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Abstract

This thesis describes an algorithm developed to aid in solving the problem of per-

formance diagnosis, by automatically identifying the specific component in a multi-

component application system responsible for a performance problem. The algorithm

monitors the system, collecting load and latency information from each component,
searches the data for patterns indicative of performance saturation using statisti-

cal methods, and uses a machine learning classifier to interpret those results. The

algorithm was tested with two test applications in several configurations, with differ-

ent performance problems synthetically introduced. The algorithm correctly located

these problems as much as 90% of the time, indicating that this is a good approach to

the problem of automatic performance problem location. Also, the experimentation

demonstrated that the algorithm can locate performance problems in environments

different from those for which it was designed and from that on which it was trained.
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Chapter 1

Introduction

Diagnosing a performance problem is frequently difficult. Large software systems are

continually growing in complexity, and frequently are built out of many interacting

components. Interactions between components may disguise the actual source of a

performance problem, or introduce more opportunities for problems to arise, and

increase the difficulty of diagnosis. [7, 16] Furthermore, deploying such a system on

a virtualized infrastructure adds a further source of complexity and interactions that

may cause such problems. [9]

Quick diagnosis of performance problems is necessary because these problems

can cause attrition of an application's user base and affect the application's revenue

stream. Users who visit a Web site and experience poor performance may not return

because of their experience, causing a permanent loss of potential revenue. [8]

This document describes an algorithm developed to aid in solving the problem

of performance diagnosis by automatically identifying the specific component in a

multi-component application system responsible for a performance problem. The

algorithm monitors each component separately, collecting load vs. latency data and

performance metrics, examining the latency of each component in the system as

a function of its load. It then searches graphs of these data for inflection points,

which are indicative of performance saturation, using statistical regressions. Finally,

a machine learning classifier examines the results of the regressions, and decides for

each component whether that component is exhibiting performance characteristics
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typical of a machine operating beyond its capacity, and determines if it is the source

of the system's performance problem.

The statistical methods used in this work were chosen for their close fit to universal

models of application performance, described further in Chapter 3. Machine learning

was used here as a convenient method for making a yes-or-no decision based on the

outcome of those statistical analyses; the problem here is a natural fit for machine

learning classification, and there are accepted methods of assessing the performance

of a machine learning system. However, this is not to suggest that a relatively sophis-

ticated machine learning system is the only valid approach here; there are certainly

other equally valid and effective methods of solution for this problem.

This algorithm relies on universal performance characteristics common to a wide

range of applications, discussed further in Chapter 3. These characteristics can be

straightforwardly detected with common statistical methods; their universality makes

the resulting algorithm useful for many different applications, even beyond those for

which it was specifically designed.

One difficulty, however, is that individual components in such multi-component

systems are frequently highly dependent on one another. As a result, individual com-

ponents show quite similar performance characteristics, and isolating one component

as the source of a bottleneck can be difficult. This algorithm solves that problem by

breaking down the system's primary performance indication (the latency of a request

made to the application) into parts, each of which is attributed to one particular

component, and carrying out performance analysis on these partial latencies from

each component.

Experiments were conducted to assess the performance of the algorithm on several

test applications with performance bottlenecks deliberately and synthetically intro-

duced. The algorithm performed well, with accuracies exceeding 90% in some cases.

Also, the experimentation demonstrated that the algorithm can locate performance

bottlenecks in environments different from that for which it was designed and on

which it was originally trained.

14



Chapter 2

The Problem

The algorithm developed herein is targeted for specific types of performance problems,

with particular assumptions made about the system under test. More specifically, the

algorithm will locate the one server in a multi-server system that is first reaching the

maximum rate at which it can respond to requests from users, and is therefore the

rate-limiting step in the system. This algorithm is looking specifically for such per-

formance bottlenecks caused by resource starvation (where one resource, e.g., CPU

or I/O bandwidth) has reached the effective limit of what is available to be used, or

background noise in a virtualized environment (where one virtual machine is unable

to operate at its maximum capacity because of resource consumption by other vir-

tual machines on the same host). In addition, this algorithm is targeted specifically

for stable (as opposed to dynamic) performance problems, where a particular perfor-

mance problem is an inherent property of the system as configured, and not caused

by some transient state. However, it is possible that such a problem would not be

triggered until the load offered to the system reaches a particular point; thus, such

"stable" problems may appear and disappear with the ebb and flow of the system's

load.

The algorithm focuses specifically on applications using a multi-tier architecture,

in which the application is separated into different layers, or tiers, each handling

one particular functional concern. A typical design for Web applications is a three-

tier architecture, frequently comprising a user-interface or load-balancing tier, an
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application tier responsible for the application's business logic, and a database tier

for handling the system's persistent data. Each tier may be hosted on one or several

servers.

Furthermore, this algorithm focuses on applications that use a request/response

model for interaction with the user. In this model, a user issues a request for a

particular item of content (e.g., the application's home page); the application then

replies with a response, namely, the desired content.

An example will serve to both illustrate the problem and demonstrate some dif-

ficulties in diagnosis. The Thin web server [5], commonly used for serving Web

applications written in the Ruby language, is single-threaded; its internal architec-

ture renders it incapable of serving multiple requests simultaneously. While waiting

for external I/O (e.g., making a request to the application's underlying database),

Thin's server thread sleeps, which the OS kernel reports as idle CPU time. How-

ever, the application is unable to utilize that CPU time, because the Thin server is

sleeping and not responding to incoming requests. The result is that the Thin server

can saturate, reaching its maximum capacity for handling incoming requests, at a

level of CPU utilization (as low as 50% in some tests, depending on configuration)

that would suggest normal operation. This algorithm is able to detect this problem

by searching for patterns caused by performance properties of this system: once the

CPU utilization reaches its maximum (regardless of its exact value; 50% in this ex-

ample), the latency imposed on a request by the Thin server will continue growing as

the system's load increases, as the CPU utilization remains at its maximum, without

growing further. However, the latency imposed on a request by other machines in

the system (such as the database server in this example) will not continue growing

as the load on the system increases; once the Thin server reaches its maximum ca-

pacity, it will stop offering additional load to the database server, and the latency

imposed by the database server will stop growing. The algorithm detects that the

latency imposed by the Thin server continues growing where the latency imposed by

the database server does not; this is fundamentally how it detects the Thin server as

the system's bottleneck.

16



One property of multi-tier applications that increases the difficulty of locating such

problems is an interdependence between resource usages of different tiers, because

each tier is receiving the same offered load. As an example, if the application server

tier saturates and its utilization levels off, it stops offering more load to the database

tier, so the database utilization levels off as well. As another example, if the database

tier saturates, it limits the application server's throughput, making it appear to level

off as well.

Because of this property, looking for relationships between performance metrics

of each tier and the latency or throughput of the whole system is not particularly

useful for finding performance bottlenecks: all of the tiers are behaving similarly

performance-wise with respect to the system's offered load. However, it is possible to

consider the latency imposed on a request by each tier separately. For example, in a

typical three-tier application, we could measure the latency added by the application

tier separately from that added by the database tier (i.e., measure the time a single

request spends processing in the application tier, and then separately measure how

much time is spent processing in the database tier). Using these per-tier latencies is

one central part of this algorithm: if one particular server is not yet operating at its

maximum capacity, the latency imposed by that server will not increase as the load

on the system increases; likewise, if a particular server is operating at its maximum

capacity, the latency imposed by that server will grow as the load on the system

increases.

2.1 Assumptions

This algorithm makes several assumptions about the system under test. First, the al-

gorithm focuses on applications that are built in an RPC-based architecture [7], where

the individual components communicate using a call-and-response model. Users make

requests to the application's outermost tier, which in turn may make requests to other

tiers, which in turn issue responses. In this model, each action carried out by one tier,

and each request and response between tiers, is caused by a request to the application
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from a client. For each request, we can measure the total amount of time until a client

receives a response (the latency of that request); in addition, in the RPC model, we

can measure how much of the total latency is caused by each tier or each server in

the application.

Second, the algorithm focuses on applications being operated as closed-queue sys-

tems. These applications can be modeled as queueing systems, where clients waiting

to be served enter a queue (such as the server's operating system TCP queue), and

the server takes requests from the queue one at a time and processes them, generating

a response.

A closed-queue system is one in which "the total number of [users] is finite and

fixed," or where users return to the same queue after having been served. [18] In such

a system, at any point in time every user is either "thinking" (waiting to join the

queue), or waiting in the queue to be serviced. Closed-queue systems are particularly

relevant in performance testing and benchmarking; a typical performance benchmark

will utilize a certain number of active workload generators, which are the "users" in

a closed-queue system. Each generator is always either waiting to have a request ser-

viced, or delaying for some "think time" (simulating a user waiting between requests).

A website or other service with a certain number of active users at any given time

can also be modeled in this way.

2.2 Design Goals

Based on these targeted performance problems, several design goals shaped the design

of the algorithm. First, because of the behaviors demonstrated by the Thin server

example above, where its CPU utilization reaches its effective maximum utilization

well below the actual maximum of 100%, the algorithm should not rely on any hard-

coded thresholds for particular performance metrics, as those can be misleading. A

rule such as "alarm if CPU utilization greater than 95%" would fail to detect the Thin

server above as the true source of a performance problem. Instead, the algorithm

should rely on behavioral patters that are indicative of performance bottlenecks,
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without using specific hard-coded cutoffs.

Second, the algorithm should make minimal assumptions about the application

under test beyond what has been assumed above, in order to remain as broadly

applicable as possible.

2.3 Non-goals

One step in the resulting algorithm creates statistical models that could be used to

mathematically describe or predict the application's performance. However, describ-

ing or predicting the application's performance is not the end goal; rather, the end

goal is specifically to detect which server in a multi-tier, multi-server system is causing

a performance bottleneck.
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Chapter 3

Canonical Performance

Characteristics

Chapter 2 discussed particular performance characteristics, and indicated that pat-

terns of these characteristics can be used to detect performance problems, such as the

pathological behavior of the Thin application server. This chapter will discuss those

performance characteristics and patterns in more detail, and describe how they can

be used to locate such performance problems.

Section 2.1 described closed-queue systems as the focus of this work. In a closed-

queue system, the throughput (rate at which requests are served by the system; the

number of requests served in a given time interval) can be expressed as

X(N) -Q

where N is the total number of users in the system, X is the throughput as a function

of the number of users, Q is the number of users being serviced or waiting in the queue,

and Z is the average think time. The throughput is simply the rate at which users

are leaving the "thinking" state; N - Q is the number of users who are not being

serviced or in the queue, and therefore is the number of users in the "thinking" state.

[18]

Section 2.1 described closed-queue systems as the focus of this work. Such sys-
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tems exhibit particular relationships between offered load (the rate at which users are

issuing requests) and throughput and latency (the rate at which requests are served

by the system and the time required for a user to receive a response after submitting

a request, respectively), known by [17] as the "canonical performance characteris-

tics." Figure 3-1(a) illustrates the canonical relationship between offered load and

throughput, with offered load (as the number of active users) on the X-axis and the

throughput (in requests handled per unit of time) on the Y-axis. (Here, the exact

units and quantities are not important; this is an illustration of a general phenomenon

shared by many different systems.) This relationship is characterized by two linear

regions, which describe the behavior of the system below and above its saturation

point, which is the maximum rate of incoming requests that it is capable of process-

ing. In a closed-queue system, the throughput will increase linearly with the number

of active users, until the application reaches its saturation point. At that point, the

throughput has reached a maximum, and stops growing.

Figure 3-1(b) shows the canonical relationship between offered load and latency,

with offered load on the X-axis and latency (the average time between a user making

a request and receiving a response) on the Y-axis. Like the canonical throughput

relationship, this is also characterized by two linear regions in a closed-queue system.

Below the saturation point, the latency remains constant with respect to the number

of active users, as there is a minimum for any one request dictated by the system.

Above the saturation point, the average latency will grow linearly with the number

of active users.

[18] explains why latency grows linearly with increasing load in a closed-queue

system. We know from before that:

X(N) =N-Q
Z

The latency is related to the throughput by Little's law:

Q=XR
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(a) Throughput as a function of offered load. (b) Latency as a function of offered load.

Figure 3-1: Canonical relationship between offered load (X-axis) and performance
characteristics (Y-axis). Reproduced from [17]. Solid lines indicate canonical rela-

tionships; dashed lines indicate linear regions that characterize those relationships.

where R is the latency.

Substituting and rearranging to find R gives:

NZ
X(N)

Z (think time) is constant; also, above the saturation point, X(N) (throughput)

is also constant. Thus, above the saturation point, latency grows linearly with the

number of active users.

The key feature of these canonical performance characteristics is that regions of

the curves can be described by either a linear relationship, or by a segmented relation-

ship comprising two linear regions. These types of relationships can be straightfor-

wardly detected by simple statistical methods. Using these methods to detect these

relationships is an important component of the work presented in Chapter 4. This

work relies primarily on determining whether a given system component is exhibiting

linear relationships in its performance characteristic (which could indicate that it is

operating only below its saturation point, is not operating at its maximum capacity,

and therefore is not the source of a performance problem), or is exhibiting segmented

relationships like the canonical characteristics, indicating that at some times, it is

operating above its maximum capacity and is therefore causing a performance bot-

tleneck.
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Finally, the relationship between latency and a performance metric, such as CPU

utilization, follows much the same pattern as the canonical characteristics above. See

3-2 for an example latency vs. CPU characteristic for a server known to be operating

both below and above its saturation point; note that its shape is similar to the shape

of the canonical characteristics, comprising two roughly-linear segments. (This graph

shows data from the Thin server example discussed in Chapter 2, exhibiting the

problem where it reaches its maximum capacity at low levels of CPU utilization.)

Below saturation, a server's CPU utilization (or other performance metric) will grow

with increasing load, as more resources are consumed. At the same time, the latency

will remain roughly constant, as the server is not yet saturated. Once the server

reaches saturation, the performance metric will stop increasing, as the server has

reached its maximum utilization of that resource; at this point, the latency will also

begin growing with increasing load. The result is that the relationship between latency

and a performance metric will also show the same segmented shape, and it is possible

to use the same analyses mentioned above.

This fact is also particularly useful because in typical applications, monitoring

these performance metrics is easy, whereas directly measuring the offered load in

terms of the number of currently active users can be more difficult. However, if

it is possible to directly measure the number of active users at any point in time,

that information could be used to construct a canonical performance characteristic,

which could be used in this algorithm either alongside or instead of the latency vs.

metric characteristics. Also, when using performance metric characteristics, it is of

note that many different performance metrics should be used (a full list of those

used during experimentation appears in Appendix A). Any one performance metric

may or may not be related to the performance of a particular server (e.g., a disk

bandwidth metric will be of little use on a server hosting a CPU-bound workload).

Furthermore, aggregating the analysis over many metrics makes the algorithm more

robust to statistical noise; due to the properties of the statistical analyses used, a

performance characteristic for one metric may be spuriously detected as showing a

segmented relationship, due to noise in the data, when in fact the corresponding
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server has not reached its saturation point.
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Figure 3-2: Relationship between latency and CPU utilization
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Chapter 4

The Solution

This chapter describes the algorithm used for locating the server that has first hit

its maximum capacity. The general procedure is to first collect performance data

from each machine, and use the data to create graphs of each server's performance

characteristic, like those described at the end of Chapter 3. Then, those characteristics

are classified based on whether they show a segmented relationship characteristic of

a server having reached its saturation point, or a linear relationship indicating that

the server may not be at saturation. Finally, a machine learning classifier examines

the results of the classification, and indicates, for each server, whether it is reaching

its maximum capacity and is thus the system's performance bottleneck.

4.1 Data Collection

The algorithm begins by collecting performance data from the system under test,

including performance metrics (e.g., CPU or I/O utilization) and performance re-

sponses (latency and throughput) from each server in the application individually,

at periodic intervals (on the order of 1 to 10 seconds). The latency measurement

for each individual tier is the part of the latency for a request for which that tier is

responsible, including any queueing delay imposed on requests arriving at that tier.

On a production system, collecting data over a relatively long period of time would

give a range of load values (both above and below the system's point of saturation)

27



because of natural variations in load. In a test environment, such a variation in load

can be deliberately introduced.

These performance data are noisy, so the data are smoothed out by aggregating

over longer time windows (on the order of 1 minute), using arithmetic mean for

performance metrics and 90th percentile for latency.

4.2 Statistical Analysis

Next, the algorithm searches the collected performance data for patterns like the

canonical performance characteristics. Recall from Chapter 3 that a server exhibiting

a linear performance characteristic may not have reached its saturation point, but a

server exhibiting a segmented characteristic is operating past its saturation point at

least some of the time. For each server in the system, the algorithm must determine

which of those characteristics that server is exhibiting (or neither at all). The algo-

rithm uses statistical analyses on the data for each individual metric on each server in

order to do this. Statistical regressions are performed between the aggregated values

of each metric on each server and the aggregated latency for that server.

Linear characteristics can be detected with a simple linear regression, which at-

tempts to express a linear relationship between two variables. Formally, suppose that

two variables X and Y are believed to be related by

Y =# 0 +#01X +e

where E is a normally-distributed error term. A simple linear regression estimates

values for #0 and #1 , and also computes a value known as the coefficient of determi-

nation (denoted R 2), which provides a measure of the goodness of fit of the estimated

relationship. R 2 takes values between 0 and 1, inclusive; values near 1 indicate a very

good fit, whereas values near 0 indicate a poor fit. [14]

Segmented characteristics can be detected with a segmented regression. Seg-

mented regression is similar to simple linear regression, except its goal is to detect
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broken-line relationships, consisting of two or more linear regions connected at un-

known breakpoints along the X-axis. A statistical procedure known as Davies' test

is used to check for the presence of such a breakpoint, and thus determine whether

a segmented model is a good fit for the data. Davies' test chooses a number of fixed

breakpoints along the X-axis, performs a segmented regression for each, and checks

for a statistically-significant difference in regression slopes (the #1 parameter in the

model above) on each side of the breakpoint. The result is a p-value, which can be

interpreted as the probability that any difference in slopes is due to random chance. A

p-value close to 1 indicates that any such difference is likely due to chance; a p-value

close to 0 indicates that the difference is likely caused by an actual breakpoint in the

data, and that a segmented model is probably a good fit. [11, 20, 21]

Based on the results of each of the two regression techniques, each metric on each

server is classified into one of three categories. Figure 4-1 illustrates the classification

procedure. The categories are as follows:

Linear A simple linear regression gave R 2 > 0.7, indicating that a linear model

is a good fit for this metric. This most likely indicates that this metric falls

into one linear region of a canonical performance characteristic, and that the

corresponding server may not be operating past its saturation point.

Segmented Davies' test gave p < 0.05, indicating that a segmented model is a good

fit for this metric. This likely indicates that this metric follows the canonical

performance characteristic, and the corresponding server is reaching its satura-

tion point.

None Neither a linear model nor a segmented model adequately explains this metric.

4.3 Aggregation

After all of the performance metrics have been classified, metrics that fall into the

same category for every server are discarded. The reason is that, knowing that one
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Figure 4-1: Decision tree for classifying performance metrics based on regression
parameters.

tier/server is responsible for a performance bottleneck, the algorithm should look for

properties unique to each server, and not properties that they share.

Then, for each server, the algorithm counts the number of metrics falling into each

of the three categories. This is done to add statistical robustness to the algorithm,

and to give a more broad overview of the server's performance characteristic. If a

server is reaching its saturation point, we expect that many of its metrics will exhibit

a segmented relationship with its latency. It may seem counterintuitive at first glance

that many metrics should show such a relationship (e.g., if a server is bottlenecked

on CPU, why would its disk metrics show a segmented relationship indicative of a

bottleneck?); however, each metric is actually dependent on the others. If a server

is bottlenecked on CPU, for example, then it has no more CPU bandwidth available

to utilize any extra disk or network capacity. Thus, the extra capacity of its non-

bottlenecked resources is unusable, and metrics for those resources will cease growing

with increasing load once the server hits its saturation point, thus causing them to

exhibit a segmented relationship.

In addition, only one or two metrics showing a segmented relationship could be

attributed to statistical noise instead of a meaningful relationship. Because this

algorithm uses Davies' test at the 5% significance level, we expect that approximately

5% of the metrics tested will show a false-positive segmented relationship.

Next, the counts for each metric are normalized to the total number of metrics

remaining for that server. As an example, suppose that the counts for one server are 2
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linear, 3 segmented, and 3 none. These are normalized to sum to 1, giving 0.25 linear,

0.375 segmented, and 0.375 none. This is done because after removing metrics shared

between tiers, the total number of metrics remaining may vary greatly between result

sets, so the results are normalized to the same range to facilitate consistent decision

in the next step.

4.4 Machine Learning

After getting normalized metric counts for each server, the final step in the algorithm

is to use a machine learning classifier to decide if each set of counts indicates that the

corresponding server is causing a performance bottleneck. Machine learning classifiers

aim to classify instances into classes, based on attributes, after having been trained

on previous instances. As a concrete example, consider Fisher's well-known iris flower

data set [15], in which 150 iris flowers of three different species were measured and

classified. In this example, each flower is an instance, each of the four measurements

taken on it (sepal length, sepal width, petal length, petal width) is an attribute, and

the three species are the output classes. The goal of a machine learning classifier

in this example is to classify a new iris flower into the correct species, given those

four measurements as input. In this work, each set of metric counts from one server

forms an instance, with the three category counts as attributes. The output classes

are "yes" and "no," signifying whether each set of metric counts indicates whether

the corresponding server is exhibiting a performance bottleneck.

This work uses the well-known Naive Bayes classifier, as implemented by Orange

[12], a Python library for data mining and machine learning. Naive Bayes determines

the probability that a particular example belongs to a particular class, making an

assumption of independence between the input attributes (the "NaYve" part of "Naive

Bayes"). Although this assumption is generally untrue in practice, the classifier gives

quite good results. [13] However, Naive Bayes can be problematic when two or more

attributes are highly correlated; in that case, the classifier's performance can be

improved by using only a subset of the available attributes, known as feature selection.

31



[24] The specific method of feature selection used here is discussed in Section 5.3.

The Naive Bayes classifier provides several advantages over other classification

algorithms. First, it is observable [19], meaning that it is possible to construct a

visual representation of the trained classifier that shows the relative influence of each

attribute on the final output. This gives a human operator some insight into what

criteria are used for classification. Also, in addition to providing a classification as

output, Naive Bayes also provides, for each possible output class, a probability that

the instance belongs in that class. Thus, a human operator can see how strong or

weak the classifier's conclusion is.

Given the universality of the canonical characteristics, as discussed in Chapter 3,

we expect that quite different applications will produce similar performance charac-

teristics, and therefore will produce similar metric counting results for components

that are and are not exhibiting performance bottlenecks, as long as those applications

follow the properties laid out in Chapters 2 and 3. Thus, training data generated from

different applications should show broad similarities, and classifiers generated from

one application should perform reasonably well on another. This assertion will be

examined in depth in Chapter 6.

Given that we know that a server showing many segmented relationships has likely

reached its saturation point, the resulting machine learning classifiers are effectively

reporting those sets of counts with many metrics in the "segmented" category as

sources of a performance problem. Thus, invoking an elaborate machine learning

system may not be strictly necessary; a simpler system of analysis that merely uses a

threshold on the count of segmented metrics may be sufficient. However, a machine

learning classifier contains its own training algorithm, whereas a threshold-based sys-

tem would need to decide on a suitable threshold. In addition, there is a set of

established evaluation methodologies for machine learning classifiers that can be used

to assess the algorithm's effectiveness.
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4.5 CPU-Ready Enhancement

The "CPU-Ready-Time" performance metric is of particular interest for virtualized

environments. CPU-Ready indicates the amount of host processor time during which

a virtual machine is runnable (i.e., there is work available for the virtual machine's

virtual CPU), but cannot be scheduled because another virtual machine is currently

scheduled. In a more abstract sense, CPU-Ready greater than 0 indicates an unmet

demand for computational resources, in the same way that performance metrics such

as CPU utilization indicate a fulfilled demand for resources.

This property of the CPU-Ready metric is domain knowledge that can enhance the

algorithm's predictive ability in a virtualized environment. Instead of considering only

the application's resource consumption, the algorithm can consider the application's

total resource demand. Each CPU metric is scaled and normalized to a mean of 0

and standard deviation of 1, and then summed with the CPU-Ready metric, also

scaled and normalized, to produce a representation of the application's total resource

demand. Then, the regression and classification procedure is repeated, producing an

additional set of category counts, which becomes an additional three attributes as

input for the machine learning classifier.

4.6 Implementation

Performance metrics are monitored using dstat [2] and esxtop [6], through a remote

command execution and data collection framework written in Java and backed by

a PostgreSQL database. Latency information is collected from application logs and

the Faban [23] load-generation tool. Statistical analysis and classification is done in

Python, using R [22] (through RPy [1]). The Orange [12] toolkit is used for machine

learning classification.
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Chapter 5

Experimentation

In order to test the algorithm's accuracy, experiments were carried out with two

test applications in which performance problems were deliberately introduced on one

server of the application, and the algorithm was used to attempt to locate the per-

formance bottleneck. Two applications in several configurations were used in order

to test the effectiveness of the algorithm in environments other than that in which it

was trained.

5.1 Olio

Olio [23] is a social networking and event planning application, designed specifically

for benchmarking and performance comparison across application frameworks. Olio

exists in three implementations (PHP, Ruby on Rails, and Java EE) and is built atop

common Web application software (e.g., Linux, MySQL, Apache). Olio is a multi-tier

application, divided into an application tier, holding the application's business logic,

and a database tier, responsible for managing the application's persistent data.

The Rails and PHP implementations of Olio were used for these experiments. Olio

was hosted on two virtual machines (VMs) running on a VMware ESX Server host.

One VM hosts the persistent database tier, running either MySQL or PostgreSQL,

depending on configuration. The second VM hosts the application tier, using the

Thin [5] web server and Nginx [4] load-balancing proxy for the Rails implementation,
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and the Apache HTTP server for the PHP implementation.

The Faban [23] load-generating tool was used to generate synthetic load for Olio.

Faban is designed for benchmarking Web 2.0 applications, and supports a style of

operation that simulates actions taken by real users when using the application under

test. The Olio benchmark for Faban comprises seven operations, and chooses between

them using a Markov chain. In addition, the benchmark simulates user think time

by adding random delays between operations. Faban simulates multiple users by

spawning a number of threads, each of which independently issues a single request

to the application, waits to simulate think time, and then repeats. Each thread,

therefore, acts as a single simulated user.

Figures 5-1 and 5-2 illustrate the Olio experimental setups.

Linx

ESX Sr

I Linux I LZ x

I ESX Server I

Figure 5-1: Experimental setup for Olio Rails.

Fabanr Apache Sre - Olio PH atbs

Linux Linux Linux

ESX Srve ESX Server

Figure 5-2: Experimental setup for Olio PHP.

Several tests were carried out, each with a particular performance problem de-

liberately induced in one tier of the application, while driving synthetic load to the

application. Each test consisted of a series of executions of the Faban benchmark.

Each execution was carried out with a 10-minute steady state, with all configuration

parameters held constant during steady state. Each test then varied one parameter
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over the set of benchmark executions. The specific parameter variations are shown

in Table 5.1 and explained below. The tests carried out were as follows:

Application saturation bottleneck The testbed was configured to introduce a

resource saturation bottleneck in the application tier by limiting the number of

simultaneous connections that the application server can accept. This limits the

maximum amount of CPU bandwidth that the application server can consume

to much less than what is available.

For the Rails implementation, the testbed was configured with four instances of

the Thin application server. For the PHP implementation, the Apache server's

MaxClients parameter was set to 8192 simultaneous connections.

For this test, the number of simulated concurrent users was varied, from a point

well below saturation to a point well above saturation. The endpoints for the

variation in concurrent users were dependent on the Olio implementation and

database server in use.

Database saturation bottleneck The testbed was configured to introduce a re-

source saturation bottleneck in the database tier by directly restricting the

available CPU bandwidth using ESX Server resource limits. Constraints were

chosen to be somewhat less than the CPU bandwidth consumed by the database

VM when the application VM was being driven to its effective limit.

For the Rails implementation, the database VM was limited to 2659 MHz (equiv-

alent to one physical CPU on the host machine); for the PHP implementation,

the database VM was limited to 1595 MHz (approximately 75% of the CPU

bandwidth consumed when the application tier was being driven to its limit).

For this test, the number of simulated concurrent users was varied, from a

point well below saturation to a point well above saturation. As with the

application bottleneck test, the endpoints for the variation in concurrent users

were dependent on the Olio implementation and database server in use.
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Background noise The testbed was configured with additional, unrelated VMs to

consume CPU cycles, thereby limiting the CPU bandwidth available to Olio.

Additional VMs were pinned to the same physical CPUs as one of the Olio VMs;

separate tests were run for the application and database tiers. These extra

VMs ran lookbusy [31, a synthetic CPU load generator that simply alternates

between an empty loop and sleep to generate as much CPU activity as desired.

For this test, the CPU bandwidth consumed by each lookbusy VM, from the

point of view of its guest OS, was varied from 0% to nearly 100%. (The al-

gorithm that lookbusy uses for computing the balance between executing and

sleeping breaks down when trying to set it at 100%; however, 95% or 99% is

sufficient.)

Test Configuration Parameter

Rails, MySQL Users: 50 to 300, by 10
Application bottleneck Rails, PostgreSQL Users: 50 to 350, by 10

PHP, MySQL Users: 100 to 2000 by 100

Rails, MySQL Users: 50 to 300, by 10
Database bottleneck Rails, PostgreSQL Users: 50 to 350, by 10

PHP, MySQL Users: 100 to 2000, by 100

Rails, MySQL Noise: 0% to 99%, by 3%
Application background noise Rails, PostgreSQL Noise: 0% to 95%, by 5%

PHP, MySQL Noise: 0% to 95%, by 5%

Rails, MySQL Noise: 0% to 99%, by 3%
Database background noise Rails, PostgreSQL Noise: 0% to 95%, by 5%

PHP, MySQL Noise: 0% to 95%, by 5%

Table 5.1: Testbed variable parameter configurations.

5.2 Hadoop

Hadoop is a free, open-source distributed computing framework, comprising a com-

putational engine similar to Google MapReduce, and a distributed filesystem similar

to Google File System. Hadoop was chosen for experimentation to supplement Olio

38



because it uses a different architecture and different model of computation, and is

therefore suitable for testing the generality of the algorithm across a wide spectrum

of applications. Also, Hadoop was chosen as a true "cloud" application, with features

typical of cloud applications, including built-in scaling and fault tolerance.

The algorithm was designed for multi-tier applications supporting a model of "re-

quests" and "latency"; however, Hadoop is not a multi-tier application, and does not

operate in the request/response model. Instead, Hadoop uses multiple independent

nodes, each providing a thread pool for worker tasks, coordinated by a central work

dispatcher (the JobTracker node). Due to this difference, it is necessary to somehow

map the concepts of "request" and "latency" to something provided by Hadoop. For

these experiments, each individual map or reduce job was considered a "request," and

its time to completion was treated as its "latency."

A physical machine was configured as four virtual machines, each running a

Hadoop DataNode and TaskTracker. One VM also ran Hadoop's NameNode and

JobTracker. Another VM was configured with lookbusy VMs attached, to generate

background noise, as in the Olio background noise tests (see Section 5.1). The back-

ground noise test was run, using Hadoop's Monte Carlo pi estimation benchmark.

Each VM was configured with 5 map slots and 5 reduce slots. The benchmark was

configured to run 240 tasks with one billion Monte Carlo samples per map.

5.3 Machine Learning

Data sets for machine learning classification were created by assembling the metric

classification counts from each of the two application tiers for each test. The set of

counts from one server in one test became one instance in the dataset. The data

was divided into three sets that could then be combined as needed: Olio Rails, Olio

PHP, and Hadoop. Each instance had two class variables attached to it: one for

resource saturation and one for background noise, indicating whether that instance is

an example of that particular problem. All of the instances from resource saturation

tests were classified as "no" for background noise; likewise, all of the instances from
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background noise tests were classified as "no" for resource saturation. The datasets

used for this experimentation are reproduced in Appendix B.

An initial check on the accuracy of each resulting classifier was performed using

leave-one-out cross-validation, where, for each instance in the dataset, that instance

was omitted, the classifier was trained on the remaining instances, and then the

classifier was tested on the omitted instance.

The goals stated at the beginning of this chapter were then tested by training

classifiers on one data set, and then measuring their accuracy on another, thus testing

the classifiers with an application configuration and environment different from that

in which they were trained.

As discussed in Section 4.4, using a feature-selection procedure to eliminate ex-

traneous variables in the input data can increase the classification accuracy. A brute-

force search over the space of attribute subsets here was used for feature selection.

Preference was given to the attribute subset with the best balanced accuracy using

leave-one-out on the training data, with ties going to the subset with fewer attributes.

This approach is reasonable here given the small space of attribute subsets (8 subsets

for 3 attributes, or 6 with the CPU-Ready enhancement) and the speed of training

the Naive Bayes classifier.

5.3.1 Evaluation

After creating machine-learning classifiers and using them to classify instances as

discussed above, a suitable method of evaluating their performance (i.e., how many

instances were correctly classified) is needed. For measuring the classifier's perfor-

mance, a common measure is classification accuracy (CA), which is simply the fraction

of the test instances that were classified correctly. However, for this work, CA is not

a suitable measure. In practice, one class (i.e., "no," this tier is not responsible for

a performance problem) will occur much more frequently than the other. In this

case, a "dumb" classifier could always pick the class that occurs more frequently, and

produce a very high CA. To compensate for this effect, this work uses a measure

known as balanced accuracy, which is the average of the sensitivity (proportion of
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"yes" instances that were classified correctly) and the specificity (proportion of "no"

instances that were classified correctly). [10]
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Chapter 6

Results

This chapter will present an analysis of the data collected during experimentation and

will demonstrate the ability of the algorithm to determine the server responsible for

a performance bottleneck in an application system, particularly on a system different

from that on which it was initially trained.

6.1 Olio

Tables 6.1 and 6.2 show the results of the metric classification procedure, after metrics

common to both tiers have been removed but before the metric counts have been

normalized, for the application bottleneck and database bottleneck tests, respectively.

These results are from the Rails MySQL configuration. These results were chosen to

illustrate the patterns and statistical characteristics that are indicative of particular

performance problems.

Metrics Normalized

Class App DB App DB

None 1 13 0.029 0.382
Linear 2 18 0.059 0.529
Segmented 31 3 0.912 0.088

Table 6.1: Metric classification results from application bottleneck test. "Metrics"
columns are number of metrics in each category after removing metrics common to
both tiers.
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Metrics Normalized

Class App DB App DB

None 21 0 1.00 0.00
Linear 0 0 0.00 0.00
Segmented 0 21 0.00 1.00

Table 6.2: Metric classification results from database bottleneck test. "Metrics"
columns are number of metrics in each category after removing metrics common to
both tiers.

Table 6.1 shows the classification results from the application bottleneck test, in

which the application tier was deliberately configured to exhibit a performance bot-

tleneck. In addition, Figure 6-1 shows the relationship between user CPU utilization

and latency for the application (Figure 6-1A) and database (Figure 6-1B) tiers. Table

6.1 indicates that on the application server, 31 metrics showed a segmented relation-

ship according to the classification procedure (described in Section 4.2); two metrics

showed a linear relationship, and 1 showed no statistically-significant relationship.

The right-hand columns of Table 6.1 show these same numbers, except normalized to

the total number of metrics that were classified.

Note that many more application metrics show a segmented relationship than

database metrics, indicating that the application tier is operating across both regions

of the canonical performance characteristic, and has reached saturation at larger

numbers of users. Also, note that metrics on the database server mostly fall into

either the linear or none categories, and very few database metrics show segmented

relationships. This indicates that the database tier is operating only in one linear

region of the canonical relationship, and is therefore not reaching its saturation point.

This same pattern is clearly visible in the CPU utilization plots. Hence, these results

indicate that the saturation bottleneck is in the application tier, as expected.

Contrast these results with those from the database bottleneck test, shown in

Table 6.2. Also, Figure 6-2 shows the relationship between user CPU utilization and

latency for the application (Figure 6-2A) and database (Figure 6-2B) tiers. This

test shows roughly opposite results: more database-tier metrics show a segmented

relationship than application metrics. Figure 6-2 shows this relationship as well.
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Figure 6-1: Relationship between latency and CPU utilization for the application
bottleneck test. Best-fit lines are shown: segmented regression for the application
tier, and simple linear regression for the database tier. Exact equations for the best-
fit lines are not important; rather, this diagram illustrates the presence of segmented
and linear relationships, respectively.

These results indicate that, as expected, the database tier has reached saturation and

is the source of the bottleneck.

Table 6.3 shows machine learning results for Naive Bayes classifiers trained on

the Olio Rails dataset, and tested on the Olio PHP dataset, testing the accuracy

of the classifiers with a different application configuration from that on which they

were trained. Accuracies for the "Training" column are computed with leave-one-out

cross-validation on the training data; accuracies in the "Test" column are the balanced

accuracy of the test data set using classifiers trained on the training set. The high

accuracies in both columns indicate that the algorithm can effectively locate the

server responsible for a performance problem; furthermore, the high accuracies in the

"Test" column demonstrate that the algorithm can locate performance problems in

environments different from that on which it was trained.

Table 6.4 shows the effect of adding CPU-Ready attributes, making them available

to the classifiers and feature selection procedure. Balanced accuracies were computed

using leave-one-out with Naive Bayes classifiers trained on the entire Olio dataset,
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Figure 6-2: Relationship between latency and CPU utilization for the database bot-
tleneck test. The best-fit line is shown for the database tier. The exact equation
for the best-fit line is not important; rather, this diagram illustrates the presence of
a segmented relationship there. The application tier data was not well-modeled by
either a simple linear regression or a segmented regression.

Class Variable Training Test

Saturation 1.000 0.833
Noise 0.917 1.000
Bottleneck 1.000 1.000

Table 6.3: Machine learning accuracy, trained on Rails and tested on PHP.

using the attribute subsets that give the best balanced accuracy. Given that that

CPU-Ready attributes are specific to and only meaningful in a virtualized environ-

ment, it would be expected that adding them would not result in any increase in

accuracy for locating performance problems not related to virtualization. Table 6.4

shows results that are close to this expectation. For the saturation test, where the

performance bottleneck is not virtualization-related, the classification accuracy im-

proves slightly, by 2.8 percentage points. However, for the background noise test,

where the cause of the bottleneck is virtualization-related, the classification accuracy

improves more dramatically, by 11.1 percentage points.

With the high accuracies shown in Tables 6.3 and 6.4 from training the algorithm
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Class Variable Without With Change

Saturation 0.944 0.972 0.028
Noise 0.750 0.861 0.111
Bottleneck 0.917 1.000 0.083

Table 6.4: Machine learning accuracy, with and without CPU-Ready attributes.

on one configuration of the application and testing its accuracy on another, we can

conclude that the algorithm can effectively locate the server responsible for a per-

formance bottleneck. Furthermore, the algorithm is effective at locating bottlenecks

even in an environment different from that in which it was trained. Given the gener-

ality of the characteristics that this algorithm is searching for, we could expect that

this would be the case; furthermore, we also expect that this conclusion would carry

over to much different applications; this assertion will be examined in more depth in

the following section.

6.2 Hadoop

This section will present results from the experimentation carried out in Section 5.2,

and demonstrate that the algorithm is capable of locating performance problems in

an application much different from those discussed above.

Table 6.5 shows balanced accuracies from Naive Bayes classifiers tested on the

Hadoop dataset, after training on the combined Olio dataset, with and without the

normalization procedure included in the algorithm. Tests for Hadoop were performed

only with the Noise class variable, because only the background noise tests were run

with Hadoop. Balanced accuracies were computed using the attribute subsets that

give the best balanced accuracy on the training data. With normalization, the clas-

sifier achieved perfect accuracy on the Hadoop data. However, without normalizing

the attributes to a 0-to-i scale, the classifier performed considerably worse, indicating

that normalizing to correct for varying ranges of counts of metrics is a valuable addi-

tion to the algorithm. Given that the classifier used in this experiment was trained on

data from one application and tested on another application entirely, this experiment
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shows that the resulting classifiers (and underlying performance theory, namely the

canonical performance characteristic) are fairly general.

Normalized Accuracy

Yes 1.000
No 0.625

Table 6.5: Machine learning results for Hadoop tests.

In addition, recall from Section 4.4 that a Naive Bayes classifier outputs not only

a chosen class, but also probabilities for each class. Of the four Hadoop test instances

that were exhibiting a background noise bottleneck, when CPU-Ready attributes were

included, the classifier predicted correctly with a mean probability of 0.84; without

CPU-Ready attributes available, the classifier predicted all four instances correctly

with a mean probability of 0.71. Even though the balanced accuracy was the same in

each case, using the virtualization-specific CPU-Ready enhancement did strengthen

the classifier's conclusions.

Given the perfect accuracy attainable by the algorithm in this experiment, we

can conclude that it can effectively locate the source of a performance bottleneck in

an application quite different from those for which it was designed. Again, this is

expected due to the generality of the canonical characteristics that this algorithm

is searching for in the application's performance data; hence, this algorithm should

prove effective with a wide variety of applications, regardless of what application it

was trained on originally.
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Chapter 7

Conclusion

This work presented an algorithm designed to aid in performance diagnosis for multi-

tier applications, by automatically identifying the specific component in a multi-

component system responsible for a performance problem. This algorithm monitors

each component, and using load vs. latency characteristics, uses statistical analyses

to locate canonical patterns indicative of performance saturation, and uses a machine

learning classifier to decide, based on the results of those statistical analyses, whether

each machine in the system is reaching its maximum capacity and is thus the source

of a performance problem.

This work has shown that this algorithm can reliably determine which component

in a multi-component system is first reaching its maximum capacity, and thus can

locate the source of a performance problem in an application system. In addition,

although the algorithm was intended only for applications of one architectural type

(interactive multi-tier applications), the algorithm was shown to be sufficiently general

to apply to a broader spectrum of applications. Finally, a specific enhancement for

virtualized environments was developed, and shown to produce improved results for

virtualization-specific performance problems.
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Appendix A

Performance Metrics Collected

This is a list of metrics collected from the testbed on each tier during the Olio and

Hadoop experimentation.

A.1 Guest-Level Metrics

These metrics are collected from the VM guest OS using dstat.

User CPU

System CPU

Idle CPU

I/O Wait CPU

H/W Int CPU

S/W Int CPU

Disk Read

Disk Write

Page In

Page Out

Int 17

Int 18

Int 19

1-min Load Avg

5-min Load Avg

15-min Load Avg

Used Memory

Buffer Memory

Cache Memory

Free Memory

Net Receive

Net Send

Processes Running

Processes Blocked

Processes New

I/O Read

I/O Write

Swap Used

Swap Free

Interrupts

Context Switches
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A.2 VM-Level Metrics

These metrics are collected from each VM using esxtop.

CPU Used

CPU Run

CPU System

CPU Wait

CPU Ready

CPU Costop

Net Out Dropped

Net Recvd Dropped

Net Received

Net Sent

A.3 Host Metrics

These metrics are collected from the VM host using esxtop.

CPU Proc Time

CPU Util Time

CPU Core Util Time

Swap Read

Swap Write

Disk Cmds/sec

Disk Reads/sec

Disk Writes/sec

Disk MBytes read/sec

Disk MBytes write/sec

Disk Avg Driver msec

Disk Avg Kernel msec

Disk Avg Guest msec

Disk Avg Queue msec
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Appendix B

Datasets

Datasets used for machine learning are reproduced in this chapter. Each row in a

table represents one instance. Table column headings are as follows:

PT Problem type: saturation or noise, corresponding to which test this instance

came from.

Config Which testbed configuration was used for this instance.

Tier Which tier this instance was taken from.

PL Problem location: which tier was the cause of the performance problem for this

test.

None Value of the "none" attribute, before scaling by total number of metrics.

Lin Value of the "linear" attribute, before scaling by total number of metrics.

Seg Value of the "segmented" attribute, before scaling by total number of metrics.

RNone Value of the "none" attribute with the CPU-Ready enhancement, before

scaling by total number of metrics.

RLin Value of the "linear" attribute with the CPU-Ready enhancement, before

scaling by total number of metrics.

RSeg Value of the "segmented" attribute, before scaling by total number of metrics.

BN Value of the "bottleneck" class variable, indicating whether this instance is an

example of a performance bottleneck.

Sat Value of the "saturation" class variable, indicating whether this instance is an
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example of a saturation bottleneck.

Noise Value of the "noise" class variable, indicating whether this instance is an

example of a background noise bottleneck.
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PT Config Tier PL None Lin Seg RNone R-Lin RJSeg BN Sat Noise

App App 1 2 31 0 1 28 Yes Yes No

Saturation MySQL DB App 13 18 3 5 24 0 No No No
App DB 21 0 0 52 0 0 No No No
DB DB 0 0 21 0 0 52 Yes Yes No

App App 5 7 25 1 25 14 Yes Yes No

Saturation Postgres DB App 15 20 2 31 6 3 No No No
App DB 35 0 0 47 0 0 No No No
DB DB 0 19 16 0 40 7 Yes Yes No

App App 3 2 3 0 3 2 Yes No Yes

Noise MySQL DB App 5 0 3 5 0 0 No No No
App DB 12 0 2 28 1 2 No No No
DB DB 2 11 1 1 27 3 Yes No Yes

App App 8 8 8 3 6 21 Yes No Yes

Noise Postgres DB App 13 8 3 24 4 2 No No No
App DB 13 2 4 32 0 1 No No No
DB DB 5 12 2 0 32 1 Yes No Yes

Table B.1: Olio Rails Dataset
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PT Config Tier PL None Lin Seg RNone RLin R.Seg BN Sat Noise

App App 2 4 26 0 4 25 Yes Yes No

DB App 28 2 2 27 1 1 No No No
Saturation MySQL App DB 28 0 0 41 0 0 No No No

DB DB 0 5 23 0 7 34 Yes Yes No

App App 2 7 24 0 5 32 Yes No Yes

DB App 24 8 1 36 0 1 No No No
Noise MySQL App DB 21 0 8 43 0 2 No No No

DB DB 7 5 17 2 0 43 Yes No Yes

Table B.2: Olio PHP Dataset



PT Tier PL None Lin Seg RNone RLin R.Seg BN Noise

Hadoop1 35 1 4 15 1 29 No No

Noise Hadoop2 Hadoop4 1 0 39 40 0 5 No No
Hadoop3 39 0 1 39 0 6 No No
Hadoop4 11 17 12 8 9 28 Yes Yes

Hadoop1 22 0 1 34 0 0 No No

Noise Hadoop2 Hadoop4 23 0 0 33 0 1 No No
Hadoop3 17 0 6 34 0 0 No No
Hadoop4 4 13 6 0 9 25 Yes Yes

HadoopI 0 0 38 33 0 5 No No

Noise Hadoop2 Hadoop4 1 0 37 33 0 5 No No
Hadoop3 38 0 0 38 0 0 No No
Hadoop4 14 14 10 0 8 30 Yes Yes

Hadoop1 38 0 2 33 0 6 No No

Noise Hadoop2 Hadoop4 2 0 38 34 0 5 No No
Hadoop3 36 0 4 33 0 6 No No
Hadoop4 15 14 11 8 7 24 Yes Yes

Table B.3: Hadoop Dataset
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