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Abstract

Virtualized datacenter administrators would like to consolidate virtual machines (VMs) onto as
few physical hosts as possible in order to decrease costs, but must leave enough physical resources
for each VM to meet application service level objectives (SLOs). The threshold between good and
bad performance in terms of resource settings, however, is hard to determine and rarely static
due to changing workloads and resource usage. Thus, in order to avoid SLO violations, system
administrators must err on the side of caution by running fewer VMs per host than necessary or
setting reservations, which prevents resources from being shared. To ameliorate this situation, we
are working to design and implement a system that automatically monitors VM-level metrics to
predict impending application SLO violations, and takes appropriate action to prevent the SLO
violation from occurring. So far we have implemented the performance prediction, which is detailed
in this document, while the preventative actions are left as future work.

We created a three-stage pipeline in order to achieve scalable performance prediction. The three
stages are prediction, which predicts future VM ESX performance counter values based on current
time-series data; aggregation, which aggregates the predicted VM metrics into a single set of global
metrics; and finally classification, which for each VM classifies its performance as good or bad
based on the predicted VM counters and the predicted global state. Prediction of each counter is
performed by a least-squares linear fit, aggregation is performed simply by summing each counter
across all VMs, and classification is performed using a support vector machine (SVM) for each
application. In addition, we created an experimental system running a MongoDB instance in order
to test and evaluate our pipeline implementation. Our results on this experimental system are
promising, but further research will be necessary before applying these techniques to a production
system.
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Chapter 1

Introduction

Virtualization has significantly changed datacenter management and resource usage. Virtualization

allows a single physical machine to run multiple independent virtual machines (VMs), each of which

is nearly indistinguishable from a regular physical machine to the user of the VM. Before the advent

of virtualization, system administrators had to purchase and manage a separate server whenever

an application needed to be isolated, either for performance, business, or legal reasons (e.g., a

company's website should not go down when the mail server requires a system restart, multiple

tenants in a datacenter cannot share a machine). This meant resource utilization was very low,

as most applications only use a tiny portion of the resources available on a physical system. With

virtualization, system administrators can consolidate many virtual machines onto a smaller number

of physical hosts, allowing for better resource utilization and subsequent energy savings, as well as

ease in datacenter management.

System administrators would like to consolidate VMs onto as few physical hosts as possible

in order to decrease costs associated with energy usage, cooling, etc. It is common practice to

"overcommit" resources, meaning the total virtual resources of the VMs exceeds the total physical

resources of the host (for example, creating two VMs with 12 GB of RAM each on a host with only

16 GB of RAM). This is possible because although the VMs are configured with more resources

than are available, they will rarely use all available resources, allowing the same resources to be

shared between VMs. Of course, this strategy can only be taken so far - at some point, there

are not enough resources and performance suffers. Due to changing workloads and resource usage,

the threshold between good and bad performance is rarely static, so system administrators must

err on the side of caution by running fewer VMs per host than necessary or setting reservations,
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which prevents resources from being shared. These precautions provide a buffer in case of a sudden

resource usage increase but decrease consolidation, making the datacenter less efficient.

Further complicating matters, although VM users must specify resource settings (e.g., CPU and

memory reservations), users ultimately care about application performance, not VM performance.

Many users must meet service level objectives (SLOs), which stipulate that a certain level of

application performance be maintained at all times (see Section 3.8 for an example of an SLO

definition). However, the relationship between resource settings and performance is often non-

intuitive, forcing users to make conservative resource settings that cost more and waste energy

in order to account for unexpected resource usage. Solutions exist for VMs experiencing poor

performance due to lack of resources: resource settings can be changed dynamically, or in the case

where the host's resources are too overcommitted, running VMs can be transferred to a different host

with more resources available using vMotion. vSphere's Distributed Resource Scheduler (DRS) [16]

automatically uses vMotion to consolidate VMs while honoring resource settings; however, it cannot

take application performance into account, and can only react to changes in resource usage, rather

than take proactive measures.

1.1 Goal

We aim to design and implement a system that automatically monitors VM-level metrics to predict

impending application SLO violations, and takes appropriate action to prevent the SLO violation

from occurring. So far we have implemented the performance prediction, which is detailed in this

document, while the preventative actions are left as future work. We have limited ourselves to

VM metrics, rather than application metrics as well, because application metrics are not always

available and VM metrics allow us to consider all VMs on the system, whereas integrating metrics

from different applications is technically difficult and may be logistically infeasible or insecure. SLO

violations are defined per application.

1.2 Approach

We created a three-stage pipeline in order to achieve scalable performance prediction. The three

stages are prediction, which predicts future VM ESX performance counter values based on current

time-series data; aggregation, which aggregates the predicted VM metrics into a single set of global

metrics; and finally classification, which for each VM classifies its performance as good or bad
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based on the predicted VM counters and the predicted global state. Prediction of each counter is

performed by a least-squares linear fit, aggregation is performed simply by summing each counter

across all VMs, and classification is performed using a support vector machine (SVM) for each

application. See Chapter 2 for a detailed explanation of our approach.

1.3 History

Preliminary work was done by Lawrence Chan in Fall 2010 - Spring 2011 for his M.Eng. thesis [10].

Chan showed that application performance could be discovered through ESX counters. The pipeline

was developed along with a proof-of-concept implementation during summer 2011 by Gartheeban

Ganeshapillai and Skye Wanderman-Milne [13]. This document covers work done since then that

refines the pipeline and runs it on more complex application workloads. Table 1.1 summarizes the

major parameters of these efforts.

Table 1.1: Historical experiment space. A summary of the major
experimental test systems used in previous work and this work.

parameters of the

Applications Performance metric Traffic

Fall 2010/ Apache web server Percentage to sawtooth
Spring 2011 (homebrew app) breakdown

Summer 2011 Apache web server Clustered latency into sawtooth,
(Wordpress) "breakdown" and Stack Overflow

"non-breakdown"

regions

Fall 2011/ MongoDB server, Hard-coded SLO vmware.com
Spring 2012 hogger VM definition

1.4 Roadmap

Chapter 2 goes over the high-level machine learning pipeline in more detail. Chapter 3 presents

the data we trained and tested the pipeline with, including how we collected it. Chapter 4 goes

over the pipeline implementation, specific techniques we used for conditioning the data, the values

chosen for various parameters, and subsequent results. Chapter 5 discusses future work to be done,

and Chapter 6 covers similar work done by others. We conclude in Chapter 7.
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Chapter 2

Machine Learning Pipeline Overview

time

VM 1
good

jTTI~VM 2
bad!

FTT1~VM n
good

Figure 2-1: Machine learning pipeline summary showing the three stages: counter prediction (upper
left), counter aggregation (upper right), and performance classification (lower right). See Figure 2-2
for details on each stage.

Our system is designed to perform application performance prediction in a scalable fashion.

The system is organized in a three-stage pipeline, as shown in Figure 2-1. Each host in the

system runs an instance of the pipeline. The three stages are prediction, which predicts future VM

counter values based on current time-series data; aggregation, which aggregates the predicted VM
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(a) The performance counters of a given VM are collected (b) Many VMs may be running on a single host, each with
over time. its own counters.

(c) We predict future counter values independently for
each VM and counter based on past values.

(e) We train a performance classifier for each VM that
takes that VM's counters and the global counters as input.
The classifier is trained using example datapoints labeled
with the correct answer.

(d) We aggregate the predicted counters into a global met-
ric by summing each counter.

I " EVM 1
VM 2
bad[

E~1-.-~VM n
good

(f) Using the classifiers and incoming predicted counters,
classify whether each VM's performance will be good or
bad.

Figure 2-2: Overview of machine learning pipeline
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metrics into a single set of global metrics; and finally classification, which for each VM classifies

its performance as an SLO violation or non-violation based on the predicted VM counters and the

predicted global state. These stages are described in more detail below as well as in Figure 2-2,

and the inputs and outputs of each stage are summarized in Table 2.1. Different techniques and

parameters can be used for each of these stages without affecting the other stages. This modular

approach allows improvements to be made to each stage with minimal effort and few unintended

consequences for the rest of the system. Furthermore, each stage can be treated as an independent

problem using labeled training data, although we only take this approach with the classification

stage (we found simpler methods to be sufficient for the first two stages given our data).

2.1 Prediction

For each VM running on the host, we collect ESX performance counters periodically at a fixed

interval (Figures 2-2a and 2-2b). These performance counters represent different system metrics

such as CPU, memory, and network usage. Given historical lag k and predictive lag h, each time

new counter readings are collected, the latest k readings are used to predict the values of each

counter h timesteps in the future (Figure 2-2c). Each counter is predicted independently, and

although for a given counter we only use that counter's values for prediction, a different technique

could use past values of many counters to predict a single counter. Since prediction is also done

independently for each VM, we avoid having to consider which other VMs are running on the

host, if VMs are being added or removed from the host, etc. (of course, the other VMs running

on the host may have an effect on the given VM's performance counters, but we assume that this

interaction does not greatly inhibit prediction accuracy). The predicted counter values represent

the predicted future system state of the VM.

We perform prediction via least-squares linear regression, fitting a line through the input k

datapoints and returning the future point h steps ahead on the line. See Table 2.2 for a summary

of all prediction parameters.
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2.2 Aggregation

Although we predict each VM's system state independently, we do not assume that other VMs

running on the host have no effect on application performance. Thus, in addition to each VM's

own state, we must use some information about the rest of the host machine as input to the

classifiers in order to make an accurate performance prediction.

One solution would be to use counters from every VM running on the host as input to the

classification stage. However, this would mean that new performance classifiers would have to be

trained every time a VM was added to or removed from the host, since the input to the classifier

would change with the VMs currently running. Therefore this is not an easily scalable solution.

Another solution is to use the host-level performance counters in addition to the specific VM's

counters as input to each VM's classifier. This solves the problem of dynamic VM configurations

- the state of all VMs running on the host is "summarized" by the host counters, allowing us to

use a fixed-size input to the classifiers. In order to provide host counters as input to the classifiers,

though, we must predict the host counters in addition to each VM's counters during the prediction

stage. Although we do not train models for counter prediction, the system is designed to allow for

this possibility, in which case a new host counter model would be needed when the VMs on the

host changed, introducing a scalability issue similar to the one mentioned above. Additionally, if

many VMs with unique usage patterns are running on the same host, the host counters may be

very hard to predict.

The solution we use is to aggregate the predicted VM counters into a single set of counters

representing the global state of the host, and use these aggregated counters as the additional input

to the classifiers (Figure 2-2d). The aggregate is essentially used like predicted host counters would

be, allowing us to maintain consistent input to the classifiers while avoiding having to predict the

host counters directly. We perform the aggregation by summing each counter across all VMs (e.g.,

the aggregate CPU usage is the sum of each VM's CPU usage), although more complicated methods

could be used such as learning which types of aggregate functions (sum, mean, max, etc.) are best

for each counter.

20



2.3 Classification

Finally, given each VM's predicted counters and the aggregated counters representing the global

host state, we classify whether or not the application running on each VM is performing adequately

(Figure 2-2f). This requires defining what constitutes "good" and "bad" performance for a given

application (see 3.8 for details on the definition we used). Each application may have a different

performance metric, since we create an independent classifier for every application.

We trained support vector machines (SVMs) for each VM to perform classification (Figure 2-2e)

using the LIBSVM library [11] via mlpy [6], a Python machine learning module. See Table 2.3 for

a summary of the relevant parameters.
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Table 2.1: Machine learning pipeline stages

Stage Input Output

Prediction VM counters time-series predicted VM counters
Aggregation predicted VM counters aggregated global counters
Classification predicted VM counters, aggregated counters SLO violation or not

Table 2.2: Prediction parameters (see Section 2.1)

Parameter Description

Counter collection interval How often performance counter values are fetched from the
host. This defines the timestep length.

Historical lag The number of consecutive counter datapoints used as input
to the predictor

Predictive lag The number of timesteps ahead the predictor predicts a
counter value

Counter smoothing windowt The window size, in number of datapoints, over which to
perform a moving average of each counter's values

t Shared with classification parameters

Table 2.3: Classification parameters (see Section 2.3)

Parameter Description

Input counters

Counter smoothing windowt

Ctt

Iftt

Weighttt

Which counters to include as input to the classifier (i.e., the
features)

The window size, in number of datapoints, over which to
perform a moving average of each counter's values

Determines cost of mistakes in training data

RBF kernel parameter

Penalty of violation (vs. penalty of non-violation, which is
always set to 1)

t Shared with prediction parameters
it SVM parameter
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Chapter 3

Experimental System

3.1 Overview

RaiUla enrtrvmwa re.com
traffic

pattern

response
times

I
SLO

violations

VM performance
counters

Figure 3-1: Experimental system overview

The machine learning pipeline described in Chapter 2 predicts performance based on ESX per-

formance counters, so at a bare minimum it needs counter time-series data to operate. Additionally,

application performance data is needed in order to train the performance classifiers (see Section

2.3). While this data is intended to be easily collected from live applications running in a public or

private virtualized cloud, we unfortunately did not have access to any such applications and instead
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generated realistic artificial data as shown in Figure 3-1 in order to train and test our system.

Our test application is MongoDB [1], a NoSQL database. We run a MongoDB instance on a VM

and use its log to collect latency data, which we use to label good and bad performance intervals.

Besides the MongoDB VM, there is a "hogger" VM that uses system resources in order to simulate

other applications creating load on the system. We collect ESX performance counters from both

of these VMs. We induce load to the MongoDB instance using Rain [3, 7], a load generator that

replays a traffic pattern based on real data from vmware.com's server logs.

3.2 Testbed

We ran two vSphere hosts, one for our test application and hogger VMs and one for the load

generator. We separated the load generator so its resource usage would not have an effect on our

experiments. The two hosts both had the following specifications:

* Dell Poweredge R610 server

* 12 x Intel Xeon CPU X5670 2.925 GHz (2 sockets, 6 cores/socket, hyperthreaded)

* 40 GB RAM

* 930 GB disk

* 1000 Mbps network interface

* VMware vSphere 4.1 Enterprise Plus

* VMware vCenter 4.1 Standard

3.3 Traffic Pattern: vmware.com

10.113.78.14 "122.208.160.20, 10.209.38.223, 64.209.38.232" - -
[23/Oct/2011:04:22:15 -0700] "GET /products/ HTTP/1.1" 200 109468
"https://www.vmware.com/" "Mozilla/5.0 (Macintosh; Intel Mac OS X 1072)
AppleWebKit/535.7 (KHTML, like Gecko) Chrome/16.0.912.4 Safari/535.7"

Figure 3-2: vinware.com Apache request log sample. Although this is shown on multiple lines, this
corresponds to a single line (i.e., a single request) in the log.

Since our system makes predictions based on time-series data, it is very important for us to test

our system using realistic time-series data, rather than simple benchmarks that are not based on
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Figure 3-3: vmware.com traffic pattern. This traffic pattern represents 30 days' worth of requests
to the vmware.com servers. We replayed this month-long pattern in 24 hours, condensing each
hour down to two minutes. The request rates were also scaled down.

actual usage patterns. We used log data from the servers hosting vmware.com to construct realistic

time-series traffic data.

The server logs we accessed recorded every request served from the vmware.com domain over

a 30-day period, totaling 258,047,454 requests. A sample of these logged requests is shown in

Figure 3-2. For each request, we parsed the timestamp and discarded all other data. We calculated

a histogram over the requests based on their timestamps, with each "bin" representing the number

of requests that occurred within a 1-hour interval for a total of 720 bins. This histogram represents

the traffic pattern, as shown in Figure 3-3. The traffic pattern exhibits clear diurnal behavior:

traffic spikes during the day, and then goes down at night. In addition to this daily cycle, there is

a weekly cycle, with weekdays seeing much more traffic than weekends.

We scaled this traffic pattern both horizontally and vertically. In order to replay the full

month's worth of data in a reasonable amount of time, we compressed the timescale, replaying each

datapoint for two minutes instead of the full hour it represents. Since vmware.com experiences more

traffic than our single application server can handle, especially when an hour's worth of requests

are compressed into a two-minute interval, we linearly scaled down the number of requests per time

interval, lowering the request rate while preserving the relative differences between each datapoint.

In Rain, load is adjusted via the initial number of "users," which is the number of threads sending

synchronous requests to the database. The number of users is then adjusted at each time interval
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according to the traffic pattern. We set the initial number of users to 30, which corresponds to

roughly 50-100 requests per second.

3.4 Application: MongoDB

* 2040

6000 g44

5000 - 436

E 201

w 4000-
- 92

A3000 342

C3

W -9

I2000

1000 A

0 10000 20000 30000 40000 50000 60000 70000 80000
experiment time (seconds)

Figure 3-4: MongoDB response times

Although we have access to the vmware.com traffic, we do not have access to the web application

that comprises the vmware.com web site, meaning we must run the traffic pattern on a different

application. We used MongoDB as our test application. MongoDB [1] is an open-source NoSQL

database often used in web applications, making it an appropriate substitution for the vmware.com

web application since a database in a web application will likely experience a similar load as the

rest of the application. We measured the response time of each read request via MongoDB's log

file, the results of which are shown in Figure 3-4. (Although we also issued write requests, we

did not collect their response times because difference types of queries have different performance

characteristics. In a production system, write response times would be collected and independently

analyzed as well, but for test purposes we concerned ourselves with only one type of request). Note

that the response times in Figure 3-4 have peaks corresponding to those in the traffic pattern we

used, shown in Figure 3-3.

We chose MongoDB in order to create a complex, non-trivial prediction task. MongoDB con-

sumes CPU, memory, network, and disk resources, all of which contribute to its performance but
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none of which are strongly linearly correlated to latency. In our earlier work [13], the simple web

server we used as our test application primarily consumed CPU resources, which were very strongly

correlated with latency. While this setup yielded encouraging results, we wished to test the robust-

ness of our techniques on applications with more complex behavior. In hindsight, we may have

overly complicated our experimental setup, which is further discussed in the Future Work chapter.

Additionally, MongoDB exhibits clear latency changes in response to load, provided it must

fetch some documents from disk. This is important so we can reliably induce enough variance in

response time to create meaningful violation and non-violation labels. Initially we had created a

MongoDfl database small enough to fit entirely in memory, but it was too difficult to create enough

load to produce noticeable changes in latency.

Using Rain's MongoUtil utility, the MongoDfl database was loaded with a single collection

containing one million documents. Each document had an indexed "key" field containing a unique

identifier between 1 and 1000000 and a "value" field containing a 32KB sequence of random bytes.

The total size of the database, including the index, was approximately 31GB. We created large

documents in order to induce disk I/O, which greatly increases latency, allowing us to produce

significant changes in latency based on load.

The VM running the MongoDB instance had the following specifications:

* Name: skye-mongo2

* 4 vCPUs

* 8 GB RAM

* 60 GB virtual disk

* Ubuntu Server 10.10 64-bit

3.5 Hogger VM

For simplicity, rather than run multiple applications on the host, we simulated other application

activity with a "hogger" VM that uses a variable amount of system resources over the course of the

experiment. Since the machine learning pipeline only considers aggregate counter data in addition

to the given application's counter data, it doesn't make a difference to the pipeline whether other

activity comes from many separate application VMs or a single VM (e.g., the hogger). By using
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the hogger VM instead of other application VMs, we could focus on the MongoDB performance

prediction while still testing the effects of other system activity.

The Hogger VM runs stress [4], a program that can put a variable amount of CPU, memory, disk

I/O, and disk write load on a machine. We ran stress using the command stress -- timeout 600 -- vm <n>,

which spawns n processes (each of which will run on its own core if possible) that repeatedly allo-

cate and free 256 MB of memory for 600 seconds (10 minutes). We varied n linearly from 0 to 4,

cycling back to 0 after passing 4 (when n = 0, the hogger VM sleeps for 600 seconds).

The hogger VM had the following specifications:

* Name: skye-hogger2

* 4 vCPUs

* 8 GB RAM

* 15 GB virtual disk

* Ubuntu Server 10.10 64-bit

3.6 Load generator (Rain)

We used Rain [3, 7], an open-source load generator, to replay the vmware.com traffic pattern

to the MongoDB application. Rain decouples the traffic pattern from the output, providing a

number of application adapters so the same pattern can be replayed to different applications and

different patterns can be replayed to the same application in a controlled fashion. We used the

provided MongoDB adapter, and customized the DiurnalScheduleCreator to use the vmware.com

traffic pattern rather than the provided diurnal pattern. The MongoDB adapter creates a specified

number of threads, each of which synchronously queries the database. We set the initial number

of threads to 30. The number of threads is increased or decreased at each timestep (in our case

60 seconds) according to the traffic pattern. The threads issue 50% read queries and 50% update

queries (i.e., read a single item or update the "value" field of a single item).

The VM running Rain had the following specifications:

* Name: skye-loadgen2

* 2 vCPUs

* 6 GB RAM
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* 16 GB virtual disk

* Ubuntu Server 10.04 64-bit

3.7 Data collection

The MongoDfl VM, hogger VM, and load generator VM (and the physical hosts they run on) com-

prise the experimental system that generates the data required by the machine learning pipeline.

However, we also needed to collect the data from this system. To collect the ESX performance

counter data, we set up a separate VM, running on the load generator's host so as not to inter-

fere with the MongoDB3 and hogger VMs, that collected the counter values from the ESX host

running the MongoDB and hogger VMs. It collected all counters available; for a complete list,

see Appendix A. To collect the MongoDB response time data (with which we calculate our perfor-

mance metric), we configured MongoDB to log every request using the verbose=true configuration

parameter, and parsed the log to find all request timestamps, types, and response times.

We also ran the mongostat program on the MongoDB VM, which collects various statistics

(e.g., requests/second, queue lengths) every second. We stored its output as well as Rain's output,

which contains information about how many threads are active at a given time, any errors, etc.

This data was used in the machine learning pipeline but could be used to understand the relevant

data and for debugging.

3.7.1 Timing

Because we were collecting data from several sources, it was very important that the clocks on

each source be synchronized so the data could be correctly lined up via timestamp. We installed

the ntpd dameon on every VM, which synchronizes the system clock using NTP (Network Time

Protocol) [2].

3.8 SLO definition

Once we had the raw response time data from MongoDB, we had to convert it to a binary per-

formance metric to use as labels for the performance classifiers. We used a common service level

29



-; sooo

4000

3000-

2000

1000

0

(a) MongoDB 99th-percentile latency. SLO violation
threshold marked in orange.

4000

3500

3000

E 2500-

E 2000a
1~1500A

1000

500[

(b) MongoDB 9 9 h -percentile smoothed latency. SLO vio-
lation threshold marked in orange.

7000

SLO violations

6000 - Non-violations

5000

1 000
0

(c) MongoDB response times with SLO violations marked
in red

Figure 3-5: Deriving SLO violations from response times. The 9 9 th percentile latency is calculated
every 60 seconds, the results of which are shown in (a). A moving average across 20 datapoints
is taken to smooth the 99th-percentile latency curve, showin in (b). Any 60-second windows with
a smoothed latency value above 3000ms is an SLO violation. (c) shows the original latency data
with SLO violations marked.
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objective (SLO) definition: at a given time interval (e.g., every minute, every ten minutes), some

latency percentile is calculated (e.g., the 9 5 th percentile, the 9 9 .9 th percentile). If the latency value

is above a certain threshold (e.g., 200 ms, 1 second), that time interval in considered to be an SLO

violation. Otherwise it is a non-violation. We add the additional step of smoothing the latency

percentile values using a moving average in order to avoid quick fluctuations between violations

and non-violations. Table 3.1 and Table 3.2 explain these parameters in detail and the values we

chose, respectively.

Illustrating this process, Figure 3-5a shows the 99th-percentile values of the response times

shown in Figure 3-4. The violation threshold is shown in orange; points above this line are SLO

violations while points below are non-violations. Without smoothing, the percentile values are very

noisy, with many small fluctuations above and below the threshold.

Compare this to Figure 3-5b, which shows the same values and threshold but with a moving

average applied over the 99th-percentile latency in order to smooth it. This gives us our final SLO

violation definition, which is shown against the original raw latency data in Figure 3-5c. Here the

points from Figure 3-4 are colored red if the smoothed percentile values are above the threshold,

corresponding to SLO violations, and blue otherwise.

Table 3.1: SLO parameters

Parameter Description

Percentile Percentile of latency under consideration (e.g., 9 9 th

percentile)

Percentile window The window size, in number of seconds, over which to cal-
culate each SLO datapoint

Smoothing window The window size, in number of datapoints, over which to
perform a moving average of latency percentile

Threshold Latency at percentile over which we consider that datapoint
a violation

3.8.1 Response time clustering

We also tried a different technique for converting the raw response time data to a binary performance

metric. Rather than manually choosing parameters to use with the algorithm above, we used
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Table 3.2: SLO parameter values

Percentile 99
Threshold 3000 ms
Percentile window 60 seconds
Smoothing window 20 datapoints

clustering to automatically establish good and poor performance regions. First we clustered the

response times into "fast" and "slow" responses. We then divided the response times into equally-

sized windows (as we do in the SLO algorithm) and for every window computed the fraction of

slow responses. We then clustered all the fractions into "violation" and "non-violations," which

determined the final labeling of each window.

We ultimately chose to use the SLO algorithm because it allowed tuning of the labels (including

tuning the labels to be very similar to those produced via the clustering method), was much

faster to run, and is a more realistic metric - system administrators already apply SLOs in the

fashion described above, and would likely be wary of a performance metric that offered no human

interaction.
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Chapter 4

Pipeline Implementation and Results

In this section we go into further detail on our implementation of the machine learning pipeline

described in Chapter 2, as well as the results produced by our implementation.

4.1 Pipeline performance metrics

4.1.1 Prediction metrics

During the prediction stage, for a given ESX counter we denote its recorded time-series as y, with

individual values yj where 1 < i < n and n is the total number of datapoints. Likewise, the

predicted time-series for that counter is denoted Q with individual values Qi, 1 < i < n.

Root mean square error (RMSE)

nZ(y
i=1

Mean absolute error (MAE) Unlike RMSE, MAE does not give extra weight to larger errors.

n

i=1

Pearson correlation coefficient (R) The linear correlation between the measured counter time-

series and the predicted time-series. A correlation coefficient of 1 means complete positive
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correlation, -1 complete negative correlation, and 0 no (linear) correlation.

ii(yi -- gi)(Qi - i)

IZ~(Y - =.2Z1(9, - P )2

4.1.2 Classification metrics

For the classification task, SLO violations are considered positive examples and non-violations

negative examples. We denote the set of SLO violation datapoints as y+, also referred to as

"actual positives", and non-violation datapoints as y-, or "actual negatives". Similarly, predicted

violations are denoted as Q+, or "predicted positives", and predicted non-violations as Q-, or

"predicted negatives. ly| is the number of datapoints in the set y, and x n y is the intersection of x

and y (i.e., points that are included in both x and y). Thus, Q+ n y+ is the set of correct positive

predictions, or "true positives." Likewise, -- n y- is the set of correct negative predictions, or

"true negatives."

Accuracy This may appear like a very natural metric to use, but is not very informative because

it does not take into account the number of positive (violation) datapoints vs. the number of

negative (non-violation) datapoints. For instance, if 90% of the datapoints are negative and

a naive classifier predicts all points to be negative, it will yield an accuracy of 90%, which

seems quite high but does not indicate that we are not correctly predicting a single positive.

The following metrics better address this problem.

|Q+ n y+|+ li- n y~- # correct predictions

ly| # datapoints total

Precision Also called positive predictive value (PPN). This represents what percentage of the

predicted SLO violations are "true positives,", as opposed to "false alarms."

IQ^+ n y+| _ # true positives

# predicted positives

Recall Also called sensitivity. This is an important metric for our application because it represents

the percentage of SLO violations we successfully predict. We consider predicting all violations
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more important than avoiding "false alarms," which is represented by precision.

+ n y+1 _ # true positives

Iy+| # actual positives

F-score Recall and precision reflect two different views of classification performance (e.g., if we

classify everything as positive, we will have 100% recall but low precision). F-score is a

combination of these two metrics.

2. precision - recall (4.1)
precision + recall

Non-violation precision The negative analogue to precision.

|Q- n y- _ # true negatives

# predicted negatives

Non-violation recall The negative analogue to recall.

1Q- n y-_ # true negatives

ly-| I # actual negatives

In evaluating different methods and parameters, we attempted to optimize F-score; although

recall is an important metric for us, it is still necessary to maintain some level of precision as well.

4.2 Training, validation and test sets

We divide counter and SLO violation time-series data into a training set, a validation set, and a test

set based on timestamp: the first 50% of data is the training set, the following 25% the validation

set, and the remaining 25% the test set. (See Chapter 3 for more information about the data, and

in particular Section 3.8 for details on the SLO time-series data.) All models are trained using

the training set, model parameters are evaluated and tuned based on results from the validation

set, and the test set is used only as a final evaluation metric. It is important that the datapoints

are partitioned by time, rather than randomly, since adjacent or nearby datapoints will be very

similar, allowing the three sets to contain nearly identical datapoints. Figure 4-1 illustrates how

we partitioned the data.
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Figure 4-1: Training, validation, and test partitions. The partitions are shown over the smoothed

99th-percentile latency and violation threshold from Figure 3-5b.

These partitions are only relevant during the classification stage, since this is the only stage

that uses a model that requires training data. However, if modeling techniques were also applied

to the prediction or aggregation stages, the same partitions should be used.

The three datasets are of the following sizes:

" Training set: 2119 counter datapoints

" Validation set: 1059 counter datapoints

" Test set: 1061 counter datapoints

* Total: 4296 counter datapoints

4.3 Preparing counters

Before using any of the performance counter data, the raw counter data is normalized so that each

counter's time-series has zero mean and unit standard deviation, since we are using the counter

data as input to SVMs. Additionally, a moving average is taken over each counter's time-series.

Smoothing the counters in this way increases prediction accuracy since the counters change in

a less erratic manner. Smoothing the counters also increases classification accuracy. Although

information is lost in the smoothing, much of the variance within counter values is due to system

noise, not variation in load or performance. Smoothing the counters reduces the amount of noise,
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Figure 4-2: Examples of smoothed vs. unsmoothed counters. For each counter, four hours worth
of the original unsmoothed data is shown in blue, and the corresponding smoothed data shown
below in green. The smoothing is performed by taking a moving average with a window size of 70
datapoints.

leaving a signal that varies on a slower timescale closer to that of the load and performance changes.

An example of the unsmoothed vs. smoothed counter data is shown in Figure 4-2. In order to

determine the window size of the moving average, we tried a range of sizes and picked the size that

produced the highest F-score on the validation set. This technique yielded a window size of 70

datapoints, corresponding to 23.3 minutes of counter data.

4.4 Prediction

Initially, we used support vector regressions (SVRs) to perform counter prediction, training an

SVR model for each counter. We used the SVR model implemented by mlpy [6], a Python machine

learning library. mlpy provides a wrapper over LIBSVM's [11] SVR implementation.

Table 4.1: Prediction parameter values (see Table 2.2 for definitions)

Parameter Value Replay length Traffic pattern length

Counter collection interval 20 seconds (minimum
possible with vSphere)

Historical lag 100 counter datapoints 33.33 minutes 16.67 hours
Predictive lag 1 counter datapoint 20 seconds 10 minutes
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We found, however, that simple least-squares linear fits out-perform SVR models, as well as

being much simpler to use since they do not need to be trained. For each counter, we consider only

that counter's time-series, and given an input window of the counter's datapoints find the linear

equation that minimizes the mean squared error. We then use this linear equation to compute the

predicted future value. The size of the input window and how far ahead we predict are determined

by the historical lag and predictive lag, respectively. The values we used for these parameters

are shown in Table 4.1. Summary statistics aggregated across all counter results are shown in

Table 4.2, and the same statistics aggregated across the counters used as input to classification (see

Section 4.5.2) are shown in Table 4.3. Besides the minimum and maximum values, these tables

show the three quartiles, which are the points that divide the dataset into four sets each containing

an equal number of points based on value. For example, the 1st quartile is the value at which 25%

of the points are smaller and 75% of the points are larger. When considering the root mean square

error (RMSE) and mean absolute error (MAE), note that each counter's time-series is normalized

to have zero mean and unit variance. When considering the Pearson correlation coefficient (R),

note that unlike for RMSE and MAE, 1 is the best possible score and 0 the worst. The individual

results of all counters are shown in Appendix B.

Table 4.2: Linear fit prediction results (all features).

Min 1 st quartile 2 nd quartile (median) 3 rd quartile Max

RMSE 0.00 0.11 0.17 0.29 0.68
MAE 0.00 0.05 0.13 0.20 0.61
R 0.00 0.00 0.66 0.83 1.00

Table 4.3: Linear fit prediction results (selected features)

Min 1 st quartile 2 nd quartile (median) 3 rd quartile Max

RMSE 0.06 0.15 0.18 0.48 0.68
MAE 0.02 0.10 0.15 0.42 0.61
R 0.57 0.64 0.66 0.68 0.89
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4.5 Classification

For the performance classification stage of the machine learning pipeline, we use support vector

machines (SVMs). SVMs, in their most common formulation, are a statistical method for binary

classification, i.e., classifying datapoints as belonging to one of two groups (SVMs can also be used

for similar tasks such as single-class classification and regression). Given a training set of labeled

datapoints, we find the hyperplane that separates one group from the other and maximizes the

distance to the nearest point (note that there will be at least one point from each group at this

distance). Once we have found this hyperplane, we classify new datapoints based on what side of

the hyperplane they lie. For further details, [12 is a good introduction to SVMs.

Each VM's performance is modeled using an SVM. We use the SVM model provided by mlpy [6],

which is a wrapper over LIBSVM's [11] SVM implementation. The rest of this section details the

techniques we used to improve classification results. Since our experimental system includes only

a single application VM, we only needed to train a single SVM, but these techniques could be

independently applied to further application VMs.

4.5.1 SVM parameter grid search

We use an svm-type of c-svc (i.e., C-Support Vector Classification, see [11]), which has a tun-

able parameter C that determines the penalty of making mistakes in the training data, and a

kernel-type of rbf (i.e., Gaussian Radial Basis Function), which has a parameter -Y. We chose to

use a Gaussian RBF kernel because it is a flexible general-purpose kernel that can fit any dataset

(although correctly labeling every training point can lead to overfitting, which is why we also use

the slack parameter C). The kernel's y parameter determines how tight the boundary is drawn

around positive datapoints. We tune .these parameters by performing a grid search over a wide

range of values, and evaluate the results of every parameter combination using the F-score of the

validation set. Table 4.4 shows the final parameter values.

Table 4.4: SVM parameter values

(see Table 2.3 for definitions)

C 100
-y 0.02
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4.5.2 Feature selection

Although every counter is available as input to the performance classifiers, feature selection (i.e.,

choosing a subset of available inputs, or features) can improve results. To perform feature selection,

we iterated through every counter c E C, where C is the set of all counters, trained an SVM using

counters C \ c, and compared the resulting F-score of the validation set to the F-score of using all

counters C. Our final set of counters was every counter that lowered the F-score when omitted.

Table 4.5 lists and describes these counters.

4.5.3 Weight violations

The c.svc SVM has an additional weight parameter that can be applied to either class. The

weight value for a given class is multiplied with the C value for that class, allowing for one class

to be more heavily weighted than another and to be favored by the classifier. Since we are more

concerned with correctly predicting SLO violations and avoiding false negatives (i.e., missing SLO

violations) than correctly predicting non-violations and avoiding false positives (e.g., false alarms),

it intuitively makes sense to weight the positive class (corresponding to classifying performance

as an SLO violation) more than the negative class. In practice, though, this did not improve our

results.

4.6 Pipeline results

Table 4.6 shows the numerical performance metrics of running our pipeline implementation on the

training, validation, and test sets. Figure 4-3 shows the same results graphically.

As expected, the pipeline performs best on the training data, predicting only a few datapoints

incorrectly. More surprisingly, the validation set results are considerably worse than the training

set results. We would expect the test results to be worse or at most similar to the validation

results, since the various pipeline parameters were chosen to optimize the validation results, and

the assumption is that the validation and test data are somewhat similar. However, based on

the results it appears that the time-series data varies considerably over time, causing the test and

validation sets to be quite different. More work is needed to identify what these differences are,

and how to make the pipeline more robust to different types of behavior.
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Table 4.5: Counters used as classifier features. Descriptions are from [5].

Counter name

cpu.usage.average

cpu.usagemhz.average

datastore.numberReadAveraged.
average

datastore.read. average

disk.numberReadAveraged.
average

disk. numberWrite. summation

disk.read.average

mem. active. average

mem. activewrite. average

mem.usage. average

net.packetsRx.summation

net.transmitted.average

net. usage. average

rescpu.actavl .latest

rescpu. actav5.latest

rescpu.actav15.latest

rescpu.actpk15.latest

rescpu.runav15.latest

rescpu.runpkl .latest

rescpu. runpk5. latest

rescpu.runpkl5.latest
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Description

Amount of actively used virtual CPU, as a percentage of
total available CPU.

Amount of actively used virtual CPU, as measured in
megahertz.

Average number of read commands issued per second to the
datastore.

Rate of reading data from the datastore.

Average number of read commands issued per second to the
datastore.

Number of disk writes.

Average number of kilobytes read from the disk each second.

Amount of memory that is actively used, as estimated by
VMkernel based on recently touched memory pages.

Amount of memory actively being written to by the virtual
machine.

Memory usage as percentage of total configured memory,
expressed as a hundredth of a percent (1 = 0.01%).

Number of packets received.

Average rate at which data was transmitted. This
represents the bandwidth of the network.

Network utilization (combined transmit- and receive-rates).

The average percentage of time the VM is running or ready
to run over a 1-minute interval.

The average percentage of time the VM is running or ready
to run over a 5-minute interval.

The average percentage of time the VM is running or ready
to run over a 15-minute interval.

The maximum percentage of time the VM is running or
ready to run over a 15-minute interval.

The average amount of CPU utilization over a 15-minute
interval.

The highest amount of CPU utilization over a 1-minute
interval.

The highest amount of CPU utilization over a 5-minute
interval.

The highest amount of CPU utilization over a 15-minute
interval.
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Figure 4-3: Final performance prediction results. SLO violation predictions are shown as red triangles and non-violations as blue circles.

The points are drawn over the smoothed 99th-percentile latency, with the violation threshold shown in orange, meaning correct violation

predictions appear above the threshold and correct non-violation predictions appear below the threshold (and vice versa for incorrect

predictions).



Table 4.6: Final performance prediction results. All metrics except for F-score are shown as
percentages. The "Predicted % positive/negative" entries refer to the percentage of datapoints
predicted to be positive (violations) and negative (non-violations), for comparison with the "Actual
% positive/negative" entries.

(a) Training set results

Precision 95.5
Recall 96.0
F-score .957

Non-violation precision 97.4
Non-violation recall 97.1

Accuracy 96.6
Actual % positive 39.2
Actual % negative 60.8
Predicted % positive 39.4
Predicted % negative 60.6_

(b) Validation set results

Precision 60.6
Recall 68.8
F-score .645

Non-violation precision 82.0
Non-violation recall 76.1

Accuracy 73.6
Actual % positive 34.8
Actual % negative 65.2
Predicted % positive 39.6
Predicted % negative 60.4

(c) Test set results

Precision 77.8
Recall 89.1
F-score .831

Non-violation precision 93.2
Non-violation recall 85.5

Accuracy 86.8
Actual % positive 36.3
Actual % negative 63.7
Predicted % positive 41.6
Predicted % negative 58.4
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Chapter 5

Future Work

5.1 Experiment configurations

The experimental system described in Chapter 3 is just one of many possible configurations, and in

hindsight was a very complicated choice that made it difficult to interpret the results and identify

what needs to be improved. There are two main parameters of the experimental system we can

vary: the application(s) running on the test host, and the traffic pattern(s) determining the load

on the system. Some choices for these parameters, including the ones we chose, are summarized

Table 5.1, with simpler parameters towards the top left and more complex parameters towards the

bottom right.

Table 5.1: Potential experimental systems

linear vmware.com, realtime vmware.com, sped up
Mongo

Mongo + hogger You are here!
Mongo + Mongo

Along the application axis, we chose to run a MongoDB instance as our test application, with

a "hogger" VM simulating resource usage from other applications on the host. In a real system,

there would be multiple applications running and our pipeline would monitor each of them, so

running two or more MongoDB instances (or other test applications) is a natural extension to our

experiments. However, in order to better understand the relationships between load, ESX counters,

and latency, we would like to simplify the system rather than increase its complexity. Thus, we

45



would first like to try running the MongoDB test application alone on the host in order to isolate

its behavior from that of other VMs.

Along the traffic pattern axis, we ran the vmware.com pattern with each hour's datapoint

replayed for two minutes. Speeding up the traffic pattern allowed us to collect the month's worth

of data in a reasonable amount of time, but also meant that the load to the system fluctuated

much more rapidly than it would in a real system. Since we obviously can't increase the VM's

processing speed to match the increase in load change speed, the rapid changes in load lead to

noisier measurements than gradual changes would. Additionally, such dramatic time scaling doesn't

lend itself well to all time intervals. For instance, we set our predictive lag to twenty seconds, which

scaled back to the traffic pattern's original timing is ten minutes; however, if we run the traffic

pattern in realtime and actually predict ten minutes head, it seems unlikely that the results will

be similar since system metrics can change much more in ten minutes than in twenty seconds.

To better learn how noisy the latency and ESX counters are in relation to load, we would like

to simplify the traffic pattern even further to a gradual linear increase before returning to more

realistic traffic data.

5.2 Refine pipeline stages

Both the prediction and classification stages of the pipeline can be further studied, either con-

currently or independently. Any improvements to either stage should yield better overall pipeline

results.

Our current prediction scheme is very simple. We would like to explore more sophisticated pre-

diction methods, such as auto-regressive correlation. As for classification, we have only considered

SVMs so far and have not tried different types of classifiers (e.g., models such as Bayesian classifiers

that provide better transparency into why a datapoint is classified the way it is). Different feature

selection approaches should also be explored, both in selecting our current counter features and

using the counter data to create new features. For example, we could compute the variance of each

counter for a given window and include those values as input to the classifier.
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5.3 Online learning

In order for our pipeline to be deployed on a real system, it must be able to adapt to changes in

workload and performance characteristics. For example, software updates may change the relation-

ship between CPU usage (or any other resource) and latency. If the classifier for this VM cannot

adapt to this change, it will continue to classify performance based on the old relationship and its

accuracy will suffer. Right now we only use offline learning, where the classifiers are trained once

on a specified training set. Once the models are trained, they do not change. In order to adapt

to changes in performance characteristics, the models must change over time, which is achieved

via online learning. A model that employs online learning is trained iteratively, so after learning

the true label of a datapoint that it previously classified, the model is updated based on that re-

sult. This would allow the classifiers to "learn" from the incoming datapoints that were previously

predicted.

Another option is to save incoming data for a certain amount of time, and use this batched

data to periodically train a new classifier completely. Retraining the model can happen at a set

interval or when the error of the classifier reaches a certain threshold. This allows us to continue

using offline learning techniques while allowing the model to change over time. However, it means

the current model at a given time has no knowledge of past data that has been discarded.

This discussion has been centered around the classification stage because it is currently the

only trained model we use. However, if a similar model is applied to the prediction stage, the same

reasoning applies: the prediction model would need to adapt based on changes in the incoming

traffic pattern.

5.4 End-to-end system

The ultimate goal of this research is to provide not just performance prediction, but automatic

performance management. We would like to develop an end-to-end system that uses the prediction

pipeline described here as input to a controller that provisions VM resources, initiates VM migration

to different hosts, or both in order to maintain good application performance. Section 6.2 of the

Related Work chapter overviews some systems that perform this kind of management.
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Chapter 6

Related Work

6.1 Performance Modeling and Anomaly Detection

Other work focuses on monitoring, rather than predicting, performance. These approaches could

be applied to the classification stage of our pipeline.

Zhang et al. [21] use ensembles of Tree-Augmented Bayesian Networks (TANs) to model appli-

cation performance based on system metrics such as CPU, memory, network, and disk usage. They

found that TANs are able to accurately determine if an application is meeting its SLO or not using

a small number of metrics. TANs also indicate which metrics most strongly influenced the out-

come, revealing which system metrics are correlated with SLO violations. A single TAN model is

sufficient for a steady-state workload, but evolving workloads influenced by, e.g., unexpected traffic

surges or software changes, require a different solution. Zhang et al. found ensembles of TANs to

be more effective than either a single monolithic TAN or a single TAN retrained over time. Under

the ensemble model, new models are periodically trained from recent data, and if the new model's

accuracy is better than the existing ensemble's, it is added to the ensemble. Rather than combine

the results of all models in the ensemble, a winner-takes-all approach is implemented where the

results of the model with the best Brier score, which measures accuracy and confidence, computed

over a short interval of past data are used.

Nguyen et al. [17] develop the Propagation-aware Anomaly Localization (PAL) system to detect

performance anomalies due to software bugs in distributed systems and to pinpoint the component

in which the problem originated. PAL is application- and topology-independent, meaning it uses
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only system-level metrics and assumes no prior knowledge of the applications running. After

detecting an SLO violation, PAL considers the time-series preceding the violation of each system

metric of each component. After smoothing the time series to remove small spurious fluctuations,

PAL uses cumulative sum charts and bootstrapping to identify change points in each time series.

PAL then locates the change point corresponding to the onset of the anomalous behavior in each

time series by comparing the mean of the time series before and after each change point and

finding the earliest dramatic change. For each component, the earliest change point among all the

metrics' time series corresponds to the onset of that component's anomalous behavior. Finally, the

components are sorted by their anomaly onset times to determine where the problem started and

how it propagated through the system.

6.1.1 Anomaly prediction

Tan et al. [20] present ALERT, a system for predicting anomalies caused by faulty applications,

e.g., a program with a memory leak that will cause its performance to eventually degrade. ALERT

uses decision trees to assign system metric measurements to a normal, alert, or anomaly state,

where the alert state corresponds to the time period preceding the onset of an anomaly. ALERT

specifically avoids triggering on "execution context" changes, i.e., when the underlying hosting

infrastructure running an application is altered, such as when less CPU is allocated (this contrasts

with most other research including our project, which focuses solely on hosting-related issues).

ALERT uses a clustering algorithm to partition and group the input data stream into multiple

execution contexts, then trains a model for each context. A Bayesian model is used to determine

the current context given current system measurements. Tan et al. chose this approach over a

single evolving model in order to decrease training overhead and give robust predictions even given

rapidly changing contexts. Incorrect predictions can trigger new context definitions and inactive

contexts are removed, allowing ALERT's context-switching model to adapt to evolving conditions.

6.2 Resource Scaling

Other work describes systems for automatically adjusting VM resource limits or placement. These

works could be useful both for refining our techniques and for creating a similar end-to-end system.



6.2.1 Physical servers

Bodik et al. [8] combine machine learning and control theory to automatically add or remove

physical servers from a web application with the goal of providing a practical, robust controller

that can react to changes in the application and its environment. They train a performance model

which, given input of workload and number of active servers, estimates the fraction of requests

slower than a given SLA threshold. They then perform a simple workload prediction to input

to the model. By monitoring the residuals of model, they determine when the model no longer

accurately predicts performance, at which point a new model is trained using the latest production

data. Based on the performance model, servers are added or removed by the controllers. The

controller's parameters are determined by simulating the application's performance under different

control policies.

In [9], Bodik et al. present a method to effectively gather the production data needed to train

an online performance model such as that discussed in [8]. They note that in order to train an

accurate model, data from a variety of performance regimes must be collected, including near the

application's maximum capacity, and ideally the data is collected quickly. However, this is at

odds with preserving the application's SLA. The authors propose an exploration policy in which

machines are added or removed in order to reach a frequently-changing latency target, which is

randomly chosen but always beneath a certain safety threshold. If the safety threshold is exceeded,

another server is immediately added. This is achieved with "hot standby" machines that run the

application without receiving any requests, allowing them to be quickly added. They also quickly

estimate a linear capacity model to prevent pushing the application past capacity. The system

switches from the exploration policy to model-based control when it determines that the model is

stable at the current workload.

6.2.2 VMs

When dealing with VMs, rather than physical machines, resource scaling systems can adjust ap-

plications at a much finer-grained level than turning entire machines on and off by adjusting the

amount of physical resources (e.g., CPU cycles, memory) available to each VM. Padala et al. [18]

take such an approach with the AutoControl system, which allocates resources over short time
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intervals (e.g., seconds) such that all the virtualized applications on a physical host meet their

SLOs, or gives preference to high-priority applications if satisfying all SLOs is not possible with the

available resources. For each application, AutoControl periodically measures performance and uses

this to update a linear model approximating the relationship between the application's resource

allocations and performance. Using this model, AutoControl determines the resources needed to

meet the SLO. Finally, the resources requested by each application are distributed based how many

total resources are available, how much each application requested, and the applications' relative

priorities. The results indicate that AutoControl better maintains application SLOs than either a

static resource allocation or allowing unlimited access to resources.

Gong et al. [15] extend the idea of dynamic resource allocation among VMs to include resource

usage prediction, so that necessary resources can be allocated ahead of time. The PRedictive

Elastic ReSource Scaling (PRESS) system identifies repeated patterns in resource usage by finding

"signatures" in historical usage data using a fast Fourier transform (FFT), and then uses dynamic

time warping (DTW) to line up the signature with incoming data and extend the signature forward

in time in order to predict future resource use. If no repeating pattern is found, PRESS uses a

Markov chain for short-term prediction. This process is repeated in order to capture changes in

resource usage patterns over time.

Migration

Besides adjusting physical resource allocations, VM resource scaling can also be achieved via live

migrations, in which a running VM is moved to a different host. This can be used to decrease load

on a overloaded host by reducing the number of VMs on it, or to consolidate VMs onto fewer hosts

in order to save resources and money. Gong et al. apply their signature approach to migration

in [14], which introduces the Pattern-Driven Application Consolidation (PAC) system. PAC finds

signatures for each running VM using the same FFT-based technique as [15]. Additionally, PAC

finds the signature of each host's unused, or residual, resources. By comparing the VMs' signatures

to the hosts' residual signatures, PAC can match a VM to an appropriate host. This matching is

done at scale using a variation of DTW that includes pre-filtering to avoid running the expensive

DTW algorithm on all signature pairs. PAC can migrate a VM in response to an overloaded host

or a change in the VM's signature pattern. PAC also performs periodic global VM consolidation
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in which it attempts to find an optimal placement for all running VMs based on their signatures.

Shen et al. continue this work in [19] with the CloudScale system, combining the resource

allocation and migration techniques of [15] and [14], as well as adding CPU voltage and frequency

scaling to save energy from unused resources. CloudScale uses the same signature-finding algorithm

described above to make short-term predictions of VMs' resource usage and adjust VMs' resource

caps similarly to [15]. In addition to predicting short-term resource usage, CloudScale also predicts

scaling conflicts, which is when there aren't enough resources on the host to accommodate all

the predicted resource needs. The scaling prediction algorithm is the same as the usage prediction

algorithm except it operates over longer time periods. By comparing the sum of the VMs' predicted

usage over time and the total capacity of the host, the scaling prediction algorithm can estimate

when a conflict will occur, how long it will last, and the severity of the conflict.

When a scaling conflict is predicted, CloudScale can either under-provision VMs until the

conflict ends (local conflict handling) or migrate a VM to a different host (migration-based conflict

handling). In general, it is best to use local conflict handling when the predicted conflict is short

and small and migration-based conflict handling when the conflict is sustained and severe, since

migrating a VM takes a relatively long time and uses even further resources during this time. When

performing local conflict handling, CloudScale must determine how to distribute the available

resources among VMs. It either treats all VMs uniformly and allocates resources proportional

to demand, or can allocate resources to high-priority application VMs first before distributing

the rest among lower-priority VMs. The SLO penalty incurred by each VM mi is estimated by

E2 RPi -ei,t, where RP is the Resources under-provisioning Penalty for mi and ei, is the under-

estimation error at time t, and ti and t 2 are the start and end time of the conflict. QRP is the sum

of all VMs' SLO penalties.

When performing migration-based conflict handling, CloudScale must determine which VM

to evict from the soon-to-be-overloaded host, with the goal of migrating as few VMs as possible

and minimizing SLO violations. For each VM mi, a normalized SLO penalty metric is defined as

Zi = MP -T/(wi - cpUi + W2 memi), where MP is the Migration Penalty, Ti is the time it takes

to migrate mi (computed based on the average memory usage), cpui and memi are the normalized

CPU and memory use of mi, and wi and w2 are weights that determine the relative importance

of CPU and memory, the two resources managed by the CloudScale implementation. CloudScale
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migrates the VM with the smallest Z until there are enough resources to resolve the conflict. QM

is the sum of all Zi. CloudScale chooses whether to use local or migration-based conflict resolution

by comparing QRP to QM.

The CloudScale system is similar to our work in that it uses resource usage prediction to achieve

application SLOs. However, our approach for leveraging prediction to prevent SLO violations is

fundamentally different: rather than compare predicted resource usage to available capacity and

then use estimates of SLO penalty to decide if and what action is necessary, we predict many fine-

grained system metrics and train models to convert the resource predictions directly into predictions

of SLO violation. Thus, we are predicting SLO violations directly so appropriate action can be

taken, rather than using penalties based on SLOs as a decision-making heuristic.
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Chapter 7

Conclusions

We have designed and implemented a machine learning pipeline for predicting future performance of

applications running on virtual machines based on system-level performance counters. The pipeline

is divided into three stages: prediction, which predicts future VM counter values based on current

time-series data; aggregation, which aggregates the predicted VM metrics into a single set of global

metrics; and finally classification, which for each VM classifies its performance as an SLO violation

or non-violation based on the predicted VM counters and the predicted global state. We have

implemented prediction using a simple linear fit algorithm, aggregation as a sum, and classification

via SVMs, meaning classification requires an initial training dataset. However, the implementation

of any stage can be changed without dramatic changes to any other stage, allowing easier refinement

of the stages. The pipeline is designed to allow for dynamic VM placement changes (or VMs to be

powered on or off) without requiring updates to the algorithms.

We have also created an experimental system for testing the pipeline and evaluating its perfor-

mance. Our experimental system consists of a MongoDB instance running on its own VM, which

is our test application; a "hogger" VM running on the same host that consumes CPU and memory

resources to simulate the effect of other applications running on the host; and a load generator

running on a separate VM that sends traffic to the MongoDB instance. Since we are making pre-

dictions it is important to create realistic traffic, so we used traffic data from vmware.com as the

basis for our traffic pattern. We defined an SLO violation based on latency as our performance

metric for the MongoDB test application.

The results from running the pipeline on data collected from the experimental system are
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promising, but indicate that there is more work to be done before the pipeline is ready for a

production system. The recall of the test set is 89.1%, meaning we correctly predict just under

nine out of ten SLO violations. We consider this a good start for an automatic system, but will

need to be much higher for a production system. Additionally, the scores of the validation set are

considerably lower than those of the test set, suggesting that small changes in the input data yield

very different results. Given this observation, we believe that future work should first be directed

at collecting simpler datasets so as to better isolate variations in pipeline performance.
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Appendix A

ESX performance counters

The following are the VM-level ESX performance counters available to us from our vSphere 4.1

setup (79 in total):

cpu. ready. summation

cpu. swapwait . summation

cpu. system. summation

cpu.usage. average

cpu.usagemhz.average

cpu.used.summation

cpu.wait.summation

datastore.numberReadAveraged.average

datastore.numberWriteAveraged.average

datastore.read.average

datastore.totalReadLatency.average

datastore.totalWriteLatency.average

datastore.write.average

disk.busResets . summation

disk.commands.summation

disk. commandsAborted. summation

disk. commandsAveraged. average

disk. maxTotalLatency. latest

disk .numberRe ad. summation

disk.numberReadAveraged. average

disk.numberWrite. summation

disk.numberWriteAveraged.average

disk.read.average

disk.usage.average

disk.write.average

mem.active.average

mem.activewrite.average

mem.compressed.average

mem.compressionRate.average

mem.consumed.average

mem. decompressionRate . average

mem.granted.average

mem. overhead .average

mem. overheadMax. average
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mem.shared.average

mem.swapin.average

mem.swapinRate.average

mem. swapout. average

mem.swapoutRate.average

mem.swapped.average

mem.swaptarget.average

mem.usage.average

mem.vmmemctl.average

mem.vmmemctltarget.average

mem.zero.average

mem.zipSaved.latest

mem.zipped.latest

net.packetsRx. summation

net.packetsTx. summation

net.received.average

net.transmitted.average

net.usage.average

power.energy.summation

power.power.average

rescpu.actav1.latest

rescpu. actav15. latest

rescpu.actav5.latest

rescpu.actpkl.latest

rescpu.actpkl5.latest

rescpu.actpk5.latest

rescpu.maxLimitedl.latest

rescpu.maxLimitedl5.latest

rescpu.maxLimited5.latest

rescpu. runavi. latest

rescpu.runavl5.latest

rescpu.runav5.latest

rescpu.runpkl.latest

rescpu.runpkl5.latest

rescpu.runpk5.latest

rescpu.sampleCount.latest

rescpu.samplePeriod.latest

sys.heartbeat.summation

sys.uptime.latest

virtualDisk.numberReadAveraged.average

virtualDisk.numberWriteAveraged.average

virtualDisk.read.average

virtualDisk.totalReadLatency.average

virtualDisk.totalWriteLatency.average

virtualDisk.write.average
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Appendix B

Counter Prediction Results

Table B.1 shows the root mean squared error (RMSE), mean absolute error (MAE), and correlation

coefficient (R) of the predictions for each VM counter. Figure B-i plots the recorded counter values

vs. the predicted values and the error residuals. These predictions were performed using a least-

squares linear fit as described in Section 4.4. Note that counters with constant values are omitted,

and that each counter's time-series is normalized to have zero mean and unit variance. When

considering the Pearson correlation coefficient (R), note that unlike for RMSE and MAE, 1 is the

best possible score and 0 the worst (none of our predictions were so off as to produce negative

correlations).

Table B.1: Counter prediction results

Counter RMSE MAE R

skye-hogger2.cpu.ready.summation 0.620 0.564 0.641

skye-hogger2.cpu.system.summation 0.199 0.079 0.894

skye-hogger2.cpu.usage.average 0.424 0.394 0.635

skye-hogger2.cpu.usageinhz.average 0.424 0.394 0.635

skye-hogger2.cpu.used.summation 0.306 0.266 0.711

skye-hogger2.cpu.wait.summation 0.489 0.417 0.675

skye-hogger2.datastore.numberWriteAveraged.average 0.107 0.021 0.852

skye-hogger2.datastore.totalWriteLatency.average 0.132 0.080 0.818

skye-hogger2.datastore.write.average 0.094 0.032 0.892
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Table B. 1: Counter prediction results (continued)

Counter RMSE MAE R

skye-hogger2.disk.commands.summation 0.164 0.072 0.877

skye-hogger2.disk.commandsAveraged. average 0.107 0.021 0.852

skye-hogger2.disk. maxTotalLatency.latest 0.132 0.080 0.819

skye-hogger2.disk.numberWrite.summation 0.164 0.072 0.877

skye-hogger2.disk.numberWriteAveraged.average 0.107 0.021 0.852

skye-hogger2.disk.usage.average 0.094 0.032 0.892

skye-hogger2.disk.write.average 0.094 0.032 0.892

skye-hogger2.mem. active.average 0.574 0.514 0.657

skye-hogger2.mem. activewrite.average 0.575 0.515 0.657

skye-hogger2.mem.overhead.average 0.411 0.328 0.879

skye-hogger2.mem.usage.average 0.574 0.514 0.657

skye-hogger2.net.packetsRx.summation 0.177 0.099 0.856

skye-hogger2.net.packetsTx.summation 0.485 0.116 0.885

skye-hogger2.net.received.average 0.126 0.063 0.756

skye-hogger2.net .transmitted.average 0.509 0.096 0.871

skye-hogger2.net.usage.average 0.425 0.113 0.888

skye-hogger2.rescpu.actav 1.latest 0.582 0.536 0.639

skye-hogger2.rescpu.actav15.latest 0.677 0.610 0.642

skye-hogger2.rescpu.actav5.latest 0.615 0.564 0.639

skye-hogger2.rescpu.actpkl .latest 0.575 0.530 0.639

skye-hogger2.rescpu.actpk15.latest 0.596 0.526 0.639

skye-hogger2.rescpu. actpk5.latest 0.579 0.531 0.638

skye-hogger2.rescpu.runav 1.latest 0.429 0.399 0.635

skye-hogger2.rescpu.runav15.latest 0.468 0.423 0.639

skye-hogger2.rescpu.runav5.latest 0.449 0.415 0.635

skye-hogger2.rescpu.runpkl.latest 0.461 0.425 0.636

skye-hogger2.rescpu.runpk15.latest 0.537 0.480 0.636
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Table B.1: Counter prediction results (continued)

Counter RMSE MAE R

skye-hogger2.rescpu.runpk5.latest 0.489 0.452 0.635

skye-hogger2.sys.heartbeat.summation 0.025 0.021 0.662

skye-hogger2.sys.uptime.latest 0.000 0.000 1.000

skye-hogger2.virtualDisk.numberWriteAveraged.average 0.107 0.021 0.852

skye-hogger2.virtualDisk.totalWriteLatency.average 0.132 0.080 0.819

skye-hogger2.virtualDisk.write. average 0.094 0.032 0.892

skye-mongo2.cpu.ready.summation 0.536 0.495 0.638

skye-mongo2.cpu.system.summation 0.107 0.093 0.671

skye-mongo2.cpu.usage.average 0.183 0.155 0.656

skye-mongo2.cpu.usagemhz.average 0.183 0.155 0.657

skye-mongo2.cpu.used.summation 0.177 0.149 0.653

skye-mongo2.cpu.wait.summation 0.249 0.227 0.640

skye-mongo2.datastore.numberReadAveraged.average 0.071 0.021 0.804

skye-mongo2.datastore.numberWriteAveraged. average 0.173 0.149 0.664

skye-mongo2.dat astore. read. average 0.061 0.025 0.862

skye-mongo2.datastore.totalReadLatency.average 0.123 0.096 0.753

skye-mongo2.datastore.totalWriteLatency. average 0.144 0.124 0.663

skye-mongo2.datastore.write.average 0.218 0.188 0.648

skye-mongo2.disk.commands.summation 0.172 0.149 0.663

skye-mongo2.disk.commandsAveraged.average 0.172 0.148 0.663

skye-mongo2.disk.maxTotalLatency.latest 0.146 0.126 0.656

skye-mongo2.disk.numberRead.summation 0.072 0.028 0.805

skye-mongo2.disk.numberReadAveraged.average 0.071 0.021 0.804

skye-mongo2.disk.numberWrite.summation 0.173 0.150 0.664

skye-mongo2.disk.numberWriteAveraged.average 0.173 0.149 0.664

skye-mongo2.disk.read.average 0.061 0.025 0.862

skye-mongo2.disk.usage.average 0.217 0.188 0.648
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Table B.1: Counter prediction results (continued)

Counter RMSE MAE R

skye-mongo2.disk.write.average 0.218 0.188 0.648

skye-mongo2.mem.active.average 0.174 0.097 0.618

skye-mongo2. mem.activewrite.average 0.182 0.103 0.567

skye-mongo2.mem.consumed.average 0.002 0.001 1.000

skye-mongo2.mem.granted.average 0.002 0.001 1.000

skye-mongo2.mem.overhead.average 0.085 0.068 0.996

skye-mongo2.mem.shared.average 0.064 0.006 0.594

skye-mongo2.mem.usage.average 0.174 0.097 0.618

skye-mongo2.mem.zero.average 0.064 0.005 0.000

skye-mongo2.net.packetsRx.summation 0.231 0.200 0.648

skye-mongo2.net.packetsTx.summation 0.237 0.206 0.647

skye-mongo2.net.received.average 0.248 0.215 0.647

skye-mongo2.net.transmitted.average 0.177 0.154 0.646

skye-mongo2.net.usage.average 0.224 0.194 0.645

skye-mongo2.rescpu. actav 1.latest 0.145 0.129 0.669

skye-mongo2.rescpu.actav15.latest 0.126 0.112 0.689

skye-mongo2.rescpu.actav5.latest 0.142 0.127 0.675

skye-mongo2.rescpu.actpkl.latest 0.196 0.175 0.666

skye-mongo2.rescpu.actpk15.latest 0.149 0.131 0.686

skye-mongo2.rescpu.actpk5.latest 0.180 0.161 0.666

skye-mongo2.rescpu.runav 1.latest 0.184 0.156 0.656

skye-mongo2.rescpu.runav15.latest 0.163 0.143 0.640

skye-mongo2.rescpu.runav5.latest 0.182 0.155 0.653

skye-mongo2.rescpu.runpkl.latest 0.118 0.096 0.667

skye-mongo2.rescpu.runpk15.latest 0.136 0.121 0.641

skye-mongo2.rescpu.runpk5.latest 0.122 0.099 0.670

skye-mongo2.rescpu.sampleCount.latest 0.191 0.019 0.000
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Table B.1: Counter prediction results (continued)

Counter RMSE MAE R

skye-mongo2.sys.heartbeat.summation 0.022 0.018 0.654

skye-mongo2.sys.uptime.latest 0.000 0.000 1.000

skye-mongo2.virtualDisk.numberReadAveraged.average 0.111 0.019 0.831

skye-mongo2.virtualDisk.numberWriteAveraged.average 0.167 0.145 0.646

skye-mongo2.virtualDisk.read.average 0.061 0.012 0.862

skye-mongo2.virtualDisk.totalReadLatency.average 0.087 0.041 0.777

skye-mongo2.virtualDisk.totalWriteLatency. average 0.146 0.126 0.655

skye-mongo2.virtualDisk.write.average 0.216 0.187 0.647
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Figure B-1: Actual vs. predicted counters. The red lines are the actual recorded counter values,
and the blue lines are the corresponding predicted counter values. The green line is the residuals

(predicted value - actual value). Note that some values are missing from the beginning of the
predicted counter plots due to the initial input window.
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Figure B-1: Actual vs. predicted counters (continued)

sk e-monn ngo c s cimtn sk e-honnr erv~c uuseI ci in
1.0

1 05 .

0.5 0.0-

_0 ........... ........... - 5
0 10000 20000 30000 40000 50000 60000 70000 80000 0 10000 20000 30000 40000 50000 60000 70000 80000

skye-mongo2.cpu.used.summation residual

0.0

0 10000 20000 30000 40000 50000 60000 70000 80000

0.2 . skye-mongo2.cpu.waltsummation

-0.2

1.0 skye-hogger2.cpu.used.summation residual

1.0
0 0

-0.5 ..... -A .. . ....... .. . ..

150o 10000 20000 30000 40000 50000 60000 70000 80000

0.2 skye-mongo2.cpu.wait summation residual skye-hogger2.cpuwait summation residual
0.-0 -

-0.2 -- - -- 0.5 -

- 0 .8 - -.. .. -.. .. .- ...... .....-. ... .-. ... ---. .... .-. ..-. ..- 0 .5 - -- - - - - - - - - - - -

- 1 . - -- -- - ------ -.. ... .... ... ....... .--- - - - 1 .0 -.. .... ... --------- 7. --... .. -. ..-- .. - - - -... -... . -.

0 10000 20000 30000 40000 50000 60000 70000 80000 -15 10000 20000 30000 40000 50000 60000 70000 80000

2.5 skye-mongo2. datastore. numberReadAveraged. average
2.0.
1.5 ......... -------- -------- - - -- 4 -- -- - ..-. -.
1.0 ........... - --- - --- + --- --- -

0.0
- 0 .5 -.. -- --. - -- - .-- -- - .- - -. -- ---. ---+... -.. ..... ...

-1.0 10000 20000 30000 40000 50000 60000 70000 80000

2 kye-mongo2.datastore.numberReadAveraged.average residual

0.01........... b 71 .5 - --. ..-- - -. .- -.-- -. ..-.- -. - -.
1.0 -

0.0 1
~1-00 10000 20000 30000 40000 50000 60000 70000 80000

1.4 skye-mongo2.datastore. numberWriteAveraged. average

14

.. 4

0 10000 20000 30000 40000 50000 60000 70000 80000

1 kye-mongo2.datastore.numberWriteAvera ed.average residual

10000 20000 30000 40000 50000 60000 70000 80000

skye-hogger2.datastore.numberWriteAveraged.average

0.0
~0. 10000 20000 30000 40000 50000 60000 70000 80000

gkeh e2daatr ubr~ievr daverage residual

1 .0 .. ..- .. .- ...........---.- ..-- .- - ----.. .. - ......-. .... .....-..-.-.-

0.0

0.5--- - -100 --0 -- -- 40000 - -
" 1000 20000 30000 40000 50000 60000 70000 8000

65



Figure B-1: Actual vs. predicted counters (continued)
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Figure B-1: Actual vs. predicted counters (continued)
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Figure B-1: Actual vs. predicted counters (continued)
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Figure B-1: Actual vs. predicted counters (continued)
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Figure B-1: Actual vs. predicted counters (continued)
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Figure B-1: Actual vs. predicted counters (continued)
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Figure B-1: Actual vs. predicted counters (continued)
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Figure B-1: Actual vs. predicted counters (continued)

1.5 skye-mongo2.rescpu.actavl5.latest skye-hogger2.rescpt
1. --- -- - - -- 7. ------------

0.5- 0.5 -

0 .0 -- - -- -.-- -.-- -.-- -- - -- - - -- - -- - - -- - -- - - .-- -- - - 0 .0 -
- 0.5, ---- ---- -- - - ----- ------ - ---- -- - - 0.5 -

10.
05.

-- 1 0 -1 o 100 20000 30000 40000 50000 60000 70000 80000 0 10000 20000 30000 40000

1.5 skye-mongo2.rescpu.actav15. latest residual
1.[

0.0-
- 0 .5 -------- .. .. .. .. . -- - - -. . . . . ... . . . . . -- - - - - . . . - . . . ---------- . ------- --- .--- .

- 1 .0 . ------ - - - - - - - - - - -

~.0 10000 20000 30000 40000 50000 60000 70000 80000

skye-mongo2.rescpu.actav5.latest
102

0.8
0.6

0 .0 -. ....------ - - - - -- - ------ + ----- '--+ - - --.. . .. . -.. . . . . . . . . . . .. . .

-0.2 10000 20000 30000 40000 50000 60000 70000 80000

12 skye-mongo2 .rescpu.actav5. latest residual
10

0.2-
0.0

-0 2
-0 10000 20000 30000 40000 50000 60000 70000 80000

sk e-~monn orcnh u1n~ It c

skye-hogger2.rescpu.actavl5.latest residual

0.5-
0.0

-0.5 - - - - -

~1 ' 0L 10000 20000 30000 40000 50000 60000 70000 80000

skye-hogger2. rescpu.actav5.latest residual

0.5

- 1 .0 - - --- - - -- - --. --.-.-.-.- --.---. --. --
-1.0 150O 10000O 20000 30000 40000 50000 60000 70000 80000

sk e-ho erL1resc u -
14 -..y...... g..... . p. . ............ p........... y gg......p.

0.5
0.0

.......... ,...... . -10......:......... ... .. ........ .................... . . - 1 .0.-.-.

10000 20000 30000 40000 50000 60000 70000 80000 0 10000 20000 30000 40000 50000 60000 70000 80000

1.4 skye-mongo2.rescpu.actpkl.latest residual 1 skye-hogger2.rescpu.actpkl.latest residual
1 .2 -- -. . . . . . . . . . . . . 1 .0 -. .. . - - .-- - -- - -- - --.-- - -- - - -- --.- --.-- --- --.--.

-. . . . . . -. . .. . . -- 1 --. .. . - -- -..--..-.--.- - 0 .5 - - -- -

2 -0. 5

0 10000 20000 30000 40000 50000 60000 70000 80000 0 10000 20000 30000 40000 50000 60000 70000 80000

skye-mongo2 rescpu.actpkl5.latest

0.5-
0 .0 ----.. .. ---------- .. .. . .... . .. .. . --- .. --- - d - - - - - -.. . . . . . -- ---. .. . . . . .

- 0 .5 -- --..-- - --.- ---.- - - -- --. -.. . . . . . . . .. . . . . . . . . ------ --... . .. . ... .. . .. . ..-... .. . . . .

0 5....
-1.0

0 10000 20000 30000 40000 50000 60000 70000 80000

1.5 skye-mongo2. rescpu.actpkl5.latest residual
1 .0 -.. ----. -----------. -----------.. -- - -- --. -- - ------ - ------ .-- ---. -. - -- -- -- . ---...

0 .5 -- - - - - - -....

0.0--
- 0 .5 - - - - - - -- - - - - - --- -
- 1 .0 ..----- ---- - -.-.-------.--.---- - --- .---------- .-. --.-. -

-10 10000 20000 30000 40000 50000 60000 70000 80000

skye-hogger2.rescpu.actpkl5.latest
1.0 - - -.-.
0.5-
0.0

_0.5-
-1.0

-20
0 10000 20000 30000 40000 50000 60000 70000 80000

skye-hogger2.rescpu.actpkl5.latest residual
10.5

-051- .V ........... ..........
- 1 .0 -- -- -: - - -- :-. .- - ---...- -... -. . .. . . . . . . . . . ..
-1.5 -- -- W --- + --.-- -- ..---- . --- + --------+ -.-

2.0 10000 20000 30000 40000 50000 60000 70000 80000

73



Figure B-1: Actual vs. predicted counters (continued)
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Figure B-1: Actual vs. predicted counters (continued)
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Figure B-1: Actual vs. predicted counters (continued)
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Figure B-1: Actual vs. predicted counters (continued)
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