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Microbes inhabit virtually all sites of the

human body, yet we know very little about

the role they play in our health. In recent

years, there has been increasing interest in

studying human-associated microbial

communities, particularly since microbial

dysbioses have now been implicated in a

number of human diseases [1–3]. Dysbio-

sis, the disruption of the normal microbial

community structure, however, is impos-

sible to define without first establishing

what ‘‘normal microbial community struc-

ture’’ means within the healthy human

microbiome. Recent advances in sequenc-

ing technologies have made it feasible to

perform large-scale studies of microbial

communities, providing the tools necessary

to begin to address this question [4,5].

This led to the implementation of the

Human Microbiome Project (HMP) in

2007, an initiative funded by the National

Institutes of Health Roadmap for Biomed-

ical Research and constructed as a large,

genome-scale community research project

[6]. Any such project must plan for data

analysis, computational methods develop-

ment, and the public availability of tools

and data; here, we provide an overview of

the corresponding bioinformatics organi-

zation, history, and results from the HMP

(Figure 1).

One of the HMP’s major goals was the

generation of a baseline catalog of the

microorganisms found in and on normal

human hosts, which includes defining their

normal patterns of phylogeny, taxonomy,

biogeography, ecology, metabolism, and

function. The HMP’s study design includ-

ed extensive sampling of the human

microbiome from 300 subjects at five

clinically relevant body areas (airways,

skin, oral cavity, gastrointestinal tract,

and vagina). Several specific body sites

were sampled within each of these major

areas, often at multiple time points,

resulting in a total of 11,700 samples [7].

Advances in sequencing technologies over

the course of the HMP allowed subsets of

these samples to be explored both using

marker gene sequencing [8] and through

metagenomic shotgun sequencing of

whole-community DNA [9,10]. While

these assays allowed the project’s focus to

scale from individual organisms to micro-

bial communities as a whole, they pre-

sented daunting bioinformatic challenges.

To date, the HMP has released over 100

million 16S rRNA gene reads and more

than 8 Tbp of shotgun metagenomic

sequences [7].

Before tackling the analysis of such a

massive, heterogeneous sequencing data

collection, early study design in the HMP

planned for two critical and potentially

conflicting bioinformatic considerations:

subject privacy and rapid, public data

release. Protection of human subjects for

such a large cohort was handled by the

EMMES Corporation, leveraging the

resource of dbGaP [11] and emerging

sequencing metadata standards [12] to

provide quality control, security, and

anonymous access to subject information

for subsequent analyses. Deposition of

nonprotected HMP data, its organization,

and subsequently its public release were

the mandate of the Data Analysis Coordi-

nation Center (DACC; http://hmpdacc.

org), which was likewise formed early in

the project. These steps were and are

familiar aspects of genome sequencing and

molecular epidemiology investigations, but

once these data were protected and

coordinated, the HMP was left with the

task of developing appropriate and effi-

cient analysis methodology.

The first bioinformatic challenges arose

from the combination of large amounts of

data with newly emerging sequencing

technologies, particularly for 16S rRNA

gene sequencing [13]. HMP data genera-

tion began in earnest during the spring of

2010, at which time the largest published

microbiome datasets contained approxi-

mately 1–2 million 16S rRNA gene reads

using the 454 platform [14,15]. The HMP

anticipated at least an order of magnitude

more data, and these published datasets

were themselves two orders of magnitude

larger than previous studies. Identifying

microbial membership and abundance

using 16S rRNA gene sequencing has a

long history [8], and many analysis tools

and platforms were available [5,16–18].

However, none were prepared to scale to

the amount of data generated by the

HMP. Major bioinformatic issues that

were immediately apparent included

high-throughput solutions for chimera

detection in short reads [19], tackling

increased sequence error rates [20], and

adapting methods as the 454/Roche

chemistry evolved [21,22].

Computational analysis of shotgun me-

tagenomic reads raised similar, even more

extensive issues. The largest previous

human-associated metagenomic data us-

ing the Illumina GA platform comprised

some 0.5 Tbp [23], again several orders of

magnitude more than commonly found in

the literature at that time. Earlier work, in

both environmental and human-associated

communities [24–26] provided both crit-

ical biological insights and some analysis

tools [27,28], but while the former were

vital for the HMP’s later interpretation,

the latter were not prepared for hundreds

of samples comprising multiple terabases

of 100 nt paired end reads from the

Illumina GAIIx instrument. Over the

course of the project, new analysis tools

became available that partly addressed the

challenges faced in this project: accelerat-

ed high-performance alternatives to
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Figure 1. Bioinformatics in the HMP as a model for further studies of the human microbiome. Important computational considerations
throughout the design, implementation, and analysis of a large human microbiome study such as the HMP; for details of the HMP’s specific
computational protocols, see [7,42]. In the HMP, study design considerations included cohort balancing for gender and geographic location and
recruitment of 300 individuals for adequate power. Subject metadata were protected and distributed through dbGaP [11], and up to three
longitudinal samples were drawn from the microbiomes of 18 body habitats. These were tracked and sequenced at up to four distinct centers,
including .5,000 16S rRNA gene datasets using 454 reads from the V1–3 and V3–5 hypervariable regions and .700 Illumina whole-genome shotgun
datasets totaling over 8 Tbp of sequence. Quality control of sequences and datasets was performed at multiple points throughout data generation.
Computational pipelines were developed and documented for each sequence data product as well as downstream analyses, with full results and
protocols available at the HMP Data Analysis and Coordinating Center (http://hmpdacc.org).
doi:10.1371/journal.pcbi.1002779.g001
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BLAST [29], short read clustering [29,30],

and mapping approaches [31,32], new

interfaces to heterogeneous microbial

community data [33,34], and new de

novo assembly software tailored to the

Illumina data [35].

In order to address these challenges, as

data generation began, the HMP specifi-

cally reached out to the bioinformatic

community to create an analysis ecosystem

around the anticipated large-scale data-

sets. The project aimed to bring together

the extensive expertise and robust compu-

tational infrastructures of the large-scale

sequencing centers with the many scien-

tists actively developing new cutting-edge

approaches for the analysis of metage-

nomic data. A Data Analysis Working

Group (DAWG) was created, incorporat-

ing members of the four sequencing

centers, the DACC, and researchers from

the computational and microbiological

research communities, many of whom

volunteered their time out of enthusiasm

for the project and its scientific potential.

As the first HMP datasets became avail-

able in May of 2010, more than a hundred

participants were organized into working

groups focusing on different aspects of the

data analysis process, including sequence

quality control, assembly, annotation,

metabolic reconstruction, and 16S-based

studies. Through a series of conference

calls, face-to-face meetings, computational

breakthroughs, and hard work, the HMP

DAWG developed and validated the series

of bioinformatic solutions for human

microbiome studies detailed below.

A Comprehensive Human-
Associated Microbial Census

Sequencing of the 16S rRNA gene is an

effective method for interrogating the

taxonomic composition of microbial com-

munities. This gene is ubiquitous within

the prokaryotic domain and can be

effectively PCR-amplified from even pre-

viously unknown organisms. The analysis

of microbial communities through the

sequencing of 16S rRNA gene was

common long before the influx of high-

throughput sequencing (HTS) data

[36,37], making this gene one of the most

highly represented within GenBank. HTS

approaches to 16S rRNA sequence anal-

ysis typically include targeted Illumina or

454 reads of up to a few hundred

nucleotides, each targeting uniquely iden-

tifiable variable regions of the gene that

can be used as unique microbial identifiers

[38]. The HMP planned to comprehen-

sively characterize the taxonomic compo-

sition of the microbiome by averaging

5,000 454 FLX 16S rRNA gene sequences

from all 300 subjects, 18 body sites, and

multiple time points. This design, com-

bined with more than a 1,000-fold in-

crease in sequencing throughput over the

course of the HMP, forced the consortium

to develop novel tools for processing large

16S rRNA gene datasets, tackling issues

specific to 454 sequence data quality, and

addressing novel biological questions that

were previously inaccessible due to limited

sample sizes.

Approximately 6,000 samples for 16S

rRNA gene sequencing by 454 FLX were

collected at two clinical sampling centers,

sequenced at four sequencing centers,

tracked in combination with clinical and

sample metadata, and the resulting data

were finally deposited at the DACC, the

short read archive, and dbGAP (http://

hmpdacc.org/HMMCP and http://

hmpdacc.org/HMQCP). Much of this

data production was performed at a time

where high-throughput 16S rRNA gene

sequencing was relatively new and the

quality of such data somewhat controver-

sial [20,39]. Since absolute certainty in

individual base calls can be critical for

microbial marker gene identification, the

HMP developed a 16S rRNA gene

sequence curation pipeline to reduce error

rates while maintaining a large number of

sequences of reasonable length. Both

sample handling and sequence processing

pipelines were optimized using bench-

marks based on re-sequencing genes of

known sequence. Several such ‘‘mock

communities’’ were created including up

to a few dozen organisms, assembled both

from cells and from pre-quantified DNA,

and comprising a wide range of microbial

relative abundances. The resulting com-

munities (BEI, Resources, Manassas, VA),

sequencing protocols [40], and data

(http://hmpdacc.org/HMMC) are now

available, and together they provided a

pipeline that reduced the sequencing

errors from 0.6% to 0.02% and gave

investigators greater confidence in the data

[22].

Implementations of this pipeline are

available in both mothur [16] and QIIME

[41], HMP-funded software tools for

microbial community data analysis. Both

have undergone extensive revisions during

the HMP to accommodate its data,

incorporating robust software engineering

strategies, improved algorithms, parallel

processing, and efficient data storage. Both

environments are constructed to be usable

and to require minimal programming

experience, and they provide rich analysis

tools ranging from initial sequence han-

dling to assessments of microbial ecology

and sample metadata correlates. The

HMP’s deep and broad exploration of

the human microbiome through 16S

rRNA gene sequencing has thus already

resulted in a number of biological insights

[42], including the first comprehensive

view of the normal pool of human-

associated microbes (i.e., the ‘‘pan micro-

biome’’). This has interesting ramifications

for future studies, as one might ask what

factors in a particular host select for

different organisms from within the pan

microbiome and may help to elucidate the

mechanisms that result in specific assem-

blages of host-associated microbial com-

munities.

An interesting question addressed by

these data is the presence or absence of

stable community configurations in differ-

ent human body sites, such as enterotypes

in the gut [43]. Identifying groups of

highly similar microbial communities

among many samples is a difficult unsu-

pervised machine learning problem, akin

to that of clustering or discovering molec-

ular subtypes in cancer gene expression

data [44]. Work to better understand the

topic is ongoing, and the HMP’s survey of

many body sites offered the chance to

contrast community organization within

distinct ecologies. The vaginal micro-

biome, for example, has been observed

to occupy one of five main states charac-

terized by differing Lactobacillus spp. abun-

dances [45]. This proved to be the case in

the HMP as well [46], in contrast to a

more complex continuum of community

configurations occupied by the gut micro-

biota, particularly when meta-analyzed

with the MetaHIT cohort [46,47]. As the

presence of community types in distinct

ecosystems may be influenced by environ-

mental factors that can themselves vary

continuously, such as diet [48], care must

be taken in future computational efforts to

reproducibly identify microbial communi-

ty types within habitats where they do

occur.

Taxonomic surveys through 16S rRNA

gene sequencing are thus just a first step

towards elucidating the role microorgan-

isms play in our health and disease. We

know that we are also colonized by

archaea, micro-eukaryotes, and viruses,

and further work is clearly needed to

understand these ‘‘other’’ microbiomes

and how they relate and interact with

host-associated bacterial populations. In

addition, taxonomy is only part of the

story—the prevalence of horizontal gene

transfer among microbes implies that an

organism’s function cannot be fully un-

derstood through taxonomy. The HMP

thus began to address such issues by
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including a combination of culture-based

studies and, for the first time, a tremen-

dous resource of shotgun metagenomic

data and analyses of the human micro-

biome.

Putting the Pieces Together:
Metagenomic Sequence
Assembly

The taxonomic composition of the

human microbiome is thus one step in

understanding the role microbes play in

our health, and it is well complemented by

sequencing of microbial communities’

entire genomic contents to catalog their

biological functions. Thus, the HMP

carried out extensive deep sequencing on

a subset of its subjects and body sites using

the Illumina platform (http://hmpdacc.

org/HMASM). While portions of the

HMP’s 16S rRNA gene analysis were

based on extensions of established exper-

imental and computational approaches,

this approach to whole-metagenome se-

quencing was a foray into new territory.

The sequencing technology itself was (and

still is) rapidly evolving, and metagenomic

datasets of comparable size, read length,

and ecological diversity did not previously

exist. In the relatively short period be-

tween an initial pilot phase in 2007–2008

and the initiation of the production effort

in 2009, Illumina read lengths increased

by close to 30%, from 76 bp to over

100 bp. This also changed the error

characteristics of the data being generated,

which were already difficult to interpret in

microbial communities containing hun-

dreds or thousands of taxa. It thus

necessitated development of a scalable

end-to-end shotgun pre-processing and

quality control pipeline, including dupli-

cate read removal, quality and length

trimming, host sequence removal, and

whole-sample quality control. In the end,

the HMP generated over 8 Tbp of raw

sequence data, representing two lanes of

paired-end Illumina sequencing for each

of over 700 samples (targeting 10 Gbp/

sample) as well as a small collection of

samples, which were also sequenced with

the Roche/454 instrument to investigate

the impact of longer reads on metagenome

assembly.

The design of this whole-metagenome

sequencing experiment warrants a brief

discussion. As the HMP was started, little

information was available about the geno-

mic diversity of the communities being

assayed. The use of Illumina sequencing in

metagenomics projects was still being

debated, the main argument against this

technology being the very short length of

the reads being generated (just 100 bp

compared to close to 400 bp achievable by

Roche/454 and over 1,000 bp routinely

achieved through Sanger sequencing). As

detailed below, the feasibility of assem-

bling the resulting data into large enough

chunks to enable meaningful analyses was

by no means obvious. At the same time,

analyzing the reads themselves, rather

than assembled contigs, was considered

insufficiently accurate [49], although both

assembly and read-based analyses ulti-

mately proved successful. The choice of

depth of sequencing, ‘‘just’’ two lanes of

the instrument, was chosen to be sufficient

to generate roughly 1-fold coverage of the

Escherichia coli genome within gut micro-

biome samples (estimated to occur in most

individuals at 0.1%–5% relative abun-

dance [50]). The human distal gut was

the body site for which the most prior

knowledge was available due to extensive

studies of the fecal microbiome, particu-

larly due to insights from the MetaHIT

project—a European-led study aimed at

characterizing the human gut microbiome

in health and disease [23].

Additionally, a major unknown factor

regarding this shotgun sequencing was the

level of human DNA ‘‘contamination’’

within whole-metagenome samples. With

the exception of the distal gut, whose

microbiome as estimated through fecal

samples is almost entirely devoid of host

cells, in other body sites it proved to be

virtually impossible to sample the micro-

biome without also sampling host DNA.

Even a minute level of host contamination

can dramatically affect analysis of the

associated microbiome, given that the

DNA content of a single human cell is

roughly a thousand-fold higher than that

of a bacterial cell (a single human cell

contains roughly 6 billion base-pairs of

DNA as compared to just 4–6 million

base-pairs found in a typical bacterial

cell). As no experimental quantitative

depletion protocols yet exist, in silico

removal of human DNA was necessary

not just to speed up the analysis but also

to protect the privacy of the participants

in the study. The resulting level of human

contamination ranged from a low of ,1%

in stool to as high as .99% in some nasal

and vaginal samples. Removal of these

sequences (http://hmpdacc.org/tools_

protocols/tools_protocols.php) and addi-

tional quality trimming reduced the total

size of the HMP WGS dataset from 8.8

Tbp to 3.5 Tbp—less than half the data

generated by the sequencing instruments,

but approximately six times larger than

the raw data of the MetaHIT project.

The HMP thus began exploring avail-

able bioinformatic options for metage-

nomic assembly during the generation of

this massive dataset. The assembly of even

isolated microbial genomes from Illumina

data alone was (and still is) considered a

difficult challenge, and the project was

faced with the task of assembling a

complex mixture of organisms present at

widely varying levels of abundance. Ge-

nome assemblers are typically designed for

the assembly of single genomes, expecting

even coverage across a single large target

contig, and they have only very recently

begun to address the difficulty of handling

metagenomic data [51–56]. Pilot HMP

assemblies were thus highly fragmented,

both due to polymorphisms between

closely related organisms (e.g., mobile

elements inserted in different genomic

contexts) and due to abundant organisms

being mistaken for genomic repeats.

To inform the development of the

assembly strategy for the HMP, we

performed a ‘‘bake-off’’ between the most

commonly used assemblers at the time:

SOAPdenovo [35], Newbler [57], ABySS

[58], Celera Assembler [59], Velvet [60],

and CLC (Cambridge, MA). The evalua-

tion focused on both the contiguity of the

resulting assemblies (number and size of

contigs) and the accuracy of the recon-

structed sequence, ascertained by align-

ment to genomes known to be present in

our samples. Our efforts benefited from

the availability of the ‘‘mock’’ metage-

nomic communities described above, but

even so failed to identify a clear winner

[7]—unsurprising in retrospect, as none of

the assemblers we tested were designed for

this task. It is important to note that both

SOAPdenovo and Celera Assembler had

metagenomics-specific features selectable

through command-line parameters, how-

ever neither tool fully addressed all the

challenges involved in the assembly of

metagenomic data. Informed by these

results, however, we proceeded to develop

an assembly strategy around the SOAP-

denovo assembler as used in the MetaHIT

project in order to simplify comparisons to

data generated in this earlier study.

With this protocol in hand (http://

hmpdacc.org/doc/HMP_Assembly_SOP.

pdf), the process of assembling the HMP’s

metagenomic samples progressed smooth-

ly. The process was eventually run in

parallel with data production itself, thanks

to the distribution of computational effort

between genome centers and community

volunteers. The assembly of each of the

,700 metagenomes required 4–6 h of

computation time on large memory ma-

chines as well as the transfer to and from
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the DACC of large volumes of data. Some,

although not all, of these processes proved

to be automatable, but planning the

hardware infrastructure both for distribut-

ed computing time and for very large-scale

data transfers was a critical step in

successful analysis.

The resulting assemblies proceeded

both to downstream analyses such as gene

identification and functional annotation

and, as with all HMP datasets, to quality

control [7]. Outlier samples whose assem-

blies differed significantly from others

from the same body site in contiguity,

number of ORFs, or level of human

contamination were marked for exclusion

from future global analyses. Singleton

reads (those not included in any assembly)

were pooled for assembly across multiple

samples from each of the body sites. These

body site-specific assemblies were targeted

at the low abundance members of the

community that were not sufficiently

covered within a single sample. Surpris-

ingly, identifying these unassembled reads

was not a straightforward task, since the

majority of modern assemblers do not

report information about the placement of

individual reads within assemblies, infor-

mation that was instead reverse engi-

neered by mapping original reads to

assembled contigs using bowtie [32]. The

resulting pooled assemblies provided sub-

stantial additional information, particular-

ly in sparsely sampled body sites (those

with high levels of human contamination)

where only a small fraction of the reads

could initially be assembled within indi-

vidual samples.

As with the rest of the HMP’s study

design, development of this assembly

strategy benefited from knowledge devel-

oped in earlier large-scale metagenomic

projects, including the Global Ocean

Survey [61], MetaHIT [23], and others.

We were likewise able to determine which

of the software tools from all available

sources were suitable, if not yet ideal, for

the assembly task in a metagenomic

setting. Although additional tools were

under development at the time or soon

after, none were mature enough to

support the production needs of the

HMP. At the same time, the HMP made

significant original contributions in the

often overlooked and underappreciated

engineering of robust, well-documented,

and reproducible pipelines for processing

and assembling metagenomic data. The

protocols were tested and vetted by

scientists from multiple independent insti-

tutions, both ensuring portability and

enabling us to distribute the computation-

al load among participants in the project.

The resulting protocols, pipelines, and

processed data are now available to any

scientist to reproduce HMP results, adapt

these methods to their project, or develop

new algorithms using these data [7].

Reading Between the Lines:
Identifying Microbes, Genes,
and Pathways

When this ultimately successful metage-

nomic assembly plan was first devised, it

was not clear within the DAWG whether

assembly would even be feasible for

hundreds of metagenomes, each compris-

ing short sequences from hundreds of

different microbes. This raised the ques-

tion of whether some analysis tasks could

be carried out using only the unassembled

short metagenomic reads. Read-based

analyses, performed in parallel with the

production assembly effort, in many cases

generated results that were nearly the

same as those obtained from the analysis

of assembled contigs. Unassembled reads

were used to assess which organisms were

present in a community (http://hmpdacc.

org/HMSCP), which genes (http://

hmpdacc.org/HMGI), and which path-

ways (http://hmpdacc.org/HMMRC),

complementing 16S rRNA gene-based

taxonomic assessments and assembly-

based gene annotations. Many genome-

oriented analyses of interest were (and are

still) impractical with short reads alone;

synteny information is obviously unavail-

able, and methods requiring composition-

based taxonomic assignment or discovery

of novel organisms or gene families work

best when provided with a longer genomic

context [62,63]. However, the perennial

microbial community questions of ‘‘Who’s

there?’’ and ‘‘What are they doing?’’ both

proved to be addressable through read-

based analysis methods.

Determining the microbial composition

of a community using unassembled short

metagenomic reads has an increasingly

long bioinformatic history [64]. Compu-

tational methods were and are increasingly

successful at identifying the microbe(s) of

origin for individual short reads [46,65].

The HMP asked a new question, however,

in assessing both the composition of the

human microbiome and its genetic varia-

tion using read-based mapping to micro-

bial reference genomes. After combining

new HMP microbial isolates [66] with

public databases, over 1,700 draft or

finished microbial genomes were available

to which the reads within each metagen-

ome could be mapped [67]. Initial at-

tempts at read alignment against this

reference database revealed an immediate

limitation of existing computational ap-

proaches: at the time this work was

initiated, no evaluation of methods had

been published for handling billions of

reads targeting thousands of different

genomes simultaneously, and a systematic

assessment of speed and accuracy was first

necessary. The HMP’s resulting analysis

indicated that since human-associated

bacteria are phylogenetically well-covered

by sequenced genomes [68], counting the

number of reads mapped to each genome

provided an accurate population census.

This complemented results based on 16S

rRNA gene sequencing to quantify com-

munity members, a task difficult to achieve

precisely through 16S rRNA gene due to

the varying copy number of the ribosomal

operon in bacteria [69]. Also, unlike

methods that directly classify each read

into a taxonomic bin, these mapping

results exposed single nucleotide polymor-

phism and structural variants within

individuals’ microbiomes [42]. This was

a remarkable finding, whose ramifications

remain to be explored: not only does every

human genome harbor variants that can

promote or prevent disease, every human

microbiome might harbor personalized

risk or protective microbial alleles as well.

Unassembled reads were also used to

learn about microbial genes, pathways,

and metabolic potential of the human

microbiome [70]. A second DAWG sub-

team was formed focusing on metabolic

reconstruction, which was tasked with

functionally characterizing each read

(whenever possible). Just as each read in

a community metagenome arises from

some particular organism, it in many cases

also arises from an identifiable gene

family. Thus, rather than using the strict

nucleotide alignment of reads to the HMP

genome catalog, the HMP investigated the

use of translated BLAST (BLASTX) of

individual reads against characterized

protein families (e.g., KEGG [71] and

MetaCyc [72]), whose annotated size

exceeds that of available reference ge-

nomes). This approach to identifying the

abundances of gene families in a commu-

nity has been shown to be quite accurate

[73]—but also led to computational chal-

lenges, since translated BLAST searches

are much slower than the nucleotide

mapping process used in reference align-

ment. The DAWG again undertook a

systematic evaluation of accelerated trans-

lated BLAST technologies [70], several of

which proved to be comparably accurate

and sensitive for high-identity matches,

and often thousands of times faster than a

comprehensive BLASTX. Gene family

abundances from the resulting catalog of

PLOS Computational Biology | www.ploscompbiol.org 5 November 2012 | Volume 8 | Issue 11 | e1002779



alignments were reassociated into path-

ways for each metagenome, allowing the

human microbiome to be described in

terms of the metabolism being carried out

by each community. This proved to be

vital for understanding the ecological

structure of the microbiome—the path-

ways carried by microbes within individ-

uals’ communities are far more consistent

than the microbes carrying them, for

example [42]. Some 50%–75% of short

reads as yet remained uncharacterized,

however, and functional databases must

continue to expand to better capture the

processes performed by microbes in situ in

communities. A great deal of work thus

remains to fully understand the metabo-

lism and biomolecular functions of mi-

crobes, communities, and habitats throug-

hout the human microbiome.

The Road Behind, the Road
Ahead

In addition to its scientific goals, a

central mission of the HMP has been

capacity building and resource sharing to

enable further investigations of the human

microbiome. The data resources of the

HMP can continue to be mined as a

baseline and contrast for targeted biolog-

ical investigations, and they provide an

extensive baseline for further computa-

tional tool development as well. Likewise,

the documentation of both experimental

and computational protocols throughout

the project aims to guide future study

designs for the human microbiome.

In particular, the HMP has emphasized

the interpersonal variation of the healthy

human microbiome, raising the bar for the

breadth of human host populations and

the number of microbial community

samples that can be and should be

investigated. As sequencing prices contin-

ue to drop and sample handling is

automated, sampling levels comparable

to those of the HMP may become possible

even for individual research laboratories.

Since the project has provided initial

solutions to many of the accompanying

logistical, technical, and informatic chal-

lenges, the next major computational

hurdles will include development of ap-

propriate analytical methodologies. Data

visualization tools, machine learning, and

modeling of longitudinal data will be

critical to improving our understanding

the human microbiome. One particular

avenue of research that is critically needed

is the development of statistical hypothesis

testing methods that can incorporate

nonnormally distributed, nonindependent

data coupled with complex and diverse

clinical histories, the absence of a core

community across multiple individuals,

and the extreme diversity of the typical

host-associated microbiome [42].

16S rRNA gene-based studies currently

provide the lowest cost means of assessing

many microbial communities from large

populations or longitudinal time courses

[74]. Precisely defining microbial taxono-

my and phylogeny from such studies has

already been fraught with bioinformatic

challenges in 454 reads of several hundred

base pairs [22], and great care will be

needed to accommodate sequencing errors

and true biological ambiguity in shorter

Illumina reads [75]. Primer design can

critically influence the observability of

different body sites’ communities, both

due to the universality (or lack thereof) of

distinct regions’ primers and their ability

to differentiate human-associated portions

of the microbial phylogeny [76]. Even if

computational methods can optimize the

choice of taxonomic marker genes, vari-

able regions, primer design, noise and

chimera reduction, binning, and clustering

of operational taxonomic units, there

remains the biological challenge of relating

descriptors of microbial community struc-

ture to microbiome metabolism and func-

tion. Completion of microbial isolate

genomes has accelerated along with mi-

Figure 2. Topics in the study of the human microbiome with outstanding computational biology challenges. There remain many areas
in the study of the human microbiome that will benefit from further bioinformatic efforts. At a whole-population level, the dynamics and stochasticity
of microbiome acquisition at birth and its subsequent intersubject transmission must be characterized. As individual hosts, we each expose our
microbiomes to unique genetic, dietary, pharmaceutical, and environmental perturbations, which in turn dictate systematic immune responses that
are governed by individual sensing and regulatory biomolecular mechanisms. Within our microbiome, both host-microbe and microbe-microbe
interactions dictate community ecology. These are governed by a variety of molecular mechanisms well-studied in model microbes including
protein–protein interactions, metabolism, regulatory networks, and extracellular transport. In many of the most difficult assay types, such as whole-
community proteomics or metabolomics, informatic challenges such as molecular identification remain to be overcome.
doi:10.1371/journal.pcbi.1002779.g002
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crobial community sequencing, however

[77], and a wealth of functional informa-

tion remains to be tapped in their

comparative genomics. Since the relation-

ship between microbial phylogeny and

function has been of interest for decades

[78], this represents a rich area for

exploration by computational methods.

Methods for metagenomic and meta-

transcriptomic sequence analysis, particu-

larly by assembly, have likewise developed

rapidly since the completion of the HMP.

Assemblers capable of overcoming as-

sumptions about genomic copy number

[51,79] and variation [54], as well as

frameworks for the explicit study of

metagenomic assembly (http://www.

cbcb.umd.edu/software/metamos), have

started to become available. Despite these

developments, metagenomic assembly is

far from being solved. Even in relatively

low-complexity synthetic communities

such as the 20-organism HMP ‘‘mock’’

systems [19], fewer than half of the

genomes in the sample can be assembled

with current software. Furthermore, as-

sembly or annotation alone is not a

sufficient end goal of most metagenomic

projects, and new approaches need to be

developed to allow both the extraction of

biological information from the assembled

data (e.g., identification of genomic vari-

ation, lateral gene transfer events) and the

comparative analysis of assembled data

across multiple communities. Finally, the

generic term ‘‘assembly’’ encompasses

many different use cases beyond the

holistic assembly of entire metagenomes

or transcriptomes. New approaches will

need to be developed to address specific

assembly tasks, such as targeted search and

queries into metagenomic datasets, recon-

struction of single genomes of interest [52]

(e.g., identified by 16S rRNA or other

genomic signatures), analysis of the popu-

lation structure within a group of similar

organisms (e.g., viral quasi-species), and

relating metagenomes to functional data

from transcriptomes or proteomes.

Integration of functional data from

multiple complementary assays of the

human microbiome, a process that has

already begun in several studies [80–84], is

thus one of the most exciting future

challenges in microbial community bioin-

formatics (Figure 2). In order to translate

our emerging understanding of the human

microbiome into, for example, diagnostic

or prognostic biomarkers, both broader

pictures of the microbiome’s epidemiology

and deeper analysis of its biomolecular

functions must be performed. A compre-

hensive study design might include an

initial population survey generating thou-

sands of 16S rRNA gene datasets, subse-

quent metagenomics, transcriptomics, pro-

teomics, and metabolomics on a carefully

selected subset of communities, and the

combination of resulting data to identify

which metabolites might be generated by

transcriptionally and translationally active

pathways in specific low- or high-abun-

dance microbes. Longitudinal studies with

carefully standardized clinical and envi-

ronmental metadata [12] will likewise be

critical for establishing the causality of

microbial involvement in human disease

and the microbiome’s potential as a target

for intervention or predicting response to

treatment.

In the nearer term, just as the Human

Genome Project introduced the need for

scalable and sharable bioinformatic infra-

structure, the HMP has reemphasized this

need with its 100-fold greater sequence

production. Repeatedly transferring such

large datasets is at best inefficient and at

worst impossible, and emerging cloud

technologies represent a new opportunity

to bring bioinformatics to the data rather

than vice versa [85]. It is likely that the

HMP data and computational tools will

soon be available in one or more cloud

environments, and this is a data analysis

and delivery method that we encourage

for future studies of the microbiome.

Completion of the human genome has

represented both a small step and a giant

leap in bioinformatics and human health,

and we hope that the HMP will represent

a similarly solid foundation for future

work.
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