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Abstract

This paper describes an automated visual tracking sys-
tem combining time-lapse and end-point confocal mi-
croscopy to aid the interpretations of cell behaviors and
interactions, with the focus on understanding the sprout-
ing mechanism during angiogenesis. These multiple cells
exhibit stochastic motion and are subjected to photo-
bleaching and the images acquired are of low signal to
noise ratio. Hence, following time-lapse imaging, high
resolution end-point images are acquired. Our approach
applies a probabilistic motion filter (a backward Kalman
filtering followed by track smoothing) which incorporates
end-point and all available time-lapse information in a
mathematically consistent manner to obtain trajectory and
phenotype information of multiple individual cells simulta-
neously. An extension of this algorithm, track smoothing
with a Multiple Hypothesis Testing (MHT) data association,
is proposed to improve association of multiple close contact
and proliferating cells across images acquired from differ-
ent time points to existing track trajectories. Our method-
ology was applied to tracking endothelial cell sprouting in
three-dimensional micro-fluidic devices.

1. Introduction

Cell proliferation, differentiation, and migration are es-
sential for the conception, development and maintenance
of any living organism. Automated tracking of multiple
cell interactions in in vitro in time lapse microscopy would
allow more accurate automated interpretations of cell be-
haviors from experimental data, by providing trajectory and
phenotype information of each individual cell, particularly
when robust probabilistic techniques are applied. Follow-
ing time-lapse imaging, fixed end point staining protocols
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may be applied to provide more information on cell behav-
ior [19].

A significant amount of data can be produced from typi-
cal experiments captured by time-lapse microscopy images,
particularly from 3D confocal images. Manual cell track-
ing of such data would be a time-consuming chore and
subjected to human-to-human variance. Automated im-
age analysis is therefore a more favourable alternative for
a more efficient and accurate data assessment. Tracking
in biological systems has been applied at all scales of mi-
croscopic observations, from molecules such as tracking
intra-cellular particles[9, 18, 20], to cells [11, 13] and up
to organisms [8]. The focus of our tracking system is to
aid investigations into angiogenesis in in vitro systems in
high-throughput devices which generate a large amount of
data [4, 22].

Angiogenesis is the formation of new blood vessels from
a monolayer of cells or by the reorganization of capillar-
ies via morphogenesis. When exposed to growth factors,
endothelial cells forming a monolayer, undergo stochastic
phenotype transitions such as migrating, quiescent, prolif-
eration or death. Explorations of the angiogenic sprouting
mechanism to determine how a population of cells could
sprout out creating a new vascular network structures re-
quires efficient and accurate image analysis to provide esti-
mates of the cell trajectories and phenotypes over time.

A number of issues are faced in automating cell track-
ing in addition to the extensive volume of the experimental
data. These issues include the low signal to noise ratio of the
data and varying cell densities with a denser group of cells
forming the monolayer and a more sparely populated cells
migrating from the monolayer. As a result complex cellular
topologies are encountered due to close contact and partial
overlap of cells and the ability of the cell to deform and alter
its shape. Cell densities also differ due to the proliferation
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and death of cells. Another issue specific to fluorescent con-
focal microscopy is photo-bleaching. As more images are
acquired over time, more photochemical destructions oc-
curs in the stained fluorescent molecules in the cells. Exces-
sive light exposure stimulating these fluorescent molecules
may even cause photo-toxicity. As a results, the sampling
time and the acquisition step size throughout the height of
the cell migration regions is limited. This motivates the use
of end-point imaging after the cells have been fixed. Given a
large number of cells with stochastic behaviors, association
between identified cells from one image frame to another
image frame captured in the next time point and between
identified cells from the images from the time-lapse data
and end-point data, where examples are shown in Figure 1,
becomes an issue.

(b) Image acquired after 8.5
hours

(c) Image acquired after 17 (d) End-point Imaging Results

hours
Figure 1. Fluorescent intensities images of cell nuclei of time
lapse and end-point image acquisition. Photobleaching occurs
prolonged light exposure required to stimulate the fluorescent
molecules in the cells, causes the photochemical destruction of
these molecules. However, these molecules may be restained at
end point to provide more information.

Our approach to multi-cell tracking addresses these chal-
lenges via probabilistic methodologies. A Kalman filter-
ing combined with Multiple Hypothesis Testing (MHT)
and smoothing/retrodiction is proposed to allow tracking of
varying cell dynamics and account for clutter due to close
contact cells. In addition to that, probabilistic techniques
are used to incorporate fixed end-point imaging data with
time-lapse information in a mathematically consistent man-
ner.

2. Related Work

The simplest approach to cell association in tracking is
known as the “nearest-neighbor association”, where each
cell in one frame is associated with the spatially near-
est cell in the next frame within a pre-fixed range thresh-
old [6]. This is similar to the mean shift process [5],
where the threshold is defined by a uniform kernel. These
techniques often fail when tracking multiple cells or rapid
cell movements. Another approach to tracking of time-
lapse images is a combination of active contours and optical
flow [12, 13, 14]. A review of existing automatic cell track-
ing software available [10] showed that active contours and
nearest neighbour feature matching were the popular ap-
proaches for time-lapse image analysis. The performance
of these methods are poor when there are partial overlaps
and close contact of cells. To account for these issues, prob-
abilistic methods have been used particularly for tracking at
the molecular level [9, 18]. At the cellular level, Kalman
filtering [23], MHT [2] and Interacting Multiple Models
(IMM) [11] have been applied for tracking. To our knowl-
edge, our work is the only application of Kalman filtering
with MHT and smoothing on cell tracking. MHT allows
more accurate inferences of a cell location and identifica-
tion of proliferation in each time frame. These inferences
are made on all available information; observations of cells
in upcoming image frames, previous image frames in time
and end point imaging via smoothing.

3. Incorporation of End-Point and Future
Time Lapse Information to Motion Filter-
ing

The standard Kalman filter, used in most tracking op-
erations forms the posterior estimate over time given only
observations up to time k. Images for the whole time lapse
as well as end point information are available. Incorpora-
tion of this information into the filter would provide a more
accurate estimate of the trajectory and aid in the identifi-
cation of cell phenotypes such as proliferation. In this ap-
plication, our tracked state at time k, for an individual cell
is the three-dimensional cell centroid position and velocity,
(xx = (Tk, Tk, Yk, Yk, 2k, Z)) and the measurement state is
the cell centroid (zy = (T, Yk, 2k))-

3.1. Filtering with End-Point Observations

b — b
P(X;; |245) [ Process ), PO |24p)
— l¢

b b
P(XEP—l |zEP) Process P(x EP ‘ZEP)
< —
Model

Model

Figure 2. Incorporation of end point information to a time k (where
k < tgp) involves propagation backwards through the process
model
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As shown in Figure 2, the estimate based on the observa-
tions at end point is initialized at end point time (k = tgp)
with the end point observation. In order to align this es-
timate with the estimates of each cell using each discrete
time lapse acquisition period, backward filtering is applied.
As the state posterior is represented by a Gaussian func-
tion, p (xx|zpp) = N(xk;%(k|EP),P (k|EP)), back-
ward Kalman filtering is applied by back-propagation of the
state posterior mean and covariance via the process model
as shown in Equation 1.

% (klk+1)=F; "% (k+ 1k +1) + B 'u(k) (1)
P(klk+1)=F'P(k+ 1k + 1) F;7 + G 'QuG; T
2)

where F;l is the inverse of the state transition model which
is applied to the subsequent state X (k + 1|k + 1), u (k)
represents some independent state vector such as a control
input, B,;l is the control-input model which is applied to
u (k) and G;'Q;G, " denotes the covariance matrix of
the process noise. Cell movements consists of two compo-
nents, a directed migration in response to the growth factors
and a stochastic factor due to membrane adhesion and cy-
toskeleton contraction [16]. This movement is modeled as a
constant velocity model [1]. Note that as observation mea-
surements from end point information are obtained only at
k = tgp, the state posterior at each time k£ given obser-
vations up to time k equals to the state posterior given ob-
servations up to time k£ + 1 (x (k|k) = x(k|k+1) and
P (k|k) =P (k|k + 1)).

3.2. Filtering with Future Time-Lapse Observations
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Figure 3. Incorporation of upcoming time lapse information to a

current time involves back-propagation through the process model
and a Kalman update.

As with the end point observations, backward prediction
is performed for each track in order to incorporate upcom-
ing time-lapse observations. The filters is initialized with
observations from the last time lapse information and back
prediction via the process model is also performed. Obser-
vations of the state of the cell centroids would be available
every time frame and are updated to the filter as shown in
Figure 3 to create a new state estimate X, (k|k) of the state
at time & given all future information up to and included the

observation at time k£ with the corresponding covariance in
the estimate via the following equations:

%y (k|k) = %y (k|k + 1) + Wy [z (k) — Hpx,y (k|k +1)]
3)
Py (k|k) = Py (k|k + 1) — WS, W1 4)

where z (k) —Hyx; (k|k + 1) is the error between the back-
predicted and actual observation and is referred to as the
innovation, and the weighting or gain matrix Wy, is selected
to minimise the mean squared error in the estimate which is
Wy = Py, (k|k+1)H}'S; ' where Sy is the innovation
covariance given as S, = H;Py, (k|k + 1) HI + Ry, and
R denotes the covariance matrix of the observation noise.

3.3. Smoothing

P L)

Px, |2,,4) P [2y,)

Process Model

Estimate at time =k-1
Observation
Model

P(xk ‘ le’zll'P)
Estimate at

time =k with all
Known observations

Estimate at
time =k

Position coordinates of
nuclei centre

Filter with Smoothing

x = state (position, velocity, phenotype)
z = observation (position)

2,,., = observations up to time =k -1
1., = future observations

2, = end point fixed imaging

Real Microfluidic
System

Microscope
Figure 4. The system overview at each time frame is shown. The
noisy raw images obtained at each time frame are processed. The
position coordinates of the nuclei centre is updated to the filter to
obtain the state posterior estimate. The smoothed estimate is then

obtained through combination of this *forward’ estimate with the
"backward’ estimate and end point information

The objective of smoothing is to obtain the best estimate
of state at time £ given all observations from time 1 to NV
and the end point observations at time F P, where N < EP
and £ < N which is defined by:

x(k|l: N,EP) = argm(%);p(xﬂzlwﬂp) 5)

Using Bayes Theorem, the smoothed estimate may be com-
puted as a combination of the standard forward Kalman
filter and an estimate computed from a backward running
Kalman filter [7] as illustrated in Figure 4. The smoothed
estimate conditioned on all observations at time k is given
by:

1
P (Xk|Z1:ks Zhy1:n) = =P (xk|Z1:6) P (Xk|ZRy1:8v)  (6)
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where the constant ¢, is the normalizing factor, such
that the volume of the probability distribution is one
[ p (Xk|Z1:k, Zo41:3) dx = 1 and is independent of the
experimental data. Using the Gaussian assumption, the re-
sults is a multiplication of two Gaussian functions, where
x¢ (k|k) and P (k|k) are the mean and covariance of the
forward Kalman filter at time k updated with z;.;, (observa-
tions up to time k) and %, (k|k + 1) and Py, (k|k + 1) are
the mean and covariance of the backward Kalman filter at
time k, conditioned only with observations from k + 1 to
N.

= N(xi; %y (k|k), Py (k|k)) @)
= N(xg;%p (klk+1), Py (k|E+1)) (8)

p (Xk|z1:x)
p (Xk |Zk+1:N)

The smoothed estimate for each image acquisition time is
then:

P, (k[1:N) = P, (k|k) + P, " (k|k + 1)} B )
k

=P (k|1 : N) [P, ' (k|k)%xs (k|k)+ (10)
S (k| + 1) %y (k|k+1)]

%5 (k|1 : N)

3.4. Multi Cell Tracking

Multiple centroids of cells are extracted from each image
at each time frame. In order to simultaneously obtain multi-
ple cell trajectories, multi-target tracking algorithms [ 1] are
applied. In this algorithm, a filter is allocated to each cell.
Each track is initialized by the first or first few measure-
ments of the cell position. At each time frame, validation
gating is applied each observation of the cell to determine
whether to update that observation to an existing track or to
create a new track. The gate is a chi-square random variable
in n degrees and is centered on the predicted measurement
of the cells. The single best matched observation that falls
into the gate is selected to be associated to the filter.

Validation gating of the observation to a track is derived
from the Normalised Innovation Covariance between track
7 and observation i.

di; = vl (k) S (k)vij (k)

ij ij

Y

where v;; (k) is the innovation between the obser-
vation ¢ and prediction observation j is v;; (k) =
z; (k) — Hy, (%, (k|k — 1)) and the innovation covariance
is S;; (k) = HgP; (k — 1|k — 1) HF + R (i, k).

If there are no observations with a normalised innova-
tion less than chi-square thresh-old, no observation is as-
sociated. Filter maintenance is performed to eliminate any
filters initialized from spurious measurements. An indica-
tion of spurious measurements is when no observations are
associated with the track for an extended period of time re-
sulting in an increase of track uncertainty. When the track
uncertainty reaches a set threshold, the filter is pruned.

To perform smoothing over multiple cell trajectories si-
multaneously, multi-target tracking is performed both in
the forward and backward direction. Association between
tracks of forward and backward filters for smoothing is per-
formed using the Mahalanobis distance measure which is:

Dar (k) = /(1 —%2) TP (x1 — x2)

where x; = Xy (k|k),x2 = X (k|k) and P = Py (k|k) +
Py, (k|k). The pair of filters which the minimum distance
under a chi-square threshold is selected for smoothing.

12)

4. Multiple-Hypothesis Cell Tracking

The standard multi-target tracking where only the sin-
gle best matched observation is updated assumes the rate
of detection of the cell is high and the “clutter” is low.
When tracking multiple cells, issues arise when cells come
in close contact or when cell proliferation occurs. This is
addressed with a multi-hypothesis testing approach with de-
layed decision. Multiple possible tracks are maintained and
hypotheses with low probability are gradually merged or
pruned as more information becomes available. Given mul-
tiple matches (hypotheses), the probability density function
of the target state vector is hence represented by Gaussian
mixture shown in Equation 13.

p (x1|Z") Zp (x1,|0F, Z%) p (6F|ZF)
Ne
= N(xi;%; (k) , P; (k|k))p (©F|ZF)
=0

13)

where OF is a particular hypothesis and is based on the cur-
rent hypothesis 6; (k) and its previous hypothesis 9? ~!and
Ny is the number of hypothesis at time k. The first term in
Equation 13, p (x4|©F, Z*) is a Gaussian component of the
distribution in which Kalman filtering equations are applied
and the conditional probability of the hypothesis is given as:

p (0F|Z%) = %/\F)\N H W (i ()]

[T )" (1 Pp)' ™

t
(P (1= P p (01124 )

where A\r and A\ are the number of false alarms and new
features, P}, and P} are the probabilities of detection and
determination of the track and Ay, (z; (k)) is the likelihood
function given by:

N, (21 (k) = [278% (k) |3
exp™ 3 (VGRS () vis (1)

(14)

15)
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Tracking Proliferation with Kalman Filtering

Tracking Proliferation with Kalman Filtering Tracking Proliferation with Kalman Filtering

(a) Image acquired after 5 hours (b) Image acquired after 6.5 hours (c) Image acquired after 7.5 hours (d) Image acquired after 10 hours

Figure 5. Tracking of cell proliferation with association of the single best match observation.

Tracking Proliferation with MHT Filtering Tracking Proliferation with MHT Filtering

Tracking Proliferation with MHT Filtering Tracking Proliferation with MHT Filtering

(a) Image acquired after 5 hours (b) Image acquired after 6.5 hours (c) Image acquired after 7.5 hours (d) Image acquired after 9 hours

Figure 6. Tracking of cell proliferation with multiple hypothesis association.

where v;; (k) is the innovation and S* (k) is the innovation
covariance of the up-date of the hypothesis. At each time
state the predicted observations of each track is used to es-
tablish a validation gate. If there are n measurements found
in the gate, a single track may be split into n + 1 tracks,
one track for each measurement and one track (denoted as
0) for a non-association hypothesis. Each of the new tracks
is then treated independently and used to generate new pre-
dictions for the next time step, resulting in an exponentially
increasing number of tracks. Hypothesis maintenance may
be performed through track pruning or merging of hypoth-
esis [15, 21] with low likelihood weights.

4.1. Tracking Cell Proliferation Results

Figure 5 shows the results of the application of selection
of the best matched observation to update to a filter. The
filter ends up tracking one of the proliferated cells while the
observation measurement from the other cell is updated to
another filter. With the application of multiple hypothesis
data association, separate hypotheses are created to track
both cells as shown in Figure 6. To identify that prolif-
eration has occurred, the Mahalanobis distance measure is
applied to cluster the hypothesis. Should the distance mea-
sure between clusters exceed the chi-square threshold, track
splitting occurs as shown in Figure 6(d).

4.2. Multiple Hypothesis Smoothing

In order to incorporate future time-lapse and end-point
information to a filter that tracks proliferation, a multiple
hypothesis smoothing operation is proposed. Equation 6

shows that smoothing is a multiplication operation between
the forward and backward posteriors.

D (Xk|21:1) P (Xk|Zhy1:8)
No.s

p (xk|0FF, 21.4) p (0} 211
i=0

p (Xk:|Z1:N) =

Ol oOlF

No p

Z p (%6107 zpi1n) p (OF TN |zg 1 1v)
=0
1 (16)

As the probability distribution function of the target state
vector for the posteriors are Gaussian mixtures, the smooth-
ing equation then become a multiplication of Gaussian mix-
ture functions at each time point.

Ny, Nop
P (Xk|z1:8) = Z Zp (©FF1z11) p (OF TN |Zgt1:1)

1=0 =0
N (xk; %,z (k|k) Py g (K|k))
N(Xk; }A(i’b (klk) ;Pi,b (k|k))

No s Nob

= Z p (ezle|Z1N)
ij=0
N (k5 %ij,s (k|k) , Pij s (K|K))
a7

where the resultant mean and covariance from the multi-
plication of the ¢th component of the forward estimate and
jth component of the backward estimate is the same as in
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Equation 9 and

P (@}3N|Z1:N) =P (0}*|z1.1) P (@?H:N\Zkﬂw)
(18)
To associate forward and backward MHT filters for smooth-
ing, the Kullback-Liebler divergence or relative entropy
measure [3] is used. The divergence between two estimates
Py (x) and pp (x) is defined as

. oy o Py (%)
Dz (py (%) 1ps (x)) XGZXM Jog %)

(19)

The result is always non-negative and associations with
more overlap would result in a lower divergence value and
selected for smoothing.

5. Experimental Procedures

3D confocal

V
m seeding channel

) ~

Endothelial Cell Monolayer

attached to the collagen wall
Figure 7. Experiments are carried out in a microfluidic flow cham-
ber. Each region with a monolayer was captured by a confocal
microscope. The captured image on the top right shows the ac-
quisition results of two fluorescent channels, one of the nuclei and
one of the cytoplasm.

Angiogenesis experiments in in vitro environments are
typically performed using traditional on-the-gel dish ex-
periments, which significantly different from the actual in
vivo environment. An illustration of experimental setup is
shown in Figure 7. Our experiments are carried out in a mi-
crofluidic flow chamber. In these devices, collagen gel is
placed between the two flow channels. Through one chan-
nel, the cells are seeded and attached to the collagen form-
ing a monolayer. Angiogenic growth factors, supplied in the
other channel, diffuse through the collagen gel and bind to
the receptors in the cells. This drives the cells to proliferate
and migrate into the collagen gel.

5.1. Cell Staining and Imaging

Prior to seeding, the cells were stained with a Hoechst
nuclear stain and a CMFDA cytosolic stain. Confocal fluo-
rescent images of two channels (one which detects the nu-
clear stain and another which detects the cytosolic stain) and
intensity images of each migration region in the gel (marked
by two posts) were acquired at approximately 30 minute in-
tervals. 4 hours following the time-lapse microscopy phase,
the cells were fixed and stained with a nuclear stain (DAPI)
and a stain to detect cell adhesion (VE-cadherin stain). End
Point Imaging was then applied. The images captured are
processed to obtain observation measurements of the cell
centroid location. This in formation is updated to the filter
at each time interval to capture the spatiotemporal state of
the cell.

5.2. Image Processing

Image processing was performed via thresholding as the
focus of this work is on the application of probabilistic mo-
tion filtering rather than image processing techniques. K-
means clustering was applied to classify the image pixels
into cell or background regions. These pixels are clus-
tered based on connected components clustering. The 3-
dimensional centroid of each cluster is obtained. The focus
of this work is on studying cell sprouting and therefore our
interest lies in tracking cell trajectories above the mono-
layer. Segmentation of the cell monolayer was performed
on the intensity images through a combination of edge de-
tection and Hough transforms. Another issue that arises is
the alignment of the time-lapse image frames and the end
point image frames due to the removal of the microfluidic
device from the microscope for fixing and restaining. As
our imaging region along the device were performed be-
tween two trapezoidal posts, the alignment offset was de-
termine from the location of these posts from the intensity
images.

6. Results

Our proposed MHT filtering with smoothing was applied
to track the nuclei of endothelial cells in an image sequence
of cell proliferation and migration. The end result of this
application is shown in Figure 8(c). The performance of
this algorithm was compared with the results of Kalman fil-
tering and Kalman filtering with smoothing. The results of
the latter is shown in Figure 8(b). A cell trajectory is valid
only if it follows the same cell throughout all the frames that
the cell is visible. When the cells are spatially spaced out,
such as the Track 11, the performance of both algorithms
are the same. However, when there are many cells, and
when proliferation occcurs, the performance of the MHT
with smoothing provides more superior results as shown in
Track 12, where proliferation occurred and the tracking re-
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sulted in an invalid cell trajectory. Three-dimensional mi-
gratory trajectory information shown in Figure 9.

3D Trajectory Results for MHT Smoothing

e
400

Figure 9. Three-dimensional migration trajectories from MHT
smoothing.

One of the performance measures of the filters is en-

tropy [17], which is defined as:
Hy(x) ==Y p(x)logp(x)

xeX

) (20)
— 5 log(2me)" ||

Entropy measures the information content of a distribution,
where a lower entropy value indicates a distribution with
more certainty. Figure 10 shows the entropy results for
Track 11 of a cell migrating over time for the forward, back-
ward and smoothing Kalman filters. Results indicate that
the smoothing solutions are more informative due to the
fusion of forward estimates p (x|z1.x) and backward es-
timates p (X|2zx+1.n) at each time k. Note that the entropy
of the backward estimates are larger as it is based only on
the upcoming estimates. The top figure shows the results
without end-point information in which the filter uncer-
tainty increases rapidly for both the forward and smoothed
estimates. With the incorporation of end point information
a more informative track is obtained particularly at the ends
of the trajectories where the entropy is lesser that estima-
tion without end-point information as shown in the bottom
figure.

7. Conclusion

This paper presented a multiple cell tracking method-
ology based on Kalman filtering with multiple hypothesis
testing and smoothing. It allows multiple cells to be tracked
more accurately with the incorporation of all available ob-
servations included end-point information into each esti-
mate and each time. Proliferation phenotypes were also de-
tected through the use of MHT.

Filter Entropy without End Point Observations

Forward KF
30r Backward KF
25| | —+— Smoothed KF

Filter Entropy with End Point Observations

Forward KF
30r Backward KF 7
251 | —+— Smoothed KF 4

Figure 10. The entropy results for Track 11 of Figure 8(b) is
shown, where smoothed solutions resulted in less entropy com-
pared to the forward and backward solutions. Due to the low sig-
nal to noise ratio, feature segementation failed between the 6th and
9th hours, resulting in no updates and an increase in entropy. Re-
sults also show that the influence of the end-point is limited to a
few steps.
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Trajectory Results for Nearest Neighbour Smoothing

(a) Nearest Neighbour Smoothing

Trajectory Results for Kalman Smoothing

Trajectory Results for MHT Smoothing

(b) Kalman smoothing with the best matched (c) Multiple Hypothesis Testing smoothing
observation measurement updated

solution

Figure 8. End results for different smoothing solutions. The thresholding results from the end point imaging is shown by the blue clusters of
points. Results show that tarcking with a nearest neighbour solution results in the most incorrect associations and trajectories in comparison
with the Kalman filtering solution. The application of a multi-hypothesis solution resulted in the most number of trajectories and allowed
cell-proliferation to be tracked.
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