
Defending Against Side-Channel Attacks: MCHNES

DynamoREA

by

David Wen

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2011

@ Massachusetts Institute of Technology 2011. All rights reserved.

A u th o r
Department of Electrical Engineering and Computer Science

Au ust 22, 011

C ertified by
Samai~marasinghe

Professor
Thesis Supervisor

Accepted by....
Christopher J. Terman

Chairman, Master of Engineering Thesis Committee

Defending Against Side-Channel Attacks: DynamoREA

by

David Wen

Submitted to the Department of Electrical Engineering and Computer Science
on August 22, 2011, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Computer Science and Engineering

Abstract

Modern computer architectures are prone to leak information about their applica-
tions through side-channels caused by micro-architectural side-effects. Through these
side-channels, attackers can launch timing attacks by observing how long an appli-
cation takes to execute and using this timing information to exfiltrate secrets from
the application. Timing attacks are dangerous because they break mechanisms that
are thought to be secure, such as sandboxing or cryptography. Cloud systems are
especially vulnerable, as virtual machines that are thought to be completely isolated
on the cloud are at risk of leaking information through side-channels to other virtual
machines. DynamoREA is a software solution to protect applications from leaking
information through micro-architectural side-channels. DynamoREA uses dynamic
binary rewriting to transform application binaries at runtime so that they appear to
an observer to be executing on a machine that is absent of micro-architectural side-
effects and thus do not leak information through micro-architectural side-channels.
A set of test applications and standard applications was used to confirm that Dy-
namoREA does indeed prevent sensitive information from leaking through timing
channels. DynamoREA is a promising start to using dynamic binary rewriting as a
tool to defend against side-channel attacks.

Thesis Supervisor: Saman Amarasinghe
Title: Professor

Thesis Supervisor: Eran Tromer
Title: Co-Advisor

3

4

Acknowledgments

To my thesis supervisor, Saman Amarasinghe, I am thankful for providing me with

the opportunity to work on this project and giving helpful feedback during the course

of writing this thesis. I am grateful for my other thesis supervisor, Eran Tromer,

who has been able to provide constant guidance in all phases of my M.Eng, even

through his busy schedule multiple timezones away. I would also like to thank Qin

Zhao for helping to integrate Umbra into DynamoREA and for having the answers

to any questions I had regarding DynamoRIO. I would also like to acknowledge my

mother, father, and brother for their support throughout the years, along with friends

and teammates who have been able to keep me sane throughout my MIT experience.

5

6

Contents

1 Introduction

1.1 Covert-Channel Attack

1.2 Side-Channel Attack

1.3 Attack on Cloud Computing Services .

1.4 Motivation for Preventing Side-channel

1.5 Existing Countermeasures

1.5.1 Fuzzy Clock

1.5.2 Security-Typed Language . . .

1.5.3 Enforcing Determinism

1.5.4 DynamoREA

2 Overview of DynamoREA: Theory and

2.1 G oals

2.2 Ideal Machine Abstraction

2.2.1 Autobiography

2.2.2 Holdback

2.2.3 Ideal Time

Attacks

Rationale

3 Design and Implementation of DynamoREA

3.1 Dynamic Binary Rewriting

3.2 DynamoRIO

3.3 Maintaining Autobiography

3.4 Timing Events

7

13

14

14

16

17

17

17

18

18

19

21

21

22

23

23

25

29

29

30

30

33

3.4.1 System Calls . 33

3.4.2 Signals . 33

3.4.3 Determinism . 34

3.4.4 Shared Memory . 34

3.5 Computing Ideal Time . 34

3.5.1 Autobiography Ideal Cycles 35

3.5.2 Memory Access . 35

3.5.3 Logic Operations . 37

3.5.4 Other Delays . 38

3.6 Handling Timing Events . 39

3.6.1 Handling System Calls . 39

3.6.2 Handling Signals . 39

3.6.3 Handling Internal Non-Determinism 40

3.6.4 Handling Shared Memory . 43

3.7 Holdback Ideal Time . 43

3.7.1 Implementing Holdback . 44

3.7.2 Applying Holdback . 44

3.7.3 Observable and Unobservable Holdback Syscalls 45

3.8 Ideal Machine . 45

3.8.1 Ideal Machine Model Without External Events 45

3.8.2 Ideal Machine Model W ith External Events 49

3.9 Efficiently Handling Timing Events 50

3.9.1 getpid() . 50

3.9.2 RDTSC() . 50

3.9.3 sendto() . 51

3.9.4 wait . 52

3.9.5 Optimizing Ideal Cycles . 54

4 Evaluation 57

4.1 Security . 57

8

4.1.1 Security Invariant . 57

4.1.2 Ideal Machine Abstraction . 57

4.1.3 Determinism . 62

4.1.4 Shared Memory . 63

5 Conclusion 65

9

10

List of Figures

1-1 DynamoREA emulating an ideal machine 19

2-1 (a) Real time compared to ideal time (b) Real time delaying to match

ideal time at observable actions. The dashed lines represent the pro-

gram delaying right before executing the observable action. (c) An

ideal machine abstraction violation: real time is greater than ideal

time at observable actions . 26

3-1 Naive memory access function and threshold memory access function 37

3-2 Sample table of tested instructions and average number of cycles they

consume. In the operands column, r = register, m = memory, i =

im m ediate. 38

3-3 (a) Synchronizing threads A and B. A is at a synchronization event

and must wait for B's deterministic logical clock to pass before it may

continue. (b) A is at a synchronization event and is allowed to progress

since its deterministic logical time is less than B's. 41

3-4 (a) Deadlock example. Thread R is blocked by a blocking read call that

must wait for thread W's write to finish. Thread W is blocked because

its deterministic logical clock is ahead of R's (b) Deadlock resolution.

R's blocking read is transformed into a series of non-blocking reads

until R's deterministic logical clock passes W's, freeing W's write and

resolving the deadlock. 43

3-5 RDTSC pseudocode . 51

3-6 sendto pseudocode . 52

11

3-7 wait pseudocode . 54

3-8 (a) Scatter plot of memory delay curves of an is call (b) Iterations of

finding the best fit curve. The best fit curve is colored in blue. 55

4-1 mem-arith test application . 58

4-2 aes test application . 59

4-3 wget standard application . 60

4-4 OpenSSL RSA standard application 61

4-5 cache test application . 62

4-6 mtaddmult test application. The parent thread's real and ideal times

are shown as filled lines. The child threads' real and ideal times are

shown as dashed lines. 64

12

Chapter 1

Introduction

In an ideal world, software programs are allowed access only to the information it

needs, no more and no less. Furthermore, these programs are able to protect their

private data from unauthorized access or modification from attackers who may want

to read this data. In this ideal world, sensitive data is accessible only when permission

to read is explicitly granted. Unfortunately, in the real world, this often is not the

case. Even if a program takes measures to safeguard against unauthorized reading

of its secrets, there are plenty of other ways it may unintentionally leak information

about its secrets through computer architectural effects.

The confinement problem is the problem of ensuring that a borrowed program is

incapable of stealing information from a borrower to pass on to the program's author

without the borrower's permission. There are multiple channels in which information

can pass through, including channels that are not intended for information transfer

at all, such as file locks. For example, the borrowed program may read data and

concurrently lock or unlock a file depending on whether it reads a 0 or a 1 bit. An

outside program that tries to open this file will be able to deduce the data depending

on whether or not opening the files succeeds. With this set-up, the borrowed program

is able to communicate the borrower's information to the outside using indirect chan-

nels not normally used for communication. This particular attack where the author

of the borrowed program writes mechanisms that reveal its user's secrets through

indirect channels are called covert-channel attacks.

13

1.1 Covert-Channel Attack

In a covert-channel attack, an attacker attempts to exfiltrate a secret protected by

security mechanisms like sandboxing or mandatory access control . The attacker sets

up two processes, a trojan process and a spy process. In the covert-channel set up, the

trojan process controls the application containing the secret and attempts to pass bits

of information to the spy process on the same computer. The security mechanisms

protecting the secret prevent the trojan process from communicating to the outside

through trivial means, such as through the network or inter-process communication.

However, the attacker can find other ways to communicate between the trojan and

spy processes.

Shared access to the cache can be an example of a covert channel [12]. One

example of a cache-based covert-channel attack involves the trojan process evicting

the entire cache to transmit a '1' bit and leaving it intact to transmit a '0' bit. If

the spy process is making memory accesses and timing how long it takes to retrieve

data from memory, it can notice whenever the data it's retrieving is in cache or if

it has been evicted, thus receiving bit information from the trojan process, despite

security mechanisms designed to prevent such communication. Though the attacker

never has direct access to the secret in the application, he can use the trojan process

to relay information about the secret. In this case, the secret is revealed because of

the micro-architectural effect of varied timings of memory accesses depending on the

cache's state. If there were a machine where the cache evictions do not affect the

timings of memory accesses, then this attack would fail.

1.2 Side-Channel Attack

Covert-channel attacks usually require the victim executing a program that the at-

tacker authored to take advantage of indirect channels. However, certain attacks can

extract secrets through indirect channels without the cooperation of a trojan pro-

cess. These attacks are called side-channel attacks and can be more dangerous than

14

covert-channel attacks since they can occur without the user running a program the

attacker authored.

When handling data, a program may behave differently depending on its inputs.

Timing variances from different inputs serve as side-channels and can leak information

about the inputs. For example, some attacks take advantage of the fact that going

through different branches of a conditional statement may take different time. In the

RSA decryption algorithm, a modular exponentiation is calculated with the cipher

as the base and the decryption key as the exponent. An algorithm can calculate this

value by iterating through the bits of the decryption key and solving the value step by

step. However, this algorithm treats the Os and Is in the key's binary representation

differently and consequently has a different runtime depending on the conditional

branch it takes per bit. By timing the RSA decryption, an attacker could take

advantage of the timing discrepancies to make deductions on what the secret key

could be. We refer to these type of attacks as code-based side-channel attacks, as the

behavior of the code itself is the cause of leaking information through side channels.

Another example of a side-channel attack is the cache-based side-channel attack.

An application may write to and read from the computers cache. The application

runs faster if the data it needs is readily available in cache. If the data is not in

the cache, the application needs to take time to fetch it from slower memory. An

attacker can take advantage of this speed discrepancy by first filling the cache with

his own data, then triggering a victim's application to execute, and then attempting

to read his own data from cache. By timing his memory accesses, the attacker can

deduce which of his own data had been evicted by the victim's application. This

timing information can then be analyzed to reveal secret information, such as keys,

about the victim's application. It has been demonstrated that attackers are able to

use cache-based side-channel attacks to determine the secret key from an OpenSSL

RSA decryption [4] [15] and AES encryption [17]. Again, if we had a machine where

changing the state of the cache does not affect the time it takes to make memory

accesses, cache-based side-channel attacks could be prevented.

In addition, non-determinism in concurrent programs is also a potential channel for

15

leaking information. The choices a thread scheduler makes or variations in hardware

performance can cause the same inputs to result in different outputs. These discrep-

ancies caused by micro-architectural effects can reveal information about the inputs

and leak secrets. We make the distinction between internal non-determinism and

external non-determinism. The sources of non-determinism listed above are from

within the computer system and we refer to this type of non-determinism as inter-

nal non-determinism. External non-determinism comes from outside the computer

system, such as network latencies or the time it takes to wait for a user input.

1.3 Attack on Cloud Computing Services

Since cloud computing usually allows users to launch virtual machines on the same

physical machine, cloud computing services may be suspect to side-channel attacks.

Amazon provides a cloud computing service called Amazon Elastic Cloud Compute

(EC2) [1] . Users are able to pay for a specified amount of computing power and

launch instances to make EC2 do the computing work necessary. EC2 comes with the

expectation that all instances are isolated from each other. Any two instances should

be as separate as two different physical computers. However, in reality, Amazon uses

virtualization and two instances may actually share the same hardware, even though

they appear to be running on separate machines. As virtual machines share the same

resources, side-channels may form and security vulnerabilities arise.

It has been demonstrated that it is possible for an EC2 user to systematically

launch EC2 instances until he is sharing a computer with a target user's instance

running on it [16] . In addition, communication channels between virtual machines

have been implemented, showing that it is possible for an attacker to target a victim

on an established cloud computing platform and set up a side-channel attack on that

victim. Though an EC2 instance is supposed to be isolated from other instances, in

practice it is possible to launch a separate instance onto the same machine and expose

the instance's activity.

16

1.4 Motivation for Preventing Side-channel Attacks

Side-channel attacks are dangerous because it can break mechanisms that are thought

to be secure through other security mechanisms, such as sandboxing or cryptography.

No matter how secure an algorithm might be, it may be vulnerable if it does not

protect its data from leaking through side-channels. AES encryption was thought

to be algorithmically secure until it was discovered that attacking the system AES

was running on instead of the AES ciphers themselves yielded enough information to

deduce an AES key.

Side-channel attacks require that the attacker have access to the same computer

the victim is using in order to observe and monitor these side channels. They are

dangerous in environments where computers are shared and an attacker is free to

share hardware with his targets. In cloud computing, an attackers virtual machine

and a victims virtual machine could share the same physical machine. As services

gradually migrate towards the cloud, preventing side-channel attacks is a significant

area of concern.

1.5 Existing Countermeasures

To defend against side-channel attacks, countermeasures have been taken to try to

ensure that the observations an attacker can make from a program (i.e. what is

communicated by the program and when it is being communicated) are independent

from the inputs of the program. For example, what the attacker can observe from

triggering an RSA decryption must not depend on the private key.

1.5.1 Fuzzy Clock

The attacks that have been discussed rely on being able to time some action (e.g.

how long it takes to access some memory) and learning bits of information based on

the results of the timings. To disrupt such attacks, one can implement a low resolu-

tion computer clock, or a "fuzzy clock" [11], so that the attacker can not distinguish

17

between different timing results, rendering analysis of some of the side channels in-

effective. However, using a fuzzy clock can disturb legitimate programs that need to

use an accurate clock. Also, if the clock's resolution isn't low enough, attackers would

be able to average more samples to compensate for the fuzzier clock and still achieve

the same results as before. Furthermore, even with the perfect fuzzy clock, a system

would still be vulnerable to other side channels.

1.5.2 Security-Typed Language

Another countermeasure is to provide and use a security-typed language. Well-typed

programs with these such languages provide a level of security depending on what

the type system of the languages check.[2] [18]. Under these languages, it's possible

to remove vulnerable timing variances and mitigate code-based side-channel attacks,

such as in the conditional statement in the modular exponentiation algorithm men-

tioned above. However, security-typed languages do not apply well to proprietary and

existing software, as changing languages can be complex, impractical, or impossible

if the source is not available.

Security-typed languages can catch security issues in a program's code, but they

are unable to do anything about side-channel vulnerabilities that can't be fixed from

within the code. Even if a program is well-typed in a security-typed language, it does

not guarantee that the program will not leak information through micro-architectural

effects. It should be stressed that we are not trying to solve the same problems as

security-typed languages. Our goals do not include fixing leaky code and saving pro-

grams from themselves. Rather, our mission is to make sure that securely-typed pro-

grams can execute securely without leaking any secrets through micro-architectural

effects.

1.5.3 Enforcing Determinism

Various measures have been implemented to enforce determinism in multithreaded

programs. CoreDet [7] uses a modified compiler and a new runtime system to execute

18

multithreaded programs deterministically, alternating running threads in parallel and

serial mode. DMP [5] proposes a hardware solution to enforce deterministic execution.

dOS [8] borrows concepts from DMP and modifies the kernel to help enforce internal

determinism. Kendo [14] uses a software approach and provides libraries to enforce

determinism on multithreaded programs. Though security against side-channel at-

tacks are usually not the primary goals for these determinism enforcers, many of their

concepts are applicable to addressing vulnerabilities brought up by non-determinism.

Like security-typed languages though, it is often difficult or impractical to apply

these solutions to existing software, as these solutions either requires recompiling of

programs, changes to the operating system, different hardware, or alterations in code.

1.5.4 DynamoREA

DynamoREA (Dynamic Runtime Enforcement of Abstraction) is our approach to

mitigating side-channel attacks. DynamoREA is a software solution that enforces the

abstraction of an ideal machine, a machine where applications run without micro-

architectural effects that may leak information to outside observers. In this ideal

machine, applications run deterministically and their behaviors are not affected by

the activity of other processes that they do not directly interact with. If an attacker

tries to observe an application in this ideal machine abstraction through software

side channels, the attacker will learn nothing that can help him exfiltrate secrets.

DynamoREA acts as a layer between the machine and the application so that to an

observer, any application running on DynamoREA appears to be running on an ideal

machine.

Figure 1-1: DynamoREA emulating an ideal machine

19

DynamoREA takes a unique approach to defend against side-channel attacks.

We introduce and define the notion of an ideal machine that would be resistant to

microarchitectural-based side-channel attacks. Unlike previous attempts to mitigate

side-channel attacks or enforce determinism by modifying hardware, the compiler, the

source code, or the kernel, DynamoREA uses dynamic binary rewriting to achieve its

goal. This is both a new way to approach side-channel security and a new way to use

dynamic binary rewriting tools.

In chapter 2, we will discuss the goals we want DynamoREA to accomplish, along

with the theory and rationale behind its structure. We will also define the ideal

machine abstraction that DynamoREA will enforce on applications and introduce the

notion of ideal time. In chapter 3, we will describe how DynamoREA is implemented

and reason out how our implementation enforces the ideal machine abstraction we

defined. In chapter 4, we evaluate the performance and security of several applications

executed on DynamoREA.

20

Chapter 2

Overview of DynamoREA: Theory

and Rationale

2.1 Goals

Our goal is to provide a security system that defends against micro-architectural

timing attacks by preventing any timing information from leaking through channels

caused by micro-architecture effects. Our defense against these such side-channel

attacks must be secure, generic, efficient, and extensible.

A secure defense is one that prevents applications from leaking sensitive timing

information through micro-architectural effects. We need to provide a clear model

of the behavior of an application and provide an argument why this behavior on

our system is secure against micro-architectural timing attacks. To demonstrate

security, we will provide a security invariant, argue that an application whose behavior

maintains this invariant is secure, and then demonstrate that this invariant does

indeed hold for applications running on our security system.

A generic defense should be able to be implemented on many standard platforms

and not depend on any special platform properties. The security system should be

usable on a wide variety of architectures and not rely on properties found on few

systems to work properly.

An efficient defense is one that does not heavily impact performance. Even

21

if a defense were secure and generic, it would still be impractical use if it hinders

performance too much.

An extensible defense can be easily changed and deployed as newer attacks and

vulnerabilities are discovered. As the defense changes, it should be easy to deploy

the changes so that legacy code and commercial off-the-shelf code are also protected

without modification.

As mentioned before, it's important to note that our defense against side-channel

attacks is specifically targeting leaks through micro-architectural side effects. There

are other channels that our solution does not address, such as code-based timing

attacks discussed in section 1.5.2. We address security concerns stemming from micro-

architectural effects, but assume that other side-channels are dealt with appropriately.

2.2 Ideal Machine Abstraction

Imagine a machine that does not have any micro-architectural artifacts. The number

of CPU cycles required to execute each instruction does not depend on the state of the

machine. For example, in this machine, an instruction will take the same number of

cycles to execute regardless of the state of the cache. Multiple executions of a program

on this machine would be indistinguishable from each other if we were monitoring

their runtimes in terms of cycles. Timing attacks do not affect this machine since

an attacker cannot gather useful timing results if every execution produces the exact

same results.

We call this machine an ideal machine, since this machine would be impervious

to micro-architecturally based timing attacks. On this ideal machine, the running

time of a program depends only on its own activity and external events, not on the

state of the machine or the activity of any other program on the machine. In reality,

the typical machine is not ideal because most performance optimizations result in

hardware resource sharing, which in turn creates micro-architectural artifacts. We

can however strive to enforce an abstraction of an ideal machine that retains the

performance optimizations of a real machine while eliminating the micro-architectural

22

artifacts that usually result from those optimizations. While our physical machines

are not ideal, our goal is to emulate an ideal machine and have every program look

like it is actually running on an ideal machine. An external observer should not be

able to tell that programs are in fact running on a real machine.

Though we are emulating this ideal machine on a real machine, we do not require

that the ideal machine is executing at the same rate as the real machine it is being

emulated on. That is, we do not specify that the time it takes to run a CPU cycle

on the real machine has to be the time it takes to run a cycle on the emulated ideal

machine. We introduce a wallclock constant, W, that translates wallclock time to

cycles on an ideal machine with (cycles / seconds) as units. The speed of the ideal

machine that we will try to emulate depends on w.

2.2.1 Autobiography

Since the running time of a program depends on its own activity in an ideal machine,

we need some way of modeling what constitutes a program's activity. We introduce

the notion of a program's autobiography. An autobiography provides this model and

contains information about the program's activity, such as how many instructions

have been executed, what types of instructions have been executed, and how many

basic blocks have been instrumented. An autobiography of a program is built at

runtime, as it may not be possible to predict a program's activity beforehand. As

instructions and basic blocks are being executed, they are also being tracked and

counted by the autobiography. The autobiography represents a program's own activ-

ity, from which we will derive how fast an ideal machine would execute this program

and attempt to emulate this execution.

2.2.2 Holdback

There are certain points of a program's execution where the running time cannot

be derived directly from the information provided in the autobiography. For in-

stance, there are system calls that wait for particular events before completing and

23

the amount of time the program needs to wait cannot be deduced from the autobi-

ography. An application may have syscalls that wait for a reception of a network

packet, a child thread to finish execution, or a user submitting input to the program

before continuing. These events that an application might wait for are called hold-

back events. We define holdback as the number of cycles a machine takes to wait for

a holdback event. Real holdback is the number of cycles a real machine had to wait

for a holdback event. Ideal holdback is the number of cycles that an ideal machine

would have needed to wait for a holdback event.

Like a real machine, an ideal machine must also spend time to wait for holdback

events. A machine with no micro-architectural side effects is still subject to waiting

for holdback events after all. Thus, if we wanted to emulate the behavior of an ideal

machine, we must account for the holdback the ideal machine would experience. We

can measure real holdback, but real holdback may not directly translate to ideal

holdback since the ideal machine does not necessarily run at the same rate as a real

machine. However, using the time, r, it takes to run a CPU cycle on a real machine

and given the wallclock constant w, we can introduce a constant of proportionality

a = rw that translates real holdback to ideal holdback. If we measure real holdback

to be h, the corresponding ideal machine's holdback would be ah.

There are two types of holdback events. A holdback event may come from outside

of the program's own architecture, such as the cases of waiting for user input and

waiting for incoming network packets. We call this type of event an external holdback

event. To calculate ideal holdback in these cases, we measure real holdback and use

a to translate the measurement into ideal holdback.

The other type of holdback event comes from within the program's own archi-

tecture. In the case of waiting for a child thread to finish executing, the length of

the wait can be completely measured on the ideal machine if the child thread is not

affected by external events. We call these holdback events internal holdback events.

Internal holdback can be measured directly on the emulated ideal machine because

it only depends on the program's own architecture, unlike external holdback which

needs to be measured in the real machine and then translated to the ideal context.

24

The goal is to calculate how much total holdback an ideal machine would ex-

perience, the cumulative ideal holdback. If we measure Hi ideal machine cycles for

internal holdback and H, real machine cycles for external holdback, the cumulative

ideal holdback would be Hi + aH,

2.2.3 Ideal Time

From a program's autobiography and cumulative holdback, we can calculate the run-

ning time of an application if it were running on an ideal machine. We call this running

time on an ideal machine ideal time, or T, and it is measured in terms of CPU cycles

on the ideal machine, or ideal cycles. Since in an ideal machine, a program's running

time depends only on its own activity and holdback, it is important that the ideal

time calculations depend only on a program's autobiography and holdback.

Given some point of a program's execution, let Ej be the number of cycles an

ideal machine would execute, derived from solely the program's autobiography at

that point, Hi be the ideal holdback calculated from internal holdback events, and

H, be the real holdback measured from external holdback events. The ideal time, or

the amount of cycles we would expect an ideal machine to execute the program to

that point, can be written as follows:

Ti = Ei + H, + aHr

where a is the constant of proportionality relating holdback on a real machine to

holdback on an ideal machine calculated from section 2.2.2.

25

Instruction Instruction
Count Count

Cycle Counter Cycle Counter

(a) (b)

Instruction
Count

Real Time

ideal Time

Z 0Observable Actions

Cycle Counter

(c)

Figure 2-1: (a) Real time compared to ideal time (b) Real time delaying to match ideal
time at observable actions. The dashed lines represent the program delaying right
before executing the observable action. (c) An ideal machine abstraction violation:

real time is greater than ideal time at observable actions

Our goal is to have every program look like it's running on an ideal machine, so at

all points of a program's execution that can be observed by a hypothetical attacker,

the program's actual count of executed cycles, or real time, must be equal to the

program's ideal time. This maintains the illusion that the program is running on an

ideal machine, otherwise known as enforcing the ideal machine abstraction.

Only at a program's observable actions do ideal time and real time need to be

equal to enforce the ideal machine abstraction. At other periods of a program's

26

execution, real time is allowed to differ from ideal time without violating the ideal

machine abstraction (see Figure 2-1(b)). However, in order to ensure that real time

and ideal time will be equal at observable actions, it is necessary that real time is

less than or equal to ideal time right before observable actions. If real time is greater

than ideal time, then there is no way of equalizing the times and enforcing the ideal

machine abstraction at the observable actions (see Figure 2-1(c)). In contrast, if

real time is less than ideal time, the program can delay right before the observable

action and allow real time to "catch up" to ideal time before executing the observable

action.

Because it is necessary that real time not be greater than ideal time right before

observable actions, we have to be careful when calculating ideal time. In general,

calculating ideal time requires assuming worst case program execution. If ideal time

calculations do not take into account worst cases, such as no cache hits, then we run

the risk that when worst cases do happen, real time surpasses ideal time and the ideal

machine abstraction is violated. Ideal time calculations must be conservative enough

so that even in the worst case, a program's real time will be no greater than ideal

time at observable actions.

In addition, an ideal machine must be absent of internal non-determinism. In-

ternal non-determinism is caused by micro-architectural effects and thus a machine

without micro-architectural side-effects must be internally deterministic. We aim to

emulate an ideal machine that executes observable actions at predictable times and

is internally deterministic as a result of having no micro-architectural effects. An

ideal machine however is still suspect to external non-determinism. An example of

external non-determinism is holdback, since the amount of holdback experienced can

depend on external effects like network latency. External non-determinism will still

be present in an ideal machine, but problems arising from this type of determinism

cannot be solved with an ideal machine.

27

28

Chapter 3

Design and Implementation of

DynamoREA

3.1 Dynamic Binary Rewriting

One of our goals for DynamoREA is to have a defense that is easily deployed on

existing code. It is impractical to manually rewrite every applications to be secure

against side-channel attacks, however it is feasible if we could automatically rewrite

the applications. Rewriting application sources is complex or impossible if source code

is not available, but we can imagine being able to catch side-channel vulnerabilities

in the application's binaries and doing something about them at that point.

Dynamic binary rewriting tools make it possible to modify an application's ma-

chine code after it has been compiled, which is useful when there is no access to

source code. These tools are able to access and modify machine code instruction by

instruction. Examples of popular dynamic binary rewriting tools include Pin[6] and

Valgrind[13]. They are often used for analyzing performance or diagnosing problems

in an application. However, for our case, dynamic binary rewriting tools will be useful

to build a program's autobiography since autobiographies need to be built at runtime.

Dynamic binary rewriting will also help with enforcing the ideal machine abstraction,

for example inserting delays so that observed cycles equals ideal cycles at observable

actions.

29

Dynamic binary rewriting is an effective method to provide a generic and efficient

defense against side-channel attacks. Since dynamic binary rewriting works on com-

piled code, there is no need to recompile to reap the benefits of a dynamic binary

rewriting solution. This also means that users can use a dynamic binary rewriting

defense on applications even if they are not able to modify the sources. Being able

to work at the instruction level also allows us to modify the behavior of applications

to adhere to security invariants without too much overhead.

3.2 DynamoRIO

DynamoREA is built on DynamoRIO [3] (Dynamic Run-time Introspection and Op-

timization), a framework that allows for dynamic binary rewriting. Using this frame-

work, a user writes a DynamoRIO client specifying how he wants the application to

be transformed at runtime. DynamoRIO is able to modify blocks of instructions by

transforming basic blocks the first time they are executed and using the transformed

version of the basic block every time it is executed. DynamoRIO also provides hooks

to modify the behavior of system calls, thread initialization and exit, and more. It

provides the ability to transform an application binary to insert, remove, or replace in-

structions through the client code. Running any application through the DynamoRIO

client modifies the instructions in the application binary and runs the modified ap-

plication.

DynamoREA uses DynamoRIO to register events to help build the autobiogra-

phy and maintain the ideal machine abstraction. As we go through the features of

DynamoREA, we will note how DynamoRIO is used to implement these features.

3.3 Maintaining Autobiography

As discussed in section 2.2.1, we want to keep track of an autobiography, a model of

a program's execution activity. From the autobiography, we calculate the ideal exe-

cution time, the number of cycles the ideal machine takes to execute the instructions

30

in an application, disregarding holdback. The elements that we want to keep track of

in the autobiography are the components in the instructions that contribute to ideal

execution time.

The actual operation in each instruction contributes to the running time of the ex-

ecution. Since different instruction operations take different time, the autobiography

needs to keep track of the ideal time contribution of the operations in the appli-

cation's instructions. For instance, an add operation is considerably cheaper than

a divide operation, and we need to make sure we treat these operations differently

when determining the instruction's execution time on an ideal machine. Using Agner

Fog's table of instructions and cycles per instruction [9], DynamoREA can look up

an estimate of how many ideal cycles an instruction should contribute based on the

instruction's opcode.

Also, if an instruction accesses memory, it may take longer than a similar instruc-

tion that doesn't access memory, even if they have the same operations. As a result,

we should also keep note of instructions that access memory. DynamoREA uses the

number of memory accesses to calculate the number of cycles an ideal machine would

use to make memory accesses in the application.

Also, it takes time to load a basic block to execute, so the number of basic blocks

that have been encountered will also contribute to the running time of the application

execution and should be tracked as well.

The autobiography keeps track of the following information about an application's

history:

" meminstr - Number of executed instructions that accessed memory

" weighted-op-count - Estimate on the number of cycles contributed by exe-

cuting the operation of executed instructions

* basic-blocks - Number of basic blocks that have been executed

" unique-basic-blocks - Number of times a basic block needed to be instru-

mented for the first time

31

From these statistics, we will be able to produce an application's ideal execution

time, how long it takes an ideal machine to execute the instructions that make up

the application.

With the help of DynamoRIO, we can dynamically build an application's auto-

biography as the program is executing. Using DynamoRIO, we are able to inspect

basic blocks at runtime before executing them. DynamoREA registers DynamoRIO's

basic block event, which allows us to modify each basic block every time a new basic

block is being executed in the application. This basic block event normally occurs

on the first time a basic block is seen, as DynamoRIO keeps a cache of transformed

basic blocks so that we do not need to change a basic block that has already been

modified. The extra time DynamoRIO takes to instrument a basic block the first

time it sees it is why we want to keep track of the number of unique-basic-blocks in

the autobiography, as we need to factor in this time into the ideal execution time.

DynamoRIO's API allows DynamoREA to inspect instructions, determining whether

or not its operands touch memory or not and what opcode the instruction has. As

DynamoREA inspects a basic block for the first time, it counts how many memory in-

structions are in the block and computes the block's weighted op count. DynamoREA

then inserts instructions to the application to update the autobiography with these

values, in addition to incrementing the autobiography's basic block count. At any

given point of an application's execution, the autobiography represents a summary of

all the actions relevant to execution time that has been executed by the application to

that point. It is from this snapshot that DynamoREA computes ideal execution time,

the number of cycles an ideal machine would have had to use to get to that point

of the application's execution according to the actions tracked in the autobiography.

In section 3.5.1 we will discuss how exactly DynamoREA uses the autobiography

statistics to produce an ideal execution time.

A checkpoint is defined as an observable action in the application's execution

where real time needed to be delayed to ideal time. In addition to keeping track of the

accumulated instructions, basic blocks, and operations statistics, the autobiography

also keeps a snapshot of the accumulated statistics at the last checkpoint.

32

3.4 Timing Events

To maintain the ideal machine abstraction, DynamoREA needs to ensure that real

time does not surpass ideal time at observable actions. Observable actions come in

two types, internal and external. An action that is internally observable can be seen

by other processes on the same machine. An externally observable action can be

seen by observers outside of the machine, for example sending a packet through the

network. Both observable actions need to be executed at the correct ideal time, but

external observable actions also need to be executed at the correct wallclock time.

3.4.1 System Calls

System calls allow applications to communicate with the operating system and request

services. Since system calls can affect or be affected by the results of other system

calls from other processes, they are a main source of observable actions. Whenever

a system call is made, DynamoREA needs to be especially careful to ensure that an

observer cannot distinguish the behavior of the real machine from the behavior of an

ideal machine.

DynamoRIO provides the ability to register for events immediately before and

after system calls, allowing DynamoREA to take the appropriate actions immediately

before or after each system call. DynamoRIO also allows us to inspect what type of

syscall is being executed so that we may be able to treat different syscalls differently.

In addition, DynamoRIO provides API for modifying syscalls, giving us the option to

skip syscalls, modify the parameters of the syscall, or modify the result of the syscall.

3.4.2 Signals

A signal is a way for processes to directly communicate with another. Processes can

receive signals from other processes which may interrupt its normal flow of execution

and alter its behavior. Signals are observable actions and must be handled so that

incoming and outgoing signals do not reveal that an application is executing outside

of an ideal machine.

33

Like system calls, DynamoRIO also is able to register signal events, intercepting

signals as an application receives them and allowing us to decide what to do with

them before processing them.

3.4.3 Determinism

Race conditions may reveal information about how multiple processes interact with

each other and also violate the ideal machine abstraction. Since an ideal machine has

no micro-architectural effects, it is absent of internal non-determinism, the source of

race conditions. Thus, DynamoREA needs to enforce internal determinism across

multiple threads and processes so that every execution of an application given the

same input will behave no differently from each other to an observer.

External non-determinism is still present in an ideal machine. While we will not

try to remove external non-determinism, we need to ensure that the external non-

determinism experienced on a real machine is translated appropriately to the external

non-determinism an ideal machine would face.

3.4.4 Shared Memory

Shared memory allows two processes to pass information between each other. Like

system calls and signals, shared memory writes are actions that are potentially ob-

servable by an outside observer who makes a shared memory read. Unlike system

calls and signals, DynamoRIO does not come with a shared memory access detector,

so we must find some method to determine when shared memory is being accessed

and handle these accesses safely.

3.5 Computing Ideal Time

The ideal time is calculated strictly from information held in the autobiography of an

application and the application's holdback (the total number of cycles spent waiting

for external events). In this section, we will discuss how ideal time is derived from

34

the autobiography and how ideal holdback is calculated.

3.5.1 Autobiography Ideal Cycles

The autobiography keeps track of exactly how many basic blocks have been executed,

how many memory instructions have been executed, and a weighted op count for

all instructions (an estimate of the number of CPU cycles used to execute all the

logic operations). DynamoREA' uses the application's autobiography to calculate

ideal execution time, how many cycles an ideal machine would take to execute the

instructions and basic blocks tracked by the autobiography.

Since we need to maintain the ideal machine abstraction by ensuring that real

time is less than ideal time at every observable action, to calculate ideal time as a

function of the autobiography, we need to calculate upper bounds on the number

of cycles spent on memory accesses, number of cycles spent on logic operations, and

number of cycles loading basic blocks. By combining these components, DynamoREA

calculates the upper bounds of cycles spent by the application according to its au-

tobiography at every point during its execution. By using this upper bound as our

ideal time calculation, we ensure that at every observable action, we never have real

time exceeding ideal time and consequently we are able to maintain the ideal machine

abstraction.

In practice, DynamoREA keeps track of ideal time by computing the number of

ideal cycles since the last checkpoint. At each checkpoint, DynamoREA adds the

ideal time at the previous checkpoint to the ideal time since the previous checkpoint

to get the total ideal time at the current checkpoint.

3.5.2 Memory Access

When DynamoREA calculates the upper bound on the number of cycles spent on

memory accesses, naively it could assume every memory access is a cache miss and

the upper bound is simply the product of the number of memory accesses and the

number of cycles spent on a cache miss. The number of actual cycles used for memory

35

accesses would never exceed the number of ideal cycles computed in this approach.

Assuming that memory access with a cache miss takes M,0 r8 t cycles, We can write the

ideal time memory access function, fmem in terms of the number of memory accesses

since the last checkpoint, nmem like so:

naive fmem(nrnem) Mworstnmem

While this approach would satisfy the security requirement in that real time spent

on memory accesses will never exceed the ideal time spent on memory accesses, its

performance is quite poor. We improve on this memory access function by taking ad-

vantage of general cache behavior and relaxing the requirement that we must assume

worst cases. Instead, we can aim to simulate a conservative average case of memory

access behavior. In general, DynamoREA can expect initial memory accesses to take

longer, due to cache misses on a cold cache, while later memory accesses should take

less time on average after the cache is warmed up. To capture this behavior, we

make the assumption that an application will take nthreshold memory accesses before

the cache warms up. During the first nthreshozd memory accesses, we assume that

the application will take Mworst cycles for each access. Following the first nthreshold

accesses, memory accesses then take Mavg cycles, where Mavg is the average number

of cycles spent on a memory access with a warm cache. In summary, our new ideal

time memory access function is now:

threshold fmem(nmem) =Mworstnmem for nmem < nthreshold

= Mworstnthreshold + Mavg(nmem - nthreshold) for nmem > nthreshold

36

Figure 3-1: Naive memory access function and threshold memory access function

See figure 3-1 to see the two memory access functions compared to each other.

Recall that the memory access function is in terms of the number of memory

accesses since the last checkpoint. This means at every checkpoint, DynamoREA

assumes that we have a cold cache and memory accesses immediately after each

checkpoint will take Morst cycles. This is the intended behavior, since we can not

assume that once the cache is warm that it will remain warm for the rest of the

application's execution.

While this stepwise function an improvement, it is still only slightly less naive

than the first function. In section 3.9.5, we revisit the memory access function and

demonstrate how we can optimize it further by tailoring it to specific applications.

3.5.3 Logic Operations

DynamoREA contains a table with many ops and a cycle count associated with each

op. As DynamoREA processes each instruction as the application executes, it looks

up the instruction's op in the table and adds that op's associated cycle count to a

running total in the autobiography, keeping track of a cumulative weighted op count.

This weighted op count represents DynamoREA's estimate of the number of cycles

used to execute the logic operation portion of all the instructions up to that point in

37

the application's execution. If the op is not found in the table, then a default safe

value will be used for that op's cycle count.

Instruction Operands Clock Cycles
MOV r/m, r/m/i 1
POP r 1

PUSH m 2
LEA r,m 1

ADD SUB AND OR XOR r, r/i 1
ADD SUB AND OR XOR r, m 2
ADD SUB AND OR XOR m, r/i 3

CMP r, r/i 1
CMP m, r/i 2

Figure 3-2: Sample table of tested instructions and average number of cycles they
consume. In the operands column, r = register, m = memory, i = immediate.

Not all ops can be easily associated with a single cost estimate. For example, the

cost of string operations can depend on the length of the string. The cost can not

be estimated by looking at just the op itself. Currently, DynamoREA assigns the

default safe value for these such ops' cycle counts.

3.5.4 Other Delays

Since DynamoREA needs to instrument every new basic block that it sees, the ideal

time function needs to account for the time it takes DynamoREA to instrument

basic blocks. The autobiography keeps track of how many unique basic blocks Dy-

namoREA has encountered. The delay is factored into the ideal time by multiplying

the number of unique basic blocks encountered by an estimate of how long it takes

for DynamoREA to instrument basic blocks.

In addition, DynamoREA also needs to account for the time it takes to load a

basic block. For each basic block tracked by the autobiography, DynamoREA adds

an estimate of how long it takes to load a basic block to the ideal time.

DynamoREA initialization also needs to factor into the ideal time function. A

one-time initialization penalty is added from the very beginning to account for the

initialization time.

38

3.6 Handling Timing Events

3.6.1 Handling System Calls

If we compute ideal time properly, then right before executing a system call, an

application has a lower real time than ideal time. In most cases, DynamoREA needs

to ensure that at the system call execution, real time must equal ideal time, and

must delay the system call until real time has caught up to ideal time. Delaying is

the default safe behavior to handle observable actions. Delaying is not always the

most efficient way to handle some system calls however. In section 3.9, we will discuss

a couple examples of system calls that can be handled more efficiently without the

need for delaying.

3.6.2 Handling Signals

Signals are observable actions that are not found in the application's autobiography.

They can break the ideal machine abstraction if an application receives a signal while

its real time is greater than its ideal time(which is allowable as long as an observable

action is not being executed), since DynamoREA will not be given a chance to delay

so that the signal is handled at the correct ideal time.

To handle signals, we can take advantage of the fact that POSIX specs do not

state that signals need to be handled immediately upon reception. We can implement

a signal queue that accumulates signals upon reception. We may designate signal syn-

chronizations at some regular interval, for example every million instructions. At the

signal synchronizations, we can empty the signal queue and handle the accumulated

signals. WIth this signal handler, signals are processed without breaking the ideal

machine abstraction.

DynamoREA currently does not have this signal handler implemented, though it

is a natural extension of the project for the future.

39

3.6.3 Handling Internal Non-Determinism

In the case of applications with multiple threads, if there are observable actions on

separate threads, we must ensure that the order of execution of those observable

actions must be the same every time we execute the application. Otherwise, the ideal

machine abstraction is violated since separate runs look different from each other.

The order of instructions executed outside of observable actions does not concern

us, but every observable action is a synchronization event where DynamoREA

must synchronize all the threads and choose which thread's observable action must

be executed first in a deterministic fashion. We maintain a deterministic logical

clock[14] for each thread to help us determine which observable action should go first.

A deterministic logical clock tracks progress of a thread in a deterministic manner

and is advanced similarly to ideal time.

To enforce determinism, we introduce the rule that an observable action will only

be executed by a thread if the deterministic logical time of that thread is smaller than

all of the other threads being synchronized. The deterministic logical time of every

thread can be accessed globally so they can be examined to determine whether or

not a thread should proceed. If a thread reaches an observable action but sees that

its deterministic logical time is not the least of all threads, then it must wait until

the lagging threads advance further before continuing its execution. Provided that

we can maintain logical time and resolve synchronization events deterministically, we

will be able to enforce determinism on multithreaded applications.

Deterministic Logical Time

Since we already have a deterministic means to track progress of a thread in ideal

time, we will use ideal time as our basis for deterministic logical time for the most

part. Unlike ideal time however, we do not need to be able to keep track of the precise

deterministic logical time at every instruction; our resolution can be much lower. In

DynamoREA, we update a thread's deterministic logical time approximately every

10000 ideal cycles or at every observable event, whichever happens first. Though the

40

Synchronization Event Synchronization Event

A IX A

B B

Deterministic Logical Time Deterministic Logical Time

(a) (b)

Figure 3-3: (a) Synchronizing threads A and B. A is at a synchronization event and
must wait for B's deterministic logical clock to pass before it may continue. (b) A
is at a synchronization event and is allowed to progress since its deterministic logical
time is less than B's.

deterministic logical time and ideal time are similar, deterministic logical time is dis-

tinctly separate in that it can not be determined from an application's autobiography.

There are cases where the deterministic logical clock is progressed separately from

ideal time to resolve deadlocks as we will see in the following section. In these cases,

the amount that the clock progresses depends on the behavior of other threads. As a

result, the deterministic logical clock can not be derived directly from an application's

autobiography.

Resolving Deadlock

Our method of providing deterministic multithreading of parallel applications uses

a deterministic logical clock and an algorithm to decide which thread will proceed

at synchronization points. When a synchronization point is reached and we have to

decide which thread to progress, it chooses the thread with the smallest deterministic

logical time. This helps ensure that the threads runs deterministically.

However, a deadlock can occur with this method. Suppose we have two threads,

thread W and thread R. Thread W's next instruction is a write() system call and

thread R's next instruction is a blocking read() system call that must wait for W's

write () to finish. However, W's deterministic logical clock has progressed more than

R's clock. By Kendo's thread progression rules, R must advance its deterministic

41

logical time past W's time in order for W to continue. However, W must complete

its write() in order for R to continue. Because of the blocking nature of R's read()

call and our waiting rules, we have a deadlock.

To resolve deadlocks like these, we need to find a way to advance R's clock past

W's deterministic logical time without skipping R's read() call. Once R's clock

passes W's time, then W can continue with its write () call which in turn will allow

R to execute its read() call.

In this case, we can resolve this deadlock by transforming the read() into a non-

blocking read(). This new read() would fail as W's write() has not completed.

On failure, R's thread would run a busy loop and repeatedly attempt another non-

blocking read(). While R is in a busy loop, R's deterministic logical clock progresses.

This pattern continues until R's clock progresses past W. At this point, it is W's turn

to run and W executes the write(). Finally, R's non-blocking read() is successful

and both threads continue, avoiding the deadlock problem.

This solution has a vulnerability if a user can observe what system calls are being

executed by a multithreaded application. For example, strace and truss are system

tools on Unix-like systems that monitors all the system calls used by an application.

With our solution above, either of these tools would reveal how many read() calls

have been executed. This information could reveal how many non-blocking read()

it took for a thread to execute before a deadlock was resolved, which in turn would

reveal how long a thread had to busy loop to resolve the deadlock. In our example

above, this kind of information leaks how far behind thread R was from W and can

violate the ideal machine abstraction.

42

Figure 3-4: (a) Deadlock example. Thread R is blocked by a blocking read call
that must wait for thread W's write to finish. Thread W is blocked because its
deterministic logical clock is ahead of R's (b) Deadlock resolution. R's blocking read
is transformed into a series of non-blocking reads until R's deterministic logical clock
passes W's, freeing W's write and resolving the deadlock.

3.6.4 Handling Shared Memory

Umbra[19] is a memory shadowing framework that is an extension of DynamoRIO.

With Umbra, we can determine when we are executing instructions that use shared

memory. By using Umbra, we are able to include a hook to catch shared memory

accesses and handle them appropriately. In our case, we treat a shared memory access

as an observable action that needs to follow our determinism rules in the previous

section. That is, a shared memory access instruction must not be executed until the

deterministic logical time of every other thread has surpassed the deterministic logical

time of the thread executing the shared memory access.

3.7 Holdback Ideal Time

As discussed in section 2.2.2, there are system calls that wait for events, which we

called holdback events, before completing. We define the number of cycles spent

waiting for a holdback event as holdback. If a system call is being blocked, waiting

for a holdback event, the number of cycles waited for the holdback event gets added

to the application's holdback. Real holdback is defined as the holdback experienced

43

by a real machine, which we can measure. Ideal holdback represents how long an ideal

machine would have spent waiting for holdback events. Real and ideal holdback differ

by a factor constant, a, where ideal holdback = real holdback xa. An application's

ideal time at a certain point of a program's execution is the sum of the cumulative

ideal holdback up to that point and the total ideal execution time derived from the

program's autobiography at that point.

3.7.1 Implementing Holdback

We use DynamoRIO's events before and after syscalls to measure holdback of system

calls that wait on external events. During those DynamoRIO events, we examine

the system call being caught and check if the system call qualifies as a holdback

call against a pre-created table. If the system call is indeed a holdback call, we

measure how many cycles was spent during the syscall by taking cycles measurements

immediately before and after the syscall. If the syscall is waiting for an external

holdback event, then those cycles measurements must be real cycles measurements,

which will be converted to ideal cycles using a. Otherwise, if the syscall is waiting for

an internal holdback event, then we are able to measure ideal holdback directly by

making ideal cycles measurements in the syscall events. With these measurements,

DynamoREA can determine how many cycles the holdback syscall had to wait before

accepting the holdback event it was waiting on.

3.7.2 Applying Holdback

Once DynamoREA computes how much ideal holdback a holdback syscall has, it

needs to ensure that the holdback gets applied to ideal time at the correct time.

Holdback should be added once the ideal machine executes the holdback syscall, even

though we start measuring holdback once the real machine encounters the holdback

syscall. As a result, once we compute holdback for a particular holdback syscall,

DynamoREA queues this value until the ideal machine surpasses the holdback syscall

and only then starts adding holdback to the ideal time.

44

3.7.3 Observable and Unobservable Holdback Syscalls

There are two types of syscalls that may prompt holdback. Queuing holdback syscalls

are able to accept queued holdback events that may have occurred before the syscall

itself. An external observer may see the external events but will not be able to observe

when the holdback events are actually accepted by the holdback syscall. Non-queuing

holdback syscalls on the other hand only accept holdback events that occur after the

call. Holdback events that occur before a non-queuing holdback syscall are rejected

and an external observer is able to observe the holdback event failing. By triggering

a stream of holdback events and observing when the events stop being rejected, an

observer is able to figure out when the non-queuing holdback syscall is executed.

Non-queuing holdback calls are thus an observable action and must be executed at

the correct ideal time.

For non-queuing holdback syscalls, we need to ensure that we delay to ideal time

before executing the system call since non-queuing holdback calls are observable ac-

tions. After the syscall is delayed does DynamoREA start measuring holdback.

Since queuing holdback syscalls are not observable, DynamoREA does not need

to delay to ideal time before executing queuing holdback syscalls.

3.8 Ideal Machine

We have discussed how DynamoREA calculates ideal time as a function of an appli-

cation's autobiography and holdback. We also discussed how DynamoREA detects

and handles observable actions. In this section, we will define the behavior of the

ideal machine we aim to emulate and make the claim that DynamoREA does indeed

emulate this ideal machine.

3.8.1 Ideal Machine Model Without External Events

The ideal machine we want to emulate has no micro-architectural artifacts and is

internally deterministic. Provided that the application does not interact with ex-

45

ternal events, the application will execute identically given identical inputs. This

means given the same input, the application executes the same series of instructions,

[ko, ki, ..., k,] at the same cycle count, [to, ti, ..., tn] where cycle count refers to the

number of cycles executed since the start of the application. We want to show that

the ideal machine that DynamoREA emulates has these properties. First we will

claim that the ideal machine that DynamoREA emulates executes the same series of

instructions every time it runs an application that does not interact with external

events. Then we will claim that DynamoREA assigns the same ideal time for each

instruction at every application execution.

Claim: On a real machine, given a single threaded application that

does not interact with external events, same inputs to this application will

result in the same series of instructions, [ko, ki, ..., kr].

If the application does not interact with external events, the ith instruction exe-

cuted by the application, or ki, must depend solely on the input to the application

and the previous instructions, or [ko, ki, ..., ki_ 1]. The first instruction of an applica-

tion thus depends solely on the input, since there are no previous instructions. As

a result, given the same input, separate executions of the application must have the

same first instruction. The next instruction now depends on the input and the first

instruction. Since up to this point, separate executions would have the same input

and first instruction, the next instruction must be the same as well if the application

does not interact with external events. We can continue with this inductive reasoning

and arrive at the conclusion that given the same input, an application that does not

interact with external events executes the same series of instructions.

Though DynamoREA inserts instructions to maintain the autobiography, we make

sure to save the state of the program, including arithmetic flags and register content,

before executing DynamoREA's own instrumentation and to restore the state after-

wards. As a result, the instructions DynamoREA adds to the application has no net

effect on the series of application instructions.

Because a real machine executes the same instruction series as an ideal machine

would, DynamoREA's emulation of an ideal machine would correctly execute the same

46

series of instructions given the same input to an application that does not interact

with external events.

Claim: Given a series of instructions of an application that does not in-

teract with external events, the ideal time associated with each instruction

is deterministic.

The ideal time calculated for an application that does not interact with external

events is composed of:

e A constant DynamoREA initialization penalty

e A constant penalty for each basic block executed

e A constant penalty for each time a basic block is transformed by DynamoREA

e Ideal cycles contribution of accessing memory

e Ideal cycles contribution of executing each opcode

e Internal holdback

We want to show that the contributions of each of these factors to ideal time is

deterministic given a series of instructions.

Initialization penalty. The initialization penalty is always applied at the be-

ginning of the emulation of the ideal machine. It will always be present regardless of

what instructions are being executed, so the initialization penalty is deterministic.

Basic block execution penalty. Given a series of instructions, a compiler

determines how the instructions should be organized into basic blocks. DynamoREA

executes compiled code, so basic blocks have already been organized and thus at any

given instruction, the basic block penalty up to that instruction will be the same

between separate program executions.

Basic block transformation penalty. In general, DynamoREA will only trans-

form a basic block the first time it sees it. Since the organization of basic blocks is

already established, the instructions where DynamoREA needs to apply the basic

block transformation penalty are already decided. We do have to be careful, because

47

DynamoRIO keeps a basic block code cache of basic blocks that have already been

transformed and transformed blocks could get evicted from this cache. If a trans-

formed block does get evicted, the next time DynamoREA encounters this block, it

needs to transform it once again. However, the size of the code cache and its eviction

behavior is deterministic, so the basic block transformation behavior is also deter-

ministic, resulting in the same basic block transformation penalties between separate

program executions.

Memory access penalty. The number of ideal cycles spent on a memory access

is a function of how many times the application accessed memory since the last

observable action. Given a series of instructions, the locations of the observable

actions are set and deterministic. For each instruction that accesses memory, the

number of memory accesses since the last observable action is also deterministic. If the

number of memory accesses since the last observable action remains the same for each

memory access across separate program executions, then the ideal cycles contribution

of each memory access will also be deterministic. As long as our memory access

function is deterministic, the ideal time of memory accesses will also be deterministic.

Opcode penalty. Each opcode is assigned a constant representing how many

cycles an ideal machine would take to execute that opcode. Given a series of instruc-

tions, the sequence of opcodes and the ideal time of each opcode will be deterministic.

Internal holdback. Holdback is always applied at the instruction where the

holdback system call is being executed, thus the place where internal holdback is

applied is deterministic. The amount of ideal holdback being applied depends on

how many ideal cycles we wait before the holdback event occurs. Since the internal

holdback event is not affected by external events, the ideal time between the holdback

system call and the holdback event must be deterministic, since all other contributions

to ideal time is deterministic as listed above. The instruction where holdback is

applied and the amount of holdback applied are deterministic, so internal holdback's

contribution to ideal time is deterministic as well.

Since every contribution to ideal time is deterministic given the instruction series

of an application that does not interact with external events, the associated ideal time

48

for each instruction will also be deterministic since it is a composition of deterministic

values. Thus, as DynamoREA builds its autobiography and calculates internal hold-

back, the ideal time it calculates will correspond correctly to the number of cycles

needed to execute the program on an ideal machine.

3.8.2 Ideal Machine Model With External Events

In the previous section, we discussed how DynamoREA correctly emulates an ideal

machine on applications that depend on its own architecture and has no external

events. For other applications that do react to the outside world, external holdback

may need to be measured and applied correctly. An ideal machine is still suspect to

external holdback and the amount of external holdback in our ideal machine model

is translated from the external holdback experienced in the real machine. We need

to ensure that DynamoREA applies the correct amount of external holdback at the

correct instruction.

External holdback can be measured in terms of real cycles on the real machine.

Since our ideal machine model's external holdback is derived from the external hold-

back experienced on the real machine, DynamoREA just needs to be able to convert

the amount of external holdback in terms of real cycles to external holdback in terms

of ideal cycles. The a constant, introduced in section 2.2.2, translates measurements

of real cycles to ideal cycles. Computing a requires knowing the time it takes to run a

CPU cycle on a real machine, which DynamoREA can measure during initialization.

At initialization, DynamoREA computes a and is able to use it to correctly translate

real holdback to ideal holdback for external events.

Like internal holdback syscalls, DynamoREA can keep track of which instruction

contains an external holdback syscall and wait until the ideal machine it is modeling

reaches that instruction before applying the holdback measured at that instruction.

Consequently, the amount and timing of external holdback that DynamoREA applies

corresponds correctly to the ideal machine model that we are using.

49

3.9 Efficiently Handling Timing Events

In the general case, when DynamoREA encounters a timing event such as a system

call, DynamoREA must delay until real time catches up to ideal time before executing

the timing event. However, there are certain timing events DynamoREA can be clever

with and is able to maintain the ideal machine abstraction without the need to delay.

In some cases, we can determine the result of a timing event just by inspecting

the application's autobiography, allowing us to return this result without actually

executing the timing event. In other cases, DynamoREA can recognize that the

timing event does not have to be executed immediately and can defer its execution

at a later convenient time, such as during a delay for another timing event. These

alternate approaches to timing events improve DynamoREA's performance.

3.9.1 getpid()

getpid() returns the process id of the calling process. This is a case where Dy-

namoREA can inspect what it already knows about the application to immediately

produce the result of the system call. DynamoRIO keeps track of process ids inter-

nally and whenever getpid() is encountered, DynamoREA can use the DynamoRIO

API to immediately return the correct process id. getpid() never has to be re-

peatedly executed, as we just return the correct result at once without needing to

delay. gettido, a system call that returns the thread id of the calling thread, can

be handled similarly without needing to delay.

3.9.2 RDTSC()

The RDTSC ((Read Time-Stamp Counter) instruction can be found on all modern

x86 processors, providing the user the number of executed CPU cycles since the last

counter reset by saving the result into registers. RDTSC () is an observable timing

event, as its result gives an indication of the real time of the application being run.

Obtaining this information can violate the ideal machine abstraction since it reveals

the actual runtime of the application instead of how it would run on an ideal machine.

50

Our default method of handling timing events would involve DynamoREA delaying

the application until real time catches up to ideal time and then calling RDTSC (). Since

real time will equal ideal time after the delay, DynamoREA will correctly maintain

the ideal machine abstraction by returning the result of RDTSC () as if it were being

called on an ideal machine.

RDTSC (), however, is a timing event that does not require delaying to maintain

the ideal machine abstraction. The only requirement for RDTSC () to maintain the

ideal machine abstraction is for it to behave as if it were being called on an ideal

machine. While delaying until real time equals ideal time achieves this requirement,

we can take advantage of the fact that we can use DynamoRIO to catch RDTSC () calls

and are able to calculate ideal time at any instruction. We can compute the ideal

time of the application at the RDTSC () call and alter its output according to this

value, emulating the RDTSC () call on an ideal machine. From here, RDTSC () behaved

correctly according to the ideal machine abstraction and the application can continue

its execution without the need to delay.

rdtschandler(rdtsc-call):
emulatedrdtscoutput = actualrdtscoutput + idealtime(autobio) -

get-real-time()
setrdtsc-output(rdtsc-call, emulatedrdtscoutput)

Figure 3-5: RDTSC pseudocode

3.9.3 sendto()

sendto () takes in a message and sends the message on a socket. Since outgoing

packets are observable, this is certainly an observable timing event that we need to

be careful with. If our default handler sees a sendto (), it would again delay until the

application's real time is equal to its ideal time, at which point the sendto () would be

executed. However, the POSIX specs on sendto () states that "successful completion

of a call to sendto () does not guarantee delivery of the message". This condition

gives DynamoREA flexibility on when sendto () actually needs to be executed.

51

DynamoREA can gain efficiency if we choose to pretend that sendto () completes

successfully right when we see the call. In reality, we will actually defer sendto () to

another process whose responsibility is to make sure the sendto () that we skipped

over do actually get called at an appropriate time. We take advantage on the relaxed

specification when sendto () needs to actually deliver its message to get around need-

ing to delay.

queue Q

sendtohandler(sendtocall):

Q.enqueue(sendto call.parameters, ideal-time)

skip-sendtocall

sendtoloop()
while(true):
if Q is not empty:

[sendto-parameters, ideal-time] = Q.dequeue()
delay-time = convert-cycles-totime(ideal.time) - get-time()

if delay-time > 0:
delay(delaytime)
sendto(sendto.parameters)

else:
catcherror

Figure 3-6: sendto pseudocode

3.9.4 wait()

One use of the wait () system call is to block a parent process from continuing until

one of its children processes has completed its execution. Similar to RDTSC0, this

is a call whose outcome can be predetermined by DynamoREA's knowledge of the

application autobiography. In addition to keeping its own autobiography, a parent

process also has access to the autobiography of any of its child processes. When

a parent process sees a wait 0, instead of delaying until it is an appropriate time

to execute the wait system call, the parent process can deduce the outcome of the

wait () based on the children's autobiographies.

52

If the ideal time of a parent process is ip and the ideal time of its child process is

ic at the wait (), we can work out all the cases that DynamoREA might encounter

when approaching a wait 0. If we detect that the child process is dead and the child's

ideal time is less than the parent's ideal time, then we can conclude that in an ideal

machine, the child process would have exited before the parent process reaches its

wait 0. In this case, the parent can choose to skip over the wait 0. If we detect that

the child process is dead, but the child's ideal time is greater than the parent's ideal

time, the parent just needs to delay until its ideal time matches the child's ideal time

and then skip over the wait (). Note that in this case, though we delay, we are still

able to skip over the wait () and avoid needing to delay to the parent's ideal time.

In the case that we detect that the child process is still alive, then we have no choice

but to defer to the default system call handler, meaning that we will need to delay

to the parent's ideal time and then execute the wait 0.

Some calls to wait specify a groupid and only continue when a thread with the

specified groupid has completed its execution. Unfortunately, because a thread may

modify its own groupid without notifying its parent, DynamoREA is unable to keep

track of thread groupids reliably and thus is unable to make the same optimization

on these types of wait calls.

The wait () is also subject to the determinism deadlock resolution mechanism

shown that was applied to read() and write () before. The wait handler first deter-

mines if the call needs to be made. If it decides that the wait () does indeed need

to be executed, DynamoREA then must ensure that the deterministic logical time of

the thread calling wait () is the least of all threads. To resolve potential deadlocks,

DynamoREA may need to transform the wait () into a non-blocking wait () and loop

it to help progress all the threads.

In addition, wait () is a holdback syscall. If the child it is waiting on reacts

externally to the system, then it is an external holdback syscall. Otherwise, wait ()

is an internal holdback syscall. DynamoREA would also need to properly measure the

holdback for the wait 0. This holdback measurement and determinism mechanism

from earlier is abstracted away into the execute-wait-call function in figure 3-7.

53

waithandler(wait-call):

if waitingifor-childtoexit:

for child in children:

if child.exited:

if child.idealtime < idealtime:

skip-waitcall

else:

if child.idealtime < ideal-time:

delay-time = convert-cycles-totime(child.ideal-time) -

gettime()

if delay-time > 0:

delay(delay-time)

skip-waitcall

else:

catch-error

else:

delay-time = convert-cycles-totime(ideal-time) -

get-time()

if delay-time > 0:

delay(delay-time)

execute-wait-call

else:

catch-error

if nochildrenexited:

executewait-call

Figure 3-7: wait pseudocode

3.9.5 Optimizing Ideal Cycles

To attain strong security and maintain the abstraction of an ideal machine, ideal time

must not ever get ahead of real time at observable moments. Yet, to attain strong

performance, it is important that ideal time does not lag behind real time by too

much. The challenge here is to find an ideal time function that provides both strong

performance and security for all applications.

We find that we can optimize the memory accesses portion of the ideal time

function. Like before, we want a memory delay function that takes in the number of

memory instructions since the last checkpoint, nmem, and outputs an upper bound

on the number of cycles spent on the memory accessing portion of these instructions.

54

Before, we had a stepwise function that assumed cache misses for the first nthreshold

memory accesses and average cache behavior for the rest of the memory accesses until

the next checkpoint. Our improved function should have a derivative of o as nmem

goes to 0, as we make the assumption that initial memory accesses may take a long

time. As nmem goes to oc, we assume that the cache has warmed up and the derivative

should stabilize at some constant C, representing the average time to make a memory

access on a warm cache. The derivative of this function goes from infinity to C but it

should do so gradually, allowing plenty of leeway for the cache to warm up to be safe.

A function that matches this behavior is f(nmem) = A(log[nmem + 1]) + Cnmem, where

A and C are parameters that define the exact shape of the memory delay curve.

160000 160000

140000- 140000-

120000 120000

100000 1000006

80000 U 80000

60000- 60000

40000 40000

20000 20000 -

0- 0-

-2000 -2000-000.5 0.0 0.5 1.0 1.5 2.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5
Cycle counter 1e9 Cycle counter 1e9

(a) (b)

Figure 3-8: (a) Scatter plot of memory delay curves of an is call (b) Iterations of
finding the best fit curve. The best fit curve is colored in blue.

Different applications have different memory access patterns, so we would not be

able to fit the ideal time curve tightly if we use the same parameters for the memory

delay curve for all applications. Instead we wrote a profiler to generate the best

parameters for each particular application. The profiler traces application execution

over many repetitions, gathering many real time curve segments from checkpoint to

checkpoint. Once we have all the data of how many real cycles and instructions

has been executed since the last checkpoint at all times, we need to strip the real

time contributions from basic block transformation, holdback, and weighted opcounts

55

away. By subtracting these non-memory penalties from our real time curves, we get

a set of curves that represents the relationships between memory access cycles and

instructions since the last checkpoint. The last step is to fit our memory access

function onto these set of curves.

The profiler searches for the best values of A and C that fits the memory delay

curve by trying values until they converge towards a solution that minimizes an error

heuristic. Once the profiler determines values for A, and C, it stores these values in

file, assigning them to the application being profiled. When the profiled application

is run under DynamoREA, its associated parameters are loaded during initialization

and its particular unique memory delay function is used when calculating ideal time.

Note that since this new memory access function is still deterministic in terms of

number of memory accesses since the last observable action, using this memory access

function will still result in deterministic contribution to ideal time and maintains the

correctness of our ideal machine model.

56

Chapter 4

Evaluation

4.1 Security

4.1.1 Security Invariant

For an application to be secure, its execution must not violate the ideal machine

abstraction. To an external observer, the application appears to be running on an

ideal machine with no micro-architectural effects. In other words, every observable

action of an application must occur at the same time at every execution, no matter

what the state of the computer is. At every observable action, the real time must not

exceed the ideal time so that it is possible to delay our program so that the observable

action is executed at the correct ideal time.

Another aspect of maintaining the ideal machine abstraction is determinism. In-

ternal non-determinism is a micro-architectural effect so an ideal machine is com-

pletely absent of internal non-determinism. The variances resulting from non-determinism

can leak secret information, thus DynamoREA must ensure that multithreaded ap-

plications are executed deterministically.

4.1.2 Ideal Machine Abstraction

This section presents graph representations of how various applications executed on

DynamoREA. Applications vary from test applications written to highlight certain

57

behaviors we wanted to evaluate to standard applications that are commonly found.

Each graph presents three lines representing instructions executed to cycle count. The

red line represents ideal time, the progression of the application as if it were executed

on an ideal machine. The blue line represents real time, the actual progression of

the application on the real machine. The yellow line represents compute time, an

approximation of what the progression of the application would look like if we did

not delay at every observable action.

In each of these graphs, the key attribute we want to be looking for is making

sure that the ideal time and observed time are equal when observable actions are

executed. In the common case, this means that we can see the blue line delay at the

instruction count where an observable action is being executed until it "catches up"

to the red line.

mem-arith

0
U
C

U
2

1I

1.4

1.2

1.0-

0.8

0.6-

0.4

0.2l-

0.000

Real Time

1 2 3 4
Cycle counter

Ideal Time Compute Timf

5 6 7 8

5 6 7 8
le8

e Observable Actions

Figure 4-1: mem-arith test application

58

1e7. I

The mem-arith test application first allocates 4 MB for a character array and then

initializes all the values of the array to bring the array into the cache. The application

then makes four loops; the first and third loops access the elements of the array

with a 64 byte stride and the second and fourth loop executes a series of arithmetic

operations. After initializing the array and each loop, a write call is made to represent

an observable action. Here we can see the flat regions in the real time line, representing

the times where an observable action is being made and DynamoREA is delaying so

that the observable action is executed at the corresponding ideal time.

aes

1600000

1400000-

1200000-

1000000
0

U

.2 800000-

c 600000-

400000-

200000

000 1 2 345
Cycle counter 1e8

Real Time Ideal Time Compute Time Observable Actions

Figure 4-2: aes test application

The aes test application first initializes a 6 KB message, generates an encryption key,

and then executes an observable action. The application then executes a series of

five encryptions using the generated key and message, executing an observable action

between each encryption.

59

0

. 600000
U

400000-

200000

T. 0.2 0.

Real Time Ideal Time

Cycle counter le

Compute Time Observable Actions

Figure 4-3: wget standard application

wget is a standard application that retrieves content from the web. This graph

represents the behavior of wget on DynamoREA while fetching a single page from

the web.

60

wget

rsa

Figure 4-4: OpenSSL RSA standard application

This graph represents an RSA decryption using a 4096-bit private key, using the

OpenSSL rsautl binary.

61

0
U
C
.0.6

1
U
2

Cycle counter

Real Time Ideal Time Compute Time Observable Actions

cache

250000

200000-

150000-

2
C
.0
U

*n 100000-

50000-

010 1 2 3 4 5 6 7 8
Cycle counter le8

Real Time Ideal Time Compute Time Observable Actions

Figure 4-5: cache test application

The cache test application initializes two arrays of characters: a "small" 1 KB array

and a "large" 12 MB array. The application then probes the two arrays by accessing

every element in the arrays in a pseudo-random order. A round consists of randomly

completely probing the small array 25000 times and randomly completely probing the

large array 5 times. The application executes an observable action in between each

round.

4.1.3 Determinism

01 Test

In the first variant of the 01 test, a process spawns two threads with one thread

repeatedly printing '1' and the other thread repeatedly printing '0'. When executed

without DynamoREA, the resulting print contains is and Os listed in a random order.

62

When executed with DynamoREA and its determinism enforcing mechanism, the

resulting print contains is and Os alternating perfectly.

The second variant of the 01 test involves a process that forks, resulting in two

processes where one repeatedly prints '1' and the other repeatedly prints '0'. The

same result is achieved as above: the results are non-deterministic when executing

the test off of DynamoREA but deterministic when executing with DynamoREA.

racey Results

racey[10] is a stress test for deterministic execution that produces a signature that is

very sensitive to the order of unsynchronized data races. racey takes in a parameter

specifying how many threads should be spawned. Executing the racey test off of

DynamoREA with two interleaving threads 500 times produced 456 different signa-

tures. When running on DynamoREA however, racey with two threads produces the

same signature in each of the 500 executions. However, DynamoREA was unable to

produce a consistent signature with racey with more than two threads.

4.1.4 Shared Memory

mtaddmult

In the mtaddmult test, shared memory is allocated to contain an integer, which is

then manipulated by two threads. One thread executes multiplication operations on

the integer and the other thread executes addition operations on the integer. Shared

memory accesses must be deterministic to preserve security. When executed without

DynamoREA, the resulting integer after all the operations are executed varies from

execution to execution. When executed with DynamoREA and using the shared

memory detection provided by Umbra, the resulting integer is the same across all runs,

demonstrating that shared memory accesses are deterministic under DynamoREA.

The graph also demonstrates an example of the ideal machine abstraction being

preserved with multiple threads. The parent thread spawns the child threads at the

correct ideal time and in each of the child threads, real time does not surpass ideal

63

time at observable actions.

160000r - 1 - -1 1

140000-

120000-

0
U
C

U

P

100000-

80000-

60000-

40000-

20000-

b.0 0.5 1.0 1.5 2.0 2.5
Cycle counter

Parent Real Time Parent Ideal Time

= W M

Child Real Time

3.0 3.5 4.0 4.5
1e9

- - W =

Child Ideal Time

Figure 4-6: mtaddmult test application. The parent thread's real and ideal times are
shown as filled lines. The child threads' real and ideal times are shown as dashed
lines.

64

1~
-J

ii -J

ii

Ill
'Ii
~ll

~0

Chapter 5

Conclusion

With DynamoREA, we have shown that it is possible and practical to use dynamic

binary rewriting as a tool to defend against microarchitectural-based timing attacks.

This is done by using DynamoRIO to emulate an ideal machine. Applications' timing

behaviors are transformed so that to an observer, it looks like they are being exe-

cuted on a machine with no microarchitectural side effects. We demonstrated that

observable actions of applications running on DynamoREA have deterministic timing

behavior, meaning that observers will not be able to extract any useful timing in-

formation from repeatedly observing application timing behavior. In addition, appli-

cations under DynamoREA have demonstrated determinism across multiple threads

and processes, meaning attackers will not be able to observe artifacts caused by

non-determinism to gather information about an application's secret. Though per-

formance has room to improve, we have laid out some outlines and examples on how

DynamoREA can find shortcuts on handling certain types of observable actions that

make performance gains.

65

66

Bibliography

[1] Amazon elastic compute cloud. http: //aws. amazon. com/ec2/.

[2] J. Agat. Transforming out timing leaks. In Proceedings 27th Symposium on

Principles of Programming Languages, pages 40-53, Boston, MA, Jan. 2000.

[3] Derek L. Bruening. Efficient, Transparent, and Comprehensive Runtime Code

Manipulation. PhD thesis, MIT, 2004.

[4] David Brumley and Dan Boneh. Remote timing attacks are practical. In In

Proceedings of the 12th USENIX Security Symposium, pages 1-14, 2003.

[5] Joseph Devietti, Brandon Lucia, Luis Ceze, and Mark Oskin. DMP: Determin-

istic Shared Memory Multiprocessing, 2009.

[6] Chi-Keung Luk et al. Pin: Building customized program analysis tools with

dynamic instrumentation. In Proceedings of the 2005 ACM SIGPLAN conference

on Programming language design and implementation., 2005.

[7] T. Bergan et al. Coredet: A compiler and runtime system for deterministic

multithreaded execution. 15th ASP-LOS, Mar. 2010.

[8] T. Bergan et al. Deterministic process groups in dos. 9th OSDI, Oct. 2010.

[9] Agner Fog. Instruction tables: Lists of instruction latencies, throughputs and

micro-operation breakdowns for intel, amd and via cpus. http://www.agner.

org/optimize/, 2011.

67

[10] Mark D Hill and Min Xu. Racey: A stress test for deterministic execution.

http://pages.cs.wisc.edu/-markhill/racey.html.

[11] Wei-Ming Hu. Reducing timing channels with fuzzy time. In IEEE Computer

Society Symposium in Security and Privacy, pages 8-20. IEEE, 1991.

[12] Wei-Ming Hu. Lattice scheduling and covert channels. In IEEE Symposium on

Security and Privacy, pages 52-61. IEEE, 1992.

[13] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight

dynamic binary instrumentation. In Proceedings of the 2007 ACM SIGPLAN

conference on Programming language design and implementation, 2007.

[14] Marek Olszewski, Jason Ansel, and Saman Amarasinghe. Kendo: Efficient de-

terministic multithreading in software. In ASPLOS '09: Proceeding of the 14th

international conference on Architectural support for programming languages and

operating systems, 2009.

[15] Colin Percival. Cache missing for fun and profit. In Proc. of BSDCan 2005,

2005.

[16] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey,

you, get off of my cloud: Exploring information leakage in third-party compute

clouds, 2009.

[17] Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient cache attacks on aes,

and countermeasures. Journal of Cryptology, available online, 2009.

[18] S. Zdancewic and A. Myers. Observational determinism for concurrent program

security. In Proc. of the 16th IEEE Computer Security Foundations Workshop,

pages 29-43, Pacific Grove, 2003. IEEE Comp. Soc. Press.

[19] Qin Zhao, Derek Bruening, and Saman Amarasinghe. Umbra: Efficient and

scalable memory shadowing. In International Symposium on Code Generation

and Optimization (CGO '10), April 2010.

68

