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Abstract

Modeling of signal transduction pathways plays a major role in understanding cells’ function and predicting cellular
response. Mathematical formalisms based on a logic formalism are relatively simple but can describe how signals propagate
from one protein to the next and have led to the construction of models that simulate the cells response to environmental
or other perturbations. Constrained fuzzy logic was recently introduced to train models to cell specific data to result in
quantitative pathway models of the specific cellular behavior. There are two major issues in this pathway optimization: i)
excessive CPU time requirements and ii) loosely constrained optimization problem due to lack of data with respect to large
signaling pathways. Herein, we address both issues: the former by reformulating the pathway optimization as a regular
nonlinear optimization problem; and the latter by enhanced algorithms to pre/post-process the signaling network to
remove parts that cannot be identified given the experimental conditions. As a case study, we tackle the construction of cell
type specific pathways in normal and transformed hepatocytes using medium and large-scale functional phosphoproteomic
datasets. The proposed Non Linear Programming (NLP) formulation allows for fast optimization of signaling topologies by
combining the versatile nature of logic modeling with state of the art optimization algorithms.

Citation: Mitsos A, Melas IN, Morris MK, Saez-Rodriguez J, Lauffenburger DA, et al. (2012) Non Linear Programming (NLP) Formulation for Quantitative Modeling
of Protein Signal Transduction Pathways. PLoS ONE 7(11): e50085. doi:10.1371/journal.pone.0050085

Editor: Christopher V. Rao, University of Illinois at Urbana-Champaign, United States of America

Received June 6, 2012; Accepted October 15, 2012; Published November 30, 2012

Copyright: � 2012 Mitsos et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Leonidas G. Alexopoulos and Loannis N. Melas were funded via European Union (European Social Fund – ESF) and Greek national funds through the
Operational Program ‘‘Education and Lifelong Learning’’ of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thalis. Investing in
knowledge society through the European Social Fund. Alexander Mitsos was funded by Rockwell International Career Development Professorship. Douglas
Lauffenburger and Melody Morris received funding from NIH grants P50-GM068762 and R24-DK090963, and the Institute for Collaborative Biotechnologies
through grant W911NF-09-0001 from the US Army Research Office. Financial support from Deutsche Forschungsgemeinschaft (German Research Association)
through grant GSC 111 is gratefully acknowledged. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: leoalexopoulos@gmail.com

. These authors contributed equally to this work.

Introduction

1 On Modeling and Optimization
Signaling pathways are of utmost importance for understanding

cellular function and predicting cellular response to perturbations

[1,2,3,4,5]. Recent advancements in text mining and the

construction of Protein-Protein Interaction (PPI) networks have

led to large databases of signaling pathways, showing how proteins

interact with each other [6,7,8,9,10]. However, compilation and

visualization of protein connectivity in signaling networks is just

the first step towards understanding the cell’s signaling mecha-

nisms. The modeling and analysis of these networks either at the

connectivity level or down at the level of signal transduction

mechanics between nodes is a crucial next step towards the

construction of functional models, predictive of the cell’s biology.

A variety of methods have been proposed for this task, each

adopting a different perspective on the nature of the included

reactions [11,12] and focusing on different properties of the

signaling network. Two wide classes of network analysis can be

distinguished: i) Topological analysis of the signaling network

[13,14,15] that extracts insight into the cells’ function by

investigating the structural characteristics of the signaling network

(e.g., feedback loops, strongly connected components). ii) Network

identification, which identifies the network structure (i.e. connectivity

of signaling species), or reaction parameters that define the

mechanics of signal transduction from one node to the next.

Typically a mathematical formalism is adopted to model how

signal transduction takes place and an executable model is

constructed by combining this formalism with a prior knowledge

network (PKN) that serves as a scaffold. By simulating the model

under different node and reaction parameters, conclusions can be

drawn for the importance of each node and reaction on the

propagation of the signal. Amongst the most widely used

formalisms are the various forms of logic modeling
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[16,17,18,19,20] and ordinary differential equations (ODEs)

[21,22,23,24,25,26,27,28,29,30,31,34]. In certain cases, the initial

model is trained to signaling data via an optimization approach

[32,33] to compute the values of model parameters that better fit

the data at hand, or a sensitivity analysis approach is used [35,36]

to compute the influence of model parameters to the overall

response of the model. The incorporation of signaling data allows

the construction of cell-specific, tissue-specific, or disease-specific

pathways [37].

The selection of the modeling approach, and subsequently of

the optimization procedure, is very close related to the availability

of data and biological question at hand. For example, if time

course data are available and the dynamics of signaling reactions

are of interest, then an ODE-based approach may be suitable,

especially if the interrogated signaling network is small in size. To

this end significant work has been published on parameter

estimation of ODE-based models using a wide spectrum of

methods including general purpose optimization methods (gradi-

ent based algorithms, stochastic search algorithms, branch and

bound strategies, geometric programming, Dynamic Flux estima-

tion and others)[38]. However, large scale signaling networks

cannot easily be addressed within an ODE framework because of

excessive CPU times and lack of proper constrain of the

association-dissociation constants. If data are available for large

pathways but on a single time point, then logic based modeling

(Boolean or fuzzy logic, simulated at a ‘pseudo steady-state’) can be

used to identify the structure of the signaling pathway.

2 Boolean Modeling
In Boolean modeling, signal transduction is modeled using the

rules of Boolean logic [39,40,41,42,43,44,45,46]. Protein nodes

assume only binary values {0,1}, denoting the activation (or not) of

the corresponding signaling molecule, and signal is propagated

from the receptor level to downstream nodes using a combination

of OR and AND gates. In [32] an approach was introduced to

compress a protein network and convert it into Boolean models

that are trained against signaling data. In the approach,

implemented in the tool CellNOpt, reactions that appear to

contradict the data are removed from the PKN, and thus

measurement-prediction mismatch is minimized. In CellNOpt

[32] a Genetic Algorithm (GA) was used to prune the pathway by

identifying and removing the contradicting reactions. The GA

offered a robust and flexible optimization framework and

managed to uncover structural differences between normal and

cancer liver cell types [23]. In a more recent study, the

optimization problem was formulated as an Integer Linear

Program (ILP) [5,47] and was solved through CPLEX

(><ILOG CPLEX 9.0,)and GUROBI (Gurobi Optimization,

Inc., http://www.gurobi.com/)viaGAMS(http://www.gams.

com/). In contrast to GA, the ILP formulation guaranteed global

optimality and required a fraction of the CPU time needed by the

GA. The computational efficiency of the ILP formulation allows

the rapid optimization of large scale signaling networks, as

illustrated in a study, numbering around 120 nodes and 230

reactions (3 times bigger than the ones interrogated previously)

offering a systems wide view of the signaling network in primary

human hepatocytes [48].

3 Constrained fuzzy logic
Even though Boolean modeling successfully addresses proteins’

connectivity and directionality within the signaling pathway, it

offers merely a qualitative view of signal transduction. In reality

protein activities assume a continuous rather than a 0/1 pattern in

signal transduction, making Boolean logic a rough approximation

of how signal transduction really takes place. Constrained fuzzy

logic (cFL) was introduced to offer a more detailed view of the

cell’s signaling mechanisms and implemented in the package

CellNOpt-cFL[33].

In cFL, a quantitative, yet static view of the signaling network is

adopted. Proteins assume real values and a transfer function (TF) is

introduced to propagate the signal from one protein to the next

[16,33]. A set of parameters in the TF defines its behavior and

allows the calibration of the model to signaling data, in similar

fashion to the pruning of the pathway in Boolean modeling. In

[33] a two-step method was proposed, wherein first a GA was used

to remove all reactions that appear not to be functional based on

the data at hand and estimate a rough approximation of transfer

function parameters and in a subsequent step, a gradient based/

greedy algorithm was used to give a better estimate of the

parameters. The cFL approach performed significantly better than

Boolean modeling in terms of fitting the data but resulted in more

parameters, raising concern about model over-parameterization

and causing the training process to be computationally more

expensive.

4 Proposed approach
Computational efficiency and availability of data are amongst

the main limiting factors in modeling via cFL. In the present work

we introduce two new approaches for more efficient optimization

of signaling pathways in a fuzzy logic framework. Firstly, we

formulate the signaling activities as a regular optimization problem

(i.e., a nonlinear program (NLP)), solved through IPOPT

[49](Interior Point OPTimizer, https://projects.coin-or.org/

Ipopt) under GAMS. Secondly, we introduce an aggressive

compartmentalization scheme similar to the equivalent classes

concept published in [18], to simplify the model at hand so it can

be constrained with small datasets. In contrast to previous

compression methods, the new compartmentalization procedure

is capable of addressing complex connectivity patterns and

feedback loops, decreasing in a more efficient manner network

size, CPU time, and over-parameterization/non-identifiability

caused by the lack of data [50]. As a result, the proposed NLP

formulation allows for fast optimization of medium-scale topolo-

gies, and can also address the quantitative modeling of large scale

signaling pathways. As a case study, we tackle the construction of

cell type specific pathways in normal and transformed hepatocytes,

to prove that our approach works for pathways as large as 15

receptors wide, numbering around 120 nodes and 230 reactions.

Results

Our approach is based on the utilization of a transfer function

(TF) to model how signal propagates between nodes of the

signaling network. Briefly, we implemented and tested the

following transfer functions: (i) Unity function f xð Þ~x, (ii) linear

function f xð Þ~a:x and (iii) normalized Hill function

f xð Þ~a pnz1ð Þ xn

xnzpn
. The normalized Hill function was chosen

for being continuous, differentiable, monotonic, and fitting the

expected qualitative trends of signaling reactions (sigmoid curve).

The normalized Hill function was used in modeling signal

transduction in [16,33]. Reactions with multiple inputs are

supported via AND and OR gates. In the case of an AND gate,

all of the upstream nodes must be activated for the signal to

propagate downstream, while in the case of an OR gate, one of the

upstream nodes is enough to activate the downstream node (See

Methods section 11). Normalized Hill function, AND and OR

gates are shown in figure 1. In this work, we implement an NLP

Training of Signaling Pathways to Proteomic Data
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formulation to optimize the value of reaction parameters (a, p and

n for every reaction), minimizing the difference between model

predictions and measured data, resulting in a cell-type specific

model of the signaling pathway. We then investigate if all reactions

were necessary to fit the data by examining the parameters of the

reactions and testing to determine if their removal significantly

affect model fit.

1 Optimization of a Toy Model
To illustrate how the proposed formulation fits parameters a, p

and n to signaling data, we used the 10-node toy model shown in

Figure 2A consisting of two stimuli (green nodes); two inhibitors

(red nodes); 5 measured signals (gray nodes);4 OR gates

(e.g.,TNFa OR PI3KRJNK); 4 AND gates (e.g.,TGFa AND

NOT MEK1/2i RMEK1/2); and 4 NOT gates (total number of

parameters = 20). In-silico data are shown in Figure 2B and consist

of 3 stimuli (green nodes); the activation levels of 5 signals (gray

nodes); and 2 inhibitors (red nodes) (total number of data

points = 45). The red background color in the data (Figure 2B

and D) represents the initial and after-optimization measurement-

prediction mismatch of the model. For example, MEK1/2 signal

under TNFa, without any inhibitor being present, was initially

misfitted by the PKN. i.e. The data showed no activation, while in

the PKN, MEK1/2 was clearly activated by TNFa. After the

optimization procedure the red background was removed,

implying that, in the optimized model, TNFa did not activate

MEK1/2.

The goal of the NLP formulation is to minimize the fitness error

by searching for optimum values of the parameters a, p and n

within predefined bounds. For the toy problem the bounds were: ,

and while the exponent was held constant n = 4. The upper and

lower bounds for p were defined in such a manner that p = 0.3

corresponded to an over-responsive transfer function and p = 0.7

corresponded to an under-responsive transfer function, while

p = 0.5 was the initial guess for the p parameter. Parameter a acts

as a scaling factor and serves to limit the activity of those reactions

that appear not to be functional based on the data at hand.

Although the initial selection of upper and lower bounds for the p

parameters together with the value of n was done arbitrarily, in

case of high remaining fitness error these values can be updated

and the algorithm rerun to guarantee the best possible solution (see

Figure 1. Connectivity modules of signaling pathways in the proposed constrained fuzzy logic formulation. The transfer functions
supported by the proposed constrained fuzzy logic (cFL) formulation are illustrated. (A) ‘‘single reactant – single product’’ activation. (B) AND gate
with two reacting species. (C) OR gate with two signaling species., (D) ‘‘single reactant – single product’’ inhibition. In all instances, function f(x) refers
to the normalized hill function, with p = 0.5, a = 1.0 and n = 4.
doi:10.1371/journal.pone.0050085.g001
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also Material and Methods section 5.2 – Definition of search

space).

Figures 2C and 2D present the optimization results of the toy

model. In Figure 2C, the activity of each reaction is visualized

using arrows in gray scale; reactions with larger a parameters

effectively transmit more signal downstream (are more active) and

have a more solid color. The transfer functions themselves are

illustrated in Figure 2E. The efficiency of our approach is validated

by the eradication of most of the fitness error as shown in

Figure 2D (red background). The optimization eliminated the

PI3K to JNK, PI3K to P38, and PI3K AND NOT MEK1/2i to

MEK1/2 reactions (bottom right panels in Figure 2E). Manual

inspection of the data and the initial topology can confirm this

decision: JNK and P38 were activated upon TNFa stimulation

alone; therefore reactions from the TGFa pathway to JNK and

P38 were not active. On the other hand, TNFa stimulation

induced AKT activation but did not affect MEK1/2 or ERK1/2,

implying that the PI3K to MEK1/2 reaction was not active. To

validate that reactions i) PI3K to MEK1/2, ii) PI3K to JNK and

iii) PI3K to P38 were not active in the optimized model; we

manually removed them from the initial model and run the NLP

algorithm once again. No significant differences were observed

between the two optimized models, indicating that these three

reactions were not vital to fit the data (data not shown).

2 Optimization of a medium-scale signal transduction
pathway

2.1 Background. Next, we tested the proposed NLP

approach to the medium-scale signaling pathway used in [33],

which numbers a total of 52 reactions and 37 species (total number

of model parameters = 104). The training dataset was constructed

using the xMAP technology on transformed human hepatocytes

Figure 2. Optimization of a toy model to signaling data. (A) Generic pathway is represented as a signed directed graph, also refers as PKN.
Green nodes refer to different cytokines (ligands) where the signaling process initiates; Red nodes refer to inhibitors present in the in-silico dataset;
Grey nodes refer to measured proteins; White nodes refer to latent species, i.e. proteins whose activation state is not measured. (B) In-silico signaling
data under combinatorial treatment with stimuli (TGFa, TNFa, no-treatment) and inhibitors (mek12i, pi3ki, no-inhibitor). Each subplot shows the
average activation level within 30 minutes upon stimulation [37]. Red background refers to model-prediction mismatches (C) Optimized pathway,
grey arrows refer to reactions with limited activity (zi

k) (caused by a parameters being close to 0). The opacity of each edge corresponds to the activity
(zi

k) of the corresponding reaction. (D) In silico signaling dataset and fitness error after the optimization procedure. Decrease in the red background
color shows the optimized model is in accordance to the signaling dataset. (E) Optimized transfer functions presented in C.
doi:10.1371/journal.pone.0050085.g002
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(HEPG2 cells) [37] and numbers a total of 728 datapoints. The

initial topology and the experimental dataset are illustrated in

Figure 3A and B. The proposed approach was implemented in 3

steps: (i) definition of search space for the p parameters of each

reaction, (ii) generation of a family of solutions and (iii) exhaustive

removal of reactions from the PKN to address over-parameter-

ization (see Methods section 12, 3, 4).

2.2 Optimization results. Figure 3C contains an ‘‘average’’

pathway for 500 solutions. The solid lines are the minimum set of

reactions needed to fit the experimental dataset and the opacity of

each of these edges corresponds to the maximum activity (zi
k) of

the respective reactions. The dashed lines are reactions that were

present in the family of models but could be removed for being

redundant based on the analysis in Methods section, 14. Figure 3D

presents the signaling dataset together with the measurement

prediction mismatch for the optimized model (red background).

The average CPU time of each run was 10 minutes.

Several interesting features can be uncovered from the

proteomic-driven optimization of the generic pathway: LPS

pathway was deactivated altogether since it only partially affected

the AKT signal. IGF1 and TGFa signaled through PI3K and

activated AKT, GSK3 and P70. Moreover, TGFa activated

MEK1/2, P90, CREB, IRS1S and HISTH3 via RAS. TNFa and

IL1a also had partially overlapping pathways signaling through

the MAP3Ks. IL1a signaled through TRAF6 to MAP3K7 and

then to JNK, CJUN, P38, HSP27 and IKB. IL1a also activated

MEK1/2 via TRAF6 and then P70S6, P90RSK, CREB, IRS1S

and HISTH3. TNFa, on the other hand, signaled through

MAP3K7 but had clear effects only on IKB, while partially

activated a number of signals such as CJUN and P53. Moreover,

Figure 3. Optimization of a medium-scale model to signaling data. (A) Initial topology as presented in [33]. (B) Signaling data under
combinatorial treatments of 6 stimuli (green nodes) and 7 inhibitors (red nodes) reporting 15 signals (grey nodes). The red background represents the
measurement – prediction mismatch of the initial topology (46%) (mean fitness error). To generate model predictions, the initial guesses of all model
parameters were used (a = 1.0, p = 0.5). (C) Optimized pathway. Bold lines refer to the optimized pathway after removing redundant/conflicting
reactions. Dashed lines refer to reactions present in the family of solutions that although being redundant are reported since they may bare biological
significance. The opacity of each edge corresponds to the activity (zi

k) of the corresponding reaction. (D) Signaling dataset and remaining fitness error
(8%) (mean fitness error). The red background refers to the fitness error of the solution. Decrease in the red background compared to (B) implies the
optimized model successfully fits the signaling dataset (mean fitness error went from 46% to 8%). A and C were generated using graphviz package
(http://www.graphviz.org/). B and D were generated using Datarail toolbox [52].
doi:10.1371/journal.pone.0050085.g003
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TNFa partially activated P70S6, CREB, IRS1S and MEK via

PI3K.

As shown in Figure 3D, most of the measurement-prediction

mismatch has essentially been removed by the optimization

procedure. The remaining fitness error is below 8% (mean fitness

error). Residual errors appear either in areas of the pathway where

the a priori knowledge was poor, or where erroneous measure-

ments in the experimental dataset conflicted each other. The latter

is shown in the JNK signal under IL1a and JNKi. Even though

JNKi was supposed to have inhibited JNK activation upon IL1a
stimulation, the data shows that JNK remained active. In such

cases the NLP algorithm is not able to reproduce the respective

datapoint. Similar case consisted the misfitting of i) CJUN under

IL1a and JNKi, ii) MEK1/2 under IL1a, IL6, TGFa and MEK1/

2i, iii) P38 under IL1a and P38i, iv) GSK3 under IGF1, TGFa
and GSK3i, and so forth. Those residual errors appeared in almost

all optimization procedures [32,33]. In conclusion, despite the

residual error, the optimized model successfully captured the

patterns underlying the signaling dataset.

2.3 Cross-validation. For the optimization of the PKN, the

signaling dataset in its entirety is used. Herein, however, to better

evaluate the performance of the proposed formulation, we

performed a cross validation study where random portions of

the dataset, of increasing size, were left out of the training process,

model predictions corresponding to this data were computed and

then compared to the measured data evaluating the measurement

prediction mismatch. Figure 4 illustrates the fitness error

corresponding to all measured data (total fitness error), in blue,

together with the error corresponding to the excluded data (in red).

Interestingly, up to 40% of the dataset could be removed before

the fitness error started increasing significantly, implying the

proposed formulation is robust against missing data. Moreover,

the algorithm performed relatively well even with 80% of the

dataset missing. After this point, a steep increase in the overall

error was observed, since key pathways were removed and the

fitness error quickly reached that of the null solution.

3 Optimization of a large-scale signal transduction
pathway

3.1 Background. In order to evaluate the performance of our

optimization procedure, we asked whether we could apply the

procedure to larger pathways. Here, we focused on pathways that

are experimentally identifiable using ELISA type of assays and

thus are limited in well-known signal transduction mechanisms.

The resultant PKN accounts for dozens of stimuli and their

downstream nodes [48]. The pathway contains 228 reactions and

117 species (total number of model parameters = 456). The

corresponding data were measured using the xMAP technology

on primary human hepatocytes and consist of a total of 120 multi-

combinatorial experiments. Cells were perturbed with combina-

tions of 15 stimuli and 3 inhibitors (including the No-inhibitor

treatment), while 14 key phosphoproteins were measured (total

number of data points = 1680). Before the optimization procedure,

the pathway was compartmentalized to reduce the parameters

space (the compartmentalized pathway numbers 44 species and 69

reactions, total number of model parameters = 138), while a family

of solutions was obtained to guarantee that the algorithm is not

trapped in a local minimum (see Methods section 13, 5 and Figure

S5).

3.2 Optimization Results. In Figure 5 the optimized,

compartmentalized version of the large-scale pathway is shown,

together with the measurement-prediction mismatch. To demon-

strate how the compartmentalization scheme works, we first

examined the pathways downstream of EGF, TGFa, BTC, NRG1

and IL6. ERBB3 was placed in a group alone (C11) since it was

the only node activated by NRG1; ERBB4 was also placed alone

(C12) for having been activated by BTC and NRG1. ERBB2 and

SHC were grouped together since they were both activated by

EGF, TGFa, BTC and NRG1. Moving further downstream,

INPP5D, JAK1, JAK2, INPPL1, GRB2, GAB2, GAB1, SOS,

RAS, CRK, CRKL, DOCK1, BRAF, RAC1 and the MAP3Ks

were grouped into C2 since all of them were activated by EGF,

TGFa, BTC, NRG1 and IL6. This example demonstrates how the

proposed compartmentalization scheme is based on the experi-

mental treatments present in the dataset. If for example, another

ligand was introduced activating via a different pathway RAC1,

then the extensive compartment C2 would be broken into 2

smaller ones. First, INPP5D, JAK1, JAK2, INPPL1, GRB2,

GAB1, GAB2, SOS, RAS, CRK, CRKL and BRAF, activated by

EGF, TGFa, BTC, NRG1 and IL6; and second, RAC1 and the

MAP3Ks (MAP3K2,3,4,6,9,10,11,12,13,15), activated by EGF,

TGFa, BTC, NRG1, IL6 and the new ligand. With the proposed

compartmentalization scheme, the interrogated pathway is never

larger than what can be constrained by the data at hand.

In Figure 6, the optimized pathway of Figure 5 was mapped

back to the PKN. Reactions within the same compartment were

plotted in blue and were not involved in the optimization

procedure. The rest of the reactions were plotted in black and

their thickness corresponds to the maximum activity of each

reaction in the optimized model. The resulting pathway reveals

well known characteristics of signaling cascades (See [48]): EGF,

TGFa, BTC and NRG1, all signaled through the EGFR and then

Figure 4. Cross validation of the NLP algorithm (medium-scale
pathway). Blue line represents the fitness error corresponding to all
measured data (total fitness error); red line corresponds to the fitness
error of the predicted (excluded) data. Total fitness error initiates at
,8% (mean fitness error) and stays relatively stable for excluded
portions of the dataset smaller than 40% of the total. Implying that the
proposed approach handles efficiently missing data. Even when no data
is excluded (0% point in the plot) the total fitness error is at 8% (mean
fitness error) because of conflicts in the data or poor prior knowledge of
protein connectivity in the PKN. The fitness error corresponding to the
excluded data (red line) initiates at 0% since the removal of random
portions of the dataset may leave out of the training process datapoints
that are easily inferred from the remaining data. E.g. measurement of
MEK1/2 under TGFa and IKKi is easily inferred from TGFa and no-inhib
experiment. As increasing portions of the data are left out of the
training process (excluded data .40%) the fitness error increases
significantly. For excluded portions greater than 80% the fitness error
quickly reaches that of the null solution.
doi:10.1371/journal.pone.0050085.g004
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through the cluster of SHC, GRB2, GAB1, SOS, RAS to either

activate MAP2K1, ERK, RPS6KA1, GSK3 and STAT3, or go

through PI3K to AKT and subsequently to RPS6KB1 and IRS1S.

On the other hand IL1b, FLAGELLIN and IL1a signaled

through TRAF6 and mainly activated IKB, JNK, MAPK14 and

HSP27. CD40LG and TNF activated the same signals but went

through TRAF5, TRAF2 and MAP3K7.

The solution obtained herein, when compared to the Boolean

solution in [48] was able to decrease the remaining fitness error up

to 75% (mean fitness error). The algorithm completed within 20

minutes. Even though the two solutions share the same basic

connectivity patterns, the constrained fuzzy logic approach

handles conflicts in the data more efficiently, since it allows partial

activation of the signaling species. For instance, GSK3 was

removed from the Boolean solution for having been activated in

an inconsistent manner (it was activated under very few

combinatorial treatments and remained unaffected by either

PI3Ki or MEKi). Under the constrained fuzzy logic approach,

however, GSK3 was activated by RPS6KA1. By fitting the p and a

parameters of this and the upstream reactions the model

predictions for GSK3 matched the data and the fitness error

was reduced. Similarly, IRS1S and RPS6KB1 were activated

under constrained fuzzy logic, in contrast to the Boolean

approach.

Figure 5. Optimization of a large-scale signal transduction pathway. (A) optimized pathway upon compartmentalization based on the
equivalent classes concept (right panel). The proposed compartmentalization scheme groups together nodes that share identical in-silico responses
under all experimental conditions, thus decreasing the parameters space. (B) Signaling dataset, consisting of 15 cytokines in combinations of two,
and 3 inhibitors (including the no-inhibitor treatment), total of 120 experimental treatments (see [48]). The red background color corresponds to the
measurement prediction mismatch of the solution.To generate model predictions the optimized values of all model parameters were used (i.e.,
parameter values obtained from the optimization procedure)
doi:10.1371/journal.pone.0050085.g005

Figure 6. Mapping of the optimized model to the PKN. Mapping of the optimization results to the PKN by removing the compartmentalized
components. Reactions within the same compartment are plotted in blue and were not included in the optimization procedure. Reactions in black
are the ones whose parameters were interrogated. Their opacity corresponds to their activity in the optimized model, with reactions that propagate
more signal downstream being more opaque than the rest.
doi:10.1371/journal.pone.0050085.g006
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Discussion

In this paper we introduced a Non Linear Programming (NLP)

formulation for the quantitative modeling of signal transduction

pathways, based on signaling data. We employed a fuzzy logic

approach to model signal transduction mechanisms and coupled it

to an NLP optimization formulation. The proposed method

allowed for fast optimization of signaling pathways to high

throughput signaling data in a quantitative framework. As case

study, three pathways of different scale were interrogated, a small,

medium and a large-scale one. For the latter two, i) the systematic

definition of the search space, ii) the generation of a family of

solutions, iii) and the identifiability/over-parameterization of the

pathway were addressed to ensure the best possible performance of

the proposed formulation. The systematic definition of search

space guaranteed that a representative set of solutions was

obtained while at the same time minimized the required CPU

time. The collection of a family of near optimal solutions decreases

the probability of biologically relevant solutions remaining

unreported. The proper size for the family of solutions was also

addressed (see Supporting Information 1). By addressing over-

parameterization either by exhaustively removing reactions from

the PKN, or via the proposed compartmentalization scheme, we

decreased CPU time and guaranteed that only reactions vital for

fitting the data were included in the solution. Finally, results on

both the medium and the large scale signaling pathways were

compared with the ones obtained by alternative approaches

[33,48].

Our NLP formulation presents several advantages and limita-

tions in pathway optimization. On the negative side, it is clear that

verification of the presence or absence of each reaction in the

generic topology, or unique identification of its parameters is not

possible given the relatively small dataset at hand. Figure 6 shows

the un-compartmentalized version of the initial pathway where

116 out of 228 reactions (,50%) could not be identified if they are

present or not given the data at hand (blue lines in Figure 6). This

implies that the optimization problem incorporates more param-

eters than what it is possible to constrain. However, the exhaustive

removal of reactions from the PKN, in the case of the medium

scale topology, and the adoption of the equivalent classes concept

(introduced in [18]) as a compartmentalization scheme, in the case

of the large-scale topology, limited the number of redundant/non-

identifiable reactions left in the model. Another inherent limitation

of the proposed approach is our restriction to connectivity present

in the PKN. The formulation we use, by optimizing the values of

model parameters (a and p), minimizes measurement prediction

mismatch. Essentially reactions can be removed by setting the gain

parameter of the respective reactions to zero, however, there is no

support for adding new connections. Thus, the connectivity of

proteins in the solution is a subset of the connectivity in the PKN.

If the data dictates connectivity that is not supported by the PKN,

there will be remaining fitness error in the solution. Even though

methods have been developed to address this [51] based on the

inference of physical interactions of proteins from the signaling

data, adding new connectivity in the PKN can lead to poorly

confined solutions and further research is needed to tackle this

issue. Another limitation is the single time point measurement of

the signaling activity. All the incorporated signaling data from

HepG2 cells were obtained from the same time-point (30 min).

Consequently, any activity that takes place earlier or later on will

not be accounted for. To alleviate this limitation an average

‘‘early’’ time point was employed in the phosphoprotein activity of

primary hepatocytes that incorporates the average activity of 5 and

25 minutes [48].The single time point measurements also prevent

us from capturing the dynamics of the signaling reactions. Even

though a dynamic representation is closer to reality, and can be

potentially handled within a logic framework [53], both the

experimental cost and the number of parameters required, make it

difficult to model large topologies. On the positive side, our

approach is a significant advancement of the Boolean Logic that

successfully addresses both the protein connectivity and the

activity/intensity of reactions in large signaling pathways that –

as shown- number ,120 species and ,230 reactions.

When compared to Boolean modeling, the proposed approach

provides a quantitative view of the signaling pathway, supporting

continuous values for the activation of the included species.

Moreover, each reaction is modeled via a sigmoid curve

(normalized hill function) that more closely replicates its actual

mechanics. As a result, the proposed approach gives lower fitness

error than the Boolean counterpart. When compared to other

fuzzy models, the proposed algorithm performed equally good to

previous approaches [33] interrogating the optimization of the

medium scale pathway to signaling data. Even though the two

procedures follow different workflows, the topology of the solutions

is very similar and the goodness of fit is of the same level, whereas

CPU times favors the NLP approach (,60 minutes per run for

CellNOpt-cFLagainst ,15 mins for NLP).

The computational efficiency of the NLP approach allowed the

interrogation of large-scale pathways, namely the one introduced

in [48]. It performed significantly better than the Boolean

approach in terms of goodness of fit, decreasing the fitness error

up to 75% (mean fitness error). Although the CPU time was

increased, the solution remained computationally feasible.

Overall, the proposed approach addressed successfully the

optimization of medium and large-scale signal transduction

networks. It allowed the fast optimization of signaling topologies

by combining the versatile nature of logic modeling with state of

the art optimization algorithms

Methods

1 NLP formulation
The proposed NLP formulation is built based on a pre-existing

ILP (Integer Linear Programming) formulation first published in

[47] and thus uses the same nomenclature, repeated here for

consistency.

1.1 Definitions. A pathway is defined as a set of reactions

i = 1, …,nr; and species j = 1, …,ns . Each reaction has three

corresponding index sets. Namely the index set of signaling

molecules (or reactants) Ri , inhibitors Ii , and ‘‘products’’ Pi. These

sets are all subsets of the species index set Ri,Pi,Ii,5 1,:::,nsf gð Þ;
Typically, these subsets have very small cardinality (few species),

e.g., | Ri | = 0,1,2 ; | Ii | = 0,1 ; | Pi | = 1,2 ;

| Ri |+| Ii | = 1,2.

A set of in-silico experiments is performed mimicking the

conditions of each actual experiment. The experiments are

indexed by the superscript k = 1, …,ne. In each experiment a

subset of species is introduced to the system and another subset is

excluded from the system, in similar fashion to the ‘‘actual’’

experiments where a combination of stimuli and inhibitors are

introduced to the cells. The predicted activation value of species j

in experiment k is represented by the constant xk
j [ 0,1½ �. If

available, the corresponding measured value is represented by

xk,m
j [ 0,1½ �. The last group of variables introduced, zk

i [ 0,1½ �,
represent the activity of reaction i in experiment k.

1.2 Objective Function. The objective function to be

minimized is
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X
j,k

ak
j xk

j {xk,m
j

��� ��� ð1Þ

and represents the weighted measurement-prediction mismatch;

ak
j [ 0,1½ �are user- set weights that may favor the fit of specific nodes

in the pathway. In the present study, all nodes are considered

equally important (have equal weights aj
k).

1.3 Single reactant – single product reactions. Reactions

with a single reactant and a single product are modeled using the

following transfer function (TF):

f xð Þ~a pnz1ð Þ xn

xnzpn
ð2Þ

Equation (2) represents a normalized Hill function. Parameter p

defines the midpoint of the curve (i.e. the value of x for which f(x)

equals to 0.5), n is the Hill coefficient and defines the steepness of

the curve whereas a is a scaling factor. The activity of reaction i in

experiment k equals to: zk
i ~f xk

j

� �
, where j[Ri. The activation

value of the downstream node equals to: xk
j ~zk

i , where j[Pi. In

case species j is inhibitory we use: zk
i ~f 1{xk

j

� �
, where j[Ri.

1.4 Multiple reactants – single product reactions (AND

gates). In case more than one reactants are needed to propagate

the signal to the downstream species, the activity of reaction i is

modeled as a function of the bilinear product of the reacting

species:

zk
i ~f P

j[Ri

xk
j | P

j[Ii

1{xk
j

� �� �
ð3Þ

The activation value of the downstream node equals

to:xk
j ~zk

i ,j[Pi. The bilinear product is chosen for satisfying key

properties, such as continuity, differentiability and for reproducing

the Boolean AND gate for 0 and 1 values of the reacting species.

1.5 Multiple reactions leading to same product (OR

gates). In case more than one reactions lead to the same

product, the activation value of the downstream species is given by

the following formulation:

xk
j ~bk

Tj

�� �� ð4Þ

where,

Tj~ i[ 1,:::,nrf g : j[Pif g ð5Þ

Tj is the set of all reactions that have species j as their product.

Let i1, i2, …,i|Tj| denote the elements of Tj . Then, bk
mis calculated

recursively as:

bk
m~bk

m{1zzk
im

{bk
m{1zk

im
; 2vmƒ TJj j ð6Þ

bk
2~zk

i1
zzk

i2
{zk

i1
zk

i2
ð7Þ

1.6 Implementation. The goal of the NLP formulation,

described above, is the identification of optimal values for a, p and

n parameters of each reaction to minimize the difference between

model predictions and experimental data, as captured by the

objective function in (1). The NLP was solved through IPOPT

under GAMS. Additionally, an interface was developed in BASH

scripting language to preprocess the PKN and generate the input

files for the NLP algorithm. The DataRail toolbox was employed

in MATLAB to handle and plot the dataset [52]. The optimization

was run on Dual Quad Core IntelH XeonH Processors E5530

2.4 GHz, 12 GB, DDR3 RDIMM Memory, 1066 MHz. All

results presented in this MS were computed using a single cor.

2 Definition of the search space
A systematic definition of the search space is vital for obtaining

the best possible solutions within reasonable CPU time. A wider

search space accounts for a bigger number of feasible solutions,

possibly including some that minimize the objective function, but

often increases the CPU time.

The model parameters to be estimated are: a, p and n; a serves as a

scaling factor to limit protein activity in case the reaction appears

not to be functional based on the data at hand, and is defined in

0,1½ �; p defines the midpoint of the curve (i.e. when xj
k equals to 0.5)

and can be any real number; n can be any positive integer, but here

is fixed to 4, since the remaining parameters suffice to fit the data. In

the toy model p was arbitrarily defined in 0:3,0:7½ �. For the medium

and large-scale topologies, we test a number of different upper-

lower bound pairs, ranging from 0.1 to 2.0, to determine the one for

which the algorithm performs best, in terms of goodness of fit, as

well as decrease the required CPU time, facilitating the generation

of a family of solutions. Goodness of fit is quantified by the mean

absolute error (MAE) as calculated by the following formula

MAE~

P
j,k

xk
j {xk,m

j

��� ���
nenm

s

ð8Þ

Results for the medium-scale topology are shown in Figure S1A.

The x-axis (0.1R2.0) corresponds to the lower bound of p range;

y-axis (0.1R2.0) corresponds to the upper bound; while the z-axis

corresponds to the MAE of the solution. Figure S1A shows that the

quality of the solution mostly depends on the lower bound and less

on the upper bound of p. In Figure S1B the corresponding CPU

time is shown. As expected widening the range of p drastically

increases the CPU time, since the search space becomes bigger.

Based on these graphs the bounds of choice for p is 0.1 R 0.4375,

since they provide both an excellent fit and low CPU time.

3 Generation of a family of solutions
Instead of collecting a single solution that minimizes the

objective function in (1), we collect a family of 500 near optimal

solutions to account for slightly suboptimal pathways that may

bare strong biological significance, and avoid as much as possible

terminating with a significantly suboptimal local minimum.

The proposed NLP approach optimizes the values of a and p to

minimize the measurement – prediction mismatch as shown in
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equation (1). However, as long as the optimizer used is local, there

is no guarantee that the obtained solution is a global minimum of

(1). Moreover, there might be more than one solution (with

different values for a and p), scoring the same (optimal) goodness of

fit, which should be taken in consideration when biological insight

about the interrogated system is to be extracted. Therefore, a large

number of runs is performed each one starting from different

(random) initial guesses, to obtain a family of near optimal

solutions. Figure S3A shows the MAE of 500 solutions, obtained

from equal runs of the proposed NLP approach each one starting

from a different initial guess for the parameters a and p. Most of

the runs resulted in solutions with very similar (63%) MAEs. This

indicates that although the IPOPT optimizer, used herein, is not

global, it furnishes near-optimal solution points independently on

the initial guess. In Figure 3C, an ‘‘average’’ pathway for these 500

runs is illustrated. The opacity of each of these edges corresponds

to the average activity of the respective reactions over the 500

runs. For a discussion on the optimum size of the family of

solutions see Supporting Information 1.

4 Removing conflicting and redundant reactions from
the PKN

Optimization of the PKN to the data at hand results in a set of

values for the model parameters (a and p) that minimize the

measurement prediction mismatch, as defined in equation (1).

Subsequently, we iteratively remove reactions from the PKN

(every time a reaction is removed we re-optimize the PKN) while

monitoring the fitness error to identify all reactions that are not

vital in fitting the signaling dataset, either because they directly

contradict the data, or because they are non-identifiable. Non-

identifiable reactions are those whose presence in the model

cannot be validated nor disproven based on the data at hand. This

may occur when signal transduction from a cytokine to a

measured protein can be achieved by a number of different

pathways, and there is no definite way to identify which one is

really functional. Consequently, removing a non-identifiable

reaction from the PKN has no effect on the fitness error.

In an attempt to remove conflicting reactions and tackle over-

parameterization, we gradually remove reactions from the PKN

until the fitness error starts increasing (i.e., the algorithm can no

longer fit the dataset at hand). At that point there are no more

conflicting or non-identifiable reactions left in the model, but all of

the remaining ones are vital for fitting the data. At every iteration,

the reaction with the lowest activity is removed (variable zi
k in the

formulation). The activity of each reaction mostly depends on the

parameter a (gain) of the reaction and directly correlates to the

‘‘amount of signal’’ propagating downstream. In this manner, the

least significant reaction is removed at every iteration. Even

though the sequence reactions are removed by will affect the

obtained solution (i.e., the solution is not unique), it is guaranteed

to be optimal since only conflicting/non-identifiable reactions are

removed and key property of these reactions is that their removal

does not affect the fitness error of the solution.

Results are illustrated in Figure S2. Figure S2 shows how the

algorithm performs when reactions of the PKN are removed in

order of increasing significance. The x-axis corresponds to the

number of removed reactions, while the y-axis corresponds to the

MAE of the solution. As illustrated in Figure S2, up to 10

reactions can be removed (20% of the initial topology) without

affecting the goodness of fit of the solution. More than that, vital

reactions are missing and the MAE increases significantly. Small

fluctuations in the figure are attributed to variations of the fitness

error of the solutions (63%). Figure 3C, 3D shows the solution

after removing conflicting and non-identifiable/redundant re-

actions.The above-mentioned procedure results in the identifica-

tion of one of possibly many optimal and identifiable solutions,

the superposition of which is the family of solutions as defined in

paragraph 6.3.

5 Compartmentalization of the large-scale topology
Before optimizing the large-scale model, the PKN is compart-

mentalized by grouping together nodes that share identical

response under all experimental conditions, to reduce the

parameter space.

In similar fashion to the medium-scale model in Figure 3, the

large-scale pathway in Figure 6 also includes a number of non-

identifiable reactions, in the sense that signal transduction from a

cytokine to a measured protein can be achieved by a number of

different pathways and there is no definite way to identify which

one is truly functional. In pathways of this size, however, is not

efficient to exhaustively remove reactions until the optimizer can

no longer fit the data at hand. Instead we propose an alternative

method for reducing the parameter space. We propose a

compartmentalization scheme, based on the ‘‘equivalent classes’’

concept introduced in [18], for ‘‘grouping’’ nodes that share

identical responses under all experimental conditions; thus

resulting in an equivalent (compartmentalized) model where

nodes have been replaced with their respective compartments,

and reactions between nodes are now reactions between

compartments. In more detail, we define a compartment (C) as

every set of non-measured species (j[C), such that xk
1~xk

2~:::~

xk
Cj jfor every k~1,:::,ne. Where

- k = 1, …,ne, is the set of experiments.

- xj
k is the predicted value of species j in experiment k.

In this case study, we simulate the pathway running the NLP

formulation under all experimental conditions present in the

signaling dataset with nominal values for all parameters; subse-

quently, we format the simulation results in a 2d matrix, rows

corresponding to the nodes in the pathway and columns

corresponding to the different experimental conditions; we identify

the nodes that share the same response under all conditions (i.e.,

identify replicate lines) and group them together in compartments;

we replace every node in the PKN with its corresponding

compartment and remove replicate reactions. This procedure is

implemented using BASH. Since the nodes in a compartment

share identical responses under all experimental conditions, their

connectivity inside the compartment cannot, in principle, be

interrogated based on the data at hand. Thus, it is purposeful to

group these nodes together and update the PKN replacing nodes

with the compartments they belong into. By doing so, we

drastically decrease the parameters space.

Application of the compartmentalization scheme to an
illustrative example

To better illustrate how the proposed compartmentalization

scheme works to simplify the interrogated model, we construct the

example model of Figure S4A. Node ‘‘A’’ serves as input to the

pathway (stimuli), and activates nodes B1, B2; these interact with

each other and finally activate node ‘‘C’’ that serves as a readout

(signal). The proposed scheme groups B1-B2 into ‘‘Cmp’’ and

simplifies the model as illustrated in Figure S4B. If data dictates:

A = 1;C = 1, then reactions ARCmp and CmpRC are conserved.

Else if A = 1;C = 0, then at least one of the above mentioned

reactions have to be removed.

Figure S4C, S4D demonstrate how the compartmentalization

scheme can be too restrictive and may decrease the quality of the

solution. In Figure S4C input nodes A1, A2 are connected to
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latent nodes B1 and B2; B1 activates C1 and B2 activates C2.

After the compartmentalization procedure, B1 and B2 are

replaced with compartment ‘‘Cmp’’ that activates C1 and C2

(Figure S4D). In the case where C1 is activated by A1, and C2 by

A2; then either C1, or C2 will be misfitted in the compartmen-

talized model, since differential activation of C1 and C2 is possible

only if either CMPRC1, or CMPRC2 are removed from the

pathway. However, if either one of the two reactions are removed,

then the respective signal (C1 or C2) will remain inactive under all

conditions, thus misfitting the data. If no compartmentalization is

performed, then the pathway can be optimized by removing (or

decreasing the activity) of A1RB2 and A2RB1. This increase in

fitness error caused by the compartmentalization procedure

implies that grouping nodes B1 and B2 in the compartment

Cmp should not have taken place if data were to fit perfectly.

Cases like this may arise when limited experimental conditions are

available, since it is more likely for nodes to be grouped together.

E.g. If only one condition is available, then all nodes will be

grouped in a single compartment. In such cases compartmental-

ization of the PKN is not recommended. In all cases the solution

should be manually inspected to ensure that the remaining fitness

error is not caused by the aggression of the compartmentalization

scheme.

Supporting Information

Figure S1 Systematic selection of the lower and upper bounds of

p parameters. (A) Mean Absolute Error (MAE) as a function of the

lower and upper bounds of p parameters of each reaction. The x-

axis (0.1R2.0) corresponds to the lower bound of p range; y-axis

(0.1R2.0) corresponds to the upper bound; while the z-axis

corresponds to the MAE of the solution. The figure shows that

MAE is mostly affected by the lower bound of p, smaller values of

the lower bound lead to a better fit of the signaling data. (B) CPU

time as a function of the lower and upper bounds of p parameters.

CPU time is mostly affected by the lower bound of p. smaller

values of the lower bound lead to increased CPU time.

(PDF)

Figure S2 Addressing over-parameterization (medium scale

pathway). Reactions are exhaustively removed from the PKN in

order of increasing activity, and the fitness error is monitored. The

x-axis shows the number of reactions excluded; the y-axis shows

the Mean Absolute Error of the solution. The figure shows the

dependency of the MAE from the subset of excluded reactions. Up

to 10 reactions can be removed from the PKN without affecting

the MAE of the solution (arrow A), implying these 10 reactions are

not vital in fitting the signaling data (redundant reactions). Beyond

this point vital reactions are removed, the optimization algorithm

can no longer fit the data at hand and the fitness error increases

drastically.This is where the final (optimal and identifiable)

solution is obtained. Small fluctuations in the figure are attributed

to variations of the fitness error of the solutions (63%).

(PDF)

Figure S3 Generation of a family of solutions – medium-scale

pathway. (A) The MAEs of a family of 500 near optimal solutions.

The x-axis corresponds to the different runs; the y-axis

corresponds to the MAE of the solution. (B) Standard deviation

of the MAEs in a family of solutions as a function of the family’s

size. The x-axis represents the size of the family of solutions; y-axis

represents the standard deviation of the solutions. The bigger the

size of the family of solutions the smaller the standard deviation of

the solutions becomes, indicating decreased sample variability.

Optimum size would be around 150-200 solutions where the

standard deviation has dropped close to its final value.

(PDF)

Figure S4 Compartmentalization of illustrative example models.

The compartmentalization of two example models is featured. (A)

example model with a single input (green node) single output (grey

node) and 2 latent nodes (white nodes). (B) Compartmentalized

version of the example model in (A). The two latent nodes are

grouped in compartment Cmp. (C) example model with two

inputs, two outputs and two latent nodes. (D) Compartmentalized

version of the example model in (C). The proposed compartmen-

talization scheme is over-aggressive decreasing the quality of the

solution in case the two measured proteins have different response

under A1 and A2.

(PDF)

Figure S5 Generation of a family of solutions – large-scale

pathway. The MAEs of a family of 170 near optimal solutions are

illustrated. The x-axis corresponds to the different runs; the y-axis

corresponds to the MAE of the solution. Most of the solutions

share the same ,optimal, goodness of fit ensuring the algorithm is

not trapped in local minima.

(PDF)

Supporting Information S1 1) An alternative Mixed Integer

Non Linear Programming (MINLP) formulation is presented. The

MINLP formulation not only solves for the reaction parameters a,

p and n, but also interrogates the presence or absence of each

reaction by introducing a set of binary variables y, where y = 1 if

reaction is present in the optimized solution, or y = 0 otherwise. 2)

Optimum size for the family of solutions. The optimum size for the

family of solutions is addressed. Instead of collecting a single

solution that minimizes the objective function, we collect a number

of near optimal solutions to account for slightly suboptimal

pathways that may bare strong biological significance, and avoid

as much as possible terminating with a significantly suboptimal

local minimum. 3) Comparison with the compression scheme

implemented in CellNOpt. The proposed compartmentalization

scheme is compared against the compression algorithm imple-

mented in CellNOpt [2].

(PDF)
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