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ABSTRACT

Two Markov process models of transfer lines are presented. In both
there are two machines and a single buffer. The machines have exponential
failure and repair processes. In one model, the service (manufacturing)
process is assumed exponential; in the other, this is generalized to
include the Erlang (gamma) distribution. The models are analyzed and
a compact solution is obtained for the exponential case. Numerical
results are presented for this case which indicate good agreement with

intuition. Some theoretical results are obtained for the Erlang case.
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1. INTRODUCTION

An important attribute of the components of systems is their reliability.
Components may be unavailable because of routine maintenance or because of
repairs for failures. For various reasons (e.g., the difficulty of diagnosing
a failure), the length of time that a component is not available to perform
its intended task is a random variable.

In many kinds of systems, buffer storages are present. These buffers
have the effect of decoupling the system so that changes from normal operating
conditions at one part of the system have minimal effect on the operation of
other parts of the system. While this is often useful, the precise effect of
such storages on system-wide behavior is only partially understood.

This report is concerned with a special class of systems with storage--
the two-machine flow shop or transfer line. This class is illustrated in
Fig. 1. Workpieces enter the first machine and are processed. They are then
stored in the buffer storage and proceed to the second machine,after which

they leave the system.

—_— Mac1h|ne Storage

Machine|
2

Fig. 1 Two~Machine Transfer Line

Systems of this form, often with more machines and storages, are found
in many applications. We use the term "machine" here to describe the site
where operations take place. The terms "processor", "stage", or "station"
could also be used. The machines can then represent machine tools,
chemical reactors, digital computer components, etc. A survey of the literature
appears in Schick and Gershwin (1978).
The research reported here is focussed on systems in which the storage
is finite, the machines have random failure and repair time distributions,
and the processing times of the machines are random. The failure and repair

time distributions are exponential. Two kinds of processing time distributions
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are considered: exponential and Erlang. The results reported here differ
from earlier work in the random nature of the processing times.

Two interpretations are appropriate for the assumption of random
processing times. The first is that the system is intended to produce
identical parts. The raw pieces have random attributes (such as the
amount of metal that must be removed). The processors also have random
attributes (such as the quality or amount of wear of tools). The inter-
action of these effects leads to random processing time.

The second interpretation is that the pieces to be processed are
different and require different operations. For example, the pieces may
be computer jobs passing through a main processor and an I/0 facility.

The second interpretation is particularly significant for flexible
manufacturing systems. A flexible transfer line is one in which the
machines are capable of a range of operationson different pieces. These
operations may take different lengths of time to perform. The random-
ness arises from the pieces, which arrive at the first machine in random
sequence.

In Sections 2 through 7 we analyze systems whose machines have ex-
ponentially distributed processing times. Section 2 contains a formal
description of the model and its assumptions. Section 3 is a complete
statement of a Markov process representation of the system. Performance
measures such as efficiency, production rate, and average in-process
inventory are described in Section 4. Section 5 contains some theoretical
results on this model and Section 6 completely characterizes the steady-
state probability vector. Some numerical experiments are described in
Section 7.

Systems with Erlang distributed processing times are discussed in
Sections 8-11. The formal description of the model is in Section 8; the
Markov process is presented in Section 9; and theoretical results appear
in Section 10. Here, results are not as well developed as in the ex-
pontial case, and a partial characterization of the steady state prob-
ability vector appears in Section 11.

Section 12 presents conclusions and outlines needed in future research.

Computer programs can be found in the appendices.



2. THE EXPONENTIAL CASE, MODEL DESCRIPTION AND ASSUMPTIONS

The system consists of two machines that are separated by a finite storage
buffer. Parts enter machine 1 from the outside. Each part is operated upon
in machine 1, then passes to the buffer and then proceeds to machine 2.

After being operated on in machine 2, the part leaves the system. It is
assumed that a large reservoir of parts is available to machine 1.
Figure 1 shows such a system. Each machine can be in two possible states- -
operational or under repair. Only when a machine is operational can it
perform operations. There are, however, conditions on the storage buffer
under which a machine can not operate, even if it is in the operational state.
If the storage is full there is no place for parts from machine 1 to go.
If the storage is empty there are no pieces available for machine 2 to oper-
ate on. A machine can fail only while it operates on a piece.

Service, failure and repair times for machine i are assumed to be expo-
nential random variables with parameters ui, pi, r.i i=1,2 respectively.
The capacity of the storage buffer in N units. We define a binary variable
ui to represent the state of machine i. If ai=l, machine i is operational
and if ai=0, machine i is under repair. Let n denote the number of units in
the stdrage plus the number of units in machine 2 (which can be zero or one).
Then 0 < n < N+l.

In the next section we characterize the steady state balance eguations.
These steady state probabilities are essential for computing system perform-
ance measures such as efficiency, production rate,and average in-process

inventory.



3. THE DETAILED BALANCE EQUATIONS

Let the state of the system be represented by

s = (n,al,az)

with n=0,1,...,N; ai=0,1; i=1,2. Whenever n=0, machine 2 cannot operate
on a piece, and whenever n=N, machine 1 cannot operate on a piece.
We distinguish four sets of detailed balance equations, corresponding

to the values of o, and o.. For d.=0_.=0 we have

1 2 1 2
p(n,O,O)(r1+r2) = p(.n,l,O)pl + p(n,O,l)pz,- 1<n<N-1 (3.1)
p(O,O,O)(r1+r2) = p(O,l,O)pl (3.2)
p(N.O,O)(rl+r2) = p(N,O.l)p2 (3.3)

This reflects the fact that the system leaves state (n,0,0) only if
repair of one of the two machines takes place. We can reach state
(n,0,0) either from state (n,1,0) (unless n=N) if machine 1 fails or from
state (n,0,1) (unless n=0) if machine 2 fails.

The other three sets of equations can be explained in a similar way.

al=0, a2=l:
(3.4)
p(n,O,l)(rl+u2+pz) = p(n.O.O)r2 + p(n,l,l)pl + p(n+1,0,1)u2.
1<n<N-1
p(O,O,l)rl = p(O,O,O)r2 + p(o,l,l)pl + p(l,o,l)p2 (3.5)
p(NIOIl) (rl+142+92) = P(Nlolo)r2 (3.6)

p(n,l,o)(pl+u1+r2) = p(n—l,l.O)ul + p(n.0.0)rl + pn,1,1)p,, (3.7)

1<n<N-1

-8=
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p(0,1,0) (pl+u1+r2) = p(o,o,o)r1 (3.8)
p(N,l,O)r2 = p(N-—l,l,O)ul + p(N,O,O)rl + p(N,l,l)p2 (3.9)
O£l=l, 062=l:

p(n,1,1) (pl+p +_+U

S ¥y 2) = p(n—l.l,l)ul + p(n+l,l,l)u2 + (3.10)

+ p(n,l,O)r2 + p(n,O,l)rl, 1<n<N-1

p(O:lyl)(Pl+Ul) P(l,l:l)u2 + p(O,l,O)r2 + p(O,O,l)rl (3.11)

p(Nllll) (P2+u2) = P(N-lllrl)ul + p(NflIO)rz + p(N,O,l)rl (3.12)

In Appendix 1 we present a computer program in the APL language
for solving the detailed balance equations. The total number of these
linear equations is (22)(N+l) so that when N is large this becomes
costly. In Section 6 we present a more efficient method of finding the
steady state probabilities. In the next section we discuss measures of
performance, and in Section 5 we derive some theoretical results based

on the four sets of detailed balance equations.



4. MEASURES OF PERFORMANCE

There are three measures of performance that are often used as

criteria to evaluate the performance of production systems.

The first measure of performance is the efficiency E. of the i'th
.

machine in the system. Efficiency Ei is defined as the probability that

the i'th machine is operating on a piece, or the fraction of time in which
the i'th machine produces pieces. We can express the efficiencies in

terms of the steady state probabilities as:

N-1 1
E, = Z p(n,1,0,) (4.1)
n=0 o,.=0
- 2
N 1 -
E, = Z S p(n,ocl,l) (4.2)
n=1 al=0

It is important to distinguish Ei' the efficiency of the i'th machine
in the system from e, {(defined in equation (6.53)), the efficiency of
machine i if it were operated in isolation. The former is affected by the
other machines and the storage while the latter is a characteristic of
machine i only.

In Lemma 5 in the next section we show that
. (4.3)

The quantity uiEi can be interpreted as the rate at which pieces emerge

from machine i. Equation (4.3) is then a conservation of flow law, and

we can define
P =1U.E. . (4.4)

This is the production rate of the system.

The efficiency E of the system is defined as

E = actual production rate
production rate in the absence of failures

(4.5)



Since l/ui is the average time a piece spends in machine i when no failure
takes place, ui is the production rate of machine i in isolation in the

absence of failures. The production rate of the system without failures

is thus less than min(ul,uz) and E satisfies

b

E > —F—7F7""—-— (4.6)
- mln(ul.uz)

Assume Y = min(ul,uz). Then from (4.4),

Note also that if ui < uj (i,3 = 1 or 2, i#j) then (4.3) implies

that Ei > Ej’ Therefore, the system's efficiency satisfies

>
E __max(El,Ez) (4.7)

Another important measure of system performance is the expected

in-process inventory. This can be written

I\ 1 1
n = Z g E np(n,ocl,ocz) . (4.8)

= 0 o_=0
n=0 ul 5



5. THEORETICAL RESULTS

In this section we derive some theoretical results. These results are

important in providing imsight into the model as well as a basis for our
discussions in the following sections.
In the first lemma we prove that some of the steady state probabilities

are zero.

Lemma 1

P(0,0,0) = p(o,l,O) = P(N;O,O) = P(Nrorl) =0 (5-1)

Proof: Combining equations (3.2) and (3.8) yields:

p(O,O,O)r2 + p(0,1,0) (ul+r2) =0 (5.2)

Since probabilities are non-negative, p(0,0,0) = p(0,1,0) = O.
Combining equations (3.3) and (3.6) vyields:

p(N,0,0) r = P(N,O,l)(rl+ﬂ2) =0 (5.3)

1
Similarly, this implies that p(N,0,0) = p(N,0,1) = 0.

Lemma 2 asserts that the rate of transitions from the set of states in
which machine 2 is under repair to the set of states in which machine 2

is operational is equal to the rate of transitions in the opposite direction.

Lemma 2
N 1 N 1
r, Y, 2 P00 =p, 3 3 pn,o;,1) (5.4)
n=0 dl=0 n=1 ul=0

probability that machine probability that machine 2
2 is under repair can operate

-12-
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Proof

Add equations (3.1)-(3.3) and (3.7) - (3.9):

N N-1
> P(n,0,0) (rj+r)) + 3 p(n,1,0) (p+; +r,) + r,p(N,1,0)
n=0 n=0
N-1 N N
=p, 2 P(n,1,00 +p, > p(n,o0,1) +u, Y pn-1,1,0) +
n=0 n=1 n=1

N N
r, > p@,0,0 +p, > pin1,1)
n=0 n=1

This can be reduced to

N N N
I'2 z p(n,0,0) +r2 z p(n,1,0) =P2 z p(n,0,1) +
n=0 n=0 n=1
N
p, » Ppn,1,1)
n=1

which is equivalent to equation (5.4)

Lemma 3 establishes a corresponding result for machine 1.

Lemma 3
N 1 N-1 1
r, > Y p(m,o0) =p 3 Y pml,0)
n=0 o, =0 n=0 0,=0
2 2
~__f’—\/-‘——*” . —
Probability that Probability that
Machine 1 is under Machine 1 can
repair operate
Proof

Add equations (3.1) - (3.6):

N N

2, P(0/0,0) (r +r)) + 3% p(n,0,1) (ryHi,+p)) +
n=0 n=1

+ p(O,O,l)rl

(5.5)

(5.6)

(5.7)
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N-1 N
=Py :Z% p(n,1,0) + p, E p{n,0,1)
n= n=

N N- N-1
+ r, :Z;P(H,0,0) + Py :g; p(n,1,1) + u, p(n+1,0,1) (5.8)
n= n= n

o

This can be reduced to

N N N-1 N-1
r, 2‘5 P(n,0,0) + r, Z; p(n,0,1) = p, Z:S p(n,1,0) + p, p(n,1,1)

(5.9)

which is equivalent to (5.7).

Lemma 4 shows that the rate of transitions from the set of states
with n pieces in storage and machine 1 operational to the set of states
with n+l pieces in storage and machine 2 operational is equal to the

rate of transitions in the opposite direction.

Lemma 4
1 1
! p(n,1,0.) = U Z p(n+l,0.,1), 0<n<N-1 (5.10)
1 < 2 2 &~ 1 —
i
Probability that Probability that Machine 2
machine 1 is opera- is operational with n+l

tional with n pieces pieces in storage
in storage.

Proof: By induction.
For n=0, add equations (3.2), (3.5), (3.8) and (3.11). Using the

results of Lemma 1 we get
P(0.0,l)rl + p(0,1,1) (pl+pl) = p(O,l,l)p1 + p(l,o,l)u2 (5.11)

+ P(lrlnl)Uz + P(Onoyl)rl
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or
P(Oulrl)ﬂl = P(llorl)uz + P(lrl'l)uz . (5.12)

Since p(0,1,0)= O this is equivalent to

1 1
= t5.13)
ul E P(O,l,(x2) - u2 Z p(l,alrl)
u2=0 a1=0

which is equation (5.10) with n=0.
Let us assume that equation (5.10) holds for n=m<N-2. We show that this
implies (5.10) for n=m+l. Add equations (3.1), (3.4), (3.7), and (3.10)

with n = m+l (1 < m+l < N-1). This yields

p(m+l,0,0)(rl+r2) + p(m+l,l,0)(pl+ul+r2) +

+

p(m+1.0,1)(rl+u2+p2) + p(m+l,1,l)(pl+pz+u1+u2)

p(m+l,l,0)pl + p(m+l, 0,1)p2 + p(m,l,O)ul + p(m+1,0,0)rl

+ p(m+l,1',l)p2 + p(m+l,0,0)r2 + p(m+l,1,1)P1 +

+

P(m+2.0,l)u2 + P(mrlrl)Ul + P(m+21111)“2 + p(m+1,l,0)r2

+

p(m+1,0,1)rl (5.14)
This can be reduced to
P(m*l,l,O)Ul + P(m+1,0,l)U2 + p(m+1,1.1)(u1+u2)

= p(m,1,00; + pm,1, 1)U, + p(w+2,0,1)u, + pm+2,1, 1)U, (5.15)
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But by induction
p(m.l,O)ul + p(m,l,l)ul = P(m+l,0,1)u2 + P(m+l,l,l)U2 (5.16)
and therefore (5.15) becomes

1 1
Wy zop(mﬂ,l,onz) Z (w+2,0,,1) (5.17)
o= =

Therefore, equation (5.10) holds for 0<n<N-2. To prove the lemma for

n=N-1 add equations (3.3), (3.6), (3.9), and (3.12) to yield, with Lemma 1,

p(N,l,O)r2 + p(N,1,1) (pz+u2) = p(N—l,l,O)ul

+ P(errl)Pz + P(N'lrlrl)lll + p(errO)r2 (5.18)
or
p(N,lpl)Uz = P(N—lrer)Ui + P(N-l,l,l)lll (5.19)
or
1 1
M ocZ—-:O p(N-1,1,0) = Z= p(N,a,,1) (5.20)
2

since p(N,0,1) = 0. This is equation (5.10) for n=N-1, so the lemma is
proven.

In the next lemma we prove that the rate of transitions between
the set of states in which machine 1 can produce a piece and the set

of states in which machine 2 can produce a piece are egual.

Lemma 5
N-1 1 1
B ; z p(n,1,0,) = W, E p(n,0 1) (5.21)
n= o= n=1 O.=
2 1
~

Probability that Machine Probability that Machine
1 ca& produce a piece 2 can produce a piece
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Proof: Eqguation (5.21) is simply equation (5.10) summed for n=0,...,N-1.

This lemma is interpreted in Section 4.



6. CLOSED FORM EXPRESSIONS FOR THE STEADY STATE PROBABILITIES

6.1 Analysis of Internal Equations

We define internal states as states (n,ul,a ) where 1<n<N-1.%

2

Internal equations are the detailed balance equations that do not

include any boundary states. The rest are called boundary equations.
Following the analysis in Schick and Gershwin (1978) we guess a solution
for the internal equations ©f the form

naoa o

1.2
— <n<N-— .
p(n,ul,az) cX Yl Y2 ’ 1<n<N-1 (6.1)

where c¢,X,Y are parameters to be determined.

Y
172
By substituting (6.1) into the internal equations we find that those

equations are satisifed if X,Yl,Y2 satisfy the following three non-

linear equations:

wd-1)-py +r +2-p =0 (6.3)

1'X 11 1 Yl 1 et
2

uz(x- 1) - p2Y2 + §;~ + r2-p2 =0 (6.4)

This is because the internal equations (equations (3.1), (3.4), (3.7),

and (3.10)) can be written

*This is in contrast to the deterministic processing time case
(Schick and Gershwin, 1978 ) in which the internal states are those
in which 2<n<N-2.

-18-
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1-o al 1-0,. o

p(n,0,,0,) (r) = p = +1xr, °p,%)

= (p(n—l,ocl,ocz) - p(n,onl.ocz))ulocl
+ (P(n"'erLlruvz) = P(nldlraz)uzaz
o l—al
+ - 7
p(n,1l al Otz)rl 1
o 1—@2
+ p(n,alfl—uz)rz p2 (6.5)
If p(n,al,uz) is given by (6.1), equation (6.5) becomes
n o o 1-0 o 1-0 o
i 1 2 1 1 2 2
X Y Y
2 (5 TPy I, Py
a o o
n o o 1 2
_ 1,72 1 Y. U YT ouo,(X-1)
= X Yl Y2 ulocl(X 1) + X 1 2 272
n 1l-0 o o 1-0 n o 1-o o 1-0
1 2 1 1 1 2 2 2
+ - -
X Yl Y2 ;" py X Y Y2 r, P, (6.6)
or
1- -
i} al al . rl az az
1 1 2 P
—1h%}§—1)+ufbmﬂ)
. Yl—zal ral l—al .\ Yl-2oa2 ruz l—az 6.7)
1 1 1 2 2 P2 6.
or, finally,
1-20 ol 1-0 1-0 o
1 1 1 1 1 1
= o (=- + -
0= {pa (-1 +v, 1 Py r, T pyd
1-20 o 1-o 1-o o

- 2 2 2 2 2
+ {uzaz(x—l) + Y2 r,” p, - T, p, T . (6.8)
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Equation (6.2) follows when o ==a2==0; Equation (6.3) and (6.4) result

1
from ocl= 1, oc2='0 and 0L1= 0, OLZ= 1; respectively. When 0c1=0c2' =1,
the result is the sum of equation (6.3) and (6.4). This development
holds for lines of k machines and k-1 storages, although the boundary
behavior has not yet been investigated.

Equations (6.2)-(6.4) can be reduced to the -following fourth degree
polynomial in Yl:
piYi + (-uzpi - 3pir1 - pirz - pzpi + ulpi + Pi)Yi

2 2
(2HpPy Ty = ToPiHy = 25yPg ) = PoRyHy = MRy - 3pTy

+
2 2 2 2
- - + + + 2 Y
Pir, Py + Wyr,py + 3py Ty + 2pyriT, + 2pR,T )Y
2
+ + + 2p.r
+ (2pypyry U Ty o+ Lol o+ TR, Ry TOHy * 2P,

2 2 2 3
T 3pgry P 2ryEoby T T E T THRP TR
2 2 3 2 .
- rlr2)Yl + (—rluz(rl+r2) rr, - r - rlpz) =0 (6.9)
It is easy to verify that one solution is
r
_ 1
Yll = 5_ (6.10)
1

and by substituting (6.10) in (6.2) and (6.3) we obtain:

Y .= (6.11)

and
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The other three solutions to (6.9) can be obtained by solving a cubic

equation. We can write (6.9) as
2 oY, = ) (Y + 3sY2 + tY. +.u) = 0 (6.13)
PPy 7 5 1 17 :

where s, t and u are given. by

1
3s = pl(-uz - 2rl - r, TP, tUF pl) (6.14)
t = = (Lr, - ¢ -r - -
= T2 (Mpry 7 Eoly T onHy T Pyl T HPy
Py
-2p.x. - r - + U_.r_ + r2
PyTy TPy, TRP, T, T Y
+rr, + rlpz) (6.15)
= ;L-( (r.+r ) + r.r_ + r2 + r ) ;
w = 2 My tr¥r, 152 T F1 T 5P, (6.16)
1

The other three values for Y1 are (Chemical Rubber, 1959)

A ¢ .
le = 2 3 cos (3) (6.17)
/5 o @
= 6.18
Yl3 2 3 cos (3 + 27m/3) ( )
Y14 = 2V-w% cos (%-+ an/3) (6.19)
where:

a= %-(3t - sz) (6.20)
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2
b==5% (2s8” - 9st + 27u) (6.21)
and
- B
¢ = arcsin| ———{ . (6.22)
a”
27
Agathzi, Xi for i = 2,3,4 can be obtained from (6.2)
and (6.3).

The conclusion is that for the internal equations:

Y o, O
o) = X2y Ly 2 (6.23)
112 -lC. j . . 0. A
J:

p(n,q

where cj, j=1,2,3,4, are parameters to be determined.

6.2 Analysis of the Boundary Equations

There are a total of eight boundary states. The probabilities of

four of them are specified by Lemma 1. The other four are characterized

in the next lemma.

Lemma 6
1 4
= = Y .+ . )
p(0,0,1) rl ch (01 ¥ 5 + UK ¥) ) (6.24)
j=1
4
= Y c.Y..Y_ .
p(0,1,1) Z:cj 15%23 (6.25)
j=1
1 e N-1
p(N,1,0) = z, J;lcjxj (MyYp5 + PoXs Y)Y, 0 (6.26)
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p(N,1,1) = Zc N 5¥15Y03 (6.27)

Note that (6.25) and (6.26) are in the internal (6.23) form. Further-—

more, the coefficients cj satisfy

=0 .2
¢y (6.28)
4

c.Y. ., =0
jz=:2 55 (6.29)
4

c.X§Y . =0
jz=:2 JJ 2] (6.30)

and the normalization equation,

N 1 1
go cxz-:—-o OLZ;o p(nja,,a) =1 (6.31)
1 2

=]

Proof: The expressions (6.23) - (6.27) and (5.1) satisfy all
the detailed balance equations (3.1)-(3.12) identically except for
the following.

Equation (3.11) becomes

4
0= YUY, - LX.Y. . - LX) .
jZ-flcj 23 (My¥py ~ XYy — LX) (6.32)
Equation (3.7), for n=1, becomes
4
2 5% [(pl‘bul+I i3 = ¥ " 92Y13Y23:‘ . (6.33)

j=1
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Equation (3.12) becomes

4 N=-1
., - Y., - .
0= Yex, Y13M%5¥ay T MYay T M) (6.34)
~ 373
j=1
and equation (3.4), for n = N-1, is
d N-1
= X +_+ Y . - -p. Y Y |, .
0 éé%cj 3 L)Yy = xmp Y Y] (6.35)

Equation (6.33) can be transformed by observing that

. - - Y . .
(py U +E )Y 5 = Ty = Py¥y Y0y
= - + + . - Y . .
(pl‘zlj rl) ulYlj YlJ (r2 P, 23) (6.36)
= - + o= Y. - Y_. .
(Py¥yy=r)) + M¥yy = ¥y (5, =P ¥y (6-37)
(because of equation (6.2)), and finally,
= Y . + N + Y_ . . .38
(pl 13 rl) (1 Ylj) Ul 13 (6 )
Note that equation (6.3) can be written
1 (1+Yl.)
- = Y - S
ul(x. 1) (pl 13 rl) 7. (6.39)
3 13
so that expression (6.38) is
W) - 1)Y., + LY., = WY L/X, (6. 40)
1'X 13 113 1713 73 )

3

Thus, equation (6.33) is now
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0= c. Y . . (6.41
j§ 3713 )

The same sequence of steps can be applied to equation (6.35) to

yield
< N
0= c.X,Y. . (6.42)
j=1 37 2)

To analyze (6.32), we first observe that equation (6.39) implies

u - U2Xj(Y1j+l) =

[ 1
F2h (Xj )Ylj

Y. - - (6.43)
1717 Plylj rl

1715

if plYlj--rl # 0. Recall that

Equation (6.4) can be written

(1+Y2.)
uz(Xj—l) = (szzj— rzj) ——§;;l— (6.44)

so that (6.43) can be transformed to
- Y Y. . .
1 1j/ 25 ' (6.45)

with the use of (6.2), still assuming plYlj--r1 # 0. Equation (6.32) can

now be written

0=c.Y )

101 By ¥yq ~ WX Yy 1%

4
- 6.46
“1 ;é;chlj ( )
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or, using (6.10) - (6.12),

r2 rl rl 4
0= — = - — - - Y.
c; 5, 1y B, U, B uz) Wy .Z cj 13 (6.47)

Finally, we observe that (6.29) implies that

4 rl
z c.Y = - ¢, — (6.48)

=2 J 13 1 1

so that (6.47) can be written, after some transformation, as

_ Y7 Hats ]
0= cl r_+p T r +p
N

. (6.49)
1

By the same sort of manipulations, equation (6.34) can also be transformed

into equation (6.49).
To complete the lemma, two cases must be considered. if
Hi¥fy Hy¥o

# (6.50)
rtey T P,

then (6.28) follows from (6.49); and (6.29) and (6.30) follow from (6.28),
(6.41) and (6.42).

If

H.r H.x
11 - 2 2 {6.51)

rite, xR,

then cl is not determined by (6.49). However, in this case Yl = rl/pl is

a double root of (6.9). That is, one of the values of Ylj given by
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(6.17) - (6.19) (j = 2,3,4) is rl/pl. Then there are only three in-
dependent sets of parameters (Xj'Ylj'Yzj) and the coefficients cj are
given by (6.29) - (6.31).

As a final note, the values of ¢_, c. and ¢

5 3 4 Can also be found by

solving (5.3) and (5.6) and the normalization equation (6.31).

The quantities

Pi =T (6.52)

that appear in equation (6.49) have physical significance. We define

pi as the isolated production rate of machine i, the production rate it

would have if it were not part of a system with other machines and

storages. The ratio

(6.53)

in the fraction of time it is available (i.e., not under repair) if it

were in isolation. This quantity is the isolated efficiency. Since

Ui is the production rate while machine i is operational, uiei is the

production rate in isolation.

6.3 The Algorithm

Now we can find all the steady state probabilities of the system

using the following algorithm:

Step 1

Find Y_., Y

13 .y Xj; j=2,3,4 using (6.17) - (6.19) and (6.2) - (6.3).

23
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Step 2

Solve equations (6.29) - (6.31) to obtain cj;.j=2,3,4;

Step 3
Use Lemma 1 and equations (6.23) - (6.27) to evaluate all probabili-
ties. These probabilities can be used to evaluate the measures of

performance of Section 4.



7. COMPUTATIONAL EXPERIENCE

In this section, we describe the results of a set of numerical ex-
periments with the model described above.
In Table 1 we vary the parameter ul from .1 to 1000. The other

paramters have values: uz = 2, pl =3, p.=4, r., =5, r =6, N=4.

2 1 2
TABLE 1

Ul n El E2 PRODUCTION RATE

.1 .0554 .625 .03125 .0625

.5 .358 .622 .1555 .311

1 .919 .5966 .2983 .5966

10 3.73 .1195 .5973 1.1946
100 3.98 .0112 .5999 1.1998
1000 4. .0012 .6 1.2

We see that as ul, the rate of service for machine 1 increases, both

E2 and the production rate increase to a limit of .6 and 1.2 respectively.
That is, there is a saturation effect, and no amount of increase in

the speed of machine 1 can improve the productivity of the system.

Note that as the first machine is speeded up, the amount of material in
the storage increases. This is the reason for the increase in production
rate.

In Table 2 we vary the parameter Uy from .1 to 1000 for the case

“1 =1, pl = 3, p2 = 4, rl =5, r, =6, N=4.

-29-
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TABLE 2

M, n E, E, PRODUCTION RATE
.1 3.89 .0599 .59990 .0599
.5 3.19 .2903 .5806 .2903
1 2.08 .4836 .4836 .4836
10 .124 .6247" .06247 .6247
100 .0111 .6249 .006249 .6249
1000 .00109 .625 .000625 .625

In this case we see that although E_, decreases, the production rate

2
increases as uz increases. When the second machine is very fast, it
frequently empties the storage and thus spends a lot of time starved

for pieces. Consequently E_., the fraction of time machine 2 is operating

2
on a piece, is small. The production rate, in the limit as uz is
large, is simply the isolated production rate of the first machine,
ulrl/(rl+pl). Here as uz increases, the number of pieces in storage
decreases.

These two tables lead to the following tentative conclusion: If
all other things are equal, it is better to speed up downstream machines
than to speed up upstream machines. Both can increase over all
production rate, but if downstream machines are made faster, the average
in-process inventory is reduced.

In Table 3 we vary the parameter plfrom..l to 1000 for the case:

pl =1, pz = 2, p2 =4, rl = 5, r2 =6, N= 4.
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TABLE 3
Py n El E2 PRODUCTION RATE
.1 1.61 .846 .423 .846
.5 1.48 .8034 . 4017 .8034
1 1.33 7540 .3770 . 7540
10 .396 .3311 .1655 .3311
100 . 0418 .0476 .02361 .0476
1000 . 00417 .0049 . 00249 .0049

As the rate of failure of the first machine increases, the average
in-process inventory, production rate, and the efficiencies El and E2

go to zero together.

In Table 4 we vary the parameter pzfrom .1 to 1000 for the case

ul =1, u2 = 2, pl = 3, rl = 5, r2 = 6, N = 4.
TABLE 4
p, n El Ez PRODUCTION RATE
.1 .464 .6194 . 3097 .6194
.5 .507 .6174 .3087 .6174
1 .562 .6158 . 3079 .6158
10 1.66 .5322 .2661 .5322
100 3.77 L1131 . 0565 .1131
1000 3.98 .0119 . 0060 .0119

Again as the rate of failure for the second machine increases,

El' Ez, and the production rate approach zero, but here n approaches

N=4.
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In Table 5 we vary the parameter value ry from .1 to 1000 for the

case U, = 1, uz =2, p, =3, p2 =4, r_ . =6, N = 4.

1 1 2
TABLE 5

r n E, E, PRODUCTION RATE
.1 .0342 .03225 .01612 .03225

.5 .161 .1426 .07128 .1426

1 .300 .2486 .1243 .2486

10 1.20 .7104 .3552 .7104

100 1.59 .8411 .4206 .8411

1000 1.64 .8554 .4277 .8554

As the rate of repair for the first machine increases, E,, E_.,

1 2
E} and the production rate increase. Note that n does not approach
N=4.

In Table 6. we vary the parameter value rzlfrom .1 to 1000 for the

system ul =1, uz = 2, pl = 3, p2 =4, r. =5, N= 4.

1
TABLE 6
n P
r, n E, E, RODUCTION RATE
.1 3.88 . 0486 .02431 .0486
.5 3.36 .2144 .1072 .2144
1 2.74 .3575 .1787 .3575
10 .720 .6088 .3044 .6088
100 .477 .6191 .3095 .6191

1000 .455 .6198 - .3099 .6198
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Again when the rate of repair for the second machine increases,

both the efficiency E, and the production rate increase. The in-

2

process inventory decreases.

In Table 7 we vary N from 2 to 100, for the transfer line ul =1,

= 2 = = = = = .
uz ’ pl 3, p2 4, rl 5, rl 5, r2 6
TABLE 7
N n E, E, PRODUCTION RATE
2 .599 .5228 .2614 .5228
5 1.01 .6093 .3047 .6093
10 l1.16 - .6242 .3121 .6242
20 1.18 .625 .3125 .625
50 1.18 .625 .3125 .625
100 1.18 .625 .3125 .625

We see from the table that as N increases, both the efficiencies
and the production rate increase up to a limit. This case seems to
display the same saturation effect as in Table 1. Furthermore, the
average in-process inventory also approaches a limit as the buffer
capacity increases.

These examples are not intended to be exhaustive. They are
furnished to show the kind of result that is obtainable with this

model, and that its behavior agrees with intuition.



8. THE ERLANG CASE. MODEL DESCRIPTION AND ASSUMPTIONS

Until now we have restricted our discussion to a particular service
time distribution - the exponential. This assumption however, may be-
come quite troublesome for many systems. -In order to have a more realistic
model we must allow a more general service time distribution.

In this model we assume that the service time distribution for the
two machine is Erlang with K(Kfilj phases.* The advantage of this
assumption is that a very large class of distributions can be approxi-
mated very closely by Erlang distributions (Kleinrock, 1975).

A consequence of the new service time distribution assumption is
that we can now find each of the two machines in K+l states, since
in addition to being under repair the machines also can be operational
in any one of the K phases of the Erlang distribution.

Let i and j represent the states of each of the two machines,

0,1,..., K. By i=0 we mean that machine 1 is under repair and

(W8
il

i,

by i =m (lf}ﬁ_ﬁ K) we mean that machine is operational and ready
to start the th Erlangian phase.

Again we assume that machine 1 can operate on a piece only if it
is operational and n<N. Machine 2 can operate on a piece only if it
is operational and n>0. We also assume that when a machine fails the
piece that was being processed when the machine failed must start its
service from the beginning, that is from the first phase.

We consider the system in steady state. Due to the Erlang distri-
bution assumption we have a Markovian model.

The quantities ri, pi and N have the same meaning as in the ex-

ponential case. This implies that the rates of failure and repair are

*Also known as the gamma distribution, with integer shape parameter.

-34-
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independent of what phase the system was in when the last failure
occurred. However, ui is now the rate that machine i completes each
of its Erlangian phases. Thus, the production rate of machine i,

when it is operational, is ui/K.



9. THE DETAILED BALANCE EQUATIONS

Again we denote (n,i,j) to be the state of the system; n=0, 1,...N;
i,j=0, 1,2,..., XK, K > 1. By our assumptions machine 2 cannot operate
on a piece unless n>0. Therefore, the probability of any state with

n=0and j>1 or n=N and i > 1 is zero. That is,

p(0,1i,3) 0, = 2,..., K

.
!

’ i 0,1,...,K (9.1)

p(N,i,3) o, i=2,..., K, j=0,1,...,K (9.2)

Again we distinguish between four sets of detailed balance equations,
to correspond to the values of i and j.

For i=3j =0 we have

K K

p(n,0,0) (r1+r2) = Z p(n,i,O)pl + X p(n.O,j)p2 »  1<n<N-1 (9.3)
i=1 j=1
K

p(oloro)(r +r ) = 1 P(Ori:O)P (9.4)

1 2 . 1

i=1
K

P(Nrolo)(rl+r2) = L P(Nyoyj)Pz (9.5)
j=1

These equations represent the fact that the system enters state
(n,0,0) either from state (n,i,0) (n#N, i#0) if machine 1 fails or
from state (n,0,3) (n#0, j#0) if machine 2 fails.

For i = 0, 3§ # 0,

K

P(n,O:j)(rl+H2+P2) = P(nrorj—l)uz + iilp(nlirj)Pl ’ (9.6)

2<3 <K 1<n<n-l

-36=
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K
P(n.O,l)(rl+u2+p2) = p(n+l,O,K)U2 + iilp(n,i,l)pl + p(n,o,o)rz ,
1<n<N-1
K
p(0,0,1)xr, = p(1,0,K)u, + % p(0,i,1)p, + p(0,0,0)xr
1 2 1 2

p(N,O,j)(rl+u2+pz) = p(N,o,j—l)uz, 2 <3<k

p(N,0,1) (r +U,+p,) = p(N,0,0)x,
For j= O, i#o0,
K
pl,1,0) (p +u,+r,) = p(n,i—l,O)ul+jzlp(n,j_,j)Pz,

2 <i<K, 1<n<N-1

K

p(,1,0) (p+U+x)) = pl-1,K,001 + I ph,i3)p, + p0,0,00r,,

=1

P(Ol ilo) (P1+ul+r2) = P(Or i—llo)ulr 2 _<_ i _<__ K

p(0,1,0) (pl+1ll+r2) = p(0,0,0)rl
K
P(erro)r = P(N-l:K,O)U + I P(Nllrj)P + P(Nlolo)r
2 170 2 1

For i# 0, j # 0O,

p(n,i_.j) (pl+p2+ul+u2) = pln, 1—1,3)111 + p@,i,3-1W, .

2 <i<K;2<3j<K,1<nZ<N-1l

(9.7)

(9.8)

(9.9)

(9.10)

(9.11)

(9.12)

(9.13)

(9.14)

(9.15)

(9.16)
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pl,1,3) (py+p,# +1,) = pa-1,K, )0, + pl,1,3-D}, (9.17)

+ p(n,O,j)rl, 2<3J<K 1<n<N1

pn,i,1) (pl+p2+111+112) = p(n,i-l,l)ul + pn+1, i,K)uz. (9.18)

+

ptn,1,00r,, 2 <1 <K, 1<n <N-1

pn,1,1) (p1+pz+ul+u2) = p(n-l,K.l)ul + p(n+l,I,K)u2 (9.19)

+

p(nlorl)rl + P(nrlro)rzl 1 f_n _<_ N-1

p(0, i,1) (plﬂll) = 10(0,1-1,1)11l + p(1, 1,K)u2 + p(-o,i,o)r2 (9.20)
2 <i<K
+ = .
p(0,1,1) (p1 ul) p(l.l,K)u2 + p(o,o,l)x1 + p(O,l,O)r2 (9.21)
p(N,1,3) (p,+Hy) = p(N-1,K,j)u; + p(N,1,3-1), + P(N,0,3)r,, (9.22)
2 <j<K
p(N,1,1) (p2+u2) = _'9(1\1-1,I<,1)ul + p(N,O,l)rl + p(N,l,O)r2 (9.23)

for i=1; j=1; n =N

Note that equations (9.14) and (9.20) imply that if the storage
is full, the first machine is not allowed to operate on pieces even
if it is operational. That is, we do not merely assume that an operation
cannot be completed; we assume that an operation cannot be commenced.

In Appendix 2 we present a computer program in the APL computer

language for solving all the detailed balance equations. The total
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number of these equations is N(K}l)2-2K2+-3. " When' either Nﬁof.
K are large the computational effort becomes very great. In Section 11
we present some preliminary work aimed at devising an efficient algorithm
for obtaining the steady state probabilities, similar to that described
above for the exponential case. In the next section we derive some

theoretical results based on the detailed balance equations.



10. THEORETICAL RESULTS

In this section we derive some theoretical results based on the
detailed balance equations. These results help us to gain more under-
standing of the system.

In the following lemma we prove that some of the steady state

probabilities are zero.

Lemma 7
p(0,i,0) = p(N,0,j) = 0 for all i and j (10.1)

Proof: Equation (9.12) and (9.13) imply

i-1

s “1
p(0, i,0) — - p(0,0,0) (10.2)

+U_+ U+

P1tH T Py tH Y,
Equation (9.4) can then be written
plr1 K ul i-1

p(0,0,0) (r1+r2) = p(0,0,0) —————— — (10.3)

+
pytH e, &g \Py Ty tE,

or

1l
o

u
p(0,0,0) + + 24 — L . 10.4
Pi¥p T Eify T Ey T Py (10-4)

FEyR
Py¥r, L Py T,

This implies that p(0,0,0) = 0 and (9.22) implies that p(0,i,0) = O.

Similarly,

40—
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i-1
UZ r2

U+ U+
1Py RN

p(N,0,3) = p(N,0,0), J=1,..., K (10.5)

from (2.9) and {9.10). Equation (9.5) can be written

r p K -1
p(N,0,0) (r +r ) = p(N,0,0) ——=—=— e +p Z=j = +P2 (10.6)
or
u K
p(N,0,0) f 2 . 2} | v
rl+p2 rl+rlp2+r1r2 r2p2 rl+U2+P2 =0 (10.7)

and (10.1) follows as before.

\
Lemmas 8 and 9 establish results which are analogous to Lemmas

2 and 3 above.

Lemma 8
N K N K K
r, > ) pn,i,0 = p, > 2 > pln,i,3) (10.8)
n=0 1i=0 n=1 i=0 j=1
N ~ -
probability that probability that machine
machine 2 is under 2 can operate on a piece
repair
Proof

Let us add equations (9.3) - (9.5) and (9.11) - (9.15).

N N-1 K
A : < .
z: p(n,O,O)(rl+r2) + 2: 2, bn,i, O)(pl+ul+r2)+ p(N,l,O)r2 (10.9)
n=0 n=0 i=1
N-1 K
=2 2 pmi0p + Z Z p(n,0,3)p,
n=0 i=1 n=1 j=1

N-2 K-1 -1

K K K
+3 Y pm,i,0u + D) p(N-1,i,00u, + 2, 2 pnidp,
=0 1i=1 i=1 1 i=1 j=1

Z

=}
=}
il
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N=-1 K
* 2, P(n,0,0)z; + pP(N-1,K,001; + D p(N,1,9)8,
n=0 =1

+ P(NIO.O)rl

This can be reduced to

N~-1 K N
3 Zp(n,i,o)rz + p(N,1,00x, + 3 p(n,0,0)r, (10.10)
n=0 i=1 n=:0
N X N-1 K K K
= P(n,0,3)p, + 3 35 . p(n,i.ilp, + ) pN,1,3)p,
n=1 J=1 n=1 i=1 j=1 j=1
or
K N K K -
r, 2, 2, p0,i,0) =p, 2 2opmiLg)
n=0 1i=0 n=1 i=0 Jj=1
since p(N,i,j) = 0 for i > 1.
Lemma 9
N K N-1 K K
r 2 p(n,0,3) =p Z Z Z p(n,i,3) (10.11)
1 ! 1 : 4
n=0 J=0 =0 i=1 3=0
\\’\~ W’
Probability that Probability that Machine
Machine 1 is under 1 can operate on a piece

repair

Proof: Let us add equations (9.3) - (9.5) and (9.6) - (9.10):

N N K
Y, P(n,0,0) (r +r)) + 37 3 p(n,0,3) (x;Hu,+p,) + p(0,0,1)x,
n=0 n=1 j=1

N-1 K N K

N K
= 2 z:p(n.i,O)pl + Z Z:p(n,o,j)p2 + Z »Zp(n,o,j)pz
n=0 i=1 n=1 j=1 n=2 j=1
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R-1 N-1 K K N
+ 20 PO, + 3 3 e dd)p + Fpn,0,0)x,
j=1 =1 i=1 3j=1 n=1

K
+ p(1,0,K)H1, + 3 p(0,i,1)p, + p(0,0,0)r, (10.12)
i=1
This can be reduced to
N N K
Z P(D,0,0)I‘l + Z: ZP(H,O,j)rl + P(Ovoll)rz
n=0 n=1 Jj=1
(10.13)
N-1 K N-1 K K K
= Z_: Z_: p(n,i,0)p, + Z:L , Z:p(n,i,j)pl + Zp(O,i,l)Pl
=0 i=1 n= i=1 j=1 i=1
or
N K N-1 K K
Z Z p(nrorj)rl = Z Z Z P(nrirj)pl
n=0 j=1 n=0 i=1 J=0

since p(0,i,j) = 0 for j > 1.
Lemma 10 is analogous to Lemma 4. Here, however, we must keep
track of the phases of the machines. We prove that the rate of transitions
between the set of states with machine 1 in the K'th phase and n pieces
in storage and the set of states with machine 2 in the K'th phase and

nt+l pieces in storage are equal for 0 < n < N-1.

Lemma 10
K L
J= 1= .

Proof: First for n=0 let us add all the detailed balance equations

with n=0. Using the results of Lemma 7 we get:
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K
p(0,0,0)r, + 3 p(0,i,1) (p +1,)
i=1
K
ZP(O i, p, + 3o p(0,i-1, 11y
i=1 i=2
K
p(OIKIl)pl = Z P(lll:K)Uz
i=0
K K
Z p(OIKIJ) = E P(l:i'K)UZ
j=0 i=0

since p(0,X,0) = p(0,K,3j) = 0 for j > 1.

prove (10.14) for n=mt+l.

(10.15)

K
+ Zp(l 0,K)u, + p(0,0, 1)rl
i=0
(10.16)
(10.17)

Let us assume now that (10.14) holds for n =m, 0 <m < N-2. We now

X K K

Let us add all the equations with n=m+l; 0<n<N-2.

2: p(m+l, 0,])(r +U +p ) + 2: 2: p (m+l, 1,3)(pl+p2+ul+u2)

j=1 i=1l j=1

K K-1

Zp(m+l 1,O)p + Zp(m-t-l 0, j)p2 + 2 plmt+l,i O)]J

i=1 =1 i=1

K K

+ p(m,k, O)u o+ }: z: p(m+l, l,j)p2 + p(m+1,0, O)r

i=1 =1

K-1

X K
+ ), p(ml,0,3)p, + plm2,0,001, Z g p(m+l,i,3)p,

J=1

K-1

+ p(m+l,0,0)x, + Z E plm+l,i, 30Uy +

i=1

K K-1

Zp(m ki3)H,
=1

+ 20 2 plml,i, i, + Zp(m+2 1K, + Zp(mﬂ 0,3)r,

i=1l j=1 i=1

K

+ j.;lp(m-l.llilo)rz

(10.18)
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This can be reduced to

K K
p(m+l, K, 001 + };;umwl,i,x)u2-+ Z;P‘m+l'K'j)“1

i-=0 3=1

K X
= 2 pmK, )y + Z; p(m+2,1,K)1,

=0 i=0
But by the induction assumption

K K
By 2:p(m,K,j) =u Z; p(mt+l,i,K)

j=0 2 {20
and therefore
K K
2L pmrl,K,3) =1, 30 p(m+2,1,K)
j=0 j_:j

Finally, for n = N~1 add all the detailed balance equations with n=N

(Recall that p(N,0,0) = p(N,0,3) =0, j > 2.)

K
p(N,1,0)z, + ;é;p(m,l,j)(p2+u2>

K K
p(N-1,K,0)1; + 3 p(N,1,3)p, + 2 p(N-1,K,3)},

5=1 =1

K
+ ZZENN,l,j-l)uz + p(N,1,0)r,

j=2

oY
K

p(N,1,K)u, = Zp(N-—l,K,j)ul

=0

oxr

K K
Zp(N—l,K,j)ul = ZP(N:irK)Uz
3=0 i=0

(10.19)

(10.20)

(10.21)

(10.22)

(10.23)

(10.24)
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since

Lemma 11, which is analogous to Lemma 5, shows that rate of transi-
tions between the set of states in which machine 1 is in the K'th phase
and the storage is not full and the set of states in which machine 2
is in the K'th phase and the storage is nonempty are equal. fThere is
a similar interpretation to that of Lemma 5.

If, as in Section 4, we define E;j to be the fraction of time machine

1 can produce a piece, then

N-1 K
B, = D 2: p(n,K,j) (10.25)
n=0 3=0
and
N K
E, = 2, : p(n,i,K) (10.26)
n=1 i=0

The rate that parts emerge from machine i is uiEif Temma 11 says that
these rates are equal so that we can define the system's production

rate to be that value. The discussion in Section 4 thus applies to the

Erlang service process as well as the exponential.
Lemma 11

= 10.27
WE, = U E, ( )

Proof: We proved in Lemma 10 that

K . K
My ;g% p(n-1,K3) =1, ;Z% p(n,i,¥) for 1<n<N. (10.28)
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If we sum this equation from n = 1 to n = N we get

N N K

K
My Z:l > P-L,k3) =1, El Zp(nfl.K)
n=1 3=0 n=1 i=0

or
X K

N=-1 K S .
u P(anIJ) = Uz Z 2 p(n,i,K)
1 &t & n=1 i=0

which is (10.27).

(10.29)

(10.30)



1l. ANALYSIS OF INTERNAL EQUATIONS

We again define internal equations as all the detailed balance
equations that do not include any of the steady state probabilities for
n=0 or n=N. We guess a solution to the steady state probabilities that

appear in the internal equations, of the form

Y, B, v, B
,dz) = c Xn Y 1 Y 1 Y 2 Y 2 (11.1)

p(n,a 11 "12 21 22

1

‘where for i=1,2,

0 if Ol.i =0 (11.2)
B, =
i
>
1 if ul >1
0 if a, =0 (11.3)
'Yi =
o,-1 1if o, > 1
i i—

By substituting (11.1) - (11.3) in the internal equations we get the

following five nonlinear equations in the five unknowns X, Yll' le, Y21,
Y22.
+p_HULHL) = ¥ )
¥y1%01 (Py¥R U H) = Yo W HY (11.2)
1—Y§l
U+ = + —_—
¥yq By ¥Ry tr,) = Wy + R YooYy, v, (11.5)
1—Y11<1
= + —_—
Yoy (£ ¥HytR)) = Wy + P Y Yoy v, (11.6)
XY. Y. (p.4p+U+l) = v. Yo ly U, + XY, M. + XY_.x
12721 P Py H ) = T15%y7 Yo¥y 12H2 2171 (11.7)

~48=
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(pl+P+U+1J)“Y11+XYYY u+Yr (11.8)

ll 22 11 22 21 "2 11 2

These five equations in five unknowns can be reduced to a single

2K+2 degree polynomial equation in Y_ .. A single equation (not in

11
polynomial form) appears in Appendix 3.

This equation has 2K+2 solutions. Thus the internal probabilities

are expected to be of the form

2K+2 n Y B Y R
p(n,a,,0,) = }:c oy oyl o2 g2

1ls 12s "21s 22s
where the subscript s refers to solution number, and"Yi and @i are given
by (11.2), (11.3).
This solution is not complete because the boundary probabilities

and equations have not been analyzed.



12. CONCLUSIONS AND FUTURE RESEARCH

We have calculated the steady state probabilities for the two-
machine transfer line subject to failures and exponentially distributed
processing times. These probabilities are used in the calculation of
efficiencies, the production rate, and the average in-process inventory.
Theoretical and computational results demonstrate that the model behaves
in a manner consistent with intuition.

Analysis is somewhat less complete for the transfer line with
Erlang distributed processing times. The internal probabilities are well
understood, but numerical results cannot be obtained without an under-
standing of the boundary probabilities, the probabilities of states with
storage empty or full. Theoretical results have been obtained that partially
characterize the system's behavior.

Future research includes, of course, the completion of the Erlang
case. Further numerical experience with these results should be obtained,
partially to investigate the differences between the exponential and
deterministic processing time systems discussed by Schick and Gershwin
(1978). 1If the differences are small, it may be possible to bypass the
Erlang case altogether. Other areas to be investigated include lines and

networks of three or more machines.
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APPENDIX 1

EXPONENTIAL MODEL COMPUTER PROGRAMS

In this appendix we describe the use of the computer code for the
exponential model. The model has been programmed in the APL computer
language for use in a time sharing environment. It has been implemented

on the MIT IBM.370-168 VM:CMS System.

A. Use of the Computer Code

Step 1:

1.1 Dpial 87511

1.2 Type 0 and twice press return
1.3 Type logon gys

1.4 Password:

1.5 Press Return

1.6 Type: apl

Step 2:
Type: ) LOAD EXPO

This command means: Load the workspace expo from your private library.

Step 3:

Insert the following inputs:

MEWI < rate of service for machine 1
MEWI "< rate of service for machine 2
PI <« rate of failure for machine 1
PIT <rate of failure for machine 2

RI « rate of repair for machine 2

-51-
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RIT rate of repair for machine 2

M (storage capacity) plus (one unit)

Step 4:

Type: EFFIC

To compute steady state probabilities by matrix inversionms.
Type: COE 1

To compute steady state probabilities by our efficient algorithm.
This command ‘displays all steady state probabilities. The command
COEO displays only the probabilities p(0,0._,0.) and p(N,o.,0_)

- 1772 1 2
(oal,oc2 = 0,1).

B. Description of the Computer Code

There are five functions in the workspace oded:

(1) EFFIC - to compute steady state probabilities by matrix inversion.

(2) COE - The main function to compute steady state probabilities
by our efficient algorithm. In COE we perform the calculations of the

four coefficients ¢, ; j=1,2,3,4 and of the production rate and efficiency.
J

(3) ROOT - A function called from COE to compute Ylj' Yzj;

i=1,2,3,4.
(4) ROOT1 - A function called from COE to compute Xj; j=1,2,3,4.

(5) SO0k - A function called from COE to generate all the steady

state probabilities of the system.

C. Listings of the Computer Code

Figures 2-5 contain the listings of the five functions: EFFIC,

COEr ROOTr ROOT1 and SOOK.
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VEFFIC 1]

v EFFIC
L1 Me(Mp5ypl
L2 Fe( (4XM)y (4XMIIP]
L31 M
R S S PR N}
P reMIePIx (oM}
ELEH A RM e LI (M)
g i (L4 RIT Y
de<M3/$I

[ g e 1&MLWTx(M;M+l)
FrMgMHe XM eFTIy (MyMe])
SR A m1¢:1

£ %M )

R P e R

oo 4 7] g0

e § e MEWIX (M L+ EXM)

FETE (o (P RMEWE ) Y (FTLSMEWLE Y X (M L+ 5xM)
R ] e ME WL

LML ARMY -] 3 /T

CAXME Te(4xMy P

LA MY- 2P0l

m{ﬂyJﬁgﬂwljpﬂPIﬁﬂy(H@M}y{H¢HEM)y(H+3xM)j
B {FM Y A0
wlﬁi+!<{MFU‘vfMPU'"fMli)yMJiifﬁ")”(*meIE{1+2xM)91+3xﬁ3)

L4l w

Fig. 2. EFFIC Program for Exponential Systems
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CRAFACETT THT Py eM

5y /SO0

S (MXBHHLED) > 6!
B CHHL 4] .

M) X T[4 XY

[N DES @ E

41065 rB0E

AN
K fdend ],

NN

5 B
R RS RN e

XE3+(ASLRTRA )+ (AJLFT2E) )

o K

Ly
Yy e MEWT L XEOM

FPig. 3. COE Program for Exponential Systems

AIRYTLLRT ) - CORHERAM) XYYRL20XYTLL40)
LB RMYXTTRLEIXTTLL47))




swolsAs TetTausuocdxd IOF swrexboxd TLOOY PU® LOOY

‘p bra
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ENx (G OR(E Ty dxT T LIE]

Tano
U Y Y
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GHOOKT]
v OEOOK

i

SEEUES]

Bl y (T LR L) K (YT R0 R L) X R R )
4 FFDOM

M2 3 4

The oy (Mgl

L R A A N R B2

TOBTOTE FROBABRILITI
(343 =10 =11

ThH lb 16 ThH QL (HFFLAG Y 1) A5 ]

ThH LS TE LS TE L& TE ARG D3 4 H)

Ftrt QU5 &T0AL5 1]

THE HT COEB oy (e [ QOXMEAR S (M )3y ! PEBRCEMT FULL!

A0 14

VTN

ke
T

p
rs%y v ‘

Fig. 5. SOOK Program for Exponential Systems




Computer Outputs

Outputs

(1)

(2)

Hy

My

for the

it

following two cases are

2, Py

=21p1
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= 3
r Py

= 4, p2

shown in Figs.

i

6, N

6

and 7
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APPENDIX 2

ERLANG MODEL COMPUTER PROGRAM

In this appendix we describe the use of a program for obtaining the
steady state probabilities for the Erlangian model by matrix inversion.
The model has been programmed in the API, computer language. We discuss

how to use the program.

A. Use of the Program

Step 1

Get into the CMS computer system.

Step 2

Type: ) LOAD ABA
This command means: load the workspace ABA from your private

library.

Step 3

Ingert the following inputs:

MEWI < rate of service for machine 1
MEWII < rate of service for machine 2
PI <« rate of failure for machine 1
PII <« rate of failure for machine 2
RI <« rate of repair for machine 1

RII « rate of repair for machine 2
M + (storage capacity) plus (one unit)
K < number of service phases

-60-



is

by

-61-

Step 4

Type: EFFIC

To compute steady state probabilities by matrix inversion.

Listing of the Program

The listing of the computer program EFFIC is shown in Fig. 8.

Computer OQOutput

A computer output for the case:

ul = 2, uz = 2, pl = g, pz =17, rl = 3, r2 =6, N=6, K= 2

shown in Fig. 9. It should be noted that the efficiency printed

this program is Ez.

out



-62-

CEFFIC
C1331 €Nl

v EFFIC
£13 TMEW] IS8 ', g MEWT
21 'MEWD IS5 !, ¢MEWIIL
[31 'F1 ISP ¢, 4FI
[4] ‘P2 XS3 ', eFIX
£s1 'Rl XIS3 ', eRX
[61  'R2 IS ',9RIX
£71 'STORAGE CAFACITY IS ', eMaq
[81 'K IS: 1,4k

[ FeCCI+(2XK)+KRDIXM) y ((1+(2XK)+KXDIXM) )P0
L1007 Qe (My ((1+(2XK)I+K22)+1))F0

111 MeQ
£i121 ST ey
L1371 We0

141 SJUlJeds]
151 FLHINPIXMICFIX(MIM)

L1861 FLHEME(KEIIXMICFIIX (Y1)

L1731 (WK /50

L1811 FLHiMle—-(RILRIT)

C191  a(McM) /ST

L2071 MHen

L2131 He0

L2271 Y&

L2331 TOoulJeds]

L2477 TI{Mers]

L2511 HMemrryy

L2861 (H>M) /EOR

L2711 FLHRGMUIRIX(MIM)

L2831 FLHHG(KXM)4H-]JeMEWIX (MY YA(MHIM))
L2971 Le&O

L3071 Tuttel+]

L3317 FLHMGMNE (L4RXK)XMIEFIIX ( (MY LIA(HIM))
L3271  (Lck)/TJ

C331 (riM) /FOL

[340 BORI((M=(J+1)XMIA(HIKXM)) /TF

L3551 9(MH=KxM)/FOS

L3861 FLHHGHIEMEWIX ((HL14+IXMIA(HI(I+1)IXM))
L3771 JJe

381 TEJJIJeII]

£L391 F'ENN;(((((T!H(\J»*.l))X")+»’~-’—1))("‘)~"‘>((~~‘-~~1))+”f]¢~'='11>(((NZ(‘JX"*)KB)“’\("*((d+1))<"“))
L4071  A(JIIK)Y/TEY

[4171 FOLIFLMMGHM]e(~RIT) -~ (FIFMEWT )X (HxXM)
L4271 (HLiM)/FOS

L4337 TEI4(M (Il )xM) /T

C447 (I (K-1))/TO

[LA5] FOSEa(MH(KXM))/TX

L4671 MeQ

L4731 0

£48] 20OJ3JeJd+]

L49]1 =X iMeMy ]

LS50  MieMieq

L5113 s (HM) /COR

[521 FLHNGMHIeRIIX (MHM)

[531 FLHEGLI4HE(IXKIXMTEMEWIIX (HM)

[541 4 (M=M) /FOK

[S51 Lée-1

L5671 Zhibel]

L3571 FLHMNG((14(24L)XK)XM)4+HTeFT

£581 2(Lc(K-1)/=0

LS9 2 (HIM) /FOK

L4607 CORI(MH=lsIXM) /HOS

L4617 FLHMG(KXM)$HTEMEWTIIX ( (M (IXMIFLIA(HL(I+T) XM))
L6623 JJe-)

[63] ERJIIISeSI4]

641 P[NN;((1+(JJ+3)XK)XM)+H]@FIX((N)1+JXM)A(H((J+1)xM))
L6%  H(JIC(K-1)) /BB

L6610 FOKIFLHMGMH e ((~RI)~(FIT+MEWIT)YX(MY1))

Fig. 8, EFFIC Program for Erlang Systems (page 1 of 2)




L4671
L6871
L6912
L7031
L7121
£L721
L7331
L7741
£751
[761
€771
78l
L7921
£80l
£e1l
re21
re31
841
£8sl
[861
£87l
resl
£891
£201
£911
[e21
[?31
[941
[95]
[961
[971
£e8l
L9931
£1001
£i1011
£1021
£1031
£1041
£1051
L1061
£1071
£1081
£1091
r1101
Ci1111
C1121
£1131
ri1141
11513
L1161
L1171
£1181
1191
£1201
L1211
£1221
£1231
C124]
£1251
£1261
£1271
£1281
12921
L1301
r1311
£1321

£1331
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S (H=MIA (K] ) ) /HOS
F(H(I+L Y xMY ST
BN H-D )Y /RO
HOS $ .3 (HCKXMY /X
I¢0
KOTI$TeT4+]
JeQ
KOS Jedd ]
e ()
KOM S Met4 ]
(IR |
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F((I>L)A (M=) ) /SOF
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$S0F
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SHOE
HOSFLHMG Je)
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Ee«((F/F)>0)
F&E /F
FE/QF
EBe(+/E)fQO
E[fE]e]
AF IL&REARF
3 (K=1) /S50
DS ((1+(2AXK)+KXD2IXM)FO
I&Q
IXe}
TOS X641
F(E[I]=0Q)/TOS
DSLIJeAFI[IT]
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Fig. 8 (continued)
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APPENDIX 3

EQUATION FOR Y

11—

Equation (A.l) for Y.. was obtained from equations (11.4) - (11.8) by

11
means of the MACSYMA system (MACSYMA, 1977), The following notation applies

to this equation.

A=Y
ML= W
M2 =,
PL = p,
P2 = p,
RL = 1,
R2=r2

The computer printout of the equation is shown on the page following.
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K -1
(1 - A) A M1 M2 (A (R1 - F1 - M1) + M1)

K
/€L - A ) F1 (A (P2 + PL + M2 + M1) - M1)

(1 - A) M2 (F2 + P1 + M2 + #M1) (A (R1 - P1 - M1) + ML)

K
(1 - A) F1L (A (P2 + PL + M2 + M1) - N1)
(1 - A) M2 (A (R1 - P1 - M1) + M1) A M2 R1
e e e e e e e e ))
v K A (P2 + P1 + M2 + M1) - M1
Al -A)PL
A M2 1 - K A M2

= P2 (e ) (1 = (e

A (P2 + F1 + M2 + M1) - M1 A (P2 + P1 + M2 + M1) - M1

(P2 + P1 + M2 + M1) (A (P2 + P1 + M2 + M1) - ML)

A M2 A M2 (R2 - P2 - M2)
(1 = oo o o ) (-- e + M2)
A (P2 + PL + M2 4+ M1) - M1 A (P2 + P1 + M2 + ML) - M1
A M2 K
(M2 P2 (1 = (mmmmmmm e ) )
A (P2 + P1 + M2 + M1) - M1
A M2
~ M1 (A (P2 + P1 + M2 + M1) - M1) (1 - ————- - - -=)

A P2 + PL + M2 + M1) - M1

A M2 (R2 - F2 - N2)
(= + M2)/C(A M2 F2

A M2 K
(1 = (e ) ) - A R2)
A (P2 + P1 + M2 + M1) - M1
A M2
ZCCA (P2 4+ P1 + M2 + M1) = M1) (1 = mom e )

A (P2 + P1 + M2 + M1) - M1
A M2 (R2 - P2 - M2)
A (P2 + P1 + M2 + M1) - M1
=0 (A.1)
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