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Abstract

The compact model of a circuit or device is a system of linear and/or nonlinear
differential equations that effectively models the behavior of the circuit or device.
Compact modeling plays a critical role in circuit simulation, because in order to simulate
a circuit with a specific component, the compact model of this component is needed in
the circuit simulator. Two contributions related to compact modeling in Verilog-A are
presented in this thesis. The first contribution is an analysis of the feasibility and
performance of the Verilog-A language in the context of implementing reduced order
models. Reduced order models are a class of purely mathematical compact models,
which are significantly faster than compact models based on the physics of a device or
system. The second contribution of this thesis is the implementation of a novel MOSFET
model in Verilog-A. This MOSFET model is known as the Virtual Source model.

Thesis Supervisor: Luca Daniel
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Chapter 1

Introduction

Circuit simulation allows circuit designers to successfully validate and optimize their

designs. To simulate a circuit, circuit simulators convert the schematic (which can be

represented in either graphical or text form) into a system of linear and/or nonlinear

differential equations and solve the system. In order to convert a schematic into a system

of equations, each component or block in the circuit must be represented by a smaller

system of linear and/or nonlinear differential equations. The smaller system for a

component or block is known as the compact model for that component or block. In a

compact model, the coefficients of the equations are known as the model parameters.

The motivation behind the work presented in this thesis is the importance of

compact modeling. As systems become more complex and as devices become smaller,

more sophisticated compact models are necessary to describe the behavior of circuits and

systems. The contributions presented in this thesis involve the analysis and development

of compact models.

The first contribution of this thesis is an analysis of the Verilog-A language as a

means of implementing a new class of compact models known as reduced order models.

14



Reduced order models are a versatile class of mathematical compact models that are

relatively accurate and very fast. Verilog-A is language designed for describing compact

models, and many commercial simulators support models in Verilog-A. The objective of

this work was to determine if Verilog-A is a suitable means of describing reduced order

models. The contribution presented in this thesis is an analysis of the feasibility and

performance of implementing reduced order models in Verilog-A [1].

The second contribution presented in this thesis is an implementation of a novel

MOSFET model in Verilog-A. As integrated circuits become smaller and more widely

used in different application spaces, fast and accurate compact models for MOSFETs are

necessary. Although a number of sophisticated compact models exist, the novel model

implemented in this thesis, known as the Virtual Source model, is extremely compact and

accurate. Additionally, most of the parameters in the Virtual Source model correspond to

physical quantities. The contributions presented in this thesis are the implementation of

the model in Verilog-A and examples of circuits simulated using the implementation [2].
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Chapter 2

Reduced Order Modeling in

Verilog-A

This chapter presents the background material, methodology, and results for the

contributions related to the performance and feasibility analysis of implementing reduced

order models in Verilog-A. Section 2.1 covers the background material on the following

topics: circuit simulation, reduced order modeling, the Verilog-A language, and previous

work related to compact modeling in Verilog-A. Section 2.2 presents the methodology of

the feasibility and performance analysis, and Section 2.3 presents the results of the

feasibility and performance analysis.

2.1 Background

This section covers background material and previous work: 2.1.1 covers circuit

simulation, 2.1.2 covers reduced order modeling, 2.1.3 covers Verilog-A, and 2.1.4

covers previous work on compact modeling in Verilog-A.
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2.1.1 Circuit Simulation

The objective of this sub-section is to present an overview of some topics in circuit

simulation. Although this overview is far from exhaustive, it provides the basic

description of ideas used later in this chapter.

As stated in Chapter 1, in order to simulate a circuit, a circuit simulator converts a

schematic into a system of linear and/or nonlinear ordinary differential equations and

solves the system. The simplest case is when all of the elements have compact models

that are linear equations. When a DC simulation is run, the simulator just needs to solve

a linear system in order to obtain the node voltages. Figure 2.1 shows an example linear

circuit.

Figure 2.1. An example of a linear circuit from Spectre [9].
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In the circuit in Figure 2.1, if all of the nodal equations from Kirchoff's Laws are

written, where the variables are the voltages at each node (standard nodal analysis

formulation), then this system of linear equations can be written in the form:

AX = 1) (1)

where A is a matrix x is the vector of voltages at each node and b is the right hand side of

the system of linear equations. The standard approach to solve the system is to use LU

decomposition, where the matrix A is decomposed into upper and lower triangular

matrices. Although linear circuits are relatively simple to solve, many circuits contain

non-linear elements such as diodes and transistors. Figure 2.2 shows an example of a

nonlinear circuit. In this example solving a linear system is insufficient to obtain the

nodal voltages.

Figure 2.2. An example of a nonlinear circuit from Spectre.
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In order to obtain the nodal voltages in the nonlinear circuit shown in Figure 2.2,

it is necessary to solve a system of nonlinear equations. Although there are a number of

methods to solve such a system, the best method is known as Newton's method and is

commonly used in circuit simulators.

Newton's method solves a non-linear system by iteratively solving a series of

linear systems. The system of equations representing the circuit can be expressed as:

where x is the vector of nodal voltages, F is a nonlinear function of the voltage vectors,

and b is the right hand side of the nonlinear system of equations. By solving (2), the

nodal voltages, x, can be determined. Newton's method starts with a guess of the

solution, x, and then substitutes the solution into (2). If the solution is acceptable (usually

determined by an error tolerance), then the guess is considered sufficient to satisfy the

solution. If not, then a new guess is determined through the following equations:

The new guess is then substituted into (2), and the process is repeated, until an acceptable

solution is reached. Therefore Newton's method is an iterative process. In (3) and (4), k

is the index of the iteration, J(xk)) is the Jacobian of the system, xk is the current guess,

x'-') is the guess for the next iteration,f(x(k) is the vector of the function values for the

19



current guess. The Jacobian of a system is defined as the matrix of derivatives of each

function in f with respect to each variable in x. Supposef contains two functions g(x1,x2)

and h(xl,x2), then the Jacobian of the system is given by:

____ 011

)rI )tr21

The iterative process described above is repeated until the magnitude of the vector f is

small enough. In some instances, the magnitude does not become sufficiently small.

These situations are known as non-convergence. Newton's method presented in this

section is in its simplest form. A number of modifications exist to improve Newton's

method for speed and convergence.

So far, in this sub-section, both examples provided have been for DC analysis, but

transient simulations are also very commonly used. If we would like to simulate a circuit

using transient analysis, solving systems of linear and non-linear equations is insufficient.

It is necessary to solve a system of linear or nonlinear ordinary differential equations. A

number of methods exist to solve differential equations, but here we will present the

Backward Euler method as an example.

Suppose we have a differential equation of the form

f 

G
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where x is a vector of nodal voltages and f is a nonlinear function of the nodal voltages

and time. In order to solve (6), the Backward Euler method approximates the time

derivative and rewrites the differential equation as a nonlinear equation

where Xk is the vector of nodal voltages at time k and At is the timestep. In (7), the

unknown nodal voltages can be solved for with Newton's Method. In this formulation it

is assumed that the nodal voltages at the previous timestep are known. This is possible

because Newton's Method can solve for the initial conditions of the circuit. Once the

initial conditions are known, the next time point can be solved for using Backward Euler

and Newton's method [3] [4] [5].

2.1.2 Reduced Order Modeling

Compact models for sophisticated devices can become very large (many complicated

equations) in order to account for all of the effects the devices. The goal of reduced order

modeling is to develop accurate compact models that are significantly simpler than the

typical device models. Typical models are often based on the fundamental physics of the

devices [6] [7]. Rather than developing models based on the physics of the devices, the

reduced order models described in this section are purely mathematical.
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The class of reduced order models we present are of the form

d M p(U( M )x (W)
-x ( U M }Mdi q(u(fe).x( t))

for continuous time systems, and

p(U ].u tI- 1...u I-n.xu .x [ t -1....xf:-nu )x[t+1|-~ j.jl. t-I~[1xzl~ ln
g(ul I].UlIt -I ]....,u[ I -nI, x it I. itI- I,...,'X I[ -n]l)

for discrete time systems. In both types of the reduced order models, po and qO are

polynomial functions of x(t) and u(t), which are the state and input of the system.

Currently methods of determining reduced ordered models are determined through

system identification and have been shown to accurately describe the behavior of power

amplifiers and MEMS devices [8].

2.1.3 The Verilog-A Language

Verilog-A is a language for describing analog hardware. The language allows circuit

designers to create modules (behavioral blocks in a circuit) and define the behavior of the

modules through specifying the mathematical relationships between the currents and

voltages terminals of the modules. Although the language is capable of describing

thermal and fluidic systems, the information presented in this section will only describe

the use of Verilog-A for electrical systems; in particular how Verilog-A is used to create
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modules in circuit simulators. In order to illustrate how Verilog-A is used in circuit

simulators an example is shown in Figures 2.3 and 2.4. Figure 2.3 shows the circuit

schematic of a Verilog-A module, and Figure 2.4 shows the Verilog-A code for the

module [1].

Figure 2.3 This circuit schematic, which is drawn in Spectre, shows a Verilog-A block
called vaexample.

include "constants.vams"
include "disciplines .vams~

module vaexample(a,b);

electrical a,b;

analog begin

I(a,b)C+V(a,b)*(1/10);

end

endmodule

Figure 2.4. The Verilog-A code describing the Verilog-A module in Figure 2.3.
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Figure 2.4 contains all of the code that describes the Verilog-A module in the

circuit schematic in Figure 2.3. Although this module is very simple, it shows the

fundamental structure of how Verilog-A modules are written. The two lines that begin

with " 'include " specify the Verilog-A libraries that are used in the remainder of the

code. The lines beginning with "module" and "endmodule" specify the beginning and

end of the module. All of the code describing the behavior is between these two lines.

The lines beginning with "analog begin" and "end" specify the analog behavioral section.

All of the equations governing the behavior of the block are specified inside the analog

behavioral section. Usually, the only items specified outside of the analog block, but

within the module are terminals, variables, or parameters. In the line

"I(a,b)<+V(a,b)*(l/l0);", the symbol "<+" means that the two values are fixed to one

another. Verilog-A requires that this symbol is used when setting the value of a current

or a voltage of an electrical terminal or node. For other variables the standard "=" is

used. Most standard mathematical functions such as exponentials, logarithms, and

polynomials are supported by Verilog-A and can be used in the analog behavioral section

[P].
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2.1.4 Previous Work on Compact Modeling in

Verilog-A

In order to understand how Venilog-A has been previously used in compact modeling a

search of previous compact models developed in Verilog-A was conducted. A major

source of Verilog-A models is The Designers Guide Community. This website contains a

number of Verilog-A models available for download in addition to a forum, which is

moderated by Verilog-A experts.

After examining the models available for download, we found that all of these

models were models based directly on the physics of the device. Currently no purely

mathematical reduced order models were found [10].

2.2 Methodology

This section covers the methodology of determining whether Verilog-A is a suitable

language for implementing reduced order models. In order for Verilog-A to be a suitable

language for implementing the reduced order models, two requirements must be satisfied.

First, the features of the Verilog-A language must be capable of handing the reduced

order models. Second, if Verilog-A modules of the reduced order models are

implemented in Spectre [9], it is necessary that the simulation speed of these modules is

sufficiently fast. More specifically, if a circuit is simulated in Spectre and the reduced
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order model for this circuit, which is implemented in Verilog-A, is also simulated in

Spectre, the reduced order model should be substantially faster.

Determining if the features of the language are capable of handing reduced order

models involved examining the documented features of the language and determining the

appropriate functions to describe the reduced order models.

Determining if the Verilog-A modules are sufficiently fast involved comparing

the speed of circuits simulated directly in Spectre compared to the speed of a Verilog-A

module of the same circuit. The main objective was to determine if using Verilog-A

resulted in a slower simulation due to the Verilog-A language.

2.3 Results

Section 2.3.1 covers the results related to the feasibility analysis of using Verilog-A to

implement reduced order models. Section 2.3.2 covers the results related to the speed

tests in Verilog-A.

2.3.1 Verilog-A Feasibility Analysis

As previously stated the reduced order models are of the form,

d X () = p(U ( X M)
di q( ).X )

for the continuous case and
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q ,Utt.ui- I fXIt tn.'1,xtt-I l

for the discrete case. In order to effectively implement reduced order models in Verilog-

A, it is necessary to ensure that Verilog-A contains the appropriate features in order to do

so. The key features necessary in the language are the ability to implement derivatives

and time delays. As previously discussed, polynomials and other mathematical functions

are available in Verilog-A.

It was found that a time delay is possible in Verilog-A using the transitiono

function. An example of the transition() function is shown in Figure 2.5. It also was

found that expressing derivatives is possible thought the ddt() and into functions. An

example is shown in Figure 2.6. Using the functions transisiono, idtO, and ddt(), in

addition to polynomial functions, it is possible to express reduced order models in

Verilog-A [1].

include "constants.vams"
include "disciplines.vams"

module nonlinearveril3(inp,inn,outp,outn);

electrical inp,inn,outp,outn;

analog begin

@(initial step)begin
V(outp,outn)<+1;

end

V(outp,outn)<+ transition(V(outp,outn),[0.000001])+5+V(inpinn);

end

endmodule

Figure 2.5. Example of the transitiono function. In this example, V(outp,outn) is
delayed by 0.000001 s.
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include "constants.vams"
include "disciplines.vams~

module nonlinearveril6(inp,inn,outp,outn);

electrical inp,inn,outp,outn;

analog begin

@(initial step)begin
V(outn,outp)<+ 0;

end

V(outn,outp),+ IdtlV(inn,Inp) - (v(outn,outp)/(0.0000000001+v(outn,outp)*V(outnoutp))));

end

endmodule

Figure 2.6. An example of the idto function used to integrate a function of the voltages
across the terminals in the module.

2.3.2 Verilog-A Speed Analysis

The speed analysis of Verilog-A was conducted to determine if the Verilog-A language

substantially slows down transient simulations. From observing simulations in Spectre,

we believe that Verilog-A in Spectre is compiled. This means that before a transient

analysis begins, the symbolic derivatives (for the Jacobian) for each function in the

Verilog-A module are calculated. Consequently, if Verilog-A runs more slowly it is not a

result of being an interpreted language. In order to determine if Verilog-A does slow
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down simulations, linear and nonlinear circuits were both simulated in Spectre. For both

the linear and non-linear circuit, the same circuit was simulated using Spectre

components and also as a Verilog-A module.

For the linear circuit, transient analyses were run in Spectre with a 1 GHz input

voltage of 2 V, and transient times of 100 us, 250 us, and 500 us. For both the Verilog-A

version and the version directly implemented in Spectre, the number of timesteps in the

transient simulation were almost identical (within 1% of each other), so any overall

difference in simulation time is not due to more timesteps. Table 2.1 shows the results of

the linear circuit.

Transient Analysis Spectre Circuit Verilog-A Circuit
Time(us) Simulation Time (s) Simulation Time (s)

100 67.35 83.07

250 168.03 200.29

500 336.36 398.63

Table 2.1 Results of linear circuit simulations.

For the nonlinear circuit, transient analyses were also run in Spectre with a 1 GHz

input voltage of 2 V, and transient times of 100 us, 250 us, and 500 us. For both the

Verilog-A version and the version directly implemented in Spectre, the number of

timesteps in the transient simulation were almost identical (within 1% of each other), so
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any overall difference in simulation time is not due to more timesteps. Table 2.2 shows

the results of the nonlinear circuit.

Transient Analysis Time Spectre Circuit Verilog-A Circuit
(us) Simulation Time (s) Simulation Time (s)

100 59.70 67.61

250 149.60 170.25

500 299.20 399.91

Table 2.2 Results of nonlinear circuit simulations.

Based on the results of the simulations, the Verilog-A implementation in Spectre

runs approximately 1.2x slower in the linear case and 1.3x slower in the non-linear case.

For the linear and nonlinear circuit, the number of timesteps is almost identical for the

Verilog-A implementation and the implementation using Spectre elements. Because of

this, we conclude that the time difference is not due to more timesteps, but the Verilog-A

simulation taking more time at each timestep. Three reasons can cause this difference:

more time spent calculating the Jacobian, more time evaluating the function in Newton's

method, or taking more Newton iterations. While it is possible that more Newton

iterations has an effect, since the nonlinear Verilog-A implementation is slightly slower

than the linear Verilog-A implementation, it is unlikely that the number of iterations is

the primary differentiating factor. Therefore, based on these tests we conclude that the
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primary reason that Verilog-A is slower in Spectre is because the evaluation of the

Jacobian and the functions take longer.
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Chapter 3

Implementation of a Novel

MOSFET Model in Verilog-A

This chapter presents the background material, methodology, and results for the

contributions related to the implementation of a novel MOSFET model in Verilog-A.

Section 3.1 covers the background material on the novel MOSFET model, which is

known as the Virtual Source model. Additionally, Section 3.1 covers appropriate

background material on charge partitioning models in transistor devices and some

background work on other Verilog-A MOSFET models. Section 3.2 presents the

methodology of the implementation of the model, and Section 3.3 presents the results of

circuit simulations using the Verilog-A implementation of the Virtual Source model.

3.1 Background

This section covers background material and previous work: 3.1.1 covers background

material on the Virtual Source model, 3.1.2 covers background material on charge
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distribution models, and 3.1.3 covers previous work on MOSFET models and the

implementation of MOSFET models in Verilog-A.

3.1.1 The Virtual Source Model

The Virtual Source model (VS model) is a MOSFET model that was first published in

2009. In the first publication of the model, the model only contained static behavior.

This sub-section will present an overview of the static VS model [2].

The equations that govern the static behavior of the VS model calculate the drain

to source current of the MOSFET for a specific set of terminal voltages and model

parameters. The core idea behind the VS model is to determine the drain to source

current by calculating the charge density and electron velocity at the virtual source of the

device. As shown in Figure 3.1, the virtual source of the device is the maximum value of

the conduction band in the device.

In order to determine normalized drain to source current of the transistor, the

model calculates the product of three terms: the charge density at the virtual source, the

charge velocity of the virtual source, and a non-saturation factor:

In the above equation W is the width of the device and a parameter of the model; v is

the virtual source velocity, which is also a device parameter. The expression Qr, is the
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charge density at the virtual source, and F, is a factor that accounts for non-saturation

behavior. These two expressions are given by the following equations:

- 1~j>. - (1 *,. - (~(~DIj

1K. - '

(10)

In the above expressions, Cg, n, #,, are model parameters corresponding to the gate

capacitance, the subthreshold swing, and thermal voltage. The parameters c and p are

fitting parameters. The additional terms in (9) and (10) are given by:

F -
I (11)

VD S . I -
- F ) + 1,2

13
/I

(1 4

I *1

hi - 1141

(15)

(16)
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The terms L, and t are model parameters corresponding to the effective length and the

mobility of the transistor, respectively. The terms Rs and Rd are the drain and source

resistances of the device. The term 8 is a model parameter that accounts for the drain

induced barrier lowering, and VTO [2].

Vg
oV Vd

Q1(X0)

Vxo

L
X0

X

Figure 3.1 This figure shows the schematic of an NMOS transistor and the band diagram
corresponding to this transistor. The virtual source, Vx., is at the maximum of the
conduction band.
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3.1.2 Charge Partition Models for Transistors

One contribution presented later in this chapter is the addition of dynamic behavior to the

Verilog-A implementation of the VS model. This sub-section provides the necessary

background material to understand this contribution.

As described in 3.1.1, the VS model in its original form only contained equations

to describe the static behavior of the model. In order to account for the dynamic behavior

it is necessary to account for the intrinsic charges associated with the drain, gate, source,

and body of the transistor. The basic charge model used to implement dynamic behavior

in the VS model is based on the charge description in [12]. The following equations

show the charges associated with each terminal:

6 + 12V + 8q2 + 4q3
Qs i 15(1 + 1)2

4 + 8q + 121,2 + 6r3
QD -inv- 15(1 +1)2

QG = -(QB + QD + QS)

Vos

V1 = Vos_ VI

0, Vos > VD's

a1+ Y V GS-VT
2 = 1 ,

a -V1 2 + + q2
QH -W LCoxyv "0 + VsH - Qinv 3 - 1
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These equations are the basis for the classical intrinsic charge models. QD, QS, QG, and

QB correspond to the intrinsic charge associated with the drain, source, gate and body of

the transistor. The term y is the body factor, which is a model parameter. W, L and Cox

are also model parameters corresponding to the width, length, and gate capacitance of the

device. The quantity Qinv is the same as Qref in subsection 3.1.1 [11].

3.1.3 Previous Work on MOSFET Compact

Modeling in Verilog-A

This sub-section briefly reviews previous work conducted on MOSFET compact

modeling in Verilog-A. A major resource for Verilog-A developers is The Designer's

Guide Community. A number of previously developed Verilog-A models are available

for download, and a forum exists where a number of experts in Verilog-A answer

questions. In order to review previous work on MOSFET modeling in Verilog-A, the

models available for download were examined. Additionally standard industrial models

such as BSIM and PSP were examined [6] [7] [10].

The main transistor model found on The Designer's Guide Community Website

was the MOS 11 [10]. This model contains more than double the number of parameters

in the VS model. BSIM and PSP, which are currently industrial standards, contain over

100 parameters, and many of which are fitting parameters [6][7]. Because the VS model
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only contains around 20 parameters, and almost all of them are physical, the Verilog-A

implementation of the VS model can be an asset to circuit and device designers.

3.2 Methodology

This section covers the methodology of the Verilog-A implementation of the VS model:

3.2.1 covers the implementation of the static behavior and 3.2.2 covers the

implementation of the dynamic behavior. The full Verilog-A code for the VS model can

be found in Appendix A.

3.2.1 Static Behavior Implementation

In this section the static model implementation in Verilog-A is described. For a

background on the Verilog-A language please see section 2.1.

In order to implement the DC behavior of the model, a Verilog-A module was

created with the terminals corresponding to the drain, gate, source, and body of the

transistor. Figure 3.2 shows the beginning of the Verilog-A module, which is named

daamosfet. The terminals are named Vy, Vx, Vb, and Vg, which correspond to the

source, drain, body, and gate of the transistor. All of the lines that begin with "parameter

real" specify the parameters of the model such as transistor length and width. These

parameters are accessible from outside the code, so the values can be modified directly
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from the circuit schematic. The four final lines in the text file are the list of all of the

internal variables used in the model; none of these variables are externally modifiable.

module daamostet(Vy,Vx,Vb,Vg);

electrical Vy, Vx, Vb, Vg, a;

parameter real tipe = 1;
parameter real W = le-4;
parameter real Lgdr m 80e-7;
parameter real XL-0;//-30e-7;
parameter real dLg 10.5e-7;
parameter real cg 2.2e-6;
parameter real etov 1.4e-7;
parameter real delta 0.051;
parameter real S = 0.09;
parameter real RsO ul20*(Ie-4);
parameter real Cif a (1e-12);
parameter real Cof = 2e-13;
parameter real vxo = 0.765e7;
parameter real rv = 1.8;
parameter real zeta= 1.8;
parameter real mu = 354;
parameter real beta = 1.7;
parameter real phit w 0.0256;
parameter real phib = 0.9;
parameter real gamma =0.45;
parameter real Vto a 0.486;
parameter real alpha = 3.5;
parameter real mc-100;

Figure 3.2 The beginning of the code for the Verilog-A module of the VS model. Lines
beginning with "parameter" designate model parameters that are modifiable from outside
the model code.
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In addition to specifying the terminals, model parameters and internal variables, it

is necessary to specify all of the equations that govern the model. All of equations are in

the analog behavior section of the Verilog-A module. Figure 3.3 shows a section of the

analog behavior [1].

//The calculation of dc current:

Let f =Lgdr+XL-dLg;
Rs=RSO/W;
Rd Rs;
n =S/(2.3*phit);
Qref=Cg*n*phit;
me-(9.le-31)'mc;

ge=1.602e-19;

dvg(dir*tipe)*Rs*I(vy,Vx);
dvd-(dir*tipe)*(Rs+Rd)*I(vy,vx);

vtobuVto+gamma*(sqrt(phib-(vbb-dvg) )-sqrt(phib));
vtp-vtob-(Vd-dvd)*delta-alpha/2*phit;
evg-exp((Vqg-dvg-vtp)/(alpha*phit));
rFF1/(1+evg);

eta=( (Vgg-dvg)-(vtob-(vd-dvd)*delta-FF*alpha*phit ))/(n*phit);
Qinv = Qref*ln(1+exp(eta));
Vdsatsavxo*(Leff )/mu;
VdsatVdsats*(1-FF)+phit*FF;
Fsat=((Vd-dvd)/Vdsat)/(pow((1+pow(((Vd-dvd)/Vdsat),beta)),(1/beta)));

FFv- I/(1+ exp( (vgg-dvg-(vtob-(vd-dvd)*delta+phit-poyw(zeta,2)/2) )/(zeta*ph it)));
VxO(FFV/rv+( 1-FFv) )*Vxo;

vuvxO*Fsat;
eVtpmexp(-Vtp/(alpha*phit));
Cov a (0.345e-12/etov)*dLg/2+Cof;

Figure 3.3. The equations shown in the text file are most of the equations that govern the
static behavior of the VS model.

40



3.2.2 Dynamic Behavior Implementation

Unlike the implementation of the static behavior, the implementation of the dynamic

behavior of the VS model was less straightforward because there are multiple possible

methods of implementation.

The reason there are multiple methods to implement the dynamic behavior is that

it is possible to use either the capacitances or charges. If capacitances are used, the

voltage dependent capacitances will need to be calculated for each pair of terminals, so

the entire capacitive matrix will need to be calculated. By using the capacitances, the

dynamic behavior is effectively modeled by voltage dependent capacitors connected

between each terminal. If charges are used, the rate of change of these charges with

respect to time will result in intrinsic currents going into each terminal, so in order to

calculate these currents it is necessary to differentiate the intrinsic charges with respect to

time. Using either capacitances or charges results in the same overall effect; just the

method of modeling will be different. It was chosen to use charges, because of the

simplicity of implementation and the ability to easily change charge models.

Rather than calculating the full capacitive matrix of all the capacitances between

each terminal in the transistor, charges were used to implement the dynamic behavior. In

order to use charges to model the dynamic behavior, first the charge equations were

integrated into the Verilog-A module. Figure 3.4 shows an image of the charge equations

in the Verilog-A code. In addition to integrating the charge models, it is also necessary to

differentiate the charges in order to determine the intrinsic currents. The Verilog-A time

derivative function ddtO was used, as shown in Figure 3.4. An internal node was used
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and the current between each terminal and the internal node is set equal to the derivative

of the intrinsic charge corresponding to that terminal. Since all of the charges add to

zero, conservation of charge is not violated. A circuit representation of how to charges

were integrated is shown in Figure 3.11. The current resulting from the time derivative

of each intrinsic charge is represented by a current source.

The reason the ddt() function was used instead of differentiating the analytical

charge equations is that the implementation is simpler and allows for more flexibility in

the charge models. If analytical differentiation is used, and we would like to modify the

charge models, then it will be necessary to determine all of the derivatives again. Using

the ddto function, the charge equations can be easily modified. Because some of the

expressions in the charge equations contain discontinuities, safe functions were used to

make certain functions smoother [13].

In addition to using the classical charge models for the intrinsic charges, which

were described in Section 3.1.2, charge models which represent ballistic and velocity

saturation were also included in the model [12].

42



Qxinv-tipe*Left*Qinv*((1+dir)*qs+(1-dir)*qd)/2;
Oyinvetipe*Leff*Qinv*((1-dir)*qs+(1+dir)*qd)/2;

Qxov=Cov*(V(Vg)-Vxint);

QyOv-Cov*(V(Vg)-Vyint);

Qx=-W*(Qxinv+Qxov+Qxit);
Qy=-W*(Qyinv+Qyov*Qyit);

psis-phib+alpha*phit+phit*1n(In(1+exp(eta)) );
Ob--tipe*W*Leff*(Cg*gamma*sgrt(psis-(Vbb-dvg))+(aa-1)/aa*Qinvg*(1-qi));

Qg-(QXO+y+Qb);

I(Vy,Vx)z+dir*tipe)*(W*Qinv*v);
I(Vx,Vb)+capj*(0.5)*W*ddt(V(Vx)-V(Vb));
I(Vy,Vb).+capj*)0.5)*W-ddt(V(Vy)-V(vb));

I(Vy,a)C+ ddt(Oy);
i(Vx,a)C+ ddt(ox);

I(Vg,a),,+ ddt(og);
I(Vb,a)C+ ddt(Qb);

iy=1(Vy, a);
ixm1(Vx,a);
ig=1(vg, a);
ib-1(Vb, a);

end

endmodule

Figure 3.4. This section of the Verilog-A module shows the charge equations and the
differentiation of the intrinsic charges with respect to time.
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Figure 3.5. The circuit diagram shows the entire VS model. The four current sources are
equal to the derivatives of the intrinsic terminal charges.
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3.3 Results

In order to test and validate the model, ring oscillators were designed with the Verilog-A

implementation of the VS model. Our collaborators fit the VS model to match a model

file of BSIM [6]. Currently our collaborators use a method that combines mathematical

optimization and observation in order to fit the VS model to experimental data or data

from another MOSFET compact model. Once the appropriate parameters for the VS

model were obtained in order to match BSIM, ring oscillators were designed with the VS

model and the BSIM model. Figures 3.6 and 3.7 show the schematics of the ring

oscillators in Spectre. Figures 3.8 and 3.9 show the waveforms of the two ring

oscillators.

e X e WtosoO Schematic Editisgas tamivl ognvefer2 schematic

Tools Desi R ulw Edi lA Or chuat Optinsi

Figure 3.6. Ring oscillator schematic using the VS model in Spectre.
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Figure 3.7. Ring oscillator schematic using BSIM in Spectre.

Figure 3.8. Ring oscillator waveform using BSIM in Spectre.
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Figure 3.9. Ring oscillator waveform using BSIM in Spectre.

Although the objective of simulating ring oscillators with BSIM and the VS

model was to test and validate the VS model, this approach has limitations. BSIM

contains a number of parameters that describe the capacitances in the device, and these

capacitance parameters in BSIM do not directly correspond to the parameters that govern

the capacitances in the VS model. For this reason, in order for the periods of the

oscillations to in the BSIM and VS ring oscillators to come very close to one another, it

was necessary to tweak the capacitances in the VS model. The capacitances that were

tweaked were the inner and outer fringing capacitances. Given this limitation, visual
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analysis of Figures 3.7 and 3.8 show a good match between the models. In order to

further test the VS model, it was fitted to experimental data.

The VS model was fitted to experimental data by our collaborators, and using the

fitted parameters ring oscillators of different fan-out values were designed and simulated

in Spectre. Because the VS model contains different charge models for the intrinsic

charges depending on whether classical, ballistic, or velocity saturation is assumed, the

ring oscillators have different periods depending on which charge model is used. Table

3.1 shows a comparison between the experimental data. Overall, this data shows a

reasonably good match between the VS model and experimental data. In this case, again,

the capacitances needed to be tweaked in order to obtain a reasonably good match [12].

Further work is required to fully automate the fitting of the capacitance in the VS model

48



FO Measured QB Vsat
1 4.90 4.79 4.93
3 9.99 9.98 10.26
5 15.38 15.32 15.63
7 20.78 20.87 21.2

Table 3.1. Comparison between the ring oscillator periods for the VS model using the
ballistic (QB) charge model, VS model using velocity saturation charge model, and
measured data.
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Chapter 4

Conclusion

This thesis presents two contributions related to compact modeling in Verilog-A. First,

feasibility and performance analyses were conducted to determine if Verilog-A is a

suitable language for implementing reduced order models. Second, a novel MOSFET

model was implemented in Verilog-A.

It was found that Verilog-A is a suitable language for implementing reduced order

models in the Spectre simulator. Not only is the Verilog-A language capable of handing

the models, but also the Verilog-A simulation speed in Spectre is sufficiently fast.

The Virtual Source model was implemented in Verilog-A and tested in Spectre.

Ring oscillators were simulated and good fitting was found between the VS model and

experimental data.
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Appendix A

The Verilog-A Implementation of
the Virtual Source Model

// VerilogA for daamosfet, daamosfet, veriloga

'include "constants.vams"

'include "disciplines.vams"

module daa-mosfet(Vy,Vx,Vb,Vg);

electrical Vy, Vx, Vb, Vg, a;

parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter

real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real

tipe = 1;
W = le-4;
Lgdr = 80e-7;
XL=O;//-30e-7;
dLg = 10.5e-7;
Cg = 2.2e-6;
etov = 1.4e-7;
delta = 0.051;
S = 0.09;
Rs0 =120*(le-4);
Cif = (le-12);
Cof = 2e-13;
vxo = 0.765e7;
rv = 1.8;
zeta= 1.8;
mu = 354;
beta = 1.7;
phit = 0.0256;
phib = 0.9;
gamma =0.45;
VtO = 0.486;
alpha = 3.5;
mc=100;
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real Rd, Vgg, Vbb, Vd, VtOb, n, Qref, vv, FF, Qinv, Vdsats, Vdsat,
Fsat, dvg, dvd,
Vtp,eVg,eta,v,eVtp,xden,qsqdQxinv,Qyinv,dir,FFint,Qxif,Qyif,Qxov,Qyo
v,Cov,psis,FFv,vxO,sign,Rs,Leff,Qg, Qx, Qy,
Qb,VtOx,VtOy,FFx,FFy,Vgt,aa,Vdsatq,Fsatq,qi,Qinvq,Vxint,Vyint,meqeqs,
qdc,kq,qsb,qdb,kFsatq,etai,qdtemp,QinvidQinv,igib,ix,iy,capj,Ec,vdssm
oothcapA,capB,Ap,Bp,qsvO,qdvO,qsv,qdv,kvsatq;

analog function real smoothabs;
input x, smoothing;
real x,smoothing;
begin

smoothabs=sqrt(x*x+smoothing);
end

endfunction

analog function real smoothmax;
input c,b,smoothing;
real cb,smoothing;
begin

smoothmax=0.5*(c+b+smoothabs(c-b,smoothing));
end

endfunction

analog function real smoothsign;
input x, smoothing;
real xsmoothing;
begin

smoothsign=x/sqrt(x*x+smoothing);
end

endfunction

analog function real safesqrt;
input x, smoothing;
real x,smoothing;
begin

safesqrt=sqrt(O.5*(smoothabs(x,smoothing)+x)+1e-16);
end

endfunction

analog function real safeexp;
input x, maxslope;
real xmaxslopebreakpoint;
begin

breakpoint=ln(maxslope);
if(x<=breakpoint)

safeexp=exp(x);
else safeexp = maxslope+maxslope*(x-breakpoint);

end
endfunction
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analog function real safeln;
input x,smoothing;
real x,smoothing;
begin

end
endfunction

safeln=ln(O.5*(smoothabs(x,smoothing)+x)+1e-16);

analog begin

if (tipe*(V(Vg)-V(Vx))>tipe*(V(Vg)-V(Vy))) begin
Vd=abs(V(Vy)-V(Vx));

end
else

Vd=abs(V(Vx)-V(Vy));

if (tipe*(V(Vg)-V(Vx))>tipe*(V(Vg)-V(Vy))) begin
Vgg=tipe*(V(Vg)-V(Vx));

end
else

Vgg=tipe*(V(Vg)-V(Vy));

if (tipe*(V(Vg)-V(Vx))>tipe*
dir=1;

end
else

dir=-1;

(V(Vg)-V(Vy))) begin

if (tipe*(V(Vb)-V(Vx))>tipe*(V(Vb)-V(Vy))) begin
Vbb=tipe*(V(Vb)-V(Vx));

end
else

Vbb=tipe*(V(Vb)-V(Vy));

if (tipe==1) begin
capj=0.158*(le-ll);

end
else

capj=0.1*(le-ll);
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//The calculation of dc current:

Leff=Lgdr+XL-dLg;
Rs=RsO/W;
Rd = Rs;

n = S/(2.3*phit);
Qref=Cg*n*phit;
me=(9.le-31)*mc;
qe=1.602e-19;
dvg=(dir*tipe)*Rs*I(Vy,Vx);
dvd=(dir*tipe)*(Rs+Rd)*I(Vy,Vx);
VtOb=VtO+gamma*(sqrt(phib-(Vbb-dvg))-sqrt(phib));
Vtp=VtOb-(Vd-dvd)*delta-alpha/2*phit;
eVg=exp((Vgg-dvg-Vtp)/(alpha*phit));
FF=1/(1+eVg);
eta=((Vgg-dvg)-(Vtob-(Vd-dvd)*delta-FF*alpha*phit))/(n*phit);
Qinv = Qref*ln(1+exp(eta));
Vdsats=vxo*(Leff)/mu;

Vdsat=Vdsats*(1-FF)+phit*FF;
Fsat=((Vd-dvd)/Vdsat)/(pow((1+pow(((Vd-

dvd)/Vdsat),beta)),(1/beta)));

FFv=l/(1+exp((Vgg-dvg-(VtOb-(Vd-
dvd)*delta+phit*pow(zeta,2)/2))/(zeta*phit)));

vxO=(FFv/rv+(1-FFv))*vxo;

v=vxO*Fsat;

eVtp=exp(-Vtp/(alpha*phit));
Cov = (0.345e-12/etov)*dLg/2+Cof;

//The calculation of charges:

aa=l+gamma/(2*sqrt(phib-Vbb+dvg));
qi=(2/3)*(1+x+pow(x,2))/(1+x);
Qinvq=Qinv*qi;
Vxint=V(Vx)+(tipe*dir)*dvg;

Vyint=V(Vy)-(tipe*dir)*dvg;

Vdsatq=sqrt(pow(3*phit,2)+pow((Vgt/aa),2));
Fsatq=((Vd-dvd)/Vdsatq)/pow((1+pow(((Vd-

dvd)/Vdsatq),beta)),(1/beta));

VtOx=VtO+gamma*(sqrt(phib-(tipe*(V(Vb)-Vxint)))-sqrt(phib));
VtOy=VtO+gamma*(sqrt(phib-(tipe*(V(Vb)-Vyint)))-sqrt(phib));
FFx=1/(l+exp((tipe*(V(Vg)-Vxint)-(VtOx-(Vd-dvd)*delta-

alpha/2*phit))/(alpha*phit)));
FFy=l/(1+exp((tipe*(V(Vg)-Vyint)-(VtOy-(Vd-dvd)*delta-

alpha/2*phit))/(alpha*phit)));

Qxif=Cif*FFx*(V(Vg)-Vxint);
Qyif=Cif*FFy*(V(Vg)-Vyint);
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x=(1-Fsatq);

den=15*pow((1+x),2);
qsc=(6+12*x+8*pow(x,2)+4*pow(x,3))/den;
qdc=(4+8*x+12*pow(x,2)+6*pow(x,3))/den;

//advanced charge models start here
//ballistic transport

kq=sqrt(2*(qe/me)*(Vd-dvd))/vxo*le2;
qsb=((1/kq+1/kq/kq)*ln(1+kq)-1/kq);
qdb=(1/kq/kq*(kq-ln(1+kq)));

if (mc>99) begin
kFsatq=O;

end
else

kFsatq=1;

if (kFsatq==1) begin

kvsatq=O;
end
else

kvsatq=1;

Vgt=Qinv/Cg;

//velcocity saturation

Ec=l*vxo/mu;
vdssmooth=Vgt/aa*2/(1+safesqrt(smoothmax(1,1+2*Vgt/aa/Ec/Leff,smo

othing),smoothing))*Fsatq;
capA=pow(aa,2)*pow(vdssmooth,2)/(12*Vgt-6*aa*vdssmooth);
capB=(5*Vgt-2*aa*vdssmooth)/(10*Vgt-5*aa*vdssmooth);
Ap=capA*(1+vdssmooth/(Leff)/Ec);
Bp=capB*((pow(vdssmooth,2)*aa)/(2*Ec*Leff*(5*Vgt-

2*vdssmooth*aa))+1);
qsvO=Vgt/2-vdssmooth/6+Ap*(1-Bp);
qdvO=Vgt/2-vdssmooth/3+Ap*Bp;
qsv=qsvO/Vgt;
qdv=qdvO/Vgt;

//kFsatq=O for classical D/D and =1 for ballistic

qs=((1-kvsatq)*qsc+kvsatq*qsv)*(1-kFsatq*Fsatq)+qsb*kFsatq*Fsatq;
qdtemp=((1-kvsatq)*qdc+kvsatq*qdv)*(1-

kFsatq*Fsatq)+qdb*kFsatq*Fsatq;

I/ DIBL effect on drain charge calculation

etai=((Vgg-dvg)-(VtOb-(Vd-dvd)*0-FF*alpha*phit))/(n*phit);
Qinvi=Qref*ln(1+exp(etai));
dQinv=Qinv-Qinvi;
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qd=(qdtemp-(l-FF)*qi*dQinv/Qinv);

Qxinv=tipe*Leff*Qinv*((I+dir)*qs+(l-dir)*qd)/2;
Qyinv=tipe*Leff*Qinv*((l-dir)*qs+(l+dir)*qd)/2;

Qxov=Cov*(V(Vg)-Vxint);
Qyov=Cov*(V(Vg)-Vyint);

Qx=-W*(Qxinv+Qxov+Qxif);
Qy=-W*(Qyinv+Qyov+Qyif);

psis=phib+alpha*phit+phit*ln(ln(l+exp(eta)));
Qb=-tipe*W*Leff*(Cg*gamma*sqrt(psis-(Vbb-dvg))+(aa-

1)/aa*Qinvq*(l-qi));

Qg=-(Qx+Qy+Qb);

I(VyVx)<+(dir*tipe)*(W*Qinv*v);
I(VxVb)<+capj*(0.5)*W*ddt(V(Vx)-V(Vb));
I(VyVb)<+capj*(0.5)*W*ddt(V(Vy)-V(Vb));

I(Vya)<+ ddt(Qy);
I(Vxa)<+ ddt(Qx);
I(Vga)<+ ddt(Qg);
I(Vba)<+ ddt(Qb);
iy=I(Vya);
ix=I(Vxa);
ig=I(Vga);
ib=I(Vba);

end

endmodule
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