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Abstract

This paper is concerned with constraints on learning quantifiers, particularly those

cognitive on human learning and algorithmic on machine learning, and the resulting

implications of those constraints on language identification. Previous experiments

show that children attempting to differentiate quantifiers from numbers use a similar

acquisition method for both types of words. However, some types of natural quanti-

fiers, such as all but do not appear as a single word in any human language, perhaps

due to either what would be an ineffective definition, or due to what would seem to

be an unnatural definition. On the other hand, the constraints of language acqui-

sition by identification place strong constraints on possible languages to identify an

unknown language in a certain given class of languages. The experiment presented

in this paper measures the cognitive ability of humans to acquire quantifiers, both

conservative and non-conservative, through a series of positive and negative training

examples. It then implements an algorithm used to acquired quantifiers which can

be expressed as regular languages in the minimal number of states in its determinate

finite automata representation in polynomial time.
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Title: Professor of Computational Linguistics, Department of Electrical Engineering

and Computer Science
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Chapter 1

Introduction

1.1 Motivation

The motivation to study this particular problem arises from the fields of computa-

tional linguistics and psycholinguistics. For most languages, it is infeasible or even

impossible to compile a complete set of governing rules to teach learning systems.

Similarly, learning systems cannot feasibly contain all possible solutions for an un-

known definition, and must be trained appropriately so that they can adapt to new

definitions. Although linguistics attempts to understand how children acquire lan-

guage, this field attempts to understand how computers learn language. Recreating

a Bayesian learning program to adapt to non-conservative quantifiers also serves as

an interesting challenge which will further understanding of existing theory. Addi-

tionally, discovering the limitations of a previously published algorithm explores the

structure of the algorithm so that possible optimizations can either enlarge the set

of inputs or expedite the evaluation process. A successful implementation of a lan-

guage identification artificial intelligence would shed significant light on information

regarding the structure of human language.
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Chapter 2

Human Acquisition

2.1 Introduction to Quantifiers

A quantifier in human language is a modifier that describes quantity. For example,

in the statement "all of the students are girls", the word all is a quantifier modifying

the set of students. Other quantifiers in the English language include every, some,

and most. However, quantifiers can be syntactically very complex, as there is no way

to express the same idea as a conjunction or disjunction of sentences, each of the form

"that student is a girl". Those quantifiers listed above are among the conservative

quantifiers that are present in the English language. And while every language make

use of quantifiers, no language represents non-conservative quantifiers, such as "all of

the objects that are NOT circles" as a single word.

2.2 Generalized Quantifiers

Although quantifiers such as "all of" and "one of" are very common pragmatically,

combinations of logical operators open the possibilities of many more quantifiers. In

linguistic semantics, a generalized quantifier describes a higher order property, that is,

the property of a property. So, instead of saying "all students are girls", a generalized

quantifier would say that "all students are students who are girls". Mathematically,
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the generalized quantifier would be formulated:

{xlx is a student} E {x~x is a girl}

Generalized quantifiers can have properties such as monotonicity, but the relevant

property here is conservativity. A generalized quantifier Q is said to be conservative

if

Q(A)(B) <-> Q(A)(A n B).

As stated above, the following two statements are equivalent:

1. All of the students are girls.

2. All of the students are students who are girls.

On the other hand, the word only, which is not usually treated as a quantifier, is not

conservative, as the following two statements are not equivalent:

1. Only the students are girls.

2. Only the students are students who are girls.

2.3 Acquisition of Quantifiers

An interesting experiment involves the acquisition of quantifiers and number terms

for young children. Because both number words and quantifiers involve the concept

of multiplicity, young children apply the same syntactical, pragmatic, and semantic

approach in learning these ideas. In the English syntax, numbers and quantifiers both

occur before adjective modifiers and have count syntax (two/some geese). Moreover,

both numbers and quantifiers can co-exist with partitives (two/some of the balls).

Semantically, both numerals and quantifiers are predicates over sets of individuals.

Furthermore, both numbers and quantifiers form an order from weaker to stronger

entities within each set. For example, in the number scale, three is always greater

16



than two, which is always greater than one. Under the quantifier scale, all is always

greater than most, which is greater than many, and so forth.

Number order: ... > 3 > 2 > 1

Quantifier order: all > most > many > some > none

However, traditional usage of the above terms also have implied lexical bounds. For

example, the statement "two items are good" logically means that at least two, per-

haps more, items are good. Similarly the statement "some items are good" means

that at least some, perhaps all, of the items are good. However, using a number or

quantifier with a small order usually excludes a higher ranked member of that same

scale in the practical sense. English speakers generally say "some of the items" to

mean that not all of the items are good. These colloquial inferences, called scalar

implications, result from the conversational presumption that speakers should be in-

formative, but clear. Therefore, using a lower ranked number or quantifier often

excludes the application of a higher ranked number of quantifier. Thus, for example,

if told "Barack Obama has one leg", all competent users of English will conclude,

that Barack Obama does not have two legs. Listeners who hear "some Republicans

voted for Obama" will conclude that not all Republicans voted for "Obama".

2.4 Quantifier Comprehension and Verification

Although quantifiers all express some implicit numeric property of the specified item,

one would suspect there is also some scale of complexity about them. In fact, even

the subtle substitution of two quantifiers with the same definition could change per-

ception of these concepts. For example, while the quantifiers "most" and "more than

half" always produce the same results in verifications, might the slight difference in

semantics cause slightly different verification process?

1. "Most"(A)(B) e | A nB| > |A - BI

17



Table 2.1: Mean reaction time and standard deviation in response times

Group Quantifiers M SD

Aristotelian FO all, some 2257 471.95
Parity even, odd 5751 1240.41

Cardinal FO less than eight, more than seven 6035 1071.89
Proportional less than half, more than half 7273 1410.48

2. "More than half"(A)(B) A n BI > .lA

In previous experiments any differences in accuracy and response time in verification

for the two quantifiers were not statistically significant. [6] Similarly, nothing signifi-

cant was determined in differentiating the quantifiers "at least n" versus "more than

n + 1,,.

However, quantifiers with different meanings likely differ in verification time, largely

dependent on the complexity of these quantifiers. For example, being able to deduce

whether "most of the items are good" will likely be more difficult than being able to

deduce whether "none of the items are good". To thoroughly examine the above claim,

a previous experiment separated quantifiers into three categories, those recognized

by acyclic finite automata, those recognized by general finite automata, and those

recognized by push-down automata, and compared human reaction times needed

for these classes of quantifiers. Participants in the experiment were given a simple

picture with fifteen cars and a corresponding statement such as "less than half of

the cars are blue", the validity of which the participants needed to ascertain. The

table [8] summarizing the results is below with mean reaction time (M) and standard

deviation (SD) in milliseconds. Even though Aristotelian and parity quantifiers are

both recognized by finite automata, there is a noticeable difference between the two,

perhaps due to the fact that the Aristotelian quantifiers can be represented by acyclic

finite automata, whereas finite automata representing parity quantifiers require loops.

This project will involve a similar idea with non-conservative quantifiers also included,

to see exactly what computational complexity the human mind incorporates.
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Chapter 3

Artificial Intelligence Acquisition

3.1 Bayesian Learning of Quantifiers

Combining the ideas of quantifiers and machine learning, attempts to formulate al-

gorithms that can learn the definition of an unknown quantifiers have also been de-

veloped. One such experiment used a standard Bayesian learning technique to assign

probabilities to each possible quantifier in the solution set. After a series of train-

ing examples, the learning system tries to determine which quantifier best matches

the unknown quantifier. The experiment concluded that even with as few as four

examples, a reliable learning system can be trained to learn the meaning of any first-

order quantifier and answer queries about an unknown quantifier. The choice of the

training examples also influenced the success rate of the learning system. With a

series of non-random training examples, the outcome can actually be improved, es-

pecially if the training examples are near the boundary of valid examples. Also, the

learning system adapted the property that increases weight to quantifiers that are

learned well, and decreases weight to those that are not frequent. This project will

attempt to recreate this model and apply it to cases where the unknown quantifier is

non-conservative. The resulting analysis will provide control data as to whether the

concept of non-conservative quantifiers is computationally complex, or if there exists

cognitive constraints on human learning. While the first part of the proposed project

will focus on analyzing human acquisition of both conservative and non-conservative
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quantifiers and comparing those results to algorithmic learning of the same concepts,

the second part of the proposed project will look at language identification algorithms.

3.2 Introduction to Language Identification

The question of language identification is a challenging subject which lends itself

to complicated analysis. The overarching problem is whether a program can identify

whether or not some input is a member of a larger group. More specifically, a language

is a set of strings on some predetermined finite alphabet. The program is then given

some information on the rules of that language, often in the form of training examples.

That is, the program can be taught which strings exist in this language, and/or which

strings are not members of this language. While the algorithm attempting to identify

the language must rely strictly on given information, the provided information must

be complete enough so that some program can theoretically acquire the rules of the

selected language. That is, there should be enough examples and counterexamples to

clarify the intricacies of the language. For example, if an artificial intelligence were

attempting to identify the English language, possible given information can either

be a comprehensive list of correct English usage or a comprehensive list of correct

and incorrect English usage, with each item in the list given as either "correct" or

"incorrect".

Although there exist many different success conditions, under this paper, the goal

of the artificial intelligence is to identify in the limit a class of languages. That is,

time is finite and discretized. At each time t = 1, 2,..., the learner is given a unit

of information it regarding the unknown language L. The learner must then make a

guess gt as to which language L might be based ont eh cumulative information given.

Then L is said to be identified in the limit if, after some finite time, the guesses are

all the same, and correctly identified as L. The learner will never know that the guess

is actually correct, because there always exists the possibility that the next unit of

information will discount the previous guess. However, the learner must continue
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returning the correct guess following each unit of information. By extension, a class

of languages is identifiable in the limit if all languages in that class are identifiable in

the limit by the same computable function.

3.3 Text

As previously stated, the information given to the learner must suffice so that the

learner can theoretically identify the language. This paper address two fundamental

sources of information. The first source, a text for a language L is a sequence of

strings sq, s2, ... from L such that every string of L must occur at least once in the

sequence. Obviously, many such sequences can exist given a language L. However,

this paper specifies three types of text:

" Arbitrary Text: Each string st in the sequence can come from any function of t.

" Recursive Text: Each string st in the sequence must come from a recursive

function of t.

" Primitive Recursive Text: Each string st in the sequence must come from a

primitive recursive function of t.

3.4 Informant

Another type of information presentation is an informant, which can tell the learner

whether a given string st is in L or not, but it may not divest the rules which it uses

to decide this. There are also three interesting types of informants:

" Arbitrary Informant: Each string st in the sequence can come from any function

of t as long as every string of L occurs at least once.

" Methodical Informant: Each string st in the sequence is assigned a priori.

" Request Informant: At any time step t, the learner can choose st depending on

the previous information received.
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The distinction between text and informant, is that text only presents positive in-

formation, examples of correct sentences, but no examples of incorrect sentences.

Informants, however, present negative information. For the time being, the informa-

tion provided is limited to either text or informant. In the human learning process,

instances of incorrect usages are often not corrected, and even those that are cor-

rected may still resurface incorrectly in the future. Therefore, it might be reasonable

to theorize that language can be identified with only positive examples, such as a text.

However, previous results have shown that only trivial classes of languages are iden-

tifiable in the limit given only text and attempts to construct a learner which could

come to meaningful conclusions given only text have not been successful. Hence, one

must wonder if there is even enough information in a text to identify a context-free

language.

3.5 A Learning Algorithm

An algorithm, first described and annotated by Angluin [1] and later summarized by

Clark [3], efficiently learns an initially unknown regular language from membership

queries and examples. Because regular languages are accepted by deterministic finite

state machines, this process by which the learner acquires new definitions is illustrated

with examples in the form of finite state machines.

3.5.1 Notation

Let the unknown regular set be U over known alphabet A, which is fixed and finite.

Throughout the process, the algorithm maintains and updates an observation table,

its legend for the finite state machine. The observation table, denoted (S, E, T)

consists of three things:

1. A non-empty prefix closed set S of strings, where every prefix of every member

in the set is also a member of the set. As per the notation in Clark, a string

w is a prefix of another string ir if and only if there exists a string p such that

22



7r = w - p, where the - is the concatenation function.

2. A non-empty suffix closed set E of strings, where suffix closed sets are defined

analogously to prefix closed sets.

3. A finite function T mapping ((S U S - A) - E) to {0,1}, where the output is 1 if

and only if the string is in the regular set.

Therefore, the observation table is a two-dimensional array with columns labeled by

elements of E, rows labeled by elements of S, and each cell in row s and column e

containing the value of T(s -e). Then define row(s) to be the row labeled by element

s.

As the algorithm proceeds, the learner repeatedly makes conjectures to a request in-

formant. However, this type of request informant, the minimally adequate informant,

takes conjectures of the regular set. The informant returns yes if the conjecture is

correct. Otherwise, it returns a counterexample which is in the symmetric difference

of the conjecture and the unknown regular language. However, there is no restriction

on which counterexample the minimally adequate teacher can return. Meanwhile, the

learner updates the observation table based upon the queries to the teacher, while

trying to keep the table both closed and consistent, where

" An observation table is consistent if and only if for each s 1 , s2 E S such that

row(si) = row(s2 ), then for all a E A, row(si - a) = row(s 2 - a).

" An observation table is closed if and only if for each t E S -A, there exists s E S

such that row(s) = row(t).

Note that an acceptor in the form of a finite state machine can now be formulated as

M(S, E, T) = (Q, ', 6, qo, F) over alphabet A where

* Q = {row(s)|s E S} is the state set

* qo = row(A) is the initial state

e F = {row(s)I s E S, T(s) = 1} is the accepting states
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* 6(row(s), a) = row(s - a) is the transition function

3.5.2 Algorithm

The premise of the algorithm relies on the observation table to maintain knowledge

accrued throughout the process while repeatedly querying the minimally adequate

teacher after failed conjectures. The pseudocode from [1] follows:

Initialize S and E to {A}.

Ask membership queries for A and each a E A.

Construct the initial observation table (S,E,T).

Repeat:

While (S,E,T) is not closed or not consistent:

If (S,E,T) is not consistent:

Find s1, S2 E S, a E A, e E E such that row(si) = row(s 2)

but row(si - a - e) 5 row(s2 - a - e)

Add a-e to E

Extend T to (S U S -A) - E using membership queries.

If (S, E, T) is not closed,

Find s1 E S, a E A such that row(si - a) is different

from row(s) for all s E S

Add si -a to S

Extend T to (S U S - A) - E using membership queries

If (S, E, T) is closed and consistent, def ine M = M(S, E, T)

Make conjecture M to the teacher

If teacher gives counterexample t

Add t and its prefixes to S

Extend T to (S U S - A) - E using membership queries

If teacher replies 'yes'' to the conjecture, output M.

In the above code, the initial observation table is compiled after setting up the basic
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alphabet and their respective membership queries. After a failed conjecture, the

algorithm requests certain membership query to the teaching algorithm and updates

its table accordingly. The while loop ensures the observation table is closed and

consistent, checking that it has not been corrupted at any point by additional queries

to the teaching algorithm.
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Chapter 4

Experiment

4.1 Amazon Mechanical Turk

4.1.1 Objective

The first experiment aims at measuring any differences in human cognitive abilities to

acquire through example the definition of conservative quantifiers versus the definition

of non-conservative quantifiers. Because no common existing language envelope the

defintion of non-conservative quantifiers into a single word, humans are expected to

have a bias for more easily acquiring the definition of conservative quantifiers.

4.1.2 Background

The Amazon Mechanical Turk community enables computer programmers, known

as requesters, to access to a large-scale group of workers for experiments involving

human intelligence, which cannot otherwise be achieved. These requesters upload

human intelligence tasks, called HITs, which are perused by workers until choosing

to complete the HIT, often for a monetary reward. Requesters may filter the results

by approving appropriate HITs or rejecting HITs with unsatisfactory or incomplete

responses. The responses by the requesters affect the workers' reputation, which may

serve as a qualification for future requesters.
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4.1.3 Setup

For the purposes of simplicity, first order Aristotelian quantifiers were chosen as the

conservative quantifiers whose definitions were to be identified, and the analagous

non-conservative quantifiers were selected. The non-sensical words "zag", "noto",

"wim", and "geno" were created and each randomly assigned the follow definitions:

" zag: None of the

Example: Zag of the circles are green a none of the circles are green.

" wim: One of the

Example: Wim of the circles are green a exactly one of the circles is green.

" noto: None of the set excluding

Example: Noto of the circles are green * none of the objects which are not

circles are green.

" geno: One of the set excluding

Example: Geno of the circles are green # exactly one of the objects which are

not circles is green.

Each worker initiating a HIT is greeted by the following message:

In this experiment, various words will have predetermined definitions,

which will be demonstrated in a series of examples, followed by a separate

image in which YOU should decide if the word is applied CORRECTLY.

Then, if appropriate, enter what you think the definition of the word

means.

The worker is then shown four examples of the correct application of a quantifier,

followed by another image, at which point the worker is prompted if the application

of the quantifier to that image is correct, and what the worker believes the quantifier

means. The process is then repeated for each quantifier. A list of images appear in

the appendix.
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4.2 Artificial Decider

The first implementation of the artifical learner involved no oracle and no informant.

Instead the learner would only be given training examples to see whether or not an

efficient learner could be construcuted. After seeing several training examples, the

algorithm would then decide on a specific case where a certain property applied to a

subset of the objects to see whether the quantifier applied or not.

4.3 Artificial Intelligence Learner

4.3.1 Objective

The final implementation of an artificial learner attempts to use the algorithm de-

veloped by Angluin to acquire the definition of elementary quantifiers. Although

Angluin and later Clark both cite the same algorithm, and prove theoretical results

about the algorithm, neither party reportedly implemented it.

4.3.2 Background

A theorem of Angluin states that the total runtime of the learner is bounded by a

polynomial in n and m, where n is the number of states of the minimum deterministic

finite automata accepting the regular language and m is the upper bound of the

length of any counterexample provided by the teacher [1]. However, the problem of

identifying the correct determinative finite automata with the minimal number of

states is an NP-hard problem.

4.3.3 Setup

The program is initially constructed with the unknown quantifier being "all", whose

state machine [3] appears in Figure 4-1: Because of the simplicity of dictionaries in

the Python programming language, this project was coded in Python 2.7 with Intel

Core Dual 2.53 GHz processors and 4.00 GB RAM.
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Figure 4-1: Finite state automata of the "all" quantifier.
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Chapter 5

Results and Discussion

5.1 Amazon Mechanical Turk

In total 85 participants selected to attempt the task. However, upon first review of the

resulting statistics, a staggeringly high 41% of results were rejected, with responses

deemed unsatisfactory. Due to the easily exploited nature of Amazon Mechanical

Turk, many candidates would rather submit quick responses in hopes of obtaining

a reward instead of looking for accuracy. Therefore, only 50 approved respondents

completed the task. However, once unsatisfactory results are filtered, the data reveals

an amazing discrepancy. The results are summarized in Table 5.1.

Table 5.1: Quantifier success rates in percentages

LApproved, correct application

Total, correct application
Approved, correct definition

zag
90%
74%
60%

wim
90%
81%
64%

noto
84%
75%
4%
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Recall the following definitions:

" zag: None of the

Example: Zag of the circles are green # none of the circles are green.

" wim: One of the

Example: Wim of the circles are green 4 exactly one of the circles is green.

" noto: None of the set excluding

Example: Noto of the circles are green < none of the objects which are not

circles are green.

" geno: One of the set excluding

Example: Geno of the circles are green * exactly one of the objects which are

not circles is green.

In total, 60% of the participants correctly determined the definition of the "zag"

quantifier to being equivalent to "none". Moreover, 90% of the participants correctly

determined whether or not the "zag" quantifier applied to the example diagram.

Once again 90% of the participants correctly determined whether or not the "wim"

quantifier applied to the example diagram. Similarly, 64% of the approved respon-

dents correctly specified the definition of the "wim" quantifier, higher than the rate

of respondents correctly defining the "zag" quantifier. The success rates for the non-

conservative quantifiers were much lower. While 84% of the approved participants

correctedly determined if the "noto" quantifier applied to the diagram, only two re-

spondents deduced the correct definition. All other respondents attempted to note

either the number of colored squares or the spatial configuration of the squares, in-

stead of looking at the objects which were not squares, despite all diagrams being

recycled from the "zag" example. Only 32% of the approved respondents correctly de-

termined if the "geno" quantifier applied to the test diagram, a statistically significant

amount, as demonstrated in the calulations below:

2n +s
2n-2
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.9 - .32
/0.092+0.21762

V 98

>> 3

The t value implies significance ever at the 99.5% confidence level. Because respon-

dents did worse than they would have with a random guess, either the definition

of "geno" or the training examples were misleadingly difficult. However, three re-

spondents correctly determined the definition of "geno", refuting the impossibility of

acquiring such a quantifier.

5.2 Artificial Decider

The initial philosophy of the decider was to deem a case of the quantifier false unless

sufficient evidence proves otherwise.

5.2.1 Training Examples with Percentages

The algorithm would observe training examples in which case the algorithm applied,

and keep track of the percentages for the examples. Therefore, the algorithm would

ask for examples in which the quantifier was true, and ask for both the total number

of objects, as well as the number of objects for which the property applied. The

algorithm keeps track of the lower and upper bounds for each case. For example, if

the unknown quantifier is "at least half of", possible training examples are 3 of 5, 16

of 19 and 8 of 8. If all three training examples were used, the algorithm would assume

the quantifier applies if property applies to anywhere between 60% and 100% of the

objects. However, this method would never be able to encapsulate the idea of "some",

which notes any percentage greater than 0%. In a sequence of training examples where

n is the largest number of objects in any training example, the algorithm will think

"some" is false if the property applies to 1 object out of n + 1 objects.
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5.2.2 Training Examples with Flat Numbers

Hence, the algorithm was modified so that it would also keep track of the flat numbers

of objects. Hence, if the training examples are 3 of 5, 16 of 19 and 8 of 8 the algorithm

would assume the quantifier applies if property applies to anywhere between 60%

and 100% of the objects or if the property applies to anywhere between 3 and 8 of

the objects. This addition solves the problem of "some". In fact, the modification

allows any Aristotelian first order, cardinal first order, or proportional quantifier to be

learned, with the proper training examples. However, because only positive training

examples are used, there is no way for parity quantifiers such as "an even number of"

to be learned. Even with the addition of negative training examples, parity quantifiers

cannot be learned under this type of decider.

5.3 Artificial Intelligence Learner

5.3.1 Constructing the teacher

Although the notation was initially intractable, the pseudo-code proved less resis-

tant. After the first successful compilation of the learner, the teacher algorithm was

constructed. For simplicity purposes, the minimally adequate teacher algorithm was

instructed to check conjectures up to twelve characters long. Therefore, counterexam-

ples would be given in dictionary order. That is, the counterexample "000011011010"

would be given before the counterexample "111111000111". Additionally, the teacher

algorithm would accept any string with all digits comprised of l's and reject strings

otherwise. Initially the interaction between the mapping function T and the current

state Q was incorrect, resulting in several key errors in the T dictionary. Consequently,

the relationship was changed so that at every step in M(S, E, T), the transition func-

tion would search for s such that row(s - a) = row(s) and record s as the current

state, instead of row(s).
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Table 5.2: Output for M(S, E, T) for the "all" quantifier

S ['', '0']
E ['f]
T ('01', ''): '0', ('00', C): '0',

(CO , C ): '0', (C' ''): (1', ('1) ') : '1'

5.3.2 Initial results

The resulting configuration for the "all" quantifier appears in Table 5.2. Compare

this table to the finite state automata in Figure 4-1 which represents the quantifier

"all". The initial state represented by A is also the accepting state, and transitions

to itself with the occurrence of input '1'. The other state, represented by '0' is not

an accepting state, and transitions to itself regardless of input, and can be reached

from the initial state by input '0, at any time. In addition, the rows '0,, '1', '00' and

'01' are represented because of the two states and the alphabet {'0', '1'1.

5.3.3 Other two state quantifiers

With the success of the Angluin algorithm in acquiring the definition of the "all"

quantifier and determining the corresponding finite state automata with the minimal

number of states, the algorithm was repeated with other quantifiers to see the resulting

outputs. In each case, both the algorithms which gave the result of membership

queries and the teaching algorithms were modified correspondingly. The quantifier

"none"7 serves as almost an exact replica of the "all" quantifier in its formulation

of the state machine, as demonstrated by the comparison of Figure 5-1 to Figure

4-1. Unsurprisingly, the output M(S, E, T) for "none" is exceedingly similar, shown

in Table 5.3. The initial state represented by A is also the accepting state, and

transitions to itself with the occurrence of input '0,, instead of '1' as in the "all" case.

The other state, represented by '1' is not an accepting state, and transitions to itself

regardless of input, and can be reached from the initial state by input '1' at any time.

In addition, the rows '0', '1', '10' and '11' are represented because of the two states
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Figure 5-1: Finite state automata of the "none" quantifier.

Table 5.3: Output for M(S, E, T) for "none" quantifier

and the alphabet {'0','1'}.

Additionally, the parity quantifier, "an even number of", which could not have been

implemented under the previous model of the artificial decider, also has two states

in its minimal representation as a finite state automata. Fortunately, the Angluin

algorithm was able to produce the correct finite state automata with the minimal

number of states. The difference between the resulting M(S, E, T) for this quantifier

and previous quantifiers is the number of entries s E (S U S - A) for which T(s) = 1,

which reflects the possibility that when the state machine leaves the accept state in

this case, it can still return to the accept case.
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Table 5.4: Output for M(S, E, T) for "even" quantifier

S1
E
T ('11',

C '10', ('): 'O) , (C ) 1 , (C) 'O )

C1',

Figure 5-2: Finite state automata of the "even" quantifier.

5.3.4 Larger number of states

How well does the Angluin algorithm handle quantifiers which need more than two

states in its minimal representation as a finite state machine? An elementary quan-

tifier with more than two states is "a multiple of 3 of", as in a multiple of 3 of the

circles are green. For the remainder of the paper, this quantifier shall be called three.

The associated finite state machine is displayed in Figure 5-3 and the corresponding

output M(S, E, T) is shown in Table 5.5. The output is vastly different from the pre-

vious outputs, and with good reason. Obviously, the number of states has increased

to three, as desired. However, E is finally nonempty, which reveals the crux of the

algorithm.

When M(S, E, T,) evaluates the string '111', it starts in the state row(A), which is

an accept state. Then by definition,

6(A,1) = row(1) = 0,
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Figure 5-3: Finite state automata of the "three" quantifier.

Table 5.5: Output for M(S, E, T) for "three" quantifier

S ['', '1'), '11']

E['', '1']

T ('11',Y ''): '0) , ('110' , '): '0', ('11', '1'): '1',1
('O', ''): ' 1 ('',. '1-'): '0', ('111', ''): '1',3

(1 0 1): '1', ('110 ,1 '1'): '1', ('1', '1'): 'O',
('10', ''): 'OQ, (C 1 1 1 ', ' 1 '): '0', ('0', ' 1 '): 'C',

('10', '1'): '0',* ('1', '') 'O

which is a reject state. In the next transition,

6(1, 1) = row(11) = 0,

which is again a reject state. Unfortunately, M(S, E, T) has no way method of cor-

rectly assigning the reject state. By design, M(S, E, T) selects the first row which is

a reject state. Therefore, the algorithm selects row(1). But then

6(11, 1) = row(11) = 0,

which results in a reject state. That is, M(S, E, T) rejects '111' while the teacher

accepts, which causes a membership query of all prefixes and requests another conjec-

ture from the algorithm. However, all prefixes of '111' are already contained in S and

correctly defined in T, so neither S nor T will change, which would in the exact same

conjecture, causing the algorithm to loop indefinitely. Fortunately, the construction

of E serves as a state memory, so that for multiple reject states, some column of E
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will differentiate the rows. Therefore, after the first failure of the '111' input, the

learner realizes that the table is not consistent, because the current rows of '1' and

'11' are the same, but behave differently upon an additional '1'. Hence, '1' is added

to E and the membership queries are run. This time, the two rows are different, and

the learner recognizes the correct row to pass, and the conjecture is correct.
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Chapter 6

Summary

6.1 Cognitive Bias

The results from the Amazon Mechanical Turk experiment reveals a cognitive bias for

humans to search for conservative quantifiers, as expected, since no non-conservative

quantifier is expressed as a single word in any language. However, because Ama-

zon Mechanical Turk does not grant the ability for the same respondent to complete

multiple tasks and be timed for each task, it remains to be seen whether or not the

verification process for humans is also biased toward conservative quantifiers. Per-

haps if the definitions of a conservative quantifier and its analogous non-conservative

quantifier were given, humans might also show the ability to verify the conservative

quantifier faster than the non-conservative quantifier.

6.2 Artificial Intelligence

Although the artificial decider was able to acquire the definitions of several quantifiers

using the combination of positive training examples of both percentages and flat

numbers, no amount of training examples would permit the artificial decider to learn

parity quantifiers. Moreover, if random training examples were input into the artificial

decider, than the accuracy of the decider would be no better than an exercise in

mathematical probability: whether or not the test case falls within the range of the
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previous training examples.

On the other hand, the artificial intelligence learner outlined by Angluin seems per-

fectly capable of returning the correct finite state automata of 'all' with the mini-

mum number of states. Moreover, it successfully acquired the correct representation

of "none" and "an even number of", demonstrating that the Angluin algorithm can

acquire both Aristotelian first order quantifiers and parity quantifiers, the latter of

which the artificial decider is unable to acquire. Because cardinal first order quanti-

fiers can still be represented by regular languages, the Angluin algorithm can acquire

their definitions through a minimally adequate teacher as well. However, proportional

quantifiers cannot be expressed by regular languages, so they cannot be captured by

the Angluin algorithm. Moreover, the nested for loops would likely slow computation

for more complicated quantifiers with far greater than number of states. In fact, the

process of confirming consistency relies on iterating twice through the prefixes and

once through the suffixes, the sizes of which can be on the order of the number of

states. Similarly, the number of incorrect conjectures and subsequent membership

queries can also be on the order of the number of states. Therefore, the resulting

runtime for the algorithm applied to complex quantifiers can easily be asymptoti-

cally quartic on the number of states in the minimal representation of the quantifier.

Lastly, the presence of a minimally adequate teacher may be somewhat optimistic, as

with the existence of an oracle, learners naturally become easier.

6.3 Alternative Forms of Identification

To justify the selection of identifiable in the limit as the standard for identification, al-

ternative standards must be analyzed. Finite identification is the most common iden-

tification problem, especially in automata theory. Under this standard, the learner

will stop accepting new information if it thinks it has received sufficient information

in order to decide upon a language. However, the decided language cannot surely be

correct unless all other languages have been disproved, which means that a sequence
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of information can be constructed to disprove the existence of a completely accurate

learner under finite identification.

Fixed-time identification forces the learner to decide upon a language after a fixed

amount of finite time, independent of the unknown language and text. Similar to the

previous identification standard, some text can always be constructed to disprove the

existence of a completely accurate learner under fixed-time identification.

The basic idea in the counterproofs previously mentioned is to create a sequence

with enough useless information to stall the learner until the number of same contin-

uous guesses or the time is exceeded. Hence, the idea of redundant information in

text is powerful enough to render enough the most carefully constructed learner either

incorrect, as in either of the later two identification models, or highly inefficient, as

such under the identifiable in the limit model. Thus, perhaps by restricting the text

that can be input into a learner, better results can be achieved.
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Appendix A

Figures: Zag, Noto

Figure A-1: Zag of the circles are green / Noto of the squares are green: 1
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Figure A-2: Zag of the circles are green / Noto of the squares are green: 2

Figure A-3: Zag of the circles are green / Noto of the squares are green: 3

Figure A-4: Zag of the circles are green / Noto of the squares are green: 4

Figure A-5: Zag of the circles are green / Noto of the squares are green: False test

case
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Appendix B

Figures: Wim, Geno

Figure B-1: Wim of the circles are green / Geno of the squares are green: 1
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Figure B-2: Wim of the circles are green / Geno of the squares are green: 2

Figure B-3: Wim of the circles are green / Geno of the squares are green: 3

Figure B-4: Wim of the circles are green / Geno of the squares are green: 4

Figure B-5: Wim of the circles are green / Geno of the squares are green: False test
case
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