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Abstract

In this thesis the instruments explore two main aspects of organic optoelectronic de-
vices. One instrument characterizes exciton diffusion and the other patterns organic
thin films. Exciton diffusion characteristics are important to study in organic mate-
rials because excitons mediate the transport of energy. In this work, a fluorescence
microscope is designed and built in order to image directly the triplet exciton diffu-
sion in organic crystals.

Patterning of organic thin films in industry is done by fine-metal masks, which
are fragile and do not scale with substrate size. The second instrument is the first
fully functional prototype for a new type of dry lithography technique invented in our
research group which addresses the scalability and compatibility problems of past pat-
terning methods. The proof-of-concept instrument replaces the traditional fine metal
mask patterning method by patterning a sublimable mask with a micro-stamp.

Thesis Supervisor: Marc A. Baldo
Title: Associate Professor of Electrical Engineering
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Chapter 1

Background

The past decade has been witness to new types of semiconductor devices which utilize

organic materials. These organic materials are held together by weak van der Waals

bonds which allow the devices to be created without the painstaking growth require-

ments of conventional silicon devices. Unlike silicon devices where the structure is

highly ordered, these devices exploit short range order to enable devices to be created

at potentially low-cost processes. Given the flexibility of organic materials in terms

of molecular design and synthesis, it is possible to tune the physical properties and

material structures to meet the requirements of the given application.

1.1 Organic Semiconductor Devices

Silicon devices dominate the electronics we use today. The relative abundance of

silicon and large investment in its manufacturing infrastructure has enabled silicon to

be the de facto material for many of the components that drive our digital revolution.

Organic electronics with their low electron mobilities are not suitable for transistors

and other computation devices. The intermolecular overlap of the van der Waals

bonds generally limit charge transport mobilities to less than 10 cm 2 /Vs at room

temperature.[1] However, organics are superior in terms of coupling the interactions

of light and electrical signals because of excitons.
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Figure 1-1: Graphic Description of an Exciton. [2]

Excitons are bound pairs of electrons and holes which are able to mediate the

absorption and emission of photons. [2]

Therefore, these excitons are an excellent medium in which light can be generated

and absorbed. Excitonic devices have been used in the development of many opto-

electronic devices such as organic photovoltaics [3] and organic light emitting diodes

Figure 1-2: Example of an OLED. [6]

The instruments constructed in this thesis were built for exciton diffusion measure-

ments and patterning for organic light emitting diodes. The fluorescence microscope

created in this thesis, will allow these devices to be characterized by measuring the

diffusion lengths of the excitons. Thereby allowing different configuration of materials

to be tested to find the longest diffusion lengths.
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The second instrument constructed deals with the patterning of OLEDs. In in-

dustry, people are using shadowmasks to pattern which does not scale with substrate

size. As you increase the pattern area, the shadowmasks bend because of their thin-

ness and become misaligned for the pixels. Industry is looking for alternative ways

to pattern these devices. The tool constructed in this thesis is a prototype of a sub-

limable mask process that requires no shadow mask to pattern devices. A more detail

account of the process will be explained in Chapter six.

Figure 1-3: Example of a shadowmask. [15]

There are two parts to this thesis. In the first part, the construction of a fluo-

rescence microscope is discussed in order to directly measure the exciton diffusion of

devices. In the second part, the construction of a thermal evaporator equipped with

a mask-less patterning method is discussed.

Chapter two discusses exciton diffusion in organic crystals and the indirect meth-

ods of measuring the diffusion.

Chapter three describes the construction of the fluorescence microscope and the

direct measurement of the exciton diffusion.

Chapter four summarizes the results and concludes the discussions of this part.

Chapter five introduces current patterning techniques for organics, comparing the

advantages and disadvantages of the mask-less technique discussed in section 6.1 .

13



Embossing techniques are also discussed as they play an important role in the new

patterning method.

Chapter six describes the process flow for the patterning method. The design and

construction of the working prototype are also discussed.

Chapter seven concludes the second part while discussing future additions to the

prototype that would help the patterning technology mature into a feasible manufac-

turing capability.

14



Part I

Direct Imaging of Exciton

Diffusion

15



16



Chapter 2

Exciton Diffusion

In organic optoelectronic devices a key parameter that controls the transfer of electri-

cal energy to optical energy is the exciton. Exciton diffusion is especially important

in devices like organic photovoltaics because it allows the optical energy to be carried

through the exciton to a charge transfer site where the charge can be extracted. [8]

An organic crystal is a good starting point for exciton diffusion measurements

because their structure can be determined. Mobilities of holes and electrons are high-

est in organic crystals and should therefore yield high exciton transport properties.

In this work a Tetracene crystal was chosen because of its transport properties. In

Tetracene there are two different excitons created at the point of excitation a singlet

and a triplet exciton. A singlet has a decay rate of about 9 nano seconds while the

triplet decay rate is much longer up to hundreds of microseconds. [1] Therefore, in

the discussion below the triplet diffusion length is what is being measured since it

has a lifetime that is long enough to diffuse.

2.1 Indirect Measurement methods

Many of the literature values of diffusion lengths vary because they are done indirectly.

Diffusion lengths in anthracene crystals have been measured by studying the time

dependence of the delayed fluorescence due to a varying distribution of excitation

17
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Figure 2-1: Molecular structure of Tetracene. [10]

light. [11] Another common method for measuring the triple diffusion indirectly is

by examining the polarization and wavelength dependent photo-conductivity of the

crystal. [12] In this case the photo-conductivity can be related to the diffusion lengths

because the exciton dissociation at the surface of the crystals can be contribute to the

photo-conductivity. Unfortunately, none of these methods are able to directly capture

the diffusion length of the exciton. In these experiments many other parameters have

to be taken into account obscuring the true diffusion length. As a result, in the

literature the diffusion lengths of a particular type of crystal can vary as much as 10

microns. In this thesis, a fluorescence microscope is constructed to help alleviate this

problem of accuracy, as shown in the sections below.

18



Chapter 3

Fluorescence Microscope

3.1 Exciton Relaxation

In order to better understand how a fluorescence microscope helps in the direct mea-

surement of the exciton diffusion. First, we have to understand how one is able to

measure the location of the exciton. The exciton, fundamentally an excited electron

and hole pair cannot be seen optically as it does not emit any light. By using the

Born-Oppenheimer approximation one can simplify the energy levels of the molecules

into two states; a ground state and an excited state. When an exciton is created

either by injection of charge or by optical excitation, the electron jumps into the

excited state. Given the allowed and disallowed electronic transitions according to

spin; a singlet or triplet exciton can be created. When the electron relaxes it emits

a photon to release the energy so that it can be brought to the ground state. The

decay of excited singlet states is allowed therefore is it fairly rapid in the range of

nanoseconds. This relaxation is called fluorescence. A triplet state decay is weakly

allowed prescribed to certain second order effects that mix the singlet and triplet

states, causing a relaxation in the range of microseconds. This relaxation is called

phosphorescence. As shown in Figure 3-1.

An exciton can also release a photon when it collides with other excitons forming

high-energy states that can relax by releasing photons and phonons. In this work,

19
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Figure 3-1: Positions of the first excited singlet and triplet levels found in a typical
molecule.

the diffusion of the exciton is measured by looking at the triplet-triplet annihilation

and imaging the fluorescence of the relaxing singlet exciton. As shown in Figure 3-2.

Diffusion

Figure 3-2: Exciton Diffusion mechanism: singlet is created by excitation light, singlet
splits into two triplets, triplets diffuse through the crystal, then the triplets collide to
form a singlet, then the singlet relaxes to emit the photon. [13]

A fluorescence microscope is typically used in biological applications, where dyes

are mixed in different areas of the transparent organism. By exploiting the fluo-

rescence of the dyes one can then image the specimen which otherwise would be

transparent to white light. As can be seen in Figure 3-3.

20
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Figure 3-3: Image of cells through fluorescence microscopy. [14]

The key idea of the microscope is that the illuminated light is absorbed by the

specimen and the fluorescence emitted by the sample is red-shifted to allow the image

sensor to only look at the light emitted from the sample. This is the basis of how the

exciton diffusion is measured, by direct imaging of the fluorescence.

3.2 Equipment Setup

The microscope is made up of the following components.

* Solid-state laser beam: 350 nm wavelength, Spectra Physics.

* Dichroic mirror: Reflective if below 400 nm, Transparent if above 450 nm.

* UV-Transparent microscope Objective

* Sample holder

21



* Focusing Lens

* CCD Camera (Q imaging)

A pulsed laser beam is delivered normal to the surface of the Tetracene crystal,

by first reflecting off the dichroic mirror then being focused by the objective to a

spot size of about a micron in diameter. Then delayed fluorescence is captured by

the objective and passes through the dichroic mirror which focuses the rays using the

focusing lens into the CCD camera. The resolution of the image was 0.63 micrometer

per pixel. A schematic of this process is shown in Figure 3-4. The actual microscope

set-up is also shown in Figure 3-5.

Figure 3-4: Schematic of fluorescence microscopy.

22



CCD Camera

Focusing Lens

Dichroic Mirror

Objective

350 nm Laser Sample

Figure 3-5: Actual constructed fluorescence microscope.

3.3 Exciton Diffusion Measurement

The Tetracene crystal was measured at two different planes. This was to investigate

which axis of the crystal would yield the highest diffusion length. The laser excitation

spot was pulsed and the CCD camera would capture the image at later times. This

allowed the diffusion profile to be imaged dependent on the initial excitation. Figure

3-6 and 3-7 show the instantaneous spot along with the delayed images. The diffusion

profile is seen in Figure 3-8, which results in a diffusion length of about 5 microns.
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Figure 3-6: Delayed Fluorescence in AB plane axis of Tetracene crystal [13]
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Figure 3-7: Delayed Fluorescence in C plane axis of Tetracene crystal [13]
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Figure 3-8:
[13]

Cross-section of the fluorescence: spreading of spot size at later times.
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Chapter 4

Conclusion

The instrument constructed was able to effectively measure the exciton diffusion di-

rectly. By borrowing the techniques used in studying biological specimen, a diffusion

length of about 5 micrometers was measured. Considering that the C plane and AB

plane had similar spot profiles, this should suggest that optical wave-guiding and

self-absorption are also playing a role in the transport of energy. This is because

the C plane diffusion length in Tetracene should be considerably less according to

theoretical calculation.

The next steps are to study other types of crystals and to verify actual triplet

diffusion. Transient measurements with a streak camera can lead to studies of

self-absorption. Organic semiconductor devices that can benefit from long diffusion

lengths could also be studied.
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Part II

Mask-less Patterning of Organic

Materials
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Chapter 5

Patterning Organics

Organics cannot be patterned with conventional lithography because of the solvents

involved. Therefore, there are three main alternatives that are being developed to

pattern organic devices. The most successful method is shadow mask patterning. In

this method the organic is deposited using thermal evaporation where the organic

material is heated in a boat in a vacuum atmosphere. The low pressure allows the

organic to travel relatively unobstructed and can be patterned by a shadow mask that

sits just above the substrate. [15] The disadvantages of this method is its inability to

scale with the substrate and a reliance on a batch-based approach. Even with these

drawbacks, this is the method that is used in industry. The second method of pat-

terning is a stamping technique. This is usually called soft lithography and typically

uses a patterned elastomer to transfer a single layer of material to its substrate. [16]

Its limitations are the contamination issues involved and the adhesion of the organic

material to the elastomer. The third method that is being explored is a modification

to inkjet printing. One example is a technique called organic vapor phase deposition

where the print head actually becomes a source of the organic vapor and by careful

control of the head, micro patterns can be printed on a substrate. [17] The disadvan-

tage of this technique is a need for parallel heads and organic material compatibility.

The instrument constructed in this thesis uses a completely different technique

than previously used. The method is most similar to the shadow mask method as

27



it uses a thermal evaporator but is different because instead of the shadow mask a

sublimable resist is used to pattern the organics. The sublimable resist can be pat-

terned many ways but the most energy efficient is by soft lithography (embossing

micro-stamp). The complete method will be explained in Section 6.1 but it is useful

to first understand two main aspects of the process: the thermal evaporation and

embossing micro-stamp.

5.1 Thermal Evaporation

Thermal evaporation is currently the only method used in industry that allows for

large substrates to be coated with a very precise thickness of organics, down to a

couple of Angstroms. Usually low pressures are used to minimize the contamination

and maximize the mean free path of the organic evaporated, pressures range from high

vacuum (10-6) Torr to ultra high vacuum (10-') Torr. The technique uses metal or

ceramic boats that are heated by running a high current through them. This in turn

causes the organic in the metal or ceramic boats to evaporate upwards where the

substrate is usually located. Since the pressure is very low, the mean free path of

the vapor of the organics is very high causing the particles to travel in a relatively

straight line from the source boat. A quartz crystal monitor is typically used to

measure the thickness of the evaporated material. The crystal monitor vibrates at a

specific frequency and can detect minute changes in its mass as organic is evaporated

on it. A tooling factor is typically used to match the thickness read on the crystal

monitor to the thickness of the substrate. A schematic of a typical evaporator is

shown in Figure 5-1.

28
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Figure 5-1: Image of a typical vacuum thermal evaporation setup using a shadow
mask to pattern the material. [18]

5.2 Embossing Micro-stamp techniques

Embossing micro-stamp techniques work like printing presses, where the contact of the

stamp can transfer a pattern to the substrate expect that the scales are in micrometers

instead of centimetres. Stamps are typically made up of a patterned elastomer, which

can be made with a master stamp. Polydimethylsiloxane(PDMS) is the most common

elastomer used because of its cost and ease of use. The most important factor is the

rigidity of the stamp and the ability to conform to the substrate in order to transfer

the desired patterned. The rigidity is needed to make sure the pattern is the same as

the stamp and the ability to conform is needed to make consistent contact for even

patterning. Although these can be formidable challenges, the micro-stamp techniques

have advantages in large scale manufacturing because it is conceivable that a roll-to-

roll micro stamp could be developed to mimic the fast throughput of printing presses.

A typical micro-stamp configuration is showed in Figure 5-2.
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Figure 5-2: Image of a typical embossing micro-stamp process. [19]
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Chapter 6

Patterning Instrument

The instrument constructed combines the method of thermal evaporation with that

of soft lithography. A vacuum chamber with thermal sources is equipped with a

custom micro stamp system. The process will be explained in detail in Section 6.1.

In addition to the vacuum chamber, a glove box filled with nitrogen gas was designed

and purchased. This is because organics are incompatible with oxygen and water.

The glovebox was constructed so that the chamber would mate to it to preserve the

nitrogen environment. The glove box was constructed and purchased from LC Tech

Inc. A 3D model of the complete instrument is shown below in Figure 6-1.
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Figure 6-1: 3D CAD Drawing of Constructed Instrument.

6.1 Sublimable Mask Process flow

The invented process that is prototyped in this thesis is described in this section.

This process uses the same vacuum chamber and thermal evaporation techniques as

the shadow mask method but instead of using a shadow mask, frozen carbon dioxide

is used as a dry resist which is then patterned by a micro-stamp. The substrate is

cooled in order to keep the CO2 from subliming. After the dry ice is patterned, the

thermal sources are fed with current which causes the organic to be deposited on the

substrate and patterned dry ice. After the desired thickness is reached, the substrate

is then heated to lift off the resist and leave a patterned organic layer. It is an inert

process which just replaces the shadow mask but keeps the advantages of thermal

evaporation. A detailed diagram of the process is shown in Figure 6-2. A schematic

representation of the micro-stamp patterning the resist is also shown in Figure 6-3.
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Simplified process flow for sublimation lithography using a frozen CO2 resist (not to scale). (a)

Cool substrate below 100K. (b) Freeze on thin film of CO 2. (c) Pattern CO 2 film using moderate local
heating. (d) Deposit desired organic or metal thin film using thermal evaporation. (e) Warm substrate,
sublime CO 2, and lift off unwanted material. (f) Repeat as necessary to complete device.

Figure 6-2: Sublimable Mask Process. [20]

4,

Schematic representation of using a micro-
featured stamp to define exposed area of a
sublimable mask

Figure 6-3: Micro-stamp patterning the dry ice. [20]

6.2 Chamber Design

The vacuum chamber was made out of stainless steel. Stainless steel was chosen

because it has a very low out-gas rate which aids in achieving a pressure of 10-7 Torr.

Below is the list of components that were either machined or bought.

* Stainless steel chamber: constructed by MIT Machine shop

* Cryogenic pump: Low pressure pump to get to pressures of 10-7 Torr. Bought

from CTI-CRYOGENICS.

* Dry Rough Pump: High pressure pump to get to pressure of 10-3 torr.

* Ionization Gauge: Measure low pressures down to 10-7 torr.
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* Convection Gauge: Measure high pressure down to 10-3 torr.

* USB Connector Flange: for connectivity to the insitu microscope.

* X-stage and Y stage micro motors: for use in manipulating the stamp.

* Vent Connector: in order to vent the chamber to atmosphere pressure.

* Quartz Crystal Monitor: to monitor organic layer thickness.

* Liquid Nitrogen Feed-through: this is so that Liquid Nitrogen can be flowed

into the substrate holder to cool it down to 77 Kelvin.

* Mass flow controller: this is to control the CO 2 flow rate.

* Viewport: ability to transfer laser light into chamber for interference thickness

monitoring.

* Electrical Feed-throughs: Heating capability, control of micro manipulators,

temperature sensors.

* K-cells: ceramic boats which are used as thermal evaporators to deposit the

organic.

* Door Mechanism: Allows chamber door to slide for ease of use made out of

80/20 material.

The figures below are the 3D CAD files designed for the construction of the cham-

ber. Figures 6-4, 6-5, and 6-6 refer to the chamber. Figure 6-7 is the door mechanism

design. The dimensions are in inches.
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Figure 6-5: The two sides of the chamber with the corresponding item locations
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Blank
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Substrate Flange

Vent Valve
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Evaporator BoatsElectrical Feed-
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B

Figure 6-6: A. Top view of chamber. B. Bottom view of chamber: thermal evaporators
location

Figure 6-7: Door Mechanism Design for ease of use.
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6.2.1 Carbon Dioxide Gas Delivery method

The CO 2 delivery system is important for this process because it controls the thickness

of the carbon dioxide. Initially, experiments were done with a leak valve where we

would monitor the convectron gauge to see what type of pressure was flowing in.

Since this method, is not very repeatable and accurate, a mass flow controller was

purchased. A Type 2179A Mass-Flow conroller from MKS Instruments was used. It

allowed a control range of 2 to 100 percent of 100 sccm flow. Once the gas flowed into

the controller, the flow was measured, then it moved on to the control valve where

according to the given output value would adjust so that the total flow rate was the

same as the set point. The flow measurement is based on a differential heat transfer

between different temperature sensing heater elements in the sensor tube. Thermal

mass movement is converted to mass flow via the specific heat equation d = C;

where d is the mass flow, C is the heat capacity of the gas, and C, is the specific

heat of the gas.

6.2.2 Substrate design

Thermal conductivity in vacuum is very important if the substrate is to be cooled to

77 Kelvin. This is the temperature where the C02 would freeze to form a stable resist.

In the beginning, a cryo pump was used as a cold head to cool down the substrate.

Indium foil was used in between the interfaces of the copper plates to ensure good

thermal contact. Since the goal of this instrument is to illustrate a scalable prototype

of this mask-less process, a copper chuck cooled by liquid nitrogen was chosen as the

final substrate design. A copper chuck was machined and fitted with a slot so that a

copper tube that had liquid nitrogen flowing through it would fit. The copper tube

was glued to the chuck using silver epoxy, preserving good thermal transfer. A flexible

kapton heater was sandwiched between the sample and the chuck. This heater would

turn on after the iesist was patterned and organic film deposited. A change of a few

degrees was all that was needed to sublime the dry ice resist.
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6.2.3 Stamping Apparatus

The stamp was made using SU-8 2150 photo-resist. It proved to be the most reliable

stamp to sublime the dry ice. Other more conformal stamps need to be explored

in order to overcome the yield problems. The actual stamping was performed using

two motorized linear stages (Standa Ltd.) that allowed micron accuracy in a vacuum

environment. A Dino-lite microscope was also attached to the 2 axis stamp mechanism

to be able to look at the stamped region. The stamping mechanism was attached

directly to the substrate holder to maximize accuracy. The Figure 6-8 shows this

apparatus in the chamber.

Substrate Holder

Stamp

Microscope

Carbon
Dioxide gas
flow tube

Figure 6-8: 2-axis Stamping Mechanism in Vacuum Chamber.
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6.3 Results

The chamber was constructed and successfully mated with the glove box. A single

color pattern was able to be demonstrated. Figure 6-9 shows the organic thin films

patterned on the substrate.

Optical micrograph of a 78pm-pitch-
patterned mask of carbon dioxide. The inset shows

the AIQ, thin film after deposition and lift-off

Photoluminescence from of a 78pm-pitch
array of AlQ3 pixels patterned using a sublimable

mask of carbon dioxide.

Figure 6-9: Patterned Dry Ice and Patterned Pixels [20]
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Chapter 7

Conclusion

The chamber was constructed and the stamping mechanism was able to accurately

stamp the dry ice and produce green pixels. The yield of the process was still very

low but given that this is the first prototype of the process it is understandable.

This prototype effectively shows a proof-of-concept for a new type of manufacturing

technique that might allow OLED displays to be made at a much lower cost. The next

steps will be to attempt a two color patterning scheme. The ability to do two multiple

color patterning is dependent on repeatability. Further design changes might have to

be implemented in order to achieve micron repeatability. Eventually, a fully working

OLED device should be demonstrated for this prototype to show the feasibility of

this new manufacturing process. Looking at different stamp materials and designing

a mini roll-to-roll system might further convince industry of the scalable advantage

of this process. The ultimate limitations to this process are the ability to cool down

a large substrate and the ability to match the high yield rates of a shadow mask

process.
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