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Abstract

Monitoring mouse social behaviors over long periods of time is essential for neuro-
behavioral analysis of social mouse phenotypes. Currently, the primary method of
social behavioral plienotyping utilizes human labelers, which is slow and costly. In
order to achieve the high throughput desired for scientific studies, social behavioral

phenotyping must be automated. The problem of automation can be divided into
two tasks; tracking and phenotyping. First, individual body parts of mice must be
accurately tracked. This is achieved using shape context descriptors to obtain precise

point to point correspondences between templates and mice in any frame of a video.
This method provides for greater precision and accuracy than current state of the art
techniques. We propose a means by which this tracking information can be used to
classify social behaviors between mice.
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Chapter 1

Introduction

The extensive use of mice in basic science and disease modeling has created a need

for reliable, high throughput, and high information content behavioral analytic tools.

New mouse lines and experiments are rapidly growing in numbers, and most corn-

monly mouse behavior in these experiments is assessed by humans. Unfortunately

though, this requires a large amount of human time, and thus progress is hindered by

the slow nature of human behavioral assessment [26]. Due to these time constraint,

most mouse studies are designed to be short - only a few minutes long - instead of a

miore informative multi-day design.

Automating behavioral analysis of mice addresses many of the practical issues

involved in human behavioral assessiment. Mice can be studied for longer periods

of time, at significantly lower cost, and the results can be easily reproduced across

(ifferent labs. Much progress has beeni made in automating single mouse behavioral

phenotyping. This includes automating behavioral recognition such as eating, drink-

ing and grooming. In fact, many commercial systems such as Noldus' Ethovision,

Cleversys' HomeCageScan, as well as some open source systems such as the one de-

veloped by Jhuang et al. [11] have been created and are actively being used. These

automated systems work extremely well on singly-housed mice and have reached hu1-
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man level performance [111. Unfortunately, much less progress has been made in

automating behavioral phenotyping of mice in the social context.

Automating social behavior recognition of mice is quite challenging. Numerous

complications arise that do not occur when studying a single mouse; mice interact in

complex ways, frequently occlude one another, and appear very nearly identical.

Many diseases and conditions, (i.e. depression, autism, and Parkinson's), have

a strong social component. Researchers study these diseases in mice by performing

social behavioral phenotyping. For instance, a decreased frequency of some social

interactions is observed in BTBR mice, an inbred mouse strain that exhibits many

autism-like behaviors [3]. This BTBR study was analyzed by humans which labeled

the social behaviors, and thus would have greatly benefited from a more streamlined

automated behavioral phenotyping. Similarly, Shank 3 mice - another mouse model

for autism - were found to have reduced reciprocal interaction as well as reduced nose-

to-nose and anogenital sniffing behavior when compared to wild-type mice [19]. Again,

these observations were made using a human labeler. Automating the behavioral

labeling process will enable scientists engaged in future studies to nore quickly and

accurately gage social behaviors amongst mice, saving time, and greatly benefiting

the research community.

We decide to take a two part approach to the problem. First, we must be able to

accurately track individual mice and understand where each part of each particular

mouse, such as the head or tail, is located at every point in time. That is, we must

create an accurate part-based tracking system. Second, we can use the head and tail
)ositios d tracker to accurately train a phenotyping system that

I tiisfrom time part-basedtakr cuaeltai

will classify mnouse behavior at all times. In this project, we propose a method that

rimakes great progress towards solving the first part. Additionally, we explore and

begin to develop approaches to solving the second.

11



Chapter 2

Background

An integral step in the study of human disease is the development and analysis of

analogous mouse models. This analysis can be done through behavioral phenotyping.

The controlled environment of mouse studies makes this phenotyping an ideal problem

for computer automation. In this section we will discuss successful prior work in the

area of automated single mouse behavioral phenotyping, as well as ongoing work in

social behavioral phenotyping of mice and other animals. We conclude the section

by discussing computer vision approaches that have been applied to solve similar

probleins in various fields, which lay the ground work for the novel analytical methods

proposed later in this thesis.

2.1 Automated Single Mouse Behavioral Pheno-

typing

Early automation techniques used for single mouse behavioral phenotyping employed

sensors capable of assessing position, coarse movements, and instances of specific

actions including eating and drinking [9, 25]. These techniques are limited to the

analysis of relatively simple pre-programmnmed behaviors.

12



More recently, computer vision systems have beeii developed to support more coin-

plex behavior analysis, most of which are based on visual tracking of the mouse [23].

This allows the system to recognize position dependent behaviors, such as hanging

and drinking, but lacks the ability to correctly analyze fine-grained behaviors such as

grooming. Dollar et al. use spatio-temporal interest point descriptors in order to an-

alyze fine-grained behavior [6]. Jhuang et al. use a computer vision system based on

a hierarchical model [11]. This model is motivated by the processing of information

in the dorsal stream in the primiate brain. This system incorporates both position

and motion information of the mouse, thus allowing it to accurately recognize the

fine-grained behaviors that previous systems failed to recognize. This hierarchical

muethod performs on par with human performances.

2.2 Multiple Mouse Automated Recognition

Recently, much interest has formed in extending the automation of behavioral phe-

notyping to social behaviors, as this is needed to study diseases with a strong social

component. Studying the social behavior of mice is much more challenging, since

mice can interact in complex ways.

There is interest in studyi ng many different social behavioral phenotypes. One

common experiment is the Noldus three-chamber social test which is used to char-

acterize the sociability of mice. In this experiment, the subject mouse is placed in

the middle chamber of a three chamber box. An unfamiliar mouse is then placed in

a cage on one of the side chambers, and an empty cage is placed on the other side.

The subject mouse is then allowed to freely explore all three chambers. The social

interaction of the mice is studied by analyzing time spent in each chamber and time

spent in proximity to the unfamiliar mouse. Using this three chamber setup, only

simple behavioral phenotypes cam be studied.

13



Another common method of phenotyping is behavioral categorization, where the

mouse's behavior is characterized at each time point. For example, Peca et al. char-

acterized nose-to-nose interactions, as well as nose-to-anogenital region interactions

in two interacting mice [19]. Research into automating this type of phenotyping is

still ongoing, and multiple approaches have been developed.

Edelman developed a method based on ellipse tracking and used it to create

a trainable system to characterize social behavior of two mice [7]. Each mouse is

tracked by an ellipse. The ellipses are then used to compute distance features -

such as center to center distance - allowing us to train a machine learning system to

recognize social behaviors of mice. Since our interest mainly lies in accurate head and

tail detection, ellipses do not model the mouse well, as can be seen in Figure 2-1(a)

and the performance of this method is far from human level.

(a) Edelman (b) de Chaumont

Figure 2-1: Example head and tail classification from Edelman and de Chaumont.
Both methods often lack the ability to get the precise location of the head and tail.2

Additionally, the orientation detector, which is used to distinguish the head from the

tail, is based on the mouse's motion. Thus, when the mouse moves backwards, which

happens when a mouse comes down from a rearing, the orientation detector fails.

A recent method proposed by de Chaumont is physics-based and tracks the mice

by using its skeleton, joints, and physical limits imposed by the joints [5]. Using

absolute rules to hard-code events, the system classifies mouse behavior. For example,

to define a oral-genital contact the method uses the following rule: the distance from
2Figure 2-1(b) obtained from [5]

14



the center of one mouse's head to the start of the other mouse's tail is less than or

equal to 1.5 cmi. This method produces interpretable results and allows new behaviors

to easily be defined and analyzed. However the system does not perform well under

many conditions, including prolonged mouse interactions [5]. Under these conditions,

the system needs to be corrected by humans - making it impractical for longer studies.

Furthermore, as can be seen in Figure 2-1(b), precise locations of the head and tail

region are not obtained, decreasing the accuracy of the behavioral labels. Lastly, it

is unclear whether hard-coded rules are accurate representations of behaviors. For

exarnple, a mouse passing by another mouse's anogenital region will be classified

as head-anogenital region contact, despite no form of social interaction occurring

between the two imice.

Commercial systerns, such as Noldus' Ethovision, recognize behaviors such as

sniffing, but provide no evaluation of their results or detailed algorithms. During non-

occlusion, these systems tend to use the extremities of the mouse to classify the head

and tail regions [5]. The direction of movement between consecutive frames is used

to distinguish between the head and tail [5]. This method fails during rearing, where

the mouse may appear to go backwards, causing the head and tail to be reversed.

Lastly, one of the problems with iany commercial systems, is that they are not easily

extendible to tracking when the mice occlude one another. Most software cannot

handle this. For example, ViewPoint can only track mice if they are not occluding

one another. Other programs, such as Cleverysys' SocialScan and Noldus' Ethovision

can only track the mice during interactions if additional distinguishing traits are

given. For example, these programs work when the mice are rnarked with colors or

mice of different size or appearance are used. This is not practical, since numerous

experiments have shown that marking mice with colors changes their behavior. In

addition, we cannot always control the size or appearance of the mouse, reducing the

usefulness of these methods.

15



2.3 Automated Behavioral Recognition of Other

Animals

Much progress has been completed in automating social behavior of other animals.

Recent accomplishments range from studying zebra fish using a vision based system

[20] to monitoring a honey bee cluster using stereo vision [16]. Additionally, ant social

behavior has been successfully studied, where researchers classify three behaviors:

head-to-head, head-to-body, and body-to-body contact [1]. This system works quite

well for ants, but relies on the fact that ants are rigid, which does not apply to mice. In

addition, scientists have studied Drosophila (a type of small fly) social behavior such

as aggressive tussling, courtship, lunging, circling, and copulation [4]. The behaviors

were defined in terms of Drosophila spatial features (e.g. velocity, acceleration) and

rules were hard-coded by an expert, in much the same fashion as [5]. Work in this

field is extremely promising, but unfortunately relies on the rigidity of flies, and thus

cannot be extended to mouse social behavior.

2.4 Shape Matching Methods for Recognition

The controlled setting of the laboratory allows for high quality videos of mice to

be obtained. We can then use computer vision algorithms to get high accuracy

segmentation of the mouse from the background. During mouse occlusions, little

feature and texture information can be obtained to help distinguish two mnice (Figure

3. 1). A lot of the information which allows humans to recognize a mouse and its parts

is encode(d in the mouse shape (e.g. its contour). Ideally, we want a method that

allows us to find the exact location of the head and tail on the mouse contour.

One approach is to first define a training template - an example mouse's contour

with the head and tail locations labeled. We can then find a point to point correspon-
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dence from every point on the training template to every new point on our current

iouse. This allows us to find the head and tail points by simply seeing to where the

head and tail points of the template are mapped. This matching can be achieved

using various shape matching methods (see [27]).

The approach above relies on point to point correspondences. Thus, methods

based on statistical moments, Fourier descriptors, Hausdorff distance, and medial

axis transforms, do not fit our framework as they describe the shape based on its

global properties. On the other hand, methods such as spin image descriptors [12, 13]

and shape context [17, 2] can be used to find the point to point correspondences. InI

these methods, a descriptor that encodes the position relative to all other points on

the shape is used. These methods perform well when similar points on the shapes

being matched have similar distribution of relative positions. A drawback of these

methods is that they are not invariant to non-rigid transformations.

Curvature maps can also be used as shape descriptors. In this approach, the shape

descriptor is found based on sampling points and recording the curvature at each

sample [8]. This method is not invariant to non-rigid transformation, and additionally

is experimentally not robust to ioise and bending in the shape [101.

The inner-(listance can be applied as an extension to shape context matching [15].

Instead of using standard Euclidean distance to nmeasure the relative positions, inner-

distance (the distance between two points within a shape) is used. The inner-distance

is insensitive to articulation and empirically found to capture part structures. For

these reasons, we choose to use this approach, which is described in more detail in

Chapter 3.

17



Chapter 3

Methods

In this section we describe a method for tracking the head and tail of the mouse

with high accuracy, both during non-occluding and occluding frames. We begin by

discussing the difficulty of tracking. We then describe shape context [17] and inner-

distance shape context [15), both of which are essential for our head and tail detector.

We conclude this chapter by describing our part-based tracking algorithn, and a post-

processing technique that can be used to reduce head and tail confusions.

3.1 Challenges of Multiple Mice Tracking

The extension from single mouse automated systems to multiple nouse systems is

non-trivial. Single mouse phenotyping systems perform well because of the ease of

tracking an individual mouse. Determining the location of a single mouse is trivial,

and allows for highly accurate features such as mouse width and height to be calcu-

lated. In addition feature-based systems look for features only where the mouse is

located. Extending this to multiple mice, we encounter multiple problems - especially

when the mice occlude one another. Several problemns are listed below:

1. Complex Occlusions

18



The mice can crawl over and under one another, fight and roll around, and

generally interact in very complicated and fast ways. This can pose difficulty

for automated tracking algorithms.

2. Featureless

During occlusions and close interactions our interest lies in distinguishing the

mice. Unfortunately, standard segmentation and contour detection algorithms

cannot detect the boundaries between the mice due to lack of local identifying

features, such as luminance, chroiminance and texture differences. Figure 3.1

shows a scenario in which even a human cannot detect the boundary locally

when only a small patch is shown. It is not until the patch is large enough to

contain contextual information that a human can detect the boundary.

3. Highly Deformable

Mice can deforn into many shapes, sizes, and orientations. Hence, trying to fit

them using simple models, such as ellipses, does not produce optimal results.

4. Identical Appearance

Mice can vary in shape, color, and size depending on their age and species. In

order to create a reliable, general purpose tracker, it needs to handle two mice

of identical color and size. Keeping track of identity is extremely important.

For example, when studying one knock-out mouse and one wild-type mouse,

scientists may want to know the corresponling behavior of each mouse. This

can be quite challenging, especially after a complex interaction where occlusionm

has occurred.

5. Unpredictable Motion

Mice move and change direction quickly and even move backwards. This makes

it difficult to use motion models to predict future location or even just to predict

19



head and tail locations.

20x20 40X4U BOxsO 1bUX160

Figure 3-1: An example of the featureless boundary. From left to right, each image
zooms out on the center of the patch. In the most zoomed in image, 20 x 20 pixels,
the boundary is not detectable to a human observer. While when we zoom out to
80 x 80 pixels, the boundary becomes detectable to a human.2

3.2 Conditions

We aim to develop a system that will work under the following conditions:

1. No modifications to mice

When creating an automated system for studying mice, we want to observe

the mice in their natural state without affecting their behavior. This includes

coloring, shaving, or marking in any other way that would potentially aid with

tracking and identification, as well as less obvious changes, such as using bright

lights, which bother mice.

2. High quality video

We assume that the camera is stationary and lighting has been set up to min-

imize glare, shadows, and reflection. In addition, we assume a high quality

foreground extraction that gives a good quality contour of the mouse both dur-

ing occlusions and non-occlusions.

2Figure obtained from [7]
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3. Minimal human intervention

Our goal is to have a self correcting system that can operate with minimal

human intervention.

4. Requirement for precise head and tail locator

Previous methods have focused on getting a general fit for the location of each

mouse. While this is important, it is also extremely important to get a pre-

cise head and tail location - that is the nose location and the base of the tail

location on the mouse. This allows for much more meaningful features and

interactions to be computed between the mice. See Figure 3-2 for an example

of why precision is important.

(a) (b)

Figure 3-2: Importance of precision. The figure on the left shows slightly mislabeled
head and tail locations, while the figure on the right shows correctly labeled head and
tail. While the distance between the labeled head and tail in the two figures is similar,
on the left the mice are not interacting at all, while on the right, a nose-to-anogenital
interaction is occurring.

3.3 System Overview

Figure 3-3 shows an overview of the components of the system and the sections in

which they are described. For more detailed pseudocode see Appendix E.
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Tracker
Occlusion Event Post SVM Head/Tail

Detector Correction locations
Occluding

Original Frame Extracted Tracker
Foreground

Figure 3-3: Tracker overview. We take as input a foreground frame from our video.
We then extract the foreground (Section 3.4), and determine whether we have an
occlusion event (Section 3.5). We then track the head and tail of the mouse both
during non-occluding (Section 3.6.2) and occluding (Section 3.6.3) frames. Lastly, we
do a post-processing SVM correction (Section 3.7). Finally, we output the head and
tail locations of the mice.

3.4 Locating the Mice

To locate the mice we use the method developed by Edelman [7), which combines the

usage of background subtraction and color clustering to find a good foreground, as is

shown in Figure 3-4.

Computed Background Original Frame Background Subtraction Color Clustering

Figure 3-4: Edelman's method of foreground extraction.3

3.5 Detecting Occlusion Events

After the foreground is extracted and the mice are located, detecting occlusion events

is done using Algorithm 1. More generally, this algorithm looks at the largest two

components in the foreground. If they are roughly of equal size, it classifies the frame

3Figure obtained from [7]
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as a non-occluding event, otherwise, it classifies it as an occlusion event. For simplicity

and efficiency we use this reliable algorithm when studying two mice. Extending this

to more than two mice could be done using a Gaussian Mixture Model to track the

mice and using the distance between mouse cluster centers to detect occlusion events

[7).

Algorithm 1 An algorithm used to classify a frame as occluding or non-occluding.

function COMPUTEOCCLUSION(fg)

[fgl, fg2] +- corm putleTwo UargestFgComponents(fg)
isOcclusion +- arca(i l) > threshold * area(i2)

return isOcclusion
end function

3.6 Parts Based Tracking

Our part-based tracking method uses shape context matching to find a point to point

correspondence between a predefined template and our current mouse. We use ai

extension of shape context - the inner-distance shape context - as described in Section

3.6.1. Sections 3.6.2 and 3.6.3 describe our tracker for non-occlusion and occlusion

frames. Finally, Sections 3.6.4 and 3.7 describe a method to keep track of mice

identities, as well as a post-pro cessing step that can be used to reduce head and tail

confusions.

3.6.1 Background: Matching Contours

Matching with Shape Context and Transformation Estimation

Belongie et al. present the idea of shape context [17]. Shape context provides a way

to quantitatively measure shape similarities as well as find point correspondences.

Pick n. sample points, p1, p2, ... ,p, on a shape's contour. For each point pi, looking

at the relative distance and orientation distribution to the remaining points gives a
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rich descriptor of that point. A compact distribution for each point pi is obtained by

defining the histogram hi - with log-polar uniform bins - of relative coordinates to

the remaining n - 1 points:

hi(k) = # : j # i,pi - pi G bin(k)}

The histogram defines the shape context of pi (for a concrete example see Figure 3-5).

A benefit to shape context is the obvious translational invariance. Scale invariance

can easily be implemented by normalizing distances, and rotational invariance can

be obtained by measuring angles relative to the tangent at the point. It has been

empirically shown that shape context is robust to deformations, noise, and outliers

[2], making it applicable to matching mice contours to templates.

(a) (b)

Ii

(C)

-A

(d) (e) (f)

Figure 3-5: Belongie's shape context. (a) sampled points along the contour of the first
version of the letter A. (b) sampled points along the contour of the second version of
the letter A. (c) example of the log-polar bins used to obtain the shape context. (d)
shape dontext for the highlighted point in (a). (e) the shape context for the square
point in (b). (f) the shape context for the triangle point in (b). The shape context of
(d) and (e) is similar since they are closely related points (same location on different
versions of the letter A), while point (f), has a very different shape context. 5

To match two shape context histograms, the X 2 statistic is used. Belongie et

al. use a combination of thin plate splines transformations and shape context to do
5Figure obtained from [28]
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shape comparisons. Given the points on the two shapes, a point correspondence is

found using weighted bipartite matching, with the weights equaling the shape context

between a point on the first shape and a point on the second shape. Thin plate

splines are used to find a transformation between the two shapes. The transformation

is then applied to the points in the original shape, and the process of finding a

point to point correspondence is repeated. The steps of finding correspondences

and estimating transformation are iterated to reduce error. This method gives us

a transformation between the two shapes and a similarity cost which is composed

of a weighted combination of the shape context distance, appearance difference, and

bending energy. This iterative method may converge only to a local minima and

finding a transformation that can handle non-rigid shape deformations is difficult:

Thus the applicability to non-rigidly deformed mice is limited.

Our Method: Matching with Inner-Distance Shape Context and Continu-

ity Constraint

The standard shape context uses Euclidean distance to measure the spatial relation

between points on the contour. Using inner-distance instead of Euclidean distance

provides more discriminability for complex shapes [15]. The inner-distance is defined

as the length of the shortest path between two points within the shape (see Figure

3-6).

(a) (b) (c)

Figure 3-6: Examples of inner-distances shown as a dashed lines. 6
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Figure 3-7 shows some examples of instances for which Euclidean distance would

fail to distinguish shapes, while inner-distance can easily do so. We follow the method

described by Ling et al. using inner-distance and inner-angle as our shape descriptors

with shape context, and utilize the code provided in [14]. In addition, we include a

continuity constraint for shape context matching, and use dynamic programming to

efficiently solve the matching problem (see [15] for details). This allows us to skip the

transformation step used with the classic shape context, and is empirically found to

perform better for mice shape matching.

Figure 3-7: Examples of indistinguishable figures. These figures cannot be distin-
guished using shape context with Euclidean distance, but can easily be distinguished
using the inner-distance. 8

3.6.2 Tracking During Non-Occlusion Events

Using the inner-distance shape context described in Section 3.6.1, we obtain a match-

ing cost and point to point correspondence between any two shapes. Inner-distance

shape context is invariant to translation, rotation, and scale, and has some natural

leniency towards deformations, noise, and outliers. Thus, we only use one training

template, shown in Figure 3-8, to match our non-occluding frames. In this template,

we label the head and tail points.
6Figure obtained from [15]
8Figure obtained from [15]
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labeled head

labeled tail

Figure 3-8: Training template with labeled head and tail locations.

During non-occlusion, the mice do not obstruct each other, therefore after extract-

ing each mouse's foreground we can easily obtain it's contour. Each mouse is then

natched to the training template. The matching, as discussed in Section 3.6.1, gives

us a cost and point to point correspondence. Using the point to point correspondence

we obtain the corresponding head and tail locations of each mouse. Figure 3-9 shows

an example of the point to point correspondence obtained by this algorithm. Figure

3-10 shows the leniency of the matching towards noise and mouse deformations.

Figure 3-9: Point to point correspondence between the training template mouse (left)
and the current mouse (right).
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(a)

(b)

Figure 3-10: Leniency of matching toward rotation and noise. (a) despite the mouse's
body being deformed in rotation, heads and tails are still successfully matched. (b)
despite some noise disrupting the contour, very good matching is still obtained.

3.6.3 Tracking During Occlusion Events

Finding the head and tail location during frames in which the mice occlude one

another is a more difficult task, thus we can no longer use the simple one-template

technique used for non-occluding frames. Mice interactions are not generalizable, and

one example of two mice interacting will not easily extend to other examples. One

possible approach would be to label hundreds of occluding mouse contours with the

head and tail locations for the two mice. Based on these labels, we can calculate

the matching cost between an example frame and each of the templates, and choose

the template which minimizes cost. Unfortunately, this approach involves significant

human involvement in labeling each of the many example templates with head and

tail locations. In addition, it is not obvious how to select templates from real images
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that would be exemplary of generalized interactions between two mice.

Instead we take a more automated approach to develop our training templates.

Our approach requires a human to label the head and tail locations of only a single

template. Using this template, we construct virtual examples using two versions of

the template, and combining them by taking the union of the two overlayed one on

top of another, with one template rotated and then shifted. More specifically, we use

twelve rotations between 0 and 360 degrees, as well as shifts of 10 pixels at a time

(Figure 3-11). The head and tail location of the original template are known, thus

we can easily find the head and tail of the rotated and shifted template. Using this

approach we can generate many templates by labeling just one.

Figure 3-11: Virtual examples created for occluding frames.

Using the method described we obtain roughly 300 templates. For each template

we know the head and tail locations based on how the template was generated, as well

as which mouse every point in the template comes from. We calculate the match cost

between the contour and every template and select the template that minimizes cost.

One drawback to this approach is that it does not always most accurately describe

the mouse, often the head and tail are switched. To resolve this issue, we use the

template matching as an alignment step. We select the best matched template, and

use it to split the contour points into two groups, one for each mouse, see Figure

3-12. We then rematch the individual points to a single mouse template, which works

extremely well in accurately distinguishing the head and tail, see Figure 3-13. In

order to save time, we perform the alignment step at low resolution - using only 30

contour points, while performing the matching for the alignment at higher resolution
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with 200 points.

Figure 3-12: Training template and corresponding matching. Point to point cor-
respondences are shown between the lowest cost matching template (left), and the
current frame (right). These are used to separate the contour into the points from
the two mice (shown in red and blue).

,~

Figure 3-13: Rematching an individual mouse. Mice are rematched to a single tem-
plate to improve precision. Originally the head and tail location of the blue mouse
are switched (left). Rematching corrects this (right).

Below is a summary of the process we perform for each frame:

1. Match the frame and calculate matching cost to each of the 300 low resolution

templates with 30 points per contour.
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2. Choose the matching which mninimizes cost.

3. Renatch the original frame with a high resolution version (200 points per con-

tour) of the template that minimizes cost.

4. Use this matching to distinguish points on the contour that come from each

mouse, C , and C,,.

5. Match each C, and C to a single mouse template to find head and tail

location, and use these as the final head and tail predictions.

3.6.4 Keeping Track of Mice Identities

Keeping track of mice identities is extremely important, as discussed previously. To

do so, we use the information obtained from the original matching to deterrnine which

points come from which mouse as described in the previous section. Using these points

we create a polygon for each mouse mi, mn2 for our current frame, and pi, P2 for the

previous frame. If,

area(mi n pi) + are a(m 2 n P2) > area(rm2 n pi) + area(mi n P2)

then the current mouse 1 corresponds to the mouse labeled 1 in the previous frame

and the current mouse 2 corresponds to the mouse labeled 2 in the previous frame.

And vice versa if not. This is based on the idea that if mice in two consecutive frames

are one and the same, their area of intersection should be large, as seen in Figure

3-14.
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M2

(a) Current frame

Pi

Mb Previous frame

Figure 3-14: Mouse identification during occlusions. The intersection of n 1 with P2,
and m 2 with pi is the best fit. Hence, mouse 1 in the current frame corresponds to
the mouse 2 in the previous frame, and mouse 2 in the current frame corresponds to
mouse 1 in the previous frame.

3.7 Post-Processing

Occasionally the mouse loses identifying contour information. For instance, Figure

3-15(a) shows mouse shape where the head and tail are obvious. Figure 3-15(b) shows

one in which even a human may struggle distinguishing the head and the tail.

(a) Easy to identify (b) Difficult to to identify

Figure 3-15: Easy (left) and difficult (right) to distinguish head and tail locations.

Since the majority of the time contour information allows us to identify head

and tail without difficulty, our algorithm rarely switches the two. We devise a post-

processing technique which attempts to correct frames in which the head and tail are

swapped.

Assume we have a list of head coordinates and tail coordinates for a mouse, IlzeIa

and Itail respectively, where:
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lhea=d (x, y, t) (x, y) is the coordinate of the predicted mouse's head at time t.

lteii = (x, y, t) (x, y) is the coordinate of the predicted mouse's tail at time t.

A plot of the two sets of data, laeid and l ta, is shown in Figure 3-16(a).

We then locally train an SVM classifier on lhead and teai to distinguish the two

categories. We change the head and tail labels for time points for which the SVM

classifier is not in agreement with the original label (ignoring time points where the

SVM predicts both coordinates as either head or tail). This corrects many of the

misclassified head and tail cases, as shown in Figure 3-16(b).

120 2

60-4

40 A4j-

20 1402 140

00U 0 2
11 IU 0Il 101 541 10

(a) Before SVM correction step (b) After SVM correction step

Figure 3-16: Plot of head and tail coordinates before and after SVM correction.
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Chapter 4

Experiments

4.1 Datasets

Tracking performance is evaluated on two different types of videos:

1. Dataset A: The first dataset we use for evaluation is from Edelnan [7]. This

dataset contains both top and side view footage of two mice interacting in a

social context. The dataset contains 22 recordings of C5 7BL/10J background

mice with nearly identical brown coats. Each recording lasts at least 10 minutes,

and consists of side view and top view recordings, each taken at 30fps and

resolution 640 x 480. Of these 22 recordings, 12 have been annotated with mice

social behaviors. We use these 12 videos to evaluate our system, similarly to

Edelman [7].

2. Dataset B: The second dataset consists of the demno video provided by de

Chaumont's with his system, the Mice Profiler [5], taken at resolution 320 x 240.

This short video (roughly 30 seconds) consists of two mice interacting in a social

context. We use it to confirm our approach can be extended beyond videos

recorded under our own lighting and mouse conditions (Dataset A).
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4.2 Evaluation Techniques

We use two methods to evaluate our results. The first technique is a frame by frame

evaluation described in detail in Section 4.2.1. The second technique, described in

detail in Section 4.2.2, is automated. This provides for less human bias and is more

thorough end to end.

4.2.1 Frame by Frame Evaluation

Ve evaluate the results on the two datasets described earlier. The first dataset,

from [7], consists of 12 social behavior videos each approximately 10 minutes long,

corresponding to more than 200,000 frames. Evaluating every frame is impractical,

so we use a sampling approach, as described by Edehnan [7]. For each video, we

randomly sample 50 frames during occlusion, and 50 frames during non-occlusion, for

a total of 1200 franmes across the twelve videos. For the second dataset, we evaluate

100 random non-occluding frames and 100 random occluding frames.

To evaluate the results, we overlay the computed head and tail locations on the

fr ame, and manually assign a score for each mouse. Each mouse receives an orientation

score which reflects whether or not the orientation of the mouse is correct, defined in

Table 4. 1. Each frame receives two orientation scores, one for each mouse, an example

of which is shown in Figure 4-1.

1 Head and tail are both on correct "half' of the mouse.

2 One head or tail is on the wrong "half' of the mouse.

3 Head and tail are swapped - i.e. both head and tail are on wrong "half' of
the mouse.

Table 4.1: Orientation score definition.
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Non-Occluding Occluding

1

3

Figure 4-1: Examples of orientation scores. The colored circles indicate the predicted
location of the head and tail, shown in blue and green respectively.

Additionally, a more detailed head and tail tracking score is assigned to each

mouse. Each mouse receives one score for the head and one score for the tail, for a

combined total of four tracking scores per frame, as defined in Table 4.2. Examples

of the tracking scores are shown in Figure 4-2.

1 Head or tail are completely correct: exact match of head or tail location.
2 Head or tail are generally correct: tail is in tail "area" and head is in head

"area" of mouse (i.e. tail placed where a protruding leg is, or head placed
where ear is).

3 Head or tail are incorrect.

Table 4.2: Tracking score definition.
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Non-Occluding
Head

Non-Occluding
Tail

Occluding Head Occluding Tail

Figure 4-2: Examples of tracking scores. The colored circles indicate the predicted
location of the head and tail, shown in blue and green respectively.

4.2.2 Automated Evaluation

To automate the process, we manually create a new database with annotated head

and tail locations. A human then labels the true head and tail locations of the mouse.

The head is labeled at the location of the nose, or in situations in which the nose

cannot be directly seen (e.g. it is occluded by the second mouse), the location where

it would be is interpolated. Similarly, the tail is labeled as the base of the tail, and

interpolated if it cannot be seen.

We create a database with a continuous labeling of 5000 frames taken from a

randomly selected video from Edelman's dataset [7]. This is chosen to allow us to

test properties such as number of mouse identity switches occurring, which we would

not be able to test in a non-continuous evaluation. In addition, this dataset reduces

human bias and vagueness involved in frame by frame labeling, and thus allows for

easier and accurate evaluation of performance across multiple methods, using the
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following measures:

1. Percentage of frames in which head and tail are swapped.

2. Empirical CDF of distances between true and predicted head (assuming head

is labeled on correct side of mouse).

3. Empirical CDF of distances between true and predicted tail (assuming tail is

labeled correct side of mouse).

4. Number of mouse identity switches.
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Chapter 5

Results

5.1 Frame by Frame Results

We evaluate the orientation and tracking scores for the two datasets described in

Chapter 4. Orientation scores are consistent across datasets (Table 5.1). The post-

correction step provides an increase in performance. More specifically, for non-

occluding frames, the increase in performance is small. However, for occluding frames,

the increase is almost 5%. This is extremely promising and important, since the ac-

curacy of the orientation is necessary for many applications of our tracker, such as

distinguishing between nose to nose behavior and nose-to-anogential behavior.

Dataset A Dataset B
1 2 3 1 2 3

Non-Occluding 94.33% .08% 5.58% 95% 0% 5%
Occluding 84.42% 1.42% 14.17% 84.5% 0% 15.5%
Non-Occluding with Cor- 96.92% .08% 3% 100% 0% 0%
rection
Occluding with Correc- 89.5% 1.42% 9.08% 100% 0% 0%
tion

Table 5.1: Orientation score results on Datasets A and B.

Overall, tracking performance is higher on Dataset A compared to Dataset B

(Table 5.2). This is likely explained by the fact that we use the training templates
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frorm Dataset A, creating a bias. This could also be due to the fact that Dataset A

has higher resolution, providing more detailed contour information. Despite this, we

obtain precise results, especially for non-occluding frames.

Dataset A Dataset B
1 2 3 1 2 3

Non-Occluding 93.42% 5.38% 1.21% 85.5% 12.5% 2%
Occluding 73.88% 1.84% 7.75% 62.75% 34.5% 2.75%

Table 5.2: Tracking score results on Datasets A and B.

5.2 Comparison with Other Methods

5.2.1 Ellipse Tracking

We use our own scoring definitions from 4.2.1 to evaluate the ellipse tracking method,

Table 5.3.

Dataset A
1 2 3

Non-Occluding Orientation 77.25% .25% 22.5%
Occluding Orientation 72.5% 1.17% 2.63%

Non-Occluding Tracking 68.3% 29.4% 1.7%
Occluding Tracking 39.54% 43.54% 16.91%

Table 5.3: Orientation and tracking score
tracking method.

results on Dataset A, using the ellipse

We obtain more precise results using our method than the ellipse tracker, especially

during non-occlusion frames. The ellipse tracking method gives reasonable results (i.e.

tracking score of 1 or 2) the majority of the time, but lacks the precision to locate

the head and tail exactly.

5.2.2 Physics-Based Tracking

We compare our own method to the physics-based tracking method [5]. Due to

variations in vi(eo conditions, the physics-based tracking method does not perform
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well on Dataset A. Therefore, we make the comparison only on Dataset B. We sample

100 random non-occlusion frames and 100 random occlusion frames and compare

results for these samples (Table 5.4). The physics-based tracking method locates a

head and tail circle, thus we adjust our scoring to define the precise location within the

mmouse, instead of at the precise location on the contour. The physics- based tracking

method has high orientation score, but lower tracking scores, meaning it lacks the

ability to find the precise head and tail location, which is crucial in determining many

behaviors, such as nose-to-nose contact.

Dataset B

1 2 3
Non-Occluding Orientation Score 100% 0% 0%

Occluding Orientation Score 100% 0% 0%
Non-Occluding Tracking Score 75.5% 24.25% .25%

Occluding Tracking Score 46% 51% 3%

Table 5.4: Orientation and tracking score results on Dataset B, using the physics-
based tracking.

5.3 Automated Evaluation Results

We compare the automated performance of our method to the ellipse tracker [7].

Our method produces less head/tail swaps than the ellipse tracker (Table 5.5), likely

explained by the fact that our method is based on the shape of the mouse, rather than

the primary direction of motion. When orientation is swapped by our method, it is

brief, and occurs only in frames where mouse shape is lost. With the ellipse tracker,

however, orientation is swapped whenever the mouse's primary direction of motion

is riot forward. These swaps can last for multiple seconds, resulting in orientation

reversal for hundreds of framnes.
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Our method total number head/tail swaps 12.26%
Ellipse tracker total number head/tail swaps 19.02%

Our method total number identity swaps 0
Ellipse tracker total number identity swaps 2

Table 5.5: Summary of automated tracking results.

Our method more frequently gives precise matching of head and tail location of

the mouse (Figure 5-1). In fact, in more than 80% of frames, the distance between

the true and predicted head/tail location is less than five pixels. Such precision is

seen in only around 30% of the frames using the ellipse tracker. This emphasizes the

advantage of our method's precision results, over alternative methods, such as ellipse

tracking.

Empirical CDF
1

Ellpse head
0.9 -- - -- -+-- Ellpse tail

Our method head
08 - - - Our method tail

0 6 - ---- - - ------ --- - -- - -- -- -

0 7---- ----- - -
0

20 5 1 5 0 2 3 5 4

023---- ------------- --------------

0 5 10 15i 20 25 30 35 40
Distance

Figure 5-1: Empirical CDF of distance between true and predicted location.
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Chapter 6

Conclusion

WXe have nade large (contributions towar ds automating social behavioral phenotyping.

Our automated tracker can accurately track the head and tail locations of the mice

by utilizing the extensive amount of information encoded in mouse contours. The

tracker is based on finding a point to point correspondence between mouse templates

with predefined head and tail location and the mouse to be classified.

Our part-based tracker is more precise than existing methods. Additional ad-

vantages of our tracker include self-correction, avoidance of mistakes associated with

motion based methods, and easy extension to new setups.

The tracker can be used to obtain useful statistics about mice and with some mod-

ifications can be extended to create an automnated end-to-end phenotyping system.
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Appendix A

Using Tracking to Automate

Behavioral Phenotyping

As discussed in Chapter 5, our part-based tracking technique tracks the head and tail

location of the nouse more accurately than other leading techniques. In this section,

we explore automating social behavioral phenotyping.

We approach the task of automating social behavioral phenotyping by using po-

sition based features to train a classifier [7). We propose to use three main points in

the mouse: the head, tail, and center. Thus we are limited to features defined based

on these positions, for instance distance between the heads of the mice or the velocity

of a mouse. Using this approach we face the following challenges:

1. Vaguely defined events: Many social events are difficult to define in terms of

position features due to two factors. First, there may not be enough information

from the top view. For instance, Figure A-I shows two fr ames from the top view,

one of which is a nose-to-head social behavior and the other is a background

frame. Without additional contextual information - such as side view - there is

not enough information engrained in the head and tail location to indicate that

the mice are actually interacting.
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2. Limitations of using tracking data: We train our system using the tracking

method from Chapter 3. We use this information to obtain position features of

the mouse - i.e. head to head distance. This implies that whenever a mouse's

head or tail is misplaced, our classifier receives inaccurate position features

as input, making it difficult to obtain an accurate classifier. As an alternate

approach, we could hand label head, center, and tail locations for our training

set, to allow accurate features when training the classifier.

3. Limitations of training behavioral data: As we see in Appendix B, the

behavioral labeling task is potentially vague even for humans. This means that

the classifier we train to distinguish between social behaviors is limited by the

accuracy of our training data.

In order to create an automated social phenotyping system, we need to address

these limitations.

(a) (b)

Figure A-1: Hard to distinguish behaviors from top view. The left figure shows non-

interacting mice. The right figure shows interacting mice (nose-to-head interaction).
Using just top view of one frame, the differences are very subtle, making it hard to
distinguish the mice's behavior.
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Appendix B

Evaluation of Human Labeling

Nick Edelan's database has twelve videos labeled with the following social behav-

iors: nose-to-nose contact, nose-to-anogential contact, nose-to-head contact, crawl

over crawl under, and upright. These twelve videos were labeled by an expert in the

field, who has much experience with mice and their behavior. This was compared to

performance by a non-expert. The non-expert was given definitions of the behaviors

and observed four ten minute videos of labeled examples in order to understand how

the labels were assigned. The non-expert was asked to use both the top and side view.

Overall agreement was 87.16% between the expert and non-expert. The majority of

the time the two mice are not interacting, thus, a more meaningful measure of agree-

ment, can be examined by looking at the confusion matrix, Figure B-1. Agreement is

high for nose-to-head and nose-to-nose behavior, but much lower for other behaviors

(note that crawl over crawl under and upright had very few example frames, making

it difficult to obtain meaningful measurements of agreement). The expert observed

27 social contact events (defined as a continuous labeling of a social behavior), while

the non-expert observed 79. More investigation is necessary in order to understand

these differences. If the differences are due to the inherent ambiguity, then we have

a ballpark figure of what is acceptable performance from an automated system. On
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the other hand, if the non-expert has lower quality labeling, more investigation is

needed to evaluate why the problem is difficult for humans. This might help improve

our algorithms for automated behavior recognition. Similarly, if labels by the expert

are found to be low quality, investing more time in obtaining higher quality labeling

might be necessary.

Labeling Agreement Between Expert and Non-Expert

cuct

BG Nmm NH NA up UUUu

Figure B-1: Confusion matrix between two labelers. Each entry (x, y) in the confusion
matrix is the probability with which an instance of a behavior x (along rows) is
classified as type y (along column), and which is computed as (number of frames
annotated as type x and classified as type y ) / (number of frames annotated as type
x ). As a result, values sum to a value of 1 in each row. Entries with values less than
0.05 are not shown. The color bar indicates the percentage agreement.
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Appendix C

Extensions to Other Domains

In this section we discuss the extension of our system to three different domains. We

consider the extension of our part-based tracker to both side and semi-side views. We

also discuss extending our tracker to three mice in a cage.

C.1 Side View

The side view is significantly harder to study than the top view due to the fact that

mice occlude each other much more often from the side view than the top view, as

can be seen in Figure C-1.

0.7

0.6-

0.3-

0.2-

0.1-

0-

(a) Mice occluding from (b) Mice not occluding from (c) Percentage of time mice
side view top view are occluding in top view, side

view, and semi-side view.

Figure C-1: Mice occlude from side view much more than from top view.

To analyze performance on side view, we will use the same dataset and sampling
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technique from Chapter 4, sampling fifty frames from each of the twelve videos in

the dataset. We focus on performance of non-occluding frames, since the system

cannot be easily extended for side-view occlusions. Side view occlusions are far more

complex than top-view occlusions. Unlike for top view, the combined shape of two

mice occluding from the side view cannot be easily defined as a combination of two

side view non-occluding mice.

The mice can acquire many more shapes from the side view, as seen in Figure C-2.

For this reason, increasing the number of templates from one to ten, is necessary -

see Figure C-3 for templates. These templates are selected manually. To find the

head and tail, we match each frame with each of the ten templates, and choose the

template minimizing the matching cost. We then apply the technique of Section 3.6

to find the head and tail locations of the mice.

(a) (b) (c) (d)

Figure C-2: Mice can take on many contour forms from the side view (a-e).

(a) (b)

(f) (g)

(c) (d) (e)

(h) (i) (j)

Figure C-3: The templates used for side view matching (a-j).
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Tracking and orientation scores for top and side view in Dataset A are shown

in Table C.1. We see that performance decreases as compared with top view. One

possible reason for this decrease is that in the side view it is much harder to obtain

a good contour of the mice. Additionally, the mice are occluded by the feeder and

drinking tube much more often, and in much harder to interpret ways. Lastly, since

the mouse's underside is light colored, when the underside is visible - such as when

the imouse rears towards the camera - the foreground extracted is of bad quality. This

partly explains the decrease in performance, while the other part is explained by the

fact that the problem is significantly harder to solve in the side view. For example,

when the nouse faces the camera, the tail is not visible, therefor its location is unclear.

Despite performing poorer than the top view tracker, these results are useful in some

scenarios. For example, we can use the good matches to aid in phenotyping.

Top View Side View
1 2 3 1 2 3

Non-Occluding Orientation 94.33% .08% 5.58% 54.5% 1.45% 44.0%

Non-Occluding Tracking 93.42% 5.38% 1.21% 45.22% 40.09% 14.68%

Table C.1: Top and side view orientation and tracking results.

C.2 Semi-Side View

Videos taken from a semi-side view (between a top and side view, Figure C-4) provide

miore fine-grained information than the top view, while having less occlusions and

complex interferences than the side view (Figure C-i(c)).
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Figure C-4: Example of semi-side view frame.

We analyze our tracker performance on one semi-side view video which is longer

than fifteen minutes. The video is taken in non-ideal conditions, thus we evaluate only

frames for which the mice are selected as foreground objects, and not those frames in

which only noise is selected. In addition, we use the side templates as they describe

the mouse shape well. Results are based on a randomly sampled 200 non-occluding

frames and are summarized in Table C.2.

Semi-Side Video
1 2 3

Non-Occluding Orientation Score 78.75% 1.25% 20.00%
Non-Occluding Tracking Score 65.75% 31.00% 32.5%

Table C.2: Semi-side view orientation and tracking results.

I
Results from semi-side view are significantly better than from side view, but not

as good as top view results. We propose using semi-side view as a basis for filming the

mouse from multiple angles, and later combining the different view points intelligently.

Using our part-based tracker, we can analyze semi-side view videos reasonably well.

C.3 Tracking Three Mice

The extension to three mice is nontrivial. The template generation technique does

not easily extend to more than two mice, thus a different template generation method

would have to be used. Furthermore, when three mice interact, compared to two, the
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contour does not provide as much information about each individual mouse. Figure

C-5 shows examples of three mice interacting simultaneously.

(a) (b) (c) (d)

Figure C-5: Various example of three mice shown from the top view.

The complexity of the interaction makes it difficult to interpret the scene just based

on the combined contour. However, when three mice are housed together in a single

cage, most of the social interactions occur between only two of the mice. When only

two mice are interacting, our tracker can be used to find the head and tail location

of the interacting mice.
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Appendix D

Future Work

We have described the first steps in automating social behavioral phenotyping of mice.

Possible extensions to this work include: extending and improving our tracker, cre-

ating an end to end mouse behavioral phenotyping systemi, and applying our current

work to new applications.

D.1 Improving the Tracker

The part-based mouse tracker works extremely well during non-occlusion franes. It

does not perform as well during more complicated occlusions, and can misidentify

mice, leaving room for improvement. Many applications of mouse tracking require

tracking mouse identity with high accuracy. For example, in studying how a knockout

mouse - such as a Shank3 mouse - behaves towards a wild-type mouse, the identifi-

cation of the mice at all times is extremely important. Methods such as ear punches,

tattooing, or tail marking are used to keep track of mouse identity. Unfortunately,

these methods are either too fine to be easily captured by video and identified by

a computer system (ear punches, and tail markings) or not extendable to all mice

(tattooing, which works best on light colored mice). As we saw in Chapter 5, keeping

track of mouse identity is occasionally a problen for our tracker. One possible solu-
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tion, which has been used by Santoso et al., is to insert radio-frequency identification

devices (RFID) transponders in each mouse, allowing individual identification of the

mice [211. This enables the system to reaffirm the nouse's identity and self correct

based on the transponder information.

One limitation of our training templates is that it assumes that the interaction

bet'ween two mice can be defined as an overlay of two mice one on top of another.

There are three major problems with this assumption. First, this assumes there are

no shadows or other artifacts in our video. When shadows are present in the video

apparent occluding interactions can occur. These interactions confuse the system

and cannot be described by simply overlaying two nouse contours, as we do with our

temnplates. This is due to the fact that the shadow between the two mice is considered

to be part of the foreground, and thus part of the mouse contour. Second, mice are

extremely deformiable, meaning we cannot define them as a simple combination of

two templates of un-deformed mice. Lastly, mice live in three dimensional space,

meaning when they protrude up in the air, their contour changes around the head

and tail, making a match with a training template difficult. Additionally, one mouse

may appear simaller than the other, which does not exist in our occlusion training

templates. All of these issues can be addressed by using training data derived fronm

real data. However, one setback of this method is that it involves labeling the head

aind tail locations of real mice, which is time consuming. This direction needs to be

explored more thoroughly.

We can improve our tracker by using multiple cameras, all from different angles.

We can select the inmost reliable camera (18], or alternatively, we can combine the

textureless mouse information from multiple cameras to create a three dimensional

model [29].

A infrared camera, such as the Kinect, can also be used to obtain depth informa-

tion. Unfortunately, the Kinect is only accurate to a few centimeters [22], but new



cameras are being developed that provide greater accuracy [24]. The cage walls would

need to be covered, as the material of the cage walls may interfere with the infrared

signal.

D.2 Using Part-Based Tracking for Social Behav-

ioral Phenotyping

Vork needs to be done before we can create a reliable end-to-end system that takes in

a video of the mouse and outputs behavioral labeling for every frame. 'To create this

system two approaches can be taken. First, we can take a machine learning approach

- as attempted in Appendix A, where the system takes as input labeled frames and

learns rules from them. One setback is that our current training data is mostly labeled

as background, making it very difficult for a system to learn meaningful rules. One

possible solution is to label more categories in the data. For instance, instead of

labeling just nose-to-tail behavior, we can add a follow behavior. Forming rules for

identification of behaviors would be easier under this scenario. Alternatively, we can

define our behaviors based on hard coded rules, as is done by [5]. This method has

the advantage of making new behaviors extremely easy to study and eliminates the

need for training data. However, further investigation is needed to confirm that these

hard coded rules are good representations of mice phenotypes.

D.3 Fine-Grained Social and Single Mouse Behav-

ioral Phenotyping

Interest lies in studying either fine-grained social behavior, such as social grooming,

or single mouse behaviors, such as eating, resting, or grooming. Our tracking system

cannot easily extend to define fine-grained behaviors. We can potentially use the
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tracking information to narrow the feature selection space. For example, for social

grooming, looking at local features only near one of the mouse's head can help define

the behavior more accurately. Additionally, since the mice are not constantly oc-

cluding one another, creating a single mouse behavioral recognition system that can

identify a single mouse's behavior (eating, drinking, resting, walking, etc.) during

nion-occlusions frames is realistic.

D.4 Applications

Scientists explore a variety of behavioral phenotypes when studying mice. Our non-

occlusion highly accurate parts tracker can be applied beyond social behaviors. For

example, Noldus' Ethovision has an object exploration task, where the time exploring

an object is measured. Our part-based tracker would perform accurately in this

context.

Using our head and tail locator we can extend our original definition of head and

tail from the single point of the nose location and the single point of the base of the

tail location to a more general description of the head and tail areas. This is done by

looking at the contour points before and after the precise head and tail points and

connecting them in a polygon. We could then study features such as head and tail

orientations, which might be of interest.
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Appendix E

Algorithms

Algorithm 2 Overview of tracking algorithm.
bg +- generateBg(videoFn);
isOcclusion +- false;
while frame = get NextFrame(videoFn) do

% Section 3.4
f g +- computeFg(frane ,bg);
% Section 3.5

isOcclusion +- computeOcclusion(ffg);
% Section 3.6

[headl, taill, head2, tail2] <- matchlleadTai( f g, isOccusion);
end while

% Section 3.7
[hlead1_it, taill-list, h/ead2L-ist, tai2_list]

.s'omCorrectionr(headil _Jist, taiill-list, head2_list, tail2-list)
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