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ABSTRACT

Two Markov process models of transfer lines are presented. In both

there are two machines and a single buffer. The machines have exponential

failure and repair processes. In one model, the service (manufacturing)

process is assumed exponential; in the other, this is generalized to

include the Erlang (gamma) distribution. The models are analyzed and

a compact solution is obtained for the exponential case. Numerical

results are presented for this case which indicate good agreement with

intuition. Some theoretical results are obtained for the Erlang case.
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1. INTRODUCTION

An important attribute of the components of systems is their reliability.

Components may be unavailable because of routine maintenance or because of

repairs for failures. For various reasons (e.g., the difficulty of diagnosing

a failure), the length of time that a component is not available to perform

its intended task is a random variable.

In many kinds of systems, buffer storages are present. These buffers

have the effect of decoupling the system so that changes from normal operating

conditions at one part of the system have minimal effect on the operation of

other parts of the system. While this is often useful, the precise effect of

such storages on system-wide behavior is only partially understood.

This report is concerned with a special class of systems with storage--

the two-machine flow shop or transfer line. This class is illustrated in

Fig. 1. Workpieces enter the first machine and are processed. They are then

stored in the buffer storage and proceed to the second machine,after which

they leave the system.

Machine Morag achine

Fig. 1 Two-Machine Transfer Line

Systems of this form, often with more machines and storages, are found

in many applications. We use the term "machine" here to describe the site

where operations take place. The terms "processor", "stage", or "station"

could also be used. The machines can then represent machine tools,

chemical reactors, digital computer components, etc. A survey of the literature

appears in Schick and Gershwin (1978).

The research reported here is focussed on systems in which the storage

is finite, the machines have random failure and repair time distributions,

and the processing times of the machines are random. The failure and repair

time distributions are exponential. Two kinds of processing time distributions
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are considered: exponential and Erlang. The results reported here differ

from earlier work in the random nature of the processing times.

Two interpretations are appropriate for the assumption of random

processing times. The first is that the system is intended to produce

identical parts. The raw pieces have random attributes (such as the

amount of metal that must be removed). The processors also have random

attributes (such as the quality or amount of wear of tools). The inter-

action of these effects leads to random processing time.

The second interpretation is that the pieces to be processed are

different and require different operations. For example, the pieces may

be computer jobs passing through a main processor and an I/O facility.

The second interpretation is particularly significant for flexible

manufacturing systems. A flexible transfer line is one in which the

machines are capable of a range of operations on different pieces. These

operations may take different lengths of time to perform. The random-

ness arises from the pieces, which arrive at the first machine in random

sequence.

In Sections 2 through 7 we analyze systems whose machines have ex-

ponentially distributed processing times. Section 2 contains a formal

description of the model and its assumptions. Section 3 is a complete

statement of a Markov process representation of the system. Performance

measures such as efficiency, production rate, and average in-process

inventory are described in Section 4. Section 5 contains some theoretical

results on this model and Section 6 completely characterizes the steady-

state probability vector. Some numerical experiments are described in

Section 7.

Systems with Erlang distributed processing times are discussed in

Sections 8-11. The formal description of the model is in Section 8; the

Markov process is presented in Section 9; and theoretical results appear

in Section 10. Here, results are not as well developed as in the ex-

pontial case, and a partial characterization of the steady state prob-

ability vector appears in Section 11.

Section 12 presents conclusions and outlines needed in future research.

Computer programs can be found in the appendices.



2. THE EXPONENTIAL CASE. MODEL DESCRIPTION AND ASSUMPTIONS

The system consists of two machines that are separated by a finite storage

buffer. Parts enter machine 1 from the outside. Each part is operated upon

in machine 1, then passes to the buffer and then proceeds to machine 2.

After being operated on in machine 2, the part leaves the system. It is

assumed that a large reservoir of parts is available to machine 1.

Figure 1 shows such a system. Each machine can be in two possible states- -

operational or under repair. Only when a machine is operational can it

perform operations. There are, however, conditions on the storage buffer

under which a machine can not operate, even if it is in the operational state.

If the storage is full there is no place for parts from machine 1 to go.

If the storage is empty there are no pieces available for machine 2 to oper-

ate on. A machine can fail only while it operates on a piece.

Service, failure and repair times for machine i are assumed to be expo-

nential random variables with parameters pi' Pi, ri; i=1,2 respectively.

The capacity of the storage buffer in N units. We define a binary variable

ai to represent the state of machine i. If ai=l, machine i is operational

and if a.=0, machine i is under repair. Let n denote the number of units in

the storage plus the number of units in machine 2 (which can be zero or one).

Then 0 < n < N+1.

In the next section we characterize the steady state balance equations.

These steady state probabilities are essential for computing system perform-

ance measures such as efficiency, production rate,and average in-process

inventory.
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3. THE DETAILED BALANCE EQUATIONS

Let the state of the system be represented by

s= (n,al, a2)

with n=0,1,...,N; ai=0,1; i=1,2. Whenever n=O, machine 2 cannot operate

on a piece, and whenever n=N, machine 1 cannot operate on a piece.

We distinguish four sets of detailed balance equations, corresponding

to the values of a1 and a2. For a 1=a 2=0 we have

p(n,O,O) (rl+r 2) = p(n,l,0)p1 + p(n,0,l)p 2, l<n<N-l (3.1)

p(0,O,O) (r1+r2 ) = p(O,l,0)pl (3.2)

p(N,0,0) (rl+r 2) = p(N,0,l)p 2 (3.3)

This reflects the fact that the system leaves state (n,0,0) only if

repair of one of the two machines takes place. We can reach state

(n,0,0) either from state (n,l,0) (unless n=N) if machine 1 fails or from

state (n,0,1) (unless n=O) if machine 2 fails.

The other three sets of equations can be explained in a similar way.

O1=0, a2=1:
(3.4)

p(n,0,1) (rl+p2+p2) = p(n,0,0)r 2 + p(n,l,l)p1 + p(n+l,0,1)12,

l<n<N-l

p(0,0,1)rl = p(0,0,0)r 2 + p(0,l,l)p1 + p(l,0,l)p 2 (3,5)

p(N,0,l)(rl+P 2+p2) = p(N,0,0)r2 C3.6)

al=l, a2=0:

p(n,l,0) (pl+11+r 2) = p(n-l,l,O)p1 + p(n,0,O)r1 + p(n,l,l)p 2, (3.7)

l<n<N-1
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p(,l,0) (pl+Pl+r 2) = p(0,0,O)rl (3.8)

p(N,1,0)r 2 = p(N-l,l,0)p1 + p(N,0,0)rl + p(N,l,l)p2 (3.9)

a1=1, a 2=1:

p(n,l,1) (p +p2 +1l+ ) = p(n-l,l,l)l1 + p(n+l,l,l)'p + (3.10)

+ p(n,1,0)r2 + p(n,0,1)r , l<n<N-1

p(Ol,l) (pl+ l) = p(l,l,1)p2 + p(O,l,0)r2 + p(O,0,1)rl (3.11)

p(N,l,l) (p2+P 2) = p(N-1,1,1) 1 + p(N,l,0)r2 + p(N,0,l)r1 (3.12)

In Appendix 1 we present a computer program in the APL language

for solving the detailed balance equations. The total number of these

linear equations is (2 )(N+1) so that when N is large this becomes

costly. In Section 6 we present a more efficient method of finding the

steady state probabilities. In the next section we discuss measures of

performance, and in Section 5 we derive some theoretical results based

on the four sets of detailed balance equations.



4. MEASURES OF PERFORMANCE

There are three measures of performance that are often used as

criteria to evaluate the performance of production systems.

The first measure of performance is the efficiency E. of the i'th

machine in the system. Efficiency E. is defined as the probability that

the i'th machine is operating on a piece, or the fraction of time in which

the i'th machine produces pieces. We can express the efficiencies in

terms of the steady state probabilities as:

N-1 1

E1 E E p(nl'a2) (4.1)

1-20 a2=0

N 1

E2 =E V' p(n, l,l) (4.2)
n 1 lo 1

It is important to distinguish Ei, the efficiency of the i'th machine

in the system from ei (defined in equation (6.53)),the efficiency of

machine i if it were operated in isolation. The former is affected by the

other machines and the storage while the latter is a characteristic of

machine i only.

In Lemma 5 in the next section we show that

P1E, = P2E2 . (4.3)

The quantity .iEi can be interpreted as the rate at which pieces emerge

from machine i. Equation (4.3) is then a conservation of flow law, and

we can define

P = i.E. . (4.4)

This is the production rate of the system.

The efficiency E of the system is defined as

actual production rate
production rate in the absence of failures
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Since 1/pi is the average time a piece spends in machine i when no failure

takes place, pi is the production rate of machine i in isolation in the

absence of failures. The production rate of the system without failures

is thus less than min(pl,]12) and E satisfies

E > (4.6)
-- min(lpl'lJ 2 )

Assume i = min(pl,p2). Then from (4.4),

E >E. 

Note also that if Vi < pj (i,j = 1 or 2, ifj) then (4.3) implies

that E. > E.. Therefore, the system's efficiency satisfies
- J

E > max(EE 2 (4.7)

Another important measure of system performance is the expected

in-process inventory. This can be written

N 1 1

n = E E 2 np(n,al,a2o . (4.8)
n=O a = a =0

1 2



5. THEORETICAL RESULTS

In this section we derive some theoretical results. These results are

important in providing insight into the model as well as a basis for our

discussions in the following sections.

In the first lemma we prove that some of the steady state probabilities

are zero.

Lemma 1

p(O,O,O) = p(Q,1,0) = p(N,O,O) = p(N,O,l) O0 (5.1)

Proof: Combining equations (3.2) and (3.8) yields:

p(0,0,0)r 2 + p(0,1,0) (P l+r2) = 0 (5.2)

Since probabilities are non-negative, p(0,0,0) = p(0,1,0) = 0.

Combining equations (3.3) and (3.6) yields:

p(N,0,0) rl = p(N,0,1)(rl' 2) = 0 (5.3)

Similarly, this implies that p(N,0,0) = p(N,0,1) = 0.

Lemma 2 asserts that the rate of transitions from the set of states in

which machine 2 is under repair to the set of states in which machine 2

is operational is equal to the rate of transitions in the opposite direction.

Lemma 2

N 1 N 1

r2 EP2 p(n, = p2 ,l) (5.4)

n=O a1=O n=l a1=0

probability that machine probability that machine 2
2 is under repair can operate
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Proof

Add equations (3.1)-(3.3) and (3.7) - (3.9):

N N-1

p(n,O,O) (r +r2 ) + + p(n,l,O) (Pl+l +r2) + r2p(N,1,0)
n=O n=O

N-1 N N

=P 1 P p(n,l,O) + P2 1 p(n,O,1) + Vp1 I p(n-l,1,0) +
n=O n=l n=l

N N

r1 Z p(n,O,O) + P2 7 p(n,l,1) (5.5)
n=O n=l

This can be reduced to

N N N

r2 > p(n,O,O) + r2 > p(n,l,O) = P2 > p(n,O,1) + (5.6)
n=O n=O n=l

N

P2 1 p(n,l,l)
n=l

which is equivalent to equation (5.4)

Lemma 3 establishes a corresponding result for machine 1.

Lemma 3

N 1 N-1 1

nr1 7 p(n,'0 2) P1 n > p(n,l,c 2) (5.7)
n=0 a2 n=O a2=O

Probability that Probability that
Machine 1 is under Machine 1 can
repair operate

Proof

Add equations (3.1)- (3.6):

N N

n p(n,o,O)(rl+r2 p(nOl)( 2l+r+2+p2 ) +
n=+ p(OOl)rl

+ p(0,0,1)r1
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N-1 N

= P1 n p(n,l,0) + P2 n p(n,0,1)

N N-1 N-1

+ r2 np(n,,0) + p1 + 1=2 p(n+l,)0,) (5.8)

This can be reduced to

pnOON N N-1 N-1

rl n _ p(n,0,0) +rl n p(n,0,l) = P1n p(n,l,0)+ P1 n p(n,l,l)

(5.9)

which is equivalent to (5.7).

Lemma 4 shows that the rate of transitions from the set of states

with n pieces in storage and machine 1 operational to the set of states

with n+l pieces in storage and machine 2 operational is equal to the

rate of transitions in the opposite direction.

Lemma 4

1 1

111 0 p(n,l,a2) = 12 E p(n+l,'all), 0<n<N-1 (5.10)

Probability that Probability that Machine 2

machine 1 is opera- is operational with n+l

tional with n pieces pieces in storage
in storage.

Proof: By induction.

For n=0, add equations (3.2), (3.5), (3.8) and (3.11). Using the

results of Lemma 1 we get

p(0, ,l)r 1 +p(,0,l,l)p 1 + p(p(0,1)l) 2 (5.11)

+ p(l,l,l)v1 2 + p(0,0,l)r1
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or

p(0,1,1)I1 = p(l,0,l1) 2 + p(l,l,l)P 2 . (5.12)

Since p(0,1,0)= 0 this is equivalent to

1 1

P E P(0,1,a2) 2= P2 p(l, 1 11) (5.13)

a2=0 a, =0

which is equation (5.10) with n=0.

Let us assume that equation (5.10) holds for n=m<N-2. We show that this

implies (5.10) for n=m+l. Add equations (3.1), (3.4), (3.7), and (3.10)

with n = m+l (1 < m+l < N-l). This yields

p(m+l,0,0) (rl+r2) + p(m+l,l,0)(pl+P1+r2) +

+ p(m+l,0,1)(rl+1 2+P2) + p(m+l,l,1) (p 1+p2+ P1+2)

= p(m+ll,)p + p(m+l, O,l)p! + p(m+l, ,1)2 + p(m+l,0,0)r1

+ p(m+l,l,l1)p 2 + p(m+l,0,0)r 2 + p(m+1l,l,)pl +

+ p(m+2,0,1) 12 + p(m,l,l)11 + p(m+2,1,1)112 + p(m+l,l,0)r2

+ p(m+l,0,1)rl (5.14)

This can be reduced to

p(m+l,l,0)p1 + p(m+l,0,1)1 2 + p(m+l,l,l) (p1+2)

= p(m,l,0)P 1 + p(m,l,l)1l + p(m+2,0,1)p2 + p(m+2,1,1)p2 (15.15)
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But by induction

p(m,l,0)p1 + p(m,l,l)pl = p(m+l,0,1)p2 + p(m+l,l,l)p2 (5.16)

and therefore (5.15) becomes

1 1

P1 Y p(m+l,l,' 2) = 2 E p(m+2,all) (5.17)

a2=0aU0 1

Therefore, equation (5.10) holds for 0<n<N-2. To prove the lemma for

n=N-l add equations (3.3), (3.6), (3.9), and (3.12) to yield , with Lemma 1,

p(N,1,0)r 2 + p(N-l,l)(p 2+i 2 ) = p(N-l,l,0)~1

+ p(N,l,l)p2 + p(N-l,l,l)111 + p(N,l,0)r2 (5.18)

or

p(N,L,1)p 2 = p(N-l,1,0o) 1 + p(N-1,l,l)p 1 (5.19)

or

1 1

P1 p(N-ll 2) = (N,al) (5.20)

since p(N,0,1) = 0. This is equation (5.10) for n=N-1, so the lemma is

proven.

In the next lemma we prove that the rate of transitions between

the set of states in which machine 1 can produce a piece and the set

of states in which machine 2 can produce a piece are equal.

Lemma 5

N-1 1 N 1

'1 p(n,l,a2) = 2n E1E p(n,a11 1) (5.21)

Probability that Machine Probability that Machine

1 c&i produce a piece 2 can produce a piece
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Proof: Equation (5.21) is simply equation (5.10) summed for n= 0,...,N-1.

This lemma is interpreted in Section 4.



6. CLOSED FORM EXPRESSIONS FOR THE STEADY STATE PROBABILITIES

6.1 Analysis of Internal Equations

We define internal states as states (n,1 ,2 ) where l<n<N-l.*
1 2 --

Internal equations are the detailed balance equations that do not

include any boundary states. The rest are called boundary equations.

Following the analysis in Schick and Gershwin (1978) we guess a solution

for the internal equations of the form

n a a2

p(n,al,a 2 )= cX Y1 Y2 l<n<N-l (6.1)

where c,X,Y ,Y2 are parameters to be determined.

By substituting(6.1) into the internal equations we find that those

equations are satisifed if X,Y 1,Y 2 satisfy the following three non-

linear equations:

PlY1 + P2 Y2 - r1 - r2 = 0 (6.2)

1 rr
1x 1 _ = 1p1(- - 1) - PlY 1 + r1 + Y- 1 0 (6.3)

r2

p2(X- 1) - P2Y2 + Y + r2 -P 2 = 0 (6.4)

This is because the internal equations (equations (3.1), (3.4), (3.7),

and (3.10)) can be written

*This is in contrast to the deterministic processing time case

(Schick and Gershwin, 1978) in which the internal states are those
in which 2<n<N-2.
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l 1 1-2 2
p(n,cl, '2) (rl P1 + r2 P2

= (p(n-l,cl,o2) - p(n,al,C2) )Pw1

+ (p(n+l,01,c 2) - P(n,al1,2)2a 2

51 1-e1
+ P(nl- 1l'a2)rl P1

a2 1-52
oc2 l-l2

+ P(n,a 'l-ca2)r2 P2 (6.5)

If p(n, l,a2) is given by (6.1), equation (6.5) becomes

n 51 a2 1-51 a1 1- 2 a2
X Y Y2 (r p1 + r P

n a a2
1 "p2 r 1 YY 1Y(X-l)= X Y1 Y2 ll ( X -1) + X Y1 2 2(X-1)

n 1- 2 al 11-a n al 1- 2 1-a1-2 52 12 2+ X Y Y rl P - X Y Y r2 P2 (6.6)1 2 1 1 1 2 2 2

or

1- 1 a1 1-52 a2
rl P1 + r2 P2

P 1 1( - 1) + p2a2(X-1)

1-2a 1 aI 1-a1 1-2a2 a2 1-a 2
+ Y1 rl P1 + Y 2 p2 (6.7)

or, finally,

1 1-2a1 a1 1-a1 1-a51 a
0 = {1 (-- 1) + Y 1 - rl P 

1-2a2 a 1-a2 1-c 2 a2
+ {2 (X - l ) + 2 2 2 - r2 P2 (.6.8)
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Equation (6.2) follows when a1= a2 = . Equation (6.3) and (6.4) result

from aL= 1, a2 = 0 and a1= 0, a2 = , respectively. When a1=, 2 = 1,

the result is the sum of equation (6.3) and (6.4). This development

holds for lines of -k machines and k-l storages, although the boundary

behavior has not yet been investigated.

Equations (6.2)-(6.4) can be reduced to the -following fourth degree

polynomial in Y1:

34 2 2 2 2 2 3 3
P1Y1 + (-p2P1 3Prl - p1r2 - P2P 1 + VIP1 + P1)Yi

2 2
+ (2p2Plrl - r2Pl P1 - 2rlPl B1 - P2Pll P - P2P1 - 3Plrl

2 2 2 

- P lr 2 - P2P 1 + 2 r2Pl + 3Plrl + 2Plrlr2 + 2PlP2rl) 1

+ (2P1P 2 r1 + rlr2l + r1 1p 2 + rlr 212 + r2plr 1 P2

2 2 2 3

+ 3pr 1 1 + 2rr2P1 - 2r - rlr 2} 2 - rlP 2 - r1

2 2 3 2
- rlr 2)Y1 + (-r1 2 (rl+r2) - rlr2 - rl - rlP2) = 0 (6.9)

It is easy to verify that one solution is

r1
-- 11 -p(6.10)
p1

and by substituting (6.10) in (6.2) and (6.3) we obtain:

r2

2

and
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X1 =1 (6.12)

The other three solutions to (6.9)can be obtained by solving a cubic

equation. We can write (6.9) as

Pl(plY1- r) (Y1 + 3sY 1 + tY1 + u) = (6.13)

where s, t and u are given: by

1
3s = 1 (- 2r - r2 - P2 + 1 + P) (6.14)

t - 2 ( 12rl -r2~l - rlpl P2B1 -2P

P1

2
-2Plr - Plr2 - pP2 + 12r2 + rl1 1 1 2 1 2 22 1

+ rlr2 + rlp2 ) (6.15)

2 ( (rl+r2) + rl 2 + rl + r2 ) (6.16)

P1

The other three values for Y1 are (Chemical Rubber, 1959)

Y12 = 2 - cos ( 6.17)

Y13 = 2/ 3 cos (3 + 21T/3) (.6.18)
13 3

Y -= 2- cos ( + 47/3) (6.19)

where:

a = - (3t - s2) (6.20)3
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1 2
b = (2s - 9st + 27u) (6.21)

and

= arcsinl i 2 (6.22)

Again Y2i, X i for i = 2,3,4 can be obtained from (6.2)

and (6.3).

The conclusion is that for the internal equations:

Y a D
p(n,ala2) = Cj Xn Yl 22 c(6.23)

j=l lj 2j

where c., j= 1,2,3,4, are parameters to be determined.

6.2 Analysis of the Boundary Equations

There are a total of eight boundary states. The probabilities of

four of them are specified by Lemma 1. The other four are characterized

in the next lemma.

Lemma 6

p(O,O,1) = cj (P 1YljY2 + v2XY2j Y) (6.24)

4

p(O,1,1) = ~C.jYljY2 j (6.25)

4. CJ = (clXlj + P2XjYljY2j (6.26)
p(N,1,0) E=Cr = + (6 26)

r2 j=l i 3 1 lj + P2XjYlj J
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4

p(N1,l1) = c.XYj Y (6.27)
j=l j lj 2j

Note that (6.25) and (6.26) are in the internal (6.23) form. Further-

more, the coefficients c. satisfy

c = 0 (6.28)

4

E cjYj = 0 (6.29)
j=2

4

E cjX y2j = 0 (6.30)

and the normalization equation,

N 1 1

E E E P(nlal a2) = 1 (6.31)
n=0 a=0 a 2=0

Proof: The expressions (6.23) - (6.27) and (5.1) satisfy all

the detailed balance equations (3.1)-(3.12) identically except for

the following.

Equation (3.11) becomes

4

0 = cjY2j(PlYlj P2XjYlj X) . (6.32)
j=l 2j

Equation (3.7), for n= 1, becomes

4

0 = L cjXj [P 1+P 1+r2 )Yl - r1 -P2Yljy2j] (6.33)
j=l
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Equation (3.12) becomes

4 N-i

0 = c.X. Yj(2XjY2j - 1Y2j - 1) (634

j=l 3 3

and equation (3.4), for n = N-1, is

4

0 = c.X. [(r2 +P-pY2j r2 P1 Yl y] (6.35)
j-1 J 1 2 2 2j 2 1 i 2j

Equation (6.33) can be transformed by observing that

(p1 +1 +r2)Ylj - r1 - PYljY2j

= (P1Ylj- rl) + p1 Ylj + Ylj (r 2-P2Y2j) (6.36)

= (p Ylj - r)Y (r 1 )-p +Yi) (6.37)

(because of equation (6.2)), and finally,

= (P1Ylj - rl)((lj) +)+IYlj (6.38)

Note that equation (6.3) can be written

-1) = (P Y - r ) - (6.39)
1 . 1 lj -I.

so that expression (6.38) is

p1(X) 1)Ylj + Y lj /Xj (6.40)

Thus, equation (6.33) is now
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4

o = j cjY lj ' (6.41)
j=_

The same sequence of steps can be applied to equation (6.35) to

yield

4

o = CjXY2j (6.42)
j-l c j 2j

To analyze (6.32), we first observe that equation (6.39) implies

P1Y lj - 2Xj(Ylj+l) =

21 l)lj 

Pl Yj P lj 2 rl (6.43)

if P1Ylj -r l / 0. Recall that

P1 Y -r = 0

Equation (6.4) can be written

(i+Y 2j

2(Xj- 1) = (P2Y2j - r2j) (6.44)
2 r 22j 2j Y 2j

so that (6.43) can be transformed to

-lYlj/Y2j ' (6.45)

with the use of (6.2),still assuming PlYlj- r1 3 0. Equation (6.32) can

now be written

0 = C 1Y2 1(P1Y1 1 - 2X 1Y 1 1- 12X 1)

4

-l c Yi lj (6.46)
j=2
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or, using (6.10) - (6.12),

r2 rl ri 4

2 1 4 -
l2 = 12 p 2) 1 jP2 i lj (6.47)

Finally, we observe that (6.29) implies that

4 r1
4 cjj p (6.48)

j=2 l 1

so that (6.47) can be written, after some transformation, as

0= cI r22 (6.49)

By the same sort of manipulations, equation (6.34) can also be transformed

into equation (6.49).

To complete the lemma, two cases must be considered. If

!llr1 P2r2
-- ¢ 2 (C6.50)

rl+P 1 r2+p 2

then (6.28) follows from (6.49); and (6.29) and (6.30) follow from (6.28),

(6.41) and (6.42).

If

lr 1 r2 2 (6.51)

rl+P 1 2+P 2

then cl is not determined by (6.49). However, in this case Y1 = r /Pl is

a double root of (6.9). That is, one of the values of Ylj given by
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(6.17) - (6.19) (j = 2,3,4) is rl/Pl. Then there are only three in-

dependent sets of parameters (Xj,Ylj,Y2j) and the coefficients c. are

given by (6.29) - (6.31).

As a final note, the values of c2, c3 and c4 can also be found by

solving (5.3) and (5.6) and the normalization equation (6.31).

The quantities

1.r.
1 1

i r.+Pi (6.52)1 1

that appear in equation (6.49) have physical significance. We define

Pi as the isolated production rate of machine i, the production rate it

would have if it were not part of a system with other machines and

storages. The ratio

r.
e. = (6.53)

ri +Pi

in the fraction of time it is available (i.e., not under repair) if it

were in isolation. This quantity is the isolated efficiency. Since

pi is the production rate while machine i is operational, .iei is the

production rate in isolation.

6.3 The Algorithm

Now we can find all the steady state probabilities of the system

using the following algorithm:

Step 1

Find Ylj, Y2j' Xj; j = 2,3,4 using (6.17) - (6.19) and (6.2) - (6.3).
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Step 2

Solve equations (6.29)- (6.31) to obtain cj; j=2,3,4.

Step 3

Use Lemma 1 and equations (6.23) - (6.27) to evaluate all probabili-

ties. These probabilities can be used to evaluate the measures of

performance of Section 4.



7. COMPUTATIONAL EXPERIENCE

In this section, we describe the results of a set of numerical ex-

periments with the model described above.

In Table 1 we vary the parameter p1l from .1 to 1000. The other

paramters have values: p2 = 2, P1 = 3, P2 = 4, r1 5, r2 6, N = 4.

TABLE 1

n E1 E2 PRODUCTION--RATE

.1 .0554 .625 .03125 .0625

.5 .358 .622 .1555 .311

1 .919 .5966 .2983 .5966

10 3.73 .1195 .5973 1.1946

100 3.98 .0112 .5999 1.1998

1000 4. .0012 .6 1.2

We see that as 1pi1 the rate of service for machine 1 increases, both

E2 and the production rate increase to a limit of .6 and 1.2 respectively.

That is, there is a saturation effect, and no amount of increase in

the speed of machine 1 can improve the productivity of the system.

Note that as the first machine is speeded up, the amount of material in

the storage increases. This is the reason for the increase in production

rate.

In Table 2 we vary the parameter p2 from .1 to 1000 for the case

= 1, p = 3, P2 = 4, r1 5, r2 = 6, N = 4.

-29-
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TABLE 2

n E1 E2 PRODUCTION RATE

.1 3.89 .0599 .59990 .0599

,5 3.19 .2903 .5806 .2903

1 2.08 .4836 .4836 .4836

10 .124 .62471 .06247 .6247

100 .0111 .6249 .006249 .6249

1000 .00109 .625 .000625 .625

In this case we see that although E2 decreases, the production rate

increases as p2 increases. When the second machine is very fast, it

frequently empties the storage and thus spends a lot of time starved

for pieces. Consequently E2, the fraction of time machine 2 is operating

on a piece, is small. The production rate, in the limit as p2 is

large, is simply the isolated production rate of the first machine,

Plrl/(rl+pP). Here as p2 increases, the number of pieces in storage

decreases.

These two tables lead to the following tentative conclusion: If

all other things are equal, it is better to speed up downstream machines

than to speed up upstream machines. Both can increase over all

production rate, but if downstream machines are made faster, the average

in-process inventory is reduced.

In Table 3 we vary the parameter plfrom .1 to 1000 for the case:

1 = 1, 12 = 2, P2 = 4, r1 = 5, r 2 =6, N = 4.
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TABLE 3

P1 n E1 E2 PRODUCTION RATE

.1 1.61 .846 .423 .846

.5 1.48 .8034 .4017 .8034

1 1.33 .7540 .3770 .7540

10 .396 .3311 .1655 .3311

100 .0418 .0476 .02361 .0476

1000 .00417 .0049 .00249 .0049

As the rate of failure of the first machine increases, the average

in-process inventory, production rate, and the efficiencies E1 and E2

go to zero together.

In Table 4 we vary the parameter P2 from .1 to 1000 for the case

= , 2 = 2, p1 = 3, rl = 5, r2 = 6, N = 4.

TABLE 4

P2 n E1 E2 PRODUCTION RATE

.1 .464 .6194, .3097 .6194

.5 .507 .6174 .3087 .6174

1 .562 .6158 .3079 .6158

10 1.66 .5322 .2661 .5322

100 3.77 .1131 .0565 .1131

1000 3.98 .0119 .0060 .0119

Again as the rate of failure for the second machine increases,

E1, E2, and the production rate approach zero, but here n approaches

N= 4.
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In Table 5 we vary the parameter value rl from .1 to 1000 for the

case 1, 2 = 2, p = 3, p2 4, r2 = 6, N = 4.

TABLE 5

r1 n E1 E2 PRODUCTION RATE

.1 .0342 .03225 .01612 .03225

.5 .161 .1426 .07128 .1426

1 .300 .2486 .1243 .248.6

10 1.20 .7104 .3552 .7104

100 1.59 .8411 .4206 .8411

1000 1.64 .8554 .4277 .8554

As the rate of repair for the first machine increases, E1, E2,

n, and the production rate increase. Note that n does not approach

N= 4.

In Table 6 we vary the parameter value r2 from .1 to 1000 for the

system pi= 1, p2 = 2, P1 3, p2 = 4, r 5, N = 4.

TABLE 6

r 2 n E1 E2 PRODUCTION RATE

.1 3.88 .0486 .02431 .0486

.5 3.36 .2144 .1072 .2144

1 2.74 .3575 .1787 .3575

10 .720 .6088 .3044 .6088

100 .477 .6191 .3095 .6191

1000 .455 .6198 .3099 .6198



-33-

Again when the rate of repair for the second machine increases,

both the efficiency E2 and the production rate increase. The in-

process inventory decreases.

In Table 7 we vary N from 2 to 100, for the transfer line pi = 1,

2= 2, p = 3, P2 4, r1 = 5, r1 = 5, r2 = 6.

TABLE 7

N n E1 E2 PRODUCTION RATE

2 .599 .5228 .2614 .5228

5 1.01 .6093 .3047 .6093

10 1.16 .6242- .3121 .6242

20 1.18 .625 .3125 .625

50 1.18 .625 .3125 .625

100 1.18 .625 .3125 .625

We see from the table that as N increases, both the efficiencies

and the production rate increase up to a limit. This case seems to

display the same saturation effect as in Table 1. Furthermore, the

average in-process inventory also approaches a limit as the buffer

capacity increases.

These examples are not intended to be exhaustive. They are

furnished to show the kind of result that is obtainable with this

model, and that its behavior agrees with intuition.



8. THE ERLANG CASE. MODEL DESCRIPTION AND ASSUMPTIONS

Until now we have restricted our discussion to a particular service

time distribution - the exponential. This assumption however, may be-

come quite troublesome for many systems. -In order to have a more realistic

model we must allow a more general service time distribution.

In this model we assume that the service time distribution for the

two machine is Erlang with K(K> 1) phases.* The advantage of this

assumption is that a very large class of distributions can be approxi-

mated very closely by Erlang distributions (Kleinrock, 1975).

A consequence of the new service time distribution assumption is

that we can now find each of the two machines in K+l states, since

in addition to being under repair the machines also can be operational

in any one of the K phases of the Erlang distribution.

Let i and j represent the states of each of the two machines,

i, j = 0,1,..., K. By i= 0 we mean that machine 1 is under repair and

by i = m (1< m < K) we mean that machine is operational and ready

th
to start the m Erlangian phase.

Again we assume that machine 1 can operate on a piece only if it

is operational and n< N. Machine 2 can operate on a piece only if it

is operational and n>O. We also assume that when a machine fails the

piece that was being processed when the machine failed must start its

service from the beginning, that is from the first phase.

We consider the system in steady state. Due to the Erlang distri-

bution assumption we have a Markovian model.

The quantities ri, Pi and N have the same meaning as in the ex-

ponential case. This implies that the rates of failure and repair are

*Also known as the gamma distribution, with integer shape parameter.

-34-
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independent of what phase the system was in when the last failure

occurred. However, pi is now the rate that machine i completes each
1

of its Erlangian phases. Thus, the production rate of machine i,

when it is operational, is Vi/K.



9. THE DETAILED BALANCE EQUATIONS

Again we denote (n,i,j) to be the state of the system; n= 0, 1,...N;

i,j = 0 , 1,2,..., K, K > 1. By our assumptions machine 2 cannot operate

on a piece unless n> Q. Therefore, the probability of any state with

n= 0 and j> 1 or n=N and i > 1 is zero. That is,

p(0,i,j) = 0, j = 2,..., K , i = 0,,...,K (9.1)

p(N,i,j) = 0, i = 2,..., K , j = 0,1,...,K (9.2)

Again we distinguish between four sets of detailed balance equations,

to correspond to the values of i and j.

For i= j =0 we have

K K

p(n,0,0) (r +r) 2= p(n,i,0)p + Z p(n,0,j)p 2 , l<n<N-1 (9.3)
12 i=l 1 j=1

K

p(0,0,0) (rl+r2) = p(0,i,0)p1 (9.4)
i=l

K

p(N,0,0) (rl+r 2) = Z p(N,0,j)p 2 (9.5)
j=l

These equations represent the fact that the system enters state

(n,0,0) either from state (n,i,O) (n7N, i70) if machine 1 fails or

from state (n,O,j) (n/0, j3O) if machine 2 fails.

For i = 0, j o0,

K

p(n,0,j)(r 1+1 2+ 2) = p(n,0,j-1)p2 + Z p(n,i,j)pl , (9.6)
te.~ ~ i=1

2 < j < K, 1 < n < N-1

-36-
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K

p (n,0,1) (r +2+P2) = p(n+l,0,K)p2 + Z p(n,i,l)p + p(n,0,0)r2 (9.7)
1 22 2 1 2

i=

1 < n < N-1

K

p(0,0,1)r 1 = p(1,O,K)j2 + Z p(0,i,1)p + p(O,0,O)r2 (9.8)
i=l

p(N,0,j) (rl+ 2+P 2) = p(N,0,j-1)1 2, 2 < j <k (9.9)

p(N,O,1) (rl+pJ2 +p2 ) = p(N,,O)r 2 (9.10)

For j= 0, i 3 O,

K

p(n,i,O) (pl+pl+r2) = p(n, i-1,0)p + Z p(n,i,j)p2 , (9.11)
j=1

2 < i < K, 1 < n < N-1

K

p(n,1,0) (p1+ll +r2 ) = p(n-1,K,0)p1 + Z p(n, i,j)p 2 + p(n,0,0)r1 , (9.12)

j=1

1 < n < N-1

p(0, i, 0) (p1+ 1+r2 ) = p(0,i-l,O)pl1 , 2 < i < K (9.13)

p(0,1,0) (pl+lll+r 2) = p(0,0,O)rl (9.14)

K

p(N,1,0)r2 = p(N-1,K,O)pl + Z p(N,l,j)p2 + p(N,0,0)rl (9.15)

j=l

For i S 0, j O0,

p(n, i,j)(p 1+P2+1l 1 +P2) = p(n, i-l,j)p 1 + p(ni,j-1)l, (9.16)

2 < i < K; 2 < j < K, 1 < n < N-1
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p(n,l,j) (p+p2 +1 -l+- 2 ) = p(n-1,K,j)p 1 + pmlj-1) 2 (9.17)

+ p(n,O,j)r1 , 2 < j < K, 1 < n < N-1

p~n,i,1) (P1+P2+1+2) = p(n,i-l,l)11 + p(n+l, i,K) 2 , (9.18)

+ p(n,i, 0)r2 , 2 < i < K, 1 < n < N-1

p(n,l,1) (P1+P 2+p 1+ 2 ) = p(n-1,K,1)p1 + p(n+l, 2,K) 2 (9.19)

+ p(n,0,1)r + p(n,l,0)r2 , 1 < n < N-1

p(0, i,1)(pl+pl) = p(O,i-l,)1p + p(l, i,K)p 2 + p(0,i,0)r2 (9.20)

2 < i<K

p(0,1, 1(pl l) = p(l,1,K)p 2 + p(0,0,l)r 1 + p(O,1l,0)r2 (9.21)

p(N,l,j) (p2+1 2) = p(N-1,K,j)p 1 + p(N,l,j-1)p2 + p(N,O,j)rl, (9.22)

2 < j < K

p(N,i,1) (p2+p2 ) = p(N-1,K,1)p 1 + p(N,0,l)r1 + p(N,1,0)r2 (9.23)

for i = 1; j = 1; n = N

Note that equations (9.14) and (9.20) imply that if the storage

is. full, the first machine is not allowed to operate on pieces even

if it is operational. That is, we do not merely assume that an operation

cannot be completed; we assume that an operation cannot be commenced.

In Appendix 2 we present a computer program in the APL computer

language for solving all the detailed balance equations. The total
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number of these equations is N(K+l) -2K + 3. When-either N or

K are large the computational effort becomes very great. In Section 11

we present some preliminary work aimed at devising an efficient algorithm

for obtaining the steady state probabilities, similar to that described

above for the exponential case. In the next section we derive some

theoretical results based on the detailed balance equations.



10. THEORETICAL RESULTS

In this section we derive some theoretical results based on the

detailed balance equations. These results help us to gain more under-

standing of the system.

In the following lemma we prove that some of the steady state

probabilities are zero.

Lemma 7

P(O,i,O) = p(N,O,j) = 0 for all i and j (10.1)

Proof: Equation (9.12) and (9.13) imply

i-1
1 or

, , ) r + r +r + p(0,0,0) (10.2)
p l+l+r2 P1 1 l++r2

Equation (9.4) can then be written

Similarly,
p(0,0,O O) (r l+r2)= p(0,0,-40- (10.3)

or

Pr(Or, 0,0) 2 + r 12 + r2 + p 1r P r0 (0.4

P1r 2

This implies that p(0,0,0) = 0 and (9.22i implies that p(0,i,0) = 0.

Similarly,
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p(N,O,j) l 2 p(N,0,0), j = 1,..., K (10.5)
2+1 P2+P2

from (9.9) and- (9.10). Equation (9.5) can be written

r2p2 K 2

p(N,0,0)(rl+r2 ) = p(N,0,0) r 2 l 2 (10..6)
1+ 2+P2 j=l 12+P2

or

p(N,0,0) 2 
rl+ 2 l+rlP 2+rlr 2 +r2 P2 r +p + )= 0 (10.7)

and (10.1) follows as before.

Lemmas 8 and 9 establish results which are analogous to Lemmas

2 and 3 above.

Lemma 8

N K N K K

r2 E E p(n,i,0) = P2 E ~ p(n,i,j) (10.8)
n=0 i=0 n=l i=0 j=l

probability that probability that machine
machine 2 is under 2 can operate on a piece

repair

Proof

Let us add equations (9.3) - (9.5) and (9.11) - (9.15).

N N-1 K

p(n,0,0)(r +r2 ) + E p(n,i,0) (P+l+r2) + P(N,lO)r (10.9)1 2 1 1 2) P ' 2 (10.9)
n=0 n=0 i=l

N-1 K N K

'' = p(n,i,O)P1 + E L P(n,0,j)p2
n=0 i=l n=l j=l

N-2 K K-1 N-1 K K
+ ~ p(n,i,0) 1- + £ p(N-lI,i,0)1 + i Y P(nij)P2
n=0 i=l i=I n=l i=l j=l
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N-1 K

+ Z p(n,0,0)r + p(N-1,K,0)i 1 + Zp(N,l,j)p2
n=O j=l

+ p(N,0,0)rl

This can be reduced to

N-1 K N

(ni)r 2 + p(N,1,0)r 2 + P(n,,0)r2 (10.10)
n=0 i=l n=0

N K N-1 K K K

= Z P(n,0,j)p2 + E E Ep(n,i,j)p2 + p(N,,j)p2
n=l j=l n=l i=l j=l j=l

or

N K N K K
r2 E p p(n,i,0) p 2 p(ni,j)

n=0 i=0 n=l i=O j=1

since p(N,i,j) = 0 for i > 1.

Lemma 9

N K N-1 K K

rl 0 Ep(n,0,j) = P1 E E p(n,i,j) (10.11)n0 j0 n j0 (10.11)
n=O j=O n=O i=l j=O

Probability that Probability that Machine
Machine 1 is under 1 can operate on a piece
repair

Proof: Let us add equations (9.3) - (9.5) and (9.6) - (9.10):

N N K

E p(n,0,0)(rl+r 2) + n j(r +p) + p(0,0,j)r 
n = 0 n= j=l n=2 j+2

n=0 i=l n=l j=l n=2 j=l
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K-1 N-1 K K N

+ Ej p(1,,j)'P2 +E E L P(n,i,j)P 1 + p(n,0,0)r 2
j=1 n=l i=l j=l n=l

K

+ p(l,O0,K) 2 + Ep(0,i,i)p 1 +2 (10.12)
i=l

This can be reduced to

N N K

E p(n,0,0)r 1 + (n,,j)r + p(0,O0,)r 2
n=0 n=l j=l

(10.13)

N-1 K N-1 K K K

= Z Z p(n,i,O)p1 + F E Lp(n,i,j)pl + , p(0,i,l)p1
n=0 i=l i=l j=1 i=l

or

N K N-1 K K

. E p(n,0,j)r1 = E p(n,i,j)p
n=o j=l n=0 i=l j=0

since p(0,i,j) = 0 for j > 1.

Lemma 10 is analogous to Lemma 4. Here, however, we must keep

track of the phases of the machines. We prove that the rate of transitions

between the set of states with machine 1 in the K'th phase and n pieces

in storage and the set of states with machine 2 in the K'th phase and

n+l pieces in storage are equal for 0 < n < N-1.

Lemma 10

K L

/1 Lp(n,K,j) 2 p(n+l,i,K), 0 < n < N-1 (10.14)
j=0 k -

Proof: First for n=0 let us add all the detailed balance equations

with n=0. Using the results of Lemma 7 we get:
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K

p(,0,o0)r1 + p(0,i,l)(Pi +P) (10.15)
i=l

K K K
= p(0,i,1)- + p(p(0,i-l,)v 1+ Yp(1,0,K)p 2 + p(0,0,1)r

i=l i'=2 i= 2

or

K

p(O,K,1)p1 = L p(1l,i,K)P 2 (10.16)
i=O

or
K K

Z p(O,K,j) = E p(l,i,K)p2 (.10.17)
j=0 i=O

since p(O,K,0) = p(O,K,j) = 0 for j > 1.

Let us assume now that (10.14) holds for n =-m, 0 < m < N-2. We now

prove (10.14) for n=m+l. Let us add all the equations with n= m+l; 0< n< N-2.

K K 

p(m+l,0,j)(rl+B 2+p2) + E P(m+l,i,j) (P+P2+Bl+1 2)
j=1 1=1 j=l

K K K-1

= p(m+l,i,O)pl + p(m+,0,j)p2 + p(m+l,,j)p2 i,0) 1
i=l j=1 i=l

K K

+ p(m,k,0)pl + L L p(m+l,i,j)P2 + p(m+1,0,0)r1
i=1 j=1

K-1 K K

+ E p(m+l,0,j)1 2 + p(m+2,0,K)1 2 *+ p(m+l,i,j)p 1

j= 1 j=

K-1 K

+ p(m+l,0,0)r2 + E j p(m+l,i,j)1l + Ep(m,k,j)D1
i= l j=1

K K-1 K

+ E p(m+l,i,j)p2 + p(m+2,i,K)jd2 + + p(m+l,0,j)r1
1=1 j=1 i=l j=l

K

+ Ep(m+1,i,O)r (10.18)
i=l 2
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This can be reduced to

K K

p(m+l,K,0)p 1 + Ep(m+l,i,K)p 2 + p(m+l,K,j) I1
i -? 0 j=l

K K

= Ep(m,K,j)p1 + E p(m+2,i,K)12 (10.19)
j=0 i=0

But by the induction assumption

K K

Pl j p(m,K,j) = p12 E p(m+l,i,K) (10.20)
j=0 i=O

and therefore

K K

P1 p(m+l,K,j) = P2 Zp(m+2,i,K) (10.21)
j=0 1=j

Finally, for n = N-1 add all the detailed balance equations with n=N

(Recall that p(N,0,0) = p(N,0,j) = 0, j > 2.)

K

p(N,l,0)r 2 + Ep(N,l,j) (p2 +12)
j=l

K K

= p(N-1,K,O)1L + Ep(N,l,j)p 2 + Ep(N-1,K,j)p
j=l j=l

K

+ E p(N,l,j-1)p2 + p(N,l,0)r 2 (10.22)
j=2

or

K

p(N,1,K)p2 = Yp(N-1,K,j)pl (10.23)
j=0

or
K K

Ep(N-l,K,j)p = E p(N,i,K)p (10.24)
=0 1 i=(10.24)j = 0 i=0



since

p(N,i,K) = p(N,0,K) for i > 1 .

Lemma 11, which is analogous to Lemma 5, shows that rate of transi-

tions between the set of states in which machine 1 is in the K'th phase

and the storage is not full and the set of states in which machine 2

is in the K'th phase and the storage is nonempty are equal. There is

a similar interpretation to that of Lemma 5.

If, as in Section 4, we define Ei to be the fraction of time machine

i can produce a piece, then

N-1 K
E1 = E p(n,K,j) (10.25)

n=0 j=0

and

N K
E2 = E p(n,i,K) (10.26)

n=l i=0

The rate that parts emerge from machine i is PiEi. -Lemma 11 says that

these rates are equal so that we can define the system's production

rate to be that value. The discussion in Section 4 thus applies to the

Erlang service process as well as the exponential.

Lemma 11

liE1 = 2E2 (10.27)

Proof: We proved in Lemma 10 that

K K

0 p(n-l,K,j) = 12 ij p(n,i,K) for 1 < n < N (10.28)j=0 i=O
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If we sum this equation from n = 1 to n = N we get

N K N K

.1 n p(n-l,K,j)= 2 E p(n,i,K) (10.29)
nl j=0 n i=0

or
N-1K K K
1n _ _ p(n,K,j) = 2 p(n,i,K) (10.30)

which is (10.n=l i=

which is (10.27).



:11. ANALYSIS OF INTERNAL EQUATIONS

We again define internal equations as all the detailed balance

equations that do not include any of the steady state probabilities for

n=O or n=N. We guess a solution to the steady state probabilities that

appear in the internal equations, of the form

n y 1 1 2 2
p(n, 2) = c X 11 12 21 Y22

where for i= 1,2,

,1 if a1 >1

0 if = (13)

Yi i=
i O.-l if a. > 1

1 1-

By substituting (11.1) - (11.3) in the internal equations we get the

following five nonlinear equations in the five unknowns X, Yll1 Y12 ' Y21,

Y22'

Y11Y21 (p1 + P2 1+2) Y21 1+Y112 (11.4)

1-yK

Y (p +P +r) = Yll 2 1 .5)
Y11(Pll+r2) = 1 + P2Y 22Y 11 l-Y21

1-YK

Y21 (r 2+P2) 2 + P1Y1 2 2 1 -Y (116)

11

l 2 lK-1 + XY + XY21r1 (11.7)

·-48-T
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YllY22 (Pl+P 2+l+2 ) = Y22K1 + XY (11.8)
1122 1 2 1 2 221 ll22 21 2 + Yllr2

These five equations in five unknowns can be reduced to a single

2K+2 degree polynomial equation in Yll. A single equation (not in

polynomial form) appears in Appendix 3.

This equation has 2K+2 solutions. Thus the internal probabilities

are expected to be of the form

2K+2 n 71 Y 22

s 2 =l s s =s Y 12 Y21 Y22s

where the subscript s refers to solution number, and-yi and Xi are given

by .(11.2), (11.3).

This solution is not complete because the boundary probabilities

and equations have not been analyzed.



12. CONCLUSIONS AND FUTURE RESEARCH

We have calculated the steady state probabilities for the two-

machine transfer line subject to failures and exponentially distributed

processing times. These probabilities are used in the calculation of

efficiencies, the production rate, and the average in-process inventory.

Theoretical and computational results demonstrate that the model behaves

in a manner consistent with intuition.

Analysis is somewhat less complete for the transfer line with

Erlang distributed processing times. The internal probabilities are well

understood, but numerical results cannot be obtained without an under-

standing of the boundary probabilities, the probabilities of states with

storage empty or full. Theoretical results have been obtained that partially

characterize the system's behavior.

Future research includes, of course, the completion of the Erlang

case. Further numerical experience with these results should be obtained,

partially to investigate the differences between the exponential and

deterministic processing time systems discussed by Schick and Gershwin

(1978). If the differences are small, it may be possible to bypass the

Erlang case altogether. Other areas to be investigated include lines and

networks of three or more machines.
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APPENDIX 1

EXPONENTIAL MODEL COMPUTER PROGRAMS

In this appendix we describe the use of the computer code for the

exponential model. The model has been programmed in the APL computer

language for use in a time sharing environment, It has been implemented

on the MIT IBM-370-168 VM:CMS System.

A. Use of the Computer Code

Step 1:

1.1 Dial 87511

1.2 Type 0 and twice press return

1.3 Type logon gys

1.4 Password:

1.5 Press Return

1.6 Type: apl

Step 2:

Type: ) LOAD EXPO

This command means: Load the workspace expo from your private library.

Step 3:

Insert the following inputs:

MEWI + rate of service for machine 1

MEWI '+ rate of service for machine 2

PI + rate of failure for machine 1

PII- +rate of failure for machine 2

RI +< rate of repair for machine 2

-51-
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RII rate of repair for machine 2

M (storage capacity) plus (one unit)

Step 4:

Type: EFFIC

To compute steady state probabilities by matrix inversions.

Type: COE 1

To compute steady state probabilities by our efficient algorithm.
This command-displays all steady state probabilities. The command
COEO displays only the probabilities p(0,cOl,c2) and p(N,al,a2)

(a12 = 0,1).

B. Description of the Computer Code

There are five functions in the workspace oded:

(1) EFFIC - to compute steady state probabilities by matrix inversion.

(2) COE - The main function to compute steady state probabilities

by our efficient algorithm. In COE we perform the calculations of the

four coefficients Q.; j=1,2,3,4 and of the production rate and efficiency.

(3) ROOT - A function called from COE to compute Ylj' Y2j;

j=1,2,3,4.

(4) ROOT1 - A function called from COE to compute X.; j = 1,2,3,4.

(5) SOOK - A function called from COE to generate all the steady

state probabilities of the system.

C. Listings of the Computer Code

Figures 2-5 contain the listings of the five functions: EFFIC,

COE, ROOT, ROOT1 and SOOK.
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Fig. 2. EFFIC Program for Exponential Systems
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D. Computer Outputs

Outputs for the following two cases are shown in Figs. 6 and 7~

(1) = 1, P2 = 2, P1 = 3, P2 = 4, r = 5, r2 = 6, N = 6

(2) = 5, = 2, p = 4, p2 = 2, r] = 4, r2 = 7, N = 6
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APPENDIX 2

ERLANG MODEL COMPUTER PROGRAM

In this appendix we describe the use of a program for obtaining the

steady state probabilities for the Erlangian model by matrix inversion.

The model has been programmed in the APL computer language. We discuss

how to use the program.

A. Use of the Program

Step 1

Get into the CMS computer system.

Step 2

Type: ) LOAD ABA

This command means: load the workspace ABA from your private

library.

Step 3

Insert the following inputs:

MEWI +- rate of service for machine 1

MEWII - rate of service for machine 2

PI + rate of failure for machine 1

PII +- rate of failure for machine 2

RI - rate of repair for machine 1

RII 4 rate of repair for machine 2

M +(storage capacity) plus (one unit)

K + number of service phases
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Step 4

Type: EFFIC

To compute steady state probabilities by matrix inversion.

B. Listing of the Program

The listing of the computer program EFFIC is shown in Fig. 8.

C. Computer Output

A computer output for the case:

= 2, 2 = 2, p = g, p2 = 7, r = 3, r2 = 6, N = 6, K = 2

is shown in Fig. 9. It should be noted that the efficiency printed out

by this program is E2.



VEFFIC
[133]3 £0]

v EFFIC

[1] 'MEW1 Is: ,,tME:w

t24 'MEW2 Is: ',tMEWI I
3] 'F:' Is: ',,Fx

[5] ':1 Is: ',tI
C6) 'R2 Is: ,tRII

[7) 'STORAGE CAF'PAZT Is: ,tM--

[8] 'K IS: ',tK

[9) Pe(((I+(2XK)+K2)XM),((I+(2XK)+K*2)xM) )pO

[10) 3 e(M,((l+(2xK)+K*2)+I))pO
[11)] N'O
[123] sI:' ~..+l
£13 '. J4-
C14] s-J JJ+l
[15) PFC? ;t't+JXM]4..PIX (< M )
[163 PFN;t (K..J)XMI-PIX (t1 )>l)
[173 -(J<K)/SJ

[18] [ 3.l] -( F +-(I: II )

£19 .+J *+(-M)/.s
£20) NN+.e

£21] N4-e0

[22] J-()
C23] TOJ* J.J+l 1

[24) 'rT:xt-i+...
t25] N''N'4-?'+1
E263 .+ (t > M)/ OR:

[27] P[lN-; .R R I x (N (M)
[28) P[NN; (KXM)+N-1]..WMEWI X ((N > 1) ( (M))
C29] L-0
E30] TJ:L4-L+1

£31) FPN N* + (L L+2X K ) XMJ+.F'I IX ( ( > ) (N () )
£323 4(L<K)/TJ
£33 4 (N .M)/F-OL
[343 EORF:.-( (=h(J+J)x+M)^(N<KXM))/T P

C353 4(t.=KXM)/FOS
[36) PF[NN; ;'MEWI X ((N1+JX M)(((J+l) XM))

[37. JJ*-0
[38] 'rJ: JJ4-,Jj+l

[39] F'C-N ((;((((3+(J--1))XK)+JJ-1)XM)--X(J-l))+?--t]'.PzIPx((tN>(JxM)+2)A(N((J+l)xM X
[40] 4(JJ<K)/TBJ

C41] FOL F'['-; -. ] (-.R- - II)- (FI+MEWI )X (.NM)
£42) (-<(M)/FOS

[43 TF(P:4(N(J+I)XM)/TI
[44) 4(J<(K.-I ))/TOJ
[45) FOS:4(N<(KxM))/TI
[46)3 -'0
[473 J4-0
[481 zOJ: J{4 J+l
C49) zI .N4. + 1
[503 N'4 4''1+1
[51] 4( >M /Coo 0
[52)] FPENN; J-:I IX ( N-M)
£53) P'[£N; I +t'+ (2X K ) XMJ+.MEWI I X (t M )
[543 4(N=M)/POK
[55] Le.-1
C56] ZL | Le...+l
[57] P[N4N; (( l.t(24.L) xK)xM) +t]ePI
[583 4(L < K-)/ZLt

[59) *. (N(M)/F'OK
[60] Co 0 ( :-. 1+.,JxM)/-os

£61J PF't; (KXM) +'4-MEWII X ( (-> (JXM)+1 ) (t- L (J+ ) XM))
[623 JJJe-1-
[633 zBJ:. JJ-JJ+l
£64) PFNN; ; ( ( 1t(J.J+ 2 ) X K ) XM )+ +N-FI X ( (tN> l +JXM) ̂  (- < (Jt ) XM))
C65 - (,JJ(<(K-l) )/z.

C66] F'O F C't.;-t]g(. (-8.:T ) r- (F' I +MEW a)X(t> 1 ) >

Fig. 8, EFFIC Program for Erlang Systems (page 1 of 2)
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C67 ] . ( ( t. =M ) ̂  ( K :: ) ) / t s
[68] . (.( (-)J+lx M) /z I
[69]- ., (J< ( K-)1 )/zoJ
[703 Ntos .(w<KxM)/ z T
[71] I4.0
E72] KoIz:ze+l
[73] J+.0
[74] KOJ Je Jm"J+l

[75] 1t+.0
[763 Kot. Nt+-+..+
[773 t. F +.-t.+ 1
C783 4((T>l)^(tt-l::M))/soF
[79] ((J()l)A(t'= .l))/soF

[80] ~((K=lA)^(.=M))/Ho
C81] FP[EtN;+tM+ ( T-1 ) XM]+R Z I x(N<IM)X(J:=)

[82] P[N'(;(( K+J)XM)+t'] r.TIX(t !M)X(I-I)

[83] (J>I1)/S EF

[84] PTNN;(3XKXM)+( (I-I )XKXM)+I+N]+.MEWII X(J=l)x(7< M)
C853 I( >J)/t'/F

C86] -rEF:'
[87] 5EF:F'[r-'EN;(2XKXM)+((J--)XM)+((--- 1)XKXM)+(]4MEWIIX(J)I)X(tt<M)

[88] 4( >1)/NWEF
C[89] £EF :P[ I;((I+(K+i)xK)XM)+((JJ-1)xM)+N- -1]eMEWX(I=I )X(->I)I

[903 4KEF

C[91] tEF Pe ;((I+K ) XM)+((--1) X K X M)+((J--l)X M) +1']-MEWIX(I >)X( (t<M)

[92] KEF P[rN;e]-- (MEWZ+IP I ) X ( ( ( L (+-M) ) -( +M ) ) 0 )

C933 pCE41) ; 14] (-(MEWTI +PT I ) X ( ( ( L ( (0- I ) -M) I -4) ;do) )+FEI-1-1 N1-t

E94] 4SOF

C95] SOF:4(W<M)/KON
C96] 4(J<K)/KOJ
[973 4(I<K)/KOT
[98] P[((I+(2XK)+K*2)XM)-1;]3((I+(2XK)+K*2)XM)P1
[99] 4HOB
C 100 Ho:PCI [t.; 3].)
C[101 HoB:Eze((l+(2xK)+K*2)xM)fl
[102J E£((/FP)>0)
[10J33 PE/P
[1043 P+E/FP

C105] BC(+/E)pO
r1063 rC1[fB]1
1Ci07] APFIIRP
[108] ( '=I)/SOL
[109]3 rs ((lif(2xK )+K*2')XW)P0
Cll~OJ xc0E110] Z~_0
[111] IIZZ
[112] TOS:14+I_1

[1133 4(E[1]=0)/Tos

C114] rsCxe[PTCXII]
[115] IZ+I-+1
[163 e(I<((I+(2xW)+K*.2)XM)-i)/TOS
[1173 nPeztes
[118] SOL APn4APIX(API>lE-6)

C1193 te0
[120] LO:WeJ 4+1

[121] nA[ ;+ (]e'('--:1. ),AnF' [tN +(2((2XK)+K*2))XM
]

C122] (t(<M)/L0

C1233 'STEAD'r STATE PROBABILITIES AFRE-

[1243 ' '
[1i25 A

[126 s1 i.0
[1273 KK40
C128] so5KKKK+1
[129] s1e(4+/nA[ ( I+iM-);2+K+KK]x)+S1
[130J '+((I+K+KKXK)<i+(2XK)+K*2)/s°
[131] 'EFFICIE'CY Is: 'ISl

C132A3 ,PForUCTION FATE Is' , t,?EWIIX5sl

C1333 v

Fig. 8 (continued)
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APPENDIX 3

EQUATION FOR Yl1_

Equation (A.1) for Yll was obtained from equations (11.4) - (11.8) by

means of the MACSYMA system (MACSYMA, 1977). The following notation applies

to this equation.

A = Yll

Ml = 1

M2 = 2

P1 = P1

P2 = p2

R1 = r

R2 = r2

The computer printout of the equation is shown on the page following.
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K - 1
(1 - A) A M1 M2 (A (RI - P1 - M1) + M1)

K
/((1 - A ) P1 (A (P2 + P + + M2 + M1) - M1)

(1 - A) M2 (P2 + P1 + M2 + M1) (A (Ri - P1 - M1) + M1)

K
(1 - A ) P1 (A (P2 + P1 + M2 + M1) - M1)

(1 - A) M2 (A (R1 - P1 - M1) + M1) A M2 RI

K A (P2 + Pi + M2 + M1) - M1
A (1 - A ) P1

A M2 i - K A M2 K
-P2 ( ) (1- (-------------------- ) )

A (P2 + P1 + M2 + M1) - M1 A (P2 + P1 + M2 + M1) - M1

((P2 + Pi + M2 + M1) (A (P2 + Pi + M2 + M) - M1)

A M2 A M2 (R2 - P2 - M2)
(1 - --------------------------) (-------------------------- + M2)

A (P2 + Pi + M2 + M1) - M1 A (P2 + Pi + M2 + M1) - M1

A M2 K
/(M2 P2 (1 - (--------------------------) ))

A (P2 + P1 + M2+ M1) - M1

A M2
- M1 (A (P2 + P1 + M2 + M1) - M1) ( - -------------------------- )

A (P2 + Pi + M2 + M1) - MH

A M2 (R2 - P2 - M2)
(-------------------------- M2)/(A MH2 P2
A (P2 + Pi + M2 + MH) - MH

A M2 K
(1- ( -------------------------- ) )) A R2)

A (P2 + P1 + M2 + MH) - MH

A MH2
/((A (P2 + Pi + MH2 + M1) - M1) (1 - --------------------------

A (P2 + Pi + M2 + MH) - MH

A MH2 (R2 - P2 - M2)
(-------------------------- + H2))
A (P2 + Pi + M2 + MH) - MH

=O (A.1)
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