
1.00 Tutorial 3

Methods, Classes Arrays & ArrayLists

September 26 & 27, 2005

1

Topics

• Java Compliance
• Methods

–Pass by Value
–Access
–Static methods

• Classes & Objects
• Arrays & ArrayLists
• Problem Set 3 discussion

2

Java Compliance
Make sure your Eclipse compiler is set to Java 5.0

3

Methods

• Methods are the interface or
communications between classes

– They are a useful way of doing the
same operation in many places in
your program, avoiding code
repetition

4

Methods: Black boxes

public Rabbit hatMagic(Dove d) {
Abracadabra;

}
5

Methods: Pop Quiz

What does the following code do?
public class Tutorial3 {

public static int simpleExample() {
int sameName = 3;
System.out.println("samename = "+sameName);
return sameName;

}

public static void main(String[] args) {
int sameName = 2;
System.out.println("samename = "+sameName);
System.out.println("simpleExample returns

"+simpleExample());
}

}
6

Pass by copy/value

• Method arguments (the things in
parentheses) are passed by
copying them

• This is called pass by value

7

Pass by copy/value: Pop Quiz
What does the following code fragment print?

public class Tutorial3 {
public static void main(String[] args)
{

int i = 1;
System.out.println(“i = “ + i);
int j = increment(i);
System.out.println(“i = “ + i);
System.out.println(“j = “ + j);

}
public static int increment(int i) {

i = i + 1;
System.out.println(“i = “ + i);
return i;

}
}

Run this in Debug mode in Eclipse and see what happens.
8

So, What is going on?
The memory stack

i = 1 in main() i = 1

9

So, What is going on?
The memory stack

i = 1 in main() i = 1

increment(i) is called …

i = 1 in increment()
The value of i in main
is copied to the variable i
in increment.
The original in main is
not changed.

i = 1

10

So, What is going on?
The memory stack

i = 1 in main() i = 1

increment(i) is called …

now i inside increment()
is changed

i = 2

11

So, What is going on?
The memory stack

i = 1i is still 1 in main()

j = 2

j is assigned the value that
is returned by increment.
i inside increment() does not
exist anymore.

12

Access

• private
– only visible to methods which belong

to the same class

• package/default (no access
modifier)
– only visible to methods which belong

to the same package

• public
– visible to all methods

13

Static
• Static members:

– are not associated with any particular
instance of the class—one copy shared by
all instances

– are accessible to both static and non-static
methods

• Static Methods:
– may only access static members, not

instance members
– -may be called using

Classname.methodName() or
objectReference.methodName()

14

When to Use Static Methods

• When no access to any instance field is
required. Usually one of two scenarios:
– The method takes in all the information it

needs as parameters:
Math.pow(double base, double exp)

– Or, the method needs access to only static
variables.

• Note that the main method must be static
• Example of a static method

– A method that returns today’s date

15

Modified Class from PSet 2
public class Investment {

//Data Members
private int type, currentAge;
private double monthlyRate, moneyInvested,
totalValue, minValue;

//Constructor
public Investment(int type, double moneyInvested){

this.type = type;
this.moneyInvested = moneyInvested;
this.totalValue = moneyInvested;
this.rate = 0.1162; //Note: this rate is not

// the same as in pset 2.
}

16

Modified Class from PSet 2
// A Get method example

public double getTotalValue () {
return totalValue;

}
//A Set method example

public void setCurrentAge (int newAge) {
currentAge=newAge;

}
//Other Method examples

private double calculateInterest() {
return totalValue * rate;

}
public void updateTotalValue () {

totalValue += calculateInterest();
}

}

17

Using the class

/* declare variable */
Investment inv;
/* call constructor */
inv = new Investment(1,5600);
System.out.println(inv.updateTotalVal
ue());

Pop quiz:
What happens when you try to call

inv.calculateInterest() ?

18

Arrays vs. ArrayLists

• ArrayLists can grow &
shrink as needed

• In previous versions:
ArrayLists can hold any
type of object
In 1.5, have ArrayList
type and its elements
must be of same type

• In previous versions:
no primitive types.
ArrayLists auto box (&
unbox) primitive types
into their wrapper class
object.

• Arrays are fixed in
size;

• Arrays can only hold
elements of the same
type.

• Arrays can hold both
Objects and primitive
types;

19

Using Arrays

Three things to do:
• Declare an array

Integer[] myIntObject; // Array of Objects
int[] myIntPrimitive ; //Array of primitive data

• Create an array
myIntObject = new Integer[2];
myIntPrimitive = new int[2];

• Create/initialize each object in the array
myIntObject[0] = new Integer(1);
myIntObject[1] = new Integer(2);
myIntPrimitive[0]= 1;
myIntPrimitive[1]= 2;

20

Shortcuts

• Declaring and creating in one step:
Integer[] myInts = new Integer[2];

• Sometimes can declare, create, and
initialize all in one step!
/* Create an object w/o new keyword! */
int[] powers={0,1,10,100};
String[] tas = {“Karin”, “Felicia”, “Daniel”,

“Charu”};
Integer[] ints = {new Integer(1), new
Integer(10)};

• Use arrayName.length to get number of
elements

21

Using ArrayLists
• Must import java.util.*;
• Common constructors (e.g. of constructor

overloading)
ArrayList<String> list1 = new ArrayList<String>();
ArrayList<String> list2 = new ArrayList<String>(20);

• Adding to a ArrayList
list1.add (“Felicia”);
list1.add (3, “Daniel”);

• Getting things out
String TA = list1.get(2);

• Other methods (look at javadoc):
int noTAs = list1.size()
list1.remove (“Karin”);
………

22

Exercise : Using Arrays

• Create an array containing the numbers 1 to
10. Print the values of the array & their sum at
each step.

23

Exercise : Using Arraylists

• Create an ArrayList containing the Integer
objects that correspond to the numbers 1 to
10. Print the values of the ArrayList & their
sum at each step.

24

Problem Set 3 : Goals

• To start designing a TIVO system
• To create classes
• To create methods
• To use arrays for data storage

25

Problem Set 3 : Calendar

Useful things to know:
• Import statement: import
java.util.Calendar;

• You do not have to use the
Calendar() constructor directly
– Calendar.getInstance(): returns an
Calendar object set to the date and
time that the method was called.

26

Problem Set 3 : Calendar

Useful methods. See javadoc for more.

– get(int field)
– clear(int field)
– clear()
– set(int field, int value)
– set(int year, int month, int date)

27

Problem Set 3 : Calendar

Useful fields. See javadoc for more.

– Calendar.DAY_OF_MONTH,
Calendar.DAY_OF_WEEK,
Calendar.YEAR

– Calendar.MONDAY,
Calendar.TUESDAY,
Calendar.JANUARY,
Calendar.DECEMBER

28

