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Sheared toroidal flows can cause bifurcations to zero-turbulent-transport states in tokamak plasmas.

The maximum temperature gradients that can be reached are limited by subcritical turbulence driven by

the parallel velocity gradient. Here it is shown that q=� (magnetic field pitch/inverse aspect ratio) is a

critical control parameter for sheared tokamak turbulence. By reducing q=�, far higher temperature

gradients can be achieved without triggering turbulence, in some instances comparable to those found

experimentally in transport barriers. The zero-turbulence manifold is mapped out, in the zero-magnetic-

shear limit, over the parameter space (�E, q=�, R=LT), where �E is the perpendicular flow shear and R=LT

is the normalized inverse temperature gradient scale. The extent to which it can be constructed from linear

theory is discussed.
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Introduction.—The heat loss that occurs as a result of
turbulence driven by the ion temperature gradient (ITG) is
one of the main obstacles to a successful fusion reactor. A
large body of experimental work has demonstrated the
effectiveness of strongly sheared equilibrium-scale flows
in reducing this turbulence [1–3]. Numerical models [4–7]
have demonstrated that by reducing the strength of the ITG
instability, which drives the turbulence, and by shearing
apart the turbulent structures, the radial gradient of the flow
component perpendicular to the magnetic field can indeed
lead to a great reduction in the heat loss that results from a
given temperature gradient. However, Ref. [6] also dem-
onstrated that the instability associated with the parallel
velocity gradient (PVG) [8–10] could start to drive turbu-
lence at higher flow gradients and prevent the complete
suppression of the turbulent transport.

More recent work has demonstrated that, at even higher
flow shears, it is possible, at moderate temperature gra-
dients, for the perpendicular velocity shear to overcome
both the ITG and the PVG instabilities and completely
quench the turbulence [11]. This quenching is most effec-
tive at zero magnetic shear [12–14], a regime which has
been associated in experiments with high confinement of
energy in the presence of strongly sheared flows [3,15].
References [12–14] also demonstrated the existence, at
zero magnetic shear, of a bifurcation to a high-temperature-
gradient reduced-transport state, driven by a toroidal
sheared flow. However, the maximum temperature gradient
that could be reached via such a bifurcation was found to
be limited by the fact that turbulence was rekindled at high
toroidal shear, in the form of subcritical fluctuations driven
by the PVG [9–13]. The question arises, which parameter

regime is most favorable to the suppressing effect of the
perpendicular flow shear and least favorable to the ITG and
PVG drives? In other words, how can the temperature
gradient which results from the transport bifurcation
described in Refs. [12–14] be maximized?
At zero magnetic shear, the turbulence is subcritical for

all nonzero values of the flow shear: there are no linearly
unstable eigenmodes, and sustained turbulence is the result
of nonlinear interaction between linear modes which grow
only transiently before decaying. A recent paper [10],
which studied this transient growth in slab geometry, dem-
onstrated that at large velocity shears the maximal ampli-
fication exponent of a transiently growing perturbation
before it decays is proportional to the ratio of the PVG to
the perpendicular flow shear. In a torus, this quantity is
equal to the ratio of the toroidal to poloidal magnetic field
components, or q=�, where q is the magnetic safety factor
and � is the inverse aspect ratio. Therefore, if we conjec-
ture that a certain minimum amplification exponent is
required for sustained turbulence, Ref. [10] predicts that
there should be a value of q=� below which the PVG drive
is rendered harmless. Below that value of q=�, it should be
possible to maintain an arbitrarily high temperature gra-
dient without triggering turbulent transport provided a high
enough perpendicular flow shear can be achieved.
In this Letter, motivated by the possibility of reduced

transport at low values of q=�, we use nonlinear gyroki-
netic simulations to map out the zero-turbulence manifold,
the surface in the parameter space that divides the regions
where turbulent transport can and cannot be sustained.
The parameter space we consider is (�E, q=�, R=LT),
where �E is the normalized perpendicular flow shear:
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�E ¼ u0=ðq=�Þ, where u0 ¼ dR!=dr=ðvthi=RÞ is the toroi-
dal shear, ! the toroidal angular velocity, r the minor
radius of the flux surface, vthi the ion thermal speed and
R the major radius, and where R=LT is the inverse tem-
perature gradient scale length normalized to R. For brevity,
we will refer to R=LT as ‘‘the temperature gradient.’’ We
set the magnetic shear to zero, the regime we expect to be
most amenable to turbulence quenching by shear flow
[3,11–16].

We discover that reducing q=� is indeed uniformly
beneficial to maintaining high temperature gradients in a
turbulence-free regime, and that values of R=LT can be
achieved that are comparable to those experimentally
observed for internal transport barriers [3,17].

In the next sections, having presented our numerical
model and methodology, we will describe these results
and discuss their physical underpinnings, as well as their
implications for confinement in a toroidal plasma. We will
show that linear theory of subcritical fluctuations [10] can,
with certain additional assumptions, provide good predic-
tions of the nonlinear results.

Numerical model.—To model the turbulence, we use the
gyrokinetic equation [18] in the high-flow, low-Mach limit
[19] (i.e., the toroidal rotation velocity is ordered to be
smaller than the sound speed but much larger than the
diamagnetic velocity; Coriolis and centrifugal effects
are neglected [20], but velocity gradients are retained).
We take the electrostatic limit and assume a modified
Boltzmann electron response. The model used is identical
to that in Ref. [13]. The gyrokinetic system of equations is
solved using the local nonlinear simulation code GS2

[23–25]. As in Ref. [13], we take the Cyclone Base Case
parameter regime [26], i.e., concentric circular flux sur-
faces with � ¼ 0:18, inverse ion density scale length
R=Ln ¼ 2:2 and ion to electron temperature ratio Ti=Te ¼
1 [27]. The magnetic shear is ŝ ¼ 0. The ratio q=� is varied
by varying q alone. Collisions are included by means of a
model collision operator, which includes scattering in both
pitch angle and energy and which locally conserves energy,
momentum and particles [30,31]. The resolution of all
simulations was 128� 128� 40� 28� 8 (poloidal,
radial, parallel, pitch angle, energy). Note that relatively
high parallel resolution was needed to resolve the PVG
modes [13].

Method.—We wish to determine, in a three-dimensional
parameter space (�E, q=�, R=LT), the boundary between
the regions where turbulence can and cannot be sustained
nonlinearly. We cover this space using four scans with
constant q=� [Fig. 1(b)], three scans with constant �E

[Fig. 1(c)] and one scan with constant R=LT [Fig. 1(d)].
For each of these cases, we consider multiple values of a
second parameter and find the value of the third parameter
corresponding to the zero-turbulence boundary. The
boundary is defined as the point where both the turbulent
heat flux and the turbulent momentum flux vanish. Thus,

the location of each single point on the boundary is deter-
mined using on the order of ten nonlinear simulations. An
example of this procedure is shown in Fig. 1(a). In total, we
performed more than 1500 simulations to produce the
results reported below.
Because the turbulence that we are considering is sub-

critical, there is always a danger that a simulation might
fail to exhibit a turbulent stationary state because of an
insufficient initial amplitude [32,33]. As we are not here
concerned with the question of critical initial amplitudes
we will consider a given set of parameters to correspond to
a turbulent state if such a state can be sustained starting
with a large enough perturbation. Therefore, all simula-
tions are initialized with high-amplitude noise. They are
then run to saturation; close to the boundary a simulation
may need to run for up to t� 1000R=vthi to achieve this.
The critical curves obtained in this manner are plotted in

Figs. 1(b)–1(d). These curves, which effectively give the
critical temperature gradient R=LTc as a function of �E and
q=�, are then used to interpolate a surface, the zero-
turbulence manifold, plotted in Fig. 2. The interpolation
is carried out using radial basis functions with a linear
kernel [34] (see also Ref. [13]).
Results.—The results of the scan described above are

displayed in Figs. 1(b)–1(d). These three figures show, at
fixed values of either �E, R=LT or q=�, the threshold in
either R=LT or q=� below which turbulence cannot be

FIG. 1 (color online). (a) The simulations used to find the point
on the manifold �E ¼ 1:8, R=LT ¼ 15, q=� ¼ 6:3, showing the
heat flux vs q=� at (�E ¼ 1:8, R=LT ¼ 15). The point on the
manifold is the point where the heat flux drops to zero.
(b)–(d) Sections through the critical manifold with parameters
as indicated. Turbulence cannot be sustained for R=LT < R=LTc

in (b),(c), or for �E < �Ec in (d). The data points were found as
illustrated in (a), and used to generate the manifold shown in
Fig. 2.
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sustained; they are, in effect, sections through the zero-
turbulence manifold.

Considering first Fig. 1(b), we see that, at fixed q=�, the
critical gradient R=LTc first rises with �E, as the perpen-
dicular flow shear suppresses the ITG-driven turbulence,
and then falls—in most cases to 0—as the PVG starts to
drive turbulence instead. This phenomenon was discussed
at length in Refs. [11–13] (indeed the curve for q=� ¼ 8 is
taken from Ref. [13]). Thus, for every q=�, there is an
optimum value of the perpendicular flow shear �E (and
hence of the toroidal shear u0) for which the critical tem-
perature gradient R=LTc is maximized. We see that reduc-
ing q=� increases the maximum R=LTc that can be
achieved without igniting turbulence. Figure 1(c) shows
that this rule applies for all considered values of flow shear
[35]. This is to be expected, because lower q=� means
weaker PVG relative to the perpendicular shear, allowing
higher values of the perpendicular flow shear to suppress
the ITG before the PVG drive takes over.

Last, Fig. 1(d) shows the threshold in �E above which
the PVG can drive turbulence alone, without the help of the
ITG; in other words, even configurations with a flat tem-
perature profile would be unstable. At very high q=�,
already a very small flow shear will drive turbulence; as
q=� decreases, higher and higher values of �E are required
for the PVG turbulence to be sustained. It cannot be con-
clusively determined from this graph whether, as suggested
by linear theory [10], there is a finite critical value of
q=� below which PVG turbulence cannot be sustained,
i.e., a nonzero value of q=� corresponding to �Ec ! 1.
However, for q=� & 7, the critical �E is far above what
might be expected in an experiment [37], and so the �E !
1 limit is somewhat academic. A definite conclusion we
may draw is that at experimentally relevant values of shear,
pure PVG-driven turbulence cannot be sustained for
q=� & 7.

The zero-turbulence manifold interpolated from the nu-
merical data points is displayed in Fig. 2. The manifold
comprises three main features: a ‘‘wall’’ where the critical
temperature gradient increases dramatically at low q=�; a
‘‘spur’’ at low �E, jutting out to high q=� (where, as �E

increases, the ITG-driven turbulence is suppressed some-
what before the PVG drive becomes dominant), and finally
the curve where the manifold intercepts the plane R=LT ¼
0, whose shape is described above.
Practical implications.—In order to illustrate better the

implications of our findings for confinement, we plot, in
Fig. 3, contours of R=LTc vs q=� and the toroidal flow
shear u0 ¼ dR!=dr=ðvthi=RÞ. The basic message is clear:
the lower the value of q=�, the higher the temperature
gradient that can be achieved without igniting turbulence.
Once we have obtained the lowest possible value of q=�,
there is an optimum value of u0 which will lead to that
maximum R=LTc. We note that the dependence of this
optimum value of u0 on q=� is not as strong as the depen-
dence of the optimum value of �E on q=� (clearly this must
be so because u0 ¼ ðq=�Þ�E). In a device with an opti-
mized value of q=�, a near maximum critical temperature
gradient would be achievable for u0 * 5, shears compa-
rable to those observed in experiment [3,16,17].
While simulation results obtained for Cyclone Base

Case parameters are not suitable for detailed quantitative
comparison with real tokamaks, it is appropriate to ask
whether our results are at all compatible with experimental
evidence. A recent study [38] suggests that certainly the
qualitative shape of the dependence, and possibly also the
quantitative values, obtained here for R=LTc vs u

0 and q=�
are in agreement with the temperature gradients measured
in MAST [39].
Relation to linear theory.—Since the mapping of the

zero-turbulence manifold using nonlinear simulations is
computationally expensive, we may ask whether linear
theory can predict marginal stability. The question is also

FIG. 2 (color online). The zero-turbulence manifold.
Turbulence can be sustained at all points outside the manifold
(that is, at all points with a higher temperature gradient and/or
higher value of q=� than the nearest point on the manifold). This
plot is made up from the sections shown in Figs. 1(b)–1(d)
(heavy lines) and the manifold interpolated from them (thin
grey mesh).

FIG. 3 (color online). Contours of the zero-turbulence mani-
fold plotted against the toroidal flow shear u0 ¼ dR!=dr=
ðvthi=RÞ ¼ �E=ðq=�Þ. The contours indicate the value R=LT ¼
R=LTc below which turbulence is quenched.
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interesting in terms of our theoretical understanding of
subcritical plasma turbulence. It is clear that in a situation
where perturbations grow only transiently, existing meth-
ods based on looking for marginal stability of the fastest
growing eigenmode will not be applicable. In Ref. [10], we
considered these transiently growing modes in a sheared
slab and posited a new measure of the vigor of the transient
growth:Nmax, the maximal amplification exponent, defined
as the number of e foldings of amplification a perturbation
experiences before starting to decay, maximized over all
wave numbers. It appears intuitively clear that in order for
turbulence to be sustained, transient perturbations must
interact nonlinearly before they start to decay. We may
then assume that a saturated turbulent state will exist if
Nmaxð�E; q=�; R=LTÞ is greater than some threshold value
of order unity.

We now test this idea by calculatingNmax for linear ITG/
PVG-driven transient perturbations, using the GS2 code to
solve the linearized gyrokinetic equation. Figure 4(a)
showsNmax vs �E for a range of values of R=LT at constant
q=� ¼ 6:0. In line with the prediction of Ref. [10], Nmax

tends to infinity as the flow shear tends to zero, and tends to
a constant as the flow shear tends to infinity. In the inter-
mediate region, Nmax decreases as the perpendicular shear
suppresses the ITG drive; for lower values of the ITG, it
may even decrease to zero before the PVG drive makes it
increase it once again.

We find that, in fact, there is no constant critical
value of Nmax that may be used to reproduce the zero-
turbulence manifold: the critical amplification exponent
Ncð�E; q=�Þ � Nmaxð�E; q=�; R=LTcð�E; q=�ÞÞ varies in
general with both flow shear [see Fig. 4(a)] and q=�.
However, we find that at high flow shear, Nc is virtually
independent of q=�, and at low flow shear it is only weakly
dependent on q=�. In addition, at low flow shear, R=LT is
only weakly dependent onNmax [i.e., theNmax vs �E curves

corresponding to each given R=LT are nearly vertical; see
Fig. 4(a)]. A consequence of this is that we can find a fitted

function Nf
c ð�EÞ, independent of q=� [and also shown in

Fig. 4(a)], such that the equation Nmaxð�E; q=�; R=LTÞ ¼
Nf

c ð�EÞ gives a good reconstruction of the zero-turbulence
manifold.

The difference betweenNcð�E; q=�Þ and Nf
c ð�EÞ for any

given q=� does not appear to be very large. Thus, the
practical conclusion of this exercise is that it may be
possible to obtain a rough approximation to the zero-
turbulence manifold via a nonlinear scan at a single value
of q=�.
Discussion.—We have presented two key results. First,

and principally, we have calculated the shape of the zero-
turbulence manifold, the surface that divides the regions in
the parameter space (�E, q=�, R=LT) where subcritical
turbulence can and cannot be nonlinearly sustained. We
have described the shape of this manifold and its physical
origins, and presented its two implications for confinement
in toroidal plasmas: that reducing the ratio q=�, i.e.,
increasing the ratio of the poloidal to the toroidal magnetic
field, improves confinement at every nonzero value of �E,
and that at fixed q=�, there is an optimum value of �E [that
is, an optimum value of the toroidal flow shear u0 ¼
dR!=dr=ðvthi=RÞ] at which the critical temperature gra-
dient is maximized, in some instances to values compa-
rable to those observed in internal transport barriers [3,17].
How to calculate the heat and momentum fluxes that would
need to be injected in order for such optimal temperature
gradients to be achieved was discussed in Ref. [14].
Second, we have shown that the zero-turbulence mani-

fold can be parameterized as Nmaxð�E; q=�; R=LTÞ ¼
Nf

c ð�EÞ, whereNmax is the maximal amplification exponent
of linear transient perturbations (calculated from linear

theory) and Nf
c must be fit to the data. Obviously, the

need to fit Nf
c ð�EÞ indicates a limitation of our current

theoretical understanding of the criterion for sustaining
subcritical turbulence in a sheared toroidal plasma. The
results reported here provide an empirical constraint on
future theoretical investigations.
Another avenue for future investigations is determining

the dependence of the zero turbulence boundary on some
of the parameters that were held fixed in this work: Ti=Te,
magnetic shear, and, more generally, the shape of the flux
surfaces, density gradient, inverse aspect ratio � (sepa-
rately from q), etc. Mapping out the dependence just on
�E, q=� and R=LT took approximately 1500 nonlinear
simulations at a total cost of around 4.5 million core hours.
Adding even two or three more parameters to the search
would take computing requirements beyond the limit of
resources today, but not of the near future.
We are grateful for helpful discussions with I. Abel, J.
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FIG. 4 (color online). (a) Nmax, the transient amplification
exponent maximized over all wave numbers, vs the flow shear
�E, at different values of the ion temperature gradient R=LT and
at constant q=� ¼ 6:0. Also shown is the critical amplification
exponent Ncð�E; q=�Þ for the same value of q=�, and the fitted

critical amplification exponent Nf
c ð�EÞ. (b) The critical tempera-

ture gradient R=LTc vs q=� for different values of �E, showing
R=LTc obtained both from the interpolated manifold (Fig. 2), and

from the equation Nmaxð�E; q=�; R=LTÞ ¼ Nf
c ð�EÞ, with Nf

c ð�EÞ
[shown in (a)] chosen to produce the best fit.
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