Te0 [98]. Acting near even a single X line, this heating
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mechanism could therefore heat the bulk coronal electrons into the 10s of keV range.

In a multi-plasmoid scenario [131], repeated acceleration at multiple X lines could

produce electrons with even higher energies.
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Summary. The theoretical framework of the equations of state may be applied

even when there are asymmetries in the plasma density across the current sheet, a

situation very typical of Earth's magnetopause. Electron heating tends to be greater

on the low density, low 3e magnetospheric side, as demonstrated by Egedal, Le, et

al in Ref. [71]. 3D reconnection is vastly more complex than 2D reconnection, but

the equations of state apply in many 3D reconnection scenarios. The chaotic nature

of fully 3D field lines prevents a simple characterization of the global topology of

flux tubes, but localized parallel potentials clearly form and trap electrons. The

equations of state also apply to island merging, a case where the field lines have

a closed topology and do not extend out to an ambient ideal plasma. Substantial

anisotropic electron heating occurs at the X line between two mering islands and may

be related to electron energization during flares and other impulsive events in the

solar corona.
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Chapter 8

Summary of New Results

This thesis presents new equations of state for the anisotropic electron pressure ten-

sor during collisionless magnetic reconnection. In the collisionless regime, a kinetic

treatment is typically required to understand the complex dynamics of the electrons,

including the generation of high-energy electrons observed in a variety of magne-

tized astrophysical plasmas. The equations of state provide a powerful framework for

exploring a dominant effect - electron pressure anisotropy - within a simpler fluid

picture. Several predictions are derived and verified in this thesis through compari-

son to kinetic simulations performed by collaborators. The key new results are listed

below:

" The electron pressure follows the new equations of state during colli-

sionless reconnection with a guide field. In line with the equations of state,

the electron pressure becomes highly anisotropic, typically with p1 > p1 near

the X line. At the physical mass ratio, the equations of state hold throughout

the reconnection region even for a guide field as low as 20% of the reconnecting

field. This threshold value of guide field may depend on other plasma parame-

ters, particularly 0e, and this depedence will be explored in future work.

* Electron pressure anisotropy drives long current layers. For spacecraft

data analysis, it is important to know the electrical current and magnetic field

signatures of kinetic reconnection. Based on the results presented in this thesis,
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it is clear that electron pressure anisotropy plays a key role in supporting the

electron currents and the fields they generate near reconnection sites. Fluid

models based on the equations of state can properly account for the electron

pressure anisotropy and reproduce the long current layers observed in kinetic

codes, as is shown in forthcoming work by Ohia et al. Eventually, it will be

important to study stability of the electron current layers to secondary insta-

bilities, especially in 3D.

e The electrons tend to become most energetic in low #e plasmas. The

value of #e can be very low in the solar corona and wind, and in Earth's mag-

netosphere. For values of #e < 0.01, the bulk electrons can be heated to 10s

or 100s of times the ambient electron temperature. Guided by the predictions

of the new equations of state, a paper by Egedal, Daughton, and Le [98] finds

extreme electron heating in a kinetic code that agrees with Cluster observations

gathered in the geotail during reconnection with #e ~ 0.003.

Additional future work could include a systematic study of spacecraft data, in-

cluding currently available data from the Cluster and THEMIS missions, in light of

the models introduced in this thesis. In particular, the maximal energies of electrons

accelerated during reconnection could be correlated with measured values of &. On

the experimental front, Egedal et al. have proposed a new laboratory device optimized

to study the physics of electron trapping and heating during reconnection in regimes

relevant to Earth's magnetosphere. Based on the results presented in Chapter 6, it is

important to have the correct ion-to-electron mass ratio. Laboratory experiment is

therefore essential because 3D kinetic simulations at the physical proton mass ratio

are currently unfeasible.
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Appendix A

Waves Launched by Island Merging

It has been suggested the the global motion of islands or flux ropes will generate

large-amplitude waves in the external plasma. Some coronal loops undergo damped

oscillations, which most likely radiate energy into the ambient plasma in the form

of low-frequency waves [1321. The global motion of the islands during coalescence

may similarly launch low-frequency waves in the external plasma, and the electron

temperature can fluctuate widely depending on the nature of the plasma modes. This

phenomenon is captured by the island merging simulations presented in the previous

chapter.

The global motion of the plasmoids launches large-amplitude MHD activity in the

surrounding plasma. These drive fluctuations in the plasma density of 6n/n > 0.3 and

in the electron temperature on the order of 6Te11 /Teo 1. The exact spectrum of MHD

modes excited by the plasmoid motion will of course depend on the plasma conditions,

the magnetic field geometry, and the detailed motion of the plasmoids. In laboratory

experiments, for example, magnetosonic waves were launched by plasmoid eruption

and motion [133]. In the present simulation, the waves are dominated by a single

mode, which has the longest parallel wavelength accessible in the periodic simulation

domain. This mode is in the ion cyclotron branch, containing obliquely propagating

electromagnetic waves with frequencies near the proton cyclotron frequency, we =

eB/mpc. In the simulation, they propagate at an angle of - 840 with respect to the

magnetic field with a frequency of w/we,~ 0.4. The waves are well-described by
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Figure A-1: Electric field component with resonance and cut-off layers.

the cold plasma wave dispersion relation (see, e.g., [134]), although the perpendicular

wave number k1 is shifted ~ 15% higher due to hot plasma effects. The perpendicular

wavelength is somewhat longer that the proton Larmor radius p, = /T,/m,/We,

with the wave number kip, ~ 0.6.

The wave structure is visible in the electric field, and the vertical E, component

(plotted in Fig. A-1) is largest for the mode's polarization. The long-wavelength

modes are confined to the lower-density plasma surrounding the islands. The ion

cyclotron waves cannot propagate closer to the islands due to the presence of reso-

nance and cut-off layers in the region of varying density. In the regime considered

here (w < wp < w,, the proton plasma frequency), these layers reside at densities of

n ~ (B2 /47rmc 2 )(c2 k'/w2 - 1) x F(w/we), (A.1)

where F(w/wc,) = 1 - (w/w,) 2 gives the resonance and F(w/we) = 1 + (w/we,)

gives the cut-off. The resonances and cut-offs are plotted in Fig. A-1. The electron

temperature becomes largest near the resonance layer, where the wave electric field
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is strongest. In the region of higher plasma density between these layers, shorter

wavelength electrostatic fluctuations are visible, but they have a relatively minor

effect on the electron temperature.

For the large-amplitude, long-wavelength modes, the effective electron energiza-

tion is different from the acceleration near the X line. From the particle perspective,

the parallel electric field of the ion cyclotron mode is important for the electron mo-

tion. In this case, the fluctuations are too fast to allow adiabatic trapping. These

modes have a long parallel wavelength, and the corresponding parallel phase velocity

is fast compared to the electron thermal speed: w/k 1 ;> 3 7/(Te/me). In this range,

adiabatic trapping does not occur as it does near the X line.

The electron phase space density for a point near the resonance layer (the dot in

Fig. A-2) is plotted in Fig. A-3. There are large electron flows in this region (ve|| ~

0.6Vthe), and the distribution is plotted as a function of energy in the electron rest

frame. Note that this distribution lacks the flat portion along the parallel direction

associated with adiabatically trapped particles. Unlike in the previous case where

passing particles all gain the same fixed energy e1b1 , the energy gain of electrons in

the wave depends on their initial energy, with slow electrons gaining the least energy.

The parallel distribution therefore falls off with a more shallow slope, corresponding

to a higher effective temperature.

A simpler fluid picture captures the bulk electron temperature fluctuations, which

are the result of the compressional wave motion. For these low-frequency modes, the

Chew-Goldberger-Low (CGL) equations of state [81] provide a good approximation

for the electron pressure components. The CGL double-adiabatic equations of state

may be expected to hold because the fast parallel phase velocity of the waves above

the electron thermal speed implies that electron heat transport will be of limited

importance. Comparisons to the CGL scalings, p1l oc n 3 /B 2 and Pi oc nB, are

plotted in Figs. A-2(a,b) for the the flux tube marked in magenta in Fig. A-2(a). The

electrons are again preferentially heated in the parallel direction due to the strong

density dependence of pl oc n3 , and the ratio piip' plotted Fig. A-2(a) reaches > 2.
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Figure A-2: CGL equations of state hold in the wave.
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Appendix B

Including Collisions

So far, the electron pressure anisotropy described by the new equations of state and

its effect on reconnection has been studied in the collisionless limit. It is of interest

to know how binary particle collisions alter the picture and how the anisotropy varies

with the collisionality. For example, while collisions are often completely negligible for

reconnection in the magnetosphere, it is difficult to reach the collisionless regime in

laboratory reconnection experiments. In addition, in very dense regions of the lower

solar corona, collisionality can be high enough that it competes with other processes.

Collisions can be included in PIC simulations using, for example, the Takizuka-

Abe collision operator [135]. This discretized operator converges to the Boltzmann

collision operator as the number of numerical particles is increased and the time step

is decreased. It is a Monte Carlo method that requires pairing nearby particles and

allowing them to exchange momentum with prescribed probabilities, and it is compu-

tationally expensive. Some results have been obtained on reconnection in arbitrary

collisionality regimes [125].

The parallel potential <b1 from a set of PIC simulations of anti-parallel reconnec-

tion are presented in Fig. B-1. The top simulation was performed without collisions.

The other two use the same inital plasma conditions (the Harris sheet is the same

as considered in Chapter 4 except that the background ion population is cooler by a

factor 2.5) and include collisions with electron collision frequencies of ve/Wce = 0.02

and 0.05. The collision frequency is a free parameter in the numerical model, and it
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can be adjusted independently of the temperature and density. The implemented col-

lision frequencies correspond of electron mean free paths (for 900 scattering) of Ae ~ 2

and 5di near the neutral sheet. Because collisions scatter parallel electron energy, the

electron anisotropy is reduced. The parallel pressure is smaller, and <bil is correspond-

ingly reduced at higher collisionality. The electron outflow speed ue is plotted from

the three collisional simulations in Fig. B-2. The inner electron jets become broader

and shorter as the collisionality increases. It is important to note that these electron

kinetic effects remain significant at low, but non-negligible, collisionality, and this

regime is accessible to laboratory experiment.
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Appendix C

Particle-in-Cell Codes

Particle codes have a long history, and some of the earliest computational simulations

in the 1950s were particle simulations of electrostatic plasma discharges [136]. Two

general classes of particle codes are N-body simulations, in which the interaction

potential between each pair of constituent particles is calculated, and particle-in-cell

(PIC) methods. PIC codes make use of the mean field approximation, and they solve

the Vlasov equation for the 1-particle distribution function by sampling phase space

along a large number of particle orbits in self-consistent fields. The fields are defined

on a mesh of cells, and the currents and charge densities are computed from the

particles within each cell. The field evolution is governed by a discretized version of

Maxwell's equations (or some reduced set of Maxwell's equations relevant for a given

regime). The earliest PIC codes were 1D electrostatic codes that computed only

electron dynamics in a stationary ion background. Modern codes are electromagnetic

and trace both electron and ion distributions in up to three spatial dimensions.

The simulations presented in this thesis are results from the code VPIC provided

principally by Daughton with some additional data provided by Karimabadi. VPIC is

a first-principles electromagnetic relativistic kinetic PIC code, and it is one of a hand-

ful of codes that are optimized to make full use of current supercomputers, including

Roadrunner (LANL), Jaguar (ORNL), Kraken (NICS), and Pleiades (NASA) [137].

State-of-the-art VPIC simulations model plasmas using 0(1012) numerical particles

and 0(109) voxels running on parallel computing systems with 0(105) processing
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cores. The 2D simulations presented in this thesis use 0(109) numerical particles,

while the 3D simulations are among the first to go up to 0(1012). VPIC simulations

have permitted studies of reconnection and laser-plasma interactions at an unprece-

dented level of detail [67, 137, 138].

VPIC solves the following relativistic, electromagnetic Maxwell-Boltzmann system

of evolution equations:

8 q 6
+ -u -V + " (E + -u x B) -V]f, = -|Collf

6t
-B =-V x E (C.1)

-E =eV x p-'B - e-'J - e- o-E,
at

where f, is the phase-space distribution of species s or charge q, and mass m,, u is

the spatial part of the four-velocity, e and y are the permittivity and permeability

of the background (not necessarily vacuum), o- is a possible background conductivity

(not used in any of the simulations presented), and 6/6tcou is a collision operator that

accounts for binary Coulomb collisions or other discrete interactions. The additional

Maxwell constraint equations, V - B = 0 and V - E = p/E, are also satisfied. The

current density is given by

q,7 1uf,. (C.2)

While the code is fully relativistic, for the present applications relativistic corrections

to the classical mechanical results are fairly small and the formulas in the main

chapters of this thesis are given in the nonrelativistic limit.

A variety of boundary conditions are used in the simulations. The simplest to

implement are periodic boundaries, which are employed in the large island simulation

in the direction of island merging [123] and in the outflow and initial current flow

directions in the 3D simulations [63]. These simulations employed conducting bound-

ary conditions for the electromagnetic fields (E x fn = 0 and B - fi = 0, where fn is

the surface normal unit vector) and reflecting boundary conditions for the particles

at the other spatial boundaries. A more sophisticated set of open boundaries were
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implemented in most of the Harris sheet reconnection simulations [67]. The open

boundaries emulate a larger system by allowing magnetic flux and new particles to

enter the system in the inflow, while the plasma exhaust is free to exit the simulation

domain. The particles are injected with a drifting, anisotropic multi-Maxwellian such

that the lowest three moments of the particle distribution (density n, flow u, and

pressure tensor P) have zero normal derivative at the boundaries. The field boundary

conditions are chosen to allow a Poynting flux of electromagnetic energy out of the

system without reflections.
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