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Abstract

In this thesis, I contribute to the design and implemention of a new TCP-like proto-
col, CTCP, that uses network coding to provide better network use of the network
bandwidth in a wireless environment. CTCP provides the same guarantees as TCP
whilst providing significant enhancements to previous TCP implementations, such as
permitting multipath packet delivery. CTCP's flow and congestion control policies
are based on those of TCP Reno and TCP Vegas, which allow for prompt recovery
from packet erasures and cope with congested networks. Unlike previous attempts
at using network coding with TCP, this implementation uses block coding schemes,
which are better suited to delay sensitive applications. As a result, CTCP permits
content streaming. Overall, the efficient integration of network coding into CTCP
allows for improved robustness against erasures as well as efficient content delivery
over multiple paths.
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Chapter 1

Introduction

The Transmission Control Protocol (TCP) [2] is one of the core protocols used for

networked communications and is part of the Internet Protocol Suite, the other mem-

ber being the Internet Protocol (IP). These two protocols combined conform what is

generally referred to as the TCP/IP stack. The main functionality of TCP is to offer

a connection oriented stream delivery service for application programs, providing the

following: reliable in order delivery of data packets, error detection, flow control and

congestion control.

TCP was originally designed in 1974, and since then it has undergone several

revisions. It is to be noticed, however, that heuristics used in the congestion control

algorithms in TCP were designed with wired networks in mind. For example: (1)

TCP regards any evidence of lost data as congestion in the network, and (2) TCP

can only communicate with one hardware interface at a time.

Regarding (1), TCP will, when there is evidence of data loss, decrease the rate at

which the data is being sent. While this behavior is appropriate in wired networks,

in wireless networks lossiness can be due to other factors, such as node mobility and

background noise. Regarding (2), TCP was developed without the notion of mobile

devices and pervasive wireless data networks as we have today. Back then, a single

hardware connection would suffice to include a computer in a network, and thus TCP

was designed around this model. A modern desktop, laptop or mobile device will

have several hardware interfaces to connect to different networks, including wireless

15



and cellular data networks. Owing to the way TCP is currently implemented, it is

not possible for a connection to use more than one interface at a time.

With this in mind, we are faced with modern mobile devices that use TCP in order

to interface with wireless networks. However, given the aforementioned assumptions

on which TCP is based, these devices perform sub-optimally in terms of bandwidth

usage with connections that are very fragile in lossy environments.

In recent years researchers have attempted to solve these issues by developing

new protocols that are capable of multipath packet delivery to improve both perfor-

mance and robustness in the aforementioned scenarios [19, 15, 20]. Most notably,

the development of a "Multi-Path TCP" (MPTCP) has been proposed and and sev-

eral specifications have been drafted. To date, the implementations of this protocol

remain limited to simulations, and research seems to have stagnated since 2009.

In this work we have chosen a different path. We use a technique known as network

coding to aid us develop a TCP like protocol that addresses the aforementioned

challenges.

1.1 Related Work

Network coding was originally developed by Ahlswede et al. [1] in 2000. Ever since, its

theoretical properties, such as better bandwidth utilization and increased robustness

in lossy networks, have sparked interest into using this technique in transport proto-

cols [17, 18, 13]. However, the functionality of current implementations of network

protocols integrating network coding have proved limited.

The work by Sundarajaan et al. [17, 18] proposes a TCP like protocol integrating

network coding. However, it uses a sliding window approach for coding operations

can have significant decoding delay and may have undesirable worst case behavior.

In addition it still requires an implementation in the kernel. In a similar fashion, the

work by Liu et al. [13] develops a real world implementation of a transport protocol

that integrates network coding for content streaming. However, the protocol proves

to be very computationally expensive and thus not suited for devices with limited
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computational power, such as mobile phones.

1.2 Contributions

In this work, I design and implement a new TCP-like protocol, CTCP, that inte-

grates network coding to provide better network utilization and increased robustness

in lossy environments. CTCP, unlike previous attempts at integrating network coding

with TCP, supports delay sensitive applications, such as content streaming. More-

over, CTCP supports multipath packet delivery using multiple hardware interfaces,

further increasing the robustness and performance of connections. Finally, by using

a novel technique we develop that we refer Sparse Network Coding, we were able

integrate network coding into CTCP while minimizing the additional computational

overhead. To demonstrate our design we have implemented an application layer ver-

sion of CTCP.
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Chapter 2

Preliminaries

2.1 Network Coding

The theoretical advantages of network coding have been well established in the re-

search community in recent years. The works by Ahlswede et al. [1], Koetter et al. [11]

and Ho et al. [10], among others, expose network coding as a technique that allows

networked communications to have better bandwidth utilization, and increased ro-

bustness and loss resiliency. These results have motivated new protocol designs and

implementations, including the work by Sundarajan et al. [17, 18], and the work by

Liu et al. [13]. Our work follows this trend, tapping into the power of network coding

to provide better networking protocols. Before delving into the details of our imple-

mentation of network coding we outline the basics of random linear network coding

(RLNC) [10].

Assume that a node is to transfer a data block D over the network. First, it

divides the block into n segments D = [S1, S2, . .. , Sn]T, where each segment has

length L bits. The node constructs n coded packets to send across the network by

computing payloads [P1, P2,..., P,], each of which is a random linear combination

of the segments that make up D. More specifically, each segment is interpreted

as a vector of symbols over the field GF(2q), where q consecutive bits make up one

symbol.' Unless otherwise stated, all of the operations hereon take place over GF(2q)

'Recent implementations of network coding have chosen q = 8 as their field size [18, 8, 13]. This
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for some appropriate q. The payload P is constructed by randomly selecting coding

coefficients Ci = [c4,, ... , ci], and computing

n

Pi = Ci -D= E (ck - S).
k=1

Each coded packet consists of a payload P, coding coefficients Ci and additional

matadata. Upon receipt of n linearly independent packets, we refer to each of these

as a degree of freedom, a receiver node can decode the original data D by solving the

system of n equations and n unknowns given by

C1 C2  -- -c S1 P

SS 2  P2  (2.1)

cy c -n-- c"Sn- Pn-

Or simply,

C-Dz=P, (2.2)

where C = [C1, C2, ... , Cn]T and P =[P1, P2 , ... -, Pn]T. By using Gaussian elimina-

tion the receiver can solve this system, yielding:

D = C- -P (2.3)

and thus recovering the original data. Having understood the basis network coding,

it is important to discuss the benefits of using NC to judge when it is best to apply

it.

value proves convenient as each byte makes up one symbol over GF(28). Moreover, this choice of
q has been predicted to provide energy efficiency advantages when compared to other possible field
sizes [3].

20



2.1.1 Advantages of Network Coding

Rateless Erasure Codes

Random linear codes are near-optimal rateless erasure codes. Namely, it is possible

to generate potentially infinitely many coded packets given a finite set of segments

contained in a block of data D. Moreover, given any set of n or greater coded packets,

it is possible to decode D with high probability. This is true as the linear equations

used to generate the payloads are linearly independent with high probability. Once

n degrees of freedom arrive at the receiver, the original data block will be decodable.

In case of channel erasures, the sender only needs to construct as many packets as

those lost and resend these. With high probability, the additional packets will be

linearly independent with the packets sent thus far, and therefore be helpful towards

the completion of the overall data transfer.

Near-Perfect Asynchronous Coordination

As we stated previously, upon the arrival of n degrees of freedom the original data

D becomes decodable. The described scheme is oblivious to the source where the

degrees of freedom originated. Hence, an arbitrary number of senders serving the

same data D could be used to independently produce the necessary degrees of freedom

to complete a data transfer. The latter is done asynchronously, as the payloads

generated at each of these sources are linearly independent with high probability, and

no synchronization is needed between the different sources for this property to hold.

Our implementation takes advantage of this property to allow for delivery of packets

using multiple hardware interfaces. This aspect of our implementation is discussed

in more depth in Section 3.5. For more details see [5, 10, 14].

2.1.2 Disadvantages of Network Coding

The advantages of network coding come at a price. In particular, the necessary dot

and matrix products computed over GF(2q) may be of significant computational

cost. This has lead researches to attempt alleviating the computational burden of

21



network coding using several different types of optimizations. Some of these include

architecture specific implementations of the dot and matrix products over GF(24) [8],

as well as carefully choosing the parameters involved in the specific protocols [3, 13].
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Chapter 3

System Design & Implementation

As mentioned already, the use of network coding allows for better bandwidth use over

lossy channels, making networked communications more robust and loss resilient, as

well as opening the possibility for packet delivery using multiple hardware interfaces

[1, 10, 11, 12, 17]. In this chapter, we describe the design and implementation of

CTCP: a novel TCP-like protocol that uses network coding for data transfer in the

form of a client-server file transfer application.

CTCP's architecture is driven by three main design objectives: 1) efficient network

coding integration, 2) delay sensitive applications such as content streaming and,

3) multipath packet delivery through multiple hardware interfaces. Furthermore,

CTCP's implementation preserves the TCP guarantees of error-free, in order delivery

of data along with comparable flow and congestion control policies.

The rest of this chapter is organized as follows: Section 3.1 describes how network

coding is integrated into CTCP; in particular we describe Sparse Network Coding

(SNC), a novel method to reduce the computational complexity of network coding

for real world implementations. Section 3.2 describes the design decisions and imple-

mentation details that enable content streaming with CTCP. Section 3.3 describes

the main components of our implementation of CTCP and their end-to-end behav-

ior during a generic file transfer. The policies and recovery systems added to make

network coding work smoothly are discussed. Finally, Section 3.4 discusses the flow

and congestion control policies implemented in CTCP and how these relate previous

23



TCP implementations.

Throughout this chapter we refer to the CTCP components by their name in our

implementation. Please refer to Appendix B for a complete list of the components'

names and descriptions.

3.1 Efficient Network Coding Integration

One of the main challenges of integrating network coding in a real system is the added

overhead required for coding and decoding. This added overhead is particularly prob-

lematic for the deployment of such systems on mobile devices. Several attempts have

been made to alleviate this, including parallelized implementations of the product

over GF(2q) for q = 8 for the use on GPGPUs [16],as well as implementing this

product using a lookup table approach, among others [3].

During the development of CTCP, we devised a new scheme that we call Sparse

Network Coding (SNC) which allows us to increase the overall performance of the

protocol by decreasing the overhead of coding and decoding when possible, adapting

to the estimated channel loss rate. In what follows we describe the details of SNC.

As seen in Section 2.1, a node using RLNC will construct coded packets by com-

puting random linear combinations of the segments of the data being served, and

subsequently send these to a receiver. The receiver upon receipt will progressively

construct and solve a system of linear equations of the form of Equation 2.2, namely:

C-D=P

where D = [S1, S2, ... , Sn]T denotes the data being served and its subdivision into seg-

ments Si, P = [P1, P2, ... , Pn]T denotes the payloads sent, and C = [C1, C2,... Cn]T,

where Ci denotes the coefficients used to construct the coded packet P.

SNC is a heuristic designed specifically to reduce the decoding overhead of RLNC

at the receiver by restricting the way in which the coding coefficients Ci are chosen at

the sender. This effectively constrains the set of possible C matrices which need to be
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inverted to decode a given data block. Specifically, we want to reduce the number of

entries that need to be computed in order to find C-'. Note that standard Gaussian

elimination has 0(n3 ) time complexity.

One way to accomplish this would be to place restrictions so that both C and C

are sparse. There are examples of families of sparse matrices whose inverses are also

sparse, including nonsingular block-partitioned matrices, as well matrices describing

the kinematics and static equations of deformable bodies [6, 9]. However, in our

scenario we want to generate the desired matrices randomly, thus the aforementioned

families of matrices prove too narrow for our purposes.

3.1.1 Banded Matrices

Instead, SNC uses a different family of sparse matrices called banded matrices. A

banded matrix is defined as a sparse matrix whose non-zero entries lie near the diago-

nal. As such, we can define the bandwidth of a banded matrix as the smallest number

of adjacent diagonals among which the non-zero elements are confined. Following

our discussion in the previous section, SNC shall tighten the constraints over C and

C-1 so as to make C banded and C sparse. The reasoning is that, assuming C is

banded, we can implement a more efficient Gaussian elimination process tailored for

this type of matrix. Furthermore, if C-1 is also sparse with roughly 0(n) non-zero

entries, then the Gaussian elimination process can be performed in approximately

0(n 2), as only 0(n) entries need to be computed to find the inverse, and each entry

takes 0(n) computations to be found.

The main idea behind SNC is based on the following empirical finding: If C is

a banded matrix with small bandwidth (roughly 0(log n)) then C' is sparse with

high probability. Hence it suffices to restrict C to a banded matrix. This can be

easily accomplished by restricting the way the Ci's are chosen. Namely, we choose

these so that they consist of at most k consecutive non-zero coefficients, and zeros

elsewhere. In other words, each coded packet is constructed by computing a random

linear combination of at most k consecutive segments. For this reason, we refer to k

as the coding window, and abbreviate it as coding-wnd. In particular, we notice that
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the family of matrices we construct can have their rows rearranged to have bandwidth

coding.wnd. This is easily done by placing the set of coefficients with the first non-

zero entry at position i in row i. For details on the empirical data please refer to

Appendix C.

3.1.2 Dynamic Coding Window

One of the interesting properties of SNC is that it exposes the tradeoff between

the computational overhead and robustness against erasures. Namely, if we let

coding-wnd equal n (the number of segments), we are left with RLNC. Such a scheme

is very robust against erasures, but with computational overhead. At the other end

of the spectrum we can set coding-wnd to 1, in which case each coded packet sent is

a "random" linear combination of a single segment. This case is almost equivalent to

no coding whatsoever as each coded packet consists simply of a single segment multi-

plied by a random coefficient.' Hence, this scheme has negligible overhead, however

it is almost equivalent to traditional TCP, and thus it losses all of the theoretical

advantages of random linear network coding.

Having tradeoff between throughput performance and decoding complexity in

mind, we can use SNC in an adaptive fashion: We can tune coding-wnd according

to the perceived erasure rate of the channel thus adding only the minimum overhead

necessary to achieve the desired amount of robustness. The optimal coding-wnd val-

ues for each different erasure levels were found via empirical measures made in our

CTCP implementation as well as Monte Carlo simulations of CTCP.

3.1.3 Gaussian Elimination

SNC guarantees that the rows of coefficients received for a given data block D can be

arranged so that they form a banded matrix C. Based on this assumption we designed

a Gaussian elimination process tailored to find the inverses of the resulting banded

'For efficiency reasons our implementation of CTCP chooses the first non-zero coefficient of every
Ci to be 1. This avoids the receiver having to normalize each vector when doing Gaussian elimination,
while being equivalent to randomly choosing all of the coefficients. In the case described, setting
codingwnd to 1 is equivalent to coding with a permutation matrix.
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matrices. Most notably, our Gaussian elimination process is optimistic, namely, it

will only perform computations to find the non-zero entries of the inverse. Hence, the

time complexity of our algorithm is a function on the number of non-zero entries of

the inverse. This fact, combined with the empirical data in Appendix C confirming

that the inverse of a random low bandwidth matrix is sparse with high probability,

implies that our Gaussian elimination process has time complexity 0(n 2) with high

probability. In what follows we describe this process in detail.

For simplicity, we assume throughout this section that the erasure rate does not

dramatically change during the time that it takes to transfer a single data block.

Namely, we can assume that coding.wnd is constant throughout the transfer of a

given data block D. Also, our implementation of SNC sets the first non-zero coefficient

of every Ci vector to 1. This avoids having to normalize the coding vectors at every

step of the Gaussian elimination process.

We start out with an empty matrix C and an empty vector P. Our goal is to

construct successively C and P, based on contents of the received coded packets. In

constructing C, we maintain the following invariant:

Invariant. Every row of C has its first non-zero coefficient in the diagonal and is

equal to 1.

All operations performed on C are mirrored on P as well. Once we are done, we

are left with a n x n upper triangular matrix C, with all of its diagonal entries equal

to 1, and a vector P of payloads that satisfy equation 2.1.

For each Data.pckt that arrives let x = packet-coeff = [X1, ... , ,z] denote

the coefficients used to construct the arriving packet and let p denote the packet's

payload. We execute Insert(x,p), which returns a boolean value indicating whether

the row was successfully inserted or not. The pseudocode is show below in Algorithm

1:

Lines 1-5 attempt to to place x so that its first non-zero coefficient falls in the

diagonal of C. If this is not possible we go to line 7. If j = n, we have reached the

end of the matrix and return f alse. Otherwise we continue in line 8, which sets x
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Algorithm 1 Insert(x, p):
1: j +- x.start-packet
2: if CU] is empty then
3: Insert x into CUJ
4: Insert p into P[j]
5: Return true
6: else
7: if j < n then
8: x <-x- C[j]
9: X

xj+1
10: p p - PU]

11: p +
zj+1

12: if x 0 then
13: return Insert(
14: end if
15: end if
16: return false
17: end if

x,p)

to the difference between the current j-th row of C and x, and normalizes the result.

Given our invariant, we know that the first non-zero entry of x is now in the j + 1

position, and it equals 1. Line 9 mirrors these operations on the payload. Finally,

line 10 places a recursive call to insert the new values of x and p into the j + 1-st row.

Notice that, if Insert(x, p) returns false, it means the arriving packet was lin-

early dependent with the previously received packets. In this case the packet is

dropped and an appropriate acknowledgement, in the form of an Ack-pckt, is sent

back to the sender to reflect this fact.

After receiving n degrees of freedom, where n is the number of segments that

make up the block D, performing the steps above yields:

C - D = P, (3.1)

where C is the desired upper triangular matrix with all of its diagonal entries equal to

1, and it is banded with bandwidth coding-wnd. Finishing the Gaussian elimination

process is matter of eliminating the non-zero off-diagonal entries. This can be done
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by successively subtracting an appropriate multiple of row k - 1 from row k, for

k = n, n - 1,--- , 2. This is done for both C and P. Once done, we are left with:

I, -D = C-' -P. (3.2)

In other words, the value of D is now stored in the vector where we originally

stored the coded payloads. This yields the decoded values that the receiver wanted

to obtain in the first place.

3.1.4 Expected Completion Time

In what follows we provide upper an lower bounds for the expected completion time

of the overall process of constructing C and P based on the random generation of

packets of SNC, and performing Gaussian elimination over them. We focus on the

stochastic aspect of this process, while ignoring channel erasures. We start with the

upper bounds. Consider the following lemma:

Lemma 1. Assume we have received k degrees of freedom. The probability that a

new packet chosen by SNC is a degree of freedom is at least n-k

Proof. If the packets is such that Insert(x, p) would attempt to insert its coefficients

in one of the n - k rows that have not yet been filled, then we are guaranteed for it

to be a new degree of freedom. It follows that the probability of being a new degree

of freedom must be at least ". 0
n

With this lemma in mind we proceed by proving the following theorem.

Theorem 1. Using SNC, the expected number of packets that need to be received

in order to construct a full rank matrix is bounded above by n(y + ln(n)), where

- ~ 0.5772 denotes the Euler-Mascheroni constant.

Proof. After receiving k degrees of freedom we know by lemma 1 that the probability

of receiving a new degree of freedom is at least "-* . Being a geometrically distributed

event, the expected number of packets that need to be generated until this happens
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is at most n-k. Hence the total number of packets generated until obtaining a full

rank matrix is bounded by:

n-1 n

n - k = n ~ n(-y + ln(n))
k=0 k=1

The result follows.

With this in mind we introduce the following definition.

Definition. Coding Loss Rate: Rate at which linearly dependent packets are gener-

ated. These packets are redundant with previous packets received and thus do not

contribute to the overall completion of the data transfer session.

With this notion, from theorem 1 we know that using SNC the coding loss rate

is bounded by -y + ln(n). In particular, our implementation uses n = 128. Thus the

coding loss rate is at most ~ 5.3%.

We now proceed to prove lower bounds on the expected completion time of SNC.

We do so by assuming that the packets rows of coefficients chosen by SNC are uniform

over the space of all possible rows. Consider the following lemma:

Lemma 2. Let V be an n-dimensional vector space over a finite field F and W c V

be a k-dimensional subspace. Also, let M = |Fl. The probability that x, uniformly

chosen from V, belongs to W equals Mk-n.

Proof. Let w1 , w 2 , ... , wk be a basis for W. We can extend it to w1i, w 2, ... k,

Tk+1, ... , rn so that it is a basis of V. Changing basis, we can now view every element

of v E V represented as a vector [01, 2, .... , an]. The event that v E W is equivalent

to the event that a, = 0 for j = k + 1.... n. Hence, the probability that v E W

equals M = Mk-n.

With this we can prove the following theorem.

Theorem 2. The expected number of packets that need to be generated to obtain a

full rank matrix is at least n + 1.
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Proof. After receiving k degrees of freedom we know by lemma 2 the probability that

a newly generated packet will be linearly independent with the previous k degrees of

freedom is at most 1- Mk-n. Hence the event of getting the k+ 1-st degree of freedom

is geometrically distributed, and thus the expected number of packets that need to

be generated until we get the k + 1-st degree of freedom is at least (1 - Mk-n)-1.

Hence, the total number of packets that we need to generate until we obtain a full

rank matrix is:

n-1 n-1

1 - Mk-n M--k - 1
k=O k=O

n-1

=n + Mn-k - 1
k=O

> n.

Since the number of packets is an integer, we conclude that the number of packets

must be greater than or equal to n + 1. The result follows.

Having these bounds we now consider the Gaussian elimination process.

Theorem 3. The SNC Gaussian elimination has complexity 0(n 2 ) in the best case

and O(n2 1 nn) in the worst case.

Proof. In the best case, by theorem 2 we know that the total number of packets

generated is O(n). For each packet that arrives, inserting it requires looking at

O(n) rows of the current matrix, where each row has coding-wnd entries. Thus,

constructing the C takes 0(n 2 ) operations. C contains O(n) non-zero off-diagonal

entries. Hence we need O(n) extra operations to finish the process. It follows that

the total number of operations needed is O(n2 + n) = 0(n 2 ). The proof for the worst

case is analogous, except we use the bound shown in theorem 1. 0

This is a significant improvement from the 0(n') time of the standard implemen-

tation of Gaussian elimination.
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3.1.5 Other Optimizations

From the analysis shown in Section 3.1.4, the process of accumulating n degrees of

freedom is in the worst case just like coupon collector problem. Namely, at each step

the probability of receiving a new degree of freedom, after having received k, equals

n k. Hence, the expected amount of rows that need to be generated until we find

the next degree of freedom is n. As k increases, we spend increasingly more time

waiting to get the next degree of freedom.

To cope with this situation, we implemented two heuristics that help us improve

the performance of CTCP under most circumstances. The first heuristic consists on

forcing the first n packets being sent to be n degrees of freedom. We can guarantee this

by making the indices of the position of their first non-zero entries to be a permutation

of the numbers 1, 2,... , n. Hence, if there are no erasures, the receiver will be able

to decode the block D after the first n packets arrive, and thus avoids the problems

of decreasing probability of success that arise in the coupon collector. Moreover, this

systematic approach to coding ensures that the Gaussian elimination will complete

in 0(n 2) time.

The other heuristic comes into play once the number of degrees of freedom received

exceeds a certain threshold and there has been at least one erasure. In this scenario

the sender will emit packets each doubling the value of coding-wnd from the previous.

This exponential increase of codingwnd will make sure that we will receive the final

degrees of freedom after a constant (small) number of packets have been received.

We note, however, that this will marginally increase the overhead of decoding, but it

is a cost that we are willing to pay.

3.2 Delay Sensitive Applications

Previous protocol implementations that integrate network coding in their design, in-

cluding the work by Sundarajaan et al. [17, 18], Shojnia et al. [8] and Liu et al. [13],

compute linear combinations of data chunks across the whole content being transmit-

ted. As a result, these protocols are not well-suited for delay sensitive applications,
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such as content streaming, as the data received may be undecodable until enough

degrees of freedom are received to decode the entire data.

Unlike previous implementations CTCP divides the data to be transferred into two

hierarchical subdivisions: blocks and segments. Each block consists of BLOCKSIZE

segments, where BLOCKSIZE is a configurable constant. For our purposes this con-

stant is set to 128. Each segment is designed to fit (including the CTCP headers)

inside a UDP packet without being fragmented by lower layers. For this to hold, we

need the CTCP to be within the network MTU. With our network settings it sufficed

to set the segment size to 1325 bytes, padded with NULLs if necessary, to account for

EOFs.

segment

b2 b3 .. bn

block

Figure 3-1: File subdivision into blocks and segments

To address the issue of streaming we use network coding at the block level. Thus

the sender only mixes together segments from the same block and the receiver decodes

blocks one by one. As soon as enough degrees of freedom are available to decode a

particular block, it is decoded and written to disk. The size of each block, given that

each segment is 1341 bytes and BLOCKSIZE is 128, is 167.625 KB making each block

reasonably small for the purposes of streaming, permitting content to be buffered.

However, it is worth noting that addressing the content streaming problem while

using network coding is not as simple as just splitting a file into blocks and subse-

quently into segments. One of the main caveats of such design is block transition:

When should the sender stop sending packets of the current block and proceed with

the next one while using the available bandwidth efficiently. This issue, along with

the strategy used in our implementation are discussed in further detail in Section

3.3.3.
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3.3 End to End Behavior

The CTCP implementation follows the client-server pattern, and is done as a file

transfer application. The implementation works as a userspace application that uses

UDP as the underlying communication protocol. All of the features, including the

TCP guarantees, are implemented at the application layer. We chose to implement

CTCP in userspace as to avoid directly modifying the kernel's protocol stack and,

thus, avoid kernel recompiles among other hassles that this kind of development

usually entails. This allowed for rapid prototyping, testing and development and

gave us a test bed to understand the effects of policy and feature changes would have

on the performance and guarantees of CTCP. The main components of the application

are depicted in Figure 3-2 below:

ContmIer

Packet Genrator

Figure 3-2: Main components of CTCP client/server application.

In what follows we describe the end-to-end end behavior of the CTCP client-server

application. We start by individually examining the server and the client in sections

Section 3.3.1 and Section 3.3.2, respectively. We describe each of their components,

the state that they keep, and the procedures that each of them carry out during a

generic file transfer session. Finally, in Section 3.3.3, we proceed by looking at the

lifespan of an individual DataPckt (our implementation of a coded packet) during

a file transfer, as well as describing a file transfer at the block and multi-block level,

including block transitions.
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3.3.1 CTCP Server

The CTCP server plays the role of the sender in the data transfer sessions. The

implementation of the server consists of two main modules: A controller module and

a packet generator module. This division allows for all of the IO (e.g. reading from

disk), as well as the computations inherent to network coding (e.g. multiplication over

GF(28)), to be executed asynchronously in threads separate from the main execution

thread. In this section we describe in detail each of these modules' behavior and how

they interact with each other.

Controller Module

The controller module is the core component of the CTCP server. It runs in the main

thread of the application and it keeps track of the state of any ongoing data transfer

sessions. The controller module listens for any incoming requests, and upon receipt

of such, it establishes a connection, sends DataPckts and listens for acknowledge-

ment packets. The rate at which DataPckts are sent is mandated by the flow and

congestion control policies set in place (see Section 3.4 for details), and it depends on

the feedback information received through acknowledgment packets.

At any given time of an ongoing data transfer session, the state kept by con-

troller module includes the number of the current and next data block, the number of

DataPckts allowed to send at the current time, flow and congestion control variables

to detect erasures, and react to congestion (for details see Section 3.4).

Packet Generator Module

The packet generator module is responsible for reading data from disk, performing

the block and segment subdivisions, and generating the DataPckts needed by the

controller module. It runs asynchronously from the main execution thread via a

separate threadpool. The communication between the controller and packet generator

modules is done through the Job.q thread-safe blocking deque. When needed, the

controller can request new DataPckts to be generated by inserting a Coding_ Job_t

35



into the Job.q. This request specifies the block from which the new DataPckts

should be generated from, the number of packets that should be generated as well as

the value of coding window coding.wnd. See Section 3.1 for details of the network

coding scheme used.

3.3.2 CTCP Client

The CTCP client serves as the receiver during any data transfer session. The client

is responsible for initializing the data transfer sessions, processing any incoming

DataPckts, decoding and writing to disk decoded data. Unlike the server, the client

handles each connection using a single thread. We chose this design, as opposed to

having background threads handling the decoding and 10, to avoid situations in which

the client receives packets faster than it can decode and write them. This is often

true in high speed networks where the overhead from the decoding and/or writing at

the receiver dominates the time taken to perform the data transfer. In what follows

we list the responsibilities of the client.

1. Initialize the connection: Being the receiver, the client can request a new files

to be delivered by the server. In order to do so, the client sends a packet with

the SYN flag on, as well as the name of the file that is requesting. Upon receipt

of said packet, the server starts a new data transfer session to send the data

corresponding to the requested file.

2. Process incoming DataPckts: As new DataPckts arrive for a given data trans-

fer session, the client does two things. First, it uses the coefficients and payload

of the DataPckt to perform the first step of the decoding (Section 3.1.3). Sec-

ond, the client constructs an AckPckt using the information based on the result

from the Gaussian elimination, namely, it indicates to the sender whether the

received packet's payload and coefficient resulted in a degree of freedom.

3. Decode and write to disk: Once enough degrees of freedom have been received

for a given data block, the client performs the last step of Gauss-Jordan elim-
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ination, yielding the decoded data for this block. The decoded data is written

to disk, and the data transfer session continues.

3.3.3 CTCP at the Packet and Block levels

All data transfer sessions in CTCP start as a request originating from the client asking

a server to deliver a specific set of data. This request is in the form of a ActPckt

with the SYN flag set, and specifying the name of the file requested. Upon receipt

of this request the server's controller module opens the requested file and submits a

Coding_ Jobt to read and generate DataPckts corresponding to the first two data

blocks using the appropriate value of coding._wnd. Until successful transfer of a given

block, the following steps are repeated:

1. The server's controller module sends as many coded packets as permitted by

the congestion window cwnd (not to be confused with coding-wnd.

2. Upon receipt of each packet, the client performs the necessary Gaussian elim-

ination steps, and emits an appropriate Ack.pckt, containing the necessary

feedback information for the server to update its internal state. This includes

information to detect erasures, abide the congestion avoiding policies, and start

the block transition process, among other things.

3. Upon receipt of an Ack-pckt, the server performs all the state updates as nec-

essary and repeats goes back to step 1.

The latter is done until the block has been transfered successfully.

Block Transition

The subdivision of data into blocks and segments gives rise to the problem of block

transition. The problem is the following: What should the server do once it knows

that the client has received almost enough degrees of freedom to decode a block, and

given that the value of the its congestion window cwnd is greater than the number

degrees of freedom needed to finish that block. Sending all cwnd packets towards
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the current block will guarantee that the client has enough degrees of freedom to

decode. This is very inefficient as only a fraction of cwnd packets will suffice, and the

remainder will be redundant packets that won't help towards the overall completion of

the data transfer. Furthermore, the transmission of the next block is delayed several

round trip times causing a overall slower transfer rate. Instead, we want a strategy

that minimizes the waste of bandwidth while handling block transitions.

In our implementation we solve this problem by allowing the transmission of two

blocks at a time. Namely, once we have are close to finishing the transmission of a

block we enter a transition mode in which the server divides the congestion window

into two portions: The first portion of cwnd is the size of the number of degrees of

freedom needed to finish the current block, plus an additional x% to account for the

coding loss rate (usually x is set to 10). The rest of cwnd is used towards the next

block. Once the current block is completed, we exit transition mode and continue the

data transfer as usual.

3.4 Flow and Congestion Control

The flow and congestion control policies implemented in CTCP borrows ideas from

different implementations of TCP, including Reno [2, 71 and Vegas [4], whenever

applicable. In what follows we describe these in detail.

3.4.1 Congestion Control

CTCP inherits its congestion control policies from TCP Vegas. It works as follows:

After an acknowledgment arrives at the server, the following quantities are computed.

* rtt: Round trip time of the coded packet received.

" srtt: Smooth round trip time. This is computed in a low-pass filter fashion by

using the formula:

srtt = (1 - #) srtt + # * rtt
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Algorithm 2 Compute_ cwnd(rtt, srtt, cwnd, v., V, VA):

1: increment +- 1
2: if vA > vp6 then
3: increment <- 1
4: increment <- -1
5: else
6: if vA > v, then
7: increment <- 0
8: end if
9: end if

10: cwnd+ = increm t

11: return cwnd

Where # is an appropriately chosen constant. In our implementation we set
1 - ::: 0.04

(BLOCK SIZE)

VA: The percentage change of rtt with respect to srtt. This is computed using

the formula below:
srtt

VA = 1 - __

rtt

We control the size of the congestion window cwnd using vA as a proxy for con-

gestion. We attempt to maintain vA in between two desired values, va = 0.05 and

v6 = 0.2. There are three possible cases: VA < va, Va VA 5 V and v6 < vA. The

pseudocode for Computecwnd is shown in 2 describing the behavior in each of these

cases.

Namely, we increase, decrease or keep congestion window the same depending

on whether the percentage change of the instantaneous RTT with respect to the

smoothed RTT is above, below or within two chosen thresholds, Va and v,, respec-

tively.

3.4.2 Flow Control and Erasure Detection

The two main flow control policies used in CTCP are slow start and a sliding window.

* Slow Start: We slow start implemented following the specifications outlined

TCP Reno with no changes made to it. It is used at the beginning of every

39



connection and after every timeout.

* Sliding Window: CTCP borrows some aspects of the sliding window imple-

mentation of TCP Reno. However, as described in Section 2.1.1, network is a

rateless erasure code, thus greatly simplifying the logic in its implementation.

The reason behind this is that we sure that any n linearly independent packets

arrive at the receiver, regardless of which packets are. Hence, we slide the win-

dow every time that we receive an ack. The wind6w may be slid by an extra

amount in the case that the erasures have been detected.

3.5 Multiple Hardware Interfaces

As mentioned in Section 2.1.1, one attractive property of network coding is its capacity

of near-perfect asynchronous coordination. This property allows for data connections

to happen over multiple hardware interfaces simultaneously. This is especially at-

tractive given the presence of multiple wireless interfaces, including 802.11, 3G, LTE

and WiMax, in today's mobile devices. Up until now, these devices use the different

wireless interfaces available to them in an exclusive fashion, i.e. only one interface is

used at a time.

The experience improvements brought to the end user by a protocol supporting,

from the ground up, multiple hardware interfaces are twofold: First, if two (or more)

hardware interfaces are connected simultaneously to their respective networks and

both have good signal quality, the end user ideally would be able to enjoy (close to)

the combined throughput of the connected networks. Second, even if the signal of one

of the hardware interfaces fades, all of the ongoing data transfer sessions can proceed

through the remaining hardware interface(s) until better reception is available.

3.5.1 Issues with Asymmetric Connections

The current implementation of CTCP supports data transfer sessions over multiple

hardware interfaces. However, in a design where data is subdivided into blocks and
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segments, and network coding is applied solely at the block level to support delay

sensitive applications (Section 3.2), it becomes challenging to effectively utilize the

bandwidth provided through connections of varying qualities. In particular, the net-

work coding property "nearly perfect asynchronous coordination" holds only at the

block level. Specifically, if the connection associated with one of the hardware inter-

faces has significantly higher throughput and shorter latency, and assuming that all

connections available are being used to deliver packets of the current data block, it is

likely that most (if not all) of the needed packets will be delivered by the faster inter-

face. Now, packets for the current data block have also been requested through the

other interfaces, and many of them may still be en route to the receiver, owing to the

higher latencies. By the time these packets arrive, the corresponding data block may

have already been decoded and written to disk, effectively wasting the bandwidth

used to deliver these packets. As a result of this, it is necessary to develop adaptive

strategies to deal with varying latencies and throughputs of the available connections

and utilize the available bandwidth as efficiently as possible. In Section 4.2 we discuss

the performance obtained by using multiple hardware interfaces. At this stage CTCP

has no policies that allows for better handling of assymetric connections.
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Chapter 4

Results

Our testing was performed using off-the-shelf commodity hardware running Ubuntu

10.04. The server machine had an 12-core Intel Core i7 running 3.47GHz with 16GB

of RAM. The client machine had an Intel Core i5 running at 3.20GHz with 3GB

of RAM. The server machine was directly connected to the internet via an ethernet

jack. The client machine was connected to the internet via our campus wide wireless

network, via a USB wireless antenna compliant with the 802.11n draft specification.

Each experiment consisted in sending an 11MB file over the network and recording

performance including the average and instantaneous throughput as well as latency.

In what follows we show the results obtained.

4.1 Single Interface

We were interested in understanding the performance of CTCP as compared to TCP

in a lossy environment. In order to have TCP as our baseline, we setup an FTP server

to host the same files as the CTCP server. We explicitly avoided scp or any other file

transfer tools that rely on encrypted connections, as accounting for the encryption

overhead made the performance comparison harder to make.

Owing to the inherent fluctuation of the wireless network signal, we performed

CTCP transfers back to back with TCP (using FTP) transfers, assuming that the

connectivity would not change drastically between transfers. This was done several
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times in order to arrive to what we consider is average behavior of CTCP and TCP

over the given networks. Furthermore, in order to guarantee a certain level of losses

we used iptables to force a certain percentage of packet loss at the kernel level on

the server. The experiments were performed with added loss rates of 0%, 1%, 2%

and 5% for both TCP and CTCP. Notice however that we had no control over the

background loss rate. Thus we can only guarantee a lower bound on the loss rates.

The experiments were performed several times for each added loss rate. The graphs

shown were considered to be representative of the average behavior of each protocol.

In this section we show and analyze the experiments performed with 5% added

loss rate as they best illustrates the advantages of CTCP over TCP. For completeness

we have included the rest of the experiment's graphs in Appendix A.

We start by looking at TCP the performance of a TCP connection with 5%

added loss rate, as shown in Figure 4-1. The two graphs correspond to the latency

and the throughput over time. This connection recorded an average throughput of

9.92Mbit/sec and an average latency of 6ms, lasting a total of 10 seconds.

orr [S] 4ound Sp Timeo Graph

0.040-

0.035- -4000000.

0.025- .9 A1r

0.0.S

1000000 102 3 0S 0 7 0 1

s5*90eqn Num4ber(] Times)

(a) Round Trip Time (s) vs. Sequence no. (b) Throughput (Mbits/s) vs. Time (s)

Figure 4-1: TCP connection with 5% added loss rate.

In comparison, Figure 4-2 shows the performance of a CTCP connection with 5%

added loss rate. The four graphs following quantities over time, from top to bottom:

throughput, congestion window, latency and loss rate. The connection recorded an

average throughput of 13.89 Mbits/sec and an average latency of 11ms.
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between 0% and 15%. We show graphs for the connections that we considered por-

trayed the average behavior of CTCP. In what follows we discuss the performance

of connections performed under 0%, 5% and 15% loss rate. We chiefly interested in

understanding the performance and robustness gains when using multiple hardware

interfaces.

Figure 4-3 below shows the performance of multipath CTCP with 0% added loss

rate. The average bandwidth for each of the interfaces were 13.5 Mbits/sec and 16.28

Mbits/sec, respectively. Hence in total we have an effective combined bandwidth of

approximately 30 Mbits/sec. The average RTT for each interface were 8ms and 6ms

respectively. The average perceived loss rates were 0.18% and 0.48%, respectively.

This is a significant increase from the performance that a standard TCP connection

could attain using WiFi. It is to note however, that the experiments were performed

by connecting both wireless antennas to the same network. Using different networks,

or even, different kinds of antennas still proves problematic. In the scenario where

the different interfaces are connected to networks with very different latencies, the

slower interface tends to not contribute to the overall completion of the transfer, as

all the packets it request, by the time they arrive are redundant and thus dropped.

Finally we look at the performance of multipath CTCP in highly noisy environ-

ments. Figures 4-4,4-5, 4-6 show the performance of multipath CTCP on channels

with 5%, 10% and 15% added loss rate, respectively. This noise level beyond what

TCP can handle. We now look at the performance of each of these connections:

For 5% added loss rate (Figure 4-4) the average throughputs were 8.99 Mbits/sec

and 9.3 Mbits/sec and the average RTTs were 10ms and 15ms, for each the interfaces

respectively. For 10% added loss rate (Figure 4-5) the average throughputs obtained

were 13.79 Mbits/sec and 13.13 Mbits/sec, respectively. This time the average RTTs

were 7ms and 6ms. Finally, for 15% added loss rate (Figure 4-6) the average through-

puts obtained were 9.89 Mbits/sec and 10.25 Mbits/sec with average RTTs of 5ms

and 6ms, for each the interfaces respectively.

Overall we can see that the added robustness in multipath CTCP can handle

loss rates that are beyond what TCP can handle, while still performing at very
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Figure 4-3: CTCP using two USB wireless antennas with 0% added loss rate.

high throughputs. This added performance and robustness is a direct result of the

theoretical properties of network coding as mentioned in 2.1.1.
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Chapter 5

Conclusions

In this project we designed and implemented CTCP, a TCP-like protocol that efficient

integrates network coding with the purpose of taking advantage of its theoretical

properties. Throughout this work we described Spare Network Coding a novel network

coding scheme that exposes the tradeoff between robustness and added computational

overhead. We also developed a highly optimized Gaussian elimination process based

on SNC, and proved bounds on the time of completion of SNC using this Gaussian

elimination. We also have described in detail the architecture of CTCP, as well as how

it is capable of streaming content and supporting connections using multiple hardware

interfaces. The experimental results have exceeded our expectations in showing that

CTCP is significantly more robust than TCP in lossy environments. This along with

the energy saving optimizations provided by SNC make CTCP an ideal candidate as

a protocol for mobile devices.

5.1 Future Work

There are two main directions in which future work on CTCP could result fruitful.

The first one is to integrate CTCP into the Linux kernel and test it in a real world

environment. This could yield insight onto aspects of the protocol that cannot be

predicted today as a userspace application. Specifically, integrating CTCP into An-

droid or some other mobile platform could provide insight into the true behavior of
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it in a real mobile setting. The second direction for future research is further inves-

tigating block transition and flow control policies that are better suited for dealing

with traffic of multiple interfaces connected to drastically different networks. Overall,

further research in these two areas could result extremely beneficial to CTCP, and

hopefully bring it closer to a fully blown production ready protocol.
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Appendix A

Graphs

In what follows we show the graphs portraying the performance measurements of our

experiments for both TCP and CTCP connections.

53



*

-
F

lo 
to..

.
.

V
.

-
-%

- 
*

IE
a

-0

1rrn
y
 

-
-

-

.. 
-- 

.-
".

*. 
-.

1 
-

4., 
-
e

v
*
''--'''.'*

 
--

.~
41.

d 
0
0

4
4
4
 

N
 

N
 

-

54



mr (I ft~ud Trip Timve Graph ThSughI ThrMU"A Graph

0.05 3005

3000000-.

0.04 a*

25000000 0 ~ *.. r

.83.
ala.

0.0 -*; ft~ ai t 1 a ,a*000000~~J.

0.01 ~aa a ~ . t ~ ' i i~

465005000-

5000000 10000000 1 2 3 4 5 a 7 a

Se-jenoe Nun"WBI

(b) Throughput (Mbits/s) vs. Time (s)
(a) Round Trip Time (s) vs. Sequence no.

Figure A-2: TCP connection with 1% added loss rate.

Timeks]



Th-ghu
[IBS]

C.71s~: _ 0 F. r ro

(a), Ron TrpTm4s s.Sqeco

0.010 -$ ~ P3  :~~4

5000000 10000000 1 2 3 4 S 6 7 8 9 10 11L
SeqJe.- NunWbfBI Timnds]

(a) Round Trip Time (s) vs. Sequence no.(bThogptMis/ v.im()

Figure A-3: TCP connection with 2% added loss rate.

Ir [s]



KrT [i 

Thruglya Grap
[8/51 1

0.030--

0.025 - a.
.2

.4-
* at'

-- a

-

U'

CA~4 . ,.14

Ti Al o-f'r11

5000000 10000000 1 2 3 4 5 6 7 6

Sequenc Number(B

(b) Throughput (Mbits/s) vs. Time (s)
(a) Round Trip Time (s) vs. Sequence no.

Figure A-4: TCP connection with 5% added loss rate.

KrT (s] Thnxighput Grao

s
3



CTCP Performance

------------- - Inst Throughput
--.......- Avg. Throughputl

-. .. -... ..... ..

---.-------------- + -
------------ ----- -----

-.. ---. -..
---------------------. +

0.12-- S ot LosR e

0 .0 8 ---- ------- ---------- -- - - -- - --- - -- - - - ------------------------------... .. ... .. ... .. ... .. .. - ---- ---- --- ---- ---.... - .... ----.. .. . ...- .. ...... -... .-.......... ...............-. i...................... .......

0.02 ---. ----------------------- -. - --. -- - ----- -- + -- -- - ---. -- + - --- --..... . .. . --- .---- -- .- -.. -. .-... .. - . ...- ..... .......... . ........ .. ...........

0.06-
2 3

time (s)
5 6 7

Figure A-5: Single interface CTCP with 0% added loss rate

35
30
25'

120

I20
1 9

is
17

16

81300

6

---... -..... - - ----.- -. --... * Congestion Window
--- ------ - -- - - - - - --------- Slow Start Threshold

....... ....... ........ ...... ....... ......-..-- -- -.--- - -.-- - -- - -- -- - -- -- - -- .-- -- - -- - -- -- - -- --..- - - - -- - ---. - -- - -- - -- -- - -- -- -..- .. -- - .. - .. .. . -. -- . -. . .. .. - -. . .- ..... .

1 2 3 4 5 6

I

I
U
0

0.6- . .............. ................... 
-**... Sm ooth RUT

0.RTO

03.3- ............

0.0 '01 2 3 4 5 6

U

L5 -- --ll-..--..

1 1 2 5

F

--------------.------------. ..

- -I afi

-------------------------- + ----- ...
----------- ----------- ----. ------

-------------- -----------. --------------. .. ..



CTCP Perfbrmance
40 I

30 ........................ ........... ........... ...... ....-......... . .. . . -- - - - -- - . - - - - - - - - - - - - Avg. lb roughput[

8 2 0 .------ -- -- -. --. -------..- - -. -. .. . -. -.-.-- - --.--...--..-- -.-.-- - -- -- .- - -..- ---.-.-.
irmilrnz

.. ....

0.20
-- Smfooth LossRateni

-LoSm ooth L Ss Rat.I

0.10 --

0.00in
4

time (s)
6 8I

Figure A-6: Single interface CTCP with 1% added loss rate

15

0012 3 45 6 7 a 9

I

CA

8

0
0

-0
M0

0

0,0

1-r

1, ... .... ..... ...... . ... ...... ....-- - .-----------. Congestion W indow
1 ... ..... .. ............ ...... So Start Thre od

15 *

4 .. ... .. ... .. ... .. .. . ... . . .. ................ ............. . * .. --.. .. . -... -.. . . . .A . . . . . .

17 . 4 .

.. . . . . .. . . . .

.9

.8

.7

.6

.5

.4

.3
1.2

1 2 3 4 5 6 7 a

- - - - -- - - - -- Inst. RTT

- - - - - - - - -RTO-- - -.. ........... .......... -... -..-..-..-..-..-..-..-..-..-
-. ...-- .. .. ..- ....--- .... .. ..-. ...-. ...-. .. ..-. ...-. ...-. .. ..-. ...-. ...- -.. . ...--.. ...-. .. ..-. ...-. ...-. .. ..-.
-. -.. ....... -.. ......... -.. ..................... -.. ..... .....- ....... .....-. ...... .....-. ..........-. ..........

- ......... ...........-. ... ...-. ... ..-. ... ...-. .. ...-. ... ...-. .. ...-. ... ..-. .... ..-. .. ...-. ... ...-. .. ...-. ....-. ... ...-. .

I
I

0. 1 2 3 4 5 6 7 a

- ~~0

i

.... ...... ..... .... .... ..

I

2 3 5



45,CCP Performance
40
35
30
25
20

I
1181

161

14

8 I

o6 1

0.7
0.E

-?A 0.5
10.4
0.3
0.2
0.1

0.16
0.14
0.12
0.10

#0.08
- 0.06

0.04-
0.02
n nn

U I L 3 4
time (s)

5

-- Avg. Throughput
.... .... ... .................

i d ..L..h.... .. ...

6 a

Figure A-7: Single interface CTCP with 2% added loss rate

.......................... ...................................................... .......................... ........-. --.... .-- .. - ------- .......--. . - .--..- ----------.
--- .... .... ..... ....-------- --- --- ---------------------------------------------....-- ---. -..--- ..... ..... .. ....-. ............ .. .. ..........

--------------- - -----.-----------.. ----- - .- - - - - - - -- - -- - - - - - - - - - - ---- -- - . .- - - -

0
I 1 2 3 4

00(~

------------------ ----- -. -----------------------!-------------------------- -. -----------------... ---... : . ----. -...... -.. -..-. ................... -...... .. ............. -- --.. st.R. InSt. RTT
. Smooth RIT

RTO

-. .. -- ...--- ...-----..-- -- --.- --- --. --.. . .-.-.. .- -. ........ -..--... .......................... .. .. . .. .. . .. .. . .. .. . .. .. . .. .. . .. ..... .---- ---- ---- ----- -5-- ---- ---- ----- ---- ---- ----- ---- ---- ---5 ----- ---- .--- ---- ----!---- -.-- ----- .... .-.. .... ..... ---. .... ..... .... ..-. .... ...-. ..-. ....-...
. 10 1 2 3 45 6 7

---. --- ---. -- --- --- --- --- --- --- ---.-- --- --- --. --- --- --.--- --- --.- --- --- --? --- --- --- .-- --- ... i .. ... ... ... ... ..- ...----... L.s M

..-.--------..-----.-- .--... -. -------... .. .. ....... .....--.................. ...ot .O .R.. . .. . .- .e.

- --.... ..... . ......-. .....

- - ----------- + - - -- - ---------- -- ------------- - - - - - - - - - - .-. -....... . . ............... . . .... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... ... .. ... .. ... .... .. ... .. ... .. .... ... .. ... .. ... .. ... .. .... ... .. ... .. ... .

1 -uk -U - . 1 ...-

12 3 4 5 6 7
201

..------------.. -------- --------.--------- ----.------.----.---.--.-..-.....--.....- SowSatTh hl----------g ------- -------- -------- --------- .---- - ------- -.. ------...... -o g st o - - -- -...-.-.-.........

-. ...-. ............--. .. ... .------------ -- -------. -- ------------------- ---------- - - -- -------M- -- ...-. - . . - ......... ........ . . . . - . .... ...... ......
................................................................... .................. .................... ............................ .....-

uu.I

01Is.

I



CTCP Performance

.. ....i ... ....... .. .. .... .... ...
.. ... .. .. ..

------ ------ ----.- -- ---- --- ---- ---- ----. -- -----. -

96 i;j " 1OV 1IfA:,2 1 W"
7 '1 ii~jijf II 'ft .I..!..II!....I11

4
time (s)

--- -- --- -- -.. -.

a

Figure A-8: Single interface CTCP with 5% added loss rate

w

30
25

ih.j

1
r

-0 1 2 3 4 5 6 7

.............. .............. f- -....... Congeston W indow
. * /*- Slow Start Threshold

. .... ... ..... ... ... .. .. .... .. ... .. .. . .. .. .. ... .. .. ..... .. .. .. .. .. .. .. ... .. .. ... ...*.
2 -----------.. ---..----.-.-..--- .-------------- ...---.---..--------------------...-- .----- ..--.----. -------..---.-----..-.-.--- ..-.-- .- ..----- . -.. --------------------------..

7

3
2
1I

0.
0.
0.

10.
0
0.
0.
0.

0.14
0.1
0.1

0.1
0.01

00 1 2 3 4 5 6 7

21............................ .. ....... ....- . o.. S ..oot.....oss..Rate.... ... .. ! ;. . ......... . ...... .. .............

. .... . ... ... . . . ... .

I

-------------------------- --------------------------- --------------------------- -------------------------- -- - - - - - - - - -- - -------------------------- -- - - - -- - - -.. ..n s t.... . .. .. R TT.. ... . .. .----------------- ------------------------------------ -- - -- -- -- -- - -- -- ------ -- -- ---- ---- -- ------------ -- -- ------------.- S o o h T-- ......... ......... .... ..------.---.------- -.---- ------ ----- ------ --.--- ------ ------ -----.-- -------------.. .. ...- -- - - - - ------. ... .. . .. . -- - -- - - --- -- -- -- -- --- -- -- -- --.-- -- -- -- -- --
- -- -. -- -- -- -- -- -- --- -- -- -- -- -- -- -- - -- -- -- -- -- -- -- ---- -- - -- -- -- --- - -- -- - -- -- -- --- -- -- -m-- -- -t-- -- - -- -- -

--- ----------- ----------- -- -------------- --------- ----- -------------- -----.. ------- --------- ---- --- ----- ----- --------------.----.---------.---------.--- -.------------ --.-.------.-- -----.--------
-- - . -- - - -- - - - -- - -- - - - - - --. -- - - -- - - - - - - - -- - - -- -- - - - --. - -- - - - - - - - -- - - - - -- - - - - -- - - - - - - - - - - - - -- - - - --.- - - - -- - --.- -.- --- ----- ---- --- ----.-.- ---- ---- --- --- --- --.- --- ----- ---- --- ----.- ----- ---.-.- ---- ------ ----
------ ... .. ... .. .----- ----- ---- + ---- -- - - - -- - - - - -- - - - - -- - . - -- - - - - -- - - - - . - . - -. ---.. . ... . . .. .. ... . .. . .. . . . ...-- - - - - - - - f ------- ------------------- ----------------------...

I

- inst. Throughput
Avg- Throughputl

111 .4. A .........................



CTCP Performance

5U.0  0.5 1.0 1.5 2.0 2.5 3.0
n nr.

30.0 0. 1.0 15 2.0 2.5 3.0
time (S)

29 ------. ---------.. I -- - ----..... - Congestion W indow
- 28 ------- --- ---------- ... - . Slow Start Threshold
S27- .. . -....

c 24 - -----+ - --- - --- ---- - --;---- - ---- -.................................... ......

... ..1 
1.. .....

0.5 1.0 1.5 2.0 2.5 3.0 3.
0A.

.5

1C.

0
c

3

3
2

2

1

1

0

0.05

0.04

0.03

0.02

0.0

0. 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
time (s)

Figure A-9: Single interface CTCP with 0% added loss rate

.0 0.5 1.0 1.5 2.0 2.5 3.0

0.4

a 0.3

0.2

0.1

nia

25 --------...-- --------- ------------...... ... - Congestion W indow
- Slow Start Threshold

20 .. .. ... . . . -..... ... .. ... .

.. .. ... . .. .. .
10 - ..- - - .-- - - - - - - - - - - - ------ - --- .-- . . ---------.

5 -. ----- .. -. . . . . . . . . . . . . . . . . . . . .. -- -- ----. .. - --------... -.--- -- --- -- -- -- .-- -- - -

.0 0.5 1.0 1.5 2.0 2.5 3.0 38
.5
.0
.5

.0

.5

.0

.5

-- Inst. RTT
------ ------...... ------------. -.-... - Sm ooth RTT

-------- --- -----------.. ------------- -.------------ ------ -IT O
-- - ----... -- - - --- ---.. .... ..... ..... ..... ....-- -- --. ... --- ----.--- -- --- -- -- - --
----- -----. ------ ---.. -- --.-. -------. --------.----..---.-----------
------------- -- ---- -------------.. --------------. -------------. -- - ---------.-- - -------. .. .....

-Inst. RTT
Smooth RTr

-RTO

... ....... ... ........... .... ..

0.04

0.03

20.02

0.01

3

-Smooth Loss Rate-- ---------- - ------ --------------......
-- Long Smooth LOSS Rate

-- - -. -. .. .- - ---- - - .. .. . .... ------- - .--- - . - - - - - t - - - - - - - .. .. . ..C. . . .. .. . .. .. . .

----------- -- ---- -- -------------... .. ... .. -- ... .... ..-- - ------------. --- --- --- -- .--- --- ---

------------- -- -------- ------ .... ----------.. -- -------------..------ ----.

0 0.5 1.0 1.5 2.0 2.5 3.0 3

-- Smooth Loss Rate
-- Long Smooth Loss Rate

------------ -- --.. - --
--. .---. -..--.-- --- - -

- --. ... .--. .. - ... - --- - -- --.

00

50

a

I



CTCP Performance

0.5 1.0 1.5 2.0 2.5 3.0 3

3.0 3.5 -

- Smooth Loss Rate
0.04 -------- ---- - . --------.. -------------.

-- Long Smooth Loss Rate..... .. .. ........... ....

0.03 - ---- -- .------- -- - ------.------ -. ---

0.02 -.-- - - --------- - -. --.. - --- + -- - - .- ---- -

0.01 ---- --- - - - - . -- -- . --.... - - --.......

0 na ai
-- 0.0 0.5 1.0 1.5 2.0

time (5)

i
i
.2

2.5 3.0 3.5

25 . ----- .. - Congestion Window
- Slow Start Threshold

10 ........0 . .5 . 5. . 0 .

05-O 10 15 2.0 25 30
-7.

0.6
0.5

- 0.4
E 0.3

0.2
0.1

Figure A-10: Single interface CTCP with 1% added loss rate

- Inst. Throughput
------ --- -. -. -----. -----------.. .. ....... Avg. Throughput

---------- .-- -. .....------ .... ---- --- --- --- -- -- .------------ -- .- -- -- ..--- -- -
--. ... .... ...----. ---.. .. -- ------ ----- ---- --- -.-- -- -- --- -- -..--- --

- .-- .-.--. - -. . - .- ..------- - -.- -..-- - .--- -- --

)0

)0;o

M0.

0
0

25
21

z1

5:
3

g

25-- --- -------- -----... ... ---- Congestion Window4 .. ........ ... -- Slow Start Threshold

25 ----- + - -+ --- - + - - -- --- ---- +-........ .. ....... . - -. . -- ------... .. .. ..

0.5 1.0 1.5 2.0 2.5 3.0 2

0.7
0.6

g 0.5
10.4

- 0.3
0.2
0.1

--------- f -----------......--------- .--------... ----- - Inst. RTT r
jSmooth RTT

.. L......... ............................ ....................

--- --------- ------------- ------------- -------------. ---- --- --- -- ------ - . . -. -- - -- - -

-----~ ~ ---. ------ -... ------- ----- -. ... _ _ i ...... 

fk n
.0 0.5 1.0 1.5 2.0 2.5

-- ------- ...- --- ------------....------ .-- .- ------. - Inst. RT T
.. .....- ....-..-...... .....-...... ....-.......... ...... - - Sm ooth RTT

...... .. ....... ............ . ...... ........ ....... I....... ...... T

----- -- f-- d - . -- - - - - - -A - -+ - - - -

1.5

.5.0 0.5 1.0 1.5 2.0 2.5 3.0 3

1.5 2.0
time (s)

n A

. .. .......... .......... .. .. I .............. .......

CTCP Performance

"D

U.0



20 CCP Performance

-Inst. Throughput
150 ------------------- .... -------- . ---------- ------- - - Avg. Throughput-~

100 --- --- -- 2-.-. -- ---- - -- - ------ 4.----- - - -- - - --

0 1 2 3 4

CTCP Performance25Cr

20OF .........

;0

0

C

C:F
~
A:

'3

I

00 1 2 3 45
1.0711

.06 ---------------- ------------ -- Smooth Loss Rate

.05 ------------------.. --------- -...------ - - ong Smooth Loss Rate

1.0 4 -------------- ---- -------- -- -------------------------- ..------- .- - -- .---- i - ---------------..

1.0 3 ------ --- ------ ------ ----- --.. .- -- - - --- -.-- -------- - - -

1.0 2 --- -------- ---------------. - . . . . -- -- ------ ------------ - .. ---- .----- - --

1.0 1 -- - - -.. .. --- .. .. .. . .. . . ----------. -------... -- - --- -- --- - - --- .------ - -. -

1.00 li 1 2 3 4 5
imne (s)

i
i
0

01 2 34'

time (s)

Figure A-11: Single interface CTCP with 2% added loss rate

.1I

I

-- Inst. Throughput
-- Avg. Throughput

.. .... ... -......... .. ....... .................. .

-- - -- --..... - --. -.--.-----.-

0 1 2 3 4

*29
S28

27
-626
-g 25
g 24

23
22

c
2

0.0
0.7
0.6

S0.5
0.4

- 0.3
0.2
0.1

1 2 3 4

.9 . - ...... -.. -. ---.-..-- - ---. Congestion WV do
Slow Start Thrhd

4 --. -------+... --------- - - -+ - -- - - -
4 3 -- .--- .- ---. -------- -+ ------ - ------ -- -------

.. ........... ..61. ....... ............ ..........

--- ---. ---... ----------. ------ - -. - Inst. RT T
- ---------....... - - - - - - ----.----- - Sm ooth RTT

RTO
-- -- - -- - --- --- -- - ------------ -------.--------. .-

--. .. .... ...- - - - - - - ------------------- f -----------......-- - - -- - -- - - .- - -- - - --- --- - .

- - - o-- - -r -N -

.:. I I ................... 11 -................ - -ts,- - - - - - - - -- --- - - - - -- - - - -- - - - - - - - -- # - t tttA t ± =t t tt - ...

i

--- .-- -- ------- -- Congestion indow
---- ------------.-------- g----- - Slow Start Threshold..................... . .... F

-- ..................;....... -------+- - - - - - - - - - -+ ------------
--.-- ----.-.---- -+ --- ----.. ---------------------- ..........



CTCP Performance CTCP Performance
IM._ _ _ _ _ _ _

150

50

I0 329
-28

27
c26

125
24

123

8 1 2 3 4 5 E
Io B

0.7
0.6

2 0.5
1f0.4
w 0.3

...~~ ~ ~ ~ .. ........ . .........----- -- ---- - --- ---- --- Congestion Window
- Slow Start Threshold

--- -- --- -- --- -- --------- --------- ---... .... ... ----.. .. ....- - .------ .-------
.............. .. ...............7.. ......................

--.-. --.-. -.---- .-- . -- Inst. RTT

- -- Smooth RTT

time (s)

Figure A-12: Single interface CTCP with 5% added loss rate

150

50

- Inst. Throughput
- - Avg. Throughput[

- - -. ....- ....- ... - ...- -.--.-.-.-.-----

0 1 2 3 4 5

a:1
II

-Inst. Throughput
.- Avg. Throughput-. .. A A.-......

- -.. ....... ..... ...

(M

29 ~ ~ ~ ~ ..... ... ... ......
- Congestion Window
- Slow Start Threshold

2 ... ...... 1,1,1--.- --v26 26 - ...... - .- .-----..------ -- ------------ - - --

24 -....... ----- ...... -......-.. ---- - -------- ---......-- --- - - ----
23-234- ...... ........ ........ ................ .......

0 1 2 3 4 5

21
1 2 3 4 5

.. .............. . ........ Inst. RTT
Smooth RTT

.... a........... ......

U

I

C
C
C

IC

................-------------.

30



CTCP Performance

120 ----- ---.. - ---------...........-..--- - .---. - Inst Thrioughput
100 --------- -- -- .----------. ---. ----... . - Avg. Throughput

60 -------- -.. -. --. - - --- --- --- -- ---- --- -.--.---- .--------

20 --..-- -..-..-.--- - -

0 1 2 3 4 5 6
32

6'

T

.2 r

80

60

40

20

3
time (s)

I

1 CTCP Perfornance

1...-------- - ---------- ---. - Inst. Throughput
140 - ---- ------ - --.~. Avg. Throughput

120 - - --- ---- - - - -- ---- -- -
1 .. .

60 - - -. -. .. - - - -

20

0 1 2 3 4 5 6

28
S26
o22

-f 20
S18
16

S12

-0.4
10.3

I
Ua

Figure A-13: Single interface CTCP with 7% added loss rate

.3
I

25S

c15

C10

15

1 2 3 4 5

--- ----. --------. ----- -.- - Congestion Window
~6 --- ----- - ~~-L - Slow Start Threshold

-Inst. RTT
Smooth RTT

------ -------- .- -- - - - - - - - - -- - - - - -- --. . R T O

----- ------- ...--------------- ... ..---------------- .... ------- ------- ------ ------ .------- ------

-------. ---. ----- - -- ---- --- -- ---------------- - - ------.... .. ... .. . -----------------..... ...

-- - -- ..-- .- - -- - . -- -- -- -- --.- - -- -- -- ---- - -------.... .. . .. ... . -.. .. . ..-.. .. ...-. .
-- - - - + --.... ----. ... - - - - - - --.-------.-.- -.. ... .. . -.... ...
---------... ... -.. .. - - ----------... ... ...-- --- - - ? - - --. .. ...- --- .- .----------

-0 1 2 3 4 5

----------------.----------------.--------------. - Congestion W indow
...........- S............ .. low Start Threshold

-....... ...... ............. . .. .................... .-........... ................
--. -- --. .. --- --.. .. .. --- ---.. ----- - -- - -..---------. .. ......
---- ... ... .- ............. ...........-. ......-.-.---- -- ---.---.-- --- - .

Iff

i

time (s)



CTCP Performance

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

24
22
20

11

14
12

12
0

2

6

2

3

2

0.12
0
0.
0

E0
0

4.0

CTCP Performance
--------.. -------.... - - ..-... - Inst Throughput

. .-- Avg. Throughput. ........... . ......K ..

0.14
0.12

001
.20-04

0.04
0.02
An

.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time (s)

Figure A-14: Single interface CTCP with 10% added loss rate

.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.7
0.E

a 0.5

a 0.3
0.2
0.2

a
10

15

0

5

.7

.6

.5

.4

.3

.2
21

Inst. RTT
--- ------- ----------- ------------ ------------. -------.---.. Sm ooth RTr

-- -------------.--.------------. - --. . . - - RTO

----- --. -- ------ ---- --------.. --- --. ----....--- ------------ ------------ -----------.

. 0.5 10 1.5 2.0 2.5 3.0 3.5 4

t- Inst. RTr
--- ------. ---- --- i ----------. --------- -----------... . Sm ooth RTT

.......... ................... ........ ......... ......... ........ ..........

I
.1

.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4

time (s)

---- --- ---- - -...... ....... ... - Smooth Loss Rate
- Long Smooth Loss Rate

--- --.--- - -- -- -.. - - -- - - -----... .

-.--- -- . -- -.. .. --- ---. --- -- --- ---.- -- -- --------.. .. .. ... .. ... . ---------.... .. ..

. A -E A N , -

n- ar

. -

0 -----------. ----------- ----------. -------. --. --.-. Inst. Throughput
10 -------------.--------..... ...... ..........- - Avg. Throughput

10 --.. ... ------ -- - - .... . - .--- .-.. ---... - . -----------...

I0 -.-------

4.0

......... rKkM............ .......... CongeSsttajion W 1CongesoSlowlow start Threshold
........... 

...... 
............. . ........... ............ ........... ....... ........... .

.

........................

S
............ ........ ... ...................4 ...... .. ...... ...........

............ ........... ; . ........ ............ ....... ...... ..... ............ ...........
.......... .

............ ........................ ............ .......... ................................

.. ............

.. 
........................ 

........... 
:.

V V 
........... ........................................................... . ........

: ......................

-'0



CTCP Performance

100 -----------------. ----------------------------. - -....... Inst. T roughput
- g- . Throughput

g . .. .. .. . . . .. .. ......... ..... . ... C. ong

2 0 -.. - ---.. ....

25

20

C 15

110

0.8
0.7
0.6
0.5
0.4

a 0.3
0.2
0.1
0.0

U.ZZ
0.20
0.18
0.16

L 0.14
# 0.12
.2 a 1A

-- Congeton Window
--- - Slow Start Threshold

1 2 3 4

time (S)

A
6

14

2

30

25

20

15

10

o54IC0

0.7
0.6

g 0.5
1 0.4
M 0.3

0.2
0.1

0.0

0.20
0.18
0.16
0.14

30.12
.A a

UD

4 5 0

CTCP Performance

Inst. Throughput
Avg. Throughput

0--0 -ongestio W

00 1 2 3 4 5

Congestion Window
--- Slow Start Threshold

1 2 3 4

-- --- --- -+ - ------ + -- --- --- -- -......... ............ - Inst. RTT
-- ---------. ------.-.-..---------..-- - Smooth RTT

................... ...

--. ----------..--- -------------.. -------- --.......... --.........RTO........
-- .. - .... .-- ..... ....- -..-.-.---..-------- ..- ..-.--------------- ...- ..-.-.-
-A ------- +--------.+------------+-------------+-.----------

1 2 3 4 5
time (s)

Figure A-15: Single interface CTCP with 15% added loss rate

00

SInst. RTT
-- ..-..---.... ------- .-- Y-- .---.--.--. - Sm ooth R T -

---- -- - --- -- - -- -- -- --- ---- - R TO-- ..- ---- ---... ..- --------.... -- --------.. ... * - -- - - ----- --------... ..........
-- -- -- -- - - -- -- + - - - - --- + -- -- --- -+ -- -- -- -... ... .. ... .... ... .. ... .. ....

- .. ..- .-- - - .- - - -- --.- -- ---.- -- ---.- - - ---. .. ........ ......... .........

- --- - - 4 - -- - - I -- - - - - - - - - - -
1 2 3 4

------------.--------- Smooth Loss Rate
Long Smoo Loss Rate

.. ...... * ................

1 2 3 4

--------------.-- -----. --- - - Smoot Loss Rate
- Long Smooth Loss Rats-. ...... - -.. ..

-- - -- -- .. .-..---...----...----..-..-.--- ..-
---- -- ...... ...- .........--. .. .... ..---.----.-.-.---- .- .
. ............ ......... ......... .........

.. ... ....... - - - ----------- . .............

I

u0 1 2 3 4

^

n 77

5

i i



Appendix B

List of Data Structures

The main data structures used in the client-server implementation of CTCP are listed

below:

e DataPckt: Data structure that stores a coded packet sent across the network.

It contains the following fields:

- tstamp: The time when the DataPckt was pushed into the network by

the sender.

- flag: A multipurpose flag whose value can be used to indicate the state

of the transaction, such as the packet being the last of a transfer, or last

of a block, among other things.

- seqno: A unique identifier for this DataPckt, similar to sequence numbers

in TCP Reno, and used for erasure detection.

- blockno: An identifier to the block to which this packet's payload corre-

spond to.

- blkjlen: The number of segments in this block. It should coincide with

BLOCKSIZE, with the last block being the only possible exception (due to

EOF).

- startpacket: The of position of the first non-zero coefficient in the co-

efficient used for this random linear combination, Ci.
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- num-packets: The number of segments in the linear combination.

- packetcoeff: The array Ci of the coefficients used in the linear combi-

nation of the segments.

- checksum: 16 bytes containing the MD5 checksum of the packet contents

for error detection. This field is computed setting the checksum field set

to zero.

- payload: 1325 bytes of binary data, consisting of the linear combination of

the segments specified by startpacket, numpackets and the coefficients

specified in packetcoef f.

" AckPckt: This data structured is used by the receiver to communicate with the

sender and provide feedback on the status of the transfer. The fields included

are:

- tstamp: The time when the AckPckt was pushed into the network by the

receiver.

- flag: A multipurpose flag whose value can be used to indicate the state

of the transaction, such as the packet being the last of a transfer, or last

of a block, among other things.

- ackno: Sequence number of the Data...Pckt that is being acknowledged.

- blockno: The block number of the DataPckt that is being acknowledged.

- dof _req: The number of degrees of freedom that need to be received to

make the block blockno decodable.

" Qbuffert: Thread-safe implementation of double ended queue (deque) as a

circular buffer. This data stracture is used for multithread communication at

the server. There are two main instances of this data structure at the server:

- Job-q: Deque used by the server's controller module to insert requests

for new DataPckts to be generated (See Section 3.3.1 for details). These

requests come in the form of Coding.Jobt.
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- Codedq: Deque used by the server's packet generator module to store

newly generated DataPckts for a given data block (See Section 3.3.1 for

details).

* Coding_.Job-t: Data structure used for inter-thread communication at the

server. It allows the server's control module to request for new DataPckts to

be generated by the packet generator module. Its fields are:

- blockno: Block number of the requested DataPckts,

- dof _request: Number of DataPckts requested, and

- coding-wnd: The number of segments that should be mixed to generate

each DataPckt.

" CodedBlockt: Data structure used by the receiver to store payloads from the

received DataPckts, as well as the coefficients contained in the header fields

of each packet for a particular block. As new packets arrive at the receiver this

data structure is used to perform Gaussian elimination on the stored coefficients

and payloads. Once enough degrees of freedom are received, this data structure

is used to finish the decoding process, using Gauss-Jordan elimination, to yield

the original content of the given block. For more details on this process see

Section 3.1.1 and Section 3.1.2
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Appendix C

Inverse of Banded Matrices

In what follows we present empirical data that supports the claim that banded matri-

ces with small enough bandwidth (roughly O(log n)) have sparse inverses. The data

was generated by randomly generating n x n band matrices, finding their inverses

and computing the ratio of zero entries over the size of the matrix. This was done for

n = 64,128, 256, 512 and 1024. We denote the frequency of zero entries in a matrix as

its sparsity. For each value of n we show a table containing showing the bandwidth

of the matrices chosen, the mean and standard deviation of the sparsity, followed by

histograms for the sparsity for each chosen bandwidth.
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bandwidth mean sparsity standard dev.
1 0.98 0
3 0.81 0.069
5 0.61 0.15
7 0.5 0.17

Table C.1: Sparsity for n = 64

bandwidth mean sparsity standard dev.
0 0.992 0
3 0.89 0.03
5 0.74 0.11
7 0.61 0.15

Table C.2: Sparsity for n = 128

bandwidth mean sparsity standard dev.
1 0.996 0
3 0.94 0.013
5 0.84 0.06
7 0.74 0.11

Table C.3: Sparsity for n = 256

bandwidth mean sparsity standard dev.
1 0.998 0
3 0.097 0.005
5 0.91 0.02
7 0.85 0.063
9 0.77 0.1

Table C.4: Sparsity for n = 512

bandwidth mean sparsity standard dev.
1 0.999 0
3 0.985 0.0019
5 0.95 0.01
7 0.91 0.029
9 0.87 0.05
11 0.833 0.072

Table C.5: Sparsity for n = 1024
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Figure C-2: Sparsity histogram for n = 64, bandwidth = 3
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Figure C-3: Sparsity histogram for n = 64, bandwidth = 5

Figure C-4: Sparsity histogram for n = 64, bandwidth = 7
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Figure C-5: Sparsity histogram for n = 128, bandwidth = 1
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Figure C-6: Sparsity histogram for n = 128, bandwidth = 3
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Figure C-7: Sparsity histogram for n = 128, bandwidth = 5
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Figure C-8: Sparsity histogram for n = 128, bandwidth = 7
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Figure C-9: Sparsity histogram for n 256, bandwidth = 1
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Figure C-10: Sparsity histogram for n 256, bandwidth = 3
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Figure C-11: Sparsity histogram for n = 256, bandwidth = 5

Figure C-12: Sparsity histogram for n = 256, bandwidth = 7
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Figure C-13: Sparsity histogram for n 512, bandwidth = 1
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Figure C-14: Sparsity histogram for n = 512, bandwidth = 3
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Figure C-15: Sparsity histogram for n = 512, bandwidth = 5
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Figure C-16: Sparsity histogram for n = 512, bandwidth = 7

82

-. 2



I

0

I . I . . m L n.
I a-

Figure C-17: Sparsity histogram for n = 512, bandwidth = 9

Figure C-18: Sparsity histogram for n = 1024, bandwidth = 1
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Figure C-19: Sparsity histogram for n = 1024, bandwidth = 3

Figure C-20: Sparsity histogram for n = 1024, bandwidth = 5
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Figure C-21: Sparsity histogram for n = 1024, bandwidth = 7
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Figure C-22: Sparsity histogram for n = 1024, bandwidth = 9
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Appendix D

CTCP Source Snippets

Insert the more significant parts of CTCP code here

D.1 CTCP Server

Below is the server code that generates packets:

void*

coding.job(void *a){

coding-job.t* job = (coding-jobt*) a;

uint32_t blockno = job->blockno;

int start = job->start;

int dof-request = job->dof-request;

int coding-wnd = job->coding-wnd;

srvctcpsock* sk = job->socket;

// check if the blockno is already done and removed

// from the working block set

if( blockno < sk->curr-block ){

return NULL;

}
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// if block is still not yet done

pthread-mutex-lock(&(sk->blocks[blockno%NUMBLOCKS].blockmutex));

// check whether the requested blockno is already read,

// if not, read the block from the file and

// generate the first set of degrees of freedom using systematic code

uint8_t block-len = sk->blocks[blockno%NUMBLOCKS].len;

if (blocklen == 0){

printf("Error: Block %d not read yet\n", blockno);

pthread-mutex-unlock(&(sk->blocks[blockno%NUMBLOCKS] block-mutex));

return NULL;

}

/////////// UNCODED PACKETIZATION: SYSTEMATIC CODE //////////////////

if (codingwnd == 0)

coding-wnd = 1;

int row;

int end = MIN((start + dofrequest), blockjlen);

for (row = start; row < end; row++){

// creat a new data packet

DataPckt* msg = (DataPckt*) malloc(sizeof(DataPckt));

msg->flag = NORMAL;

msg->blockno = blockno;

msg->num-packets = 1;

msg->packet-coeff = (uint8_t*) malloc(sizeof(uint8_t));

msg->start-packet = row;
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msg->packet- coeff[0] = 1;

msg->payload = sk->blocks[blocknoXNUMBLOCKS].content[msg->start-packet];

q.pushback(&(sk->coded.q[blocknoNUMBLOCKS]), msg);

} // done with forming the initial set of uncoded packets

// now need to make coded packets

dof.request = MAX(O, dof.request - (block-len - start));

}

p

////////// ACTUAL RANDOM LINEAR CODING //////////////////

if (dof.request > 0){

// extra degrees of freedom are generated by picking a row randomly

int i, j;

int dof-ix, row;

int codingwnd.slope = floor((MAXCODINGWND - codingwnd)/dof.request);

for (dofix = 0; dofjix < dofrequest; dofix++){

coding-wnd += coding.wnd-slope;

uint8_t num-packets = MIN(coding-wnd, blocklen);

int partitionsize = ceil(block-len/num-packets);

DataPckt *msg = dataPacket(0, blockno, num-packets);

row = (random()%partition.size)*num-packets;

msg->start-packet = MIN(row, blocklen - num-packets);

memset(msg->payload, 0, PAYLDADSIZE);
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msg->packetcoeff[0] = 1;

memcpy(msg->payload, sk->blocks [blockno%NUMBLOCKS]

.content[msg->start.packet], PAYLOADSIZE);

for(i = 1; i < num-packets; i++){

msg->packetcoeff [i] = (uint8_t) (1 + randomo%255);

for(j = 0; j < PAYLOADSIZE; j++){

msg->payload[j] ^= FFmult(msg->packetcoeff[i],

sk->blocks [blockno%NUMBLOCKS]

.content [msg->startpacket+i] [j]);

}

}
q.push.back(&(sk->coded-q[blockno%NUMBLOCKS]), msg);

} // done with forming the remaining set of coded packets

}

pthread-mutex.unlock(&(sk->blocks [blockno%NUMBLOCKS] .blockmutex));

return NULL;

}

D.2 CTCP Client

Below is the client source code that decodes blocks whenever they have enough degrees

of freedom, and delivers them to the application.

partial-write(clictcpsock* csk)

write whatever is ready for the application (decoded)

void
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partial-write(clictcp-sock* csk){

int blockno = csk->curr-block;

uint8_t start = csk->blocks[blocknoNUMBLOCKS].dofs.pushed;

bool push-ready = TRUE;

uint16_t payloadlen;

int i;

size-t bytes-pushed;

if(csk->blocks[blockno%NUMBLOCKS].dofs ==

csk->blocks[blockno%NUMBLOCKS].maxpacket-index){

// We have enough dofs to decode, DECODE!

unwrap(&(csk->blocks[blocknoNUMBLOCKS]));

}

do {

if ( csk->blocks[blocknoNUMBLOCKS].rows[start] == NULL){

push-ready = FALSE;

} else {

for (i = 1; i < csk->blocks[blockno%NUMBLOCKS].row-len[start]; i++){

if (csk->blocks[blockno%NUMBLOCKS].rows[start][i]){

push-ready = FALSE;

break;

}

}

}

if (push-ready){

// check the queue size

// if enough room, push, otherwise, exit the push process

// Read the first two bytes containing the length of the useful data

memcpy(&payload-len, csk->blocks[blockno%NUMBLOCKS].content[start], 2);
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// Convert to host order

payloadlen = ntohs(payload-len);

if (fifogetspace(&(csk->usr-cache)) >= payloadlen){

// push the packet to user cache

// Write the contents of the decode block into the file

bytespushed = 0;

while (bytes-pushed < payload.len){

bytes-pushed += fifo.push(&(csk->usr.cache),

csk->blocks[blocknoNUMBLOCKS]

.content[start]+2+bytes-pushed,

payload-len - bytes-pushed);

}

start++;

}else{

push-ready = FALSE;

}

}

} while (push-ready);

csk->blocks[blockno%NUMBLOCKS].dofspushed = start;

return;

}
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