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Abstract

For computational design and analysis tasks, scientists and engineers often have avail-
able many different simulation models. The output of each model has an associated
uncertainty that is a result of the modeling process. This uncertainty is referred to
as model discrepancy and is defined as the deviation of the model output relative
to the “true” physical value. The design process typically begins with computation-
ally inexpensive, lower fidelity models and advances to the higher fidelity models as
knowledge of the design space is acquired.

Previous research has developed a Bayesian-based multidisciplinary design opti-
mization (BMDO) framework for conducting multifidelity design with uncertainty.
Fidelity level is associated with the magnitude of model discrepancy. Model selection
is determined by apportioning design uncertainty to the disciplines to identify key
contributors. As fidelity level increases, information from the lower fidelity models is
used to complement the higher fidelity results through information fusion instead of
being discarded, a more traditional approach in multifidelity optimization.

This research expands on the previously developed BMDO framework by inves-
tigating the effects of interdisciplinary coupling and model correlation on the design
process. Uncertainty in the coupling variables is introduced to the BMDO framework.
Multifidelity models tend to be founded on similar underlying physics and numerical
methods. As a result, the model output from different fidelities may exhibit non-
negligible correlation. This research demonstrates that exclusion of model correlation
and uncertainty due to interdisciplinary coupling may result in underestimates of the
uncertainty in design quantities of interest.
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Chapter 1

Introduction

Multidisciplinary design optimization (MDO) involves the simultaneous, collabora-

tive consideration of multiple disciplines and their interactions during an optimiza-

tion process. Traditional MDO methods employ computationally inexpensive low

fidelity models early in the design process to explore the design space. Higher fidelity

models are used when sufficient confidence in the design has been gained to warrant

the increased computational expense. Bayesian-based MDO (BMDO) considers the

inclusion of uncertainty in the design process and provides a method for fidelity man-

agement to identify the level of model fidelity necessary to achieve a desired level of

uncertainty. The research presented in this thesis extends the previously developed

BMDO techniques by investigating the effects of interdisciplinary coupling and model

correlation on the design process.

1.1 Motivation for Bayesian MDO

Multifidelity optimization methods were developed to harness the computationally

inexpensive nature of simple models and accuracy of complicated models. These

methods employ simple models for design space exploration to identify regions of

the design space that are of particular interest relative to the optimization goals,

quantified via the performance metric. Once confidence in the design is gained, com-

putational resources may be allocated to higher fidelity models, targeting portions of
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the design where improvements in accuracy are needed most.

Recent developments in MDO have sought to preserve previously acquired low

fidelity information to avoid information loss or neglect. Instead of supplanting low

fidelity information once high fidelity information is available, information from mul-

tiple fidelities is synthesized by weighting the information relative to the confidence in

the respective sources. The synthesized result may provide a level of accuracy greater

than the inputs. These advances have been achieved via the inclusion of Bayesian

statistics into the MDO process, resulting in a “Bayesian-based approach for repre-

senting, fusing and managing information of varying fidelity within a multidisciplinary

aerospace vehicle design environment” [5].

Numerical simulation is often employed to predict the behavior of real-world phe-

nomena. Unfortunately, these computational models never exactly predict real-world

behavior. The discrepancy may be due to the complexity of the physics involved,

the modeling assumptions employed, and/or the stochastic nature of the problem.

While simple models provide computationally inexpensive estimates of the perfor-

mance metric, the uncertainty of the results is potentially large. If the uncertainty

of the simple models is too high, the results may not be trusted or useful, no matter

how computationally cheap the model.

The level of uncertainty in the performance metric is a result of the uncertainty

generated from the disciplines and varies with model fidelity. An inverse relationship

typically occurs between model fidelity and uncertainty; that is, higher fidelity models

tend to have lower associated uncertainties. This further explains the push for higher

fidelity as the design process advances—uncertainty in the design must be reduced via

the incorporation of more accurate, albeit more computationally expensive, models.

Bayesian-based multidisciplinary design optimization (BMDO) employs two tech-

niques to achieve an improved reduction in performance metric uncertainty as the de-

sign process progresses: the management of model fidelity and fusion of information

from multiple sources. Model fidelity management is accomplished via the appor-

tionment of performance metric uncertainty due to each discipline. This technique

identifies disciplines with disproportionately large contributions to the performance

14



metric uncertainty, pinpointing key opportunities for uncertainty reduction. The re-

sult is identification of which discipline will cause the largest reduction in performance

metric uncertainty if the model fidelity is incremented.

This technique enables confident use of lower fidelity tools via a quantified pro-

cedure for identifying when a higher fidelity tool is necessary. This method avoids

wasting computational resources due to increasing fidelity too early in the design

process, when the design is still nebulous, or a lack of uncertainty reduction from the

excessive use of low accuracy information.

Information fusion improves uncertainty estimates by synthesizing information

from multiple fidelities. Even low fidelity estimates of the performance metric with

high uncertainty may have unique information that may be used in conjunction with

higher fidelity estimates of the performance metric to produce an uncertainty esti-

mate smaller than either of the inputs. This enables higher fidelity information to

be complemented by lower fidelity information instead of merely supplanting lower

fidelity results. This preservation of information may improve computational effi-

ciency by incorporating more previously computed or readily generated information,

potentially reducing the number of expensive higher fidelity model calls required to

achieve to a specific level of uncertainty.

1.2 Literature Review

The BMDO method proposed in Reference [5] applied the work in estimation theory

presented in Ref. [12] to multifidelity, multidisciplinary conceptual design. Uncer-

tainty produced as a consequence of the modeling is of particular interest. Kennedy

et al. proposed the definition of this model uncertainty in Ref. [21] as the discrep-

ancy in the output of a model with respect to some “true” value. Later work termed

the uncertainty as “model discrepancy”, which is maintained throughout this paper

[16, 22].

As defined in the previous BMDO literature, uncertainty estimates from models

of different fidelity level are combined via information fusion as proposed by Winkler
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et al. in Ref. [39]. Other methods to accomplish this task include Bayesian model

averaging, the adjustment factors approach, and the modified adjustment factors

approach as discussed in Refs. [24, 27, 30, 31].

A variety of approaches have been applied towards multifidelity optimization.

March and Alexandrov et al. discussed methods for multifidelity optimization using a

calibration approach in which higher fidelity results replaced lower fidelity information

instead of combining the information [2, 3, 26]. Forrester et al. and Booker et al. have

conducted optimization on an expensive black-box model by creating a surrogate to

act as a lower fidelity model [8, 13, 14, 15]. Other methods have employed the use of

an additive or multiplicative correction between the lower and higher fidelity models

[20, 25]. The higher fidelity model is occasionally sampled and the correction between

the models is updated. Gradient-free multifidelity optimization has been investigated

in Refs. [26] and [28]. Alexandrov et al. proved local convergence using the trust-

region method for multifidelity optimization [2, 3]. Multifidelity optimization with a

strict hierarchy of models based on model fidelity has been investigated by Choi et

al. [9]. The formulation of the BMDO method is sufficiently general to be applicable

to problems that lack a model fidelity hierarchy.

1.3 Objectives

The objectives of this work advance previous BMDO research by developing methods

to incorporate disciplinary coupling and model correlation. The previously developed

BMDO method assumed each discipline may be evaluated independent of the oth-

ers. That is, no interdisciplinary dependencies, referred to as coupling, exist. The

output of each discipline serves as input into a performance block, which calculates

the performance metric. This research advances the BMDO method via the inclusion

of interdisciplinary coupling. Output from each discipline may serve as input into

the performance block and/or another discipline. This opens the possibility of feed-

back loops between disciplines and greatly complicates the estimation of performance

metric uncertainty and attribution of this uncertainty to its sources (the disciplines).
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Models of varying fidelity for a given discipline may also not be independent

sources of information. Increases in fidelity may be due to additional physics being

modeled or the use of finer meshes. Even though the higher fidelity models provide

more accurate, less uncertain results, the output of the different fidelity models may

exhibit some level of correlation. The effect of correlation on the BMDO process is

investigated in this research. The effect of correlation on the information fusion step

is of particular interest since the consequences affect both the management of model

fidelity and estimation of performance metric uncertainty.

1.4 Outline

Chapter 2 discusses the basic BMDO method. The various aspects of the BMDO

framework are discussed and a walkthrough of the BMDO method using an an air-

craft design problem is conducted. Chapter 3 describes how the coupling is addressed

and investigates the effects of coupling on the BMDO framework. Chapter 4 investi-

gates model correlation and its influence on fidelity management and attribution of

performance metric uncertainty to the respective disciplines. The results are summa-

rized in Chapter 5 and recommendations for future work are proffered.
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Chapter 2

Bayesian-based Multidisciplinary

Optimization

The formulation and terminology for multidisciplinary design optimization are de-

fined. The BMDO algorithm is presented and each step of the algorithm and its

role are discussed in detail. The physics models used for our problem of interest are

discussed and a walkthrough of the BMDO process using these models is performed.

2.1 BMDO Framework

2.1.1 MDO Formulation and Terminology

A variety of variable types are employed in the MDO methodology. Design variables

are degrees of freedom that serve as inputs to the disciplines and performance block.

Design variables are the properties being optimized or modified to create the design.

A collection of design variables is referred to as a design vector. Design variables are

denoted by the symbol x.

Coupling variables are outputs of one discipline and inputs into another disci-

pline. These variables are represented by the symbol yAB where the first and second

subscripts denote the source and destination disciplines, respectively. Disciplinary

outputs are variables that are outputs of a discipline and inputs into the performance
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block. Disciplinary outputs are denoted by zAP , where the subscripts represent the

variable is an output of discipline A and an input to performance block P. It is pos-

sible for a variable to be both a coupling variable and disciplinary output. That is,

a particular output for a discipline may be an input into both another discipline and

the performance block. The term “performance metric” is generalized by referring to

a specific output of the performance block as a “quantity of interest”.

A summary of these variable types is shown in Table 2.1. It is important to note

for later discussion that lowercase and uppercase symbols denote deterministic and

random variables, respectively.

Variable Type Symbol Source Destination
Design Variables x Optimizer, User Disciplines, Performance

Coupling Variables yAB Discipline A Discipline B
Disciplinary Output zAP Discipline A Performance P
Quantity of Interest q Performance n/a

Table 2.1: Description of Variables for MDO methodology

A diagram displaying a general two-discipline MDO flowchart is shown in Figure 2-

1. A design vector is generated from the optimizer, user, or other source and is passed

directly to the disciplines and/or performance block. The arrow denoting design vari-

ables being passed to the performance block is excluded for clarity. The disciplines,

shown here as ’Module A’ and ’Module B’, accept design and coupling variables from

other disciplines as inputs, and output coupling variables and disciplinary outputs.

The performance block accepts disciplinary outputs and design variables as inputs

and calculates the quantity of interest, an output of the performance block. It may

be observed that the dual-coupling between the two disciplines creates a potential for

a feedback loop.

2.1.2 BMDO Algorithm

The steps for a single BMDO iteration are shown in Algorithm 1 [5]. The process

starts with all disciplines using their lowest fidelity model. The BMDO method

consists of multiple iterations and continues until the BMDO termination criteria
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Figure 2-1: Flowchart for General MDO Formulation

are satisfied as shown in Step 5. Each step is explained in detail in the subsequent

subsection.

Algorithm 1 Bayesian-based Multidisciplinary Design Optimization Iteration

1. Given an initial design, conduct optimization until convergence criteria are satis-
fied.

2. Quantify uncertainty of disciplinary outputs.
3. Conduct information fusion on disciplinary outputs for disciplines in which a lower

fidelity model exists.
4. Estimate quantity of interest and associated uncertainty.
5. Determine if BMDO termination criteria are satisfied. If yes, exit algorithm.
6. Conduct global sensitivity analysis to apportion quantity of interest uncertainty

to source disciplines.
7. Identify primary contributors to quantity of interest uncertainty, increase model

fidelity of these disciplines.
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2.1.3 Discussion of BMDO Algorithm

The BMDO method iteration is comprised of multiple steps. This section individually

discusses each of the steps in detail.

Step 1: Optimization

Optimization is conducted to locate designs with improved performance metrics.

These tools traverse the design space using some determined search algorithm which

may include: gradient descent, random/genetic search, etc. The search continues until

convergence criteria are satisfied or the optimizer is unable to progress any further.

Step 2: Disciplinary Output Uncertainty

The uncertainty associated with the disciplinary output must be quantified and ap-

plied to the deterministic disciplinary output values. This and previous research in

the BMDO method consider only uncertainty due to model discrepancy. Model dis-

crepancy is defined as the deviation of a particular model’s output from the unknown

“true” value. This error or deviation associated with the output of a model may be

due to missing physics, modeling assumptions, and/or the stochastic nature of the

phenomenon being modeled. The uncertainty due to model discrepancy is modeled

via some arbitrary function of the discipline or performance block’s input and/or

output.

A flowchart of the application of uncertainty due to model discrepancy is shown

in Figure 2-2. Disciplinary output with uncertainty is generated by adding model

discrepancy to the deterministic disciplinary output values, zAP . Model discrepancy

is denoted by ε with subscripts matching the disciplinary output to which the dis-

crepancy is being applied. Uncertainty due to model discrepancy is generated by

sampling a normal distribution with the calculated variance and zero mean.
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Figure 2-2: Method for Applying Uncertainty Due to Model Discrepancy

Step 3: Information Fusion

If one or more of the disciplines has a lower fidelity model available, an information

fusion step occurs; otherwise, the algorithm proceeds onto the next step. Informa-

tion fusion combines knowledge from multiple sources to produce a single improved

synthesized result. This process starts with the estimation of the disciplinary output

values and associated uncertainty using multiple models of varying fidelity. Infor-

mation fusion is conducted on each discipline individually and all fidelity models

for a given discipline are evaluated using the same design and coupling variable in-

puts. Once multiple estimates of the disciplinary output values and uncertainty are

generated, the estimates are synthesized to form an improved estimate of both the

disciplinary values and uncertainty. This process extracts information from multiple

sources, resulting in a synthesized estimate of the uncertainty that is smaller than

any of the inputs.

This method preserves previously generated results to enable lower fidelity infor-

mation to inform higher fidelity results rather than simply being supplanted once
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higher fidelity results are available. In addition, this method incorporates results

from computationally inexpensive lower fidelity models to improve the uncertainty

estimates of a higher fidelity models.

Equations 2.1 and 2.2 are used to calculate the fused mean and variance for a

particular disciplinary output [39]. These equations assume normal distributions as

inputs and output a fused normal distribution. The numerical subscripts identify

whether the variable corresponds to the first or second input. The subscript “F”

identifies the fused variable. Mean values are denoted by µ and variance by σ2.

The correlation coefficient is denoted by ρ and quantifies the correlation between the

two input sources. Previous research applied the assumption of independent models

(ρ = 0) and employed the simplified formulas shown in Equations 2.3 and 2.4.

µF =
(σ2

2 − ρσ1σ2)µ1 + (σ2
1 − ρσ1σ2)µ2

σ2
1 + σ2

2 − 2ρσ1σ2
(2.1)

σ2
F =

(1 − ρ2)σ2
1σ

2
2

σ2
1 + σ2

2 − 2ρσ1σ2
(2.2)

µF =
σ2
2µ1 + σ2

1µ2

σ2
1 + σ2

2

(2.3)

σ2
F =

σ2
1σ

2
2

σ2
1 + σ2

2

(2.4)

The uncorrelated fusion equation for the mean (Eq. 2.3) is simply the variance-

weighted average of the inputs. That is, if a large discrepancy exists between the

variances of the inputs, the mean of the input with the smaller variances will be

weighted more heavily. If one of the inputs has zero variance, the fused mean will be

identical to the mean of the input with zero variance.

If the inputs have identical variance, the fused mean will be the arithmetic average

of the inputs and the fused variance will be one half of the input variance. Fusion may

be conducted on more than two distributions by first fusing two input distributions

to generate a single fused distribution. A third input may then be fused with the first
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fused distribution to generate a new fused distribution. This process may proceed

indefinitely.

Step 4: Quantity of Interest Uncertainty

Once the mean and variance of the disciplinary outputs for all disciplines have been

calculated from Steps 2 and 3, the acquired normal distributions are sampled us-

ing Latin Hypercube sampling. This method starts by randomly generating a large

number of samples of the disciplinary output. The samples are each fed into the per-

formance block, which is subsequently evaluated. The result is a large collection of

calculated values for the quantity of interest which may be used to generate estimates

of the mean and variance of the quantity of interest.

Step 5: Check Termination Criteria

Once the termination criteria for the BMDO method are satisfied, the algorithm

terminates. These criteria may take on a variety of forms including: a maximum

number of fidelity level increments or an allowable level of uncertainty in the quantity

of interest. Once the uncertainty in the quantity of interest is below the specified

allowable level, the algorithm terminates and no additional fidelity increments are

necessary. It is also possible for the algorithm to proceed until no higher fidelity

models are available, i.e. no additional sources of information are available to further

reduce the quantity of interest uncertainty.

Step 6: Global Sensitivity Analysis

The BMDO framework employs a variance-based global sensitivity analysis (GSA) to

attribute uncertainty in the quantity of interest to the sources. Since all uncertainty

is assumed to be derived from model discrepancy, all uncertainty in the quantity

of interest may be traced back to the source discipline or an interaction of source

disciplines.

Sensitivity indices are defined as the percentage of quantity of interest variance

that is caused by a given source. Uncertainty that is due purely to one discipline
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is called the main effect and is represented via main sensitivity indices. Uncertainty

due to interactions of multiple disciplines is referred to as an interaction effect and is

denoted by interaction sensitivity indices. The total effect of a particular discipline is

denoted via total sensitivity indices and considers all sources of uncertainty involving

the specified discipline—including both main and interaction effects.

The BMDO framework employs the Sobol’ method to apportion the variance in the

quantity of interest to the sources [18, 37]. This method starts with two independent

M×N matrices of random numbers, where M is the number of samples and N is the

total number of disciplinary outputs from all disciplines. The first matrix is denoted

by C and the second by D. A third set of matrices, Ei is generated by copying the

matrix D and replacing all columns corresponding to disciplinary outputs of discipline

i with the respective columns of matrix C. Next, the performance block is evaluated

for each sample in the C, D, and E matrices to produce vectors of estimated quantity

of interest values, represented by qC , qD, and qEi
as shown in Equation 2.5. Each

evaluated sample corresponds with a single entry in the quantity of interest vectors.

Finally, Equations 2.7 and 2.8 are used to calculate to main and total sensitivity

indices, respectively, for discipline i.

For two disciplines, only a single interaction term exists. As a result, all uncer-

tainty not already attributed to either discipline via main effects is considered to be

the result of disciplinary interactions. The equation for the interaction sensitivity

index, SI , is shown in equation 2.9. The disciplines A and B are designated via their

respective subscripts.

qC = f (C) , qD = f (D) , qEi
= f (Ei) (2.5)

f 2
0 =

 1

N

N∑
j=1

q
(j)
C

2

(2.6)

Si =
qC · qEi

− f 2
0

qC · qC − f 2
0

(2.7)
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STi
= 1 − qD · qEi

− f 2
0

qC · qC − f 2
0

(2.8)

SI = 1 − SA − SB (2.9)

The Sobol’ method operates by sampling and resampling data, then comparing the

calculated quantity of interest vectors. The matrix C is considered the sampled data

and matrix D the resampled data. To calculate the sensitivity indices for discipline i,

all disciplinary outputs from the other disciplines are resampled while the disciplinary

outputs corresponding with discipline i are simply sampled. This is the creation of

matrix Ei. Equations 2.7 and 2.8 estimate the variance of the quantity of interest due

to the disciplinary output of discipline i relative to the overall variance considering

all disciplinary outputs from all disciplines. The effects of the disciplinary outputs

from discipline i are isolated by the scalar products. The effects due to disciplinary

outputs in modules except i are random due to the resampling and these effects will

tend to zero as the number of samples increases. This leaves only the effects of the

disciplinary outputs of discipline i left. A detailed description regarding this method

is available in Ref. [33].

The discipline with the largest main sensitivity index has the largest contribution

to quantity of interest uncertainty. This discipline is a candidate for an increase in

model fidelity level since it may result in the largest achievable uncertainty reduction.

Figure 2-3 shows a flowchart for the GSA method. To calculate the sensitivity indices

for discipline A, εAP is sampled and εBP is resampled. Conversely, to calculate the

sensitivity indices of discipline B, εBP is sampled and εAP is resampled.

Step 7: Increment Model Fidelity

The management of model fidelity level is a crucial component of the BMDO method.

Increasing fidelity too early in the design process is computationally expensive and

risky. Computational resources may be wasted exploring undesirable regions of the

design space. Increasing model fidelity too late in the design process stalls the reduc-
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Figure 2-3: Problem Setup for Coupled System Global Sensitivity Analysis

tion of uncertainty as the design process proceeds without the necessary information

from the higher fidelity models.

After the completion of the Step 6 and the calculation of main sensitivity index

for each discipline, the discipline with the largest main sensitivity index is increased

in fidelity level while all other disciplines are held at their current fidelity level. This

method only increases fidelity level when necessary to achieve further reduction in

uncertainty and only increases fidelity for the discipline with the largest contribution

to overall uncertainty in the quantity of interest. This avoids unnecessarily increasing

fidelity level for disciplines which would provide little reduction in uncertainty.
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2.2 Physics Models

Our problem of interest is the design of a medium-altitude, long-endurance unmanned

aerial vehicle (UAV) with minimal fuel burned in order to complete a specified mission.

Two disciplinary models were developed: structures and aeropropulsion [23]. Each

model has two fidelity levels [17]. The performance block has a single fidelity level.

2.2.1 Structures Module

The structures model considers four components of the aircraft: the fuselage, wing,

and horizontal/vertical tail surfaces. It is assumed the wing and tail surfaces create

all forces and moments for flight and control. The wing and tail are linearly tapered

and swept. External fuel storage pods are attached to the wing for increased flight

endurance.

The fuselage is modeled as a cylinder with a conical tail. A standard two-surface

tail comprised of horizontal and vertical surfaces is considered. The fuselage is sized

by the payload and avionics volumetric requirements. Both the fuselage and wing

are available for fuel storage. A fixed tripod-style arrangement for landing gear is

assumed. Landing gear location and heights are selected to minimize landing loads

and ensure adequate ground clearance, governed by the Federal Aviation Regulations

for air worthiness (FAR 23).

Internal iterations are used to close the loop between aircraft loading, structural

sizing, and weight estimation. The fidelity levels are differentiated by the methods

used for sizing and weight estimation.

Low Fidelity

Model outputs are primarily calculated by weight estimation using Raymer and

Roskam correlations [29, 32]. The generality of these relationships enables the low

fidelity model to be applicable for several classes of aircraft. This potentially aids the

exploration of the design space since the model may be applicable for a wide range

of possible inputs. Margins-of-safety are not considered for the low fidelity model.
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Medium Fidelity

First principles are employed for sizing the primary (load-bearing) structures [40].

Weight fractions are used to estimate the mass of secondary (non-load-bearing) struc-

tures. Primary and secondary weight estimates are synthesized to form a compos-

ite estimate of the aircraft weight. Margins of safety are considered for structural

strength, static margin, and balance.

2.2.2 Aeropropulsion Module

Two primary propulsive components are considered for the aeropropulsion model.

The powerplant provides shaft power by consuming fuel. The propulsor generates

thrust via the conversion of shaft power. The powerplant is a turbocharged four-

stroke diesel engine that consumes JP-8 fuel. The propulsor is a three-bladed variable

pitch operating at a constant rotational rate. The model assumes the aircraft has two

engines, one located on each wing.

Both on and off-design analyses are performed for the aeropropulsion model. The

engine is sized via the on-design analysis. The minimum engine power required to

achieve the specified flight conditions during each segment of the flight is calculated.

Engine weight is estimated based on the minimum power requirements to complete

the mission. Off-design calculates maximum thrust available, throttle required for

desired flight performance, and fuel consumption at any moment during the flight.

These values are used to estimate mission performance.

Drag is calculated via the synthesis of multiple components of drag, including

induced, parasitic, and trim drag. These calculations estimate the drag during the

mission based on the aircraft geometry, empty weight, and fuel weight. Mission

segments are discretized and the loads are balanced at each step. Flight speed is

determined by ensuring a valid coefficient of lift while minimizing drag [1]. Changes

in aircraft weight due to fuel burned is considered at each discretization step for all

mission segments. An Oswald efficiency factor of 0.85 and a fixed base coefficient

of drag of 0.02 are assumed. A statistical relationship between wing loading and
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thrust-to-weight is used to estimate take-off distance [11].

Low Fidelity

Actuator disk theory is used to estimate the propeller thrust for a given streamtube

capture area and power input from the powerplant. The powerplant assumes constant

brake specific fuel consumption for all flight conditions and power settings. Thrust

specific fuel consumption (TSFC) variations are due to changes in propulsive efficiency

only.

Medium Fidelity

Blade element theory is used to estimate propeller thrust. Blade loading and pro-

peller rotational speed are considered in these calculations. A turbocharged diesel

engine cycle analysis is used to estimate engine performance. A simple thermody-

namics model without specific heat variance due to temperature is employed. A cycle

analysis is completed to calculate the necessary displacement of the engine to meet

power requirements. Engine weight is estimated from correlations of total engine

displacement.

2.2.3 Performance Block

The performance metric is the mass of fuel required to fly the specified mission. The

Breguet range equation is used to calculate the fuel burned for the cruise and loiter

segments of the mission. Cruise distance and loiter duration are constants for the

problem.

2.2.4 Variables and Constraints

The problem of interest has a total of twenty-five design variables, shown in Table 2.2.

Twenty-one design variables are exclusively for the structures module and two for the

aeropropulsion module. The remaining two design variables are shared between both

modules. Many of the design variables have been normalized or nondimensionalized.
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Station positions for the wing and tail surfaces are nondimensionalized by the sur-

face’s span. Surface chords are normalized via the root chord and fuel fill ratios are

normalized by total fuel volume available.

Variable Units Destination(s)
Wingspan ft Structures and

Aeropropulsion
Horizontal Tail Aspect Ratio - Structures and

Aeropropulsion
Wing Aspect Ratio - Structures

Wing Root Station Position - Structures
Wing Engine Station Position - Structures
Wing Pylon Station Position - Structures
Wing Engine Station Chord - Structures
Wing Pylon Station Chord - Structures
Wing Tip Station Chord - Structures

Wing Sweep Angle deg Structures
Horizontal Tail Root Station Position - Structures

Horizontal Tail Tip Station Chord - Structures
Horizontal Tail Sweep Angle deg Structures

Horizontal Tail Position - Structures
Vertical Tail Aspect Ratio - Structures

Vertical Tail Root Station Position - Structures
Vertical Tail Tip Station Chord - Structures

Vertical Tail Sweep Angle deg Structures
Vertical Tail Position - Structures
Wing Fuel Fill Ratio - Structures

Fuselage Fuel Fill Ratio - Structures
Length of Nose Ratio ft Structures
Length of Tail Ratio ft Structures

Turbocharger Pressure Ratio - Aeropropulsion
Propeller Radius m Aeropropulsion

Table 2.2: Design Variables for Aircraft Design Problem

The wing and tail surfaces have several break points. All three surfaces have

root and tip breaks. The root break point designates where the surface’s sweep and

taper characteristics begin. The area of the surface in-board of the root break point

is unswept and untapered. The tip break point marks the farthest extent from the

fuselage for a particular surface. The wing also has break points for the engine and

pylons (for fuel storage). Each surface has its own sweep angle that starts at the root
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position. A single sweep angle is used for the wing instead of a unique sweep angle

for each of three wing sections from the root to tip stations.

Figure 2-4 shows a flowchart displaying the variable flow between disciplines and

the performance block for our problem. The structures module takes five coupling

variables as inputs from the aeropropulsion module including: engine weight and flight

speeds. The flight speeds are used for stability calculations. The structures module

has ten outputs, shown in Table 2.3, which include: aircraft weight, fuel weight,

planform area, fuselage surface area, horizontal tail surface area, root chord, mean

chord, location of the center of gravity, location of neutral point, and horizontal tail

position. The structures module calculates six constraints. Four of the constraints

measure the margins of safety for the fuselage, wing, and horizontal/vertical tail

surfaces. The remaining two calculate the center of gravity and neutral point to

ensure a stable aircraft design.

Figure 2-4: Flowchart for Aircraft Design Problem
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Variable Units Source Destination(s)
Aircraft Weight lbm Structures Aeropropulsion and

Performance
Weight of Fuel On-Board lbm Structures Aeropropulsion and

Performance
Planform Area ft2 Structures Aeropropulsion and

Performance
Fuselage Wetted Area ft2 Structures Aeropropulsion

Root Chord ft Structures Aeropropulsion
Mean Chord ft Structures Aeropropulsion

Horizontal Tail Planform Area ft2 Structures Aeropropulsion
Position of Center of Gravity ft Structures Aeropropulsion

Position of Neutral Point ft Structures Aeropropulsion
Position of Horizontal Tail ft Structures Aeropropulsion

Engine Weight lbm Aeropropulsion Structures
Cruise Speed kts Aeropropulsion Structures
Dive Speed kts Aeropropulsion Structures
Stall Speed kts Aeropropulsion Structures

Maximum Operating Speed kts Aeropropulsion Structures
Cruise TSFC hr−1 Aeropropulsion Performance
Loiter TSFC hr−1 Aeropropulsion Performance

Cruise Lift-to-Drag Ratio - Aeropropulsion Performance
Loiter Lift-to-Drag Ratio - Aeropropulsion Performance

Cruise Lift Coefficient - Aeropropulsion Performance
Loiter Lift Coefficient - Aeropropulsion Performance

Table 2.3: Coupling Variables and Disciplinary Outputs for Aircraft Design Problem

The aeropropulsion module has ten coupling variable inputs from the structure

module which provide important geometric values for the aerodynamics analysis.

There are eleven outputs of the aeropropulsion module, including: engine weight,

flight speeds, TSFCs, lift-to-drag ratios, and lift coefficients. Two of the eight aero-

propulsion constraints ensure sufficient excess engine power to reach cruise altitude

and maintain a specified minimum climb rate. Another four constraints set bounds

on the allowable coefficient of lift and Mach numbers. The final two aeropropulsion

constraints ensure sufficient thrust is generated to maintain flight during the loiter

and cruise segments of the mission.

The performance block takes nine inputs from the structures and aeropropulsion

modules: aircraft weight, fuel weight, planform area, TSFCs, lift-to-drag ratios, and
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lift coefficients. The output of the performance block are the weight of fuel burned

in order to complete the desired mission. The single constraint for the performance

block ensures the weight of fuel on-board meets or exceeds the weight of fuel required

to perform the specified mission.

2.3 Application of BMDO

This section briefly discusses the application of the BMDO process to our problem.

Problem-specific information regarding the BMDO process is provided and a walk-

through of the BMDO method is completed using the BMDO methodology developed

by previous research. Disciplinary coupling and model correlation are not considered

for this section but will be discussed in the later chapters.

2.3.1 Problem-Specific Information

Optimization

Optimization is conducted using Matlab’s “fmincon” function, a constrained nonlin-

ear minimization algorithm. This routine uses gradient-based optimization methods

to minimize the performance metric. Optimization proceeds until a minimum is

located within the specified stopping conditions or if the function fails to find a min-

imum. Due to the complexity of our problem and the tendency of gradient methods

to locate local minima, many starting points were considered as a way to search a

greater portion of the design space. The settings used for optimization are shown in

Table 2.4 and are elements of Matlab’s“optimset” feature.

Setting Description Value
Algorithm Algorithm for optimization Interior-point

TolFun Convergence tolerance for objective function 10−3

TolCon Convergence tolerance for constraints 10−3

TolX Convergence tolerance for design variables 10−5

MaxFunEvals Maximum number of function evaluations 104

DiffMinChange Minimum step size for finite differencing 10−3

Table 2.4: Optimization Settings
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A fixed-point iteration was used to converge the coupling variable values. This

method evaluates each discipline in succession and updates the coupling variable

values after each disciplinary evaluation. This procedure proceeds until the change in

coupling variables is less than a specified tolerance. A maximum of twenty fixed-point

iterations were allowed and the convergence tolerance was 10−5.

Uncertainty Estimation

Uncertainty in model outputs due to model discrepancy was assumed to have a stan-

dard deviation that is proportional to the deterministic value at the designated design

point. The standard deviation of the uncertainty for low and medium fidelity mod-

els were 15% and 10% of the deterministic value, respectively. All uncertainty due

to model discrepancy is assumed to be Gaussian in accordance with the maximum

entropy method [19].

After the completion of steps 2 and 3 of the BMDO algorithm, normal distributions

for each of the disciplinary outputs have been generated. Matlab’s Latin hypercube

sampling function “lhsdesign” is used to generate a total of 50, 000 samples. Next,

the performance block is evaluated for each sample. The mean and variance of the

quantity of interest are estimated from the evaluations of the performance block.

2.3.2 First Iteration

The initial design was determined by sampling the disciplines and selecting the feasible

point with the best performance metric (lowest mass of fuel burned during specified

mission). Figure 2-5 shows the feasible initial design. The starting design is similar in

appearance to existing medium-altitude, long-endurance UAVs. Both the structures

and aeropropulsion modules employ low fidelity models. The BMDO method is set to

terminate when no additional fidelity increases are available. Table A.1 in Appendix

A contains the values of the design variables for the design vectors generated during

the BMDO walkthrough. The associated coupling variables and disciplinary outputs

for these design vectors are available in Table A.2.
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Figure 2-5: Initial Feasible Design

Step 1: Optimization

Starting at the feasible initial design, optimization was completed to produce the

optimized design shown in Figure 2-6. The size of the aircraft has decreased consid-

erably, most notably the length of the fuselage and wing chord. The wing has become

slightly more swept and the aspect ratio of the wing has increased. The horizontal

tail surface has decreased in both area and span.

Step 2: Disciplinary Output Uncertainty

The deterministic values of the disciplinary output and their associated standard

deviation due to uncertainty are shown in Table 2.5.

Step 3: Information Fusion

No lower fidelity models are available for either the structures or aeropropulsion mod-

ule. As a result, no information fusion is performed and the algorithm proceeds onto

the next step.
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Figure 2-6: Optimized Design for First Iteration

Variable Units Deterministic Standard
Value Deviation

Aircraft Weight lbm 3989 598.4
Weight of Fuel On-Board lbm 1349 202.3

Planform Area ft2 214.0 32.11
Cruise TSFC hr−1 0.167 0.025
Loiter TSFC hr−1 0.105 0.16

Cruise Lift-to-Drag Ratio - 22.87 3.43
Loiter Lift-to-Drag Ratio - 30.13 4.52

Cruise Lift Coefficient - 0.543 0.081
Loiter Lift Coefficient - 0.943 0.141

Table 2.5: Deterministic Disciplinary Output Values and Uncertainty for First Iter-
ation

Step 4: Quantity of Interest Uncertainty

The disciplinary output distributions calculated in step 2 are sampled and the perfor-

mance block is evaluated. The result is a mean of 1359 lbm with a standard deviation

of 269.2 lbm for the quantity of interest.
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Step 5: Check Termination Criteria

The termination criteria are not satisfied; higher fidelity models exist for both the

structures and aeropropulsion modules. The algorithm proceeds onto the next step.

Step 6: Global Sensitivity Analysis

The results of the first global sensitivity analysis are shown in Table 2.6 and visualized

with a pie diagram.

Sensitivity Index Value
Structures Main 0.44

Aeropropulsion Main 0.55
Structures Total 0.45

Aeropropulsion Total 0.55
Interaction 0.01

Table 2.6: Results of First Global Sensitivity Analysis

Step 7: Increment Model Fidelity

The aeropropulsion module is the largest contributor to the quantity of interest uncer-

tainty. As a result, the aeropropulsion model fidelity level is incremented to medium

while the structures model remains at low fidelity.

2.3.3 Second Iteration

Step 1: Optimization

Optimization starts with the optimized design from the previous iteration. The low

fidelity structures and medium fidelity aeropropulsion models are used for optimiza-

tion. The new optimized design is shown in Figure 2-7. Wing sweep has decreased
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slightly. Wing span and chord have increased, providing more volume in the wing for

fuel storage. The length of the fuselage has increased.

Figure 2-7: Optimized Design for Second Iteration

Step 2: Disciplinary Output Uncertainty

The deterministic values of the disciplinary output and associated standard deviation

due to model discrepancy are shown in Table 2.7.

Step 3: Information Fusion

Information fusion is conducted on the disciplinary output distributions calculated in

the previous step. Disciplinary output distributions are generated by evaluating the

low fidelity aeropropulsion model with the same design and coupling variable inputs

as the current fidelity case. Step 2 is repeated for the low fidelity aeropropulsion

results to convert the deterministic output of the low fidelity aeropropulsion model

into a distribution that considers model discrepancy. The resultant distribution from

the low fidelity model is fused with the results from the medium fidelity model as
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Variable Units Deterministic Standard
Value Deviation

Aircraft Weight lbm 5529 829.3
Weight of Fuel On-Board lbm 2115 317.3

Planform Area ft2 452.5 67.9
Cruise TSFC hr−1 0.103 0.010
Loiter TSFC hr−1 0.107 0.011

Cruise Lift-to-Drag Ratio - 28.21 2.82
Loiter Lift-to-Drag Ratio - 24.02 2.40

Cruise Lift Coefficient - 0.991 0.099
Loiter Lift Coefficient - 0.625 0.062

Table 2.7: Deterministic Disciplinary Output Values and Uncertainty for Second
Iteration

shown in Figure 2.8. Since a lower fidelity structures model is not available, the

disciplinary outputs from the structures module are not fused. The column labeled

“current fidelity” denotes results generated from current fidelity models, which were

used during the optimization for this iteration. For the second iteration, this includes

low fidelity structures and medium fidelity aeropropulsion.

Variable Units Low Current Fused
Fidelity Fidelity Mean

Structures Fidelity - Low Low -
Aeropropulsion Fidelity - Low Med. -

Aircraft Weight lbm 5529 5529 5529
Weight of Fuel On-Board lbm 2116 2116 2116

Planform Area ft2 452.5 452.5 452.5
Cruise TSFC hr−1 0.112 0.103 0.106
Loiter TSFC hr−1 0.113 0.107 0.109

Cruise Lift-to-Drag Ratio - 28.22 28.22 28.22
Loiter Lift-to-Drag Ratio - 23.97 24.02 24.00

Cruise Lift Coefficient - 0.991 0.991 0.991
Loiter Lift Coefficient - 0.623 0.625 0.624

Table 2.8: Results of First Information Fusion

Step 4: Quantity of Interest Uncertainty

Sampling of the fused disciplinary output distributions from Step 3 and subsequent

evaluation of the performance block leads to a new mean of 2135 lbm and standard
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deviation of 339.9 lbm for the mass of fuel burned. The increase in standard deviation

of the quantity of interest despite a model fidelity increase is due to an increase in the

values of the deterministic disciplinary outputs. Since model discrepancy is modeled

as a relative fraction of the deterministic mean, the uncertainty associated with the

disciplinary outputs has increased proportionately.

Step 5: Check Termination Criteria

The termination criteria are not satisfied; a higher fidelity model exists for the struc-

tures module. The algorithm proceeds onto the next step.

Step 6: Global Sensitivity Analysis

Global sensitivity analysis results for the second iteration are shown in Table 2.9.

Sensitivity Index Value
Structures Main 0.66

Aeropropulsion Main 0.33
Structures Total 0.67

Aeropropulsion Total 0.33
Interaction 0.00

Table 2.9: Results of Second Global Sensitivity Analysis

Step 7: Increment Model Fidelity

A majority of the uncertainty in the quantity of interest is due to the structures

module. As a result, the fidelity level of the structures model is increased to medium

while the aeropropulsion model remains at medium fidelity.
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2.3.4 Third Iteration

Step 1: Optimization

The design from the previous iteration is used as the starting point for optimization,

which is completed with both disciplines using medium fidelity models. The new

optimized design is shown in Figure 2-8. The sweep of the wing has further decreased

and the fuselage has been elongated. The wing continues to provide significant volume

for fuel storage. In addition, the fuel volume of the fuselage has increased.

Figure 2-8: Optimized Design for Third Iteration

Step 2: Disciplinary Output Uncertainty

The deterministic values of the disciplinary output and associated standard deviation

due to uncertainty are shown in Table 2.10.

Step 3: Information Fusion

Information fusion is conducted on the disciplinary output distributions calculated in

the previous step. Both the structures and aeropropulsion modules have lower fidelity
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Variable Units Deterministic Standard
Value Deviation

Aircraft Weight lbm 5358 535.8
Weight of Fuel On-Board lbm 2052 205.2

Planform Area ft2 435.2 43.52
Cruise TSFC hr−1 0.103 0.010
Loiter TSFC hr−1 0.107 0.011

Cruise Lift-to-Drag Ratio - 27.75 2.78
Loiter Lift-to-Drag Ratio - 23.88 2.39

Cruise Lift Coefficient - 0.999 0.100
Loiter Lift Coefficient - 0.629 0.063

Table 2.10: Deterministic Disciplinary Output Values and Uncertainty for Third
Iteration

models available. As a result, information fusion will be conducted on both modules.

Current fidelity results are generated with both structures and aeropropulsion em-

ploying medium fidelity models.

The low fidelity models are evaluated using the same design and coupling variable

inputs as the medium fidelity models. Uncertainty is applied to the deterministic

output and the low and medium fidelity distributions are fused to produce fused

distributions. The mean values of the fused distributions are shown in Table 2.11.

Variable Units Low Current Fused
Fidelity Fidelity Mean

Structures Fidelity - Low Med. -
Aeropropulsion Fidelity - Low Med. -

Aircraft Weight lbm 5328 5358 5349
Weight of Fuel On-Board lbm 1974 2053 2027

Planform Area ft2 435.2 435.2 435.2
Cruise TSFC hr−1 0.112 0.103 0.106
Loiter TSFC hr−1 0.114 0.107 0.109

Cruise Lift-to-Drag Ratio - 27.76 27.76 27.76
Loiter Lift-to-Drag Ratio - 23.83 23.88 23.86

Cruise Lift Coefficient - 0.999 0.999 0.999
Loiter Lift Coefficient - 0.627 0.629 0.628

Table 2.11: Results of Second Information Fusion
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Step 4: Quantity of Interest Uncertainty

The fused disciplinary output distributions result in mean and standard deviation

estimates of 2081 lbm and 229.5 lbm, respectively, for the quantity of interest.

Step 5: Check Termination Criteria

The termination criteria are satisfied; neither the structures nor aeropropulsion mod-

ule have a higher fidelity models available. The algorithm is complete. If higher

fidelity models were available, the algorithm would proceed onto the fourth iteration.

2.3.5 Summary of BMDO Walkthrough

Three iterations of the BMDO method were conducted. The fidelity level of the aero-

propulsion and structures modules were each incremented once. A final estimate of

the mass of fuel burned to achieve the specified mission is 2081 lbm and the associated

uncertainty has a standard deviation of 229.5 lbm. The uncertainty in the quantity

of interest has been reduced by 14.75% as a result of the increases in model fidelity

level and information fusion steps.
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Chapter 3

Disciplinary Coupling

The outputs of a particular discipline may not be functions of only the design variables

and instead may use variables calculated in other disciplines. This interdisciplinary

coupling creates a loop between the disciplines that may have consequences if ignored,

i.e. if the disciplines are treated as independent from each other. This section dis-

cusses how coupling is addressed and its effect on the BMDO framework. The BMDO

walkthrough is completed with the effects of coupling considered and the differences

from the basic BMDO walkthrough are discussed.

3.1 Including Coupling in the BMDO Framework

All outputs of the disciplines have associated uncertainty due to model discrepancy

regardless of the destination of the outputs. That is, outputs are uncertain whether

they are disciplinary output, coupling variables, or both. Treating coupling variables

as deterministic neglects a source of uncertainty: uncertainty due to coupling variable

inputs.

Previous work was conducted on a problem of interest with uncoupled disciplines.

Each discipline accepted a deterministic design vector as input and generated de-

terministic disciplinary outputs. The disciplinary outputs became random variables

when uncertainty due to model discrepancy was applied to the deterministic values.

The consideration of coupling variables and their associated uncertainty was unnec-
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essary. Our problem of interest includes interdisciplinary coupling. Consideration of

coupling variable uncertainty causes the deterministic coupling variables to now be

random variables. As a result, the input to the disciplines may now include deter-

ministic design variables and random variables for coupling.

The addition of model uncertainty may further increase the variance of the output

for the nondeterministic case. That is, some of the uncertainty in a particular disci-

pline’s output is due not only to the model discrepancy of that discipline, but also

due to model discrepancy of other disciplines via coupling. As a result, considering

coupling variable uncertainty may increase the uncertainty of the disciplinary outputs

which may in turn increase the variance of the quantity of interest. Exclusion of this

extra source of uncertainty may result in the underestimation of uncertainty for the

quantity of interest.

A rigorous consideration of coupling uncertainty requires that variable closure be

resolved. Consider the general MDO formulation shown in Figure 2-1. Uncertainty

in the coupling variables due to Discipline A affects the outputs of Discipline B which

subsequently affects the output of Discipline A. This feedback loop may be difficult

to resolve since the mean and variance of the coupling variance may change with each

iteration.

Here, we propose to incorporate uncertainty due to coupling variables in the

BMDO process; however, we will not address the challenge of resolving coupling

variable closure. Instead we will break the coupling loop into a series of disciplinary

feedforward loops which may be evaluated in succession. The method improves es-

timates of the quantity of interest uncertainty but only provides an approximation

of the uncertainty due to coupling. A flowchart of the proposed method is shown in

Figure 3-1.

The method starts with the closed deterministic coupling variable values at the

design point. The uncertainty of the disciplinary outputs is calculated for each dis-

cipline, starting with discipline A. Uncertainty due to model discrepancy is applied

to the coupling variable outputs of discipline A via Latin Hypercube sampling. This

provides the coupling variable inputs from discipline A to discipline B with the as-
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Figure 3-1: Global Sensitivity Analysis Method with Coupling
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sociated uncertainty due to discipline A. These samples are then fed into discipline

B and evaluated. Model discrepancy due to discipline B is added to the samples,

which are then passed back to discipline A. Discipline A is evaluated once more for

each sample, model discrepancy due to discipline A is added, and the cycle for dis-

cipline A is complete. This cycle is referred to as a “model evaluation cycle”. This

procedure is repeated for discipline B by switching the role of each discipline in the

process. The result of this cycle is an estimate of the disciplinary outputs and asso-

ciated uncertainty for disciplines A and B with the consideration of uncertainty due

to coupling.

Each time model discrepancy is appended, the uncertainty due to model discrep-

ancy is assumed to be normally distributed. No assumptions on the coupling variable

distributions are applied during the model evaluation cycle since samples are passed

directly between the modules. However, the disciplinary output distributions are

assumed to be Gaussian for the information fusion step, prior to the performance

block evaluation. It is important to note that this method does not attempt to en-

force coupling variable closure. Instead, the goal of this method is to provide an

improved estimate of the quantity of interest uncertainty that accounts for the effects

of interdisciplinary coupling.

The inclusion of coupling variable uncertainty increases the number of steps in

the global sensitivity analysis. Each sample now requires one additional disciplinary

evaluation. In addition, resampling now occurs in two locations since the uncertainty

is now applied twice for each module—once for the coupling variables and once for

the disciplinary output. When calculating the sensitivity indices for discipline A,

εBA and εBP must be resampled. Conversely, εAB and εAP must be resampled when

calculating the sensitivity indices for discipline B.

3.2 BMDO Walkthrough with Coupling

The walkthrough shown in Section 2.3 is redone with the effects of coupling consid-

ered. Coupling does not affect the optimization or evaluation of disciplinary output
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uncertainty. As a result, the first two steps of each iteration remains identical to the

original walkthrough.

3.2.1 First Iteration

The third step of the first iteration also remains identical to the original walkthrough

since no information fusion step occurs due to lack of lower fidelity models.

Step 4: Quantity of Interest Uncertainty

The quantity of interest has a value of 1349 lbm with a standard deviation of 295.2.

The mean has decreased by 0.74% but the standard deviation has increased by 9.7%

with respect to the results excluding the effects of coupling.

Step 5: Check Termination Criteria

The termination criteria are not satisfied; higher fidelity models exist for both the

structures and aeropropulsion modules. The algorithm proceeds onto the next step.

Step 6: Global Sensitivity Analysis

The results of the first global sensitivity analysis are shown in Table 3.1. The main

sensitivity index of the structures module has increased slightly from 0.44 to 0.45 and

the aeropropulsion module main sensitivity index has decreased from 0.55 to 0.54.

Sensitivity Index Value
Structures Main 0.45

Aeropropulsion Main 0.54
Structures Total 0.46

Aeropropulsion Total 0.54
Interaction 0.01

Table 3.1: Results of First Global Sensitivity Analysis with Coupling
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The uncertainty due to each discipline was further broken down into its contribut-

ing source components: coupling variables and disciplinary output. Table 3.2 shows

the sensitivity indices for both sources for each discipline and the interaction sensi-

tivity index. Most of the quantity of interest uncertainty is due to the disciplinary

output rather than coupling variables. These values are visualized in Figure 3-2.

Discipline Source Sensitivity Index
Structures Coupling 0.03
Structures Disciplinary 0.42

Aeropropulsion Coupling 0.01
Aeropropulsion Disciplinary 0.53

Both Interaction 0.01

Table 3.2: Uncertainty breakdown of First Global Sensitivity Analysis with Coupling

Figure 3-2: Visualization of First Uncertainty Breakdown

Step 7: Increment Model Fidelity

The aeropropulsion module is still the largest contributor to the quantity of interest

uncertainty. As a result, the aeropropulsion model fidelity level is incremented to

medium while the structures model remains at low fidelity.

3.2.2 Second Iteration

Step 3: Information Fusion

Information fusion is conducted on the disciplinary output distributions after one

model evaluation cycle. The results of the information fusion are shown in Table 3.3.
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Variable Units Low Current Fused
Fidelity Fidelity Mean

Structures Fidelity - Low Low -
Aeropropulsion Fidelity - Low Med. -

Aircraft Weight lbm 5570 5528 5528
Weight of Fuel On-Board lbm 2116 2116 2116

Planform Area ft2 452.5 452.5 452.5
Cruise TSFC hr−1 0.112 0.103 0.106
Loiter TSFC hr−1 0.108 0.102 0.104

Cruise Lift-to-Drag Ratio - 27.84 27.84 27.84
Loiter Lift-to-Drag Ratio - 23.24 23.30 23.27

Cruise Lift Coefficient - 0.989 0.989 0.989
Loiter Lift Coefficient - 0.980 0.969 0.974

Table 3.3: Results of First Information Fusion with Coupling

Step 4: Quantity of Interest Uncertainty

The quantity of interest has a value of 2129 lbm with a standard deviation of 403.2.

The mean has decreased by 0.28% but the standard deviation has increased by 18.6%

with respect to the original walkthrough.

Step 5: Check Termination Criteria

The termination criteria are not satisfied; a higher fidelity model exists for the struc-

tures module. The algorithm proceeds onto the next step.

Step 6: Global Sensitivity Analysis

The sensitivity indices for the second global sensitivity analysis are shown in Table

3.4. The main sensitivity index of the structures module has decreased slightly from

0.66 to 0.65 and the aeropropulsion module main sensitivity index has increased from

0.33 to 0.34.

Table 3.5 and Figure 3-3 show the results of the disciplinary sensitivity index

breakdown for the second iteration. Uncertainty due to the disciplinary output still

dominates the overall uncertainty. However, the contributions from the structures

modules due to coupling variables has increased over the previous BMDO iteration.
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Sensitivity Index Value
Structures Main 0.65

Aeropropulsion Main 0.34
Structures Total 0.67

Aeropropulsion Total 0.34
Interaction 0.01

Table 3.4: Results of First Global Sensitivity Analysis with Coupling

Discipline Source Sensitivity Index
Structures Coupling 0.07
Structures Disciplinary 0.58

Aeropropulsion Coupling 0.01
Aeropropulsion Disciplinary 0.34

Both Interaction 0.01

Table 3.5: Uncertainty breakdown of Second Global Sensitivity Analysis with Cou-
pling

Figure 3-3: Visualization of Second Uncertainty Breakdown

Step 7: Increment Model Fidelity

The structures module is still the largest contributor to the quantity of interest un-

certainty. As a result, the structures model fidelity level is incremented to medium

while the aeropropulsion model remains at medium fidelity.
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3.2.3 Third Iteration

Step 3: Information Fusion

The mean and variance of the disciplinary output are estimated with one model

evaluation cycle. The results of the information fusion step on these distributions are

shown in Figure 3.3.

Variable Units Low Current Fused
Fidelity Fidelity Mean

Structures Fidelity - Low Med. -
Aeropropulsion Fidelity - Low Med. -

Aircraft Weight lbm 5370 5362 5365
Weight of Fuel On-Board lbm 1974 2053 2027

Planform Area ft2 435.2 435.2 435.2
Cruise TSFC hr−1 0.113 0.103 0.106
Loiter TSFC hr−1 0.108 0.105 0.106

Cruise Lift-to-Drag Ratio - 27.37 27.60 27.53
Loiter Lift-to-Drag Ratio - 22.99 23.62 23.44

Cruise Lift Coefficient - 0.991 0.999 0.997
Loiter Lift Coefficient - 0.976 0.712 0.768

Table 3.6: Results of Second Information Fusion with Coupling

Step 4: Quantity of Interest Uncertainty

The quantity of interest has a value of 2084 lbm with a standard deviation of 268.3.

The mean has increased by 0.19% but the standard deviation has increased by 17.3%

with respect to the original walkthrough without coupling

Step 5: Check Termination Criteria

The termination criteria are satisfied; neither the structures nor aeropropulsion mod-

ule have a higher fidelity model available. The algorithm is complete.

3.2.4 Comparison and Interpretation of Results

The results of the BMDO walkthrough with coupling consider show that quantity of

interest uncertainty is underestimated if coupling is neglected. This effect becomes
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more pronounced when one or more of the disciplines has increased fidelity level. The

mean of the quantity of interest was not significantly affected when coupling was

considered. The sensitivity indices calculated using the global sensitivity analysis

also did not change significantly and no changes were made to the order in which the

model fidelities were increased.
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Chapter 4

Model Correlation

Correlation is a measure of dependence between two sources of information. Previous

research treated models of varying fidelity level as independent information sources.

This assumption is relaxed and the effects of model correlation on the BMDO frame-

work are investigated. This chapter discusses the source and importance of correla-

tion. The changes to the basic BMDO method in order to incorporate model correla-

tion are detailed. Two walkthroughs of the BMDO method are completed—one with

only model correlation and a second with both model correlation and disciplinary

coupling.

4.1 Correlation

The output of models of varying fidelity may exhibit some level of similarity given

identical model input. This similarity may come from a variety of sources. Models

of different fidelity level may employ identical modeling and/or physics assumptions.

Higher fidelity models may simply be an expansion of lower fidelity models by the

inclusion of additional physics. Fidelity increases may also be due to the use of denser

meshes or tighter convergence tolerances. For these cases, an increase in fidelity level

may decrease the uncertainty in the outputs even if the output values do not change

significantly. This similarity in model output behavior suggests the models may not

be truly independent. Model correlation quantifies the magnitude of this dependence
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between the models.

Correlation is estimated by Pearson’s correlation coefficient, shown in Equation

4.1. This correlation coefficient measures the degree of linear dependence between

two input distributions: A and B. The mean and standard deviation of the inputs

are represented by the scalar values µ and σ, respectively.

ρ =
E [(A− µA) (B − µB)]

σAσB
(4.1)

The correlation between two models may not necessarily be quantified by a single

number—it is possible for the correlation coefficient to be a function of the design

space. A low fidelity aerodynamics code that assumes an infinite wing may exhibit

high correlation with a higher fidelity model that assumes a finite wing if the aspect

ratio of the wing is sufficiently high. Conversely, the models may be less correlated if

the aspect ratio is small.

Estimation of the correlation coefficient within acceptable confidence bounds at

the design points may require a large number of samples. In addition, considerations

of sample distribution and the size and shape of the sampling region remain beyond

the scope of this research. As a result, several correlation coefficients are selected

across a range of values and the consequences of each correlation coefficient on the

BMDO process is discussed. This enables the effects of correlation to be investigated

without addressing the challenges of estimating the true correlation coefficient.

4.2 Including Correlation in the BMDO Frame-

work

The assumption of independent models has the tendency to underestimate uncer-

tainty, potentially leading to unjustifiable confidence in the design or unreasonably

ambitious design decisions. Dependency between the models reduces the total amount

of information available to construct the fused distribution. The result is an estimate

of the fused distribution that has an increased standard deviation compared to the
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case of independent input distributions. When models are correlated, the full reduc-

tion in uncertainty possible from independent models cannot be realized. The nature

of multifidelity modeling makes the consideration of correlation particularly impor-

tant since models describing a given discipline are unlikely to be truly uncorrelated.

Reference [4] demonstrates an example of correlated information fusion described

in Equations 2.1 and 2.2. This example is reproduced in Figure 4-1 and shows the

information fusion step for three different correlation coefficients: 0.0, 0.4, and 0.9.

The red distribution has a mean of 2 and standard deviation of 1.0 and represents the

lower fidelity model. The blue distribution has a mean and standard deviation of 0.0

and 0.8, respectively, and represents the higher fidelity model. The fused distribution

is shown in purple. Note that a taller peak value corresponds to a smaller standard

deviation. The plot on the left shows the uncorrelated case. The mean of the fused

purple distribution is between the means of the input distributions and the standard

deviation is smaller than either of the inputs. The central plot shows the results of

the information fusion step with a correlation coefficient of 0.4. The height of the

peak has decreased relative to the uncorrelated case, corresponding to an increase in

standard deviation of the fused distribution.

Figure 4-1: Information fusion for inputs with similar variance. The red and blue
distributions are the inputs for information fusion and represent lower and higher
fidelity models, respectively. The fused distribution is represented via the purple
distribution. Results are generated using Equations 2.1 and 2.2

It is possible for the fused mean to lie outside the inputs means when model

correlation is sufficiently high, as shown in the right plot of Figure 4-1. This phe-
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nomenon is a result of the information fusion equations and is essentially an indirect

consideration of model bias. Model Bias is the tendency of the model to under- or

overestimate a value of interest with respect to the unknown “true” value. It may

also be observed the standard deviation of the strongly correlated case is greater than

the previous results with smaller correlation coefficients. This denotes a more con-

servative estimate of the quantity of interest due to the high similarity between the

sources of information.

Figure 4-2 shows the results of the information fusion step for various correla-

tion coefficients with inputs that are more dissimilar [4]. The input red and blue

distributions have means of 2.0 and 0.0 and standard deviations of 3.0 and 0.8, re-

spectively. The plot on the left shows the results for uncorrelated information fusion.

The standard deviation decreases slightly over the blue (higher fidelity) input distri-

bution. The large standard deviation of the red distribution shows the lower fidelity

information source is highly uncertain and may bring only small contributions to the

information fusion step. The center plot uses a correlation coefficient of 0.4. The

standard deviation of the fused distribution has increased slightly over the uncorre-

lated case. The rightmost plot employs a correlation coefficient of 0.7. Once again,

the mean of the fused distribution is outside the mean values of the inputs.

Figure 4-2: Information fusion for inputs with dissimilar variance. The lower and
higher fidelity input distributions are shown in red and blue, respectively. Equations
2.1 and 2.2 were used to calculate the fused distribution, shown in purple.
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Synthesis Guidelines

The results of the information fusion step with correlation may be summarized:

• Standard deviation of the fused distribution is always smaller than or equal to

the standard deviation of the higher fidelity input.

• Fused standard deviation tends to decrease as the standard deviations of the

input distributions become more similar.

• Strongly correlated information fusion may result in a fused mean outside the

input means.

• The input distribution with the smaller variance is weighted more heavily than

inputs with larger variances.

Information fusion may not always provide adequate improvement in the quantity

of interest uncertainty to justify the computational expense of the step. This is

particularly true if the variance of the input distributions are wildly dissimilar or if

the correlation coefficient becomes close to 1.0. In the former, the input with the

smaller variance is weighted significantly more heavily in the information fusion step

than the input with the larger variance. As a result, the fused distribution may not

vary significantly from the input distribution with lower variance and only minor

gains may be obtainable. For the latter, a high correlation coefficient indicates the

models exhibit strong dependence. As a result, the results of the higher fidelity model

should be used as the best estimate of the disciplinary output instead of attempting

an information fusion step. The results with correlation coefficients of 0.7 and 0.9

shown in the previous section may be acceptable for those examples, but care should

be taken if the correlation coefficient becomes even closer to 1.0.

4.3 BMDO Walkthrough with Correlation

Consideration of model correlation changes not only the information fusion step, but

also the subsequent estimation of the quantity of interest uncertainty. The basic
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BMDO walkthrough shown in Section 2.3 is repeated with the inclusion model cor-

relation. The results of the first iteration remained unchanged due to the lack of an

information fusion step. The updated results of steps 3 and 4 for the second and third

iteration are shown below.

4.3.1 Second Iteration

The results of the first information fusion step with correlation are shown in Table 4.1.

The third and fourth columns show the mean of the disciplinary outputs calculated

from the low and current fidelity models, respectively. The right three columns show

the mean values calculated by the information fusion step with three different corre-

lation coefficients: 0.0, 0.4, 0.8. These three correlation coefficient values represent

uncorrelated, mildly correlated, and strongly correlated models, respectively.

Variable Units Low Current Fusion, Fusion, Fusion,
Fidelity Fidelity ρ = 0 ρ = 0.4 ρ = 0.8

Structures Fidelity - Low Low - - -
Aeropropulsion Fidelity - Low Med. - - -

Aircraft Weight lbm 5529 5529 5529 5529 5529
Weight of Fuel On-Board lbm 2216 2116 2116 2116 2116

Planform Area ft2 452.5 452.5 452.5 452.5 452.5
Cruise TSFC hr−1 0.112 0.103 0.106 0.105 0.101
Loiter TSFC hr−1 0.113 0.107 0.109 0.108 0.105

Cruise Lift-to-Drag Ratio - 28.22 28.22 28.22 28.22 28.22
Loiter Lift-to-Drag Ratio - 23.97 24.02 24.00 24.01 24.03

Cruise Lift Coefficient - 0.991 0.991 0.991 0.991 0.991
Loiter Lift Coefficient - 0.623 0.625 0.624 0.624 0.625
Quantity of Interest lbm 2235 2107 2135 2124 2075
Standard Deviation lbm 447.9 355.1 339.9 352.9 347.6

Table 4.1: Results of First Information Fusion with Correlation

The standard deviation of the quantity of interest increases from the uncorrelated

to mildly correlated case. However, the standard deviation decreases slightly as model

correlation becomes stronger for the case when ρ = 0.8. As mentioned previously, the

information fusion step takes into account bias if the models are strongly correlated.

The driving factor in the decrease in standard deviation is likely the TSFC values

decreasing below the means of the inputs for these variables.
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Depending on the correlation coefficient, the standard deviation for the quantity

of interest ranges from 339.9 lbm to 352.9 lbm, an increase up to 3.8% from the results

excluding model correlation. The mean of the quantity of interest has decreased up to

2.8% from the uncorrelated BMDO results. This decrease is due to the consideration

of model bias for the strongly correlated case.

4.3.2 Third Iteration

The results of the second information fusion step with correlation are shown in Table

4.2. The standard deviation for the quantity of interest exhibits similar behavior to

the results of the second iteration. The standard deviation increased from the un-

correlated to mildly correlated case but decreased slightly for the strongly correlated

case. This slight decrease in standard is likely due to the fused means for the TSFC

values being below the mean values of the inputs.

Variable Units Low Current Fusion, Fusion, Fusion,
Fidelity Fidelity ρ = 0 ρ = 0.4 ρ = 0.8

Structures Fidelity - Low Med. - - -
Aeropropulsion Fidelity - Low Med. - - -

Aircraft Weight lbm 5328 5358 5349 5352 5365
Weight of Fuel On-Board lbm 1974 2053 2027 2036 2069

Planform Area ft2 435.2 435.2 435.2 435.2 435.2
Cruise TSFC hr−1 0.112 0.103 0.106 0.105 0.101
Loiter TSFC hr−1 0.114 0.107 0.109 0.108 0.105

Cruise Lift-to-Drag Ratio - 27.76 27.76 27.76 27.76 27.76
Loiter Lift-to-Drag Ratio - 23.83 23.88 23.86 23.87 23.89

Cruise Lift Coefficient - 0.999 0.999 0.999 0.999 0.999
Loiter Lift Coefficient - 0.627 0.629 0.628 0.629 0.630
Quantity of Interest lbm 2175 2055 2081 2071 2024
Standard Deviation lbm 434.6 273.8 229.5 264.3 264.1

Table 4.2: Results of Second Information Fusion with Correlation

The mean values for the quantity of interest range from 2024 lbm to 2081 lbm, a

difference up to 2.7% from the uncorrelated results. The standard deviation ranges

from 229.5 lbm to 264.3 lbm for a difference of 15.2%.
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4.3.3 Comparison and Interpretation of Results

For our problem, neglecting model correlation may overestimate the mass of fuel

burned and underestimate the uncertainty in the quantity of interest. The final

estimate of fuel burned during the specified mission has decreased by up to 2.7%.

The standard deviation of the quantity of interest has increased up to 15.2%. The

magnitude of change from the basic BMDO results is dependent on the value of the

correlation coefficient. Differences tend to become more pronounced as:

• Correlation coefficient increases

• The mean values of the inputs become farther apart

• The variance of the input distributions becomes more similar

• More disciplines have lower fidelity models available for information fusion

4.4 BMDO Walkthrough with Coupling and Cor-

relation

The walkthrough of the BMDO algorithm with interdisciplinary coupling shown in

Section 3.2 is repeated with the additional effects of model correlation. The first

iteration remains identical to previous results due to the lack of an information fusion

step.

4.4.1 Second Iteration

The results of the first information fusion step with coupling and correlation is shown

in Table 4.3. The mean of the quantity of interest for the strongly correlated case

remains below the estimates from the low and current fidelity models.

The mean value of the quantity of interest ranges from 2085 lbm to 2129 lbm, a

decrease up to 2.3% from the uncoupled, uncorrelated baseline. The standard devi-

ation has increased from a value of 339.9 lbm from the original BMDO walkthrough

to a value ranging from 403.2 lbm to 460.8 lbm, an increase of 18.6 to 35.6%.
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Variable Units Low Current Fusion, Fusion, Fusion,
Fidelity Fidelity ρ = 0 ρ = 0.4 ρ = 0.8

Structures Fidelity - Low Low - - -
Aeropropulsion Fidelity - Low Med. - - -

Aircraft Weight lbm 5570 5528 5528 5528 5528
Weight of Fuel On-Board lbm 2116 2116 2116 2116 2116

Planform Area ft2 452.5 452.5 452.5 452.5 452.5
Cruise TSFC hr−1 0.112 0.103 0.106 0.105 0.101
Loiter TSFC hr−1 0.108 0.102 0.104 0.104 0.101

Cruise Lift-to-Drag Ratio - 27.84 27.84 27.84 27.84 27.83
Loiter Lift-to-Drag Ratio - 23.24 23.30 23.27 23.28 23.30

Cruise Lift Coefficient - 0.989 0.989 0.989 0.989 0.989
Loiter Lift Coefficient - 0.980 0.969 0.974 0.974 0.974
Quantity of Interest lbm 2248 2097 2129 2124 2085
Standard Deviation lbm 560.5 461.9 403.2 439.8 460.8

Table 4.3: Results of First Information Fusion with Correlation and Coupling

4.4.2 Third Iteration

Table 4.4 shows the results of the second information fusion step for the coupled,

correlated BMDO method. The observations of previous information fusion steps

with correlation remain, specifically the quantity of interest mean for the strongly

correlated case is smaller than either of the estimates via the low or current fidelity

models. The mean TSFC values remain outside the mean of the inputs.

Variable Units Low Current Fusion, Fusion, Fusion,
Fidelity Fidelity ρ = 0 ρ = 0.4 ρ = 0.8

Structures Fidelity - Low Med. - - -
Aeropropulsion Fidelity - Low Med. - - -

Aircraft Weight lbm 5370 5362 5365 5364 5360
Weight of Fuel On-Board lbm 1974 2053 2027 2036 2069

Planform Area ft2 435.2 435.2 435.2 435.2 435.2
Cruise TSFC hr−1 0.113 0.103 0.106 0.104 0.100
Loiter TSFC hr−1 0.108 0.105 0.106 0.106 0.105

Cruise Lift-to-Drag Ratio - 27.37 27.60 27.53 27.56 27.66
Loiter Lift-to-Drag Ratio - 22.99 23.62 23.44 23.51 23.79

Cruise Lift Coefficient - 0.991 0.999 0.997 0.997 1.000
Loiter Lift Coefficient - 0.976 0.712 0.768 0.731 0.624
Quantity of Interest lbm 2197 2061 2084 2074 2027
Standard Deviation lbm 546.8 315.5 268.3 307.2 298.5

Table 4.4: Results of Second Information Fusion with Correlation and Coupling
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The standard deviation of the quantity of interest has increased from a baseline

value of 229.5 lbm to a value of 268.3 − 307.2 lbm for various correlation coefficients.

The estimate of the standard deviations has increased up to 33.9%. The mean of

the mass of fuel burned went from 2081 lbm for the baseline value to 2027− 2084 lbm

when correlation and coupling is considered.

The BMDO walkthrough with both interdisciplinary coupling and model corre-

lation has shown the magnitude of quantity of interest uncertainty is significantly

underestimated if coupling and correlation are not included in the analysis (up to

35.6%). This increase is larger than the sum of the effects of coupling and correlation

independently, suggesting a slight compounding effect. The mean of the quantity of

interest is typically less than the estimates from the uncoupled, uncorrelated baseline,

but this result may be more problem specific than the underestimation of uncertainty.
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Chapter 5

Conclusions

5.1 Summary of Results

The objective of this thesis was to expand the existing Bayesian-based multidisci-

plinary design optimization method by including interdisciplinary coupling and model

correlation. This effort started with an introduction to the basic BMDO method and

a detailed discussion of each step of the algorithm. A walkthrough of the method

was completed on the problem of interest: the design of a medium-altitude, high-

endurance unmanned aerial vehicle.

Interdisciplinary coupling has the potential to create a coupling loop between the

disciplines—complicating the estimation of uncertainty. The input for each discipline

may no longer be deterministic and the uncertainty associated with the coupling

variable may no longer be neglected. The effects of coupling variable uncertainty

was estimated by breaking the coupling loop into a series of feedforward loops. The

result was an improved estimate of the quantity of interest and its uncertainty. A

walkthrough of the BMDO method with coupling was completed, demonstrating the

changes to the information fusion and global sensitivity analysis steps of the algo-

rithm.

The nature of multifidelity modeling generally results in disciplinary models that

may maintain some level of similarity via underlying physics or applied assumptions.

The effect of model correlation on the information fusion step was investigated in
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particular and demonstrated with a walkthrough of the BMDO method. In addition,

a walkthrough of the BMDO method with both model correlation and coupling was

completed.

The results from the previous three chapters have been collected below. Tables

5.1 and 5.2 show the mean and standard deviation values of the quantity of interest

at each iteration for the BMDO method with all possible combinations of interdisci-

plinary coupling and model correlation.

Variable Units First Second Third
Iteration Iteration Iteration

Basic BMDO lbm 1359 2135 2081
BMDO with Coupling lbm 1349 2129 2084

BMDO with Correlation lbm 1359 2075–2135 2024–2081
BMDO with Coupling lbm 1349 2085–2129 2027–2084

and Correlation

Table 5.1: Summary of Results: Mean

Variable Units First Second Third
Iteration Iteration Iteration

Basic BMDO lbm 269.2 339.9 229.5
BMDO with Coupling lbm 295.2 403.2 268.3

BMDO with Correlation lbm 269.2 339.9–352.9 229.5–264.3
BMDO with Coupling lbm 295.2 403.2–460.8 268.3–307.2

and Correlation

Table 5.2: Summary of Results: Standard Deviation

The changes to the results of the BMDO method become more interesting be-

yond the first iteration of the BMDO method. The results show the basic BMDO

method consistently underestimated the uncertainty in the quantity of interest. Both

interdisciplinary coupling and model correlation increased the final uncertainty in

the quantity of interest. When both concepts were considered simultaneously, the

estimate of quantity of interest uncertainty increased by up to 35.6%.
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5.2 Future Work

Four research directions have been identified that may improve the BMDO method.

These directions include: optimization, consideration of uncertainty, multifidelity as-

pects, and handling of coupling and correlation. These topics are discussed individ-

ually and exciting research possibilities are identified.

Optimization

Deterministic optimization was used for all work presented here. Uncertainty was es-

timated and applied after the deterministic optimization. The BMDO method could

be improved by incorporating uncertainty into the optimization process. Optimiza-

tion via decomposition may also prove fruitful due to the multifidelity component

of the BMDO method [34]. Decomposition may help preserve information generated

as a result of the optimization process. After an iteration of the BMDO method,

disciplines that were not increased in fidelity may not need to be re-analyzed. Bilevel

Integrated System Synthesis is a decomposition optimization algorithm that may offer

such benefits [35].

Uncertainty

Our method of model discrepancy as a portion of the mean had limitations exposed

during the BMDO walkthroughs. First, the uncertainty in the quantity of interest

should decrease as higher fidelity models are employed. Otherwise, there is little

motivation to increase model fidelity only to receive a more uncertain estimate of the

quantity of interest. However, the uncertainty increased between the first and second

iterations of the BMDO method for each walkthrough. This is simply a result of the

mean values of the disciplinary output increasing, corresponding to an increase in

uncertainty even as the percentage of the mean that model discrepancy was defined

as decreased.

Significant contributions may be made via the use of expert elicitation to improve

the estimates of the model discrepancy [6, 7, 10, 38]. Not only would expert elicitation
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potentially give more reasonable estimates of uncertainty due to model discrepancy

based on the calculations conducted within the models, but the model discrepancy

may also become a more complicated function of the discipline’s input and output

space. Expert elicitation has the potential to create non-Gaussian model discrepancy

estimates. As a result, a generalization of the information fusion step for arbitrary

distributions may prove beneficial. The use of Sobol’ sequences to generate pseudo-

random numbers may result in faster convergence of uncertainty and sensitivity index

estimates due to a more even distribution of samples than Latin hypercube sampling

[36].

Multifidelity Aspects

Additional insight and evidence of the benefits of the BMDO method may be pro-

duced if high fidelity models are included. Three sources of information may improve

the uncertainty estimates produced by the information fusion step. A multifidelity

performance block could also bring forth new questions.

The inclusion of multiple disciplinary models for a given fidelity level may provide

interesting results. Depending on the location in the design space, a different model

may be more applicable or accurate. The question becomes not only which discipline

to increase fidelity level of, but also which model of the desired fidelity level to invoke.

Correlation and Coupling

The consideration of a range of possible correlation coefficients in this research pro-

duced a range of possible mean and standard deviation values for the quantity of

interest. If the true value of the correlation coefficient could be estimated, then the

quantity of interest mean and variance may be quantified more accurately. In addi-

tion, estimating the correlation coefficient as a function of the design space could lead

to interesting results. Clustering techniques or response surfaces may aid this effort.

Highly correlated models may be used in a manner not considered for this research.

If models of different fidelity levels are highly correlated, it may be possible to estimate

the output of the higher fidelity model by evaluating the lower fidelity model and
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applying a linear regression. A resultant decrease in the computational cost of the

BMDO method may be observed. In addition, it is possible for the optimization to

direct the design towards a portion of the design space where a model in current use

is unnecessarily accurate. In this case, computational resources may be conserved by

decreasing the discipline’s fidelity level without significantly increasing the quantity

of interest uncertainty.

The consideration of more than two disciplines could prove beneficial to the gen-

eralization of the BMDO method. The greatest issue with additional disciplines lies

in the handling of coupling in the global sensitivity analysis. The number of possi-

ble combinations for coupling between disciplines increases and isolating these effects

may prove difficult and computationally expensive. The global sensitivity analysis

method also assumes coupling variables and disciplinary outputs are independent.

The BMDO method could become more rigorous if this assumption is no longer ap-

plied. Finally, a method for addressing coupling variable closure would prove valuable

to the BMDO method and may further provide a more rigorous analysis of the effects

of interdisciplinary coupling.

The sensitivity indices calculated from the global sensitivity analysis are appor-

tioned based on disciplinary contributions to the overall quantity of interest uncer-

tainty. An improved method for calculating sensitivity indices may be to apportion

uncertainty in terms of the reduction in uncertainty that may be achieved via an

increase in model fidelity level. Such a reformulation would cause the BMDO method

to increase the fidelity level of the model with the largest achievable reduction in

quantity of interest uncertainty rather than the largest overall contributor to this

uncertainty.
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Appendix A

Design Vectors

The design variable values for each of the design vectors is shown in Table A.1. The

second row of this table denotes the starting design used for optimization to generate

the design vector. The coupling variable and disciplinary output values associated

with the design vectors are shown in Table A.2.
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Variable Units Initial Design 1 Design 2 Design 3
Starting Design - - Initial Design 1 Design 2

Structures Fidelity Level - - Low Low Medium
Aeropropulsion Fidelity Level - - Low Medium Medium

Wingspan ft 98.46 79.43 104.9 100.8
Horizontal Tail Aspect Ratio - 9.81 8.96 7.91 8.87

Wing Aspect Ratio - 22.30 29.48 24.32 23.36
Wing Root Station Position - 0.310 0.304 0.181 0.405

Wing Engine Station Position - 0.348 0.337 0.357 0.350
Wing Pylon Station Position - 0.433 0.297 0.290 0.315
Wing Engine Station Chord - 0.842 0.797 0.902 0.875
Wing Pylon Station Chord - 0.669 0.804 0.820 0.816
Wing Tip Station Chord - 0.884 0.535 0.552 0.687

Wing Sweep Angle deg 3.80 7.22 4.49 2.15
H. Tail Root Station Position - 0.051 0.566 0.397 0.450

H. Tail Tip Station Chord - 0.840 0.495 0.434 0.531
H. Tail Sweep Angle deg 9.60 9.86 12.13 11.04

H. Tail Position - 0.673 0.746 0.744 0.735
Vert. Tail Aspect Ratio - 5.21 6.69 4.13 3.11

V. Tail Root Station Position - 0.593 0.482 0.291 0.497
V. Tail Tip Station Chord - 0.603 0.550 0.500 0.172

V. Tail Sweep Angle deg 17.00 8.41 4.35 8.68
V. Tail Position - 0.528 0.897 0.884 0.988

Wing Fuel Fill Ratio - 0.194 0.142 0.048 0.068
Fuselage Fuel Fill Ratio - 0.795 0.693 0.778 0.694
Length of Nose Ratio ft 18.24 5.45 8.12 12.29
Length of Tail Ratio ft 16.57 13.28 16.84 21.49

Turbocharger Pressure Ratio - 3.43 3.74 3.29 3.34
Propeller Radius m 1.03 1.78 0.689 0.667

Table A.1: Optimized Design Vectors
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Variable Units Initial Design 1 Design 2 Design 3
Starting Design - - Initial Design 1 Design 2

Structures Fidelity Level - - Low Low Medium
Aeropropulsion Fidelity Level - - Low Medium Medium

Aircraft Weight lbm 8005 3989 5529 5358
Weight of Fuel On-Board lbm 3700 1349 2115 2052

Planform Area ft2 434.8 214.0 452.5 435.2
Fuselage Wetted Area ft2 376.4 208.4 272.7 344.7
H. Tail Planform Area ft2 137.3 46.49 124.4 94.97

Root Chord ft 5.50 3.49 5.40 5.04
Mean Chord ft 4.42 2.69 4.31 4.32

Position of Center of Gravity ft 22.73 9.29 12.82 17.12
Position of Neutral Point ft 23.24 9.39 12.87 17.17

Position of H. Tail ft 34.76 18.94 25.09 32.31
Engine Weight lbm 453.8 196.7 244.6 234.5
Cruise Speed kts 80.35 80.35 80.35 80.35
Dive Speed kts 58.85 59.21 47.94 48.12
Stall Speed kts 120.5 120.5 120.5 120.5

Maximum Operating Speed kts 101.9 102.6 83.03 83.35
Cruise TSFC hr−1 0.173 0.167 0.103 0.103
Loiter TSFC hr−1 0.109 0.105 0.107 0.107

Cruise Lift-to-Drag Ratio - 21.61 22.87 28.21 27.75
Loiter Lift-to-Drag Ratio - 26.93 30.13 24.02 23.88

Cruise Lift Coefficient - 0.537 0.543 0.991 0.999
Loiter Lift Coefficient - 0.928 0.943 0.625 0.629

Table A.2: Coupling Variables and Disciplinary Output at Design Vectors
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