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Coulomb coupling in graphene heterostructures results in vertical energy transfer between electrons in

proximal layers. We show that, in the presence of correlated density inhomogeneity in the layers, vertical

energy transfer has a strong impact on lateral charge transport. In particular, for Coulomb drag, its

contribution dominates over conventional momentum drag near zero doping. The dependence on doping

and temperature, which is different for the two drag mechanisms, can be used to separate these

mechanisms in experiments. We predict distinct features such as a peak at zero doping and a multiple

sign reversal, which provide diagnostics for this new drag mechanism.

DOI: 10.1103/PhysRevLett.109.236602 PACS numbers: 72.80.Vp, 73.23.�b, 73.63.�b

Vertical heterostructures comprised of a few graphene
layers separated by an atomically thin insulating layer [1]
afford new ways to probe the effects of electron interac-
tions at the nanoscale. The typical layer separation d in
these structures (1–2 nm) can be very small compared to
the characteristic electron length scales such as the de
Broglie wavelength, �, and the screening length. This
defines a new strong-coupling regime, d � �, wherein
the interlayer and intralayer interactions are almost equally
strong. Fast momentum transfer between electron subsys-
tems in the two layers and strong Coulomb drag have been
predicted in this regime [2–7] with characteristic depen-
dence on doping, temperature, and layer separation distinct
from that in previously studied systems [8].

Recent measurements [9,10], while confirming theoreti-
cal predictions away from charge neutrality (CN), yield
unexpected results at CN. Conventional momentum drag
(P mechanism) vanishes at CN because the sign of the P
mechanism depends on the polarity of the charge carriers
[11]. However, Ref. [10] reports a sharp peak in the drag
response at CN. This disparity indicates that new physics is
involved in driving drag in graphene at CN.

In this Letter, we propose a new mechanism for drag:
energy-driven drag (Emechanism). As we will show, the E
mechanism becomes important in the adiabatic regime
where the electronic system is thermally decoupled from
the lattice. In graphene, slow electron-lattice cooling
means that thermal decoupling persists over few-micron
length scales even at room temperature [12–14]. Further,
when d � �, interlayer electron-electron scattering medi-
ates efficient vertical energy transfer between layers, cou-
pling electron temperatures in the layers. In the adiabatic
regime, the electronic heat current is a dynamical variable,
that together with charge current, governs transport
behavior.

The E mechanism arises due to the coupling between
vertical energy transfer and lateral charge and energy
transport via spatial density inhomogeneity which is

intrinsic to graphene. Density inhomogeneity is known to
be particularly strong at CN in the electron-hole puddle
regime [15], providing the dominant disorder potential in
clean samples. When a charge current is applied in layer 1,
density inhomogeneity produces spatially varying heating
or cooling [see Eq. (2)]. Strong thermal coupling between
the electron systems in the two layers, mediated by the
interlayer energy transfer, leads to a temperature pattern in
layer 2 that tracks that in layer 1, �T2ðrÞ � �T1ðrÞ. Further,
since the disorder correlation length �dis can reach 100 nm
in graphene-BN heterostructures [16,17], exceeding the
layer separation by orders of magnitude, the potential
fluctuations are nearly identical in the two layers,

h��1ðrÞ��2ðr0Þi> 0; (1)

for r � r0. As a result, the position-dependent thermo-
power induced by the gradient r�T2ðrÞ is correlated with

FIG. 1 (color online). Different mechanisms for Coulomb drag
in graphene heterostructures. The E mechanism dominates over
the P mechanism near zero doping, whereas the P mechanism
dominates at higher doping. The sign of the drag response
depends on carrier polarity (a). For potential fluctuations of
equal sign in the two layers, Eq. (1), the net drag (b) features
a pair of nodal lines (white dashed lines). Positive drag in
the avoided crossing region at zero doping is dominated by
the E mechanism. The resulting dependence is distinct from
P-mechanism-only drag (c) smeared by correlated density fluc-
tuations, ��1 � ��2.
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the heating or cooling pattern in layer 1, giving rise to a
nonzero ensemble-averaged drag voltage in layer 2.

The E mechanism predicts drag which has a character-
istic density dependence [illustrated in Fig. 1(b)] featuring
a positive drag resistivity at double neutrality, �21 > 0. The
sign, as well as the peak structure in �21, agrees with a
recent experiment [10]. The density dependence for the
net drag (the E and P mechanisms combined) features a
split-up pattern of nodal lines with an ‘‘avoided crossing’’
at zero doping, as illustrated in Fig. 1(b). The double sign
change along the main diagonal n1 ¼ n2 and the peak at
n1;2 ¼ 0 make the E mechanism easy to distinguish

experimentally.
As a parenthetical remark, the correlated density inho-

mogeneity, Eq. (1), also affects the Pmechanism; however,
its effect is opposite to that of the E mechanism. If the P
mechanism were the dominant contribution near zero dop-
ing, the pattern of nodal lines would be such that the drag
sign was constant along the main diagonal [see Fig. 1(c)].

The E mechanism is mediated by neutral modes
(particle-hole excitations, or electron-lattice temperature
imbalance) which are of a long-range character, and thus
can be described by a hydrodynamic approach. The rele-
vant length scales for these modes are �T and �dis, the
electron-lattice cooling length and the inhomogeneity
correlation length, respectively. For a long-range disorder
potential and not too low temperatures, the length scales �T

and �dis are larger than the inelastic mean free path,
‘ ¼ v=�, where � is the electron-electron scattering rate.
As a result, the E mechanism is captured by a hydrody-
namic framework which involves the charge current j and
the heat current jq, which in the ballistic transport regime

are related by

j qðrÞ ¼ QðnÞj; Q½nðrÞ� ¼ S½nðrÞ�T=e; (2)

where SðnÞ is the entropy per carrier, nðrÞ is the density
profile, and e < 0 is the carrier charge. In the ballistic
regime, using the electron temperature approximation,
we find [18]

Q ¼ 2�2k2BT
2�

3eð�2 þ �2ðTÞÞ ; (3)

where �ðTÞ accounts for the Dirac point broadening due to
disorder and thermal fluctuations, and � is the chemical
potential.

It is instructive to compare the Feynman diagrams de-
scribing different mechanisms (see Fig. 2). The character-
istic momenta are fairly large for the Pmechanism (�kF),
making it a local contribution. In contrast, the E mecha-
nism includes ladder diagrams representing long-range
modes propagating over distances of order �T � k�1

F .
To illustrate the relation between energy and charge

transport, we first analyze the in-plane resistivity in a single
layer. According to Eq. (2), spatial inhomogeneity leads
to heating or cooling in the presence of uniform charge

current (as in the Joule-Thomson process). The spatial
temperature profile can be found from �r�r�T þ
��T ¼ �r � jq, where � is the thermal conductivity and

��T is the electron-lattice cooling power. A temperature
gradient r�T drives thermopower, providing additional
dissipation and thereby increasing the resistivity. Onsager
reciprocity combined with Eq. (2) gives EðrÞ ¼
�ðQ½nðrÞ�=TÞr�T [18]. Taking an ensemble average
over small density fluctuations, �� � kBT, �, we find
an increase in the in-plane resistivity, h�	
i ¼ �0

	
 þ
��	
, [	ð
Þ ¼ x, y], where

��	
 ¼ 1

T

X
jqj&1=‘

h�Qð�qÞ�QðqÞi
�q2 þ �

q	q
: (4)

Since the derivative @Q=@� peaks at � ¼ 0, this results in
��	
 that peaks at CN. The temperature dependence

estimated below is �� / T2, reminiscent of superlinear
power laws for the resistivity frequently observed at small
doping [19]. A contribution of nonthermal modes to ��
was analyzed in Ref. [20].
Generalizing this analysis to two layers coupled by

vertical energy transfer and accounting for correlated den-
sity fluctuations, Eq. (1), we find an ensemble-averaged
drag response E2 ¼ �21j1,

�ðeÞ
21 ¼ 1

2T~�

@Q

@�1

@Q

@�2

X
q

h��2ð�qÞ��1ðqÞi
1þ ~‘2q2

: (5)

Here ~� ¼ �1 þ �2 is the net thermal conductivity of the

two layers, and ~‘ is the interlayer cooling length. This
length is estimated below and is shown to be of order of

the inelastic mean free path, ~‘� ‘, much shorter than the
electron-lattice cooling length �T . Because the sign of the
correlator in Eq. (5) is positive, the energy-driven drag has
the same sign as ��	
 in Eq. (4), i.e., it is positive at zero

doping. This results in a double sign change along the main
diagonal n1 ¼ n2, see Fig. 1(b). The density dependence

for �ðeÞ
21 features a peak at zero doping (see Fig. 3) which is

a hallmark of the E-mechanism regime.
A positive correlation, Eq. (1), is expected for a disorder

potential dominated by charge impurities [21–23]. For the
correlator h��1��2i of a negative sign, conjectured for
strain-induced charge puddles [24], our analysis predicts a
negative drag at zero doping. Hence drag is a useful tool for
probing the origin of inhomogeneity in graphene.

FIG. 2. Feynman diagrams for the P mechanism (a) and the E
mechanism (b) for drag. Wavy lines represent interactions,
dashed line represents disorder averaging. The ladder in
(b) represents a long-wavelength charge-neutral mode.
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We begin by studying the energy transfer between the
electronic systems in the two layers [Fig. 1(a)]. This is
described by the Hamiltonian

H ¼X
i

Z
d2rc y

i ðrÞ½�i@v� �rþ��iðrÞ�c iðrÞþH el�el;

(6)

where i ¼ 1 . . . 2N index the layer, and spin and valley
degrees of freedom, ��ðrÞ describes the slowly varying
disorder potential, and v is the Fermi velocity. The

electron-electron interactions are described by H el�el ¼
1
2

P
q;k;k0;i;jVijðqÞc y

kþq;ic
y
k0�q;j

c k0;jc k;i.

In our analysis, we ignore the correction due to the finite
layer separation d, approximating the interlayer inter-
action by the bare Coulomb interaction, VijðqÞ � V0

q ¼
2�e2="jqj with " the background dielectric constant.
This approximation is valid when the length scale d is
small compared to the screening length and Fermi wave-
length in the layers, which is the case for systems of
interest [1]. The random-phase approximation then yields
a screened interaction VijðqÞ ¼ V0

q=½1� V0
qð�1ðq; !Þ þ

�2ðq; !ÞÞ� for i, j in the different layers.
We describe the energy distribution of carriers in each

layer by a Fermi distribution at temperatures T1;2. Using

Fermi’s Golden Rule we can calculate the rate of energy
exchange between the two layers (see the Supplemental

Material [18]). In the degenerate limit �1, �2 � kBT, we
obtain the energy transfer rate between layers 1 and 2:

J 12 ¼ 6�ð4Þ
@
3�2v2

�1�2k
4
B

ð�1 þ �2Þ2
�
T4
1 ln

T0

T1

� T4
2 ln

T0

T2

�
; (7)

where �ð�Þ is the total density of states in each layer, and
kBT0 ¼ vð2�e2="Þð�1 þ �2Þ. Notably, for equal densities
J12 does not depend on the Fermi surface size. For equal
densities and small temperature differences between the
layers T1 � T2, we obtain the cooling rate

� ¼ 1

Cel

dJ 12

dT
¼ 9�ð4Þk2BT2

�3�@
ln
T0

T
; (8)

where the heat capacity Cel ¼ ð�2=3Þk2BT�ð�Þ and the
density of states �ð�Þ ¼ 2�=ð�@2v2Þ for the degenerate
limit have been used. The rate � increases as � goes
towards neutrality, but is already quite large for � away
from neutrality. This is completely analogous to intralayer
scattering [25,26]. For typical values � ¼ 100 meV, T ¼
300 K, the rate � is about 10 ps�1, orders of magnitude
faster than typical electron-lattice cooling rates [12–14].
Vertical energy transfer couples heat transport in the two

layers, so that the layer temperatures T1, T2 obey

�r�1r�T1 þ að�T1 � �T2Þ þ ��T1 ¼ �r � jq;1
�r�2r�T2 þ að�T2 � �T1Þ þ ��T2 ¼ 0;

(9)

where jq;1 is the heat current [see Eq. (2)], and a ¼
dJ 12=dT [see Eq. (7)]. We consider only a response linear
in the applied current, j, neglecting the quadratic joule
heating term. Inverting the coupled linear equations, we
find an increase in temperature in layer 2, �T2ðrÞ, that is
driven by current in layer 1 as

�T2ðrÞ ¼ � a

L̂1L̂2 � a2
ðj1 � rÞQ½n1ðrÞ; T�; (10)

where L̂i ¼ �r�irþ aþ �. In what follows we sup-
press the � term since electron-lattice cooling is slow.
Equation (10) then predicts a value for the interlayer

cooling length ~‘ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1�2=½ð�1 þ �2Þa�

p
, which yields a

value close to that for the mean free path ‘. The induced
temperature profile, �T2ðrÞ, creates thermal gradients
that can drive a local thermopower via E2ðrÞ ¼
�ðQ½n2ðrÞ�=TÞr�T2.
Spatial fluctuations in the thermopower are governed

by density fluctuations via Eq. (10). In particular, close
to neutrality the local thermopower will exhibit regions
of both positive and negative sign, leading to a spatial
pattern of the drag resistivity. As discussed above, the
correlations between ��1 and ��2, Eq. (1), lead to a
nonzero ensemble-averaged drag resistivity. In the limit

��1;2 � kBT,�1;2 wewriteQiðrÞ ¼ hQiðrÞi þ @Q
@�i

��iðrÞ.
Passing to Fourier harmonics via h��1ðrÞ��2ðr0Þi ¼P

qe
iqðr�r0Þh��1ð�qÞ��2ðqÞi, we obtain Eq. (5).

FIG. 3 (color online). (a) Total drag resistivity �ðtotÞ
21 ¼ �ðmÞ

21 þ
�ðeÞ
21 vs chemical potentials in the two layers, evaluated from

Eqs. (11) and (5) at T ¼ 100 K, producing a peak at �1;2 ¼ 0
(see text for parameter values used). (b, c) Slices �1 ¼ �2 and
�1 ¼ ��2 at different temperatures. Note a three-peak structure
in panel (b) and two sign changes close to CN in (c). (d)
Temperature dependence of the peak at �1;2 ¼ 0 in the diffusive

regime.
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The fact that the fluctuating local thermopower, exhib-
iting both positive and negative signs, does not average to
zero is surprising. This happens because the inhomoge-
neity in the heat current and the thermopower arise from
the same source: electron-hole puddles. The E mecha-
nism resembles mutual drag described by Laikhtman and
Solomon [27] in semiconducting heterostructures where
doping at contacts produced a similar correlation be-
tween Peltier heating or cooling and thermopower. The
E mechanism in graphene differs from Ref. [27] in that
density inhomogeneity is intrinsic, occurs throughout the
sample (not just at the contacts), and occurs on a far
smaller scale.

To see how the E mechanism, Eq. (5), affects the total
experimentally measured drag we need to account for the
P-mechanism contribution. We use a model that captures
the main qualitative features of momentum drag:

�ðmÞ
21 ¼ ~�ðmÞ

21

h

e2
ðkBTÞ2�1�2

ð�2
1 þ k2BT

2Þð�2
2 þ k2BT

2Þ ; (11)

~�ðmÞ
21 ¼ �1:4	2=ð2�2Þ, where k2BT

2 describes thermal

broadening of the Dirac point. This expression, with the
effective interaction strength 	 ¼ 0:05, and  ¼ 6:25, was
obtained by fitting the functional dependence derived in
Ref. [7] in the doping region �10<�=kBT < 10.

Combining this with �ðeÞ
21 in Eq. (5), we obtain the total

drag �ðtotÞ
21 ¼ �ðmÞ

21 þ �ðeÞ
21 plotted in Fig. 3. Here we have

used an estimate for the thermal conductivity [28]

� ¼ bð�2 þ �2ðTÞÞ=@T; �2ðTÞ ¼ �2
0 þ ðkBTÞ2;

(12)

and assumed Gaussian correlations with average square
density fluctuations h��2i � 25 meV2 and �dis ¼ 100 nm
[16,17]. Here �ðTÞ accounts for Dirac point broadening by
disorder and thermal fluctuations [18], and b is a constant
of order unity; its exact value does not impact the qualita-
tive features seen in Fig. 3. We note that the details of the
functional form of the correlator in Eq. (1) do not impact
the qualitative behavior. The obtained values of total drag
are compatible with the measured drag resistivities re-
ported in Refs. [9,10].

The density dependence of total drag plotted in Fig. 3(a)
can be used to distinguish the two drag mechanisms in
experiments. Namely, the peak at zero doping is due to the
E mechanism. On the slice �1 ¼ ��2 (black dashed line)
this peak is surrounded by two peaks dominated by the
momentum contribution [Fig. 3(b)]. On the slice �1 ¼ �2

(yellow dashed line) the two mechanisms produce contri-
butions of opposite sign, resulting in a double sign change
[Fig. 3(c)]. This provides a clear means of discerning the
E-mechanism regime.

The temperature dependence can be estimated as follows.

At not too low T such that ~‘, ‘&�dis, the sum in Eq. (5)

yields
P

qh��1ð�qÞ��2ðqÞi¼h��1ðrÞ��2ðr0Þir¼r0 . Using

Eq. (3) and � from Eq. (12), we find a nonmonotonic T
dependence

�ðeÞ
21 / T4

ð�2
0 þ ðkBTÞ2Þ3

h��1ðrÞ��2ðr0Þir¼r0 : (13)

This dependence is reminiscent of that reported in Ref. [10]
for drag resistance at CN. A similar nonmonotonic T de-
pendence arises for the in-plane resistivity ��	
. At very

low T such that ‘, ~‘ * �dis, the sum in Eq. (5) is cut at 1=‘,
giving �21 / T8.
The above analysis can be easily extended to describe

the diffusive limit where the elastic mean free path is
shorter than the inelastic mean free path, ‘0 < ‘. Our
hydrodynamic approach remains valid in this regime,
with the quantity Q ¼ sT where s is the Seebeck coeffi-
cient. The Emechanism is still given by Eq. (5), with s and
� described by the Mott and Wiedemann-Franz relations:

s ¼ �2

3e
k2BT

@ ln�

@�
; e2� ¼ �2

3
k2BT�; (14)

where � is the electrical conductivity. Taking � to vary
linearly with carrier density, we find Q that takes on the
same qualitative form as Eq. (3) in the clean limit. As a

result, the qualitative features of �ðeÞ
21 are similar to those

found in the clean limit: namely, the avoided crossing of
nodal lines, a peak at zero doping, double sign reversal
along the diagonal n1 ¼ n2, and a three-peak structure
along the diagonal n1 ¼ �n2 [Figs. 3(a)–3(c)]. The T

dependence of �ðeÞ
21 [plotted in Fig. 3(d)] is qualitatively

similar to the nonmonotonic dependence found in the
ballistic regime, Eq. (13). However, since the Wiedemann-
Franz relation gives � / T (in contrast to � / 1=T in the

ballistic regime), at neutrality we find �ðeÞ
21 / T2 at lowest T

and �ðeÞ
21 / T�4 at higher T � �, as shown in Fig. 3(d).

Here, we accounted for Dirac point smearing in the same
way as in Eqs. (3), (12), and (13).
We note that the effects of energy transport, while being

completely generic, are particularly strong in graphene.
Since the P mechanism vanishes at CN, whereas the E
mechanism produces a sharp peak in this region, the latter
can be easily discerned even at weak inhomogeneity. The
peak structure, the sign, and the predicted temperature
dependence strikingly resemble the experiment [10].
In summary, vertical energy transfer in graphene

heterostructures has strong impact on lateral charge
transport in the Coulomb drag regime, dominating the
drag response at CN. Drag measurements thus afford a
unique probe of energy transfer at the nanoscale, a
fundamental process which is key for the physics of
strong interactions that occur near neutrality.
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