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ABSTRACT

OFF-PEAK COOLING USING AN ICE STORAGE SYSTEM

by

Edward M. Quinlan

Submitted to the Department of Architecture on June 16, 1980 in partial

fulfillment of the requirements for the Degree of Master of Science.

The electric utilities in the United States have entered a period

of slow growth due to a combination of increased capital costs and a

staggering rise in the costs for fuel. In addition to this, the rise

in peak power demand continues almost at historical levels resulting

in lower plant utilization. Current rate schedules do little to

improve the utilities' load factors and,in fact, encourage consumption.

Time of day rate structures have been suggested as one load management

device. This thesis investigates the impact of commercial cooling

systems on the utilities' supply picture and describes an off-peak

cooling system which would enable a building operator to shift chiller

operation to off-peak hours.

The chillers draw heat from a water/glycol coolant, cooling

it to 20*F. The coolant circulates through a series of coiled

pipes inside a water filled storage tank. As heat is drawn from

the water, ice forms around the pipe heat exchanger. With a

coolant temperature of 20*F the ice cylinder will form out to a

diameter of 3.4" in 10 hours. Optimum pipe spacing is 3.5" on

center. Polyethylene pipe is preferred to copper pipe for cost

and fabrication resaons. The plastic pipes are grouped in discrete

modules which allow flexibility in design. Building cooling loads

are managed by circulating the remaining 32*F tank water through a

heat exchanger coupled to the air handling units cooling coils.

The warm water is returned to the tank where the heat is absorbed

by the ice.

Economic analysis using the present electric schedules indicate

a favorable return on investment. Time of day rates would make the

system look even more desirable.

Thesis Supervisor: Timothy E. Johnson

Title Research Associate
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INTRODUCTION

The electric utilities in the United States are no longer able to

easily satisfy the rising demand for electricity. The utilities' load

factors have been declining since the early sixties due, in large part,

to the increasing summertime demand for cooling. The diminished capacity

factors result in higher costs for the utilities and ultimately, the

consumer. In addition, the peaking demand is typically satisfied with

oil or gas fired turbines which exhibit low operating efficiencies. With

declining domestic reserves of oil, the oil used for these peakers is

coming increasingly from imported suppliers. The rate schedules used by

the electric utilities only somewhat reflects the cost of this poor load

factor and does nothing to slow down the growth in consumption. In fact,

the rates were designed in an era when utility growth resulted in lower

unit energy costs. While that situation no longer exists, the rates

remain. A number of load management strategies are being investigated

by the utilities. The purpose is to improve load and capacity factors,

resulting in a reduced need for new power plants, especially peakers.

Time of day rates are being introduced throughout the country as one way

of reducing demand during a utilty's peak hours. Being similar to the

phone company's rate structure, customers would be charged more for each

KWH consumed during the utility's high demand period.

Unfortunately, cooling in buildings is needed during these peak hours.

Most of the rate oriented load management strategies would drastically

increase building operating costs due to the large cooling loads.

Cool storage systems would allow the customer to run the cooling equipment

at night during inexpensive off-peak hours and store the coolness for

later use. A number of systems have been designed to date, with only the

cool water storage type finding wide commercial application. Most of the
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systems suffer from bulkiness or cost or both. Smaller, cheaper systems

are needed to insure widespread acceptance.

This thesis explores the evolution of the utilities and the under-

lying problems which gave rise to the need for cool storage systems. A

variety of systems are described along with their inherent problems. A

new type of modular ice storage system is introduced. Experiments run

with a 30,000 BTU storage unit provided the data needed to confirm

theoretical design methods. These methods were then used to determine

optimum pipe length and space required for a given storage capacity.

Commercial scale application is considered. This system should lower

volume requirements by 80% with little or no additional cost whem compared

to sensible water storage. In addition, an improvement to the ice making

heat pump system is suggested in order to drastically lower capital costs

and improve its compatibility with inexpensive packaged chillers. Finally,

an economic accounting of the proposed pipe coil system is discussed

using conventional rate structures.
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OFF PEAK COOLING
and the

ELECTRIC UTILITIES
BIRTH OF AN INDUSTRY

The electric utilties were born in an era when coal and solar energy

(wood) provided the power used to transform America from a rural, agrarian

society into a robust industrial world power. The utilities growth mirrored

this social evolution as much as it shaped it. The birth of the electric

power company dates back to the 1880s when Thomas Edison's power plant

in lower Manhatten provided electricity for the nighttime lighting of

streets and shops in the neighborhood. At the time, lighting was the

only available application of electric power resulting in an extremely

inefficient use of the capital resouce embodied in the power plant.

Edison embarked on a strategy which was to be characteristic of the

utilities for the next 100 years, namely the development of home appli-

ances and industrial equipment which required the reliable and continuous

supply of electric power. Now the utility is not only insured of round

the clock demand, but also of unparalleled growth in that demand. In the

first quarter of this century, electricity was produced by small companies

serving localized area. In the 1920s many of these companies were con-

solidated, by way of the holding company in order to realize advantages

of economies of scale.1 In the 1920s the Federal Trade Commission began

a massive investigation of the holding companies. This investigation

ultimately spawned the Federal Power Act which provided for federal

regulation of the wholesale transactions of investor owned utilities.

At the same time, the courts established the states prerogative to

regulate retail power sales. The electric utility industry became an

7



officially recognized monopoly under regulatory control. This control was esx-

ercised to limit profits to a "reasonable amount" of return on investment.
2

As profits were tied to investment, the utilities insured continual pros-

perity through growth. The utilities became a capital intensive industry

with growth rates that required an investment to earnings ratio of 5 to 1.3

In over 80 years the industry experienced an unbroken chain of technical

advances and increasing returns: to scale such, that its average cost of

production fell steadily. This caused the constant dollar prices for

electricity generally to fall or remain steady while per capita disposable

income, and many prices, actually rose. With utility system expanding

under conditions of timely technological innovation and increasing economics

of scale, virtually all customers were better off as electricity consump-

tion expanded. New efficient means of production and labor saving devices

were eagerly accepted by industry, commerce, and the home owner resulting

in the growth patterns exhibited in Figs.1 2.In the years before 1960,

most utilities were winter

500 peaking, that is, they ex-

300 perienced the greatest power
200 GROWTH RATE FOR

DOUBLING EACH demand during the winter

100 EA months due to use of elec-

tric resistance heating.
50

This changed dramatically

30 as the public came to accept

2 and demand air conditioning

X 10 PEAK DEMAND systems at the office place

and in the home. By the

ANNUAL early 1970s most utilities,
AVERAGE

3 DEMAND except for those in the

2- northern tiers of the

country, had become summer

1920 1940 1960 peaking, resulting in an

YEAR advertising push for new

homes to be heated and cooled
FIGURE 1 Electric Power Demand During

the Past Half-Century electrically, thereby attempt-

(courtesy C. Benton) ing to balance demand through
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FIGURE 2. Electrical Energy Sales in New England, 1940 to 1973

(ourtesy C. Benton)

the year. Construction of office buildings underwent transformations

during the 1950s and 1960s. Transparent operable windows were replaced

with fixed tinted glass requiring both increased artificial lighting

levels and mechanical ventilation for the perimeter zones. As buildings

got larger, the percentage of interior zone increased along with the re-

quirement of 100% artificial lighting. Recommended lighting levels continued

to increase over the years as a result of studies, often times funded by

the Electric Power Research Institute, thereby insuring future markets.
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One of the most important contributing factors to the growth patterns

experienced by the utilties was the way in which the price for power was

determined. Throughout the country, higher consumption was reinforced

through the use of declining rate block structure, which basically meant

that the more a customer consumed, the less it cost per unit of energy.

It is important to remember that as the growth of the electric utility

sector continued, advances in power generation technology brought costs

per unit of energy down. Since the unit cost of electricity declined with

increasing consumption, there was an economic justification for establish-

ing electricity rates in decling blocks which served to crudely mirror

the cost outlook of utility systems. However, it must be recognized that

such a rate design becomes onerous to society when the cost trend reverses

as it has done in recent years for most utilities.

Plant expansion programs were designed to provide for this growth

with new large efficient baseload plants. As the older inefficient plants

were retired or moved to peaking duty, the cost of electricity decreased.

Part of this plant expansion involved bringing on line large 1000 MW

nuclear power plants which promised further economies of scale through

lower fuel and production costs.5

TROUBLED TIMES FOR THE ELECTRIC UTILITIES

This bubble of prosperity burst on the utilties during the early

1970s. A combination of doniestic inflation, rising labor costs and

foreign cartels drove the cost of energy and its related technology up

at unprecedented rates. Imported oil skyrocketed from under $3/barrel to

$12/barrel overnight in 1973 and continues up at its present cost of $30/

barrel. Gas and coal prices along with domestic supplies have followed

this price rise with fuel costs increasing 250% between 1965 and 1975.6

Electric power stations experienced similar cost escalation in the same

period of time for a variety of reasons. The increased cost of energy

tended to fuel domestic inflation which resulted in higher labor and

materials cost. More importantly, the utilities began to experience a

credit squeeze. In years past, the utilities were able to generate much

of the capital within house, ocassionally resorting to public money mar-

kets which were eager to buy the AAA rated utility bonds. This ease of
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financing became a thing of the past as the cost of electricity rose. Much

of the frustration and anger of the public over the escalating energy costs

was brought to bear on the utilities. Rightly or not, they were blamed

in part for the suffering of the consumer, causing the Public Utilities

Commissions throughout the country to assume a different posture. In

the past the PUCs were generally a rubber stamp review board, understand-

able in light of the utilities outstanding successes in providing cheap

reliable electric power. For the first time the PUCs experienced the

outrage of a distressed populace, whose protection they were mandated to

oversee. At this very critical time for the utilities, the PUC was

forced to adopt a scrutinizing stance. Rate increases needed by the

utilities to cover costs were slow in coming or refused . As production

costs for utilties escalated at a rapid pace, capital funds for plant

expansion became a major problem. For the first time, the lag between

submission of utility requests for higher rates and regulatory approval

became significant. Utilities were often caught selling at lower profit

margins because of this lag. The resulting drop in revenues affected

acquisition of capital funds by lowering the performances of utility

stocks and bonds. 8

The emergence of an environmental awareness on the part of consumers

added another element to the utilities problems. Power plant siting,

espceially nuclear plants, required increasing approval time. Questions

of health and safety coupled to consumers concern about adverse property

value impact is now causing lead times in excess of 12 years.9 This

long lead time makes it necessary for the utility to rely on exception-

ally long range forecasting, precisely at a time when consumption patterns

are increasingly hard to discern. In this situation, utilities are un-

willing or unable (due to the capital markets) to embark on continued

expansion of their large baseline plants (especially nuclear). Instead,

they are filling the gap with fuel intensive gas turbines which are

relatively inexpensive to build and have a very short lead time. Unfor-

tunately, these plants rely on fuel oil and natural gas which merely

aggravates an already severely stressed fuel supply.
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It is becoming obvious that fundamental changes in utility operation

and marketing must be undertaken in order to restore the industry to

its former healthy state. However, this must not be done at the expense

of the consumer, the environment, and future generations. It seems appar-

ent that the conventional rate structures have served their purpose -

perhaps too well. The existing rates are designed in a manner that

encourages the growth of electrical use over time.These rates were

established in a historical context reflecting decades of energy growth

with declining costs and abundant fuel supplies. That era is over and

along with it the usefullness of the rates which supported it. New rates

which reflect the true cost of supplying energy are desperately needed.

In conjunction with the new rate, new load management tools are needed

to make more efficient use of our existing facilities. In order to dis-

cuss this in more detail, it is important to understand the basic prin-

ciples and practices of a modern electric utility.

ENERGY USE IN AMERICA

As a large, affluent nation we have become ravenous consumers of

energy. In order to satisfy this appetite we consume the energy equi-

valent of 1 1/2 billion gallons of oil per day, of which we import over

20% of our energy needs. This breaks down to 7 gallons of oil equivalent

per day or 2500 gallons per year for every person in the country.

Obviously, this energy supply consists not only of oil, but of a variety
10

of fuels (Fig. 3 ). However, we have put ourselves in the unenviable

position where half of our energy needs are supplied by increasingly

expensive oil. Coal supplies 18% of our total energy needs and 44% of

our electrical requirements. Hydroelectric and nuclear power plants

each contribute 13% to the electric power supply , and along with coal

are mainly used as baseload electric capacity for this nation. Petroleum

and natural gas add another 17% and 14% to the electric supply picture

predominately as intermediate and peaking power plants. It is interesting

to note that only 30% of the energy embodied in the various fuels used to

fire the power plants ends up doing work at the consumers side of the

power line. The rest of the energy is lost to the environment in the

12
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transmission lines and at the power plant as low grade heat, an inevitable

consequence of the laws of physics. This does not mean to say that the

low grade heat could not be used locally. Throughout Western Europe,

many small power plants ship their waste heat to homes and industry

located nearby. Due to the large scale of most of our power plants and

the historically low cost of fuel, this was, for the most part, never

dbne in a large scale way in this country. Thus, while the utilities

consumed 30% of the nation's fuel supply in 1978, they contributed to only

9% of the end use energy demand.

POWER PLANT OPEPATION

Generating capacity consists of a hierarchy of units from the most to

least efficient. Within this hierarchy there may be a difference in

operating efficiency of up to 60%.11 Some large coal and nuclear fired

power plants operate at a 35% efficiency while some small peak power gas

turbines may be only 20% efficient. Unfortunately, these gas turbines

are typically fueled with oil or natural gas. Fuel costs for peakers

can run three times the cost of fossil fueled baseload plants and ten

times the fuel costs for nuclear plants.12

The reason all the electric demand cannot be supplied by large effi-

cient baseline power plants has to do with the nature of the utilities' load

patterns throughout the day. Electric demand is not uniform; it is usually

at a minimum between 11PM and 6AM and at a maximum between 10AM and 7PM.

During the remaining hours, the demand is changing. The utility must

be able to modulate the output from the power plants in accordance with

the current demand. The minimum daily demand expected by the utility

is known as the baseload. Demand from this baseload is satisfied by

the largecnuclear and coal power plants which are the cheapest to operate.

Because of their size, the output from these plants cannot be easily

modulated and they are usually run at their full rated output. As demand

during the day rises, the plants which are more expensive to operate are

brought on line, and referred to as the intermediate plants. To satisfy

the peak daily loads which may only last 3 to 4 hours, smaller units, typ-

ically gas turbines or old inefficient oil boilers are brought on line as

14



the 'keakers". This hierarchy is established in such a way as to iftipose

the lowest overall costs on the utility.

A utility's operating efficiency is characterized by a number of

different indicators described below.13

LOAD FACTOR is the ratio of average demand to peak demand for a

given time period, usually a day or year. This ratio can be

calculated for either individual customers or for an entire

utility system. Yearly load factors are an indicator of

system utilization.

CAPACITY FACTOR is the ratio, for a given time period, of a system's

total output in KWH to the system's maximum potential output

(all generators running full time). This is a better indicator

of system utilization because it reveals the magnitude of

reserve equipment, forced outages, and scheduled maintenance.
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10 - LOAD DURATION CURVE portrays the same information

A E= 57.7%
80 - - contained in the previous load curves except

60 _ for the timing of demand. Demand values are

plotted in descending order with 24 hour

4 values for a yearly curve. This graph is

20 normally constructed for utility systems and

0 is useful for visualizing the character of

2 4 8 10 peakload vs. baseload. This curve represents

HOURS x 10 Boston Edison data in 1978.16
FIGURE 6

ORDER OF MERIT is a listing of power stations in

10. - _ _ - _

an electrical system in the order of running

costs. The cheapest stations are run as

5 baseload stations, the most expensive only

-) - -for infrequent peak loads, and the rest in

0 -i - between according to their merit order. This

0 1 2 3 4 5 figure illustrates the order of merit for
SYSTEM CAPACITY (Wx10) 17
FIGURE 7 the Philadelphia area.

Fig. 4-7 courtesy C. Benton)

Utility load factors in the United States have been dropping since 1960

primarily due to the widespread acceptance of air conditioning. The'

national average load factor in 1973 was 62%, while in Europe it was 75%. 18

Although much of this difference can be accounted for in weather and na-

tional industri.al differences, the Europears long ago began to introduce

load leveling incentives to custorers. For winter peaking systems, as

in Europe, the sophistication of residential heating systems significantly

affects load factors. The Europeans have spent a considerable amount of

money on thermal heat storage devices designed to utilize off-peak

electricity.

In 1974, an average of less than 1/2 of installed U.S. capacity was

utilized. To meet peak loads, more than twice the capacity needed to

meet average demand was required.
1 9

16



As former energy administrator Frank Zarb once said, "This.nation

cannot afford to continue building 100% excess capacity just to handle

peak loads." Zarb went on to promote the following goals.

1. Improve load factor from 62% to 69%.

2. Improve capacity factor from 49% to 57%.

3. Expand baseload contribution to total capacity from 45% to 55%.

4. Increase end use efficiency by 10% (mainly by conservation)..

It was claimed that these goals, if achieved, would reduce oil

imports by 1.3 million barrels of oil per day. 2 0

It seems that everyone is in agreement about the need to improve

on load and capacity factors in order to make more efficient use of our

energy resources and reduce our imported oil requirements for the

"peakers". Disagreement arises as to what is the quickest, cheapest, and

most equitable way of accomplishing the goal.

LOAD MANAGEMENT STRATEGIES

Historically, utilities have sought to balance their loads by

bringing on more customers during the off-peak hours; load management

through an increase in consumption. While this made sense in the past,

it no longer is a sound policy due to the inability to bring on much

more baseline capacity to handle these loads. The current strategy in-

volves reducing the peak to approach the average demand. This load

management may be of a direct or indirect nature as described below.

1. Direct Load Management

This management category leaves control of the loads with the

utilities. Examples of this already exist. Many industrial uses of

natural gas have interruptable service whereby the gas utility can

cut off supply when demand from non-interruptable users exceeds a

certain level. The same thing could be done with customers using

electricity. Obviously, the customer would have to be compensated

for this by enjoying reduced rates. In residences during the 50s,

some utilities experimented with hot water tanks hooked to timers

17



which would cut off the tank's electric supply during certain hours of the

day. A more advanced form of direct load control involves the use of

a signal transmitted over the power lines. This "ripple control" signal

would decouple the user's load from the power grid for whatever period

of time the utility deemed necessary. Experimental ripple control

systems are currently being tested.

2. Indirect Load Management

The simplest form of this would be educational efforts by trained

utility personnel directed towards large electrical customers. The

utility people would try to explain how the customer could help manage

their own loads in-house. The same would be done with home owners

with educational packets included with the electric bill. This

would probably not prove very effective unless it were backed up by

some economic incentives for the customer. This incentive would most

easily be embodied in the rate structure.

Presently, most rate structures for commercial and industrial users

are 2 tier systems. There is a charge for the maximum load demanded

during the billing period (demand charge) and another charge for the

total energy consumed (energy charge). The more a customer consumes,

the less he pays per energy unit, commonly referred to as a declining

block rate structure. There is an implicit demand charge built into the

energy charge such that if the customer's load factor is poor, his

consumption is shifted into a more expensive block rate. This type of

rate structure penalizes a customer for a poor load factor regardless

of the relationship between the user's and the utility's daily load

curve. A poor load factor for demand may be preferrable to a load

factor of 100% as long as it improves the system's load factor. The

existing rate structure has never borne more than a casual relation-

ship to system costs since it is not keyed to the most important de-

terminant of cost - the system's load factor. "A major fault with current

rate structures is that they ignore peak load costs.... We recommend that

cosideration be given to peak load pricing as a way to relieve some of the

financial and operating stress on the system and to insure that the inci-

dence of costs falls on the appropriate user." 2 1
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Peak load or "time of day" pricing schedules have been drawn up by

a number of utilities throughout the nation. Energy consumption during

a utility's peaking hours is discouraged by charging more for each KWH

consumed. A simple non-utility example of this is the familiar rate

structure of the phone system. Time of day rates would allow customers

flexibility of choice that is not present in the direct load management

designs. It is imperative that the off-peak rate schedules do not merely

lower off-peak charges. This would simply lower the overall cost of

electricity and encourage increased consumption, necessitating the

construction of more power plants. The peak hour charges must also be

raised so that the growth in power demand remains manageable. Off-

peak electric energy can be sold at close to marginal cost,affording

users the economic incentive to substitute electricity for consumption

previously requiring oil and natural gas.22

The impact of time of day pricing would be felt throughout the

economy. Where feasible, use would be shifted to the off-peak hours by

changing habits and lifestyles. However, it is doubtful that lifestyle

changes would go so far as to shift a significant portion of the work

force to nighttime employment. This poses a serious problem for the

business manager who is constantly trying to reduce costs. In office

buildings, for example, the lighting, space conditioning and appliance

power must be provided during the hours of employment, typically 8AM-

6PM. This is precisely the same time that the utilities experience their

peak loads. There is no economic alternative to operating the lighting

and electrical equipment during the day as it is required. However, there

exist a number of ways of storing "coolness" overnight so that the

chillers may be shut off during the daytime hours. Since air condition-

ing represents 40%-50% of a building's power demand during a summer day,

there is tremendous incentive to use such a storage system.

Traditionally, a cool storage system consists of water or rock

which is cooled by chillers during the off-peak hours. During the

peak hours,the chillers are shut down, and the building's heat gains are

absorbed by the cool storage mass, thereby maintaining a comfortable

environment. The consumer benefits derived from the use of cool storage

19



are not totally dependant on time of day rates. Under existing rate

structures, a customer still accrues substantial benefit by improving

his individual load profile. By operating the chiller during nighttime

hours, a customer can remove the chiller component from his daytime peak

with a corresponding reduction in demand charges. In addition, a customer

will improve chiller efficiency by operating the equipment at night, allow-

ing the system to reject heat to more receptive, cooler atmospheric

conditions.23 Cool storage systems would be desirable even if the

utilities adopted a direct load management strategy. In this case, the

utility would decide when the storage system should be charged and dis-

charged, rather than the customer.

There has been some discussion as to wiere off-peak storage systems

should be located - on the customer's side or the utility's side of the

power line. To date, the only economical utility side storage system is

the pumped storage facilities around the country. Due to environmental

pressure, and a lack of suitable sites, it appeai that pumped storage

facilities will not provide the quantity of storage capacity that is

required for large scale full load off-peak power generation. Other

centralized utility storage schemes such as battery and compressed

air storage are still uneconomical.

When cooling or heating is the ultimate use of the electrical energy,

thermal energy storage (TES) systems on the customer's side can provide

a numner of advantages over utility side storage. 90%-95% of the energy

stored in a customer's TES system can be recovered during cycles. Pumped

storage facilities only recover 65% of the energy. The utilitiy trans-

mission facilities are reduced with a TES system, and the geological

and environmental constraints of customer side TES are non-existant.

Depending on the length.of the off-peak period, TES systems have the

potential of reducing the cooling equipment capacity requirements. Since

the cooling system is operated at a full constant load, the system does

not have to be sized for the once or twice a year cooling peak, thereby

realizing both capital and operating savings.
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Cooling loads have been responsible for the majority of the increase

in peak electric demand in this country. With or without off-peak time

of day rates, tremendous savings in energy and money would be gained by

the use of off-peak cooling systems. The technology for these thermal

storage systems already exists; it is the reduction of size and cost

that poses the real challenge. It is this challenge that will be

addressed in the following chapters.
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COOL STORAGE SYSTEMS

Large commercial and institutional office space usually consists of

a combination of interior and perimeter floor area; the latter being de-

fined as any floor area influenced by external weather conditions

(usually floor area within 15 ft of the weather wall) with the interior

comprising the remaining space. Because it depends on size and shape,

the percentage of interior vs. perimeter varies widely among buildings.

Interior spaces require cooling every day of the year while perimeter

zones may experience both heating and cooling loads the same day. For

this reason, the mechanical systems which heat and cool these areas may

be separate and distinct. Any energy analysis of a 757,00 ft2 commercial

building in Boston1 showed a design load condition of 25 BTU/hrft
2 for

the interior and perimeter combined (Table 1 ). This building had

undergone extensive retrofitting of mechanical and electrical systems

in order to reduce energy consumption wherever it was shown to provide

a return on the investment.

The ventilation load (8.5 BTU/hrft 2) could be reduced by an

additional 50% merely by satisfying the Massachusetts Building Code

minimum air requirements of 10 CFM/person assuming 1 worker/100 ft2

If the National Bureau of Standards suggested codes were implemented

this load would be reduced 50% further (5 CFM/person). The electrical

loads, 8.25 BTU/hrft2 (2.4 w/ft 2) is generated primarily by the fluores-

cent lighting equipment in the building. This lighting load is quite

low compared to loads encountered in older buildings. However, in
32

discussion with lighting consultants 3 a lighting target of 1 watt/ft
2 is

feasible with the proper lighting hardware and an average sindoor

lighting level of 30 foot candles. The solar load indicated in Table 1

is quite low due to the small percentage of overall glazing, especially
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TABLE 1.

HEAT GAIN SUMMARY

BOSTON COMMERCIAL STRUCTURE (757,000 FT )

HEAT GAIN COMPONENT COOLING LOAD (BTU/HRFT )

Present Theoretical

Conductance 3.12 3.12

** Occupants (sensible) 1.80 1.80

** Occupants (latent) 1.40 1.40

Ventilation 8.50 2.12

** Electrical 8.25 3.60

Solar 2.00 2.00

TOTAL 25.17 14.04

NOTE:

* Design conditions, 88 0F,DB, 710 F, WB

** Constant loads

on the southern exposure. To assume further reductions in this load

would be unrealistic. Heat gain through the building envelope occurs

primarily through the glass. Since the amount of glazing used in a

building is primarily an architectural question, the size of the heat

gain from this component will vary considerably from building to build-

ing. For this reason, no adjustment will be made to this figure.

Nevertheless, it is imperative that designers understand the impact of

fenestration on a building's cooling loads.

All of this heat that is generated within the structure must be

removed by the building's air conditioning system. The system must be

capable of sensibly cooling the air, dehumidifying it by removing latent
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heat, and cleaning the air with filters or air washers. The choice of

mechanical systems used to condition air typically depends on the size

of the building, its heating/cooling distribution system and the price

and availability of local energy suppliers.

AIR CONDITIONING SYSTEMS

In residences, air to air cooling systems are usually the most

economical approach for both centralized and decentralized (window)

units (Fig. 8 ) . The short refrigerant lines make it possible to

reject heat directly to the environment in an air cooled condenser. Like-

wise, after passing through the expansion valve, the refrigerant cools

the house air in a direct expansion (dx) evaporator in the air handling

unit.

nditioned
sooce

air
cooled

condensor

FIG 8

RESIDENTIAL COOLING SYSTEM
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This investigation is primarily concerned with larger buildings where

more complex refrigeration systems are required. It is not practical nor

economical to ship liquid refrigerant throughout the building to decentral-

ized dx evaporators. Instead, an intermediate heat transfer fluid, usually

water, is used. Water is more economically distributed to the air handling

units in the building where the dx evaporators are replaced with cooling

coils supplied with 45-50*F chilled water. Water temperature in this

range is needed to dehumidify warm, moist, incoming air. In order to

lower the water content of the air its temperature must be dropped below

its dew point. Under most situations 504F chilled water will provide a

sufficiently cold surface to insure adequate dehumidification of the air

under summertime conditions.

On the other end of the chiller, the heat absorbed by the vapor

refrigerant must be rejected. Once again it is more economical to transfer

heat to a cooling tower with water rather than with a refrigerant. In this

situation, a water cooled shell and tube condenser is used in conjunction

with a cooling tower. This type of air conditioning system is shown

diagramatically in Fig. 9.

The energy used to run the compressor and water pumps is typically

25-30% of the actual cooling provided. The relationship between work-out

vs. work-in is commonly referred to as the system's Coefficient of

Performance (COP) and is equal to (heat absorbed by evaporator)+(work

input to the compressor). COPs for the chillers alone are often times

on the order of 3-4 during the summer operation. However, when the power

used to run the pumps and air distribution system is included, the COP

usually drops to 2-3. The amount of energy consumed by the compressor

increases as the LT between the condenser and evaporator increases and/or

as the absolute temperature of both decreases. This can be seen by solving

the following equation for a variety of operating conditions.

COPtheoretical T

(- - 1)
r
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where

T0 = average evaporator temperature (*K)

Tr = average condenser temperature (*K)

TABLE 2.
IMPACT OF WORKING TENPEPATURES ON COP

Case Operating Conditions COP
5

T T Lift Theoretical Manuf.Specs.
o r

(*F) (K) (*F) (*K) (*F)

1 40 277.4 108 351.2 68 8.33 3.83.

2 40 277.4 93 306.8 53 10.40 4.78

3 25 269.1 93 306.8 68 8.14 3.75

The first case represents typical summer, daytime operating conditions

for a chiller producing 50*F chilled water. Case 2 is the same situation,

except at night. In case 3 the chiller is producing ice at night during

off-peak hours. These examples indicate that a chiller's COP is most

sensitive to the temperature difference between the evaporator and con-

denser (commonly referred to as the "lift") and is relatively insensitive

to the absolute temperatures for a given lift. However, the difference

between the theoretical COP and a real chiller's COP is substantial.

Departure from the ideal condition of negligible temperature difference

during heat transfer and reversible processes of the reversed Carnot

cycle require that the work input to the refrigeration cycle be greater

than the ideal minimum. In addition, energy used by the pumps and fans

associated with the rest of the air conditioning system reduces the

system's overall COP even further than indicated in the above examples.
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Nevertheless, the most revealing aspect of this exercise shows that the

evaporator temperature can be lowered 15-20%F below normal and, as long

as the condenser temperature is lowered by the same amount (resulting in the

same lift), the chillers consumption of power per unit of output will remain

roughly the same. Referring to the weather statistics in ASHRAE, the

mean daily summer range of temperature swing for Massachusetts is about

200 F. However, the average nighttime temperature is only about 14*F below

the average daytime temperature. Therefore, assuming a normal chiller

evaporator temperature of 40*F for daytime operation the evaporator

temperature can be lowered to about 264F without experiencing a drop in

the system's COP.

From this analysis the temperature for storing heat from cooling

systems ranges from 25*F to 504F.,The upper limit is set by the fact that

chilled water must be supplied at a maximum temperature of about 50*F.

COOL STORAGE CONCEPT

Conceptually, a "cool storage" system should enable the building

operator to run th.e cooling system at night and draw heat from a thermal

mass thereby taking advantage of the off-peak electric rates while also

reducing the building's electric demand charges. The storage mass must

be capable of releasing its stored heat within the time constraints of

the off-peak. period now set by the utility as 12 hrs (8PM-8AM). It is

anticipated from discussions with utility personnel that this off-peak

period will be shortened to 10 hours. Conversely, the thermal mass must

also be capable of absorbing peak cooling loads that are generated in the

building throughout the day. This can potentially pose difficulties.

The thermal mass is charged at a constant rate at night for perhaps 10

hours. During the day cooling loads are variable and, depending on the

particular building, may peak out at rates 50-100% greater than the

constant charging rate at night. The system must be capable of absorbing

this heat if human comfort is to be maintained.

For cool storage systems considered in this thesis, energy can be

stored as "latent" or "sensible" heat. When a material absorbs heat

and rises in temperature without undergoing a change in state, the
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substance is said to have been heated "sensibly". For example, in raising

the temperature of water from 40-50*F, every pound of water must absorb

10 BTU of sensible heat. Its specific heat is therefore 1 BTU/lb*F.

When a change of state from solid to liquid or liquid to gas occurs, the

material is said to absorb "latent" heat. For water to change from 32*F

ice to 320F liquid it must absorb 144 BTU/lb of material undergoing

phase-change. Its heat of fusion is commonly expressed as 144 BTU/lbm.

Due to the associated problems of pressure and volume changes with liquid

to gas latent heat storage systems, discussion will be limited to liquid

phase change materials (PCM) .

SENSIBLE HEAT SYSTEMS

In sensible heat storage systems attractive materials are characterized

by a high specific heat, high density and low cost. Referring to Table 3

it is obvious that water is by far the most logical choice

TABLE 3. THERMAL CHARACTERISTICS OF SENSIBLE H9AT STORAGE MATERIALS

Material Specific Heat Density Heat Capacity Cost -
BTU/lb*F lb/ft 3  BTU/ft 3 *F C/lb $/1000 BTU/*F

Brick* 0.2 123 24.6 1.0 50

Iron* 0.12 450 54.0 11.4 950

Lead* 0.031 707 21.9 42.0 13,548

Sand 0.191 95 18.0 0.26 13.6

Steel* 0.12 489 58.6 4.7 392

Stone 0.2 95 19.0 0.3 15

Water 1.0 62.4 62.4 -0.0 <<1

Note: *Scrap
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for a centralized sensible heat thermal storage system. However, in a

decentralized system where the thermal mass is distributed throughout the

building, the situation changes. The mass may be already serving a

structural function in which case its cost and use would already have been

justified. The problem lies in designing the building and air distribution

system in a way that will expose most of the surfaces to the chilled air

at night and to the environment in which the heat is generated during the

day.

A building for the Department of Justice in Sacramento is being de-7

signed in this fashion. Chilled air is circulated throughout the building,

cooling the structural slab 4-8*F. The daytime heat gains are absorbed

by the slab and help to buffer the building's temperature swing. This

system is limited by the heat transfer rate between the air stream and

the concrete surface, and by the surface area of structure available for

storage. Also, in order to maintain sufficient heat flow, the concrete

surfaces must remain exposed, and not covered with floor rugs or

acoustic ceiling tiles which will act as thermal insulators. In addition,

if the surfaces are cooled too low, the room's inhabitants will be quite

uncomfortable; therefore, the AT is limited. Concrete (and brick) are

not exceptionally good thermal conductors, which-may cause problems in

fully charging or discharging the thermal mass. Finally, high rise towers

would be heavily penalized in terms of structural costs for such a system.

It should also be mentioned that this does not lend itself well to retro-

fits of existing buildings, Nevertheless, future buildings using concrete

as structural mass would undoubtedly be able to realize significant savings

in energy by designing from the start with this approach in mind.

Using water for sensible heat storage is experiencing an increasing

amount of exposure and use in actual buildings.Early chilled-water storage

systems were relatively simple to design, install and operate. The primary

cost for such systems- was the tank itself. Conventional chiller equipment

was used to cool the water and integration with the chilled water distri-

bution system was fairly simple. However, chilled water storage systems

have historically suffered from 2 problems. First, the sheer size of the

tank is a major handicap and cost, and secondly, the water temperature

supply to the air handling units is not constant due to the mixing between
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cold supply water and the warm returning water. This complicates the pumps

and control systems which result in higher initial costs. Nevertheless,

many systems have been installed throughout the country, primarily to

reduce the building's power demand charge and reduce chiller size by operat-

ing the system constantly. In Minnesota, a 32,000 ft2 multi-story office

building is cooled with 45*F water stored in two 40,000 gallon, under-

ground tanks.8 This system lowers the building's peak load by 100 kw

at an incremental construction cost of $115,000. Studies based on a
9

similar system for a Toronto office building indicated, in 1975 dollars,

a cost of $270 per stored ton of cooling capacity for large systems and

$392 per ton for small systems which include interconnecting hardware.

The ability to reduce the volumetric requirements of water storage

systems is very limited. Given the specific heat of water (1 BTU/lb*F)

the only other variable involved in determining tank size is the rise in

temperature that the water can experience and still provide the required

cooling. The lower water temperature limit is set at around 35*F, just

above the freezing point (most systems desiged to date do not go below 400 F).

The upper limit is less defined and is dependent on the design of the

tank and the heat exchangers in the air handling units. In well designed

systems, the temperature rise can be stretched to 20*F (40*-60*F). This

can be accomplished while still providing the required sensible and latent

cooling of the air by employing a design such as the one shown conceptually

in Fig. 10.10'11 The engineers have designed a "reverse flow" heat

exchanger system which allows tham to operate over this elevated temperature

differential. In addition, the blending problem is eliminated by separat-

ing the tank into 2 zones with a "floating membrane" (patent held by R.

Tamblyn, Engineering Interface, Ontario) that allows for the charging and

discharging of the tank. In the past, mixing of the supply and return

water was prevented by using multiple tanks and/or baffles. All these

methods, to varying degrees, add to the complexity and cost of the

system.
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In the New York building using the partitioned storage tank, the

designers plan to operate the chilled water over a temperature range of

42*-60*F (Studies are underway to determine what penalties in performance

will be experienced by chilling the water further.). The maximum cooling

loads anticipated require 1,300,000 gallons of storage. No chillers are

to be operated during the day, thereby taking full advantage of the off-

peak rates. Preliminary cost estimates indicate a cost of $1.10/gallon of

storage for tank construction costs which amounts to a total cost

(storage only) of $1,430,000 ($0.74/BTU stored, $89/ton). In order to

accommodate such a tank (174,000 ft3 or equivalent to 18'xlOO'xlOO') a

huge sub-basement area had to be added to the building plans. Excavation

of it in New York bedrock undoubtedly added to the high $/gallon cost.

Other figures for large storage tanks have ranged from $.40/gallon and

up. The key to minimizing storage tank costs appear to be to include it

in the sub-structural design from the start. In this way, tank walls

and foundations can serve a dual purpose. An example of this was given

12
by a competing New York design in which the elevator shafts, which also

will function as a structural core element, does triple duty as a water

storage tank. Due to its function as a structural core, the elevator

shafts will continue down to unoccupied depths. This "free" space will

then be filled with water and chilled during off-peak hours. The floating

membrane is used once again to prevent mixing of the warm and cold water.

All of these large water storage tanks are non-pressurized for

economic and safety reasons, while the chilled water systems that they

couple with are pressurized. For this reason, a heat exchanger is commonly

used to join the two systems. However, heat exchangers require a small

temperature differential in order to move heat (5*-10*F). Given the

already limited temperature differential available to cool water storage

systems (20*F max.) the ability to avoid this taxing heat exchanger is

much desired. An interesting proposal by R. Tamblynl3 calls for the place-

ment of the storage tank on the top floor. In this fashion, the building's

chilled water lines would be pressurized due to the gravitational head.

In addition, the storage tank could also be used as a topside fire

reservoir, reducing or eliminating the need for high pressure fire pumps

and their emergency generators. Also, the tank could serve as an open
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expansion tank on top of the various piping systems . In many cases-, top-

side storage may be prohibitively expensive. In order to avoid heat exchan-

gers with basement storage, more elaborate and expensive systems using

transfer or injection pumps with energy recovery turbines may be used.

In these more elaborate chilled water storage systems, the costs

for plumbing hardware and controls start to mount. However, these systems

are viable and apparently cost-effective for some buildings; especially

when some of the tank expenses can be written off to foundation or struc-

tural costs. Nevertheless, a more compact system is highly desirable

from a standpoint of both cost and the ability to retrofit existing

buildings.

LATENT HEAT STORAGE

By taking advantage of the latent heat of fusion of a particular

substance, a much higher volummetric heat storage efficiency can be realized.

When a substance melts, it absorbs heat at a constant temperature until

it has completely liquified, after which point the temperature rises.

Depending on the material used, the amount of heat absorbed during phase-

change is typically 50-200 times the amount absorbed as sensible heat per

unit of temperature rise. Referring to the water storage systems where a

temperature differential of approximately 25*F is feasible, it is possible

to store almost 7 times as much heat in the same volume if both the sensible

heat and latent heat of fusion are captured by cooling the water from 60*F

to 310 F. However, the benefits of such systems do not come without a price.

While the tank costs are greatly reduced, the heat exchanger required to

charge and discharge the mass typically more than makes up for the price

differential.

Potential phase-change materials (PCM) must satisfy a number of

criteria before they can be considered suitable. No PCM satisfies all

the criteria, but good ones will exhibit few of the problems discussed

below.

1. Melting Point

The PCM should melt and fuse in a narrow range and at a suitable

temperature. 454F represents an upper temperature limit for providing
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chilled water at 500 F. The lower temperature limit is not as easily de-

fined. Melt points much below 30*F are discouraged due to chiller perform-

ance penalties arising from the large lift between the evaporator and

condensers. Freezing points are often depressed below the melting point

due to impurities in the chemical. This freezing-melting band is

especially a problem with the organics. This is distinct from problems

with supercooling.

2. Heat of Fusion

The "heat of fusion" is the quantity of energy required to change

1 lb of material from a solid to a liquid. Most materials have a heat

of fusion ranging from 20-150 BTU/lb.

3. Densities

Coupled to the heat of fusion, it is advantageous to have a high

density. It is important to remember that the reason for using PCM is

to economize on volume. Therefore, by multiplying the material's heat

of fusion times its density, its volumetric heat capacity (BTU/ft3 ) is

indicated.

4. Congruent Melting
1 4

In multi-component systems several phases are in equilibrium with

one another at the melting point, and there is then a risk of spontaneous

and irreversible phase separation caused by the different component den-

sities. Species from a liquid phase and a solid phase are combined to

form another solid phase in the boundary zone between the 2 other phases

thus hindering the reacting species from reaching each other. As a.result,

the process becomes successively slower, and complete conversion seldom

takes place. Only part of the latent heat stored can be used, and therefore

the heat storage capacity is reduced. Congruent melting means that only one

solid phase is involved, and that the composition of the solid and liquid

phase is identical at the melting point. A congruently melting material

can theoretically be cycled many times.

5. Thermal Conductivity

Ideally, as materials change phase, the temperature of the mass should

remain uniform at the melt point until all the heat of fusion has been
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extracted., In reality, this is not the case. Due to the relatively low

thermal conductivity of most PCM, the phase-change proceeds as a "front"

across the material, originating at the heat exchanger. The velocity of

this "front" is dependent on the conductivity and the temperature dif-

ferential across the material, In a sense, most conventional PCM may

be thought of as absorning large quantities of heat in a sensible manner

over a low temperature differential. The impact of this is primarily

manifested by the requirement of increasingly large heat exchanger and/or

temperature gradients as the conductivity goes down. The first penalizes

in the form of increased capital costs while the second in the form of

higher operating costs (lower COP due to lower evaporator temperature).

6. Supercooling1 5

A substance that does not solidify at its melting point is exhibiting

supercooling. Complicated structures tend to supercool more readily.

This is due to the fact that the different species in the melt do not

always diffuse together into the right crystal structure. Instead,

they form so-called defect structures with a higher free energy and

therefore a lower melting point. This is typical of eutectics and highly

purified chemicals. Supercooling may amount to 20*-40*F in some cases.

Once nucleation begins, the melt quickly rebounds to the melting point.

In order to prevent supercooling, nucleating agents are employed. The

simplest way to insure nucleation is to never completely melt the PCM.

This could impose. some expensive regulating costs on the system. A

"cold finger" refrigeration device is sometimes used to freeze a fraction

of the PCM and thereby initiate nucleation. Nucleating agents, with crys-

tal structures similar to the PCM itself, are usually the cheapest and

simplest solution to the problem. However, the nucleator must not be

soluable in the PCM and must not chemically react with it.

7. Stability

The PCM must be able to withstand repeated cycling without decomposing.

This is especially a problem with the organics which tend to oxidize and

polymerize over time.
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8. Inertness with Respect to Container

Many PCM are highly reactive with metals and/or plastics which are

the two obvious container materials. Reactivity may lead to exotic

containerization requirements which are usually quite costly.

9. Flammability and Toxicity

The use of combustible materials in commercial structures is severely

restricted. The idea of placing 100,000 gallons of highly combustible

fuel (i.e., paraffins) in the basement would no doubt be met with expensive

sprinkler and fire detection equipment requirements. Some flammable

materials can be made inflammable with compatible retardants. Toxic sub-

stances increase costs at the fabrication point. Workers handling and

packing the materials must be protected against exposure and, after

placed in the building, office workers must be shielded from ill effects

in the event containment is ever breached.

10. Cost

As usual, it all comes down to the bottom line. Is the PCM and all

the hardware required to insure efficient and safe operation worth the

investment when compared to the alternatives (sensible heat water

storage).

Reviews of the literature reveal a wide variety of PCM as potential

candidates for a cool storage system. The prime consideration is that the

chemicals' melt point lie within the 304-45*F temperature range which is

compatible with commercial chiller systems. Many of the candidates must

immediately be dropped from consideration due to a variety of deficiencies

which make them economically unfeasible. Table 4 lists 7 chemicals (or

chemical groups) which are suitable, with limitations, for use as PCM.

Thermophysical data, where available, is included. Prices quoted are

from the respective distributors for car lot quantities as of December

1979. As detailed in the Appendix, the heat of fusion and melt points

%ere measured here in the laboratory for water (as a reference), 9 paraf fins

(C 14-C16 and n-tetradecane) and deconal to insure that the published lit-

erature data was accurate. The eutectic mixtures were not tested due
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TABLE 4. PHASE-CHANGE MATERIAL FOR COOL STORAGE SYSTEM**

Substance Melting Form BTU/lb BTU/ft3 Conductivity Flammability Container Cost

Point BTU/hrft*F Incompatibility
Solid Liq.

Water

n-tetradecane

Eutectic
salt mix

32(32)

38 (<32)

39

H O2

C 4H30

31 Na
2SO4

13 NaCl

16 KCl

40 H2 0

144(143)

98

101*

8200(0150)

4600

8800*

1.33 0.33

0.083

-0.333

No

Yes

No

Unprotected
steel

Many plastics

Most metals

-110

K 2HPO 46H2 0

Na 2HPO 412112 0

C -C16

C10 220

5600

65.5(67)

88.6(85)

3200(3275)

4600(4400)

Some in group

0.333

0.083

0.083

Yes

Yes

Most metals >$1.00/1b

Most metals

Many plastics

Many plastics

260/lb

600/lb

0 38-45

small

$1.00/lb

10C/lb

Clathrate
Group

Eutectic
salt mix

Paraffin

Deconal

41 80

20

42(46.5)

42.8(45)

Theoretical; For more information about PCM for cool storage systems, see Reference 30; ( ) Experimental data from tests conducted at MIT.



to the time constraints which did not permit long term cycling experiments.

In addition, the clathrate group was dropped from consideration after

discussions with Dow Chemical Corporation revealed that studies under-

taken by Dow show that the clathrates would cost in excess of $1.00

per pound to manufacture, even in carlot quantities. This is unfor-

tunate, considering its high heat of fusion and congruent melting charac-

teristics.

The samples obtained from the distributors were of industrial grade,

as the technical grade, although more pure, was quite a bit more expen-

sive and generally not available in the kinds of quantities required

for commercialization. The tetradecane (from Humphrey Chemical Co.,

of Connecticut) was totally unsuitable. Attempts to freeze the

material by cooling it to 32*F were futile. The sample of deconal

(from-Conoco in Saddlebrook, New Jersey) also exhibited a wide melt-

freeze range. As explained in the Appendix, this was not supercooling,

but rather a broadening of the melt-freeze band, apparently due to the

presence of branched hydrocarbons. (Researchers from Penn. State who

reported on deconal's performance16 stated that they used scientific

grade material rather than industrial grade.) Two samples of paraffins

were obtained from Exxon (Baytown, Texas) and Conoco (Saddlebrook, New

Jersey). The paraffins had quite narrow melt-freeze bands (1*-2*F)

and exhibited no supercooling. The heat of fusion measured in the lab

matched closely with the data in the literature. It should be noted

that the organics tested all melt congruently, are quite stable and are

quite compatible with metals and some plastics 17(PVC, polypropylene).

Their greatest drawback is their conductivity (1 BTU-in/hrft 2oF) and the

high degree of flammability and typically low flash point. Results of

the lab experiments limit the choice of PCM to the C 1 4-C1 6 paraffin,

the eutectic salts and water. In order to fully appreciate why a further

process of elimination leaves only water as a suitable PCM for use in

conjunction with chiller systems, it is necessary to briefly review

the research and development accomplished to date.
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EXAMPLES OF LATENT HEAT COOL STORAGE SYSTEMS

Early attempts to overcome the difficulties associated with PCM

centered on the eutectic salts, and in particular, hydrated forms of

sodium sulphate (Na 2 SO41. This- salt, in anhydrous- form, costs only

pennies per pound and when mixed with proper amounts of water and other

salts (NaCl, NHgCl, KClY melting points ranging from 40*-90*F (4*-32*C)

can be obtained. The salt suffers form some serious drawbacks. Most

importantly, it melts incongruently. In addition, it suffers from super-

cooling and is corrosive to most metals. Theoretically, the salts should

exhibit high heats of fusion (appeoximately 100 BTU/lb) but in reality,

due to the chemical additives, the heats of fusion realized in practive

are much lower (30-40 BTU/lb). Borax is commonly added to the mixture to

prevent suprcooling, and various starches and gels have been used as

thickening agents with variable success to prevent density induced

separation of the liquid-solid phases.

The University of Delaware "Solar One" housel8,19 employed a cool

storage system which consisted of a 216 ft 3 box filled with 6 ft by 1.25"

30 mil, plastic tubes spaced 3" on center. The PCM consisted of a mixture

of Na 2 SO4, NaCl, NH4Cl and water. Data from this experimental set-up

shows the temperature of the air leaving the box as constantly rising,

indicating a crystal build-up on the heat exchanger surface which. tends

to limit the heat flow into storage. The problems with incongruent melting

have apparently not been eliminated as evidenced by declining heat storage

ability of the unit over time. It should also be noted that only 14% of

the storage volume was occupied by the PCM.

The General Electric Researcf Division has experimented with the same

concept of the Delaware house with significant changes.20 Horizontal cylin-

ders containing PCM are equipped to rotate slowly to insure constant mixing

which tends to break up the surface crystallization and incongruent melting

problems. With laboratory models, researchers claim 100% crystallization,

repeatable cycling, reliable nucleation, excellent heat transfer, and

a high volumetric efficiency. The economics of a large scale set-up

have yet to be demonstrated. Whether or not such a system can be designed
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with water (rather than airl as the heat transfer medium, is questionable.

Both of these systems (University of Delaware and General Electric. are

best suited for residential and small commercial applications where dx,

air-air cooling systems are commonly used. With the sensible heat, cool

water storage, 1250 BTU can be stored in a ft3 of water (20*F AT,

1 BTU/lb*F, 62.4 lb/ft 3). Even when assuming a PCM to storage volume

ratio of 1:2 (50% packing), only 1870 BTU/ft3 can be stored using a proper

mixture of Glaubers salts and additives and assuming 40 BTU/lb latent

heat storage. These assumptions seem quite generous considering that the

Delaware experiment had a 17% PCM to volume ratio and calorimeter tests

on Glaubers salts with additives for cool storage application showed

heats of fusion of 30-35 BTU/lb (tests conducted at MIT. If a cooling

system using chilled water is specified, it makes no sense to apply the

salt hydrate PCM when cool water storage is obviously simpler and

cheaper.

Research- at MIT by Timothy Johnson with the assistance of Cris Benton

has produced a PCM which melts at 65*F and exhibits a heat of fusion

equal to 35 BTU/lb. The melting point of Glauber salts (Na 2 SOL-OH20)

was lowered from 88*F by the addition of NH4Cl as a eutectoid. Supercooling

was minimized with Borax and stratification due to incongruent melting

was solved in 2 ways. Fumed silica was added to the solution to retard

component migration during the phase change, In addition, the salt mix-

ture was packaged in 2 3/8" horizontal layers to minimize the gravitational

pressure head while still allowing crystal growth by diffusion. This

same combination of changes in the mixing and packaging of Glaubers salt

is used in the MIT Solar 5 Building. The eutectoid in this case is

NaCl and the melt point is 74*F. The mixture has undergone 4500 freeze-

thaw cycles with minimal stratification and heat of fusion stabilized at

35 BTU/lb., The. cooling mixture, with, less testing, is behaving in

a similar fashion.

The 10 lb salt bags are suspended on ceiling tiles in the room that

is to be conditioned (See Fig. 11 , reprinted with premission of author).

The. ceiling tiles must be made of a thermally conductive material (!U'

approximately 15 BTU/hrft 2 *F) so that the bags will remain in intimate
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thermal contact with the room. The bags are frozen overnight during off-

peak hours with 55*F air which is circulated through the plenum. This air

may be chilled with a refrigeration system or, when feasible, with outside

air. During the day, heat gains from the space are absorbed by convective

and radiative coupling between the space and the tiles. The room air must

be dehumidified during working hours with a daytime chiller in order to

prevent condensation on the ceiling system.

A 500 ft2 test space was built, similar to Fig. 11,. . A 1 1/2 ton

chilller charged the salt bags for 12 hrs after which internal gains

were simulated with electric resistance heaters. The behavior of the room

air and PCM temperatures were monitored with results shown in Fig., 12.

The temperature in the room went from 68*F in the morning to 79*F in

21
late afternoon.

This type of system would not be amenable to perimeter zone cooling

due to the fact that within the course of a day perimeter offices may

experience both a heating and cooling load. The "tug of war" that would

result between the heating system and the cool ceiling would be unacceptable.

Further tests were conducted to see if the perimeter zone air could be

cooled by circulating it through the interior zone plenum containing the

PCM. The results shown in Fig. 13 indicate that the amount of sensible

cooling experienced by the perimeter air is insufficient to handle the

anticipated loads. This is due to the "warm" temperature of the bags

(65*F) and the low heat transfer from the air stream to the bags (experi-

mentally found to be 1.7 BTU/hrft
2 oF @ a velocity of 60 ft/min). In

addition to the perimeter zone and dehumidification problems, the material

composing the PCM tile will cause acoustic problems in the room. Due to

the high conductivity requirement, the prototype material used is quite

hard and dense, Conventional acoustic surface treatments would destroy

the conductivity of the tile. Investigations on this problem are contin-

uing. Nevertheless, this decentralized off-peak cooling system is one of

the most novel to date. Due to the high melt point (65*F), the chiller

COV s are the highest for any off-peak cooling scheme. In fact, for most

of the year, the cool night air will be capable of charging the tile.

Because the phase change material is located in the space to be conditioned,

no fan or pumping power need be expended to transport the cooling medium
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to the spaces during the day. Perhaps the most attractive feature of this

scheme is the fact that it requires no additional building volume. Because

the bags are placed throughout the building"s plenum, no basement storage

tank need be constructed. The remaining drawback to this system is cost.

The tile-bag assembly costs about $2.90 ft
2 . Taking a $.5/ft 2 credit

2
for the acoustic tile it replaces, the net cost is $2.40/ft Assuming

5 lb of PCM per ft and 35 BTU stored per lb, the assembly will store
2

175 BTU/ft . In addition, the surrounding concrete slab will provide

an additional 25 BTU/ft2 to yield a total 200 BTU/ft2 of tile. The unit

energy storage costs are l.24/BTU stored. In order for this system to

compete with the cool water storage systems, cost reductions will have

to be realized.

Research on the use of organics for cool storage systems have received

a fair amount of attention, A variety of independent investigations con-

cluded that the paraffin hydrocarbons proved the most promising of the

organic PCMs tested. Researchers at Penn. State University have

extensively investigated a variety of PCM suitable for centralized off-

peak cooling storage system., They concluded that the eutectic salt

hydrates were not economical primarily due to the containerization require-

ments needed to prevent separation due to incongruent melting. They

went on to recommend the Exxon paraffin (C 1 4-C1 6 ). The major drawback

to the paraffins are their poor thermal conductivity (k = 1 BTU-in/hrft 2
4F)

and the volumetric contraction on freezing (12-15%), which tends to pull

the PCM away from the heat exchanger, causing a reduction in the system's

heat transfer. Both problems make it necessary to increase the surface

area of the heat exchanger.

E. Mehalick and A., Tweedie of General Electric's Space Division

designed a cool storage system using paraffin as a PCM which.overcame

these difficulties.22 The paraffin was micro-encapsulated with a flexible

nylon wall material by Penwalt Corp. The encapsulation process is

similar to the one used to encapsulate drugs and pesticides for time

release action. The size of the capsules ranged from 50 to 2000 microns.

The micro-capsules were suspended in water in the storage tank as a

slurry. Maximum packing density was about 45 parts PCM to 55 parts water.

Since the size of the individual particles was very small and suspended

in water the heat transfer problem was effectively eliminated..In addition,
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the expansion and contraction of the PCM was accommodated for by the

flexible microcapsule wall material. Leakage of the paraffin was unde-

tectable after 300 cycles. However, leakage did occur when screens were

placed in the tank to prevent the uptake of the micro-capsule. The cap-

sules were ruptured when they accumulated against the screen. In addition,

it was observed that the capsules were weakened and ruptured when exposed

to most conventional pumping equipment. The impact of this on the system

is significant. In order for the materials to be handled as a slurry and

transported form manufacturing plant to site, pumping would be encountered

a number of times. Stronger capsule materials are needed. In discussion

with A. Tweedie, cost estimates obtained from Penwalt indicated a probable

cost of $1.00/lb of encapsulated PCM ($1.42/BTU). This does not include

storage tank and related hardware costs. Unless costs are reduced and

encapsulation materials strengthened, this system will be unable to compete

with the cool water storage systems.

A study conducted for NASA in 1971 also identified the paraffins,

as a group, as one of the more reliable and economic of the PCM they

tested. Their approach to the conductivity problem involved packaging

the PCM in a container with a metallic "sponge" filler which improves the

heat transfer between the PCM and heat exchanger. Volume changes were

accommodated for by either using container materials which could withstand

the pressure changes or by using a prestressed "bellowed" container which

would flex with the change of internal pressure. These measures never

found widespread commercial application primarily due to cost constraints,

something NASA was somewhat immune to 10 years ago.

The Annual Cycle Energy System (ACES) is an integrated space heating,

cooling and domestic hot water system. As designed in 1976 its major

elements are:

1. A high efficiency heat pump with refrigerant, to bring heat

exchangers on both the evaporating and condensing side.

2. Thermal storage on the low temperature (evaporator) side.

3. An auxiliary heat source and sink.
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4. A forced air circulating system with a fan coil for space. heating

and cooling.

5. A refrigerant to water heat exchanger for heating and a tank

for storing domestic hot water.24

During the winter months of 1976-77 the heat pump extracted heat

from the 18,000 gallon water tank via an intermediate brine circuit, and

in the process formed ice around the 2000 ft of aluminum fin tubing spaced

13" on center which comprised the storage tank heat exchanger. Heat collected

by rooftop solar collectors would melt ice when possible so as to maintain

an adequate supply of PCM. As the winter progressed, the average evaporator

temperatures fell due to the increasing ice cylinder, and the thermal resis-

tance that is represented. Under average winter conditions and maximum

ice thickness (6"), the brine to water AT was 9*F indicating an evaporator

temperature below 20*F. The impact was that the COP of the heat pump in

winter was often times lower than it would be if if had used the ambient

air as a heat sink. (Knoxville winer design temperature = 17*F). Yet,

this was necessary due to the requirement that full ice formation was

needed in order to insure adequate cooling capacity in the summer. This

system works best when both the winter and summer loads are about equal

thereby taking maximum advantage of the system's capacity year round. In

the. summer, space cooling is accomplished by circulating the brine from

the tank heat exchanger through the house's fan coil unit.

An interesting alternative to ACES for seasonal cooling only was

proposed by T. Bligh in 1976 at the University of Minnesota.25 Bligh

designed a system which makes ice throughout the winter by circulating

brine (methonal/water) through an externally mounted fin tube convector

whenever ambient temperatures fell below freezing. The chilled brine was

then circulated through 1/2" copper pipe spaced 18" on center in an 8000

gallon underground storage tank. Bligh's analysis of the ACES tank heat

exchanger showed that the effect of the extruded aluminum fin tubing

(1/2" pipe with 3" fins) was minimal. After the ice in the ACES system

had grown to 5" or 6", the aluminum fin effect had practically disappeared.

This fact, along with the extruded pipe cost, makes it logical that copper

50



be substituted. (Polyethylene pipe would be even cheaper and the effect

of its resistance would be minimal once the ice had formed out beyond 3".)

At the end of the winter, the tankful of ice is ready to absorb the house

heat by circulating the remaining tank water through the house's fan coil

unit. In this manner, the only energy required to cool a house would be

needed by the small circulating pumps. Unfortunately, the region of the

country where this works best is also the same region which experiences

only mild summertime cooling loads. It is questionable how effective such

a system would be in regions such as Tennessee. With warmer ambient winter

conditions, more tank heat exchanger piping would be necessary, driving

the system costs even higher.

The ACES project underwent major redesign the following year (1977).

The 2000 feet of pipe exchanger, along with the air to water heat pump,

were eliminated. In order to increase heat transfer during the ice making

stages and improve the system's COP, the heat pump was replaced with an

ice-maker heat pump. In this approach, during the winter water is drawn

from the storage tank and trickled over the ice maker's evaporator plate,

The ice forms out to a distance of about 1/4". At this point warm liquid

refrigerant from the receiver tank is circulated through the evaporator

plate to loosen the ice from the surface after which it drops to the ice

storage tank, Using the hot refrigerant in this manner reduces the

system's COP by using energy to melt the ice. However, by removing the

ice after a 1/4" build-up, the heat pump's evaporator is operated at

a constant 32*F making this extra expenditure of enery worth it. As before,

the domestic hot water is preheated by circulating the refrigerant from

the compressors through a heat exchanger (de-superheater).. Space heating

is accomplished in similar fashion with a warm condenser coil located in

the house's air handling unit, Fig. 14 .

A comparison of data26 between the ice maker operation, water to air,

and air to air heat pump indicate that the highest COP is realized with

the ice maker system. This assumes an ice maker water temperature of 32*F,

a ground water temperature of 60*F and an ambient air temperature of
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470F, respectively. One reason for the ice maker':s remarkable performance

is the fact that 144 BTU/lb of water is absorbed by the evaporator plate in

the phase change process. This results in a low mass flow requirement for

the ice maker which results in lower pumping costs. However, even when

neglecting this, the ice maker still exhibits the highest COP. Considering

the remarkably lower lift in the two conventional systems, this runs

counter to convention. One possible explanation for this may be that

efficiency improvements,which were not incorporated into the conventional

systems, were built into the ice maker by the manufacturers. If this is

the case, then the comparison is not a truly valid one.

One question that has not been asnwered to everyone's satisfaction

is whether or nor the ACES system is truly cost effective. Although signi-

ficant energy savings are possible, the capital costs for this type of

system are very large. It appears doubtful that the expense can be justi-

fied for the single family residence. However, larger scale systems

for apartment buildings and commercial structures may eventually prove

to be cost effective.
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One of the first applications of the ice maker heat pump to commercial

structures for off-peak cooling purposes is in the addition to Cray Research

facilities in Mendota Heights, Minnesota. Architectural Alliance of

Minneapolis is in charge of the project and Mason Somerville is the systems

engineer from the University of North Dakota Engineering Extension Service.

The ice maker is manufactured by TURBO Refrigerating Company of Denton,

Texas and sells for approcimately $1000/ton (_2-2.5 times the cost of a

conventional chiller). A 30 ton heat pump is coupleito a 112,000 gallon

storage tank C$.40/gallon).27 The heat pump manufactures ice at night

during the off-peak hours. Instead of rejecting heat to the environment,

the heat at the condenser warms water to 110*F which is stored for any

space heating needs. Additional boosting is possible to supply domestic

hot water. When the condenser heat is not needed, it is rejected through

a cooling tower. By utilizing both the heating and cooling outputs of the

heat pump, the combined COP can be as high as 5.28 This arrangement is most

economical when the heating and cooling needs of a building are roughly

equal.

There are two drawbacks to this approach., The first is cost. The ice

makers are quite expensive andr due to their increased complexity, are

subject to more mechanical failure. problems than a conventional chiller.

Secondly, when the tank is fully charged with ice "chips" only 1/2 of the

volume is actually ice, the remainder is liquid water. Thus, the full

potential of using ice as a PCM in order to reduce volumetric requirements

is not being realized. This is due to the size and shape of the ice

chunks in the storage tank. Also, in order to prevent uptake of ice by

the water suction lines, ice making ceases once the level of the ice is

within 2 feet of the bottom of the tank. The result is a volume which is less

than 1/2 ice. Even though the ice level is 2 feet above the water uptake

(located at the bottom of the tank) screens are placed over the pipe

opening to prevent the uptake of slush. The screens initially used were

susceptible to clogging and had to be replaced with more expensive ones.

It was difficult to determine the cost per energy unit stored for

this system primarily due to the incomplete cost accounting at this point

by Architectural Alliance. In addition, the decision was made to increase
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the size of the storage tank so that they would be able to have an ice

capacity carry over of about four days. This,then,allowed them to reduce

the capacity of their ice maker, the most expensive part of the system.

In discussions with Architectural Alliance and TURBO manufacturing rep-

resentatives it became clear that the cost of the ice makers installed

was roughly $2000/ton ($1000/ton more than conventional equipment). The

tank cost $.40/gallon. Assuming a 10 hr off-peak charge period, one day

storage, and 50% volumetric change of phase, the incremental cost per

million BTU of storage amounts to $8900 (.$.89/BTU stored).

The problems encountered with the heat pump ice maker (complexity,

cost, and percentage of volume involved in phase change) have been

unknowingly addressed by the Wisconsin Electric Power Company. This

utility has experienced summer load peaking for a number of years,

primarily due to the rapid investment in residential air conditioning

systems. Due to the time of day rates that the utility was planning,

and the hardship it would impose on consumers who have air conditioning

Widconsin Electric, in 1975, undertook a development project in conjunc-

tion with A.. 0. Smith Corporation, a tank manufacturer, to develop an

off-peak cooling storage system suited for residential application. The

approach is quite similar to the ACES system except that it is- cycled

daily rather than seasonally. 200 ft of 3/8" copper tubing spaced 3 1/4"

on center was built into a 180 1gallon storage tank. The tubing functioned

as the evaporator causing ice to form around the pipe out to a 3 1/4"

diameter, at which point a controller shut off the compressor. Evaporator

temperatures were maintained at 200 F. The system was operated at night

taking advantage not only of the off-peak rates, but also of the lower

temperatures available to the condensor. The drop in evaporator temperature

below "normal" operation is matched by the drop in ambient air temperature

at night vs., the day. Therefore, the lift is the same resulting in similar

COP, The. volume of ice made was approximately 80-85% of the tank volume.

The. remaining 32 0 F water was then circulated through a water to air

heat exchanger in the air handling unit, slowly melting the ice cylinders

while providing cooling and dehumidification to the home. The test

modules- constructed by the tank company for the utility cost $1800., The
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manufacturer reported that a limited quantity, commercially produced unit

would cost $400. Mass produced units are predicted to cost $250.

Assuming $600/unit installed cost, 80% water to ice conversion, and a

120. gallon tank, the costs per unit of energy stored is $.44/BTU,

Table 5 lists the cool storage systems and their characteristics

as described in this section. The chilled water storage system has

made the biggest inroads in the commercial market due to its relative

simplicity and reasonable cost. The more advanced of these systems with

floating membranes and elaborate plumbing is driving up the cost of the

system in order to reduce the volumetric requirements. The G.E. salt

and paraffin storage systems are bulky and expensive and cannot compete

at all with the straightforward approach embodied in the water storage

system. The MIT salt bag approach, although. expensive, is the most

space conserving (requires no central storage) and thermally efficient

of the solutions. However, its limited applicability (interior zones)

and severe design constraints are real handicaps.

The. only logical and cost effective alternative to cool water storage

is ice, storage. The early concern of reduced COP due to low evaporator

temperature was unfounded due to the lower night air temperature and the

increasingly- efficient low temperature refrigeration equipment.

The Wisconsin Electric ice storage design seemed to have the best

change of providing an alternative to the water storage approach. However,

their work was primarily centered on residential application. Commercial

scale installations are possible but more detailed information is 
required

about heat transfer in a pipe heat exchanger ice storage systems. Such

information was obtained from experiments carried out at MIT, and are

explained in the following chapter. These experiments reinforce the

favorable conclusions of Wisconsin Electric and seem to indicate the

viability of large scale commercial systems. In addition, a potential

improvement in the ice maker heat pump concept is discussed.
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COOL STORAGE SYSTEMS

System R&D Group Operation BTU/ft3  Testing Cost Remarks

Mode $/million BTU)

Cool water storage in use for many coupled to 1250, 20*F many 3000-6000 larger volume

years; membrane chilled water temperature installations - requirements

developed by R. system differential limited ATl

Tamblyn, Ontario

Rolling cylinders General Electric air side 1870, 50% laboratory unknown best suited for

with Glauber salts storage maximum pack- small commercial

ing density and residential

Glauber salts in

bags
0ul

Massachusetts
Institute of

Technology

decentralized

storage, air

charge

500 ft 
test space

12,000 for use in interior
zone of large
commercial struc-
tures, may be
charged with cool
ambient air

Microencapsulated General Electric coupled to 1750, 50% laboratory 14,200 encapsulating
paraffins chilled water maximum pack- material needs

system ing density strengthening

Ice maker Oak Ridge National coupled to 5280, 50% 40,000 ft2 8900 equipment is twice
Heat pump Laboratory chilled water maximum pack- office, as expensive as

system ing density largest packaged chillers
installation

known

Pipes in tank Wisconsin Electric coupled to 8100, 85% residential 4400 major cost is

ice system with A. 0. Smith chilled water maximum pack- tests con- (120 gallon pipe in tank

Corporation system ing density ducted by tank)
Wisconsin Elec.

TABLE 5.
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EXPERIMENTAL MODELLING
of on

ICE STORAGE SYSTEM
EXPERIMENTAL OBJECTIVES

Because of the higher volumetric efficiency of the pipe heat exchanger

ice system and the ability to couple it to conventional, cheap, packaged

chillers, it was decided to carry out experiments which would quantify in

an accurate way- the system's heat transfer characteristics. The concep-

tual design of the system is illustrated in Figure 15. A water cooled

chiller extracts heat from a brine solution (20% ethylene glycol,80% water)

which is pumped through a series of pipes which comprise the ice forming

heat exchanger in the storage tank. The brine extracts heat from the water,

causing the water to change phase and form ice on the wall of the pipe

(Fig. 17 ). This heat is carried by the brine back to the chiller's evap-

orator-cooler where it is transferred to the refrigerantthus cooling the

brine for the next pass through the tank.

Brine is used as an intermediate heat exchanger in these experiments

for three reasons. From an experimental standpoint, it is easier to

monitor the mass flow and temperatures of a liquid coolant than a refrig-

erant. Also, the technical feasibility of placing a direct expansion evap-

oration directly in the storage tank is questionable. It is critical

that oil return from the evaporator is insured for proper lubrication of

the compressor. Sufficient refrigerant velocities must be maintained along

with suitable piping layout in order to facilitate this. The demands for

an efficient ice making pipe configuration may not easily mesh with these

demands. In addition, according to discussions with refrigeration engineers

at Carrier Corporation, going to direct expansion, ice making evaporator

piping will require custom built chillers. A brine system is compatible

with the packaged chillers. Significant economies are realized by purchas-

ing packaged chillers.
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There are a series of heat transfers throughout this type of ice

making process. The hot refrigerant from the compressor (1054F) loses

heat to the cooling tower water across the condenser coils. After passing

through the expansion valve, the cold refrigerant (about 20*F) picks up

heat from the brine across the evaporator piping. The brine must draw

heat through any ice build-up, through the pipe wall, and across the

brine-pipe wall boundarylayers. All of these heat transfers are limited

by thermal resistances. The amount of heat flowing through a given thermal

"resistor" is dependent on the temperature gradient across the resistor.

By lowering the brine temperature, more ice will be formed per unit of time.

That in turn means that the quantity of heat exchanger surface (pipe)

will be reduced, thus lowering construction costs. However, by lowering

the evaporator temperature, the temperature differential (lift) that the

compressor has to operate over is increased, resulting in an increased

power consumption for a given unit of cooling (a reduced COP). The system

optimization process involves information and variablesspecific to each

installation and region of the country. It is beyond the scope of this

thesis to quantify these variables and perform an optimization. It will

suffice at this time to assume that brine temperatures below 20*F will

exact an unacceptable operating penalty on the chiller's COP during night-

time operation (refer back to page a9 for additional information on this

point).

At the beginning of the ice forming process, heat transfer from the

water to the ice is limited by the conductivity of the pipe wall and the

wall to brine boundary layer. Heat transfer across this boundary layer

is influenced by the brine's conductivity, Reynolds number and Prandtl

number. As the ice layer thickens around the pipe, the heat transfer

is further reduced. Assuming a fixed brine supply temperature, the heat

flow to the brine will fall off as time progresses. The amount of energy

stored as ice over a given time period is equivalent to the area under

the "heat flow vs- time" curve. The size of pipe used for the tank heat

exchanger influences the Reynolds number of the brine due to the change in
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fluid velocity. It also influences the pressure drop across the pump which

translates into the pumping energy requirements. A small pipe is desirable

due to low cost and high fluid velocity (high Reynolds number), but unde-

sirable due to greater pressure drops and smaller surface area. In order

to allow flexibility in designing systems of various sizes and configura-

tion, it is necessary to predict how pipe size will effect the rate of ice

formation. Also, the pipe material may affect the ice formation. Copper,

an excellent conductor, is also quite expensive. An economical alternative

is plastic pipe, but its conductivity is much lower. The impact of this is

evaluated. Most importantly, this information will indicate how thick

the ice will be after a unit of time under varying operating conditions. This

in turn will reflect the pipe spacing that is required to use the tank

volume most efficiently which, in turn, indicates the quantity of pipe

needed and its cost for a given cool storage requirement. Throughout the

experiment, the charge period (off peak period) is assumed to be 10 hours.

Longer charge periods will result in lower costs due to decreased chiller

capacity and larger pipe spacing,

The ability of the storage system to discharge during cooling load

periods is equally important. Discharging of the ice mass can be accom-

plished in two ways. With the indirect discharge system (Fig.15 ), the

building's heat is absorbed by the chilled water in the air handling units.

This chilled water transfers its heat to the brine coolant via a heat ek-

changer. The brine is circulated through the storage tank heat exchanger

releasing its heat through the pipe wall, to the melting ice. As the ice

melts, the heat flow through the water/ice system changes. It is important

that the heat transfer coefficient of such a system is sufficient to satisfy

any peak cooling load the building may experience. An alternate way of

discharging the ice mass is illustrated in Fig.16. Here the charge and

discharge circuits are separate. Making ice is accomplished as previously

described. However, in discharging the system the remaining tank. water is

circulated directly around the ice and then through the heat exchanger that

couples into the building's air handling units.The water is passed back to

the storage tank where it transfers the heat directly to the ice mass. 4
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further simplification -would have the tank water circulated directly through

the building's air handling units, avoiding the cost and inefficiencies of a

heat exchanger.

However, because chilled water systems which supply air handling units

are pressurized, this redesign would not be economically feasible. The

storage tank would have to be built to withstand those pressures and would

be prohibitively expensive. The intermediate heat exchanger does not

degrade the performance of this system as it did to the cool water storage

system. This is because the ice system gains its benefits not from the

sensible heating of water which requires a substantial AT (See page 33)

but from the latent heat of fusion which theoretically occurs at fixed

AT. The difference in the discharging ability of the two ice storage

designs are evaluated in the experiments.

MODELLING METHODS

Heat flow and ice formation in an ice storage system similar in concept

to Figs. 15,16, theoretically can be accurately predicted with a two dimen-

sional heat flow equation for a tube surrounded by an annular layer of ice.

The overall heat transfer coefficient can be determined by solving the

equation

27T
theor. 1 + n(R /R ) n(R, /R ) (2)

1 + out in + ice out
h. xR. K . K.

in in pipe ice

where

Utheor. (BTU/hrft*F) = theoretical heat transfer coefficient at a

given ice thickness

64



h. (BTU/hrft *F) = convective heat trnasfer coefficient of the inside surface
in

of the pipe

R. (ft) = inside radius of pipe
in

R O(ft) = outside radius of pipe
out

R. (ft) = outside radius of ice
ice

K . (BTU/hrft*F) = conductivity of pipe
pipe

K. (BTU/hrft*F) = conductivity of ice
ice

h. = - 0.0118 (Pr 0 3 ) (Re 0.9) (3)
in R. b b

in

where

Kb (BTU/hrft*F) =gconductivity of brine

R. (ft) = inside pipe radiue
in

Prb = Prandtl number of brine

Re b = Reynolds number of brine

U -C

Pr = b (4)
b Kb

where

U b(lb/hrft) = absolute viscosity of brine

Cb(BTU/lb*F) = specific heat of brine

Re = VbR in (5)
b 

.Ub
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where

(lb/ft3) = density of brine

Vb(ft/hr) = velocity of brine

therefore,

Ub b 0.3 -Vb-Ri 0.9
h = [0.0118( ) ( ) ] (6)
R i n Kb Ub

Experimental results are compared to the predictions in order to

ascertain the validity of the mathematical model. Once confirmed, the

model can then predict the impact of various pipe radii and pipe materials

on ice formation without the expense of an experimental set-up.

THE EXPERIMENT

A 65 gallon water tank is used as a storage vessel and is insulated

with 3 1/2" of fiberglass (U = .09 BTU/hrft 2F) on the sides and 4" of

polystyrene on the top and bottom (U = .05 BTU/hrft 2F). A heat exchanger

built from copper tubing placed inside the tank consisting of three l7ft

branches (1/2" I.D. copper M) which are fed from and returned to 1" mani-

folds in a reverse return fashion in order to insure a balanced flow.

The brine is pumped through the heat exchanger by a fractional horsepower

TACO circulator (008). The flow is monitored with a rotating disc type

water meter and controlled manually with a butterfly valve. The brine is

chilled in a 30 gallon tank by circulating it past the chiller's evaporator

tubing. The chiller capacity is 1 1/2 ton (design shown in Fig. 18)-

Heat flow is determined by monitoring the inlet and outlet bring

temperature. The temperature difference times the mass flow rate times the

specific heat of the brine is equal to the heat transferred from the water

to the brine. Knowing the heat of fusion of water (144 BTU/lb), the quantity

of ice being formed is determined by subtracting the heat gain to the tank

from the cumulative amount of heat drawn from the tank. In addition, tempera-
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ture sensors (thermistors) are suspended in the tank at various distances

from the pipe along one of the brances (Fig. 18,19). When the ice had crystal-

lized out to a thermistor, this is reflected by the drop in temperature below

320F. Also, a set of calipers is used to manually check on the ice thick-

ness in order to confirm the information obtained from the thermistors.

The thermistor (.a YSI 44203) is a composite device consisting of resistors

and precise thermistors which produce an output voltage linear with tempera-

ture. A solid state low voltage power supply provides 3 volts to the ther-

mistors. The output voltage is read manually off a digital voltmeter and

converted to *F.

During the discharge mode, a 4500 watt heating element is immersed

in the brine cooler to simulate a building's cooling load. The brine. supply

temperature ot the tank is- held around 52*F. A smaller heating unit is

used to heat the tank water during heat addition to the direct discharge

design.

The experimental heat transfer coefficient is calculated in the

following fashion.

Heat flow (BTU/hr) = (IT -T 1) x x specific heat (7)
out in hr o cicatof coolant

Heat transfer coeffieicnt(BTU/hrft*F)U = Heat flow(BTU/hr) (8)
exp. ft . -LMTD

pipe

where

Ft . = total length of 1/2" pipe (52 ft)
pipe

LMTD = log mean temperature difference between the inlet and outlet

temperatures of the brine circulated through the heat exchanger

and the temperature of the water in the ice bin.
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T -T. T -T
LMTD ( wt in) - ( wt out) (9)

T -T.
wt- in
T -T
wt out

where

Twt (F) = storage tank water temperature

T. (*F) = brine temperature at heat exchanger inlet
in

Tout (F) = brine temperature at heat exchanger outlet

The experimental heat transfer coefficient (BTU/hrft*F) is then compared

to the theoretical heta transfer coefficient predicted by model at various

ice.thicknesses. No modelling was attempted for the discharge mode, although

such modelling is possible. (See Ref. 1,2). As the data will later show,

the direct discharge capability is more than sufficient to handle any for-

seeable cooling loads. The limiting factor, therefore, is posed by the

charging mode and it is here that the modelling is needed.

ANALYSIS OF THE HEAT EXTRACTING PROCESS

Data included in this report is taken from three experiments conducted

at the Building Systems Laboratory at MIT. The difference between the three

runs is the inlet-outlet brine temperatures and the corresponding rate at

which ice is formed. Data from the first run is shown in Table 6. In

this run, the tank water is initially cooled to a uniform 320 F and the

brine flow rate is held at a constant 3.21 g.p.m. throughout the course

of the experiment. As indicated by the "heat transfer coefficient" column,

heat flow initially is quite high, with the inner pipe-brine convective heat

transfer coefficient being the only real source of thermal resistance. Ice

quickly solidifies out to a thickness of 1/4" before the thermal resistance
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EXTRACTION, 25.6 0 F AVERAGE BRINE TEMPERATURE

Time Mass Flow

(hr) (GPM)

.10

.75

.90

1.27

1.50

2.00

2.25

2.66

3.00

3.33

3.75

6.60

7.10

9.66

10.00

3.21

Tank Water

32

of

of

to

"

"f

"f

"s

"

"I

Inlet Brine

24.54

24.90
iI

ifI
"f

"f

"s

"

Temp; 0 F

Outlet Brine

27.06

26.52

26.70

26.34

26.70

26.34

26.52

26.16

26.34

26.16

26.34

26.16

25.98

26.16

25.98

AT

Inlet-
Outlet

2.52

1.62

1.80

1.44

1.80

1.44

1.62

1.26

1.44

1.26

1.44

1.26

1.08

1.26

1.08

LMTD Heat Flow

(BTU/Hr)

6.11

6.26

6.16

6.35

6.16

6.35

6.26

6.45

6.35

6.45

6.35

6.45

6.55

6.45

6.55

4032

2592

2880

2304

2880

2304

2592

2016

2304

2016

2304

2016

1728

2016

1728

Ice Experimental
Thickness Heat Transfer

(in)

0.3

0.45

0.50

0.50

0.65

0.75

1.0

1.0

1.2

1.2

12.7

8.0

9.0

7.0

9.0

7.0

8.0

6.0

7.0

6.0

7.0

6.0

5.1

6.0

5.1

0

r

TABLE 6. HEAT



of the ice itself begins to dominate the rate of ice formation. Although the

ice build-up acts to throttle down the flow of heat, the increasing ice

circumference counteracts this somewhat by increasing the surface area through

which the heat moves. As shown in Fig.20 the combination of these two effects

produces a curve which approximates a log function whose slope approaches

zero after the ice passes 1.2". This implies that the heat flow remains

fairly constant (falls off very slowly) past this point. However, this

does not mean that the ice build-up in terms of ice thickness, proceeds at

an almost constant rate. Every additional incremental layer of ice embodies

an increasing quantity of energy due to the Tr 2 relation between ice thick-

ness and ice volume. Therefore, the thicker the ice, the longer it takes

to add the next incremental layer - assuming a constant heat flow. This can

be seen in the data in Table 6. The first 1/2" of ice is added after only

2 hours. During this same period, the heat flow has fallen from 12.7 to

about 7.5 BTU/hrftpi peF. In order to add the next 1/2" layer of ice it takes

4.6 hours and yet the heat transfer has only fallen from 7.6-6.0 BTU/hrft*F.

At the end of the 10 hour charge period, the ice had formed out to a thick-

ness of 1.2" indicating that the optimum pipe center-to-center spacing would

be 3". The ice thickness (1.2") plus the pipe radius C.3125") equals

1.5125". Since the adjoining pipes will have the same ice layer around them,

a spacing of 3" will insure that all the neighboring ice cylinders just

touch one anothe: . This arrangement utilizes the tank volume most efficiently

(See Fig. 17). The only remaining liquid water (about 10.% tank volume) is

needed to provide the channels through which the water will flow in order

to efficiently and uniformly discharge the ice store. If, after the charge

period is over, there is more water in the tank (i.e., the ice cylinders

have not touched) then the pipe spacing was too large and consequently, the

tank was excessively large,

Fig.21 shows the thermistor data plotted as the experiment progressed

(See Fig. 18,19 for location of thermistor). Thermistors 3 and 9 experienced

freezing quite rapidly as they were located only 1/8" from the pipe. Ther-
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mistors 4, 8 (1/2" out) registered ice after 2.5 hours. The next thermistors

2,5,7,10 did not indicate the formation of ice until around the 7th hour.

The location of the thermistors imply that the #2 thermistor should freeze

before #10 since the brine is the coldest at #2 and has warmed up by the

time it circulates to #10. However, looking at Table 6, the AT between

inlet and outlet is typically 1.44F, while between thermistor #2,10 the

AT is probably only 1*F. This slight difference is not sufficient enough

to be seen in the response of the thermistors. Had the mass flow rate been

much less than 3.27 g.p.m., the thermistors would probably have responded

differently.

Tables 7, .8, show the next two experimental runs conducted at lower

brine temperatures (22*F, 19.51F). In these two experiments, the tank water

was initially at 34-35*F, resulting in some of the energy being expended

to sensibly cool the water mass. At 220 F, the optimum pipe spacing should

be 3 1/2". Experimentally, the ice only formed out to a thicnkess of 1.3",

which is equal to a pipe spacing of 3 1/4". The difference in equivalent

energy is equal to the amount of heat lost from the tank and the sensible

cooling 'of the water mass at the start. At 19.5*F, the optimum pipe spacing

is 3 3/4" while experimentally (for the same reasons) the spacing was

effectively 3 1/2". One change that should be noted between the first

experiment and the next two is the drop in the mass flow in runs #2 and 3.

Evidently, the reduced temperature changed the velocity of the brine enough

to have an effect on the capacity of the pump. This was monitored constantly

and factored into the calculations.

The data from the three experiments is presented in Fig.20, showing the

relationship between the ice thicnkess and the heat transfer coefficient.

By taking the natural log of the data, an approximately straight line is

generated, making it possible to run a linear regression. The dashed curve

on the graph is the result of this analysis and the correlation coefficient

is .905. In order to compare the data to the models prediction, equation

2, page49, had to be computed for a series of ice radii (this is the only

variable that changes). Before that equation can be solved, the pipes inside

convective heat transfer coefficient (h. ) needs to be determined. The
in

values for the variables (below) were obtained from the ASHRAE Handbook of

Fundamentals, P. 17.7-17.8.
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TABLE 7. HEAT EXTRACTION, 22
9F AVERAGE BRING TEMPERATURE

Time Mass Flow

(hr) (GPM)

0

0.33

1.00

2.0

3.0

4.0

6.5

8.0

10.0

3.28

"

3.10

"0

"f

3.00

"f

"f

Tank Water Inlet Brine

34.5

32.7

32.4

32.2

32.2

32.0

32.0

32.0

32.0

21.74

22.28

21.74

20.84

20.30

20.12

19.76

23.54

19.40

Temp,*F

Outlet Brine AT LMTD

Inlet-
Outlet

25.52

25.16

24.08

22.82

22.28

21.92

21.38

24.80

21.02

3.78

2.88

2.34

1.98

1.98

1.80

1.62

1.26

1.62

Heat Flow

(_BTU/Hr)-

Ice
Thickness

(in 1.
1 f I

10.66

8.70

9.24

10.14

10.68

10.97

11.40

7.81

11.77

6173

4703

3821

3055

3055

2778

2464

1882

2464

0.32

0.56

0.75

0.86

1.10

1.22

1.30

_______________________ .1 1 -1 I

Experimental

Heat Transfer

11.13

10.39

7.95

5.79

5.50

4.87

4.16

4.63

4.03

11
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HEAT EXTRACTIONl9.54F AVERAGE BRINE. TEMPERATURE

Time Mass Flow

(hr) (GPM)

0.1

0.50

1.00

1.50

2.66

3.50

4.0

5.0

6.0

7.0

8.0

9.5

3.06

3.03

"

2.98

2.97

"9

2.96

Tank Water Inlet Brine

Temp; F

Outlet Brine AT LMTD

Inlet-
Outlet

Heat Flow

(BTU/Hr)

1. I 1 [ -

34.3

33,6

33.3

32.2

32.0

"

"

"'

"

"

20.48

21.56

21.20

19.76

18.86

18.32

18.32

18.14

17.96

17.78

17.60

17.24

24.44

24.26

23.72

22.28

21.38

20.66

20.66

20.30

20.12

19.76

19.58

19.22

3.96

2.70

2.52

2.52

2.52

2.34

2.32

2.16

2.16

1.98

1.98

1.98

11.73

10.63

10.79

11.13

11.84

12.47

12.47

12.75

12.93

13.21

13.39

13.75

A ___________ I ______________ I I- I 4 1

6039

4118

3843

3805

3805

3533

3533

3208

3197

2930

2930

2921

Ice Experimental

Thickness Heat Transfer
(in)

0.1

0.4

0.8

1.0

1.1

1.25

1.35

1.40

1.50

10.0

7,5

6.9

6.6

6.2

5.5

5.5

4.9

4.8

4.3

4.2

4.1

TABLE 8.



Kb = 0.28 BTU/hrft*F

R. = 0.021 ft
in

Ub = 5 lb/hrft

Cb = 0.9 BTU/lb*F

= 64.9 lb/ft3

Vb = 6084 ft/hr

therefore

h = 286 BTU/hrft 2F

In equation 2, page69, all the products in the denominator are in the form

of a thermal resistance. Table 9 compares the thermal resistance of each

component. The copper pipe is practically invisible, thermally. The inside

convective coefficient is a limiting factor only in the very beginning

of the experiment and is soon overshadowed by the thermal resistance of the

ice itself. By solving equation 2 (page 6q) for a series of increasing ice

radii, a curve begins to emerge, and is shown graphically in Figure 20.The

dotted line represents the results of a linear regression of the experimental

data. The results from equation 2 form the solid line and are quite close to

what was observed. From this result, it seems fair to assume that the theo-

retical model provides an accurate means of predicting heat transfer charac-

teristics of a piped ice storage system.
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TABLE 9. R-VALUE OF THERMAL COMPONENTS IN A COPPER PIPE SYSTEM

Hrft*F/BTU

Ice thickness pipe Ice Total
h. -R. 5/8"

(inches) i in

0 0.167 0.001 0 0.168

0.1 " " 0.21 0.378

0.2 " " 0.37 0.538

0.4 " " 0.62 0.788

0.6 " " 0.81 0.978

0.8 " " 0.96 1.128

1.0 " " 1.08 1.248

ANALYSIS OF MODELLING PREDICTIONS

When the copper pipe is replaced with similar sized plastic piping, heat

transfer is substantially reduced as shown in Fig.20. When the individual

"resistive" components are compared (Table l0) , the pipe now becomes the

limiting factor in the early stages of ice formation.

TABLE 10. R-VALUES OF THERMAL COMPONENTS IN A PLASTIC PIPE SYSTEM

llrft*F/BTU
Ice Thickness h. R plastic pipe Ice Total

in in 5/8"

0.167

"t

0

0.1

0.2

0.4

0.6

0.8

1.0

1.16

it"f

0

0.21

0.37

0.62

0.81

0.96

1.08

1.327

1.537

1.697

1.947

2.137

2.287

2.407
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The plastic modelled here is polyethylene semi-rigid tubing 1/2"

nominal I.D. with a .064" thick- wall. The material is capable of handling

80 psi and its K value is 2.3 BTU/hrft *F/in (copper is about 2400). The

only other readily available plastic that might be considered is PVC. How-

ever, its conductivity is 1/2 that of polyethylene and its cost is approx-

imately three times as great. Both plastics are compatible with methanol

or ethylene glycol - both suitable anti-freezes.

In order to accommodate the requirements of a variety of different

sized ice storage systems, it is necessary to model the effect of pipe

size and material, as well as brine temperature on the heat transfer co-

efficient. Smaller capacity systems may require only a 3/8" or 7/16" pipe

while larger systems may be more efficiently served by 7/8" or 1 1/8"

pipes. As discussed earlier, the inside diameter of the pipe affects the

pressure drop through the pipe, the pumping requirements, and the inside

convective heat transfer coefficient. More importantly, the outside dia-

meter determines the actual surface area of heat exchanger per foot of pipe

and consequently the overall heat transfer coefficient of the pipe. Fig.22

shows the effect of pipe size on heat transfer. To simplify matters,

hin is assumed to be equal in all the pipes which implies that the mass flow

is higher in the larger pipes. As the pipe size increases the number of feet

required to transfer a unit of heat goes down. As expected, plastic pipe

impedes the overall system heat transfer.

The rate of ice formation is dependent on the heat exchanger size,

material, temperature, and whatever ice has already formed on the pipe.

By breaking the ice radii into 0.1" incremental cylinders which embody a

certain amount of latent heat (Q ) and dividing the quantity (BTU per ft of

pipe) by the heat transfer coefficient "U" (BTU/hrft*F) for that distance

(rn ), and by the AT between the evaporator and the water tank, the time

required to freeze that cylinder of ice is determined (See Fig.24).

2 6 lb ice 144 BTUQ = ['r(F )2 - ll(1 2 ] x x (o
ft 3 ice lb ice

where

r = ft.
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Also,

Un = f(r n (11)-

n= time (12)
(U n) (AT)
(n

BTU/ft _ hrs 13)

(BTU/hrft*F). (*F T)

By reiterating this process for all the ice cylinders the time it takes

to freeze the nth cylinder can be calculated. Conversely, by knowing the

duration of the charge period (10 hrs), the radius of ice formed at the

end of that period can be determined. A program was written to be used

in conjunction with the TI-59 programmable calculator. The program was

used to model ice formation under a variety of brine temperatures and

for different pipe sizes. Fig.2 3 compares the predictions made with the

two dimensional heat flow model to the real data for the conditions listed.

After the end of the charge period, the difference between the two curves

amounts to only 2%. In Fig, 25, the ice radius, rather than BTU stored,

is plotted over time, the difference being less than 1%. It appears that

the predictions made with the theoretical model are sufficiently accurate.

As the brine temperature is reduced, a greater amount of ice is formed. For

5/8" copper pipe, the ice radius at the end of a 10 hour charge period is

1.6". At 20*F it is 1.9" while at 150F, the ice radius would have grown

to 2.15". There are two reasons why the increase in the ice radius between

20*F and 154F is not as large as between 250F and 200F. First, going from

25*F to 204F increases the temperature differential by 70%. Dropping from

20*F to 15*F only increases the temperature differential by 40%. In addition,

the increase in the amount of energy embodied in the ice is not proportional

to the increase in radius, but rather is a function of the square of the

radius. Finally, the thicker ice radius at 150F imposes a higher thermal

resistance resulting in a reduced heat flow.
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The plastic pipe. considerably retards the formation of ice due. to its

poor thermal conductivity for 5/8" pipe at 204F. The copper pipe will form

77% more ice in 10 hours than the plastic pipe which means 77% more plastic

pipe is needed to make the same amount of ice per unit of time. By knowing

the ice radius, the proper pipe spacing is determined (double the radius).

Figures 26, 27, 28 show ice radii for other pipe sizes and brine temperatures.

This data is compiled in a more us-able form in Table 11- The optimum

pipe spacing is listetd4 , along with the amount of heat stored per foot of

pipe and the amount of pipe needed to store one million BTU. This informa-

tion coupled with the cool storage capacity needs, provides the designer

with the quantity of pipe needed and its proper spacing for a particular

size of heat exchanger.

TABLE 11. DESIGN VALUES FOR AN ICE STORAGE SYSTEM USING A PIPE HEAT

EXCHANGER (10 HOUR CYCLE)

Brine Temp. O.D, Pipe Size (in)

*F 7/16 5/8 7/8 1 1/8

A 2.9 3.2(2.3) 3.5(.2.8) 3.8

25 B 361.0 433(215) 505(300) 579

C 2770 2309(A651) 1980(3333) 1727

A 3.5 3.8(2.9) 4.2(3.4) 4.5

20 B, 530 618(350) 742(470) 835

C 1887 1618(2850) 1348 (2128) 1198

A 4.0 4.4 4.8 5.1

15 B 695 834 980 1088

C 1439 1199 1020 919

A - Optimum pipe spacing, center to center (in.)

B - Heat stored per foot of pipe (BTU-heat of fusion only)

C - Feet of pipe per million BTU of storage

( ) - Polyethylene pipe
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ANALYSIS OF HEAT ADDITION PROCESS

During the daytime hours-, when the electrical rates are at a premium,

the fully charged ice storage bank will be used to absorb the building's

internal and weather related heat gains. There are two ways in which a pipe

heat exchanger system can transfer the building's heat to the ice storage,

indirectly, as in Fig.15, and directly, as in Fig.16.

With the indirect system, the brine is circulated through a shell and

tube heat exchanger where it absorbs heat from the warm (60*F) water return-

ing from the air handling units. The brine then passes through the now inactive

chiller heat exchanger (or may bypass it with proper valving) and flows

through the piping in the storage tank. The heat is tranferred through the

pipe wall to the ice which melts from the pipe wall outward (Fig. 2 9 '). The

rate at which heat is transferred dep.ends on the surface area of pipe,

pipe material, brine flow- rate, and the amount of ice already melted. Suitable

methods for modelling the heat addition mode of the indirect system have
(1)

been formulated , but are not addressed in this work.

A number of indirect discharge cycles were run with the experimental

apparatus (Fig.18). Data from a representative run is listed in Table 12.

A pump (P2 ), separate from the brine loop, was switched on periodically to

observe the effect that forced convection of the water between the pipe

wall and ice layer would have on the heat transfer rate. The inlet and

outlet brine temperatures remained around 50*F with the inlet to outlet

differential varying from 1 to 3.8*F The heat flow (BTU/hr). was calculated

in the same manner as in the heat removal mode (see equation 7 page G8 ).

Likewise, the experimental heat transfer coefficient (BTU/hrft*F) was

formulated as in equation 8. Fig. 30 shows how the heat transfer in the

indirect discharge system changes as the ice cylinder melts from the inside

out. Heat transfer is initially very high due to the low thermal resistance,

consisting primarily of h. . As the ice begins to melt, the water layerin
now separaring the pipe from the ice inhibits the heat flow. After approx-

imately 2 hours, the heat flow begins to pick up. This occurs at a point

where the ice has melted out to a radius of approximately 0.9". Evidently,

convective heat transfer begins to supplement the heat flow enough to more
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HEAT ADDITION TO ICE STORAGE SYSTEM (INDIRECT MODE)

Temp; F

Time Mass Flow Tank Water Inlet Brine Outlet Brine AT LMTD Heat Flow Ice Experimental

(hr) (GPM) Inlet- (BTU/Hr) Thickness Heat Transfer

Outlet (in)

.25 3.28 32 51,80 48,38 3.42 18.0 5585 6.0

.50 62.24 59.18 3.06 28.7 4997 3.4

1.00 54.50 52.34 2.16 21.4 3527 3.2

1.50 51.80 49.64 1.44 18.4 2351 2.5

2.00 3.35 "f 50.72 49.46 1.26 18.1 2102 2.2

3.50 3.48 " 51.80 50.36 1.44 19.1 2495 2.5

4.00 " " 52.34 50.72 1.62 19.5 2807 2.8

4.50 " " 52.16 50.36 1.80 19.2 3119 3.1

4.75 " " 51.98 50.18 1.80 19.1 3119 3.1

5.00 " " 53.96 50.18 3.78 20.0 6550 6.3

*5.33 " " 51.08 47.48 3.60 17.2 6239 7.0

5.50 " " 53.42 51.62 1.80 20.5 3119 2.9

7.75 "" 51.98 50.72 1.26 19.3 2184 2..2

*8.0 " " 51.62 49.28 2.34 18.4 4055 4.2

8.2 " " 53.06 51.80 1.26 20.4 1872 1.8

8.6 " " 52.70 51.62 1.08 20.2 1872 1.8

Pump (P2) on

11

co
co)

TABLE 12.



HEAT ADDITION TO ICE STORAGE SYSTEM (DIRECT MODE)

Temp ; *F

Time Mass Flow Tank Water Inlet Brine Outlet Brine AT LMTD Heat Flow Ice Experimental

(hr) (GPM) Inlet- (BTU/Hr) Thickness Heat Transfer

Outlet (in)

3.48 32 36.75 34.15 2.6 3.28 4505 15/16 26.4

3.48 37.07 34.47 2.6 3.61 4505 13/16 24.0

3.48 37.35 34.85 2.5 3.97 4332 5/8 21.0

2.13 38.10 34.0 4.1 3.67 4349 15/16 22.8

2.13 - 39.0 34.61 4.4 4.44 4667 13/16 20.2

2.13 39.25 35.05 4.2 4.85 4455 5/8 17.7

0.90" 43.3- 33.6 9.7 4.96 4348 15/16 17.5

0.90 43.58 33.98 9.6 5.43 4302 13/16 15.8

0.90 44.0 34.51 9.5 6.06 4258 5/8 14.0

-I 4 4- 4 -4 * I

11

TABLE 13.,



than make up for the increasing resistance associated with a purely con-

ductive path. At the fifth hour, the small circulator (P2) was turned on.

Tank water was drawn out of the bottom of the tank and released at the

top, thereby increasing the heat flow by 100% by raising the convective

heat transfer component. When the pump was turned off, the heat flow

dropped down to 3000 BTU/hr. Later on the pump was switched on again

with similar results.

By directly discharging the ice storage tank much higher heat flows

are possible (Table 13). Data was collected at three points during the

discharge cycle, when the ice was 15/16", 13/16" and 5/8" thick. At

each point tne LMTD was checked at 0.9,2.13 and 3.48 gallons per minute. With

.CD

w:

CD4

3+

0 1 2 5 7

TIME [hrs]

FIG 30
DISCHARGE of ICE STORAGE via INOIRECT MODE
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the LMTD and inlet/outlet temperature difference, the experimental heat

transfer was calculated. As the mass flow declined, the heat transfer

coefficient also declined, as result of the reduced fluid velocity (lower

reynolds number). Also, as- the diameter of the ice cylinder shrunk, the

heat transfer coefficient dropped further, resulting from a combination

of reduced ice surface area and a decreased fluid velocity. Nevertheless,

the heat transfer- coefficients were much higher than with the indirect

discharge system, as shown in Fig. 31.

The ability of the ice storage system to absorb the building's heat

as it is generated is critically important to the overall success of the

idea, If the system has the thermal storage capacity, but not the necessary

heat transfer capability to meet the peak loads, then the advantage of this

concept is greatly diminished, This is because in such a situation, the

chillers will have to be operated during the utilities', peak hours

resulting in an increased energy charge and possibly a higher demand

charge in addition. For this reason., it is highly desirable. to design the

storage system so that it can meet the maximum anticipated peak cooling load.

2
Referring again to the energy analysis of the 757,000 ft office building

in Boston, the cooling loads amounted to a total of 210 BTU/ft2 for the

hours of 6AM to 8PM (considered as the utilities' peak period)., The cooling
2

peak occurred on August 17 at 2PM and amounted to 21 BTU/hrft A cool
I2

storage system for this building would require a capacity of 210 BTU/ft 2

of conditioned space and would need to have the capability of releasing

10% of its capacity per hour (210 BTU/ft2 -. 21 BTU/ft 2 = .1 or 10% per hour).

With a capacity of approximately 25,000 BTU in the experimental appara-

tus, the minimum acceptable discharge capability is 2500 BTU/hr. In the

indirect discharge mode without the pump on, the discharge capability

drops to approximately 2 BTU/hrftpipe F. With 52 feet of pipe and a max-

imum log mean temperature differential of 180F, the discharge capability

equals 1872 BTU/hr. The 18*F LMTD is determined by the fact that the

ice storage is fixed at 32*F and in order to supply 55*F chilled water

to the air handling units, the maximum average brine temperature is

considered to be 504F. Therefore, it is reasonable to conclude that the

indirect discharge working under natural convection is not satisfactory.

It appears that the indirect discharge with forced convection would be
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able to absorb any anticipated cooling load. This is only true if the

tank water being pumped is able to enter the space between the pipe wall

and the ice cylinder throughout the course of the discharge period.

The piping would have to be designed to facilitate this.

The direct discharge design can very easily handle any conceivable

cooling load. In fact, even at .9 g.p.m. flow rate, the heat transfer

coefficient is 2.5 times that for the indirect system with a flow rate

of 3.5 g.p.m. and operating under forced convection. The impact of this

is that the pumping capacity is greatly reduced resulting in a smaller

horsepower requirement, lower operating costs and smaller pipe size.

It would be very simple to design for the direct discharge of the ice

tank, leaving no reason to even consider using the indirect discharge

approach,
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DESIGN
of a

SYSTEM PROTOTYPE

In order to accommodate the utilities' off-peak schedule, a cool

storage system must be able to charge and discharge within the time con-

straints imposed by the utilities' 10 hour off-peak period and the building's

peak hour cooling load profile which may demand cooling at a rate 50%

greater than the nighttime charging rate. In order to avoid turning on

the chillers during the daytime, which would increase the demand charges

and require expensive power, the storage system's discharge capabilities

nustbe greater than its charging abilities.

Experimental data and modelling has shown that, with proper heat ex-

changer sizing, 10 hour system charging is feasible. In turn, by directly

discharging the storage tank, heat transfer rates greater than any anti-

cipated building load are possible. The temperature at which the tanks

heat exchanger is operated directly determines the rate of ice formation.

It also has an impact on the COP of the chiller. As illustrated on

page a9, by operating the chillers at night during off peak hours, the

evaporator temperature can be reduced by 15*-20*F without substantially

reducing the chiller's COP, due to the lower ambient temperatures.

95



Strictly from an economic point of view, it would make sense to reduce

the evaporator temperature even further. Since the off-peak electricity

is so cheap, it would not increase the building operating costs signi-

ficantly and in addition, it would enable the designers to install a

smaller quantity of heat exchanger piping, lowering the overall capital

costs. However, while there is some merit to this point, the ultimate goal

of this storage system should be to reduce the consumption of power while

also reducing costs. In order to accommodate both of these objectives, the

minimum evaporator temperature to be considered for purposes of this

thesis is 15*F. A 5*F minimum required temperature differential between

the evaporator and brine loop results in a minumum brine temperature of

20*OF.

Increasing the pipe diameter offers a greater initial surface area

for the ice to form on, thereby allowing a greater heat flow during the

charging period. Because of the higher heat flow per foot of pipe, the

pipes can be spaced further apart resulting in a smaller quantity of

pipe needed per unit of storage capacity. An additional benefit results

from the fact that less pipes mean that less connections need to be made

in the assembly process. Assembly costs can easily match, if not exceed,

the materials cost. It should be obvious, however, that larger pipes cost

more per foot. As long as the increased cost per foot for the pipe is

cancelled out by the reduction in the overall number of feet required,

it is probably worthwhile to use the larger pipe. The pipe size also

affects the fluid velocity, which in turn, affects the convective heat

transfer for the inside of the pipe (hin ). As a pipe gets larger, the

fluid velocity drops, reducing the Reynolds number and introducing a

larger thermal resistance. However, as the pipe gets larger, the mass

flow must be higher in order to absorb the increased heat transfer over

a fixed temperature differential, thus counteracting, somewhat, the re-

duction in velocity due to increased diameter. Thus point warrants

a more detailed examination.
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In the experimental apparatus, 52 feet of 1/2" I.D. copper pipe

was used as the tank"s ice coils, At a 1" ice radius, the heat flow was

6.5 BTU/hrft*F (Fig.20). If the piping had been replaced with 3/4" I.D.

pipe, the heat flow would have increased to 8.8 BTU/hrft*F. In order to

accommodate this increased heat flow over an equivalent temperature

differential as before, the mass flow would need to be increased by 35%.

However, due to the increased cross-sectional area of the pipe, the fluid

velocity would drop by 40%. Solving equation 6 (page 66 ), the h. isin
found to drop by a corresponding 40%, In order to raise h. back to its

in
previous value, a larger, more energy consumptive pump is required. Even-

tually, the savings in heat exchanger costs are overshadowed by the

increase in capital and operating costs for the pump.

The choice of pipe material should be limited to copper and

plastic. Steel pipe is not competitive with copper below 1" and aluminum

piping is very expensive and susceptible to galvanic corrosion. Poly-

ethylene plastic pipe is commonly used in buildings for domestic water

supplies and waste stacks. It is very cheap and qu'ite durable, and is

compatible with methanol or ethylene glycol which would be used as the

the brine fluid. Referring again to Table 1J page B5, the lineal feet of pipe

needed per million BTUs is given for each pipe size. In comparing 5/8",

7/8" O.D. copper and plastic pipe, and the respective costs, it quickly

becomes clear that although the copper pipe. system requires only 60%

as much piping as the plastic system, the low costs for plastic pipe

more than make up for the heat transfer deficiency.
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TABLE 14. PIPING COSTS PER MILLION BTU OF STORAGE

AT 20*F BRINE TEMPERATURE

Material

5/8" O.D.
COPPER

7/8 " 0.D.

Required

Feet

1618

1348

Cost per
foot ($)*

.62

.95

Total Cost

($)
1003

1280

POLYETHYLENE 5/8" O.D.

7/8" O.D.

2857

2128

.109

.133

311

283

*Prices obtained from local pipe wholesalers for standard lengths

or rolls.

The polyethylene pipe is a much more cost effective material for

use as an ice coil for this system. It can be easily extruded into a

variety of different heat exchanger shapes and geometries while the

copper piping must be fabricated in a metal shop, requiring much more

time and labor. For small residential applications, a dx evaporator in

place of the brine loop is more sensible. However, the evaporator would

have to be made from copper tubing rather than polyethylene. Halogenated

hydrocarbons attack polyethylene, and plastics suffer from water permea-

tion which would damage the refrigeration components. For all but these

small applications, plastic is the preferable choice of material for use

in the ice storage system.
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The optimum shape for the ice forming surface is determined by a combin-

ation of economics and heat transfer considerations. Simple round piping is

not the most efficient surface geometry, but it is most likely the cheapest.

In the first ACES design, the ice coil consisted of an extruded aluminum

fin tube (Fig.32). The purpose of the fin was to increase the surface area

of the heat exchanger,and thereby the heat transfer rate. Theoretically, the

number of feet of pipe required should be reduced. Investigations conducted

at the University of Minnesota indicated that the effect of this fin

in this geometry was relatively low, In fact, at an ice radius of 1",

the rate of heat transfer in the fin tube was 65% greater than with

conventional pipe. When the cost for fin tube piping versus a regular

piping are examined, it becomes obvious that the fin tube does not make.

economic sense. For a plastic pipe heat exchanger, a plastic fin would

be totally ineffective due to its extremely poor thermal conductivity.

A simple round, plastic pipe is apparently the most cost effective approach-

for large commercial ice storage systems employing a piped ice coil heat

exchanger. 20*F brine circulated through a 7/8" O.D, plastic pipe for a

10 hour charge period dictates that the pipe spacing should be 3.5" on

center. Ice will form out to a diameter of 3.4" leaving 0.1" of space

between the ice cylinders in order to permit movement of water around the

ice. The height of the ice coil piping within the tank. depends on

what tank depth the building can accommodate. Normal floor to floor

heights are 10'-12'. Sub-basement heights are not as restricted in this

0.5" 0 iAM. 0.035" WALL

-,fuo -10. 02" F IN

3.125"1

FIG. 32
ACES HEAT EXCHANGER TUBING - CROSS SECTION
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manner. A 10 foot tank depth is chosen for purposes of this design,

though not necessarily restricted to this dimension. Some of the volume

within this 10 foot height must be reserved for the supply and return

manifolds and the 9 inch fluctuation in water level due to the volumetric

expansion of the water. 2 feet of depth will easily accommodate these

needs leaving the remaining 8 feet available for ice coil piping (Fig.33 ).

An 80 foot long serpentine length of 7/8" pipe is the optimum branch unit.

The total length of branch piping affects the temperature increase and

pressure drops between the supply and return manifold. In order to mini-

mize the temperature increase, a large fluid flow is required. However,
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ICE COIL MODULE (376,000 BTU, hf ONLY)
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a large mass flow results in a high fluid velocity and increased pressure

drops. This necessitates a larger, more expensive circulating pump. A fluid

velocity of 5 ft/sec should not be exceeded in plastic piping.2 A mass flow of

5 gallons per minute at 20*F through an 80 foot long 7/8" O.D. pipe

will experience a temperature rise of 1.20F at the beginning and 2.0*F

at the end of the freezing cycle. At that flow the velocity will be

3.6 ft/sec., and the pressure drop will be 3.5 psi (equivalent to a head

of 8 feet of water). The energy required by a pump to move the fluid

through the pipe is 1.5% of the amount of heat being transferred. With

ten 80 foot branches per module (Fig. 34 ) a 2.5" I.D. manifold is required

to insure uniform flow through each branch. It would be convenient if the

manifold and branch pipes could be extruded as 1 piece. If this is not

technically or economically feasible, the branches could be assembled

into a module very quickly with an appropriate jig. In order to insure

uniform spacing of the pipes, molded plates with clips for the top and

bottom will be used (Fig. 34). The baseplate has 1" feet on the bottom

in order to keep the ice forming surfaces away from the containment walls.

The top plate includes an attachment which enables the unit to be raised'

and lowered from the storage tank. The weight of each module is 70 lb

empty and 230 lb when filled with brine. The lifting straps must be

capable of supporting this full load since the module will be full if

removal is necessary.

Breaking the ice coils into discrete modules is an absolute necessity

for commercial scale applications. While it is possible to build the

storage coil 'in situ' as one large assembly, future repair of pipe

leakage would necessitate the disassembly of a substantial portion of

the piping in order to simply gain access to the problem spot. As shown

in Figs. 35 and 36, the modules can be removed from the storage tank

without affecting the rest of the unit by valving off the 4 module leg,

decoupling the defective module from the 5" module manifold, and lifting

out. Before opening the module couplings, the 5" manifold must be emptied

of its brine by draining through a waste vent on the gate valve located

at the end of each module manifold. (The flow regulator can double as

a shut off valve on the supply side of the module manifold.) A new

module is installed in reverse order.
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The module decouplers are necessary in order to remove the individual

modules from the tank. Module decouplers would not be necessary if the

module manifolds were not located directly above the module but instead,

to either side. However,since there are other modules on both sides, a

1 foot spacing between modules would be necessary to insure free access

to each unit. This would simplify the module manifold detail but add about

25% to the tank volume. One of the main advantages of this storage system

is its volumetric efficiency;and it therefore seemed important to couple

the modules in a manner that would maintain this efficiency.

The modules offer other cost savings over a site-built unit. Modules

can be fabricated easily at a factory in a minimum of time and materials.

The units can then be shipped to the site where they are assembled in

the already constructed storage tank. Undoubtedly, this would be cheaper

than field assembly of a single large unit. Modules allow for flexibility

in enabling the designer to add however many modules are required to

satisfy the storage capacity requirements.

The size of the module manifold will vary according to the number of

units fed off the manifold. In order to insure uniform flow to each

module, the module manifolds inside cross sectional areas must be equal

to the sum of the branch manifold areas being fed. In this design, that

necessitated a 5" module manifold. With coupling between the module and

branck manifolds, new designs with different module manifold sizes can

be used.

The main supply and return lines to the module manifolds should be

sized such that pressure drops are kept to a moderate level. The pipe

used in Fig. 35 is 8" in diameter (flow in the pipe is 1600 GPM). Flow

requlators are employed at the beginning of the module manifolds to

insure uniform fluid flow.

During the discharge mode when heat is transferred to the storage

tank, water drawn into the cold water uptake manifold is pumped through

a shell-in-tube heat exchanger where heat from the air handling unit

is absorbed. The warm water then returns to the storage tank through

another pipe manifold. By the time the water reaches the uptake manifold,
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it has been cooled to 324F. Assuming a 10*F temperature differential at

the heat exchanger feeding the air handling unit, and assuming that a max-

imum hourly demand will be 15% of total storage (1,800,000 BTU) then the

coolant flow must be 360 GPM. A 2.5" pipe will be sufficient to carry

this flow. The resident time of the water in the tank will be 18 minutes

at the start and 72 minutes at the end of the discharge mode. The route

around the ice cylinders will insure very high heat transfer. Because

of this, the ice cylinders will not melt uniformly throughout the tank

but rather from one end to the other. After days when the tank was not

fully discharged, the brine will extract heat from all the ice cylinders,

regardless of the ice thickness. It is necessary to stop the freezing

process once the ice has reached a diameter of 3.4". Otherwise, the ice

will meet the adjoining cylinder and obstruct the water flow path. To

prevent this, thermocuples on the thermistor should be placed alongside

a pipe in the middle of the one module in each row. The sensor will

close the flow regulator to the module manifold when the temperature has

reached a preset point. When the last valve is closed, the system is

fully charged.

Details on tank construction are beyond the scope of this work.

However, it is important to recognize that tremendous savings will be

realized if the tank is incorporated into the structural system of the

building. Overflow ports must be built into the tank to prevent flooding

in case of pipe failure. In addition, the tank must be drainable

in the event that tank reapairs need to be made. This is one of the

tremendous advantages of using water as a PCM. If the tank needs to

be drained the water can be replaced at a very low cost whereas other

PCM would need to be stored for the interim due to high replacement

costs. In addition, a 376,000 BTU module weighing 70 lb can be shipped

from the factory without the PCM, whose delivery is facilitated by the

building water service.

106



Heat loss from the tank is not a significant problem. The heat stored

in a fully charged tank equals 16,000,000 BTU(sensible and latent heat).

The surface area of the walls is 1760 ft
2 (tank top included). Assuming

an ambient temperature of 724F (40*F temperature differential), the

heat loss through uninsulated walls would amount to 1,600,000 BTU/24 hr.

By adding 2 inches of polystyrene to the surfaces, the heat loss drops

to 160,000 BTU/24 hr. Since this is only 1% of the equivalent heat

storage, no further insulation is recommended. If the tank is located

below grade, the bottom of the tank need not be insulated. The equi-

valent resistance of the ground heat path to ambient will be greater than

2" of polystyrene.

SYSTEM DESIGN IMPROVEMENTS

The plastic coil ice module storage system is capable of storing

6470 BTU/ft 3, which includes the latent heat of fusion and the sensible

heat of the water raised from 32
0F to 520 F. Its heat storage density is

500% greater than the cool water storage system and 23% greater than the

ice maker heat pump. The module is also compatible with packaged chillers.

Despite these advantages, the storage system is quite complex. Over

the course of a system's life, complexity usually generates unanticipated

costs. 2 ways in which this system could be made more attractive would

be to remove the heat exchanger from the tank making it more accessible,

and to reduce the surface area of heat exchanger required. This must be

done while not driving up equipment costs for the chillers. Theoretically,

the ice maker heat pump concept could be adapted in a way that would

make it compatible with packaged chillers while also improving the operat-

ing efficiency.

This new design would call for packaged chillers to supply ice forming

plates with a 20-25*F brine. The plates would be coated with an ice

resistance film which would cause the ice to flake off soon after forming,

falling into the storage tank below. As a result of the minimal ice build-

up extremely high heat transfer rates are possible, reducinq the surface

area of plate required. Alterpately, if site-built chillers prove to be

competitive with the packaged units (usually only when the capacity is

greater than 300-400 tons) than refrigerant could be supplied to the plates

directly, eliminating the brine loop and improving system COP.
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Fig. 37 details such a system. It is important that the ice resistant

film be durable enough to withstand the mild abrasion of water and ice

flakes, and thin enough to permit high heat transfer. It is conceivable

that the plates could be removed periodically for recoating if that proved

necessary. The plates would be located in the mechanical room for ease

of access, and mounted vertically over openings in the tank, with water

spraying both sides in order to take advantage of all the surface area.

Ice would form readily on the 20*F-25*F surface and flake off into the

water spray returning to the tank. Being lighter than the water, the

ice flakes would float in the upper layer of the tank. As the formation

of ice progressed, the water level in the tank would drop. If the water

uptake pipe were designed properly, the velocity of the water entering

the pipe would be low enough to permit the ice/water layer to approach

within inches of the inlet.

Due to the high heat transfer across the ice plate, a large mass

flow of refrigerant or brine would be required to keep the AT low, This

large mass flow will result in a very high convective heat transfer between

the fluid (refgigerant) and.the plate, reinforcing the system's already

high heat transfer. Because of the limited number of plates that would

be required, the piping complexity will be substantially reduced.

Cooling needs for the building will be satisfied in a conventional

manner. The warm, moist return air will be cooled and dehumidified by

the cooling coils in the air handling units. The coils will be supplied with

with 50*F water which has been chilled by the 32*F tank water in an inter-

mediate heat exchanger. Because of this high AT,a smaller, cheaper heat

exchanger may be used. In addition, the fluid flows will be lower, requir-

ing smaller pipe. After the water leaves the heat exchanger, it returns

to the tank through spray nozzles mounted inside the tank. This would

result in a uniform and efficient melting of the ice. By the time the

water had maneuvered its way through the ice/water layer it would have

been chilled back to 32*F.
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Assuming that a suitable ice resistant coating exists, it seems certain

that this type of system would easily outperform the ice maker heat pump,

the ice coil system, and the cool water storage designs. It takes advantage

of the high heat storage capacity of PCM, overcomes the poor heat flow prob-

lems at the ice plate without expanding valuable energy, reduces piping

and heat exchanger sizes, is relatively simple to construct and operate

and is compatible with packaged chilled water equipment. It undoubtedly

would make a strong impact on the market.
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ECONOMIC ANALY SIS

Off peak cooling systems are beginning to be included in the designs

for new commercial structures. This is not happening due to the development

of some new technology, but rather because of increasing electric rates.

Cool water storage systems have been used in Europe and Japan for many

years with great success and are only now being seriously considered here

in the U.S. Rising utility bills have provided the justification for

designers to consider the extra capital expenditure embodied in off-peak

cooling systems. More efficient, compact systems will undoubtedly be

developed as the need for cool storage grows. If the recent trends in

electric power cost escalations continue, this growth will be insured.

At present, the utilities in New England generate 35% of their power

in nuclear power plants and the remainder with oil fired plants.

The nuclear plants run at full output 24 hours a day while the output

from the oil fired plants are modulated according to demand. Peak power

needs are met with inefficient gas turbines which operate only a few hours

of the day. Consequently, the peak power costs more to produce since it

is tied directly to the cost of fuel oil. In addition to this, peak power

demands also require the utility to oversize feeder lines, transformer

and switching yards, and other service equipment just to meet this in-

frequent demand. Electric utilities have attempted to reflect these costs

in their rate structures with varying success. Time of day rates are

being introduced by a number of utilities around the country in an attempt

to encourage load management. To date, these types of rates have remained

optional, with the vast majority of customers preferring the traditional

declining block rate structure devoid of any time of day cost constraints.

For this reason the discussion in this section will be limited to an

analysis using the present rate structure for a test building in Boston.
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This building offered detailed records of mechanical system operation and

gross electrical consumption. In review, the building is a commercial

office structure in the Boston Metropolitan area. This building has

757,000 SF of conditioned space on six floors. The occupancy represents

a typical range of speculative office tenants from insurance agencies

to computer firms. The building is arranged about a large central court.

Exterior walls have a moderate ratio of glazed area to solid wall, with

fenestration minimal on the southern exposure. Building management has

actively pursued programs aimed at reducing energy waste, with moderately

successful results. This building was selected for this study because

it typifies the type of project well suited to off-peak cooling.

RATE STRUCTURE FOR TEST BUILDING

Most electric utility rate structures are organized on a step basis.

The first units of energy purchased are more expensive than the next set

of units, and so on in a series of predetermined blocks. When energy

use is reduced, the energy is saved from the last block of usage. To

determine the savings afforded by a reduction, the cost of energy purchased

in the last block must be calculated and is referred to as the incremental

energy cost.

Energy consumption for the model building is billed at the Massachus-

etts Electric Rate H. There is a charge, under this rate, for monthly

consumption, measured in KWH. There is also a demand charge based on

either the highest demand during a fifteen minute interval during the

month, or on 80% of the highest demand measured in the preceeding 11

.months.,known as a 'peak ratchet'. There is a direct demand charge of

$1.57 per KW and an implicit demand charge since the size of the billing

blocks for electrical consumption is determined by the monthly demand.

A fuel adjustment is added to the bill to allow the utiliy to pass

along variations in the price it pays for the fuel used to generate the

electricity.
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MASSACHUSETTS ELECTRIC COMPANY COMMERCIAL RATE H

Demand Charge

$830.00

1.57

for the 1st 500 KW or less

per KW for the excess

Energy Charge per KWH

0.02648

0.02350

0.02043

0.01927

0.01464

0.01362

0.01300

for the 1st 50,000 KWH

for the next 50,000 KWH

for excess of 100,000 KWH

for excess of 200 hours use per KW demand

for excess of 300 hours use per KW demand

for excess of 400 hours use per KW demand

for excess of 500 hours use per KW demand

Fuel Adjustment Charge

$0.025 per KWH

The energy charge under Rate H depends on the number of 'hours use'

of billing demand for the month and is calculated by dividing the electrical

consumption for the month by the billing demand for the same period. The

'hours use' is a load factor indicator. For example, if a customer consumes

1000 KW constantly for a month, energy use will amount to

1000 KW x 24 hrs/day x 30 days/month = 720,000 KWH/month

The customer's load factor is equal to 720 hours use. Because this customer

is using the utility's output in a consistent, predictable manner, the

utility will compensate the customer by selling the power at a reduced
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block rate. Another customer may use the same 1000 KW only 1 hour per day

resulting in a consumption of 30,000 KWH and a load factor of 30 hours use.

Existing rate structures penalize this customer due to the declining

rate block structure and the poor load factor penalties. Most commercial

office buildings exhibit load factors between 200-500 hours use.

INCREMENTAL ENERGY COST

An examination of recent consumption and demand data for the model

building indicates that the load factor will tend to be close to 400 hours

use (Fig. 38). Assuming that the value will be above this figure one third

of the time, the cost would average

($0.01464/KWH x 2/3) + ($0.01362/KWH x 1/3) = $0.0143/KWH

Adding the fuel adjustment charge, the total cost would be

$0.'0143/KWH + $0.025/KWH = $0.0393/KWH

INCREMENTAL DEMAND COST

An increase in demand results in both a direct demand charge and an

increase in the energy charge. This increase represents an implicit

demand charge which must be accounted for in determining the cost of

demand. If consumption falls between 300 and 400 hours use of demand

then for each added KW of demand, 200 KWH are shifted into the $0.02043/KWH

block, and 300 KWH are shifted out of the $0.01362/KW block. The result

is a cost of

(200KWH/KW x $0.02043/KWH) + (100 KWH/KW x $0.01927 / KWH)

- (300 KWH/KW x $0. 01362/KWH)

= $1.93/KW

If consumption falls between 400 and 50.0 hours use of demand, the

cost by similar calculation is $2.05/KW.
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Assuming that consumption falls below 400 hours use of demand two thirds

of the time, the average implicit demand charge if $l.97/KW. Adding the

direct demand charge results in a total of $1.97/KW + $1.57/KW = $3.54/KW.

POTENTIAL SAVINGS WITH A COOL STORAGE SYSTEM

A. Reduced Demand Charges

Energy use in buildings generally changes according to the level of

activity within the structure and the environmental conditions surrounding

the envelope. These 2 factors typically generate peaks in power demand

during the afternoon hours. This peak is troublesome to the utilities

for a variety of reasons and results in an economic penalty to those who

contribute to it. It is in everyone's interest to manage their loads in

such a way that the peak is reduced or eliminated. The ice storage system

will enable the building operator to eliminate this portion of the building's

peak load and realize cost reductions in the electrical bill in the process.

Savings will occur for practically all the months of the year, In summer

the peak will be reduced by approximately 25%. Even though chillers are

not operational during the winter, the peak generated by the chillers in

the summer is reflected in the winter bill through the utility's 'ratchet'

clause. Off peak cooling systems return the actual peak demand as the

pricing index during the winter.

Data collected from the test building is listed in Table 16. The

normal peak demand is around 5500 KW. By running the chillers during off-

peak hours, demand is reduced by 1218 KW. Similar reductions are realized

for the months of April through September. Even though the chillers are

not operational from November through. February, the ratchet clause raises

the power demand to 80% of the summer peak. The summer peak has now

dropped from 5520 KW to 4302 KW. 80% of this is 3442 KW. Demand in

November and December was 4080 KW and 3520 KW, meaning that the demand

charges for those months reflect the actual load rather than the summer

peak. Savings in March and October are zero since the chillers were

generally not operational and the summer ratchet clause did not apply.
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The savings in demand charges listed are equal to the incremental demand

cost times the reduction in demand for each month.

TABLE 16 SAVINGS DUE TO PEAK LOAD REDUCTION

Month Normal Demand Peak Reduction Savings @

Peak KW KW $3.54/KW

Jan. (3776)t (656) 2322

Feb. (3776) (496) 1756

March 4240 0 0

*April 4560 1048 3710

*May 4720 1226 4340

*June 4800 1270 4496

*July 5520 1270 4496

*August 4880 1270 4496

*September 5520 1218 4312

October 4560 0 0

November (4416) (336) 1189

December (4416) (896) 3172

$34,288 saved/yr.

*Months chiller is operational

ftracketed values indicate ratchet clause governs
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B. Increased Chiller Efficiency Due to Operation at Design Load

The 1560 ton chiller presently used in our test building was designed

to cool the building under worst case (2 1/2%) conditions. Because these

conditions occur only during a few days of the summer, the chiller must

operate at partial capacity the majority of the time. A chiller has its

highest efficiency when operating at 100% with efficiency dropping as

the load on the chiller is reduced. Fig. 39 shows the efficiency

curve for the existing 1560 ton chiller; maximum efficiency at 100% load

is 0.84 KW/ton.
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CHILLER LOAD in BTU/H x 106

FIGURE 39 Chiller Efficiency vs. Load in Monitored Building

(courtesy C. Benton)
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The chiller involved in charging the proposed cool storage system

can be run at 100% capacity until the cool storage is fully charged. Thus,

losses in efficiency caused by partial load conditions do not exist.

To establish savings in this category, the chiller logs for the 1978

cooling season were examined. Pressure and temperature drops across the

chiller were used to establish the cooling capacity provided by the

chiller. The actual electrical consumption in providing this cooling

capacity was compared, hour by hour, with the projected electrical con-

sumption had the chiller been run at its maximum efficiency (0.84 KW/ton).

The difference in these two electrical consumption rates was multiplied

times the incremental energy costs to come up with savings. This informa-

tion below is summarized by month.

TABLE 17 SAVINGS DUE TO DESIGN LOAD CHILLER EFFICIENCY

Month KWH Saved Cost @$.039o3/KWH

April 5,112 201

May 99,433 3,908

June 150,024 5,896

July 228,970 8,999

August 269,587 10,595

September 73,783 2,900

Total 826,909 $ 32,499

Note: The 1978 cooling season was close to statistical normal for

Boston

C. Lower Capital Costs for Chillers

An additional benefit of off-peak cooling systems is the ability to

reduce the capacity of the chillers. This is possible by either running

the chillers at a constant load for 24 hours, or at a constant load for

some fraction of the day and at some reduced output during the peak load

hours. In the test building, the cooling load profile for 3 hot August
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days is shown in Fig. 40 . During the 24 hour period of August 17, cooling

demand amounted to 253 BTU/dayft
2 . During the hours from 8AM to 8PM the

2 - 2
load amounted to 168 BTU/12hrft or an average of 14 BTU/hrft2. The off-

peax consumption was 7 BTU/hrft
2 . A storage system designed for a 12 hr

charge period for this building must have a chiller which can move 21

BTU/hrft2*F (sum of the average peak and off-peak load). Without the

storage system, the chiller must be capable of meeting the cooling loads

as they are generated. For this building, that would require a chiller

with a capacity of 21 BTU/hrft2 . While the off-peak system realizes sub-

stantial demand charges reduction, the capacity of the chiller (for a

12 hour charge cycle) is essentially the same. It should be noted that

the 24 hour computer center in the test building adds a considerable

amount of nighttime cooling load that would typically be absent from most

commercial buildings. Taking this into account, the chiller capacity would

be reduced somewhat by an off-peak storage system. Lowering the nighttime

22cooling loads from 7 to 4 BTU/hrft2 reduces chiller capacity from 21 to

18 BTU/hrft2 . This 14% reduction would amount to an equivalent chiller

reduction of 19D tons for this building (1325 to 1135 tons). Assuming

an installed cost of $1000/ton the savings would amount to $190,000.

Amortized over a 20 year period results in a savings of $9,500/yr.

It may be possible to increase savings even further if the off-peak

period is extended further. This should only be done if the savings in

capital costs for the chiller are greater than the decrease in demand cost

savings. This area of optimization requires detailed and case by case

study. For purposes of this thesis, using the office building chosen, no

capital savings will be accrued with the cool storage system.

SUMMARY OF SAVINGS

A. Reduced Demand Charges $34,288/yr

B. Increased Efficiency Savings $32,499/yr

$66,787
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FIGURE 40 Actual Cooling Loads from Monitored Building, August 1978.

(courtesy C. Benton)

Costs for the plastic pipe coil ice storage system are unknown. The

materials cost for the factory built, plastic modules would be lower than

an equivalent copper pipe ice maker being tested by Wisconsin Electric.

However, in a commercial scale application, the increased complexity could

drive overall costs up to the level of the Wisconsin Electric prototype

($4400/million BTU). Therefore, a cost range of $3000-$4000/million BTU

will be assumed for the plastic module storage system. The maximum

cooling needs for the test building for the 12 hr peak period is
2 2

168 BTU/12hrft . With an area of 757,000 ft , the storage requirements

would amount to 127 million BTU which would cost between $318,000-

$508,000 ($3000-$4000/106 BTU). With a savings of $66,787/yr with

storage, the straight line payback would be 5.7-7.6 years.
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If the frostless ice plate storage system proved feasible, costs

would be tremendously reduced. System components would include tank,

ice plates, piping and control hardware. The tank costs $.35/gallon,and

1 gallon will store 764 BTU as latent and sensible heat (50% volume as ice)

Tank costs per million BTU = $458. The cost for the frostless plates is

proportional to the total area required. Heat transfer rates on the order

of 70 BTU/hrft2 *F can be expected as indicated by the experimental data

from Section = . Assuming a 10*F AT, 83,000 BTU/hr ice making rate

(for 1,000,000 BTU charged over 12 hrs), and both sides of the plate

available for making ice, the amount of plate required equals 60 ft2/10
6

BTU of storage. The plates would probably be similar to the Olin copper

absorber plates made for solar collectors which sell for $4.50/ft
2 . These

would need a special coating (i.e., TEFLONR) to insure frostless operation.

Assuming the coating would double the cost to $9.00/ft
2 , the plates would

cost $540/million BTU. Adding an additional $500/million BTU for piping

and controls brings the total cost to $1500/million BTU. The same 127

million BTU storage unit would cost $190,000. With operational savings

equal to $66,787/yr, payback would take 2.8 years.

The same analysis using a cool water storage system yields costs

of $381,000-$762,000 (.$3000-$6000/million BTU of storage);payback would

range from 5.4-10.8 years. All these cost estimates assume that extra

space is available either in the sub-basement area of a building or else-

where on the site for accommodation of the tank. For cool water storage

systems this may be a very generous assumption, considering the large

tank volume required.

The paybacks listed are for off peak cooling systems with costs in

1980 dollars and operated under the current electric rates. While this

rate structure penalizes consumption with a poor load factor, it does

not directly encourage consumers to shift consumption to off-peak hours,

thereby alleviating the utilty's peak load problems. Time of day rates

would accomplish both of these goals by charging more for electricity

consumed during the peak demand hours (usually 6AM-8PM). At present,
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time of day rates are optional. It would not be sensible for abuilding

operator to choose these rates unless most of the power consumption can

be shifted to the off peak hours. The air conditioning system represents

only 35%-40% of a building's power consumption during a summer day.

During the winter, only the fans are consuming power for air conditioning.

The remainder of the electrical consumption is used to power lights and

equipment which must be used while the building is occupied. Time of

day rates would end up costing the operator more than the conventional

rates, since a majority of electrical consumption would still occur

during the day. Two separate metering systems would overcome this problem.

The chilllers could be wired to a time of day meter while the rest of

the building's electric load could be metered under the conventional

rates. In this case, time of day rates would be extremely beneficial.

Unfortunately, the experimental time of day rates do not allow this at

present. All building loads have to be metered under 1 rate structure.

Unless this changes in the future, commercial office buildings will be

reluctant to purchase power under these rates. It is possible that the

government may direct the Public Utilities Commission to make time of

day rates mandatory. If this were ever to happen, energy use in buildings

would undergo drastic changes. Undoubtedly, cool storage systems would then

become an economic necessity.
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CON CLUSION

As the United States enters the 1980s the greatest challenge it

faces is the worsening energy picture. Our domestic sipplies of easily

recoverable oil and natural gas are approaching exhaustion. Coal and

nuclear energy are beset by a variety of health and safety problems

which require large investments of time and money in order to reconcile

the dangers. Unfortunately, time and money are this issue's endangered

species. As an industry, the electric utilities are feeling the effects

of this situation in a dramatic way. New construction has slowed to

a trickle as a result of reduced demand and higher construction costs.

The impact on consumers is primarily manifested through unprecedented

rate hikes which reinforces the drop in demand. While the growth in

total consumption has dropped to 1-3% per year, the growth in peak

demand continues at almost traditional rates of 4-5%. The resultant

drop in capacity factor further aggravates the unhealthy state of the

utilities.

In today's economy, load management rather than expansion of generat-

ing capacity is the rational way of optimizing a utilty's capacity factor.

One of the most equitable load management strategies is time of day pric-

ing. This type of rate schedule accurately reflects the cost of produc-

tion by penalizing those who contribute to the utility's poor load

factor. Cooling systems are prime contributors to a utility's summer

peak. Cool storage systems would help to reduce this peak by shifting

the chiller load to off-peak hours.

The cool storage system proposed in this thesis employs water as a

phase change material. By forming ice, the quantity of mass is greatly

reduced. When compared to a chilled water storage system, the contain-

ment volume will be reduced by 80%. The system is operated during the
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nighttime hours when ambient conditions enable the chiller to operate at

a reduced evaporator temperature (200F) without lowering the COP. A

brine coolant is circulated through pipes located in a storage tank. The

brine removes heat from the tank water, causing an ice cylinder to grow

around the pipe. The ice formation stops after 80% of the water has

changed phase. The amount of ice formed during the 10 hour off-peak

charge period is dependent on the pipe material, pipe size, and brine

temperature. Although a copper pipe system would allow a 60% higher

heat transfer over plastic pipe, the cost for the copper and its fabri-

cation (for commercial scale application) make plastic a more economical

choice. A theoretical two dimensional heat flow analysis was verified

through experimentation and used to predict pipe length and spacing for

a variety of heat exchanger sizes.

The discharge of the ice store is facilitated by circulating the

remaining water through a heat exchanger which is hydronically coupled

to the building loads at the air handling unit. Discharge rates far in

excess of any forseeable building load can be handled due to the direct

heat exchange between the water and ice. This high heat transfer results

in a lower mass flow which translates to lower.pipe and pumping costs.

This system satisfies the criteria of being compatible with conventional

packaged chillers.

In order to facilitate assembly and repair, a modular system design

is suggested. 3'x3'x8' plastic pipe modules should be able to be easily

fabricated and moved into place. Coupling between modules allows for

single unit removal without interrupting operation. The costs for such

a system should be between $3000-$4000/million BTU of storage (including

tank and hardware). Using a commercial building in Boston as an example,

the system should pay for itself in 5-7 years assuming conventional

rate schedule. The savings are due to a reduction in demand charges and

a reduction in energy charges due to increased efficiency resulting

from full load operation. This payback would be tremendously improved

if time of day rates ever became mandatory. Ice maker heat pumps are
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considered uneconomical due to their high capital costs and low COP result-

ing from the superheat defrost cycle. If a frostfree surface treatment

were devised, the resultant reduction in capital costs, operating costs,

and system complexity would insure the widespread acceptance of this

type of off-peak cooling system. Paybacks under current rate structures

would be under three years.

Ice storage off-peak cooling systems will provide the means to

avoid costly peak power demand penalties without resorting to storage

systems that require the redesign of a building's structural and mechan-

ical systems. These systems will help the utilities through a period of

escalating fuel and credit costs by reducing the need for additional

generating capacity.

Nevertheless, more basic questions will ultimately have to be

addressed concerning the appropriate way of producing electricity and

for what end use. In twenty years time will we think it appropriate

to build a 2 billion dollar power plant that takes 10-12 years to

construct, burns a finite fuel (coal, oil, uranium) at thousands of

degrees, losing most of the energy in the process, all merely to provide

950 air to heat a home? Common sense says no. The era of cheap

energy that gave rise to such scenarios is behind us, yet the institu-

tions it created in its wake remain with us. Whether or not these

institutions are flexible enough to change in the time period demanded

by the circumstances is unknown. All that we can be sure of is that

time is not on our side.
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APPENXDIX

Determining PCM Melt Point and Heat of Fusion (HF

A large number of chemicals listed in the literature melt in

the temperature range appropriate for a cool storage system. However,

only a handful of these chemicals satisfy other criteria equally impor-

tant for the economic operation of such a system (See page 36 for further

discussion.) Table 4, page 40 lists seven potential PCM candidates.

As explained in the text only water, n-tetradecane, the C 4-C16 paraffin:

and deconal seemed to satisfy the economic and long term cycling cons-

traints. These four chemicals were tested for melt point and heat of

fusion. Water was used as a reference to check the accuracy of the

methods. Although there is already a considerable amount of information

in the literature about the thermophysical properties of these chemicals,

most of this data is taken from tests using scientific grade chemicals.

Because of the gross quantities of PCM required by a cool storage system,

industrial grade quality material must be used. The impurities found

in industrial grade chemicals can significantly alter the melting point

of the compounds. The heat of fusion may also be affected. The indus-

trial distributors are reluctant to supply exact freezing and H F data,

since the composition of their product may vary from lot to lot due to

differences in the petroleum feedstocks. Industrial grade samples of

the three organics were obtained from distributors and tested.

Melting Point Test

A sample of the PCM was drawn up into a capillary tube. The ends

of the tube were then sealed. A 500 ml beaker was filled with water

and ice so that the water bath starting point was always 32*F. The

capillary tube was strapped alongside the bulb of a mercury thermometer

having 0.5*F increments. The thermometer and tube were immersed in the
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water bath which was kept at a uniform temperature with a mechanical stir-

rer. As the temperature of the water bath rose, the point at which the

PCM melted was noted. The experiment was then carried out in reverse

order by starting with the PCM in the liquid state and watching for its

freeze point by cooling the water bath slowly. The melt point and

freeze point were usually different.

TABLE 18 . MELT POINT TEST RESULTS

Substance Supplier Melt Point(*F) Freeze Point(*F)
S.Grade* I.Grade** S.Grade* I.Grade**

n-tetradecane Humphrey Chem. 38.0 32 38.0 -
Co.

Paraffin Conoco 44.0 46.5 42.0 44.5

C 14-C16 Exxon 44.0 47.5 42.0 47.0

Deconal Conoco 42.8 45.0 42.8 36.0

*Scientific grade; **Industrial Grade (MIT laboratory tests)

The decanol's wide melting/freezing band apparently resulted from

the presence of branched hydrocarbon impurities in the industrial grade.

sample. This was not a supercooling effect.. When nucleation started

at 36*F, the sample was immediately raised to a temperature. of 403F

and the nucleation process stopped. If supercooling was occuring, once

nucleation began it should have continued until the sample was completely

frozen, assuming the temperature was somewhere below the melt point (450F).

As the temperature of the deconal was raised from 364F to 45*F an in-

creasing percentage of the PCM solidified, indicating that the wide

melt/freeze band was a result of the impurities. The industrial grade

sample of n-tetradecane could not be frozen when taken down to 32 0 F. Further

testing of the material was stopped for this reason,
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Heat of Fusion

An Emerson Fuel Calorimeter was adapted to be used for testing the

heat of fusion for the three organics (the two paraffins, and deconal).

Fig. 41 shows the device when it is used for bomb calorimeter tests.

For these experiments, the bomb was removed and the conventional thermo-

meters were replaced with two Beckman Thermometers having 0.01 0 C incre-

ments. The 500 ml stainless steel bucket was filled with a known quantity

of water which had been chilled to 32*F. The adiabatic jacket was also

filled with 32*F water in order to eliminate any heat flow between the

bucket and the environment. A small stirring device kept the bath water

at a uniform temperature. A 20 ml sample of PCM contained in a glass

vial was then dropped into the bucket through an access port in the lid.

The temperature change of the water bath indicated the sensible and

latent heat content of the PCM. As the bucket temperature rose, the

jacket temperature was increased by sending a small electric current

through a resistance wire in the jacket. In this way,an adiabatic

environment was maintained.

TABLE 19. HEAT OF FUSION TEST RESULTS

Substance Heat of Fusion (BTU/lb)

Literature Laboratory Exp.* Deviation (%)

Water 144.0 143.0 -l

Deconal 88.6 85.0 -4

Exxon Paraffin 65.5 67.4 +3

Conoco Paraffin 65.5 60.0 -8

*Average of test runs
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As a result of the experiments, it appears that the effect of

impurities on the heat of fusion of the PCM is not very significant.
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