
MIT Open Access Articles

Development of a Graphical User Interface
for In-Core Fuel Management Using MCODE

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Romano, Paul K., Benoit Forget, and Thomas H. Newton, Jr. "DEVELOPMENT OF A
GRAPHICAL USER INTERFACE FOR IN-CORE FUEL MANAGEMENT USING MCODE." Advances in
Nuclear Fuel Management IV (ANFM 2009) Hilton Head Island, South Carolina, USA, April 12-15,
2009, American Nuclear Society, LaGrange Park, IL (2009). p.1-13.

Publisher: American Nuclear Society

Persistent URL: http://hdl.handle.net/1721.1/77152

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/77152

Advances in Nuclear Fuel Management IV (ANFM 2009)
Hilton Head Island, South Carolina, USA, April 12-15, 2009, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2009)

© ANS 2009, Topical Meeting ANFM 2009, p. 1/13

DEVELOPMENT OF A GRAPHICAL USER INTERFACE FOR

IN-CORE FUEL MANAGEMENT USING MCODE

Paul K. Romano and Benoit Forget

Massachusetts Institute of Technology

Department of Nuclear Science and Engineering

77 Massachusetts Avenue, Cambridge, MA 02139

Email: romano7@mit.edu, bforget@mit.edu

Thomas H. Newton, Jr.

Massachusetts Institute of Technology Nuclear Reactor Laboratory

138 Albany Street, Cambridge, MA 02139

Email: tnewton@mit.edu

Keywords: In-core fuel management, graphical user interface, MCODE, Python

ABSTRACT

In the present work, a graphical user interface is developed to automate in-core

fuel management using MCODE, an MCNP-ORIGEN linkage code. Data abstraction is

achieved by means of five object classes that define the run, fuel assembly locations, fuel

assemblies, fuel paths, and materials. The GUI and an associated fuel management

wrapper were developed in Python, with the PyQt extension being used for GUI-specific

features. To validate the fuel management wrapper, a model of the MIT Reactor core was

used to run an equilibrium core. The results show that the wrapper performs reliably.

Together, these tools will help the staff at the MITR perform in-core fuel management

calculations quickly and with a higher level of detail than that previously possible.

1. INTRODUCTION

For many years, physics-based simulations of nuclear reactor designs have been

performed using deterministic methods validated by experimental measurements. As

high-performance technical computing continues to improve over time, the feasibility of

using Monte Carlo methods in lieu of deterministic methods is becoming more attractive

thanks to their accuracy and ability to easily model complex geometries. However, as

analysts using Monte Carlo methods try to model increasingly complex physical effects

such as material depletion through time, the burden of setting up a problem of interest

also increases.

The present work details the development of a graphical user interface (GUI)

designed to automate much of the work effort that goes into performing in-core fuel

management. For such calculations, the GUI interfaces with the MCNP-ORIGEN linkage

code MCODE
1
. Recent improvements

2
 in MCODE allow control device movement to be

explicitly modeled at each timestep, and fuel management operations wherein materials

are moved from one region to another can also be specified.

P. K. Romano et al., Development of a GUI for In-Core Fuel Management using MCODE

 © ANS 2009, Topical Meeting ANFM 2009, p. 2/13

1.1 The MIT Reactor (MITR)

The MITR contains a hexagonal core that contains twenty-seven positions for

rhombus-shaped fuel assemblies (colloquially called fuel elements) positioned in three

radial rings (A, B, and C) as shown in Fig. 1. The reactor is currently licensed to operate

at 5 MW with an up-rate to 6 MW expected soon. Typically, at least three fuel positions

are occupied by either an in-core experimental facility or a solid aluminum “dummy”

element to reduce power peaking. The remaining positions are filled with standard fuel

elements. Each rhombus-shaped fuel element currently contains fifteen aluminum-clad

fuel plates with HEU (93% enriched) in an aluminide cermet matrix. The core is light-

water moderated and cooled and is surrounded by a D2O reflector. Beyond the D2O

reflector, there is a secondary graphite reflector. Boron impregnated stainless steel control

blades are located at the periphery of the core on each of the sides of the hexagon.

Fig. 1 Cross-sectional view of an MCNP model of the MITR core.

Due to proliferation concerns, there is a desire to limit the use of HEU in civilian

facilities, and thus the few remaining civilian reactors that employ HEU are looking to

convert to LEU fuel. While this would not have previously been possible for a small, high

power-density core like the MITR due to the inability to achieve criticality using LEU

fuel, the prospect for the successful development of high density LEU fuels may make

such a conversion possible without a significant reduction in performance parameters.

To ensure that safety margins are met both during and after the transition from a

HEU core to a LEU core, it is necessary to perform detailed burnup modeling. This is

complicated by the fact that the entire core will likely not be replaced all at once, i.e.

several LEU fuel elements will be introduced in each cycle until all the HEU fuel

elements have been removed. While our original intent was to perform fuel management

calculations using the REBUS-PC diffusion theory code, continuing difficulties in

obtaining reasonable multi-group cross-sections led us to ultimately choose to use

MCODE with the added burden of developing fuel management capabilities.

P. K. Romano et al., Development of a GUI for In-Core Fuel Management using MCODE

 © ANS 2009, Topical Meeting ANFM 2009, p. 3/13

As the task of performing detailed in-core fuel management calculations entails

setting up huge input files due to the hundreds of separate depletion nodes, doing such a

calculation manually is cumbersome and thus prone to human-error. To automate these

calculations, two separate pieces of software have been developed. The first is a graphical

user interface that allows the user to define all the data in the runs (fuel paths, material

compositions, reactor power, depletion times, etc.). The second is a fuel management

wrapper which reads the user data from the GUI, creates and runs an MCODE input file

for each cycle, and handles the transfer of data between cycles.

Section 2 discusses the abstraction of data which directly influences the

development of the GUI. Section 3 describes the graphical user interface, focusing on

how the user interacts with it. Section 4 discusses development of the fuel management

wrapper. Validation of the code is documented in Section 5. Finally, some conclusions

regarding the use of the GUI and fuel management wrapper are presented in Section 6.

2. DATA MODEL AND ABSTRACTION

To meet the goal of an interface that would be applicable to more than one reactor

type, an object-oriented approach was taken whereby the data and its‟ associated

procedures are abstracted. The data model consists of five main classes: Run, Path,

Element, Material, and Location. The Run class is the top-level class that holds all the

data pertinent to a fuel-management run. An instance of the Path class contains

information on an individual fuel assembly path, i.e. the physical path that a fuel

assembly takes as it is depleted and moved through the reactor, and specifies which fuel

element is to be used at the start of path. An instance of the Element class defines a single

fuel element, the radial and axial mesh that subdivides the element into separate depletion

nodes, and the materials to be used for each depletion node. The Location class describes

a fixed physical location that a Path may occupy at any given time. Lastly, the Material

class describes a physical material and its constituents.

We summarize the relations between the classes as follows. A fuel Element is

assigned to beginning of each fuel Path. Each depletion node in an Element contains a

Material. Additionally, a Location is specified for each cycle in the fuel Path. These

associations are summarized in Fig. 2, a Uniform Modeling Language (UML) class

diagram.

P. K. Romano et al., Development of a GUI for In-Core Fuel Management using MCODE

 © ANS 2009, Topical Meeting ANFM 2009, p. 4/13

+id

+points

+translation

+rotation

Location

+paths

+fixedTimes

+numCycles

+times

+power

+powerFraction

Run

+name

+element

+time

+locations

+flip

+rotate

Path

+name

+density

+components

+group

Material

1

+paths*

1 +element1+locations 1..* 1

+name

+plates

+axial

+radial

+materials

Element

1

+materials

1..*

Fig. 2 UML class diagram for the data modeling of a burn-up run.

We note an important distinction between the classes used in the graphical user

interface and those used for the fuel management wrapper. When the burnup run is

performed using the fuel management wrapper, every depletion node of each fuel element

has a unique material such that even fuel paths that have the same fuel element are still

defined by distinct materials. Thus, there is no need for a separate Element class in the

data model for the fuel management wrapper.

3. INTERFACE DEVELOPMENT

For the development of the graphical user interface, the Python programming

language was chosen thanks to its easy learning curve, conciseness, code readability, and

cross-platform portability. There are existing instances of others in the nuclear industry

using Python for GUI development, e.g. the work of Touran
4
. Many Python extensions

exist for the specific purpose of GUI development. The GUI widgets were implemented

using the PyQt extension, which provides Python bindings for Qt, a popular GUI toolkit

that has been used in many high-profile projects.

The GUI source code is divided into nine different modules as follows:

 mcodeInterface.pyw: Main window for the GUI

P. K. Romano et al., Development of a GUI for In-Core Fuel Management using MCODE

 © ANS 2009, Topical Meeting ANFM 2009, p. 5/13

 pathEditor.py: Dialog window to edit a fuel path

 elements.py: Dialog window to edit a fuel element (and Element class

definition)

 materialEditor.py: Dialog window to edit a material

 materialDialog.py: Dialog window listing all materials in the problem

 timeDialog.py: Dialog window to define the cycle times

 paths.py: Defines the Path class

 materials.py: Defines the Material class

 geometry.py: Defines the problem geometry

Together, these modules combine for a total of about 1800 lines of source code.

To set up a run, the user would first need to define the cycle times, i.e. the times at

which fuel is to be introduced, moved, or removed from the reactor. Then, the user would

define the fuel elements and the materials that occupy each node in the element. Once all

elements have been created, the user can define the paths and associate them with fuel

locations and fuel elements.

The main window, shown in Fig. 3, for the GUI contains two tabs: one for editing

run data and fuel paths and another for specifying and editing fuel elements. The run

editor tab displays a layout of the core for a given cycle where those positions shaded in

dark gray are occupied by fuel assemblies and those in light gray by dummy assemblies.

The user can select a fuel location and add a fuel path, edit an existing path, or remove an

existing path. Above the core layout, the user can select the cycle from a drop-down box

or click a button to open a dialog window to edit the cycle times, shown in Fig. 4.

P. K. Romano et al., Development of a GUI for In-Core Fuel Management using MCODE

 © ANS 2009, Topical Meeting ANFM 2009, p. 6/13

Fig. 3 Main window for the graphical user interface.

Fig. 4 Dialog window for editing cycle times.

From the fuel element tab on the main window, the user can add, edit, and remove

fuel elements. If the user chooses to add or edit a fuel element, a dialog window appears

as shown in Fig. 5. From here, the user can adjust the number of axial and radial nodes.

Since the fuel assemblies in the MITR have fuel plates, specifying a radial mesh allows

multiple plates to share a single material that is depleted (grouped plates are displayed

with the same color as in Fig. 5). This is ideal in locations where the power gradient is

P. K. Romano et al., Development of a GUI for In-Core Fuel Management using MCODE

 © ANS 2009, Topical Meeting ANFM 2009, p. 7/13

small. The axial mesh subdivides each radial mesh node into equal segments. The user

can select a particular node using the visual interface and the „Current Node‟ drop-down

box and then apply a material using the „Current Material‟ drop-down box.

Fig. 5 Dialog window for specify the radial/axial mesh and assigning materials.

One option on the „Current Material‟ drop-down box is titled „New material…‟

and opens a dialog window when selected. The material dialog window, shown in Fig. 6,

allows the user to define a material in terms of its density, isotopes, and the atom/weight

percentage of each isotope.

Fig. 6 Dialog window for specifying a material composition.

With all the fuel elements defined, the user can then begin to specify the fuel

paths for the run. When a user chooses to add or edit a fuel path from the main window, a

separate dialog window appears as shown in Fig. 7. From this dialog, the user simply

clicks the fuel locations in the order that the fuel is to move from one to another.

Additionally, the user can flip or rotate a fuel element at a certain cycle via the buttons at

P. K. Romano et al., Development of a GUI for In-Core Fuel Management using MCODE

 © ANS 2009, Topical Meeting ANFM 2009, p. 8/13

the bottom left side of the dialog window. A fuel element can be assigned to the fuel path

from a drop-down box.

Fig. 7 Dialog window for specifying locations in a fuel path.

Once all the fuel paths have been defined, the run is completely specified. At this

point, the user can export the run to an input file that can in turn be read by the MCODE

fuel management wrapper. The exported file is an ASCII file that is fairly “intuitive” to

read. This makes it easy for the user to make small changes to the input file, e.g. changing

materials or cross-sections, without having to do so via the graphical user interface. Of

course, the GUI may be the preferred option for changing run data anyway.

4. FUEL MANAGEMENT WRAPPER DEVELOPMENT

There are generally two approaches one can take to perform fuel management

operations
*
. The first approach, which was taken in our prior work

2
, is to swap material

numbers in MCNP every time a fuel assembly is to be moved. This approach has the

advantage that the geometry needn‟t be changed in the MCNP input file. However, the

downside is that a single fuel assembly is difficult to track from cycle-to-cycle.

Additionally, for a core such as the MIT Reactor (MITR) whereby dummy assemblies are

utilized, it is not possible for the locations of the dummies to also move from cycle-to-

cycle. Thus, it was decided to rather treat fuel management operations by changing the

geometry of the MCNP input file for each cycle while keeping the material numbers of

each assembly the same.

*
 By fuel management operation, we mean the physical movement of a fuel assembly from one in-core

location to another, the introduction of a fresh fuel assembly, or the removal of a depleted fuel assembly.

P. K. Romano et al., Development of a GUI for In-Core Fuel Management using MCODE

 © ANS 2009, Topical Meeting ANFM 2009, p. 9/13

While the earlier version of the fuel management wrapper was written in Fortran

90, we have opted again to use Python to maintain consistency with the graphical user

interface, as well as for the reasons previously discussed. Python is particularly suited for

this task as performing fuel management operations entails creating and manipulating text

files and moving data to and from files.

The logic behind the fuel management wrapper is rather simple. First, the wrapper

reads the input file exported from the GUI. Based on this, it creates an MCODE input file

with the appropriate geometry and places it in its own directory. The wrapper then calls

MCODE and waits for the run to finish. After it has finished, the wrapper updates the

material compositions of each depletion node based on the MCODE output. With the new

material compositions and fuel path data at hand, a new MCODE input file for the next

cycle can be created, placed in a new directory, and run. This process is repeated until all

the cycles have finished.

In order for this process to work properly, it was necessary to make a small change

in MCODE. As time progresses in an MCODE run, MCNP does not track all the isotopes

that ORIGEN does because many isotopes are not important as far as neutron absorption

rates are concerned and not all ORIGEN isotopes have corresponding MCNP cross-

section libraries. Normally, at the beginning of an MCODE run, the only isotopes present

in the problem are completely specified by the MCNP data. For our purposes, at the

beginning of a new cycle, we want to retain all the ORIGEN isotopes in each material

from the previous cycle. MCODE was modified to be able to distinguish whether a

material is “fresh” or whether ORIGEN data is already present, i.e. the material has been

burned.

5. VERIFICATION AND VALIDATION

Since MCODE was actually modified to be able to perform fuel management

calculations, it is instructive to ensure that the changes give the desired result. As a test, a

simple pin-cell was burned in MCODE for 1350 days for two cases. In the first case, all

timesteps were run using one MCODE input file. In the second case, an MCODE input

file was created for each timestep with material compositions and ORIGEN isotope data

files taken from the previous timestep. The percent difference between the multiplication

factor and isotope concentrations in the two cases is shown in Fig. 8.

P. K. Romano et al., Development of a GUI for In-Core Fuel Management using MCODE

 © ANS 2009, Topical Meeting ANFM 2009, p. 10/13

Fig. 8 Difference between multiplication factor and isotope concentrations for two test cases.

While the difference between the U-235 concentrations in the two cases steadily

increases with time, one must consider two important facts when interpreting this result.

Firstly, since the reaction rates are determined stochastically, running the same case twice

may give different reaction rates. Hence, there is an associated uncertainty in the

multiplication factor and the isotope concentrations that is not reflected in Fig. 8. In

addition, the high burnup of a single pin-cell will result in a very low U-235

concentration over time and thus differences on the order of a few percent are actually

negligible. This can be confirmed by looking at the U-235 concentration for the two cases

as shown in Fig. 9.

Fig. 9 U-235 concentration for two test cases.

P. K. Romano et al., Development of a GUI for In-Core Fuel Management using MCODE

 © ANS 2009, Topical Meeting ANFM 2009, p. 11/13

With the MCODE changes validated, the next step is to ensure that the fuel

management wrapper also performs as expected. To test the functionality of the wrapper,

a 24-element core with all fresh LEU fuel was burned for 640 days with the fuel being

moved in the same pattern every 80 days. At each cycle, the three fuel elements in the

inner ring (A-ring) were removed and three new fuel elements were placed in the middle

ring (B-ring). The dummy elements were placed in rotationally symmetric positions so

that after eight cycles, the material compositions in the core would be close to their

equilibrium values for this particular fuel pattern. A criticality search on the control blade

height was performed at every timestep.

This particular case was also run with an earlier version of the fuel management

wrapper written in Fortran that existed before the development of the GUI. As mentioned

earlier, the methodology used for performing fuel management operations in the older

version was to swap material numbers whenever fuel needed to be moved rather than

changing the geometry. A comparison of the control blade height from this run using the

Fortran-based wrapper and the new Python-based wrapper is shown in Fig. 10.

Fig. 10 Control blade height in LEU equilibrium core run for old and new fuel management wrappers.

There is a slight disagreement between the two wrappers towards the beginning of

each cycle due to the use of longer timesteps in the run using the Fortran-based wrapper.

However, the two wrappers do show excellent overall agreement. The behavior of the

control blades is just as one would expect. At the beginning of each cycle when fresh fuel

is introduced, the blades must be lowered to compensate for the positive reactivity from

the new fuel but are quickly withdrawn over the course of the following three days to

compensate for the buildup of equilibrium Xenon. The overall trend shows the transition

from the fresh core at time zero to the near-equilibrium core at the end of the run.

P. K. Romano et al., Development of a GUI for In-Core Fuel Management using MCODE

 © ANS 2009, Topical Meeting ANFM 2009, p. 12/13

Another metric that we can use to validate this run is the concentration of U-235

in each fuel element. We would expect that those fuel elements that have resided in the

core for a longer period of time will have a lower concentration of U-235. This is exactly

what is shown in Fig. 11 where the relative U-235 concentration decreases with residence

time. The numbers displayed on top of the fuel elements indicate how many cycles each

element has previously resided in the core.

Fig. 11 Relative U-235 concentration for LEU equilibrium core.

The equilibrium core run took about two days to run with MCNP running in

parallel on six 2.2 GHz AMD Opteron processors.

6. CONCLUSIONS

The graphical user interface and fuel management wrapper described herein will

help to automate the onerous task of setting up an input file for performing a fuel

management run in MCODE and analyzing the results from a run, all in a manner that is

less prone to human error. This will enable studies in support of the MITR conversion

project to be carried out effectively and will greatly aid the MITR staff in performing

routine in-core fuel management calculations.

The graphical user interface has been tested and shown to work on both Linux and

Windows platforms and is expected to work on all other platforms that support Python

and PyQt.

Although the GUI and the fuel management wrapper as currently written have a

number of features and subroutines that are specific to the MITR, the long-term vision of

this project is to have an interface that requires little code modification in order to be used

for a variety of different reactor designs. This will require having a standardized reactor

template format that the GUI would be able to load in. Short-term improvements to the

P. K. Romano et al., Development of a GUI for In-Core Fuel Management using MCODE

 © ANS 2009, Topical Meeting ANFM 2009, p. 13/13

code package include the ability to load burned fuel element data into the GUI for use in a

new run, the ability to run a calculation wherein each cycle ends when the control device

hits a specified stop point, and the ability to allow fission products in the fuel to decay

between cycle (since refueling will take several days).

REFERENCES

1. Z. XU, P. HEJZLAR, and M. S. KAZIMI, “MCODE, Version 2.2 – An MCNP-

ORIGEN Depletion Program,” Massachusetts Institute of Technology (2006).

2. P. K. ROMANO, B. FORGET, and T. H. NEWTON, JR., “Extending MCODE

Capabilities for Innovative Design Studies at the MITR”, Trans. Amer. Nucl. Soc.,

99, 659 (2008).

3. T. H. NEWTON, JR. et al., “REBUS and MCODE Burnup Modeling of the MITR

for Conversion Studies,” 2008 International Meeting on Reduced Enrichment for

Research and Test Reactors, Washington, DC, Oct. 5-8, 2008.

4. N. TOURAN, “Graphical Automation of REBUS/MC**2 Fast Reactor

Calculations,” 2008 American Nuclear Society Student Conference, College Station,

TX, Feb. 28-Mar. 1, on CD-ROM, American Nuclear Society (2008).

