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Abstract

Plasma toroidal rotation is a factor important for plasma stability and transport,
but it is still a fairly poorly understood area of physics. This thesis focuses on
three aspects of rotation: momentum transport, Ohmic rotation reversals, and LHCD
induced rotation. Momentum transport is approached in a semi-empirical method
through the development of the "Toy Model." The "Toy Model" assumes that the
toroidal momentum is transported via diffusive and convective profiles, and, using
assumptions about the diffusive and convective terms, it can generate the profiles
of the residual stress or source as a function of space and time. Several resultant
source profile calculations are shown for SSEP sweeps, rotation reversals, H-modes,
and I-modes. Generally, it is observed that the convective profiles do not greatly
improve the fits to the data, and that source profiles have peaks around the steep
core rotation gradient region of the plasma. Rotation reversals, spontaneous reversals
of the rotation direction during the Ohmic phase, are also described in this work. It
is seen that they are related to the Linear Ohmic Confinement (LOC) to Saturated
Ohmic Confinement (SOC) regime changeover. This relation is supported through
linear gyrokinetic simulations that show that the co- to counter- reversal coincides
with a change from marginally electron to ion diamagnetic direction most unstable
modes which is believed to play a role in the LOC to SOC explanation as well.
Lower Hybrid Current Drive (LHCD) induced rotation is also described, including
the first experimental observations of bi-directional rotation on a single tokamak.
These observations help to explain differences in rotation seen among the various
devices running lower hybrid. The LHCD rotation reverses direction as a function of
plasma current, and this occurs in a similar parameter space as the Ohmic rotation
reversal; it also has turbulence changes that are reminiscent of the Ohmic reversal as
well. This suggests that LHCD is, in fact, causing the plasma to transition from the
ITG dominated regime to the TEM dominated regime, which explains the rotation
differences. These experiments and models provide new tools to understand rotation
transport and generation in tokamaks.
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Chapter 1

Introduction

1.1 Preface

One of the most pressing concerns in international politics over the past few decades

is providing sufficient energy for the world's growing population. The present power

generation facilities utilize coal, oil, fission, and a variety of more rare sources such

as hydroelectric, wind, and solar. Coal, oil, and natural gas power plants have se-

rious issues with pollution, and their fuels are often located in regions with major

social, ecological, and/or political difficulties leading to political problems with their

procurement. The renewable energy sources have not yet proved themselves capable

of taking over the baseline power requirements, and there are serious concerns about

their expense and applicability. Fission is one of the most controversial power sources

due to its connection with disasters at Three Mile Island, Chernobyl, and, more re-

cently, Fukushima Daiichi, and due to the generation of long lived radioactive waste

from its power cycle. Despite being relatively clean and efficient, fission has devel-

oped a negative reputation in the United States and several other countries, severely

limiting its applicability.

Overall, the state of power generation causes serious concerns. The world's energy

consumption continues to rise, and the ability to generate power from standard energy

sources is not matching projected future demand. This situation is not sustainable

without the optimization of current energy sources or the development of new sources.
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Figure 1-1: Nuclear binding energy curve. Elements on the higher mass side of the
curve are subject to fission, while the lower mass side is subject to fusion.

Some of the optimization that has been under consideration is the development of

clean coal, more efficient solar cells, large scale wind farms, and burner-breeder nuclear

fission power plants. Among the potential new power supplies, the most promising

mechanism is nuclear fusion.

Fusion aims to generate power from combining small nuclei into larger ones re-

leasing energy in the process. In contrast, fission generates energy by splitting heavy

isotopes into lighter ones. Both sources are feasible because they operate on different

sides of the nuclear binding energy curve shown in Figure 1-1. Heavy elements can

undergo fission releasing energy to create more tightly bound light elements, and light

elements can undergo fusion to create more tightly bound heavier elements. The most

tightly bound nucleus is Iron-56, so as long as the elements are above or below this

pivot point they can undergo nuclear reactions to release energy.

The fusion cross section is much smaller than the Coulomb scattering cross sec-

tion at all energies. In order to create a fusion reactor, therefore, a high-energy

thermalized population of ions is required. The temperatures of these thermalized

fusion relevant ion populations sets the reactants to be a ~101 K plasma. No physical

material is capable of confining an object of that temperature without cooling the

reaction or melting the material, so magnetic and/or electric fields are required to

confine the plasma. This research path led to the development of the tokamak [7], a
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toroidally shaped device which uses strong naguetic fields to confine highly ionized

plasma. Most of the devices currently proposed for fusion reactors are tokainaks, so

the most applicable fusion work is on them and similar devices (such as stellarators,

spheromaks, or reversed field pinches).

Tokamaks have a variety of outstanding questions regarding both their technical

and physical properties. These include basic plasima physics, materials issues, gener-

ating energy from the fusion reaction, and proliferation concerns. The work described

in this thesis is primarily about the plasma physics of a toroidal fusion reactor. One of

the issues that has been receiving a great deal of attention recently in plasma physics

is the generation and control of the rotation profile. Rotation is important for fusion

reactors because it has been seen to suppress resistive wall modes and rotation shear

can decrease turbulence improving plasma performance [8, 9]. These effects mean

that both understanding and controlling how rotation is driven and transported in

the plasma is important for fusion devices and can lead to significant improvements

in plasma operation. Furthermore, plasma rotation is still not a well understood

topic from the theoretical point of view, and new observations and tests of theoretical

predictions can be important for the improvement of that field. The following work

has been performed at the Alcator C-Mod device (see Appendix A for details) at the

MIT Plasma Science and Fusion Center.

1.2 Outline

The outline of the rest of this thesis will be as follows. First, a brief introduction to

rotation theory will be presented in Chapter 2. Then, in Chapter 3, the diagnostic set-

up used will be discussed. In Chapter 4, research about rotation reversals and their

underlying physics will be shown. Chapter 5 will be about Lower Hybrid Current

Drive rotation observations and some proposed explanations for them. Chapter 6

discusses rotation profile modeling and its implications to various rotation theories.

Chapter 7 includes some conclusions and future work to be performed on the presented

issues.
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1.3 Units

The units used in this thesis have been chosen to match the most commonly used unit

system in the topic from which the values were selected. If at all possible, the System

Internationale (S.I. or MKS) will be used as a standard. A notable exception to this

rule is the historical standard of using electron-Volts (eV) for temperature in place

of degrees Kelvin. Furthermore, many of the theories described in the background

section of this work are developed in the C.G.S unit system and for consistency are

not changed. A comprehensive set of unit definitions and equations usable in this

thesis and elsewhere is in [10].
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Chapter 2

Background

Plasma rotation research has generally had two approaches in the past. The first

approach was studying the plasma with a known momentum source through the use

of external neutral beams, notably at DIII-D [11, 12]. The other approach has been

to study the issue from the intrinsic rotation standpoint: understanding the plasma

rotation with no external sources. From a theoretical standpoint, plasma rotation

research in the past has generally focused on neoclassical predictions for tokamak

plasmas. It was found that these predictions were not accurate from experimental

measurements, and these findings motivated more detailed including turbulence, but

they also led to development of less rigorous models that would allow generating

insights from rotation results without as detailed calculations. This section describes

various detailed rotation theories and contains a description of the simplified model

of momentum transport and its modifications in the present work. This section is

intended to provide background and to motivate the research performed in this thesis.

2.1 Importance of Rotation in Plasmas

Rotation research has been of major interest due to its importance for L-H mode

transitions, plasma stability, and suppression of turbulence in the plasma. Further-

more, rotation transport is still an ongoing question theoretically, so providing more

comprehensive data of how the angular momentum in a tokamak is generated and
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transported is an important task.

One of the most important aspects of plasma rotation is its effect on the transition

of a plasma into H-mode. The ITER tokamak, as well as most reactor designs cur-

rently proposed, is expected to run H-mode plasmas [13, 14, 15]. During an H-mode

transition, there are marked toroidal spin-ups of the plasma with observed changes

in the poloidal rotation and radial electric field [16, 17]. It has been seen, further-

more, that the power threshold for transitioning from L- to H-modes can depend

on the toroidal rotation in the target plasma [18, 19], which further emphasizes the

importance of understanding the rotation in the plasma.

It has also been seen that rotation shear has a strong effect on the turbulence in

the plasma [20]. This turbulence suppression is what is believed to be the driver of the

Internal Transport Barrier (ITB) and Edge Transport Barrier (ETB), localized areas

of reduced transport [21]. It has been observed that electric field shear is correlated

with the ITB formation and may explain the transport in the barrier [22]. Therefore,

understanding rotation is beneficial from the perspective of understanding energy

transport and transport barriers in a tokamak.

The third effect of toroidal rotation is the stabilization of the resistive wall mode

[23, 24]. It has been calculated that at an Alfven Mach number of 0.02 (or even

less) the ITER resistive wall mode will be stabilized, and this will avoid the need for

external stabilization coils. Removing these coils is cost effective, therefore predicting

the driven rotation velocities is extremely important.

Finally, the proper implementation of rotation transport in a gyrokinetic plasma

simulation is still undergoing improvements. The simulations are still not fully im-

plemented, and there is work progressing to account properly for the conservation

of angular momentum [25]. The GS2 code is being improved with a new collision

operator, which should properly conserve momentum in the gyrokinetic equations.

Improving the ability of the simulations to explain the rotation should, through the

coupled nature of gyrokinetic equations, improve the general capabilities of the codes

to explain transport behavior in the plasma. This is another reason to improve the

general quantity of benchmarkable rotation cases for these codes that the codes can
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attempt to explain.

Overall, understanding rotation transport is still a work in progress from a theo-

retical standpoint and has various important technical impacts. This motivates the

need for empirical and semi-empirical observations of rotation transport and gener-

ation in a plasma, which is studied in this work. It is also important to provide

supporting data for the theoretical modeling and empirical extrapolations of rotation

in plasmas.

2.2 Theories of Momentum Transport and Gener-

ation

There has been a wide array of momentum transport and generation theories. These

theories often deal with momentum transport as a whole and sometimes with a specific

aspect of rotation, such as the spin-up associated with H-modes. Brief descriptions of

several of the prominent theories are listed below. Note that in most of these equation

C.G.S units are used because they are preferred by the original authors.

2.2.1 Neoclassical Theory

Perhaps the most widely used description for rotation in a tokamak arose from neo-

classical theory, which stems from the seminal paper by Hirshman and Sigmar [261,

which derives a matrix calculation for various plasma parameters from first princi-

ples. Neoclassical poloidal and toroidal rotation are calculated in detail in [27]. The

primary results of these neoclassical calculations are listed in the equations below.

The poloidal rotation results assumes that the impurity density is significantly below

the main ion density and the ion thermal velocity is significantly above the impurity

thermal velocity. The poloidal rotation values for the ion and impurity species (where

the subscript i is for ions and I represents impurities) are

Vol= - ( pi K1- -- - ~ -VTi (2.1)
2 LT, < B2 > a
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1 ( 3K 2  1 1 ZT 1 1 ~ BBt Pe
VO'= v pi iiKi+ - -+ ~ -vr (2.2)2 2 L7, L- Z1 T Ly <B2 > a

where Lf71  DlnTi/Br, L' d Din n/8r, L- 1  i 8lpi/Br, VT, VF2T/m , and

pi mvTJZieB. The terms Ki and K2 are coefficients that can be derived for the

Pfirsch-Schluter and banana regimes, and they depend on collisionality, aspect ratio,

a = n1Z2/nZ2, the mass of the ions and impurities, and the thermal velocities of

the ions and impurities. The toroidal rotation is solved for two cases: small a and

a ~ 1. In a hot plasma core in the banana and banana-plateau regime, a will not

necessarily be small so the toroidal rotation frequencies are found to be

cE, 1er' / 1IRp L o + L (L' -L ) (2.3)W RBp 2 R 0 \Ln0 LT, 1 j

cE,
RB (2.4)

where o is the toroidal rotation frequency, and L" and L 1 are constants of order

unity that depend on plasma parameters and are plotted in detail in [27]. These

calculations are fairly complicated, which makes in depth neoclassical calculations

cumbersome, and they are normally performed by codes such as NCLASS [28]. In

general, poloidal rotation is small while toroidal rotation is large if Er/Bp ~ VTi.

The equations above can be simplified and solved on axis for the ion and impurity

species in the plasma. These equations are shown below.

V T - -riZjeEl Z1 - Zi 2+ 13a/4 nimi neme o-spitzer Emi Z1  (1 + a)( 2 +a) nimi + n1m1  nimi + n1m 1 nee
(2.5)

Vi TiiZieEl1 Z1 - Z / + 13a/4 n1 m1  neme OSpitzer
Z ( ( -a)El m (2.6)mni Z1 (1+a)(-/2+aj nj+njmj nimni+nlmz nee
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where Ospitzer (/2 + 13Zi/4)nee2 -ee/Zime( 2 + Zj), and Ell is the toroidal electric

field.

An example of the calculated neoclassical impurity rotation time trace during

an example L-mode discharge (with two magnetic geometry transitions) is shown

below in figure 2-1. This calculation only holds at the axis of the plasma, and the

experimental data are overplotted from this same discharge to show the comparison

of the calculation to actual experimental data. Overall, it is seen that neoclassical

theory is not capable of properly explaining the rotation observed in the plasma. This

disagreement has been studied in more significant detail in [29, 30].
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Figure 2-1: Neoclassical calculation of the core impurity rotation during an L-mode
discharge with two magnetic geometry transitions (at t=0.7 s and t=1.0 s).

2.2.2 Revisited Neoclassical Theory ('Sub'neoclassical the-

ory)

The revisited neoclassical theory [31 seeks to correct some limitations in the neo-

classical theory by removing the assumptions that all macroscopic scale lengths (for

example qR, r, and L,) are of the same order, that inertia is negligible, and that finite

Larmor radius effects are not important. In neoclassical theory, the ratio of the ion
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perpendicular transport to the ion parallel transport, A1 , is generally taken to be 0.

In the revisited theory, the ratio is taken to be

q2 R 2  OT _ 1 q2R 2

A1 - = 0.255 (2.7)
Xiii/N eBror QT r LT,(i

where N is the plasma density, Qj is the ion cyclotron frequency, and X!Ii and T are

the parallel ion diffusivity and collision time as defined by Braginskii,. In L-mode,

it is found that the ratio is of order 0.1 for characteristic plasmas. For H-modes or

in other transport barrier regions, this number can be significantly higher, meaning

that the assumptions in neoclassical theory have to be modified. This theory assumes

high collisionality (which is not always justified in a tokamak core) and the following

scaling relations.

( Lver) ~r|(qR) ~ isj

(ai/L) ~(m'/mi)i1/2

where Lp is the characteristic scale length in the plasma (such as LT or LN). Us-

ing these assumptions and fairly involved calculations about the finite Larmor radius

corrections, this model generates several equations for the transport of particles, mo-

mentum, and energy in the plasma.

_N _ me P__ ainN B3o Uat - [ (2 +0.5rji+ (2.68 +1.55r?)q2] r rB N )at or e2re B2 ar B2 2rr

1 8{me P 1 -o5Q2+- T alnN E,
- 1 9 (M, I 0.57Q 2+ (2.03TI - 9.50) T N+ 1.15 E Q+r ar ke2Te B 2 Q2 + S 2  eB ar B
T 81nT T aN Er 2 1n T)
eB ar e.B ar B Or

(2.8)
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T (98lnN 1lnT BoUl,2  8i1nN 181nT Er T D BoU p
eB 4 Dr 8 Dr B4 (4 Dr 8 Dr B eB r B4

r_ (T 2  DIuN 1Dmn T l___ ___ ______

E2 T) 2 1n 1 T [1nN 38lnTii S T2 81nT

eB Dr 2 &4 Dr 8 r )Q2+2eB Dr

1 T a / i 81DnN DInT\ B+U S T a1nT

P eBr eB r -4 B0 Q2 +S 2 eB ar

(2.9)

DT 1 a (F 1.60q 2  1 DT,
3N- 1) )I (2.10)

Dt - rDr 1-1 (Q2 )(S2 )j _X'Br)

where S = 2(yx1 ,i/rN)B2/B2 , Q = 4(U 0,jB6/B) - 5 [(T/eB)D(ln(NT 1/ 2))/Dr] , 7 is

the resistivity, P is the pressure, and U is the plasma flow. These equations lead to

a radial electric field relation

BOUIi Ta nlnPn T_
Er B 4  B + T aIn.)l+ 2.1 (2.11)

1B eB0 a7r or

In sub-neoclassical theory, the radial electric field has a direct relation defined in

Equation 2.11. It is worth noting that the electric field in neoclassical theory, however,

requires a higher order calculation or can be derived from the rotation velocity.

Overall, these equations can lead to relations that appear to explain the transition

from L-H modes and highly sheared profiles in the plasma which is discussed in more

detail in the referenced paper. These equations can reduce to the neoclassical forms

under certain assumptions, and they can reproduce magnitude of the flows but not

the time scales [32]. The time scale differences are likely due to turbulence in the

plasma. Despite the improvements, the model is still extremely cumbersome and does

not agree with all experimental results.
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2.2.3 Shaing Theory

This theory [33] seeks to explain the toroidal flow reversal during an H-mode through

the use of neoclassical quasilinear theory. In the Shaing model, the drift kinetic

equation 2.12 is solved to first order.

af e 858f
+ (Vn + V) Vf + M at e C(f) (2.12)

where f is the particle distribution function, v1 is the parallel particle speed, B is

the magnetic field, n = B/B , vd is the drift velocity, <D is the electrostatic potential,

c is the particle energy, and C(f) is the Coulomb collision operator. By applying

quasilinear theory (I = E <m,nw exp i(ot + (mO - n( + rlmn)), where m and n are
m,n,w

the poloidal and toroidal mode numbers, w is the mode angular frequency, and r/mn

is the phase shift), taking the Krook collision operator (C = -vf) and implementing

a series of simplifications, the following relation is found

l'4 = -x4a - X4L (2.13)8@b B B

where I = RBt, N is the density, U is the parallel velocity, x0 is the momentum

diffusivity, 0 is the poloidal flux function, and

L = + (mU, - nut) - 2 ( X (rqp - nqt)j x (mTB x VV - VO/MQB)<1

(2.14)

where T is the temperature, m is the poloidal mode number, n is the toroidal mode

number, xo = w' /(vt - Im - nqln . VO), o', is the Doppler shifted mode frequency,

and q is, as normal, the safety factor.

Equation 2.13 has a diffusive term and a term proportional to the velocity, the

convective pinch. Assuming that wnn ~ Wg - (mTB x V/MQB) x (p'/p), x0 < 1,

W + (mU, - nUt) 0, and |qi/pl < qp/p, the term L, reduces to -5/2(T'/T). The

convective pinch is then found to be v4 = -5/2(T'/T)XO, but if the density gradient

is much larger than the temperature gradient the convective pinch can become an
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outward velocity. Overall, this model finds that the toroidal rotation profile in a

plasma with no external sources is

aBll 5 T'- - -T = 0 (2.15)
&i@ 2 TL

In summary, the Shaing model provides a simple equation to predict the toroidal

rotation in an Ohmic plasma. Shaing also conjectures that his model can explain the

L-H mode transition velocity, through ITG mode suppression or symmetry breaking

causing the pinch velocity to change sign. This model has been compared to experi-

mental profiles in [30] and matched the plasma rotation in an ELM-free (intermittent)

H-mode but not in an EDA (steady) H-mode. While the Shaing model has been able

to reproduce some of the experimental data, it is still not a perfect model, as seen by

its inability to match steady H-mode data.

2.2.4 Accretion Theory

The accretion model was proposed by B. Coppi [34, 35] to explain rotation changes

in an H-mode transition via an edge particle mode. The model is another quasilinear

theory and considers electrostatic modes of form = (xo) exp(-iwt + ikyy + ikllz)

localized around a surface (x-xo) in the plasma. This model generates a dispersion

relation

cTe - - ivD ___ k1l 1 dpi
w (1 - iE_) ~kve + _(2.16)

eB w2 dx min dx

where 7 is the mode growth rate, a is the mode frequency, W -- w - kjvj(xo) is the

Doppler shifted frequency, k is the wavenumber along the magnetic field line, k. is the

wave number perpendicular to the magnetic field line, ek represents small non-linear

effects that can drive the mode unstable, and v,e is the diamagnetic velocity. This

dispersion relation can reduce to the ITG dispersion relation under the assumption

that dlnTi/dlnni > w2 /(klvlthi). It is argued that ITG turbulence is suppressed

during the H-mode and turbulence is strongly driven in the edge of the plasma by

steep density gradients. A radial flux of angular momentum is deduced in the plasma
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of the form

r~I 2-k 12 > 11k dp'k r 2 < |Ex > [mimii -2L (2.17)
wZl _ dx W-k dxI

where VEx is the E x B flow of the perturbation. In Equation 2.17, it is seen that there

is a diffusive term and an inflow proportional to the pressure gradient. This pressure

gradient driven inflow is suggested to generate the H-mode rotation change.

This theory explains the rotation (luring an H-mode by having a radial inflow

of momentum and the conservation mechanism being an edge mode generating an

opposite toroidal flux toward the tokamak wall. The turbulent modes in the plasma

are primarily involved in the radial influx of the angular momentum, and as the

pressure gradient increases the pinch increases as well. Overall, accretion theory

proposes a diffusive and convective form of the angular momentum flux in an H-

mode explained by the quasilinear theory. This model, however, is difficult to confirm

experimentally due to its reliance on proper identification of the turbulent modes in

a plasma.

2.2.5 Summary of Theoretical Models

Overall, the various theoretical models are complicated and require fairly involved

calculations in all but the most simple plasma cases. Furthermore, the models have

not been able to reproduce experimental rotation results. It is widely considered that

many of the difficulties predicting rotation in plasmas stem from anomalous turbu-

lence caused transport. These turbulent fluxes cause an increase in the momentum

flux in a not fully understood mechanism. In order to be able to predict and make

claims about plasma behavior semi-empirical models must be used.

2.3 Simplified Model of Rotation

The simplified model of momentum transport was introduced by W.D. Lee [36], and it

represents the transport of rotation in a similar description as density and temperature
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transport. Rotation is considered to have a diffusive, XO, and convective transport

term (sometimes called a pinch), V, where the diffusive term flattens the rotation

profile and is proportional to Vv, while the convective term can create peaked profiles

and is proportional to v. The remainder of the rotation profile is considered to depend

on either a source term, S, or the residual stress, H [37], which represents the coupling

of rotation to other profile effects (the tensor symbol is dropped for simplicity in the

rest of this work). The full equation describing the transport of momentum is then

8 P
+ v - r = S (2.18)

at

where P = nmv and F is the radial flux of momentum. Using the diffusive, convective,

and residual stress representation of momentum, F is then

F = -X VP - VP + H (2.19)

Equation 2.18 is analytically tractable under certain approximations making it

convenient to solve. This is generally done by assuming that the diffusion is constant

in space and time, convection is a function of radius V = v(r/a), S=0, H=0, and

density remains fixed as a function of time. Using these approximations, the equation

can be transformed into the following form

09v 8 0 2 1 ver Ov 2ve
-x v + -(l...) + v -0 (2.20)

at or2 r ax40 or axO

Equation 2.20 has solutions of the form

v(r, t) = E CJ e-,/, e- /d M v,! (vr/(4axo)) (2.21)
n=O

In this solution, M is a Whittaker function, A, is the n-th zero of the Whittaker

function, and r= a2 /(AnXo). Using experimental data, it is possible to fit various

plasma transitions with this model, and, thus, derive the momentum diffusion and

convective velocity terms, which has been performed in W.D. Lee's thesis [38].
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2.4 Improved Simple Model of Momentum Trans-

port or "Toy Model"

The simple model of momentum transport is able to simulate momentum changes in

the plasma under a large number of' simplifying conditions. This model was able to

reproduce the changes seen in well-behaved EDA H-mode transitions. These condi-

tions were implemented in the model in a large part because the data quality was

unable to support more sophisticated models: there were only three positions with

measured rotation velocity in the plasma. With the creation of HiReX Sr (see Section

3.1.1) and its resultant spatially and temporally resolved profiles, it became possible

to use the profiles of v4(r, t) to remove many of the restrictions inherent in the simple

model of momentum transport.

Specifically in the Improved Simple Model of momentum transport, it is allowed

for the diffusive and convective terms to vary with both space and time. The simplified

model of momentum then becomes

8t - - F + S (2.22)

= -V (-XVP - vP + H) + S (2.23)

= -V (-xVP - VP) + (S - V -H) (2.24)

leading to a final expression for the momentum confinement of

- - [xP"+P' (x' +±ve) +P(v'±+) = a (2.25)

where a = S - V - H is often referred to as the source term in this work and the

prime represents a radial derivative. An external source, S, is often difficult, if not

impossible, to resolve from a self-generated source V - H.

In Equation 2.25, the velocity term is measured by the HiReX Sr spectrometer,

the plasma density is measured by the Thomson system (see Section 3.1.4), and the
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radii of the measurements in the plasma are inferred from EFIT reconstructions [39].

The terms in this equation that are not known are the momentum diffusion term,

the momentum convection term, and the source/residual stress term. It has been

seen from previous work [40, 41, 42] that the momentum and energy diffusion terms

are generally of similar order. The relationship of momentum diffusion and energy

diffusion is generally quantified by a term from thermal fluids research: the Prandtl

number, P, = x4/Xi. The thermal diffusivity can be calculated using the TRANSP

code, and, in this work, it is generally taken that P, = 1. The convective transfer

term has been calculated from theory, and there are also less rigorous methods of

calculation. In general, the convection is related to the momentum diffusivity via

some direct equation depending on the plasma profiles.

In summary, taking experimental values for rotation and density and calculated

values for diffusivity (P,=1, Xi calculated by TRANSP) and convection (as described

in the next section), Equation 2.25 is fully solvable for a, the source term. This allows

one to attempt to infer the behavior of the residual stress/source term from a purely

experimental standpoint. It does require some assumptions on the separability of the

residual stress and external source term but nevertheless can provide major insight

into the plasma rotation behavior. This equation is not a theoretical description but

should rather be considered a "Toy Model" for the rotation.

This model makes no attempt at explaining the underlying theory of the gen-

eration of momentum flux from first principles and should purely be considered an

experimental approach to the issue. There are, in fact, major concerns about the

convective term's Galilean invariance since it is proportional to a term that depends

on the reference frame of the observer [43]. Furthermore, the model calculates the

residual stress as a force density in the plasma, which is effectively a slab model.

2.4.1 Forms of the Convective Velocity

There are numerous forms of the convective velocity that are derived from first princi-

ples and some that are simply used as fitting parameters from empirical observations.

The various forms of the convective velocity will be discussed below.
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1. None. The first test for the convective velocity is, in fact, setting it to zero.

As such, this tests what the source profile would look like with pure diffusion

and also checks if diffusion is enough to explain the observations. The form of

Equation 2.25 becomes purely diffusive and is shown in Equation 2.26.

t .xP" + P'( x' + X = c (2.26)

It is known that diffusion is incapable of solely explaining rotation profiles due

to peaked steady state rotation on axis in various plasma states; these peaked

profiles, in fact, were the cause for the introduction of the convective velocity.

The freedom of the shape of the source profile allows using this model despite

the limitations of the diffusive term.

2. W.D. Lee form. One of the simplest forms of the convective velocity that has

been explored was first suggested by W.D. Lee's thesis work. In this form, vc =

v -r/a, where v is a constant and a is the minor radius of the plasma. This form

of the convective velocity allows solving the momentum transport equation in an

analytical form if the residual stress is not included. The W.D. Lee convective

velocity is not derived from basic principles, but given its applicability to H-

mode profiles in Alcator C-Mod, it, provides a solid comparison.

3. Peeters form. The Peeters form [44] is a first principles derivation of the

convective velocity from gyrofluid equations in the ITG regime. The equation

derived for this pinch is shown below

v, 1 4=r -- I - -- (2.27)X L, RT

where T Te/Ti.

4. Yoon form. The Yoon form [45] of the convective velocity is also derived from

first principles. It is derived in the ITG regime near the critical temperature
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gradient in a torus. The pinch is found to be

oW 1 (5 1 8 1= - - - azc ac (2.28)
x W Ln 2 LT, 5 cR

ac = LI) (2.29)
(I - 1)

where Ln and LT are the density and temperature gradient scale lengths. The

term ri is the ratio of the density scale length to the temperature scale length

8, In T/8, n n. In the flat density regime, ac reduces to (3/2)/(1 - (4/3)LT/R).

5. No Residual Stress The final calculation for convection is not a calculation,

per se. If a rotation profile is available, it is possible to scale the convective term,

as a function of space and time, to minimize the deviation of the calculated

velocity to the experimental velocity. This can provide insight into which of the

proposed convective terms is closest to the correct shape but, given the likely

presence of the residual stress, should not be considered canon.

It is notable that all of the derivations of the pinch velocity are performed in

the ITG regime, which, admittedly, is the most common turbulence mode in most

tokamaks. It is possible to have a tokamak in the trapped electron mode (TEM)

dominated regime, however. No derivations for analytic forms of the TEM pinch

have been identified, but there is an observed momentum pinch during the TEM

[46]. The pinch is fairly similar to the pinch in the ITG case, so it can either be

approximated with the forms presented here or tested as a constant value.

2.4.2 Forms of the Residual Stress

The form of the residual stress is not critical for a majority of this work, which

aims to deduce the shape of the residual stress, subject to various conditions. It is,

nevertheless, a useful exercise to compare the results found here against derived forms

of the residual stress to provide tests of theory.
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A variety of these derivations have been created over time, and some examples

are listed below.

1. P.H. Diamond. The form of the residual stress derived by P.H. Diamond's

group from first principles [47, 48]. It assumes a monotonic q-profile and is

derived in an ITG microinstability dominated plasma. This form is particularly

simple and has dependencies that are explained in many devices, such as the

dependence of the rotation on the gradient of the ion temperature. This form

is calculated to be

L'8 = -p, V T) 2V 2 (2.30)
-P* 2c, T hi

where c. is the sound speed, Xi is the ion thermal diffusivity, Vth,i is the ion ther-

mal speed, p, is the normalized Larmor radius, and L, = Roq 2/r(aq/Br) is the

shear scale length. This form of the residual stress also allows an approximate

prediction for the velocity, which is calculated to be

(v) 1 xi Ls T\ 1/2

Vthi 2 X0 LTTe (

where x4 is the momentum diffusivity.

2. Yoshida Model

In [49], M.Yoshida proposed a residual stress form which is proportional to the

ion pressure gradient. The form is shown below

fires = aekXVP (2.32)

where ak is a constant, which was taken to fit experimental rotation data. In

JT-60U, it was found to range from 1.0 x 10- to 3.0 x 10- 7 m- 1 s, in a variety of

L and H-mode plasmas. The convective and diffusive terms were characterized

using scaling relations found from beam perturbation experiments on JT-60U
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[50]. It is notable that C-Mod's densities are generally high enough that, from

the scaling relations in [50], X4/xi would be of order one, as is used in this

thesis.

2.5 Summary

The background of momentum transport and generation has been presented in this

chapter. This background chapter goes over a large overview of basic predictions

about transport in a tokamak. Specifically, the neoclassical theory of momentum is

introduced along with some of its predictions about the plasma transport. It is seen

that neoclassical theory is incapable of predicting the rotation in a tokamak correctly.

Other theories of rotation are briefly presented as well. Revisited neoclassical theory

has been seen to have an extremely complicated relation for the density, momentum,

and energy transport, but it is capable of predicting the magnitude of the flows in

plasmas. The Shaing model explains rotation in an L-H transition, but it has only

been successful at predicting rotation during intermittent H-modes. Accretion theory

explains the rotation changes in a plasma and predicts a momentum flow into the

core from an H-mode transition, but is not as applicable for quantitative analysis.

Most of the models are extremely complicated and difficult to use to make momen-

tum predictions. This leads to the Simplified Model of Rotation, which was presented

in this section, along with the more advanced "Toy Model." These semi-empirical

models are used extensively in this work, and their advantages and limitations are

presented here. Most importantly, it is shown that these models are not theoretical

tools but are rather tools for experimentalists to make quantitative and qualitative

observations about the rotation transport and generation in plasmas. The various

forms of the diffusive and convective terms along with their theoretical underpin-

nings are presented in this section as well. Finally, an overview of the theory for the

terms not explained by diffusive and convective transport is shown.

The experimental work in this thesis will attempt to explain rotation data in

various regimes of operation using the "Toy Model." In this model, it is assumed that
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rotation profiles, momentum diffusion, and momentum convection are known from

experimental data and theoretical predictions, and the remainder of the rotation is

explained via the use of a residual stress/source. The end result, as shown in Chapter

6, is that the model does well explaining the profiles in an SSEP case, and fairly well

in rotation reversals, H-modes, and I-modes, but major amounts of the physics in the

latter cases have to explained through the use of the residual stress/source term.
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Chapter 3

Experimental Set-up

The vast majority of this work has required the accurate measurement of the Alcator

C-Mod rotation profiles. While rotation is the primary measurement, a large set of

diagnostics is required for proper analysis to be successful. In this section, short

descriptions will be provided of the primary diagnostics and analysis tools used, as

well as a more detailed description of the imaging x-ray spectrometer on C-Mod.

3.1 Diagnostics

3.1.1 HiReX Sr

The HIgh REsolution X-ray spectrometer with Spatial resolution (HiReX Sr) has been

the primary work horse of rotation and ion temperature measurement at Alcator C-

Mod. HiR.eX Sr is described in detail in [51] and [52]. A summary of the function

of this device is provided below. HiReX Sr is the prototype spherically bent imaging

X-ray spectrometer of a design by M. Bitter and K. Hill [53, 1] and currently used on

a variety of other devices (for example LHD and KSTAR [54, 55]).

X-ray spectrometers use dispersive elements, crystals or gratings, for spectral res-

olution. Crystals disperse X-rays through Bragg reflection (nA = 2d sin 6), but flat

crystals can only function with an extended X-ray source through the use of a slit to

avoid degeneracy of different energy X-rays fulfilling the Bragg condition at different
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angles on the crystals. Alternatively a cylindrically bent crystal can be used to avoid

this degeneracy, and these systems have been used extensively but they do not have

spatially resolving capabilities. Spherically bent crystals both avoid the necessity of

a slit and have the capability spatial resolution.

Crystal

Rowland Circle C B

s 3 Meridional Plane

SSagittal Plane

Figure 3-1: Geometry of the X-ray reflection from a spherically bent crystal. Figure
from [1]

HiReX Sr uses spherically bent crystals as dispersive elements to allow for both

spatial and spectral resolution. The spherical geometry of the crystal causes the X-

rays to be focused in both the saggital (vertical) plane, leading to spatial resolution,

and meriodonal (horizontal) plane, leading to spectral resolution. The crystal param-

eters are listed in Table 3.1. HiReX Sr uses four Pilatus II1 x-ray cameras (487x 195

pixels each of which is an x-ray detector of size 172 x172 pim 2) to image the two-

dimensional shape of helium-like and hydrogen-like argon lines from the plasma with

temporal resolution up to 2.7 ins. A picture and engineering figure of the device are

shown in Figure 3-2.

Similar to many other crystal X-ray spectrometers, HiReX Sr functions by mea-

suring the Doppler shift and Doppler broadening of emission lines to find the plasma

velocity and ion temperature, respectively. HiReX Sr is able to image several emission

I~e Dectris http://www.dectris.com/sites/pilatus100k.html for details
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Figure 3-2: Engineering drawing of the inside of the HiReX Sr spectrometer and pic-
ture of the spectrometer in the C-Mod cell. The four Pilatus-II modules are numbered
from 1-4.

51



Table 3.1: HiReX Sr crystal parameter values. Both intended and experimental values
of the HiReX Sr crystals are presented.
Crystal Parameter Value

Shape Rectangular
Size 6.4 cm x 2.7 cm

He-like 2d 4.56225 A
Intended Radius of Curvature 144.3 cm
Measured Radius of Curvature 144.79 cm

Target Wavelength 3.9494 A
Shape Circular

Size R=2.5 cm

H-like 2d 4.56225 A
Intended Radius of Curvature 138.5 cm
Measured Radius of Curvature 139.43 cm

Target Wavelength 3.7311 A

lines from hydrogen-like and helium-like argon atoms, but generally only the w, z,

Lyman-a 1, and molybdenum (2p-4d in Mo+3 2 lines are used), the previous nomen-

clature for the lines is taken from [56]. An example spectra of the device is shown in

Figure 3-3, and the line description is listed in detail in Tables 3.2 and 3.3.

80

3.95 3.96 3.97 3.98
Wavelength (A)

60

40

20

0
3.99 4.00 3.73 3.74 3.75 3.76, 3.77 3.78

Wavelength (A)

Figure 3-3: Example core averaged spectra from an H-mode discharge with helium-
like (left) and hydrogen-like (right) argon lines. Prominent lines are labeled in the
figures. Note that the ratios of the w and z lines do not match their theoretical
predictions because of vignetting issues discussed in Section 3.1.1

The data taken by HiReX Sr are seen as lines of sight of the emissivity from

its targeted argon transitions. Each radial position is, therefore, a line integrated

measurement of the emissivity (referred to as brightness) along the line of sight. In
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Table 3.2: List of normally visible lines on the HiReX Sr spectrometer helium-like
system. Data from [5]
Name Transition Wavelength

w Is2 'So - 1s2p 'Pi 3.94912 A
n;>3 Several

n;>4 Several
x 1s2 'So - 1s2p 3P2  3.96581 A
y 1s2 'So - 1s2p 3P2  3.96934 A
q 1s 2 2s 2 S 112 - 1s2p 2 s 2 P3 / 2  3.98134 A
r 1s22s 2 S1/ 2 - 1s2p2s 1P1 / 2  3.98355 A
a 1s 2 2p 2 P3/ 2 - 1s2p 2 2P 3/2  3.98567 A
k 1s 2 2p 2 P1 /2 - 1s2p 2 2 D 3/2  3.98999 A
j 1s2 2p 2 P3 /2 - 1s2p 2 2 D 5 / 2  3.99392 A
z 1s2 'So - 1s2s 3S1 3.994:17

Table 3.3: List of normally visible lines on the HiReX Sr spectrometer hydrogen-like
system. Data from [6]
Name Transition Wavelength

Lyman a 1 Is 'S1/2 - 2p 2 P 3/2  3.731142 A
Lyman a 2 Is '31/2 - 2p 2 P1/2  3.736514 A
T is2s 'So - 2s2p 1Pi 3.75526 A
Q is2s 3S, - 2s2p 3 P2  3.76106 A
J is2p 'P1 - 2p2 'D2 3.77179
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order to get local measurements of enissivity, plasma rotation, and ion temperature,

the line integrated values have to be inverted via a form of Abel inversion. This

inversion is described in detail in [51], and the basic outline of the method follows.

The emissivity of the lines is assumed to be constant on a flux surface. The shape of

the flux surfaces is known from the EFIT reconstructions, and then Equations 3.1-3.3

can be used to deduce the local emissivity, rotation, and temperature.

Mo, = Jdl -co(l) (3.1)

M1, = dl I6(1) co(1) (3.2)

J = dl (f -6((l)) 2 + w(l)2] (3.3)

where 1 is the path, f is a unit vector along the path, eo is the emissivity, and w(l)

Akb(Ti (1)/mc2 . The codes designed to perform these inversions have undergone major

revisions to allow multiple analyses based on timing bins and superior error analysis,

which has greatly improved the use of HiReX Sr in a variety of experiments.

HiReX Sr Known Concerns

There are some known issues with the HiReX Sr system. These issues are listed here

along with their current and/or proposed solutions.

1. Temperature Variations of Line Position

The most important issue that has been discovered with the HiReX Sr spec-

trometer is a temperature dependent drift of the wavelength positions of the

various lines. This drift causes the anomalous appearance of a velocity shift on

an inter-shot time span. The velocity shift was observed in 2008, and it was

calibrated out of the system through the use of locked modes that brake the

rotation to vo = 0 within the q = 2 surface [57]. While effective, this method

suffers from two major drawbacks: consuming plasma discharges which are lim-
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ited during an experiment and relying on locked modes whose rotation zeroing

is not fully understood.

Resolution of this issue was approached in two ways: understanding the wave-

length variation of the emission lines on the crystal and developing an in-situ

calibration method for HiReX Sr.

The first issue, variation of the emission line positions, was deduced to be caused

by the temperature variations of the crystal [2]. As the crystal changes tem-

perature, the 2d spacing of the crystal changes, and, thus, there is a slight

variation of the location of the lines on the detector plane. The linear spac-

ing of the crystal changes as Ad = d - aeff - AT; the crystal is quartz with

an effective expansion coefficient of asy = 9.51021 x 10- 6 /SC. Converting to

an effective 2d spacing the equation becomes 2d = 2dlo (1 + aeff AT), where

2dlo is the nominal 2d spacing of the crystal. Experimental measurements were

taken of the line positions on HiReX as a function of temperature (temper-

ature was raised through external heaters on the HiReX Sr housing and was

measured using thermocouples near the crystal); the results of this measure-

ment are shown in 3-4. Inferred crystal effective expansion coefficients from

these data are: 6.797 x 10- 6/oC, 1.067 x 10- 5 /SC, and 1.057 x 10-'/'C. This

is within 50% of the known value of the expansion coefficient; considering the

somewhat crude method of controlling and measuring the temperature of the

crystal, this measurement implies that the variation of the emission line is due

to the alteration of the 2d spacing of the crystals.

In order to correct for the line drift, either the temperature of the spectrometer

can be controlled or an in-situ calibration nechanism can be used. Controlling

the temperature was attempted via the installation of thermal shielding. An

improvement of the Alcator C-Mod cell conditioning unit also suppressed the

large thermal excursions during the day. Nevertheless, day long variations in

temperature were not fully controlled. The ideal mechanism for dealing with

the line shift would be the implementation of a calibration mechanism in be-
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Figure 3-4: Experimental observations of the positions of the argon impurity lines
moving as a function of the temperature inside the HiReX Sr spectrometer. The
dashed line is shown to connect the actual heating path and highlight the hysteresis
in the heating effect. Original figure is from [2].
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tween shots at Alcator C-Mod. Two methods were analyzed for achieving this

calibration: filter calibration and material fluorescence.

The filter calibration method intends to use strong transmission edges in mate-

rial filters in an X-ray continuum during plasma discharges to identify known

wavelengths on all discharges. This is the proposed calibration method for the

ITER X-ray crystal imaging system [58]. Several filter implementations were

attempted at Alcator C-Mod using neodymium fluoride and palladium filters.

Neodymium has an L-II edge at 1.9972 A(6.2 keV), which in second order will

appear as an edge at 3.994 A, on top of the z-line in the helium-like spectra.

It was found, however, that no edges were seen fron the plasma due to the

extremely high energies required to excite bremsstrahliung at 1.9972 A and

the crystal second order reflectivity falling off. Palladium has an L-III edge

(approximately at 3.9071 A), slightly outside of the wavelength range of the

HiReX Sr systems. It was decided to modify the system to test if it is possible

to see the filter transitions at any energy position. No continuum transmissions

were seen in this method either. The reason for this was likely the difficulty of

aligning an off-normal operation system and the lack of photons in this contin-

uum region. In order for these filter c(alibrations to work as desired, the filter

transition would have to lie on top of one of the emission lines in first order.

Unfortunately, the atomic physics of these transitions makes this find unlikely

and has not yet been successful at C-Mod.

The second calibration method attempted is the use of a fluorescent plane of

material (this method is similar to the flat field calibration method described

later in this chapter). A grid of KCl salt is placed between the crystal and the

plasma. By using an x-ray tube beyond the crystal (referred to as reflection

mode) or the plasma itself (referred to as transmission mode), the potassium

K-a 1 and K-a 2 lines are excited and reflect off the crystal. These two lines are

within the hydrogen-like spectra and should allow calibrating the detector. This

method was attempted on the bench using a copper anode x-ray source, but it

57



was found that the fluorescence yield was too low to see the necessary X-rays.

For use in transmission mode (KCI grid between source and crystal), the grid

has to be extremely thin because the 3 keV X-rays are strongly absorbed in the

grid itself: at a grid thickness of 10 microns, 60% of the X-rays are reabsorbed.

Two KCl plates were created by evaporating a solution of water and KCl on a

mylar film, leading to KC1 thicknesses of 5 Pm and 10 pm. The mylar film has

an x-ray transmission of ~90%, so most of the x-rays from the plasma reach the

salt. The film is then positioned between the HiReX Sr crystals and beryllium

window. A photograph of this arrangment is shown in Figure 3-5. Despite the

argon X-rays making it through the filter when it is installed, no potassium Ka

lines were observed.

A third calibration attempt was made using a KCl plate which should expose the

top layer of the KCl to plasma radiation. The top layer would then fluoresce and

expose the crystal. As long as this fluorescent layer is in the "cone" of the K-a

projection from detector to the crystal, it will appear on the crystal. A picture

of this arrangement is shown in Figure 3-6. There were no observations of the

characteristic fluorescence when exposed to the plasma (1.5 MW bolometric

output power), so it appears that the fluorescence yield reflected from the crystal

is too low to use as a calibration.

Overall, no in-situ calibration mechanisms have yet been found to work success-

fully. Despite the concerns about uncertainty of where the rotation profile is

zeroed in a locked mode, there is currently no superior mechanism for calibrat-

ing the HiReX Sr spectrometer. In the absence of a locked mode calibration,

there are two methods for calibrating the HiReX Sr spectrometer: using the

HiReX Jr spectrometer (see Section 3.1.2), which is absolutely calibrated, to

find the velocity on-axis or finding the location and rotation frequency of the

sawtooth precursor mode. These alternate methods are usable within a certain

regime of drift in the HiReX Sr frequency and are discussed in more detail in

Appendix C.
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Figure 3-5: Picture of KCl holder installed in the HiReX Sr spectrometer.
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Figure 3-6: Picture of reflection mode KCl holder installed in the HiReX Sr spec-
trometer.

There is also one final concern with locked modes: whether the locked mode

is actually at zero velocity or if there are some rotation changes in the plasma

during a locked mode. The ideal mechanism for testing this theory is having

an in-situ absolute wavelength calibration and comparing the locked mode zero

to the absolute calibration. Since this method is not available at C-Mod, some

experiments were performed by varying the current to identify rotation changes

during locked modes. Example profiles of locked mode rotation are shown in

Figure 3-7. The calibration was performed using the 800 kA discharge as a

base case and then the other locked modes are tested against it. Note that

there can be variations from zero velocity in the locked mode discharge, since

the calibration fits the best fit ellipse to the locked mode phase. Small internal

variations in the discharges will still appear as velocity shifts, which is seen

in the 800 kA discharge. In Figure 3-7, there are systematic shifts seen in

the locked modes, but they are generally within the 5 km/s, and these will be

dominated by the rotation changes seen in the plasma. The off-axis peaks in

rotation are concerning artifacts that may confound precise rotation results in

low rotation plasmas. This effect is mitigated, however, by analyzing highly
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rotating plasmas where the shape caused by the calibration is negligible or by

looking at changes in rotation, which is what is primarily done in this thesis.
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Figure 3-7: Locked mode rotation profiles at three different plasma currents.

2. Vignetting of lines of sight

The HiReX Sr spectrometer has a limited window through which X-rays can

pass to get to the crystal and, thus, to the detectors. These limiting apertures

occur at the 10 inch beryllium window leading to the "racetrack" and the slot

into the actual device through the B-port flange. A SolidEdge image of this

arrangement is shown in Figure 3-8. If a virtual ray from the detector to the

crystal reflects and does not enter the plasma, that position on the detector is

considered vignetted. Since different places on the spherical crystal reflect to

different locations in the plasma, an emission line can be vignetted on one end

and clear on another. This effect can cause spurious rotation or temperature

measurements on individual lines if the vignetting is not observed and corrected

for properly.

It was found that the size of the slot through B-port was too small to allow

both the w and the z lines from argon into the vessel; it is theoretically possible

to have both lines clear, but small misalignments could cause one or the other
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Figure 3-8: Engineering drawing of the racetrack leading to HiReX Sr. The location
of the B-port limiting aperture and the Be window are marked.

of the lines to become vignetted. A program that traces the ray positions was

used to project all of the lines of sight from the detector onto the plane of the

flange. The result of this run is shown in Figure 3-9. The blue points are the

projection of lines of sight onto the B-port flange. Note that a large segment of

rays lies outside of the green line signifying the slot through the flange. These

outlying parts are often located in the colder sections of the plasma and are,

therefore, not generating X-rays of the observed wavelength.

In order to align the spectrometer, a laser alignment process was developed. A

precision two axis laser is placed inside of the HiReX housing, and positioned

on the approximate location of the various lines and on the edges of the crystal.

If the laser is able to enter the C-Mod vessel, then the detector position is

unvignetted. In general, it is possible to get at least 2-3 lines (often the z, x,

and y lines) into the vessel with no vignetting. It is sometimes fortuitously

possible to get all four lines with no vignetting as well. During the most recent

campaigns, the w line has been run only slightly vignetted.

Recently, physics results from the HiReX Sr device have focused on data from

the z-line. This line was chosen due to simpler atomic physics in its modeling, a
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Figure 3-9: (Left) Ray trace of the HiReX Sr lines of sight onto the B-port flange
when the spectrometer is perfectly aligned. (Right) Ray trace of the HiReX Sr lines
of sight onto the B-port flange with a 5% misalignment. Blue dots correspond to the
lines of sight, and the green outline is the slot through B-port.

broader emission spectra, and no high-n satellites. Avoiding vignetting on one

line is not a difficult problem and has been achieved for the z-line since 2008.

3. Flat Field Calibration

The Pilatus II detectors that are part of the HiReX Sr spectrometers consist of

487x195 pixels. Each pixel is capable of detecting X-rays, but the sensitivity

of the pixels can vary. The system is calibrated during construction at the

factory for X-ray energies ranging from 3.7 keV through 9.9 keV [591. It was

found that at argon helium-like and hydrogen-like emission energies (3.1-3.3

keV), these calibrations were not always effective, and this effect could create

fictitious spatial variations in the profiles from HiReX. This is mostly an issue

for spatially up-down asymmetric brightness measurements.

A procedure to recalibrate the detectors was developed. A KCl plate was placed

in front of the detector modules and was fluoresced via the use of a copper

anode x-ray source at 8 keV and 1.5 mA; this set-up is shown in Figure 3-

10. Potassium and chlorine have Ka emissions at 3.3 and 2.6 keV, respectively

[60]. Fluorescence is an isotropic process, so the x-ray fluence should decrease
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Figure 3-10: Two photographs of the KCl arrangement for the flat field calibration.
A Cu anode x-ray tube (not shown) is used to cause nearly isotropic fluorescence from
the KCl plate.
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approximately with the square of the distance, and there will be a fairly uniform

cosine dependence on the detector. Since the primary goal of this calibration is

removing the pixel to pixel variations, large (submodule) length scale variations

are acceptable. It was found that the flat field decay was of order 10% over a

submodule scale length, so it was acceptable to use this method.

It would be ideal to use a dedicated facility in order to calibrate the Pilatus II

modules. Specifically, a design with monochromatic KCl fluorescence at a large

distance with more intense x-ray source would be ideal. Due to the absence

of such a facility at Alcator C-Mod and the fragility of the Pilatus II modules

making their transport non-ideal, this superior calibration was not attempted;

thus, the error on the flat-field calibration is higher than physically achievable.

3.1.2 HiReX Jr

The HiReX Jr spectrometer [61] is the predecessor of the HiReX Sr spectrometer. It

is a one channel core viewing spectrometer constructed to measure ion temperature,

electron temperature, and ion rotation at the core of the plasma. HiReX Jr uses a

von Hamos [62] geometry cylindrically bent crystal as a dispersive element to measure

H-like argon emission in the C-Mod plasma. Prior to the development of the HiReX

Sr spectrometer, it was the primary rotation diagnostic on Alcator. The detector

used for HiR eX Jr is a 20% ethane and 80% krypton filled single proportional counter

and delay line, where an X-ray ionizes the gas causing a charge on the wire. This

detector is susceptible to noise pickup from RF systems, making it non-ideal for a

variety of experiments on Alcator.

Despite the development of HiReX Sr, HiReX Jr has still been operated for a

variety of reasons. It has an absolute calibration, has not been observed to drift in

velocity space over time, and a completely tangential view observing the rotation

directly (unlike HiReX Sr which has a 7 angle view toward the toroidal rotation

direction). This allows calibrating HiReX Sr against HiReX Jr when no applicable

locked mode can be found.
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3.1.3 Beam Based Diagnostics

Alcator C-Mod has a diagnostic neutral beam installed on the device for support

of the Charge Exchange and Motional Stark Effect diagnostics [63]. It is rated to

50 kV and 6 A of hydrogen beam with a current density of 70 mA/cm2 . The beam

interacts with background impurities in the plasma producing a well-localized, known

time emission, often at convenient emission energies. For example, the core charge

exchange system measures ion temperature at Alcator C-Mod by analyzing emission

from the 5292 A line from the n=7-8 transition in C5+. This emission is in the visible

range so it can use light fibers for transmission, therefore the detection mechanism

is much simpler than that for X-rays or UV. The localization, time dependence,

and convenient emission spectra makes charge exchange a commonly used diagnostic

method on a variety of machines [64].

An important diagnostic for the measurement of rotation in the edge of the plasma

is the edge Charge Exchange Recombination System (often called CHRS, CXR.S, or

CHERS) [65]. This system uses the emission from boron impurities in the plasma

as excited by the diagnostic neutral beam. The emission is from B4+ n-7-6 4944.67

A emission, from recombined intrinsic B5+. This system can measure poloidal and

toroidal rotation in the edge, as well as ion temperature and boron concentration. It

is often used to infer the radial electric field in the edge, particularly during H-modes

and I-modes.

3.1.4 Non-rotation Diagnostics

Despite the rotation diagnostics being the most often used in this work, there is an

enormous array of plasma diagnostics that is required for both getting data from the

plasma and for the operation of the tokamak. These diagnostics include magnetics,

Electron Cyclotron Emission, Thomson, Motional Stark Effect, and phase contrast

imaging. Four particularly important diagnostics in this work are given short descrip-

tions below.

66



Thomson Scattering

The Thomson scattering systems have been in existence for many years on a variety

of machines. Thomson scattering [66] uses a series of pulsed Nd:YAG lasers which

fire during the discharge. The photons scatter off free electrons in the plasma and

their intensity and spread can provide information about the electron density (ne) and

temperature (Te). Given the importance of profiles of these quantities, Thomson is a

diagnostic that sees wide use in nearly all C-Mod discharges. The Thomson system

is required for profiles and profile scale length measurements, and the data from this

device are used in nearly every section of this thesis.

Bolometry

Alcator C-Mod has a spatially spanning foil and diode system to measure the total

energy being emitted from the plasma [67). Bolometry is used to measure the total

radiated power from the plasma. This is important to account properly for the power

handling of the materials in the plasma environment. The devices function by hav-

ing small foils of material (or more recently silicon photodiodes) that are precisely

calibrated and see lines of sight through the plasma. The foils/photodiodes precisely

measure the amount of energy that is deposited on them, and, thus, show how much

energy was emitted in a wide electromagnetic range. In this work, bolometer emis-

sivity data are most often used as an input to the TRANSP (see Section 3.2.1) code,

where it is required for proper accounting of the power in the plasma and, thus,

temperature, transport, and resistivity.

Motional Stark Effect

The Motional Stark Effect (MSE) system is designed to measure the pitch of the

magnetic field in the plasma and to infer the q-profile. Measured q-profiles are highly

sought after data due to their ability to improve the EFIT reconstructions that are

important to nearly every single diagnostic that measures profiles in a tokamak en-

vironent. It is also important for the physics that q-profiles are expected to affect,
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such as turbulence and sawtooth instabilities.

The MSE system only functions with the presence of the diagnostic neutral beam.

The beam emits neutral ions at a high velocity into the plasma, which then experience

an effective electric field via the v x B force. The electric field causes the energy levels

in the atom to split based on their polarization with respect to the electric field and

thus creates multiple transitions where there used to be one. The energy spread in

these emission lines can be used to calculate the electric field experienced via the

equation AE, = 3nkE/(Ze/47reoa')Ry, where AE, is the energy spread, n is the

principal quantum number, k is an integer from 0 to t(n-1), ao is the Bohr radius,

and R. is the Rydberg energy.

Phase Contrast Interferometry

Phase contrast interferometry (PCI) is one of the major diagnostics for measuring

turbulence in a plasma. PCI splits a laser beam into two beams which are then

recombined after one of the branches passes through the plasma. The plasma shifts

the phase of the beam as follows

>= -- nedl (3.4)

where ne is the plasma cutoff density, w is the laser frequency, ne is the plasma

density, and 1 is the path length. Combining the beams of the laser on top of each

other and out of phase, it is possible to measure purely the density fluctuations in the

plasma by analyzing the interference spectrum. The PCI system on C-Mod has several

chords going through the core region of the plasma. These chords and interference

spectra allow the system to quantify turbulence in k and w space providing extremely

important data on the type of turbulence in the plasma core.
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3.2 Analysis Tools

A variety of codes has been used in this work and deserves special mention. They are

theoretical simulations rather than diagnostic tools, but, given their wide scale use,

it is more applicable to discuss them in this section.

3.2.1 TRANSP

The TRANSP code is a time-dependent tokanak transport code developed at PPPL.

This code is a remote-run power balance code which deduces plasma transport and

particle, momentum, and energy fluxes. The TRANSP code has built-in modules

for calculating neutral beam deposition, RF and Lower Hybrid wave physics, and

neoclassical transport. There is no one reference for the simulation code, but the

various models and equations used are described in more detail in [68, 69, 70], and

an example of the use of the TRANSP code for TFTR. is shown in [71].

3.2.2 GS2

GS2 [72, 73] is a gyrokinetic modeling code for low frequency turbulence in a tokamak.

This code is run on the LOKI supercomputing cluster at the MIT PSFC. GS2 is a fast

parallelizable code which can take inputs from a variety of codes in order to generate

quickly instability spectra. It can notably take a TRANSP input file to generate

the full magnetic geometry for the simulation. It is also possible to create GS2 runs

without using TRANSP by inputting plasma parameters and profiles manually.

GS2 solves Vlasov's equation and Maxwell's equation in a guiding center approx-

inmation, averaging over the gyro-radius. These equations assume a slowly changing

equilibrium and p/L ~ 6f /f. In this work, it is run mostly as a local, linear simula-

tion, ignoring non-linear coupling. The linear simulations calculate the most unstable

mode over a wide range of plasma radii.
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3.2.3 GYRO

The GYRO code is another gyrokinetic modeling code. It is managed by General

Atomics and was designed to be a non-linear simulation. It can also take TRANSP

input files similar to GS2, and it is more effective at non-linear and global simula-

tions. GYRO has recently been changed to allow the use of rotation profiles for E x B

shear turbulence modification. Generally, GYRO is a widely used and benchmarked

simulation with a wide variety of base cases [74].

The GYRO code is a more time consuming code to run than the GS2 code.

Nevertheless, various simulations are performed because of its wide use and simple

mechanism for setting up non-linear global runs. Furthermore, GYRO and GS2 can

be compared to benchmark the codes against each other and note the similarities and

differences between the codes. Generally, linear simulations are performed in this

work.

3.3 Summary

The various diagnostic and widely available analysis tools used in this work have

been presented. The primary focus of this research has been the rotation profile

generating diagnostic, HiReX Sr. Therefore, the various upgrades of and concerns

about HiReX Sr have been presented. Alternate devices and codes are also presented

in this section, with short overviews highlighting their impact on the work presented

in this thesis. Overall, these tools and diagnostics make an Alcator C-Mod plasma a

well characterized environment, which allows making in depth analyses of the rotation

and transport during various discharges.
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Chapter 4

Rotation Reversals

Rotation reversals were first identified [75, 76, 77, 78] on the TCV device in Switzer-

land. The reversal phenomenon is that an L-inode plasma can spontaneously re-

verse rotation direction when the density, magnetic field, current, or plasma shape is

changed slightly. The most of the plasma profiles remain unchanged except for the

rotation magnitude, magnitude of the density, and slight variations in the electron

and ion temperature profiles. These rotation reversals have been studied in detail at

Alcator C-Mod [3, 79].

4.1 Rotation Reversal Basics

It was found that rotation reversals in a plasma can occur through changes in electron

density, magnetic field, and plasma current [3], th(o)ugh density is the most commonly

used parameter for experiments. As seen in Figure 4-1, when the density transitions

above a critical value, the rotation spontaneously changes direction. This transition

occurs with a hysteresis dependence and, thus, appears to be a bifurcation in the

plasma itself (akin to the H-mode transition).

The location of rotation reversal in density and current space is shown in Figure

4-2. The best fit equation to the data is neB0 6/Ip = 2.8 or neq95 = 3.5 (at B=5.4T),

where density is measured in 1020 M- 3, magnetic field in Tesla, and current in MA.

These equations are reminiscent of the equations describing the Linear Ohmic Con-
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Figure 4-1: Two plasma traces of current, averaged density, core temperature, and
core velocity taken at 5.4 T, one showing two rotation reversals (black) and the other
showing no rotation reversals (blue). The only difference between these two discharges
is the density trace. The early rise of density occurs right after the end of the current
rise and may still be in the current relaxation phase of the discharge, confounding
results.

finement (LOC or Neo-Alcator Scaling [80]) to Saturated Ohmic Confinement (SOC

or the ITER-89 scaling [7]) changeover. It is actually seen that when the rotation

reverses direction, the energy confinement in the plasma changes as well, as seen in

Figure 4-3. It is conjectured that the rotation reversal is, in fact, the most telling

sign of the LOC to SOC transition.

The rotation profiles of these transitions are shown in Figure 4-4. It is observed

that the rotation primarily changes within the core of the plasma and remains fixed

at the edge. This edge location is near the q = 3/2 surface in the plasma, and it is

seen to vary at different currents, which moves the position of the q = 3/2 surface.

Overall, reversals provide an interesting case of rotation changes with no external

momentum input. Given the seeming correlation of the rotation reversal with the

energy confinement time transition, the rotation reversal is extremely important to

understand from a reactor operation standpoint where the energy confinement is

critical. Furthermore, the pinning near the q = 3/2 surface is a particularly strange
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Figure 4-2: Rotation reversal position as a function of current and plasma density
and separated by magnetic field. Figure from [3].

phenomenon that can only be explained through the use of a residual stress term

since the diffusive and convective terms will not be able to recreate inverted profiles

inside a fixed rotation location.

4.2 Turbulence Changes during Reversals

It was observed on the PCI system that during a rotation reversal there is a marked

change in the density fluctuations in the plasma. A characteristic comparison of the

PCI spectra before and after a reversal is shown in Figure 4-5. After the transition,

there is increased intensity at constant Vph = w/k ~ 5 km/s, which are referred to

as "turbulent wings". The wings only appear in the low confinement, low collision-

ality regime. These observations suggest that during the rotation reversal there is a

significant change in the turbulence in the plasma.

In order to understand these turbulence changes, gyrokinetic simulations during

the two phases of the rotation reversal were analyzed. Full profiles of the plasma

parameters are shown in Figure 4-6, where it is seen that most parameters do not
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Figure 4-3: Rotation reversal position plotted with the energy confinement time to
highlight the relation of the rotation reversals to the LOC/SOC changeover. Figure
from [3].

change significantly across the reversal except for the rotation, magnitude of density,

and the Te/Ti ratio. The GYRO code (see Section 3.2.3) in linear operation mode

was used to identify the dominant instability type at various times and radii in the

plasma for both forward (LOC) and reverse (SOC) rotation. These simulations were

limited to k,,p,= 0.25-0.75, in order to analyze only long wavelength turbulence which

generally drive more transport than the short wavelength turbulence. The selected

range still captures both ITG and long wavelength TEM turbulence. An example

spectra at r/a=0.475 of the growth rate and frequency of the modes versus kyp,

is shown in Figure 4-7 for the rotation reversal discharge. At t=1.0 s, the mode

structure is of mixed stability (part of it is in the ion diamagnetic direction and part

is in the electron diamagnetic direction). At 1.4 s, however, the mode structure is

solidly in the ion direction. This suggests that at this radius the plasma transitions

from a mixed mode case to a solidly ITG case after the transition to SOC. These

simulations were run over a wide space of parameters to test their sensitivities to the

common turbulence driving factors a/La and a/LTr. The first parameter scan was

performed on the previously shown rotation reversal discharge with grids of 15x15

in a/La and a/Lr. space. The two characteristic times chosen were 1.0 s and 1.4 s
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Figure 4-4: Rotation profiles versus r/a at three characteristic time points during a
discharge with two rotation reversals (shown in figure 4-1). The position of q = 3/2
is overplotted as a dashed line in this figure.
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Figure 4-6: Plots of profiles of electron density, electron temperature, ion temperature,
and plasma velocity, as well as the various drive terms for turbulent modes for two
characteristic times in a rotation reversal discharge (1.0 s and 1.4 s). Black curves are
for co-current rotating plasmas and red curves are for counter-current. Characteristic
statistical error bars are shown in the top four graphs.
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and the profiles were averaged over 50 ms for smoothed data. The same gyrokinetic

simulations were run on this discharge with the density scanned by a factor of two in

both the low and high direction: this effectively scans the collisionality in the plasma

since the density scale length is not changed. These simulations were performed at

three radial positions: r/a=0.475, 0.600, and 0.700. The results of the simulations

are shown in six sets of figures: 4-8 (1.0 s, r/a-0.475), 4-11 (1.4 s, r/a=0.475), 4-9

(1.0 s, r/a=0.600), 4-12 (1.4 s, r/a=0.600), 4-10 ((1.0 s, r/a=0.700), and 4-13 (1.4

s, r/a=0.700). In the referenced figures, the crosses represent the experimental data

and the black lines represent the transition from electron directed to ion directed

turbulence, commonly considered the ITG/TEM transition. A short discussion of

the ITG and TEM microturbulent modes is provided in Appendix D. Thin black

lines represent contours of equal linear growth rate of the most unstable mode, so

these figures show the dependencies of the dominant modes' linear growth rate to

turbulence driving parameters.

It is seen from the linear stability profiles that in the 1.0 s rotation case, the

experimental profiles place the most unstable mode on the cusp of the ITG/TEM

threshold. In the 1.4 s case, however, the experimental data are significantly more

in the ITG turbulence regime (dependent on a/LT, and in the ion diamagnetic direc-

tion). This is a confirmation of the previous assertion that the rotation reversal is

the marker for the transition from TEM to ITG scenarios, where the PCI wings only

appear in the TEM regime. Furthermore, increasing the density causes a gradual

transition from TEM to the ITG dominated plasmas. This is caused by the collision-

ality preventing electrons from sta.ying on complete trapped orbits, thus decreasing

the drive for the TEM. In all of the doubled density cases, the turbulence is solidly

in the ITG dominated regime. This sensitivity suggests that the density dependence

can cause a transition from the TEM to ITG dominated scenarios, but given that the

density had to be increased by a factor of two to achieve this, these linear simulations

are not capable of reproducing the exact density behavior. This implies that the

profiles are, in fact, driving the transition from electron to ion directed modes. The

only profile-wide effect (besides rotation) that changes significantly between the two
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reversal cases is the ratio of electron to ion temperature, so this change is the most

likely explanation for the changes in the plasma turbulence.
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Figure 4-7: GYRO linear simulation at r/a=0.700 at t = 1.0 s and t = 1.4 s. This
shows the fastest growing mode normalized growth rate and frequency as a function
of normalized mode wavelength.

In order to identify the type of turbulence that is being seen in these plasmas,

base cases of the three radial positions were run with scans performed in a/LT, and

a/LTo instead of a/La and a/LTi. Since density was not observed to be the major

driver of the turbulence in the simulation, these scans were not performed with the

previous artificial density variations. The results of these simulations at t= 1.0 s and

t = 1.4 s are shown in the following three sets of figures: 4-14 (r/a = 0.475), 4-15 (r/a

- 0.600), and 4-16 (r/a = 0.700). Once in the ion direction, in all of the sensitivity

studies, the instability depends primarily on the a/Lo term. In the electron direction,

the most unstable mode depends strongly on a/La at all radii and weakly on a/LTe,

with the outer radii depending slightly on a/LT, and the inner channels completely

independent of it. These dependencies imply that the main turbulence modes are

transferring from density gradient driven TEM to ITG modes during the rotation

reversal.

Given that one of the major features of the LOC to SOC transition is the change
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Figure 4-8: GYRO sensitivity at 1.0 second at r/a=0.475 at half
(left), actual density (middle), and twice the density (right).
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Figure 4-10: GYRO sensitivity at 1.0 second at r/a=0.7 at half the real density (left),
actual density (middle), and twice the density (right).
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Figure 4-11: GYRO sensitivity at 1.4 seconds at r/a=0.475 at half the real density
(left), actual density (middle), and twice the density (right).
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Figure 4-13: GYRO sensitivity at 1.4 seconds at r/a=0.7 at half the real density
(left), actual density (middle), and twice the density (right).
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Figure 4-14: GYRO sensitivity at r/a=0.475 at 1.0 s (left) and 1.4 s (right)
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Figure 4-15: GYRO sensitivity at r/a=0.6 at 1.0 s (left) and 1.4 s (right)
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Figure 4-16: GYRO sensitivity at r/a=0.7 at 1.0 s (left) and 1.4 s (right)

of the Te/T ratio as seen in Figure 4-6, two further simulations with a 50% increase in

the electron temperature and a 33% decrease in the ion temperature were perofmed.

Thes simulations at t=1.4s and r/a=0.7 are shown in Figure 4-17. The propagation

direction of the most unstable mode is marginally in the ion diamagnetic direction in

both cases, while in the base case (4-13) the most unstable mode is strongly in the

ion diamagnetic direction.

In order to benchmark the GYRO simulations, a comparison of the most unstable

modes was run in GS2 (see Section 3.2.2) as well. The characteristic linear instability

plots for the reversal discharge in both the counter-current and co-current rotation

case are shown in Figure 4-18. It is seen that the linear instability plots are nearly

identical in the two cases. This is in marked contrast to the GYRO simulations where

changes were observed at multiple radii of the direction of the modes.

Since it is generally considered that the density, magnetic field, and current are the

drivers for the rotation reversal transitions, those driving parameters were scanned

with GS2. In theory, the results from GS2 and GYRO should be very similar, since

they are both being run in linear mode and with the same profiles. There have been

observations of differences between the codes at low collisionality in the past, though.
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Therefore, GS2 sensitivity scans were run at r/a = 0.54 (a characteristic position

which is within the radii that were analyzed with GYRO) with the scanned parameters

a/La (Figure 4-19), vei (Figure 4-20), Te/Ti (Figure 4-21), and magnetic field (No

effect, so no figure shown). For each of these scans, the discharge is analyzed at

t=1.00s and t=1.35s, which are after the first reversal and after the second transition,

respectively. Note that there are slight changes in the experimental data simulated

by GS2 and GYRO which arise because of the method of extracting and smoothing

data used by each of these codes. The differences are of order 10% and, thus, should

not change the conclusions of the simulations.
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Figure 4-19: Linear GS2 sensitivity studies of density gradient scale length at two
times in the rotation reversal discharge. Red lines correspond to experimental data.

The linear stability shows that there is a strong dependence on the density scale

length. It is even seen that there is a transition of the modes from ion directed modes

to electron directed modes as a/La changes. This is similar to what was observed with

GYRO, but it is seen that the experimental data do not cross the transition threshold

as a function of a/La in this code. The collisionality does not cause a transition, but

it is seen that there are changes in the modes as expected. Furthermore, there was

no observed dependence of the most unstable modes on the magnetic field.
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While the GYRO simulations showed a transition of the modes from TEM to

ITG regime occurring from the rotation reversal due to the Te/Ti changes, the GS2

simulation does not reproduce the same behavior. They both did, however, find that

if a/L, was raised significantly, the mode would transition to the electron direction.

This difference may be due to the low collisionality differences in the codes, and

should be explored in more detail in the future as validation for the GS2 and GYRO

codes.

In summary, the GYRO simulations showed that there exists a TEM to ITG

dominated mode change as the plasma reverses direction during an Ohmic rotation

reversal. The GS2 simulations showed qualitatively similar growth rate versus nor-

nalized frequency relations, but they did not show the same reversal behavior as a

function of T/T, although more radial simulations may be necessary to reproduce

the same behavior. Both GS2 and GYRO imply that the transition from electron to

ion directed unstable modes is possible in the area (in a/L, space) of the discharges,

so it is concluded that the linear simulations support the previous assertions about

the relation of the rotation reversal, turbulence, and the LOC/SOC transition.

4.3 Source Profiles in a Reversal

The only way for the rotation to reverse direction due to these profile transitions is

from convection or residual stress switching sign. These changes cannot be explained

by simple diffusion with edge changes, since they often appear to be core localized.

Furthermore, these small changes in the profiles cannot explain the rotation behavior

from neoclassical and sub-neoclassical theory. This leads to the use of the "Toy

Model" to calculate the shape of the source profile required to explain the rotation.

The only effect that can cause a reversals of the rotation as seen is the residual stress

changing sign. It is notable that most of the residual stress formulations are only

calculated in the ITG mode dominated regime and not for the TEM regime.

Furthermore, given that rotation reversals have no known external source and,

thus, are fully contained within the plasma, they provide a fascinating look at what

87



an experimental source profile looks like during an intrinsic plasma transition. The

rotation profiles are fairly flat as they are both L-modes, which suggests that the

residual stress is not as important as the standard diffusion and convection terms are.

This is further supported by the pinning effect at the q = 3/2 surface (see Section

4.1), which fixes all of the action of the source within that surface, since the gradient

and value of rotation are identical at the location of q = 3/2 to within experimental

uncertainty.

TRANSP generated ion thermal diffusion profiles are shown in Figure 4-22, and

the ion thermal diffusion is taken as the momentum diffusive values. Note that despite

the similarity of the plasma profiles, the energy diffusion at the decreased density time

(t = 1.0 s) is approximately 20% higher throughout the entire profile, which, given

the rotation reversal's relation to the energy confinement time, is reasonable. The

Peeters and Yoon forms of the convective velocity are shown in Figure 4-23. The

Yoon convective term has a discontinuity at r/a-0.55, which occurs because of the

term ac which is divided by the ITG criticality relation. Therefore when the plasma

transitions from ITG to TEM criticality the Yoon form of the convection can go

through a discontinuity.

Using these profiles, the source profiles during the rotation reversal can be calcu-

lated using the "Toy Model." These profiles are shown in Figure 4-24 at two char-

acteristic times under four assumptions: diffusion of 1.0 m2 /s, TRANSP calculated

diffusion with no convection, TRANSP calculated diffusion and Peeters convection,

and TRANSP calculated diffusion and Yoon convection. For comparison, a time trace

of the source at various radii under the same assumptions is shown in Figure 4-25.

It is seen that as a function of time these profiles do not change significantly, but

there are temporal variations toward the core as the plasma transitions from LOC to

SOC. All four profiles have a similar behavior around the q = 3/2 surface and are of

generally the same magnitude as well. The Peeters calculation does better on axis

than the purely diffusive form. Note that technically the Yoon form is derived for

ITG modes, so it may not be valid in the LOC regime where it has sharp changes.

Generally, the source required to explain the differences in the rotation profiles is
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Figure 4-22: Average ion thermal diffusion values as calculated by TRANSP during
the co-current (LOC 1.0 s) and counter-current (SOC 1.4 s) phases in a rotation
reversal discharge.
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somewhat negative in the core, with a negative peak around r/a=0.4 and with a posi-

tive peak around r/a=0.6. As the plasma transitions from LOC to SOC, the negative

peak increases in size while the positive peak moves outward in radius. These pro-

file changes, overall, represent large scale transitions throughout the bulk of the core

plasma, suggesting that the entire plasma is changing rather than a localized source

with transport accounting for the radial variations.

-10 - 1. . . " ' . . . . . . .
0.0 0.1 0.2 0.3 0.4 0'5 0.6 .

r/M
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nia

Figure 4-24: Rotation reversal source profiles using [top left] a constant diffusion (x
- 1.0 m2 /s) and no convection, [top right] a TRANSP calculated diffusion and no
convection, [bottom left] a TRANSP calculated diffusion and Peeters convection, and
[bottom right] a TRANSP calculated diffusion and Yoon convection. The dotted line
represents the q=3/2 surface.

The q = 3/2 surface in this plasma occurs at approximately r/a=0.75, and the
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(x = 1.0 m2/s) and no convection, [top right] a TRANSP calculated diffusion and
no convection, [bottom left] a TRANSP calculated diffusion and Peeters convection,
and [bottom right] a TRANSP calculated diffusion and Yoon convection.
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source profile is peaked around that point. The major point of the source profile

change occurs at r/a=0.4-0.6. This is in a flat diffusive and convective area of the

plasma and is caused by the rotation profiles having a major change around the

r/a=0.6 position. Interestingly, in the high density phase, the source profile has some

variation around that position, but it generally remains fixed around zero within

rotation error bars. In the low density section, however, there is a marked peak in

the source profile, irrespective of the form of the convective term. There is a negative

source seen on axis, which is required to explain the slightly hollow rotation profiles.

In order to compare the source profile changes due to the rotation reversal, it is

helpful to plot the normalized change in the source from LOC to SOC; this is shown

in Figure 4-26.
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Figure 4-26: Normalized change in source profiles from the LOC to SOC phase.

There is no form of the convective/diffusive profile that is clearly superior to the

other cases in the rotation reversal. It appears that the Peeters form may suffer fewer

discontinuities due to its simple scaling, rather than the more complicated form of the
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Yoon convection. None of the calculations of the source profile changes in the plasma

from LOC to SOC have major differences in the profile shape, so this suggests that

the calculations of the source are fairly resilient and are being caused by the physics

of the rotation profile evolution.

The residual stress as derived by Diamond and Yoshida was also calculated to

see if it can explain the profiles seen in this plasma transition. These calculations

are shown in Figure 4-27. Neither calculation is capable of perfectly reproducing

the experimental observations of the source profile in the plasma. The Diamond

source agrees fairly well with the actual residual stress calculation at t=1.4 s (with

no convective term), but it does not reproduce the negative lobes at r/a=0.4 or

in the core. Since the Diamond form of the residual stress is calculated for ITG

turbulence and at 1.0 s the linear turbulence is found to be much more strongly in the

TEM regime, the disagreement at that time is not unexpected. The Yoshida source

form underestimates the required source, but it is able to reproduce the qualitative

shape of the profiles, even the negative lobe at approximately r/a=0.4. The Yoshida

calculation is shown with the residual stress calculated with both 1.0 x 10-7 and

3.0 x 10-7 m- 1 values of the coefficient ak, but this naturally does not affect the

shape of the residual stress.
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Figure 4-27: Calculation of the residual stress from the Diamond and Yoshida equa-
tions.
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4.4 Summary

Rotation reversals are spontaneous inversions of the plasma rotation direction as a

function of density, current, plasma shape, or magnetic field. It has been found that

they are correlated with the transition of the plasma from LOC to SOC, and the

reversal is likely the most telling predictor of that transition. The explanation for

the plasma spontaneous reversal of direction is the transition from a TEM dominated

plasma, in the linear Ohmic confinement regime, to an ITG dominated plasma, in the

saturated Ohmic confinement regime. Linear stability modeling supports the asser-

tion that the rotation reversal is correlated with mode transitions, but it is unable to

reproduce the exact density behavior of the modes. Density scans qualitatively cause

the correct changes in the linear turbulence, but too large density changes are required

to cause the ITG/TEM transition in the simulations. It is instead conjectured that

the ratio of the electron temperature to the ion temperature, which changes across

the rotation reversal boundary, is the primary correlation with the mode transition

and thus the rotation changes. Non-linear effects may change the stability diagrams,

so they should be taken into account in future simulations.

Source profiles during the transition have been analyzed in order to understand

the form of the residual stress for this transition and compare it to the models of the

residual stress proposed in Section 2.4.2. It is seen that the majority of the source

profile changes are localized at r/a=0.4-0.6. The convective terms in these plasmas

did not significantly improve the fits to the data. The magnitude of the required

source profiles was reproduced by the Diamond form of the residual stress, but the

shape was better reproduced by the Yoshida form.
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Chapter 5

Lower Hybrid Current Drive

Induced Rotation Changes

Lower Hybrid Current Drive (LHCD) has been a major area of interest in the plasma

physics community since the 1980s. There has been a general effort in the field to

find current drive mechanisms that will allow a tokamak to operate for longer time

scales than those currently feasible using only the central solenoid. These methods

include neutral beams, electron cyclotron waves, fast wave ion cyclotron, lower hybrid

current drive, and a variety of less used mechanisms. These mechanisms all have

various benefits and challenges. The expense and penetration issues of neutral beams

make them difficult to use on a reactor. While fast wave current drive and electron

cyclotron current drive are fairly efficient, particle trapping at larger r/a values makes

them non-ideal for off-axis current drive. Lower hybrid current drive is able to drive

current off-axis which makes it particularly useful for advanced scenario tokamak

operation (q > 1). The downside of LHCD is that it has difficulty operating at

high density due to accessibility issues. All of the previously mentioned methods are

discussed in detail in [811.
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5.1 LHCD Background

A simplified discussion of the LHCD physics issues is presented here. The Lower

Hybrid system launches a wave which is represented in the cold plasma electrostatic

limit with the following dispersion relation

2
k - k f WLH (5.1)

Te W -- WLH

where wLH wil(14W 2) and W 2  2. The parameter k1 = 27/A is the parallel

wave number and is directly related to the parallel refractive index n = ckj1/w. The

LH launcher defines the frequency and approximate parallel wave number, which only

varies slightly in the plasma, of the wave, so the dispersion relation solves for the free

parameter kL. In warm and hot plasmas, the dispersion relation is more complicated

and is discussed in detail in [82].

The actual physics of LHCD involves considerations of decay of the lower hybrid

wave, the section of the distribution function that the wave damps on, and the impor-

tance of the plasma edge with regard to launcher-to-plasma coupling. This generally

requires using simulation codes to calculate on which section of the plasma the waves

deposit their energy and how much current this drives. Understanding the rotation

drive from a simulation standpoint has been researched in more detail in [83], but the

work is still in progress and is currently in the process of developing more advanced

momentum conserving collision operators in the simulation code.

Nevertheless, in a simplified form, plasma current is defined as J = -en(ve - vi),
meaning that driven current is related to the rotation of the charged species. This

implies that driving current is, in effect, driving rotation. The momentum of the

plasma is mainly carried by the main ions which have significantly more mass than

the electrons, while LHCD drives current primarily through the electron current, so

this rotation would only be visible if the ions and electrons are coupling successfully.

It is important to note that the lower hybrid driven electron tail would be near

relativistic, since the refractive index in this situation is often nH = ck 1/w ~ 2,
implying a phase speed of Vph ~ 1.5 x 108 n/s. At this velocity, the electron-ion
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collision rate (vei e4ni In A/47reememves) is of order 5 ns, which, while long, is

still below the energy confinement time. It, was found that the fast electron to ion

coupling could be even higher if the full parallel refractive index spectrum is analyzed

[84], suggesting that the direct momentum input of the wave could be important for

plasma rotation.

5.2 Previous LHCD Rotation Observations

LHCD has previously been seen to induce rotation in Alcator C-Mod plasmas [85,

86]. This rotation was observed to be in the counter-current direction and scales

with PLH/ne. Furthermore, the rotation magnitude is proportional to the internal

inductance, 1i, which is a proxy for the current modification, and scales inversely

with the parallel refractive index, which controls the location of the fast electron

distribution on which the wave damps its power. The time scale of this rotation

change was -100 ms, which is approximately the current relaxation time Tcurr -

1.4Ixa 2 T,"/Zeff, where T is in units of keV, a is in units of meters, and T is in units

of seconds.

LHCD induced rotation has also been observed on JT-60U [87], Tore Supra [88],

JET [89], and, recently, on EAST [90]. In all of these cases, the rotation change was

in the co-current direction, with JT-60U reporting that the entire profile was elevated.

Available plasma parameters from each of these experiments are shown in Table 5.1.

Table 5.1: Table of machine parameters relevant to LHCD rotation studies for Alcator
C-Mod, JT-60U, Tore Supra, JET, and EAST. Approximate values are calculated
from provided data in the reference papers.

Machine BT [T] I, [MA] c95 n1 [10 20 m-3] PLHCD [MW)
Alcator C-Mod 5.4 0.3-0.9 3-10 0.66 0.8

JT-60U 4 ~1 ~6 0.05 1.5
Tore Supra 3.7 0.8, 1.51 ~ 5.9, 3.1 ~0.16, 0.3 1.8-3.8

JET 2.4-2.8 ramp-up ramp-up 0.43-0.65 < 2.0
EAST 2 0.250 10 0.08 0.8

On Alcator C-Mod, co-current LHCD induced rotation was observed recently for

the first time. It was seen in both upper single null (USN, unfavorable B x VB drift
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direction) discharges and lower single null (LSN, favorable B x VB drift direction).

It was observed that the co-current rotation in USN plasmas scaled inversely with

plasma current. These observations led to a dedicated experiment being performed

in order to test the dependence of the rotation change on current and to understand

the issue of the direction of the LHCD induced rotation.

5.3 Co- and counter-current LHCD induced rota-

tion changes on Alcator C-Mod

Dedicated experiments at Alcator C-Mod on LHCD induced rotation in the co- and

counter-current direction have been performed at BT - 5.4T, <ne>= 0.66 x 10 0rm-n 3 ,

plasma elongation rK ~ 1.6, and no auxiliary heating other than that due to LH wave

injection. Plasma current was scanned from approximately 300 kA through 900 kA.

The lower hybrid launcher was run at 800 kW of net power into the plasma and a

launched refractive index n = 1.6, which is known to give a large counter-current

rotation from the previous C-Mod LHCD rotation results.

Overall, several reproducible discharges were accomplished in upper single null

and lower single null. A characteristic trace of the line-integrated plasma rotation in

both the co- and counter-current directions is shown in Figure 5-1. During the high

current case (black trace), the rotation drive was in the counter-current direction with

a rotation change of Av ~ -20 km/s. At low current (blue trace), however, the core

rotation is driven in the co-current direction Av ~ +30 km/s and only appears to

initiate after ~100 ms of the LHCD pulse. A mid-current case is also shown (in red),

in which there is no net rotation change during the LHCD phase; small variations in

rotation are seen, but they average out over the course of the discharge. When the

lower hybrid system turns off, it is often seen that there is a sharp counter-current

swing in rotation. It is not well understood what is causing this counter-current

impulse. All of the upper single null discharges were sawtooth stabilized by LHCD,

with the time of the stabilization depending on the current. The high current lower
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single null discharges had sawteeth all throughout the discharge; the sawteeth were

stabilized in the lower current cases, though.

The summary of the rotation results for different currents is shown in Figure 5-2.

The change in core rotation is calculated by subtracting the pre-LHCD rotation from

the final rotation during the LHCD phase. It is observed that the plasma current

has a strong effect on the plasma rotation magnitude and direction. Furthermore, the

USN and LSN plasmas show a marked difference in the rotation behavior. The critical

rotation zero-points (alternatively called LHCD rotation reversal points) for the USN

and LSN plasmas are approximately 550 kA and 400 kA. It is worth noting that

location of the Ohmic rotation reversal, discussed in Chapter 4, (red dashed line) in

current space is fairly close to that of the observed LHCD rotation reversal, giving the

first indication of the possible relation between the two phenomena. Characteristic

discharges from the previous LCHD discharges on Alcator C-Mod are overplotted on

this summary as well. These discharges show why this effect may have never been

observed previously: the previous experiments were all run in the higher current,

seemingly asymptotic rotation change section of the figure. In order to transform the

data to a dimensionless form, the q value is substituted for the current and rotation

changes are shown in terms of ion thermal Mach number, which is presented in Figure

5-3. Given that Figure 5-3 is in a dimensionless form, it is possible to compare C-Mod

data with other machine data. Only the Tore Supra and EAST data were available

for this comparison, and they are overplotted in the figure. It is seen that they both

approach the high q-values where the rotation is in the co-current direction. It is

nevertheless an imperfect comparison to overplot these data because of their different

densities, magnetic fields, and heating mechanismns.

Rotation profiles of the USN and LSN cases at high and low current are shown

in Figure 5-4. It is observed that the rotation profiles appear to be pinned at r/a

~ 0.5-0.6, which suggests that the effect of the LHCD rotation drive is localized to

the core of the plasma than to the edge. At the start of LHCD, the rotation at high

current transitions to the counter current direction, while low current discharges have

co-current rotation profiles with the largest change located in the core.
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Figure 5-1: Characteristic (taken in the USN case) time histories of LHCD induced
rotation: lower hybrid power, average density, and line integrated rotation are shown.
Dashed, blue lines represent the 300 kA case with co-current rotation and black lines
represent the 700 kA case with counter-current rotation. The red mid-current case is
shown for comparison to demonstrate a nearly no rotation change situation.
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Figure 5-2: Rotation change from LHCD versus plasma current. Diamonds (asterisks)
represent equilibria with ion VB drift toward (away from) the X-point. Red points
are from 2008 data; density and LHCD power are 10% higher than current values,
and the points are shown for comparison. All data from respective years are at fixed
density and power. The dashed red line marks the "empirical" position of the intrinsic
plasma rotation reversal with q(r) < 1.
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Figure 5-3: Rotation change normalized to ion thermal speed from LHCD versus q.
Diamonds (asterisks) represent equilibria with ion VB drift toward (away from) the
X-point and diamonds are toward the X-point. The red and green boxes represent the
overplotting of Tore Supra and EAST published results with regard to their rotation.
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Figure 5-4: Characteristic rotation profiles before and during LHCD for two USN
(left) and two LSN (right) discharges. Both high and low current cases are shown,
and statistical errors bars are shown as well. Note that error bars in the low current
case around r/a = 0.5 increase due to uncertainties in the EFIT reconstruction.

An interesting observation is that the disappearance of the sawteeth in these

discharges varies depending on the current and the configuration of the plasma. A

plot of the sawteeth disappearance times is shown in Figure 5-5, where it is seen that,

as expected, as the current increases it takes longer for the LHCD to drive sufficient

current to force the sawteeth to disappear. The LSN discharges have significantly

larger disappearance times than the USN discharges. It is likely that the current

drive from LHCD is significantly worse in the LSN versus the USN case, which may

explain some of the discrepancy seen between the two cases' rotation results.

5.4 LHCD Rotation Theory

It has been proposed that the counter-current direction of rotation from LHCD is

caused by the direct momentum input of the waves driving fast electrons in the

counter-current direction [83]. The electrons then collisionally couple to the main ion

species and drive counter current directed momentum. The estimated rotation drive

using this method can be approximated with njmjA(Rvo)/At = TLH =RnljPLH/C

and leads to a ~40 km/s change from LHCD which is the correct order of magnitude

in the counter current direction. This calculation assumes a time constant of the

change of ~100 ms, which is what is normally measured on Alcator C-Mod and is
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Figure 5-5: Sawteeth disappearance times as measured by the electron cyclotron
emission system versus current and magnetic configuration.

also approximately the current relaxation time. While this method may explain the

counter-current rotation observed previously and produces synthetic rotation profiles

that qualitatively agree with the experiment, it does not explain how LHCD can drive

co-current rotation. There have been many proposals about what could be the reason

for this co-current rotation. Several of these proposals are presented below.

1. Fast Electron Losses. This mechanism was suggested by the Tore Supra and

JT-60U groups, and it is based on the formation of a radial electric field (E,)

in the outward direction. Ripple (toroidal asymmetries in the magnetic field)

losses of fast electrons are assumed to cause an outward radial electric field.

This radial Er would cause a toroidal rotation via radial force balance

1
E, ~vBO - voB4 + Vp (5.2)

Zienj

where the equation is evaluated for the rotating species. Lower hybrid is ex-

pected to generate increased ripple losses and, thus, generate co-current ro-

tation. HiReX Sr did not observe large (> 5km/s) changes in the poloidal

rotation during the LHCD as seen in Figure 5-6, so the second term can often
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be neglected, and the third term is generally considered to be small due to the

coefficient being divided by the rotating species' charge and flat profiles of den-

sity and temperature. This leads to the approximation that the interior radial

electric field is primarily an effect of the toroidal rotation and poloidal magnetic

field, therefore, radial E, and toroidal rotation are strongly coupled.

4- LSN 4 USN

2 400 kA 2 - 400 kA

0 - 0 - - - - - - -

-2 ---- -4

-4 - .4 -

4 4 Pre-LHC
LHCD

2 - 800 kA 2 800 kA

-2 -2

-4 - -4

0.70 0.75 0.80 0.85 0.70 0.75 0.80 0.85
R mid (in) R mid (Md

Figure 5-6: Poloidal rotation changes during LHCD discharges in lower and upper
single null.

It is unlikely that this is the explanation of the co-current rotation on Alcator

C-Mod. C-Mod's ripple field is approximately 1% [91], whereas Tore Supra's

is approximately 7%. Furthermore, in work performed at Tore Supra, it was

found that the fast electron loss due to magnetic ripple scales linearly with

plasma current [92]. This implies that the radial electric field and thus the

co-current rotation should increase with plasma current, whereas the rotation

actually decreases with increasing plasma current. Finally, the ripple generally

increases towards the edge of the plasma, so one may expect that the observed

rotation changes should also increase towards the edge of the plasma, but the

observation is that the rotation initiates in the core rather than at the edge.

These findings demonstrate that the ripple loss of fast electrons is not a likely

explanation for the co-current rotation.

2. Convective Velocity From Changes at the Plasma Edge. The proposal

for the explanation of the co-current rotation from EAST [90] was that the edge
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rotation was changing, and the convective velocity in the plasma is transporting

that rotation toward the core. The pinch velocity in this case is taken to be

vc/X = -4/R from the Peeters form of the pinch. EAST had edge measure-

ments of the rotation velocity that changed significantly during the discharge.

By calculating the core rotation from the edge using this model for the convec-

tive pinch it was found that the calculation and the data seemed to agree.

A model with no residual stress and a convective form of the pinch that is

simply related to the ion diffusion will always create a monotonically increasing

or decreasing rotation profile. These forms can explain an H-mode or I-mode

rotation profile, but in LHCD driven plasmas it is observed that there is a

pinning point off-axis. At this point, the rotation does not change from the

pre-LHCD phase to the LHCD phase. This pinning in rotation is not possible

with a simplified model of momentum transport such as that described above.

At the pinning location, the diffusive and convective transport of momentum

would be identical in both the high and the low current cases and, thus, the

rotation inside the pinning location would be identical.

3. Intrinsic Rotation Reversals. Ohmic L-mode plasmas have been observed to

reverse rotation direction spontaneously with slight changes of current, density,

and magnetic field, and this has been disclussed in more detail in Chapter 4.

The observed reversal current at the operational density and magnetic field of

the LHCD experiment is ~ 650kA. This current is within 20% of the calculated

LHCD induced reversal point based on the scaling in [3], and this is shown for 5.4

T discharges in Figure 5-7, so there may be turbulence changes from the LHCD

that are causing differences in the plasma behavior. Furthermore, at the end of

flat top of the LHCD phase of the plasma, the rotation appears to approach a

similar value; if this behavior is repeated at other densities, this suggests that

the LH system is changing the plasma behavior rather than directly inputting

momentum. Several traces of rotation are shown in Figure 5-8, where velocities

appear to approach approximately -20 km/s, except for the 300 kA case.
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Figure 5-7: Overlayed LHCD rotation reversal point on the intrinsic rotation reversal
densities at 5.4T. Note that while the LHCD rotation reversal is somewhat removed
from the line, it is still fairly close in ne vs Ip space.
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These observations suggest that the LHCD is changing the intrinsic plasma be-

havior, and the rotation is due to a modification of the density and temperature

profiles by the current drive. If the rotation is purely controlled by changes in

the profiles then it would not be expected to see any concurrence of the rotation

behavior with direct momentum input from the launcher. The counter-rotation

effect, however, seems to agree with the nodeling, suggesting multiple coupled

generating mechanisms. Furthermore, some of the traces in Figure 5-8 have an

initial counter-current change even in net co-current rotation cases supporting

the argument that at least two drivers are acting.

Using the simplified model of momentum transport as in Section 2.3, the resid-

ual stress is calculable. The form is shown in Equation 2.30, and is listed again

below for convenience.

f PS L, V T )2
jes p* xi (f) 2 v 2h,i (5.3)

2c,' T

where c, is the sound speed, Xi is the ion thermal diffusivity, Vth,i is the ion

thermal speed, and p, is the normalized Larmor radius. All of the terms are

positive while L, = Roq 2 /r(aq/ar) is the only one that can be negative or

positive due to the reversed shear. LHCD (an create such a reversed q-profile

by driving current off-axis. Since rotation depends on the divergence of the

residual stress, hollow temperature profiles can also cause rotation to reverse,

but these profiles were not observed in the LHCD plasmas. This implies that

a q-profile change is causing multi-directional changes in the plasma rotation;

more research on this topic can be found iii [93]. As seen in Figure 5-9, the

LHCD deposition profile (as calculated by GENRAY [94]) and, thus, the q

profile will be different in high and low current cases.

MSE measurements of q-profiles were available on several of the discharges

from this experiment [95]. A comparison of high and low current discharges

is shown in Figure 5-10. It is notable that in the low current upper single

null case, the data show highly reversed shear q-profiles, which are hallmarks
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of advanced tokamak profiles. The low current LSN case, however, does not

show an inverted q-profiles, while the rotation profiles, nevertheless, experience

highly co-current driven rotation. The low current rotation profile change is

narrower than the high current case for both q-profiles, which agrees with the

lower hybrid estimated deposition profiles.

900 kA
700 kA
600 kA
500 kA

20 500 kA_
400 kA
300 kA

0 -

E-20

-80.

-0.1 0.0 0.1 0.2 0.3 0.4 0.5
Time from LH (s)

Figure 5-8:
scan. These

Overlayed time traces of core rotation value during the plasma current
are inverted local rotation values, and statistical error bars are shown.

A scan of the same plasma parameters was performed at lower LHCD power. One

of these discharges is shown in Figure 5-11, where it is seen that at 600 kW and

800 kW of Lower Hybrid there are two different rotation behaviors. At 600 kW the

rotation does not appear to change during the LHCD phase while at 800 kW there

is a noticeable rise in plasma line integrated rotation. In these cases, there are also

measured internal inductance changes from 1.8 to 1.6 for the 800 kW case and 1.85 to
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Figure 5-9: GENRAY calculated deposition profile of LHCD power from a 300 kA
discharge and a 800 kA discharge. Note broader deposition profile in high current
case.

1.7 for the 600 kW case, confirming that there are differences in the internal current

profile modification. Since there are no other plasma changes, this result implies

that one of two effects may be driving the rotation change: the modification of the q-

profile or the ratio of T, to Ti. The q-profile change in LSN and USN was significantly

different as shown previously, so the value of Te/T seems a likely explanation for this

reversal effect. This parameter is also what is likely involved in the Ohmic rotation

reversal, which the LHCD rotation reversal appears to be related to as well.

In general, it appears that the rotation mechanism for LHCD induced rotation is

due to a combination of several different effects acting in concert. The most likely

explanation appears to be that the rotation is primarily dominated by the intrinsic

plasma rotation with possible shifts due to the direct momentum input from the LH

wave.
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Figure 5-10: Profiles of MSE constrained kinetic EFIT measurements of the q-profile.
Four profiles are shown in each plot with the top plot corresponding to USN plasmas
and the bottom plot corresponding to LSN plasmas. In both low current cases,
reversed magnetic shears are observed, but the USN case has a significantly more
reversed profile.
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Figure 5-11: Comparison of 600 kW (black trace) and 800 kW (blue trace) LHCD
discharges. Note that the lower power trace has almost no rotation change when the
LHCD power turns on.
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5.5 LHCD relation to Intrinsic Rotation Reversals

The change in the residual stress through q or Te/Ti is considered the most likely

candidate to explain the LHCD rotation. Ohmic rotation reversals are believed to be

created by the TEM/ITG changeovers when the plasma transitions from to Linear

Ohmic Confinement to Saturated Ohmic Confinement, so it is logical to search for

features consistent with the ITG/TEM changeover during LHCD.

5.5.1 Observed Turbulence Differences

One of the most interesting observations during the LOC/SOC transition is the den-

sity fluctuation modification discussed in Section 4.2. It has been observed that

during LHCD on Alcator C-Mod, there is a marked modification of the turbulence

spectrum as well, as measured by the PCI system. In Figure 5-12 turbulence spectra

are shown. During the LHCD phase at high current, it is seen that a wing of the

fluctuation spectra increases in magnitude. The phase velocity of this turbulence is

calculated to be 1 km/s (note, however, that sufficiently accurate, <1 km/s, poloidal

rotation measurements are not available for this correction, so a Doppler shift may

be important in this phase velocity calculation). This wing appears intermittently

and is only seen during the counter current rotation of the LHCD. During co-current

rotation the turbulence spectrum does not change, as shown in the figure.

These turbulence plots are reminiscent of the turbulence "wings" seen in the rota-

tion reversal research. This observation supports the assertion that rotation reversals

and lower hybrid rotation change reversals are related via turbulence changes in the

plasma. Furthermore, these spectra, show that there are major turbulence differences

between the co- and counter-current rotation cases. These turbulence plots are asym-

metric in wavenumber space, which, given the geometry of the PCI system, implies

that the fluctuations are located either at the top or at the bottom of a flux surface.

While not impossible, this asymmetric geometry is rarely observed and is thought

to be caused by rotation shear in the core. The wings in the rotation reversal only

appear during the co-current LOC phase of the plasma, while in the LHCD case the
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asymmetric wings appear in the counter-current phase only. This is not consistent

with the Ohmic reversal data, but as shown below it is consistent with the appearance

of TEM in the plasma.
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Figure 5-12: PCI turbulence spectra from 700 kA (a, b) and 350 kA (c, d) LSN
discharges. Left columns correspond to turbulence prior to the LHCD phase and
right columns correspond to turbulence ~450 ms after the turn on of the LHCD.
The highlighted area shows the turbulence feature observed on the counter-current
rotation change LHCD plasmas.

5.5.2 Gyrokinetic Simulation of LHCD Profiles

In order to understand the turbulence modes in the plasma and relate it to the

intrinsic rotation changes, a similar method as that described in Chapter 4 is used.

The high and low current cases were focused on in order to bracket properly the

turbulence behavior in upper and lower single null, and this method has primarily
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used GS2 linear simulations.

The full profiles of the discharges along with the commonly shown turbulence

driving terms (a/La and a/LT) are shown in Figures 5-13 and 5-14. It was seen that

when lower hybrid current drive turns on, there are, as expected, changes in the

Te, since the waves are damping on the electrons. There are also observed changes

in the electron density distribution between the low and high current cases. These

profile changes may cause major differences in the turbulence spectra in the plasma,

which had been observed in the PCI spectrum. Furthermore, MSE provided q-profiles

were used during these simulations to account properly for the effect of the current

profile modification from LHCD. In Figure 5-14, there are errors with the EFIT

reconstruction as imported to the HiReX Sr inversion, so the HiReX Sr profiles around

r/a=0.5 have large errors. TRANSP processing is used to remove these errors in the

simulations below.

Linear simulations of the high and low current upper single null discharges were

performed. These simulations focused on low k instabilities because of the quasilin-

ear approximation for transport depending on -y/ (k) 2. The normalized wavenumber

kopi was restricted to 0.0-0.5 in these simulations, which is where, on many of the

discharges, it was observed that there was a local maximum in the growth rate. An

example growth rate and frequency plot versus normalized wavenumber is shown in

Figure 5-15. At high k, there are also often observed local maxima, but these generally

occur at kopi ~ 40, which is significantly into the electron thermal gradient (ETG)

turbulence range and is unlikely to cause major transport (more detailed plots of

these modes are shown in Appendix B). The linear most unstable mode calculations

for high and low current, both before and during the LH phase, are shown versus

r/a in Figures 5-16 and 5-17. As is seen, the instabilities in the pre-LHCD phase are

primarily in the ion direction and are at mid-to-high radii. When the LHCD turns on,

however, the unstable modes move to lower radii and switch to the electron diamag-

netic direction. This suggests that the turbulence is changing from ITG dominated

to electron mode dominated. The low current case does have an ion directed lobe at

low radii, but this may be due to the uncertainties in the profile fitting. The move
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Figure 5-13: Plots of profiles of electron density, electron temperature, ion temper-
ature, and plasma velocity, as well as the various drive terms for turbulent modes
during the high current LHCD case. Black curves are for data which are pre-LHCD
and red lines are for data during LHCD. Characteristic statistical error bars are shown
in the top four graphs and removed for clarity for the bottom graphs.

117



1.4
IE 1 350 kA

E 1.0

0.6ne/1020
2.5

' 1.5

0.5 T
1.2

G 0.8
0.4T
0.0
20

S0
-20

"I -40

1.5 -
~!1.0-
'~0.5-

0.0 0
4-
3 -3

-

r1

6-
-2

- -

5
4- Pre-LHCD LHCD

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
r/a

Figure 5-14: Plots of profiles of electron density, electron temperature, ion temper-
ature, and plasma velocity, as well as the various drive terms for turbulent modes
during the low current LHCD case. Black curves are for data which are pre-LHCD
and red lines are for data during LHCD. Characteristic statistical error bars are shown
in the top four graphs and removed for clarity for the bottom graphs. Note that at r/a
~ 0.5 the T and v4 profiles are not as dependable due to the low current interfering
with the EFIT reconstructions; those areas are highlighted in blue.
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to TEM is consistent with the Ohmic rotation reversals for the co-current phase, but

it is not consistent in the counter-current phase. Furthermore, a calculation was run

with a simulated hot electron population, as LH heating is expected to generate, but

this did not have any affect on the instability results and was not included in these

simulations.

2 TT ry.T rT -T TT rT F P VT F -V V- V rT-VTF I T - 2

700 kA USN

0)0

-2 --

1 2 3 4 5
kp

Figure 5-15: Example plot of linear instability versus normalized wavenumber as
calculated by GS2 during a high current LHCD discharge in USN.

It is notable that in Figure 5-16, the linear frequency of the instability is ~200

krad/s, and the asymmetric turbulence seen in Figure 5-12 is also in that range. It ap-

pears that both the high and the low current case have an electron directed instability

appearing in the LHCD phase of the discharge. This suggests that LHCD is destabi-

lizing the trapped electron mode when it turns on. From the Ohmic rotation reversal

research, comparing LOC to SOC confinement, there is an empirical observation that

in TEM dominated plasmas, the plasma rotation is in the co-current direction, while

in ITG plasmas, it is in the counter-current direction. Therefore, these observations

suggest that there should be turbulence differences observed between the low and the

high current cases.

By fixing a point at the most unstable radial location in the unstable mode plots,

the sensitivity of this mode to changes in plasma parameters has been tested. Specif-
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ically the terms a/La, a/LTE, a/LTi, Te/Ti, q, 8, ve, vi, Zimp, and nimp were scanned

over a broad range for both cases. It is unphysical to change some of these terms

while keeping the others fixed, but this was still performed in order to identify the

type of instability in these cases. Plots of growth rate at these varying parameters

are shown in Figures 5-18 and 5-19.
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Figure 5-18: GS2 linear sensitivity of the most unstable mode at r/a = 0.5 at 700
kA to various changing parameters. Black lines correspond to growth rates and blue
lines are for frequency. Negative frequency represents electron diamagnetic direction.
Red vertical line is the experimental value of the parameter.

It is seen in the sensitivity studies that the growth rate profiles in both the low

and the high current cases have similar parametric dependences. Both low and high

current turbulence profiles are mostly independent of Zimp, nimp, and vi. They are
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dependent in the same fashion on a/LTE, q, T/Ti, y, and s. The two parameters

where there are marked differences in the spectra are a/L, and a/LTr.

It is observed that in the high current case, in the density gradient dependence

plot, the changeover (the location where the modes switch from the electron to the

ion direction) to ion directed (or ITG) turbulence occurs far more closely to the

operational point than it does in the low current case. These plots were generated

at r/a-0.5, and there are some errors in the density gradient from the profile fitting,

therefore, it is conjectured that the actual turbulence at high current has an ITG

component. It is expected that the ITG dominated modes, based on arguments about

rotation reversals, would rotate in the counter-current direction. This argument is

consistent with the lower hybrid current drive rotation results. For comparison, at low

current, the dependence on density gradient is still strong, but there is no changeover

to ion directed modes observed. Characteristic instability plots of -Y and W versus kp

are shown in the ion directed and electron directed cases in Figure 5-20.

0- -0
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- -- - -- high a/Ln

1 2 3 4 5
ko

Figure 5-20: Example instability profiles of growth rate and frequency in the low a/La
(solid lines) and high a/La (dashed lines) cases. Blue color refers to frequency and
black color refers to growth rate.

The dependence on the gradient of the ion temperature is less clear than that

of the density gradient. The high current case, once again, has an ion direction
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changeover in the turbulence dependence at, very high ion thermal gradient. In the

low current case, this changeover is not observed, and this is consistent with high

current plasmas being closer to the ITG threshold, thus developing counter-current

rotation.

Overall, these simulations provide supporting evidence to the assertion that the

primary effect of the Lower Hybrid Current Drive, with respect to rotation, is to

modify the density and temperature profiles, thus destabilizing the density gradient

driven TEM. The high current plasmas, however, may remain in the ITG regime

over a large portion of the plasma volume with an increased drive term, and, thus,

have a change in rotation in the counter-current direction. The low current plasmas

fully transition to the TEM regime and their change in rotation is in the co-current

direction.

5.6 LHCD Rotation relation to ECH

Another area of rotation that has been analyzed in the past is the rotation driven by

the electron cyclotron heating (ECH) which have also been seen to cause bi-directional

rotation similar to LHCD [4, 96]. It was seen that in co-current directed neutral beam

plasmas on JT-60U, the ECH rotation changes were in the counter-current direction,

while in the counter-current neutral beam plasmas, the rotation was in the co-current

direction. Furthermore, DIII-D had seen strong counter current driven rotation from

ECH in H-mode plasmas. The JT-60U group proposed that these rotation changes

were due to the induced changes in the pressure gradient in the plasma, from the

ECH injection. A summary of the JT-60U results is shown in Figure 5-21.

This observation of bi-directionality of the rotation from ECH is similar to the

LHCD rotation reversal, but the ECH systems were run with a minimum of current

drive to avoid complications of the heating and current drive physics. The primary

difference seen in the profile changes at JT-60U was the ion and electron temperatures.

In fact, in the core of the plasma, which was the primary area of ECH deposition,

the ratio changes from approximately 1.0 to 1.2. This 20% change in the ratio of Te
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Figure 5-21: ECH rotation results from JT-60U. (a) The toroidal rotation changes
with co-current, balanced, and counter-current neutral beams due to ECH. (b) The
electron and ion temperature profiles from ECH. (c) Pressure gradient changes from
ECH. (d) Change in velocity at r/a~0.3 as a function of of ECH power. Figure from
[4].
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to T is similar to the one seen in the high current LHCD case. Overall, it would be

interesting to see if the ECH rotation follows a similar current dependence to what

has been observed at Alcator C-Mod.

5.7 Summary

LHCD induced rotation changes have been observed for the first time in both the

co- and counter-current direction in a tokamak. There is a strong plasma current

dependence and a magnetic configuration dependence appears to exist as well. High

current discharges have rotation changes in the counter-current direction, while low

current discharges develop an acceleration in the co-current direction. These observa-

tions reconcile the differences in LHCD rotation results between Alcator C-Mod and

other tokamaks.

Various theories have been proposed to explain these rotation results. From the

new C-Mod results, the explanations of ripple losses of fast electron and convective

velocity pinches can be discounted as they do not explain the new rotation results. A

new explanation was developed relying on the observation of Ohmic rotation reversals

and intrinsic rotation changes in a plasma. It was seen that there were turbulence

changes between the co- and counter-current rotation cases and gyrokinetic simula-

tions identified these changes as consistent with a move toward the critical changeover

from density gradient driven TEM to a ITG dominated plasma. These results are

consistent with the primary rotation driver during the LHCD results not being ac-

tual LHCD input of momentum, but rather being LHCD induced modifications of

the profiles, thus leading to changes in the intrinsic rotation.

Given LHCD's presence in many future reactor designs and the importance of

rotation for reactor transport and predictability, this work helps to predict the plasma

behavior in a reactor setting. Reactors will generally operate at low q-values, and the

high current C-Mod results are run at reactor-relevant q ~ 3. These results should be

accounted for in any reactor scheme seeking to predict plasma behavior with LHCD

present. Since plasma rotation has been seen to be important for H-mode access,
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this is particularly fusion energy relevant. Steady H-modes generally benefit from

co-current rotation, whereas these results show that LHCD will drive counter-current

rotation instead. The densities used here are well below those for reactor relevance,

but this is an issue of the LHCD accessibility. Overall, these results are important

from a physics stand-point, since they provide another way of controlling the rotation

profile in a plasma without the use of neutral beams or external coils, thus giving

another knob for control of the plasma in a tokamak.
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Chapter 6

Source Modeling

Using the "Toy Model" of rotation described in Section 2.3 and incorporating a full

rotation profile, it is possible to model various rotation changes in a plasma. This

chapter focuses on the applications of the "Toy Model" to SSEP sweeps, H-modes,

and I-modes. This chapter should be taken as a series of examples of the "Toy

Model", highlighting its flexibility, rather than a conclusive statement about the

various plasma transitions.

6.1 SSEP Sweeps

A simple rotation change to model is one in which only the edge condition changes,

while most of the plasma profiles, such as density and temperature, remain fixed.

It has been conjectured that such a transition is caused by changing the magnetic

geometry of the plasma, which alters the edge scrape-off-layer (SOL) flows [97] that,

it is believed, couple to the edge of the plasma and change the rotation through

transport. By changing from upper to lower single null geometries (consequently

changing the distance from the primary to secondary separatrix, defined as SSEP,

from positive to negative) while keeping all other parameters fixed, it is possible to

study this case of momentum transport. In the rest of this chapter, this change is

referred to as an SSEP sweep.

In this transition, the profiles of density and temperature do not change signifi-
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cantly from the LSN to the USN case. The time traces of current, density, temper-

ature, and SSEP are shown in Figure 6-1 for a discharge which switched from LSN

to USN at 0.70 s and back to LSN at 1.00 s. The rotation during this transition,

however, changed drastically. Rotation time traces at various radii are shown in Fig-

ure 6-2. These traces demonstrate the diffusion of the rotation into the core of the

plasma: outer radii change first followed by inner radii. Characteristic profiles in USN

and LSN are shown in Figure 6-3; the errors on rotation start increasing dramatically

around r/a=0.6 due to decreased X-ray signals.
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Figure 6-1: Time traces of plasma current, line averaged density, central electron
temperature, and SSEP during an SSEP sweep. Note that the time traces of the
density and temperature do not change significantly as a function of SSEP.

The Toy Model of rotation was applied to the SSEP profiles with pure diffusion

(spatially and temporally unvarying), TRANSP diffusion and no pinch, TRANSP

diffusion and Peeters pinch, and TRANSP diffusion and Yoon pinch. Characteristic

diffusion and convection profiles are shown in Figures 6-4 and 6-5; note that because

the plasma profiles do not change significantly from LSN to USN, the diffusion and

convection profiles do not change significantly either. The Yoon convection has some

discontinuities, particularly at outer radii, which make it difficult to use. These

discontinuities occur because of the ac term depending inversely on a function of the
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temperature gradient scale length that can cross through a singularity.
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Figure 6-4: Average ion thermal diffusion values as
and during an SSEP sweep. These values are taken
well.

calculated by TRANSP before
as the momentum diffusion as

The source profiles for the SSEP case are shown in Figure 6-6 for the previously

listed assumptions. Note that in all of this chapter the source is a force density and not

a torque density, since this model is effectively a slab model. Because of the errors in

the rotation profiles all of the source calculations are restricted to be within r/a=0.60.

Irrespective of the form of the diffusion or convection used, the core source profiles

have flat traces as a function of time. This means that in an SSEP sweep discharge,

the rotation is fully explained by diffusion and convection in the core. There are also

baseline source values appearing in the plots, and these exist in order to explain the

noise in the data and a general offset from baseline that occurs because of errors in the

diffusion and convection profile. At mid radii, however, there are temporal changes

in the source profiles which appear in the USN case. These are not well correlated

with the transition from magnetic geometry transitions and are suggestive of some
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Figure 6-5: Average convective velocity values in the Peeters and Yoon form before
and during an SSEP sweep. Three times are given because there are two LSN phases.

uncaptured momentum transport physics rather than an appearance of core source

profile.

Characteristic radial profiles of the source in USN and LSN during the SSEP

sweep are shown in Figure 6-7. Overall, the shapes of these profiles suggest that the

source is explaining minor variation in the plasma rotation rather than a conclusive

source profile itself, except at the outer channels where there exists a negative peak

in the USN case. The differences between the LSN and USN source profiles, however,

are fairly small.

The sensitivity of the "Toy Model" to its assumptions based on the shape of the

diffusive and convective terms was tested using the SSEP case as well. Detailed results

of these tests are shown in Appendix E. It is seen that, generally, the "Toy Model"

source profiles are dominated by the rotation/temperature profiles and not by the

variations in the diffusive and convective parameters.

A calculation of the Diamond and Yoshida forms of the residual stress for this

plasma is shown in Figure 6-8. The Diamond form of the stress is fairly consistent

with that calculated by the "Toy Model", without a convective term, but it slightly

overestimates the size of the residual stress. The shape of the profile is captured
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Figure 6-6: Time traces of source values at several r/a for SSEP sweep discharges. The
graphs are source profiles calculated with [top left] a constant diffusion (X = 1.0 m2/s)
and no convection, [top right] a TRANSP calculated diffusion and no convection,
[bottom left] a TRANSP calculated diffusion and Peeters convection, and [bottom
right] a TRANSP calculated diffusion and Yoon convection.
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Figure 6-7: SSEP source profiles using (a) a constant diffusion (X = 1.0 M 2 /s) and
no convection, (b) a TRANSP calculated diffusion and no convection, (c) a TRANSP
calculated diffusion and Peeters convection, and (d) a TRANSP calculated diffusion
and Yoon convection at characteristic LSN and USN times.
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fairly well in LSN but not in USN. The Yoshida form is qualitatively similar to the

Diamond form as well. In fact, the magnitude of the Yoshida form agrees well with

the calculation without a convective term and is seemingly a superior model in this

case. Note that the Yoshida form has a constant coefficient ranging from 1.0 x 10-7

to 3.0 x 10-7 I- s, and the extrema of the calculations are shown in the figure.
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-- 1.3 s High Alpha

20 -
5 -

0

-40-

0.0 0.1 0.2 0.3 04 00 061 0.7 0.0 0.1 0.2 0.3 0.4 0.5 006 0.7

Figure 6-8: Calculation of the characteristic source profiles in a SSEP sweep as derived
from the Diamond and Yoshida forms of the residual stress.

Despite the assertion that the SOL flows are the driver for the rotation change,

there appear to be internal sources that need to arise off-axis in order to explain the

rotation. There are small momentum sources near the core of these plasmas which

agree fairly well with the Diamond and Yoshida residual stress calculations. Overall,

the SSEP sweep is well characterized by the diffusive and convective models (partic-

ularly in the LSN phase of the discharge), and this implies that the "Toy Model" is a

good characterization of the momentum transport in the plasma. Furthermore, the

Yoshida model is qualitatively similar in both shape and magnitude to the calculated

source profile.

6.2 H-modes

Another area of interest for rotation profile changes is the spontaneous rotation as-

sociated with Enhanced Da (EDA) H-mode transitions. It has been observed that
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when a plasma transitions into an EDA H-mode, it spontaneously spins-up in the

co-current direction [98]. Characteristic time traces of an EDA H-mode are shown in

Figure 6-9. During an H-mode transition, there is a marked increase in both temper-

ature and density in the plasma, and in an EDA H-mode there is a drop in the Ha

signal, a characteristic line seen from hydrogen in the edge of the plasma, associated

with the transition as well. The density and temperature rise makes H-modes attrac-

tive operational modes for generating fusion power in a reactor, but issues still exist

with impurity accumulation in the core plasma. It has been observed that during an

H-mode transition, the rotation changes begin at, the edge first and then transport

to the core of the plasma. Example rotation time traces are shown in Figure 6-10.

There is no external input of momentum, so all of these changes are spontaneously

generated by the plasma itself.
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Figure 6-9: Time traces of Ha brightness, line averaged density, central electron
temperature, and RF power during an H-mode transition.

Characteristic rotation profiles with statistical errors are shown in Figure 6-11.
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Figure 6-10: Time traces of rotation at several r/a for an H-mode transition. Note
the outer part of the plasma rises before the inner section does.

Note that the L-mode rotation profile is very similar to those shown in the SSEP

case, and the plasma is in a USN geometry. The H-mode profile is elevated at all

radial locations, and the error bars decrease because of the higher temperature in

the core which increases the photon count rate from the argon impurities in the

plasma. Outside of r/a=0.8 the profiles are not usable because of the high error

bars for an H-mode; for the L-mode the error bars are elevated at r/a-0.7, so many

of the time traces of rotation and source profile are not usable outside of r/a=0.7.

The somewhat sinusoidal behavior of the rotation in the L-mode case is not realistic,

which is supported by the elevated error on that section.

The "Toy Model" of rotation was applied to the H-mode profiles with pure dif-

fusion, TRANSP diffusion and no pinch, TRANSP diffusion and Peeters pinch, and

TRANSP diffusion and Yoon pinch. Characteristic values of diffusion (effective total

thermal diffusion is used) and convection before and during the H-mode are shown

in Figures 6-12 and 6-13. The source profiles were calculated using the "Toy Model",

and radial profiles are shown in Figure 6-14. Source time traces at various radii are

shown in Figure 6-15. Note that with the implementation of the convective term, the

source profile size generally decreases, implying that the convective term is improving
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Figure 6-11: Average rotation profiles in the H-mode and L-mode case with charac-
teristic statistical error bars shown.

the fits of the model to the plasma. Interestingly, the Peeters form of the convective

term worsens the fit over a large area of the core plasma and the Yoon form improves

the fit significantly except at the outer edges.

In order to simplify viewing these source profiles, they are shown in Figure 6-16

normalized to their maximum values. This figure is created by taking the average

value of the source during the H-mode phase and subtracting from it the average

in the L-mode phase (the core is not shown in this case for simplicity). It is seen

that irrespective of the form of the diffusive/convective profiles taken, there is a peak

in the source at r/a~0.5 because the pinch profiles are fairly flat at that radius,

while the rotation profile has large gradients. This suggests that there is a physical

mechanism driving rotation at that location. Example profiles of electron density,

electron temperature, and ion temperature are shown in Figure 6-17 for the L-mode

phase and the H-mode phase. As expected, each of these profiles increases during the

H-mode since both temperature and density pedestals form during an H-mode.

Given the earlier discussion about the residual stress being proportional to the

gradients of physical parameters, the actual driving terms are not well characterized

by the profiles themselves. While the density and temperature change significantly
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Figure 6-12: Average diffusion values as calculated by TRANSP before and during
the H-mode transition. The effective total heat diffusion was taken for x0 in this case
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Figure 6-13: Average convective velocity values in the Peeters and Yoon form before
and during the H-mode transition.
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Figure 6-14: H-mode source profiles using constant diffusion (x 2= 1.0 m2 /s), TRANSP
diffusion and no pinch, and Peeters and Yoon convective values with TRANSP diffu-
sive values at characteristic L-mode and H-mode times.
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in the core plasma of an H-mode, the gradients of these terms can actually remain

fairly similar. The normalized changes in the gradients of plasma density, electron

temperature, ion temperature, and total pressure from the L-mode to the H-mode are

shown in Figure 6-18. The changes in the electron temperature and plasma density are

uncorrelated with the source profiles. The pressure gradient profile appears somewhat

correlated, but the best correlation is with the change in the ion temperature profile.

This suggests that the ion temperature gradient is the driving term for the rotation.

The drive may be due to either the RF deposition or from the form of the residual

stress (Equation 2.30), which is proportional to the temperature scale length LT. The

form of this residual stress also implies that secondary sources of momentum may be

occurring during the H-mode besides the primary one at the edge. This correlates well

with ITB rotation formation in a plasma, where steep temperature gradient changes

have been seen to correlate with rotation shear [99, 100].

It has been seen that H-mode core rotation is proportional to the edge pressure

gradient, and recently it was seen that the rotation is actually due to, as described

below in Section 6.3, the edge temperature gradient. It is important to point out that

these secondary sources which appear at r/a~0.5 are significantly below those at the

edge of the plasma, even though both appear to be significant when plotted in their

respective plasma regions.

Finally, the residual stress calculations for the Diamond and Yoshida forms were

repeated for this H-mode case and are shown in Figure 6-19. In this case, the Yoshida

calculation underestimates the required source to match the profiles at mid-radii.

Both of the calculations do not reproduce the peak of the source moving outward in

radii and spreading out as the plasma transitions into an H-mode.

6.3 I-mode

The I-mode regime was recently re-discovered at Alcator C-Mod [101]. This is an

improved confinement regime with high temperature and energy confinement time

but without an increased density or density pedestal. The impurity confinement
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Figure 6-15: Source time traces in an H-mode at various radii with [top left] a con-

stant diffusion (X = 1.0 m2/s) and no convection, [top right] a TRANSP calculated

diffusion and no convection, [bottom left] a TRANSP calculated diffusion and Peeters

convection, and [bottom right] a TRANSP calculated diffusion and Yoon convection.
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Figure 6-19: Calculation of the characteristic source profiles in an H-mode as derived
from the Diamond and Yoshida forms of the residual stress.

time during an I-mode remains the same as that of an L-mode. This increase in

energy confinement time with no increase in impurity confinement, as well as no

edge localized modes (ELMs) and low collisionality, makes I-modes one of the most

potentially advantageous operational regimes for fusion energy.

I-modes have been analyzed for their rotation behavior, and it has been seen that

I-mode and H-mode regimes have similar rotation changes in the core of the plasma

and, given that the only difference in these plasmas is the edge pressure pedestal,

it was deduced that the rotation in H-modes and I-modes is proportional to the

edge temperature pedestal gradients [102]. A time trace of characteristic plasma

parameters in an example I-mode plasma is shown in Figure 6-20. The temperature

of the plasma increases during the I-mode, but the density remains approximately at

its L-mode value.

Example normalized rotation time histories (maximum rotation is defined as 1

and minimum rotation is defined as 0) of the I-mode are shown in Figure 6-21; it

is seen that the rotation in an I-mode moves inward from the edge, similar to an

H-mode. They are shown normalized to accentuate the I-mode's relation to the H-

mode's rotation behavior.

Characteristic rotation profiles with statistical error bars are shown for the I-mode

case in Figure 6-22. These profiles are elevated similarly to the H-mode case, and the

total change in rotation is of similar magnitude as the H-mode scenario. The plasma

is in USN in this discharge. Interestingly, the I-mode rotation appears to meet the
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Figure 6-22: Average rotation profiles in the L-mode and I-mode case with charac-
teristic statistical error bars shown. Note that the plasma is in upper single null.

As with the two previous cases, the "Toy Model" of rotation is applied to the

example I-mode transition. The TRANSP calculated diffusion is shown in Figure 6-

23, and the Peeters and Yoon form of the diffusion is shown in Figure 6-24. Note that

ion temperature measurements within r/a= 0.2 are unreliable, so electron diffusion

was substituted for ion thermal diffusion in these calculations. The time traces of

calculated source profiles are shown in Figure 6-25. Unlike in the H-mode case, the

time traces of the source do not have clear indications of the I-mode turning on.

The I-mode source profiles are compared against their L-mode complements in

Figure 6-26. There is always a peak in the source profile at approximately r/a=0.6

and a negative peak at r/a~0.4, but this peak decreases in the transition to I-mode.

The profiles of the electron density, temperature, and ion temperature are shown in

Figure 6-27.

It is seen that while the I-mode and H-mode have some similarities in the source

profile peak occurring off-axis, the profiles are far better defined in the H-mode case.

Gradients of the driving terms are significantly more noisy, and the correlation of the

gradient changes to the source profile changes are not as obvious as they are in the
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Figure 6-23: Average diffusion values as calculated by TRANSP before and after the I-
mode transition. Due to high temperatures in the core of the plasma, ion temperature
is not believable in the core of the plasma. The electron thermal conductivity was

used instead of ion conduction.
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Figure 6-24: Average convective velocity values in the Peeters and Yoon form before
and after the I-mode transition.
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constant diffusion (X = 1.0 m2/s) and no convection, [top right] a TRANSP calculated
diffusion and no convection, [bottom left] a TRANSP calculated diffusion and Peeters
convection, and [bottom right] a TRANSP calculated diffusion and Yoon convection.
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H-mode case. While the H-mode case has a strong correlation of the change in source

profile to the T gradient, the I-mode does not have such a strong behavior. Fur-

thermore, the calculation of the residual Diamond and Yoshida forms of the residual

stress is shown in Figure 6-28, where there are no similarities of the I-mode source

profile and the H-mode source profile. The residual stress calculations do not appear

to represent the experimental calculations of the source profiles. This effect may be

due to a worse understanding of momentum transport in this regime with elevated

temperature but not density.

40 .055S - 0.55 s Low Alpha
8 0.55 High Alpha

6.3.1 I-modes and H-modes

In this section, the relation between I-mode and H-mode core rotation transitions will

be analyzed. The momentum transport diffusive values will be generated using the

same methodology as that discussed in [38].

In order to understand the I-mode regime in a similar way to the H-mode regime,

the W.D. Lee simple model of diffusion is applied to the core profiles. This provides

required momentum diffusion values to explain the I-mode transitions (assuming that

the edge rotation is fixed to the final value of the rotation). The W.D. Lee calculation

fits a purely diffusive model to a rotation transition in order to deduce a momentum

diffusion value and, thus, a momentum confinement time. The model's more advanced

version can deduce a convective term as well, but this calculation has serious issues
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discussed in Chapter 2. An example fit of the W.D. Lee model to the I-mode data

is shown in Figure 6-29. It is seen that the fit to the data is satisfactory with only

diffusion; the momentum diffusion value is found to be 0.176 0.015 m2/s.

40-

20

E

0- 0

BestD= 0.176+-0.015

Vf best D= 34.0000
-20 Vo best D= -24.0000

L i ,

0.60 0.65 0.70 0.75 0.80 0.85 0.90
Time (s)

Figure 6-29: Example W.D. Lee diffusive model fits to I-mode data. The red line
is the best fit and the green and blue lines correspond to extrema in the reasonable
fitting parameters: they are used to generate the errors on the diffusive term.

An alternative fit with both diffusion and convection is shown in Figure 6-30. The

fits appear to be better than the purely diffusive model, but, because the convective

and diffusive terms can often accomplish the same effect in the fits, the errors on the

terms increase dramatically from the purely diffusive case. Nevertheless, the best fit

to the data has a diffusive value of 0.167 mi2/s and the convective term 1.03 m/s,

which is of the order of magnitude expected for these terms.

For comparison, an H-mode diffusive value at similar magnetic field, current, and

density is 0.26 ± .04 m2 /s. The diffusion in the H-mode case is significantly higher

than in the I-mode case, even though the profiles are highly similar. This observa-

tion suggests intrinsic plasma differences between the I-mode and H-mode rotation
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Figure 6-30: Example W.D. Lee diffusive and convective model fits to I-mode data.
The red line is the best fit and the green and blue lines correspond to extrema in the
reasonable fitting parameters: they are used to generate the errors on the diffusive
and convective term. The high variation of the values in this fit exists because of the
diffusive and convective numbers generating similar effects with the data.
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transport, which has been seen with the changes in the residual stress observed in

the plasma. These differences are not unexpected since the I-mode does not have an

increased density behavior that is exhibited by l-modes. Overall, this comparison

shows the differences between taking the "Toy Model" assumptions as given for an H-

mode and I-mode and calculating the diffusive and convective momentum transport

terms directly. There are significant differences in the calculation and in the simula-

tions, which suggests that using both models is a valuable approach for understanding

momentum transport.

6.4 Summary

Three cases of plasma transitions have been analyzed: SSEP sweeps, H-modes, and

I-modes. All three transitions have some level of source profile appearing at mid-

radii, which is generally where steep gradients are observed in the rotation profiles.

The simple L-mode plasmas do not require convective profiles to explain the rotation

profiles, and appear to be fairly well approximated by the Yoshida semi-empirical

model of the source. H-modes and I-modes both have peaked rotation profiles, so

they are improved by the convective pinch models. The Diamond form of the residual

stress appears to be superior to the Yoshida form for H-modes, and it is seen that

the calculation of the source profile in the plasina is correlated to the change in the

temperature gradient from the L-mnode to the H-mode regime. I-modes are matched

fairly well by the simulations except at r/a-0.4 where a negative peak in the source

profile is not able to be explained.
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Chapter 7

Conclusions and Future Work

The work here has provided a significant amount of new observations about the nature

of plasma rotation in a tokamak plasma. In this chapter, a summary of the results and

their implications will be listed. This section will also propose some new experiments

and analyses that could be perforimed as extensions to this work.

7.1 Imaging x-ray Spectroscopy

The HiReX Sr spectrometer has undergone some major improvements as listed in

Chapter 3. New diagnostic software was designed for HiReX allowing improved data

analysis capabilities with superior uncertainty calculations, multiple analyses based

on timing bins, and superior data quality control. These codes allow significantly

more versatile use of the profiles for gyrokinetic simulations and transport analyses.

There has been a large scale effort to improve the physical aspects of the HiReX

Sr device as well and, particularly, control of the thermal drift of the emission line po-

sition on the detectors. Thermal shields and temperature sensors have been installed

on HiReX Sr, and the nature of the drift has been characterized. The thermal shield-

ing is still imperfect, so calibration mechanisms have been attempted on HiReX Sr.

These mechanisms are the same that have been proposed for the ITER core imaging

x-ray spectrometer. None of them has, as of yet, proved to be effective due to either

poor signal rates or incompatibility of the calibration method and standard operation
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of the spectrometer.

Two successful calibration procedures were developed as well. Vignetting of the

lines of sight in the spectrometer is measured using a laser alignment system, pre-

venting spurious signal changes from causing confounding issues in the line integrated

data. Furthermore, through the use of wide angle fluorescence, an in-situ calibration

mechanism was created to allow recalibration of the HiReX Sr spectrometer at low

X-ray energies and, thus, to quantify the error due to absolute sensitivity of the

spectrometer.

7.1.1 Future work on HiReX Sr

HiReX Sr has always utilized a helium atmosphere inside of its housing, which sim-

plified the construction of the device. The helium in the housing has uncertain purity

and variations in density depending on temperature, time of day, humidity, etc. The

ideal situation would be the use of a vacuum environment between the plasma and the

detectors. The detectors are limited to operation with helium or air due to heating

issues of the electronic parts, but they can be placed outside of a beryllium window.

This arrangement would allow absolute intensity measurements of the argon in the

plasma, since the X-ray transmission coefficients of beryllium are well known, while

that of helium is dependent on a variety of external factors. A concern with this de-

sign would be additional support struts required for the beryllium windows that may

cause vignetting. This concern will have to be weighed against the superior signal of

the design.

Alternatively, the HiReX Sr system can be improved through a more tangentially

viewing port. This will ease the difficulties in the measurement by giving a longer

projection of the toroidal rotation along the HiReX Sr lines of sight. New diagnostics

involving main ion charge exchange [103] have also been being developed and would

allow comparing the main ion to argon impurity rotation behavior and thus testing

the assertion that impurity rotation is identical to ion rotation.

Another improvement that should be implemented in a future system is the de-

velopment of an intra-shot in-situ wavelength calibration system. HiReX Sr has been
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successfully calibrated in a laboratory environment through the use of a cadiniun

anode x-ray tube: cadmium La X-rays appear on the helium-like system near the w

line. This has been the most successful calibration technique, and implementing it

as part of the HiReX Sr connection to Alcator would solve the drift and calibration

issues. An alternate technique to placing an X-ray source inside the vacuum system

would be using cadmium tiles placed in the C-Mod wall. An external radio frequency

quadrupole accelerator [104] is being placed on Alcator C-Mod, and it can use the

C-Mod toroidal and poloidal field magnets to steer its emitted proton beam to most

position on the inner wall. The beam can excite cadmium X-rays at a known posi-

tion, which will calibrate both the spectral drift of the HiReX Sr spectrometer and

the angle of the spectrometer with respect to the C-Mod vacuum vessel.

7.2 Rotation Reversals

Spontaneous reversals of rotation in L-mode plasmas as a function of current, den-

sity, shape, and magnetic field have been identified on Alcator C-Mod. This rotation

reversal is accompanied by density fluctuation changes and is correlated to the tran-

sition from the LOC to the SOC regime. This reversal provides the most powerful

characterization of the LOC to SOC transition ever observed. The best fit equation

for the rotation reversal is found to be approximately neq = 3.5 at BT =5.4T. It is

commonly believed that the LOC to SOC transition is driven by the changeover from

the TEM to ITG mode dominated regime.

Linear gyrokinetic simulations of the rotation reversal discharges have been per-

formed to confirm that the plasmas are switching from a TEM to an ITG dominated

regime. It was observed that in the counter-current rotation phase switch to the co-

current rotation, the linear instability simulations place the experimental data closer

to the TEM changeover from the ITG regime. It is found that at low density the

dominant linear instabilities are density driven TEMs, while at higher density, the

plasma is primarily in the ITG regime. It is unclear if the confinement and profile

changes are directly coupled, but the dominant profile change has been identified as
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the Te/Ti change which drives the turbulent mode transition.

7.2.1 Future work on Rotation Reversal

It is possible that subdominant modes will play an important part in the total turbu-

lence spectra in these near transition modes. In order to quantify the modes properly,

it will require the use of nonlinear simulations to verify the subdominant modes in re-

lation to the most unstable mode and account for non-linear upshift in the TEM/ITG

change. Furthermore, separating the density scale length, electron to ion tempera-

ture, and the total density will improve the understanding of the reversal's relation to

collisionality and the TEM/ITG drivers. These tests could be accomplished through

the use of pellet injection or targeted ECH heating.

7.3 Lower Hybrid Current Drive induced Rotation

Lower Hybrid Current Drive has been observed to induce rotation in plasmas. In this

work, it is seen that the Lower Hybrid Current Drive is capable of driving both co-

and counter-current rotation depending on plasma parameters. There is an observa-

tion of a reversal in the LHCD rotation, which is reminiscent of the Ohmic rotation

reversals, but it is much more gradual. The LHCD rotation changes are dependent

on the plasma current and the magnetic geometry of the plasma. There are observed

turbulence changes in the counter-current rotation from LHCD, which is asymmet-

ric in wavenumber space. It was seen that the amount of power inputted by the

LHCD affects the rotation behavior of the plasma. This may be due to either the

q-profile modification or the electron temperature in the plasma. It appears likely

that the LHCD is modifying the q-profile, which changes the intrinsic residual stress

and causes the rotation changes in the plasma. Alternatively, LHCD also modifies

the electron temperature and thus the ratio of the electron to the ion temperature,

in a similar method to the Ohmic rotation reversal, and may be the dominant driver

for the reversal in the LHCD rotation.

Linear gyrokinetic sensitivity studies have been performed on the LHCD dis-
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charges, and it is seen that there is a strong dependence of the turbulence on the

density scale length. The linear instability is mostly insensitive to the other parain-

eters and scale lengths in the plasma. It is always seen that the turbulence is in

the TEM regime, and the counter current driven cases are closer to the ITG regime

changeover than the co-current driven cases, which is consistent with the Ohmic ro-

tation reversal results.

7.3.1 Future work on Lower Hybrid Current Drive Induced

Rotation

In the future, testing the density and magnetic field dependence of the LHCD rota-

tion reversal will allow confirming if the LHCD rotation behavior is certainly part of

the Ohmic rotation reversal dependence. It is expected that there will be a linear

density relation as with the rotation reversal, with the extra complication that higher

density lowers LHCD efficiency and higher magnetic field improves LHCD. A com-

prehensive scan of discharges with MSE data available would also allow confirming if

the q-profile modification is the driver for the rotation reversal or if it is purely the

direct momentum input and the Te/T ratio. Non-linear gyrokinetic simulations of

the LHCD results with models for the lower hybrid deposition effects would also be

particularly valuable for explaining the tur)ulent modifications. While an approxi-

mation for the hot electron tail has been found not to affect the linear turbulence

significantly, a better treatment of the effect of those electrons on the turbulence

would be an improvement to this modeling.

7.4 Source Profiles in Plasma Transitions

The simplified model of rotation has been used previously to provide rotation trans-

port coefficients during mode transitions. Based on the simplified model of rotation,

the "Toy Model" of rotation was developed and implemented using the superior data

available from the HiReX Sr spectrometer and TRANSP to calculate approximate
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residual stress/source profiles in the plasma. The "Toy Model" has been applied to

three scenarios in order to understand how the residual stress behaves. In the simple

SSEP sweep, small source profiles were found and the convective pinches generally

did not improve the fits to the data. In an H-mode, however, the convective pinch

does decrease the calculated source profiles, implying that theoretical models of con-

vection are applicable in that case. In the final case (I-modes), convective velocities

improve the fits to the data slightly, but the shape of the profiles are not changing

significantly due to the shape of the theoretical convective pinch. Overall, diffusive

profiles can be used to explain the majority of the variation in a tokamak plasma,

and convective profiles improve the fits only in a peaked profile such as an I-mode or

H-mode.

Two models of the residual stress were compared against the calculations in this

work. The Yoshida semi-empirical model agreed fairly well with the L-mode cases

analyzed, but the magnitude of the residual stress agreed better with the Diamond

form in H-modes. The Diamond form also reproduced the shape of the source profile

better in the H-mode case than the Yoshida form.

7.4.1 Future of Source Profile Calculations

The "Toy Model" is naturally an approximation of the actual physics of rotation

transport. Further application to plasmna transitions should provide better bench-

marking to this calculation. A particularly valuable application of the model would

be on devices with neutral beams that provide a known torque in the plasma. Apply-

ing the "Toy Model" to a plasma that is dominated by a known torque would allow

separating the intrinsic rotation from the source profile. Also, applying models for

momentum sources from RF effects would be valuable as well, since it could further

separate the ICRF wave physics from the purely intrinsic source. Since RF models

are not always simple to solve directly, this may require better TRANSP to "Toy

Model" linking.

One area that these results concern is experiments that utilize perturbative anal-

ysis of the plasma momentum. In these experiments, the plasma is changed on a fast
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time scale at a supposedly known location (such as several fast SSEP or H-imode trani-

sitions) in order to infer momentum transport coefficients. Since the results from the

"Toy Model" had core source profiles observed in all of these calculations, it makes it

impossible to assume that the momentum perturbation is solely localized at the edge.

The core changes may in fact be confounding the results found by those experiments.
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Appendix A

Alcator C-Mod

The observations discussed in this work were performed at the Alcator C-Mod device

at the Massachusetts Institute of Technology's Plasma Science and Fusion Center

(MIT PSFC). Alcator C-Mod is a small, high field tokamak operated for ~2 sec-

onds with deuterium fuel. While the temperatures in Alcator C-Mod are not reactor

applicable, the electron densities and magnetic fields are of the same magnitude as

those expected to exist on fusion reactors and at, the ITER device [115]. Alcator

C-Mod operational parameters are shown in Table A. A plot of the C-Mod vessel

with characteristic flux profiles in an USN plasna is shown in Figure A-1.
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Figure A-1: Plot of the C-Mod vessel in a characteristic USN plasma. Blue lines
represent EFIT reconstructions of the flux surfaces and red lines represent the last
closed flux surface, which is the limit of the plasma.
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Table A.1: Alcator C-Mod operational parameters and ranges.
Parameter
Major radius
Minor radius
Magnetic Field
Plasma Current
Electron Temperature
Electron Density
Pulse Length
Auxiliary Heating ICRF
Auxiliary Lower Hybrid Current Drive
Inner wall material
Magnetic Geometry

Range
0.67 m
0.22 m
3-8 T

<2 MA
<9 keV

0.2-10E20m-3
<2.5 s

<6 MW
<1 MW

Molybdenum
Limited or Diverted
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Appendix B

GS2 High k Modeling

Modeling of both the high and the low current case with Lower Hybrid was performed

using the GS2 gyrokinetic code at high k values. Both of these cases had kopi restricted

to 10-40, with the most unstable mode generally appearing in the 25-35 range. The

growth rates and frequencies are generally large, but due to the high k values, they

will not produce significant transport (via F cx -/k 2). These modes are in the electron

diamagnetic direction and, thus, are identified as Electron Thermal Gradient (ETG)

modes. The high current case is shown in Figure B-1, and the low current case is

shown in Figure B-2. The frequencies of these modes are in the megaradian/s range,

and these are generally located outside of r/a-=0.5.

It is seen that the ETG turbulence does have marked differences between the

pre-LHCD phase and the LHCD phase in the high and the low current. The ETG

turbulence is destabilized by LHCD in the high current case, and is, in fact sta-

bilized in the low current. This effect is from the modification of the density and

temperature profiles by the Lower Hybrid waves. It has been observed that the crit-

ical temperature gradient for the ETG threshold scales with shear, density gradient,

Te/T, collisionality, and plasma pressure [108]. As seen from Figures 5-14 and 5-

13, the density gradients, Te/Ti, and plasma pressure change differently in low and

high current plasmas. These differences are changing the thresholds for the mode

(lestabilization, specifically the Te/Ti scales linearly with the critical R/LT.

Overall, these high wavenumber space modes were not explored in detail. While
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there are differences in the low wavelength mode changes from LHCD as a function

of plasma current, they are located fairly outside of the reversal pinning, and the

modes are not expected to cause significant transport. Furthermore, the turbulence

destabilized by these modes is of significantly higher frequency that that observed by

the PCI system.
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Figure B-1: Linear GS2 calculations of the most unstable mode versus radius in a
700 kA discharge with and without LHCD at high k values of turbulence.
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Appendix C

Correcting the HiReX Sr Rotation

Drift

In the absence of a locked mode calibration as described in Chapter 3, the rotation

profiles found by HiReX Sr need to be DC corrected for the drift of the device over

time. This is accomplished through the use of the HiReX Jr spectrometer or an x-ray

tomography system. HiReX Jr provides a measuremneit of the rotation on axis and the

x-ray tomography system can identify the location of the q = 1 surface, and deduce

its rotation frequency from the sawtooth precursor frequency. These measurements

can then be used to pin the HiReX Sr rotation profile to that value at a given radial

location.

There are open concerns with this method however. The primary concern is

whether or not the rotation profile is modified by the drift, since this will not be

corrected for by a DC shift. In order to test this effect, a single simple H-mode

discharge was selected and the emissivity profile was artificially moved by a constant

wavelength shift. The new profile was re-inverted with the exact same procedure as

the original discharge.

The first issue to analyze is whether the DC shift should be applied in kHz or

km/s. While kHz is more appropriate for the inversion routine in the plasma, the

shift in 2d spacing of the crystal from temperature shifts may make velocity a more

correct representation of the effect ongoing. Two lambda shifts were tested in both
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Figure C-1: Comparison of the inversion and correction of a single AA = 0.0001697
Ashift of the image during an H-mode. Correction in rotation frequency performed
(left) and rotation velocity (right) shown.
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Figure C-2: Comparison of the inversion and correction of a single AA = 0.000679009
Ashift of the image during an H-mode. Correction in rotation frequency performed
(left) and rotation velocity (right) shown.

kHz and km/s, and these are shown in Figures C-1 and C-2. It is seen that the

rotation frequency correction is significantly better than the velocity shift, since it

maintains the shape of the profile better. It is also noticed that as the shift becomes

larger, the shape of the rotation profile changes. In the situation when the drift is

of order 44 kHz, the rotation profile shape is completely shifted from the original

case. If the drift is of order 11 kHz (52 km/s) or less, the shape of the profile is not

greatly changed. This observation caused the implementation of a general rule that

DC correcting was only used if the shift from the previous locked mode on-axis was

below 50 km/s.

There is a natural increase in velocity during this discharge which is an H-mode
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shot. One of the tests that was run was taking the average offset induced by the shift

as a function of time. If the velocity of the plasma is a major factor of the profile

shift, then the DC correction induced by the plasma transition in the shifted and

unshifted wavelength cases would be different before and after the transition. A plot

of this test is shown in Figure C-3. The average velocity offset does not change at all

during the transition, so minor changes in the velocity of the plasma do not change

the total profile significantly. Furthermore, changes in velocity are still reasonable to

analyze if the drift is within the previously mentioned limit.

Velocity

L-mode

0.6

offs et

0.8 1.0
t (s)

Figure C-3: Average offset from a shifted
an H-mode discharge. Transition from L-

at various times

H-mode

1.2 1.4 1.6

and unshifted wavelength discharge during
to H-niode is marked as a dashed line.
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Appendix D

Overview of ITG modes and TEMs

Microturbulence is a major topic discussed in this work, and it is the primary focus

for much of the research in anomalous transport in plasmas. The two most com-

monly described forms of microturbulence are ion thermal gradient modes (ITGs)

and trapped electron modes (TEMs). In this section, following the arguments in

[111), a brief description of these modes will be presented.

Assuming that ions are in the fluid limit (Di, kiiVthi << W), circulating electrons

have adiabatic response (w/kii < Vthe), and trapped electrons have Vthe| < || <

Vthe, yields three relations for the perturbed densities as a function of the fluctuating

potential.

n e6 w4 - ++ T+ O (VDi the - (1 w*i(1 + 7i

n Ti [w C2 W2 JO
(D.1)

6neC- e6c (D.2)
neC Te

nwe (D.3)
neT L - aDe Te

where n is the ion density, nec is the circulating electron density, neT is the trapped

electron density, b is the mode frequency, k is the mode wavenumber, qj = d In T/d In n,
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COD - kog/Q, g-v h/R, bi = k'p?|2, w koDB/L, DB= cT/ZeB, L;-1

-dlnn/dr, T T/T, and En = Ln/Ro. By assuming quasineutrality of the fluc-

tuations, on =neC + oneT, a dispersion relation can be derived of the following

form.

wOei - WDi we* (1 + ri wik 22will ~+ 2)D + bi - th+ + -
U 2 W2 

W( ± +(D.4)
1 neT w - LWe(1+,e (ETe - 3/2))) 0
r n U - UwDe + iVeff

Solving Equation D.4 for unstable modes yields four approximate growth rates

that are commonly referred to as the CTEM (D.5), DTEM (D.6), TEM (D.7), and

ITG (D.8) growth rates.

(27r 1/2 ?e R )3/2 (R 3
R Ln Ln 2

e3/ 2 ,2 (3
7O 0C -2 re + bs (D.6)

1/ei 2

7-~ (kopj)V/(nT/n)gi/ L,- (D.7)

- (kopj)VI/nligj/L, (D.8)

These rough estimations of the growth rates of the various modes provide guid-

ance to which modes exist in the plasma. For instance, the CTEM mode is stabilized

if R/Ln < 3/2, which turns the growth rate negative. These equations are approxi-

mations, and the actual mode structure and growth rate is studied in more detail in

many references; see, for instance, [112, 113, 114].
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Appendix E

"Toy Model" Sensitivity Studies

Since it is established that the SSEP sweep case is a simple rotation model, these

cases can also be used to test the sensitivity of the "Toy Model" to various changes

in the assumptions listed in the earlier sections.

1. Momentum Diffusion Sensitivity

One of the major open questions is what effect variations in the Prandtl number

(XO/Xi) have on the momentum transport. It has been characterized that the

Prandtl number is generally of order unity, but variation has been seen in that

number. For this reason, sensitivity studies to the diffusive profiles must be

performed.

The initial and simplest study is to set the diffusive value to a constant and

then vary it with no convective term implemented. These variations are shown

in Figure E-1. As the diffusive term increases, the source profiles are actually

forced to increase. While at first glance this is counter-intuitive, the high dif-

fusive values should flatten the profile, thus a higher source value is required in

order to create a shaped profile.

An alternate test of the diffusion sensitivity is varying the diffusion profile as

calculated by the TRANSP code. In this situation, the sensitivity is directly

varied to scan the Prandtl number. The results of this study are shown in

Figure E-2. While the magnitude of the source profiles does change similarly
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to that of the previous sensitivity study, the sensitivity to the diffusive term is

overall fairly minor as seen by the small changes in the source profiles.

2. Convective Velocity Sensitivity

Another possible sensitivity arises from minor changes inl the convective profile

from temperature and density errors from the fitting parameters. These sensi-

tivities need to be analyzed using both the Peeters and the Yoon form of the

convective profile. The Peeters form of the convective term sensitivity is shown

in Figure E-3, and the Yoon form is shown in Figure E-4.

In summary, a 50% variation in the diffusive or convective values in the plasma

does not affect the source profile significantly. Generally increasing diffusion and con-

vection forces an increase in the momentum source value in order to explain properly

the experimental profile. Since the rotation profiles within r/a=0.2 are often flat, the

transport fitting parameter variations within that region are not expected to cause

a significant change anyway. The sensitivity to diffusion and convection terms does

not provide clear changes in the source profile.
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Figure E-2: Time traces of the rotation source at various radii with different scal-
ing values of the TRANSP diffusive term. Note that there are no convective terms
implemented in this case.
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Appendix F

Glossary

There are a wide variety of terms defined in this thesis. For simplicity, the majority

of these terms will be listed here and shown in Table F.1. A complete set of defini-

tions, formulas, and useful facts can be found in [10]. Some symbols have multiple

definitions, but this is generally resolved by the context of the equations.
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Table F.1: Commonly used terms for equations in this thesis.
Term Description Equation
a Minor radius
R Major radius
rK Plasma Elongation
Ln Density gradient scale length -n/Vn
LT Temperature gradient scale length -T/VT
Ls Magnetic shear scale length Roq 2 /r(Dq/Dr)
7 Ratio of the temperature to density scale lengths d in T/d In n
VT Ion thermal speed V2Ti/mi
cS Sound speed (}ZTe/mi) 1 /2

VA Alfv6n velocity (B2/(47nm))i/2
p Larmor radius miVT/ZieB
p* Normalized Larmor radius pi/a
p8  Sound Speed Normalized Larmor radius mics/ZieBa
E Inverse aspect ratio a/R
q Safety factor ~ aBt/(RB,)
Zeff Effective plasma charge EnjZ/EnjZj

Effective impurity charge nrZ2/niZi
Xi Ion thermal diffusivity
Xe Electron thermal diffusivity
X0 Momentum diffusivity
P, Prandtl number X4/xi
oc Momentum convection
I Residual stress
a Momentum source and residual stress S - V HI
ri Ion collision time

Te Electron collision time
Plasma resistivity

r Ratio of electron to ion temperature Te/Ti
F Radial flux of momentum
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