
A Functional Flow Framework for Cloud

Computing

by

Amy Zhang

B.S., EECS, Massachusetts Institute of Technology (2011)
B.S., Mathematics, Massachusetts Institute of Technology (2011)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2012

© Massachusetts Institute of Technology 2012. All rights reserved.

Author.....................
Department of Electrical ngineering and Computer Science

May 29, 2012

Certified by
Muriel M6dard

Professor of EECS
Thesis Supervisor

A ccepted by
Prof. Dennis M. Freeman

Chairman, Masters of Engineering Thesis Committee

ARCHIVES
'WV

I

2

A Functional Flow Framework for Cloud Computing

by

Amy Zhang

Submitted to the Department of Electrical Engineering and Computer Science
on May 29, 2012, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering

Abstract

This thesis covers a basic framework to calculate the maximum computation rate of
a set of functions over a network. These functions are broken down into a series of
computations, which are distributed among nodes of the network, with the output
sent to the terminal node. We analyze two models with different types of computation
costs, a linear computation cost model and a maximum computation cost model. We
show how computation distribution through the given network changes with different
types of computation and communication limitations. This framework can also be
used in cloud design, where a network of given complexity is designed to maximize
computation rate for a given set of functions. We provide a greedy algorithm that
provides one solution to this problem, and create simulations for each framework, and
analyze the results.

Thesis Supervisor: Muriel Medard
Title: Professor of EECS

3

4

Acknowledgments

I would like to thank my thesis advisor Muriel Medard for her encouragement and

guidance through all of my work. I would also like to thank Soheil Feizi for valuable

help and insight, and being there for every little problem and all the questions. I

would like to thank Dr. Michael Kilian for helpful discussions on practical issues

in cloud computing applications and for his help in creating the parallel computing

framework for my UAP work. Finally, I would like to thank my parents for all their

support.

5

6

Contents

1 Introduction

2 Previous Work

2.1 U A P w ork .

2.2 Related W ork .

3 Framework

3.1 Network

3.2 Computation Trees . . .

3.3 Mapping

3.4 Algorithms.

4 A Maximum Computation

4.1 Description

4.2 Simulations

4.3 Results

Cost

5 A Linear Computation Cost Moi

5.1 Description

5.2 Simulations

5.3 Results

6 Network Design

6.1 Greedy Algorithm .

7

11

13

13

14

17

17

17

18

20

25

25

26

27

31

31

32

32

35

35

. .

. .

. .

. .

Model

. .

. .

. .

del

. .

. .

. .

6.2 Simulations . 36

6.3 Results. 38

7 Conclusions 41

7.1 Project Accomplishments. 41

7.2 Future W ork. 42

A Code 45

A.1 Node Arc LP code . 45

A.2 Embedding Edge LP code . 50

8

List of Figures

3-1 Mapping Example............................. 18

3-2 Embedding Edge LP [8] 19

3-3 (a) An example that shows the flow conservation constraint does not

hold in the function computation setup. (b) By adding a self-loop with

infinite capacity to node 3, a modified flow conservation constraint

holds in this case. 22

3-4 Node Arc LP [8] . 23

3-5 f or loop in Embedding Edge LP [8] 24

4-1 Function 1. 26

4-2 Function 2. 27

4-3 Initial communication network N1. 28

4-4 Self-Flow over nodes in the network g1 29

4-5 Total Computation Rate of fi and f2 vs. MCC constraint. 30

5-1 Initial communication network F2 . 32

5-2 Self-Flow over nodes in the network affected by the bottleneck !g2 . . 33

5-3 Computation Rate vs. LCC constraint on a subset of nodes. 34

6-1 Network Sparsification . 37

6-2 Computation rates summed over fi and f2. 39

9

10

Chapter 1

Introduction

With the advent of cloud computing, many problems need to be addressed to keep the

cloud secure, reliable, and low-cost. Much research has been conducted on possible

protocols at a system level for cloud computing to minimize problems in privacy,

reliability, and accountability, but research on a theoretical level has been more scarce.

The goals of my project are to research and implement algorithms to both calculate

and minimize access rates to the cloud under certain models, and to investigate the

trade offs between communication and computation costs.

Our goal is to be able to design and analyze a network flow framework by modeling

the amount of computation in each node of the network and using convex optimization

methods to calculate the maximum computation rate and route flows through the

network to achieve that rate. We consider an approach with given computation

and communication limitations that affect the maximum computation rate. The two

computation models we examine are a maximum computation cost (MCC) model and

a linear computation cost (LCC) model. In the MCC model, the computation cost

over the network is a function of the maximum computation, over all nodes in the

network. In the LCC model, the computation cost in each node is a linear function

of the amount of computation in that node.

We also propose an algorithm to design a cloud network under given commu-

nication and computation constraints. For a given set of functions, we can find a

network topology that maximizes the computation rate under the given computation

11

and communication constraints. We explore a greedy algorithm that designs a cloud

network with a given network complexity, which we measure as the number of edges

in the network. We compare its performance with a random algorithm, which out-

puts a network topology of the given complexity by examining the trade-off between

network complexity and computation rate for both algorithms.

This thesis is organized as follows.

Chapter 1 provides an introduction to the topic of cloud computing and outlining

the problem we are trying to solve.

Chapter 2 gives a recap of both my previous work done in 6.UAP and related

work in the field.

Chapter 3 provides the framework we use for the problem. It is an adaptation of

the framework used by Shah et al. [8], where we assume we are given a network and

a set of functions to be computed over that network, and analyze its performance.

Chapter 4 introduces the Maximum Computation Cost (MCC) model, where the

computation cost over the network is proportional to the largest total self-flows over

any node. In effect, we are trying to spread the load more evenly over the network if

there tends to be clusters of high computation.

Chapter 5 introduces the Linear Computation Cost (LCC) model, where we place

computation costs on specific nodes in the network, proportional to the amount of

self-flow through each node.

Chapter 6 discusses a possible algorithm for network design, where we are given

the set of functions to be computed and their probability distribution, and we find a

network that maximizes its total computation rate.

Chapter 7 goes over the results found in Chapters 4, 5, and 6 and presents areas

of future research.

12

Chapter 2

Previous Work

2.1 UAP work

My UAP work was to use estimated graph entropies to find theoretical upper and

lower bounds on computation rates. As an introductory model, we created a simula-

tion to test bounds on communication and computation costs, and find an algorithm

that gives the optimal ratio between the two types of costs. We began by coding a

cloud simulation with only a few nodes, where the source nodes and compute nodes

are objects in C++. A function is decomposed into coloring functions which are

assigned to nodes. We defined color functions for each object that can be used in a

lookup table to find the desired function value for each node. There are also functions

that compute over the subset of data received. We started off with a easily verifiable

function, a sort. The first round is defined as when subsets of the source nodes are

input into compute nodes.

I created a working simulation that took in an adjacency matrix of the graph

and created a parallel set of the source nodes. It then recursively created the next

parallel set until it encountered an empty parallel set, at which point it returned the

solution. We also put in an on-off matrix that indicated which node data is output to,

for cases where a node has two children it can potentially send data to and we only

want to output to one to avoid repetition. A parallel set is a set of jobs to be done

concurrently. The structure checks if there are threads available in the threadpool,

13

and if there are, it takes one and assigns one of the jobs within the set to that thread.

Once all the jobs in that parallel set have been assigned and completed, the parallel

set returns the solution.

In the most basic version of our model, we start off with three source nodes, each

of which randomly generates a list of integers of size n. These nodes are put in the

first parallel set. As each node from this set is picked up by a thread, it queries the

on-off matrix for the node it is supposed to output to, and adds that node to the

next parallel set. Once this has been done to every node in the first parallel set, it

is empty and returns that the job is done. We then pick up the next parallel set

and do the same, except now this is a set of compute nodes. We again query for

the output nodes and put them in the next parallel set, but then, we also query for

the input nodes, and grab the corresponding lists of data. If a node as two parent

nodes putting out data to it, the data lists are combined by concatenation. The

data is sorted and set as output for the next parallel set of nodes. We calculate the

computation time by collecting the timestamp before and after each parallel set runs,

and calculate the communication time by taking E log(n), where n is the size of the

data set transmitted from a parent node to its child. Therefore, the first parallel

set has a communication time of 3log(n), because each of the three source nodes

transmits n integers to a child node in the next parallel set.

2.2 Related Work

A major part of my UAP work was to investigate information theoretic rate bounds

for computing a function over a network, where the input is found at the sources and

the output at the receiver. K6rner introduced graph entropy [6], which Feizi et al.[5]

used to investigate graph coloring approaches to this problem. Distributed computing

and in-network computation are both topics that have had significant interest, and

have lead the way to network flow techniques, [2], [9]). Shah et al. [8] also used this

framework for function computation considering only communication constraints. He

simplifies cloud computing as a set of functions being computed over a network, with

14

a probability distribution for how often each function is called. There are jointly

communication and computation limitations in a cloud computing network that need

to be taken into account during design. The links between nodes have communica-

tion capacities, which are our communication constraints, and different computations

require different computation power, which we represent as computation costs.

Shah provided a linear optimization method to find the maximum computation

rate of a function over a network, and an algorithm to route the flows to achieve that

rate [8]. The flow conservation constraint does not hold for functional flows because

when a computation is done at a node, the flow coming out of that node is no longer

the same as the flow coming in. However, [8] circumvented this by defining a self-flow

on each node for each computation type. These self-flows make up the difference in

flow when a computation is done at that node, allowing for flow conservation. These

self-flows are proportional to the amount of computation done at each node, and

therefore by putting a cost on these flows we can simulate computation costs. This

framework we modify further as discussed in Chapter 3.

Reference [7] also considered the problem of minimum-cost multicast over coded

networks with a decentralized approach, and used a max norm approach that we shall

discuss in Chapter 4.

15

16

Chapter 3

Framework

3.1 Network

We are using the framework described in [8]. The network K = (V, E) is a directed

acyclic graph, where V is the set of nodes, and E is the set of edges. Each edge (u, v)

has a capacity of c(uv). K has k source nodes, {n 1,... , nl}, that have data values

{ Xi(l)}1>o, where Xi(l) belongs to a finite alphabet. For source node i, we use Xi to

represent its data. In cloud computing, source nodes can be considered as datasets.

In this case, Xi represents data in the dataset i. N(v) is the set of neighbors of node

v in the network.

The terminal node, nt, receives the output of a set of functions from the source

data. These functions are given as computation trees.

3.2 Computation Trees

A computation tree is a graph g = ((, F), where (is the set of nodes, and F is the

set of directed edges. Each directed edge 62 represents a separate computation to be

mapped to a node in the network. {01,... , 4} are outgoing edges from source nodes

that represent the input data and 6O is the incoming edge to the terminal node (t,

representing the output of the given function the computation tree represents.

{ (1, ... , (k} represents the source nodes. There are many possible computation

17

trees (shown in Section 3.3 for a given function, and, for the scope of this problem,

we assume that a computation tree is given. If the given computation tree excludes

certain function mappings, those mappings will not be considered.

For a specific computation 0 E F, tail(O) and head(9) represent the tail and the

head nodes of that edge in the computation tree, respectively. A computation By is

a parent of a computation 0 if tail(i) = head(6). Children of a computation 0 are

defined similarly. We refer to the set of parents and children of computation 0 as

<Dt(0) and <DI(6), respectively.

3.3 Mapping

A given computation tree can be mapped over a network by mapping its computa-

tions (edges) 0 to different nodes of the network. A mapping M is feasible when

all computations 0 can be computed by the data received from their parents in the

network. In other words, each computation must be mapped to a node that has a

path leading from the nodes mapped to <}T(6).

X3

(a) (b)

Figure 3-1: Mapping example: (a) Network K. (b) A
g (d) on K. (c) A different mapping of 9 on K. (d)
function 0 = X1 * X 2 + X 3 . [8]

(c) (d)

mapping of computation tree

A computation tree g for the

Figure 3.3 shows a sample network K and a possible computation tree for the

function to be computed, 0 = X1* X2 +X 3 . Figure 3.3-(b) and (c) show possible

18

mappings of that computation tree on K, one of many that can be found by our

algorithm Embedding Edge LP, Figure 3-2.

Algorithm 1: Finding equivalent solution of the Embedding-Edge LP from a feasible solution of the
Node-Arc LP.

input : Network graph M = (V, E), capacities c(e), set of source nodes S, terminal node t,
computation tree g = (Q, F), and a feasible solution to its Node-Arc LP that consists of the
values of A, f,% VO e F, Vuv E E, and f u VO E F, Vu E V.

output: Solution {x(B)|B E 3} to the Embedding-Edge LP with EZBG x(B) = A.

Initialize x(B) := 0, B(O) 0 (the null sequence), VB E B and V0j E F, A' = 0
while A' # A do

z(t) := A ;
B(6|ri) := t
for i :F to 1 do

v := B(O6) ; // valid, as B(O6) has of only one node at this step
u := an element in N'(v) such that f i > 0
if u # v and u E B(0j) then

// A cycle of redundant flow found: remove the flow from all
the edges in the cycle

Let P be the path in B(O) upto the first appearance of u in it.;
Delete P from B(6%). ;

y := wminuycueu {fu%'i,);
f,,:= f,, - y Vu'v' e {Uv} U P

end
else

Iz(u) :=min (z(v), fu v);
end
if u # v then

Prefix u in B(64)
v := u ;
Jump to the second statement inside the for loop

end
else

B(rq) := u, V E t (0i
end

end
x(B) := z(si); // Flow extracted on B
A' := A'+ x(B); // Total flow extracted
// Remove x(B) amount of flow from all the edges in B.

ft,, := ft,, - x(B) VO E F and Vu'v' E B(O) ;
// Remove x(B) amount of flow from all the relevant self-loops.

f9,, := ff,,, - x(B) VO E F and v' = start(B(O))
end

Figure 3-2: Embedding Edge LP [8]

19

3.4 Algorithms

Note that, one computation tree can have several feasible mappings over a network.

Define M as the set of all mappings of a computation tree g on our network K =

(V, E). To obtain the maximum computation rate R, we need to find the set of

mappings that obey capacity constraints of the network that sum to achieve R. We

define R with a discrete model, where the sources put out discrete packets of data,

and the terminal node receives discrete packets of the function output.

In Figure 3-4, Shah et al. gives a basic linear program that finds the maximum

computation rate A for a given computation tree over network K. It also outputs the

amount of flow of computation type 01, ... ,irl, where |F| is the number of compu-

tations, over every edge e E E in the network. A computation flow is the amount of

data being sent over an edge, which is easier to visualize when dealing with a discrete

model. f represents the flow from node u to v of computation type 0. N(v) is

defined as the set of nodes neighboring v and N'(v) is the set {N(v) U v}.

However, the scope of our problem is beyond this linear program. We want our al-

gorithm to be able to compute multiple functions simultaneously on the network, and

to give us the maximum total rate for both, weighted with their probability distribu-

tion. The probability distribution is the probability of each function being called by

the network, and therefore we want to maximize the total average computation rate
n

RF piAi. Shah's algorithm also does not take into account computation and com-
i=1

munication costs found in cloud computing. The multiple functions with probability

distribution problem is solved as shown below for a set of functions E = {8 1, .. . , en}
given computation trees 9i = (Qj, Fj) for i = {1,... , n}, where gi is the given com-

putation tree for function E. The set of functions e is given probability distribution

{Pi, . . ,Pn}.

20

n
Algorithm 1. max Z pi

i=1

subject to

fue + S f- S fu=0,V C Fi\{0|ri1, VFi E F and V/ E Chg(6). (3.1)
ucN(v) uEN'(v)

01ri E 0 -A- v=t
fi - fuI=, foriE{1,...,n} (3.2)

uEN(v) uEN'(v) 0. otherwise

f = A: v= s I for i E {1,...,n} (3.3)
0. otherwise

(f + f) < c(uv), Vuv E E. (3.4)
OeF

fuv > 0, Vuv E E, V6E Fi and VFi E F (3.5)

fO > 0, Vu E V, VO E ci and VFi E F (3.6)

Ai > 0. for i E {f .7 ... , n}. (3.7)

Different ways of combining computation and communication costs will be dis-

cussed in Chapters 4 and 5. Computation costs are costs placed on certain, or all,

nodes on a network for certain computations. These can represent inefficient ma-

chines or if certain computations are heavier than others. Communication costs are

the capacities of each edge, a fixed ceiling that is provided.

We will explore the first constraint, the functional conservation of flows, further.

The usual definition of flow conservation does not hold in the case of function flows,

as shown in Figure 3-3. When a computation involving f) and f0a) occurs at node

3, then

f1,) + f(12,3) # f(,4)

To achieve flow conservation, we introduce self-flows, fn) at each node, so that our

new conservation rule is,

f =(34) + f .

21

These self-flows represent the amount of computation done at each node, although

different computations may have different amounts of self-flow. We shall use these

self-flows when including computation constraints, as shown in Chapters 4 and 5.

1 2 1 2

(1,3) (2,3) f(1,3) f(2,3)

3 ' 3

(3,4) (3,3) f(3,4)

(a) (b)

Figure 3-3: (a) An example that shows the flow conservation constraint does not hold
in the function computation setup. (b) By adding a self-loop with infinite capacity
to node 3, a modified flow conservation constraint holds in this case.

Furthermore, we know basic bounds for the total computation rate over a network

given k sources and the min-cut rate of our network, "Y.

Theorem 2. Given a set of functions with k sources and a network A with min-cut

rate -y, the total computation rate RF has bounds,

7 < RF <k

Proof. The lower bound represents the simplest scenario, a centralized scheme where

all computations are done at the terminal node. In this case, each source can send 2k
to the terminal node, following the min-cut max-flow theorem for multicast networks

[1], giving us a total computation rate of -.

The upper bound is achievable by envisioning a virtual node connected to all k

sources with infinite capacity links. We also assume this virtual node has infinite

computational capacity. In this case, the limiting factor is the min-cut rate of the

network, -y, and again using the min-cut max-flow theorem, the upper bound of RF

is -Y. [-

22

Node-Arc LP: Maximize A subject to following constraints any node v E V
1. Functional conservation of flows:

f7±v + Y - f o = 0, VO E F \ { 1|ri} and Vr7 c (bg(O). (3)
ucN(v) uGN'(v)

2. Conservation and termination of Orl:

E 01, u-VU- 0V -A v t(4

uEN(v) uEN'(v) 0. otherwise

3. Generation of 6 Vl E {1, 2, ... , }:

fa=A v =s, (5)
0. otherwise

4. Capacity constraints

(f v + f u) < c(uv), Vuv E E. (6)
Ocr

5. Non-negativity constraints

fuv > 0, Vuv E E and VO C F (7)

f u > 0,Vu e V and VO E F (8)
A > 0. (9)

Figure 3-4: Node Arc LP [8]

Figure 3-2 details a linear program that finds the set of mappings that achieve rate

A. It does so by starting at terminal node t and exploring upwards to neighboring

nodes while checking if these paths contain nonzero flow of type 0ir. When the

algorithm hits a node u where none of the edges to neighbors contain nonzero flow of

type 6|rl, the algorithm assigns that computation to u, saves the path and the smallest

flow through that path, and assigns u as the starting point for all computations in

the set <Dt(ri). The algorithm then repeats for computations 6|rl-1, ... , 01. Every

run of the f or loop, as shown in Figure 3-5, outputs an embedding and its rate, the

smallest amount of flow on each path (the bottleneck), and the algorithm only stops

when it achieves the maximum computation rate given by Node Arc LP.

23

for i :I' to 1 do
v B(O) ; // valid, as B(O6) has of only one node at this step
u an element in N'(v) such that f7 i > 0
if u # v and u E B(6) then

// A cycle of redundant flow found: remove the flow from all
the edges in the cycle

Let P be the path in B(9j) upto the first appearance of u in it.;
Delete P from B(O6). ;
y := minu,,vc{uv}up (fI'I,')
fu,,,: fu,,, - y Vu'v' G {uv} U P

end
else

z(u) min (z(v), fui);
end
if u # v then

Prefix u in B(O8)
v := u ;
Jump to the second statement inside the for loop;

end
else

B(rq) :=u, Vr/ E <bt (0i
end

end

Figure 3-5: f or loop in Embedding Edge LP [8]

24

Chapter 4

A Maximum Computation Cost

Model

4.1 Description

In the Maximum Computation Cost Model, we are analyzing the behavior of compu-

tation flows over a network under certain limitations. The limitation is the maximum

computation power constraint in a network. In this case, we show how our frame-

work allows redistribution of computation flows over the network to achieve a better

total computation rate. However, a max-norm is not everywhere differentiable, and

therefore cannot be modeled as a convex program. Instead, we use the lk-norm ap-

proximation [7] which converges to max-norm as k -+ oc. The new convex program

constraints are below.

Algorithm 3.

n

max piAi - 6((f ,)P)
i=1 vEV OEr

subject to equations 3.1-3.7.

6 is the maximum computation cost parameter, a non-negative weight on the

maximum self-flow that controls how evenly the computation is spread through the

25

network.

4.2 Simulations

In our simulations, we consider two functions to be computed at the receiver:

f1l X1 * X2 + X3 * X4 + X5 * X6

f2 = X 1 *X 2 *X 3 j+ X 4 *X 5 *X 6.

The computation trees for fi and f2 are shown in Figures 4-1 and 4-2. There are

many possible computation trees for these functions, but the trees in Figures 4-1 and

4-2 encompass all possible mappings, because all possible computation orderings are

achievable with these computation trees.

X 1 X 2 X 3 X 4 X5 X6

X1*X2 X3*X4 X5*X6

Figure 4-1: Function 1.

We demonstrate the effect of adding an approximation of Maximum Computation

Cost (MCC) to our optimization problem, where we maximize the computation rate

A with an added lk-norm cost, 6 * (EZg gj) where gi,j is the sum of all flow over

edge (i, j) for all edges in the network and 6 is a control variable. As k -+ oo we are

effectively putting a constraint on the maximum edge flow in the network [7].

The initial network for this simulation ANI is shown in Figure 4-3. All edges have

26

X 1

X 1 * X2*X

X5 X 6

X 4 * XX6

Figure 4-2: Function 2.

capacity 10 except the edge from ni5 to the terminal node, nt, has capacity 1. We

chose edge capacities that cause flows to be denser in certain sections of the network

than others. The min-cut rate of this network is therefore 11. We are computing fi

and f2 over the network simultaneously and with equal weights.

4.3 Results

Figure 4-4 shows the change in distribution of computation over the nodes in the

network when we use the MCC constraint vs. when we do not use it. In this simulation

we are using 6 = .1 and k = 15. We achieved these values through trial and error.

A 6 value too small did not affect flows in the network, and too large a value caused

all flows to go to zero. The k is sufficiently large to provide us a reasonably accurate

approximation of the max-norm. Using higher values did not change the computation

costs, which means our k was able to find the maximum computation flow. We can

see that the computation rate in nodes in the second layer, {n7, ... , n12} increases

in the model with the MCC parameter, spreading the computation load through the

network more effectively than in the case without the MCC parameter.

Figure 4-5 shows the total computation rate over the network with varying 6

values. When 6 = 0 we can achieve the maximum computation rate of 22, but as

27

n6

n12

-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 4-3: Initial communication network N1.

6 increases, the computation rate decreases, eventually to zero when 6 becomes too

large.

28

20|

25 -
With MCC Parameter
Without MCC Parameter

20-

15-
0

10-

5-
. 0

0 ' '

0 5 10 15 20
Nodes

Figure 4-4: Self-Flow over nodes in the network g1

29

25

a>

15-
C
0

CL

E 10-
0

5-

0
0 0.5 1 1.5 2 2.5

MCC parameter

Figure 4-5: Total Computation Rate of fi and f2 vs. MCC constraint.

30

Chapter 5

A Linear Computation Cost Model

5.1 Description

The Linear Computation Cost Model consists of modifying the original Node Arc LP

in Figure 3-4 by adding costs to specific nodes proportional to the amount of self-flow

through that node.

Algorithm 4.

n

max piAi - S 6(1 fVOV)
vEV O6F

subject to equations 3.1-3.7.

6v, v E V are the linear computation cost parameters, non-negative weights on the

total self-flow through each node v E V that controls the computation cost. Unlike

the MCC model, this is a linear function and therefore can be solved with a linear

program.

31

5.2 Simulations

In this section, we consider the communication network Af 2 (V2 , E2) as depicted in

Figure 5-1 and the receiver node only demands to compute fi as defined in Figure

4-1. The network in Figure 5-1 has all edge capacities of 10, and we can see the

bottleneck is at the minimum cut of the network, across the edges from no to t and

nio to t, and the min-cut rate of this network is y = 20. We place costs on nodes

n7 - nio to analyze the redistribution of flow and the effect on computation rate.

151-

10

5

0

n6

n8

n10

-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 5-1: Initial communication network N2.

5.3 Results

Figure 5-2 shows the redistribution of flows occurring when all computations at n8

are given a Linear Computation Cost (LCC) constraint of 10. With no computation

costs, flow is distributed equally among nodes n7 , n8 , n9 , and nio. However, by

32

making n8 an expensive node at which to compute, flow is redistributed and getting

passed on further to n9 and nio.

0

U)

Cl)

40-

35-

30-

25-

20-

15-

10-

0

5

o With LCC Parameter
- Without LCC Parameter

0

0

oL
7 9

Nodes

0

0

10 1~1

Figure 5-2: Self-Flow over nodes in the network affected by the bottleneck g2.

Figure 5-3 shows the effect on computation rate of varying LCC constraint 6 from

0 to 0.5 for all computations at n7 - nio (the bottleneck). We have placed costs

on all nodes necessary for computation except the terminal node. We can see that,

when 6 = 0, we achieve the upper bound for RF as given by Theorem 2. As the

LCC constraint increases, all of the computation gets redistributed to the terminal

node, a more centralized scheme, which limits the computation rate to the bottleneck

capacity of the network over the number of sources.

33

m 19-

0
0 18.5-

o 18-

17.5-

17-

16.5
0 0.1 0.2 0.3

LCC parameter

Figure 5-3: Computation Rate vs. LCC constraint on

0.4 0.5

a subset of nodes.

34

Chapter 6

Network Design

In this chapter, we shall outline and simulate an algorithm that designs a network

that maximizes computation rate for a specific set of functions and their probability

distribution while minimizing network complexity.

Definition 5. Given a network N = (V, E), where V is the set of nodes and E the

set of all possible edges in K, a sparse network , = (V, E,) is optimal for a set of

functions F if E, C E and its computation rate Rs is maximized over all possible-

subsets of E of size |E|.

In our algorithm, we are defining network complexity by the number of edges in

our network. Therefore, an optimal network design of a given complexity is defined

as the network with a given number of edges e with the highest computation rate of

the set of all network topologies with a set of e edges that are a subset of all possible

edges of our initial network.

6.1 Greedy Algorithm

In this section, we are sparsifying a dense network with a greedy approach. At each

iteration, we run Node Arc LP and take away the edge with the smallest ratio of flow

to capacity, which is the locally optimal solution to improving the ratio of computation

rate and network complexity. The algorithm stops when we have reached the desired

35

number of edges. This algorithm can be combined with the models described in

Chapters 4 and 5, but for the simulation described in 6.2 we stick with the basic

model as described in the framework in Section 3.4.

Algorithm 6. The greedy algorithm is as follows,

1. Use Node Arc

(V, Er), where

2. Eliminate the

arg min(U,V)EEr

LP to compute all flows ffq for each edge for the network N' =

Er is the set of possible edges in K.

edge (u, v) with the smallest ratio of flow to capacity, (u, v) =

c! L where gr. = E c ffq and c(i, j) is the capacity of edge (i, j).

3. Update the set of edges: E+'1 = Er\{(ui, v 1)}.

4. If |Er+1| is the desired number of edges, terminate. Else, repeat.

6.2 Simulations

We start out with an initial communication network A = (V, E) with 6 sources, one

layer of 10 nodes, and a terminal node as shown in Figure 6-1(a). The set of possible

edges are all possible pairings of nodes that are between layers. Therefore possible

edges include and are limited to: all edges between {ni,... , n6 } and {n 7 ,... , n1 6}
(but none within sets) and all edges between {n 7, ... , n 16 } and nt.

We calculate the ratio of flow to capacity along each edge, and remove the edge

with the smallest ratio. No nodes on the same layer or non-adjacent layers are con-

nected, as shown in Figure 6-1(a).

36

10r

(a) Initial communication network A/3

(b) Iteration 20. Rate 1: 5.0411, Rate 2: 4.9589

(c) Iteration 40. Rate 1: 3.4555, Rate 2: 3.0445

Figure 6-1: Network Sparsification

37

6.3 Results

Figures 6-1(b) and 6-1(c) show the networks after iterations 20 and 40, where the

original network in Figure 6-1(a) has been reduced by 20 and 40 edges respectively.

Also in the description are the computation rates for fi and f2.

Figure 6-2 shows the total computation rate over NAI as an edge is taken away in

each iteration. We compare its performance with a random algorithm, where at each

iteration a random edge is taken from the network. We run the random algorithm 5

times and average over the runs to account for scenarios where edges that are taken

out cause the computation rate to drop to zero. The greedy curve does not drop

at every iteration, because, in cases where an edge is removed, it is still possible to

redistribute flows, which means the network still has an excess of edges that, when

removed, do not diminish the min-cut of the network. If an edge is removed in a

portion of the network that is not the min-cut, this does not affect rate because the

rate is determined by the min-cut, by the min-cut max-flow theorem [1].

38

10 1
- Greedy
-- Random

C8-

.

2-

0

50 60 70

edges

Figure 6-2: Computation rates summed over fi and f2.

39

40

Chapter 7

Conclusions

7.1 Project Accomplishments

In this thesis we have outlined a framework to find the maximum computation rate of

a set of functions for a given network with communication limits (capacity constraints)

in Chapter 3. We then discuss frameworks with different types of computation limi-

tations, the Linear Computation Constraint Model (Chapter 5), and the Maximum

Computation Constraint Model (Chapter 4). The LCC model uses a linear function

at each node to represent computation cost, while the MCC model uses the maxi-

mum computation over all nodes in the network. Since this is not a convex problem,

a relaxation of lP-norm is used as a substitute for the max-norm [3]. While this is

useful for achieving the best computation rate out of a given network, a better and

more useful optimization problem to solve for cloud computing is how to design a net-

work specialized for a set of functions. This problem is broached with a sub-optimal

greedy algorithm, as described in Chapter 6. We found we were able to sparsify a

given network while maintaining the same computation rate, and obtain a locally

optimal sparsifying solution at each iteration. However, future work still needs to

be done to find an optimal algorithm for designing a cloud network, as defined in

Definition 5.

41

7.2 Future Work

We have tried various algorithms to achieve optimal sparse networks using the basic

idea of our computation cost models, and adding a sparsity term 6 to minimize the

number of edges in the network. We added it as a cost to all the flows over the

network, excluding self flows. Unfortunately, the network is very sensitive to 6, and

flows go to zero too quickly to obtain a sparse network. More work will need to

be done to find an optimal algorithm, but another direction for optimizing cloud

networks is determining the physical location of source data. Given a set of possible

data locations, we can create a cost model that represents their distances from each

other to find the model with the highest computation rate.

In this thesis we have only analyzed two cost models, the LCC model and the MCC

model. However, there are other types of costs in cloud computing to consider and

model when routing flows. Common costs to model are network congestion and slower

nodes with higher computation costs. A variation of the MCC model that can be used

is a convex cost function, where the cost is proportional to the amount of self-flow

through each node. Another aspect of to improve performance we did not address is

functional compression. There is a certain amount of data distortion that occurs with

compression and decompression of data, and therefore we do not always need an exact

rate of computation when analyzing a network. We should investigate alternative

methods, like graph coloring, to our convex programming solution and analyze the

performance vs. accuracy of using information theory tools to approximate rates over

the cloud.

Function flows can also be useful in dealing with privacy issues in the cloud. To

protect private information and filter it from the results requested at the receiver

of a network (e.g. pulling information from insurance records), we limit the areas

of the network that Untrusted areas of the network can have limits on the type of

information they can access, which can be represented using the LCC model with

6 = oc on the computations requiring the sensitive information.

Future work can also be done to analyze different computation trees for functions.

42

A function has multiple computation trees, and while we have addressed that it is

best to choose a computation tree that encompasses all mappings on a network, there

also may be runtime advantages to having computation trees with similar topologies

when dealing with multiple functions, even if it means excluding some mappings.

43

44

Appendix A

Code

A.1 Node Arc LP code

1 function [MaxFlow, SparseNet , flows ,X, SelfFlows , edgeflows
FlowConsConstraintA , FlowConsConstraintB] = NodeArcLPa(CommNet,
CompWeights, FuncWeights, sources , t , CompTrees, Capacity)

% Calculates flow for a set of functions with associated weights

3 % CommNet is a adjacency matrix representing the Communication Network.
% NetEdges is the list of directed edges in the network

5 % CompWeights is a set of arrays that are the penalties on each
computation edge for computation cost.

% FuncWeights = weight associated with each function
7 % Sources is an set of arrays of integer values specifying the nodes

that are sources for each function.
% t is an array of indices of the terminal nodes for each function.

9 % CompTrees is a set of matrices of the Computation Tree, where there is

a +1 value if the row node is the predecessor of the col node.

% Capacity: capacity of each edge on the communication network
ii % MAXIMIZE: rate -sum(weight*rate of edge)-sparsity constant*sum(all edge

flows)
nodes = [];

13 selfflows = [];
NumFunctions = length (FuncWeights);

15 [rows, cols]= size (CommNet)

17 flows = CommNet;
for row = 1: rows ,

19 for col = 1: cols

if row=-col ,
21 flows (row, col) =1;

end
23 end

end
25

x=find (flows); %All nodes and edges in the network that have flow

45

27|%get the number of computation edges in each CompTree by counting
%the number of parent nodes

29 CompEdges=zeros (1 ,NumFunctions);
totalWeights =

31 sparseDesign =
X=zeros (1 ,NumFunctions);

33 for index = 1:NumFunctions,
CompEdges(index) = length(find (CompTrees{index}));

35 X(index)-CompEdges(index)*length(x);
totalWeights = [totalWeights; zeros(X(index) ,1)];

37 selfflows = [selfflows ; zeros(X(index) ,1)];
sparseDesign = [sparseDesign; ones (X(index) , 1)];

39 for theta=1:CompEdges(index),
for j=1:rows ,

41 sparseDesign (Matrix2Vector (j ,j , flows , theta , index ,X))=0;
self flows (Matrix2Vector (j ,j ,flows ,theta ,index ,X))=j

43 end
end

45 weights = CompWeights{ index };
[j ,~] = size (weights);

47 for i=1:j ,
totalWeights(Matrix2Vector(weights(i ,2) ,weights(i ,2),

49 flows , weights (i 3) , index ,X))=weights (i ,1);
end

si end

53 totalX=sum(X);
%minimizing over computation costs , and computation rates given function

55 %weights
f=[totalWeights; -ones (NumFunctions , 1) *FuncWeights'];

57 %FlowConservation
FlowConsConstraintA =

59 for func=1:NumFunctions,
for node = 1: rows,

61 for theta = 1:(CompEdges(func)-1),
newRow = zeros (1 , totalX+NumFunctions);

63 for eta = GetSuccessors(theta , CompTrees{func}),
newRow(Matrix2Vector (node, node, flows , eta , func ,X)) =

1;
65 end

for neighbor = GetNeighbors(node, CommNet,[])
67 newRow(Matrix2Vector (node , neighbor , flows , theta , func ,

X)) = 1;
newRow(Matrix2Vector (neighbor , node, flows , theta , func ,

X)) = -1;
69 end

newRow(Matrix2Vector (node, node, flows , theta , func , X)) =
-1;

71 FlowConsConstraintA = [FlowConsConstraintA; newRow];
end

73 end
end

75 FlowConsConstraintB = zeros (length (FlowConsConstraintA(: ,1)) , 1);

46

%TConservation
TConservationA =

for func = 1:NumFunctions,
for node = 1: rows ,

newRow = zeros (1 totalX+NumFunctions);
for neighbor = GetNeighbors (node, CommNet, [])

newRow(Matrix2Vector (node, neighbor , flows , CompEdges(func) ,
func , X)) = 1;

newRow(Matrix2Vector (neighbor , node, flows , CompEdges(func) ,
func , X)) = -1;

end
newRow(Matrix2Vector (node, node,

)) = -1;
if node = t(func)

newRow(totalX+func) = 1;

flows , CompEdges(func) , func , X

end
TConservationA = [TConservationA; newRow];

end
end
TConservationB = zeros (rows*NumFunctions, 1);

95%Generation of theta_1
totalSources = [];

97 for i =1:NumFunctions,
totalSources = [totalSources ,sources{i}];

99 end
numSources = length(totalSources);

101 ThetaGenerationA = [];
ThetaGenerationB = zeros (rows *numSources , 1);

103 row = 0;
for node = 1: rows,

105 for func = 1: NumFunctions,
for theta = 1:length(sources{func}),

107 newRow = zeros (1, totalX+NumFunctions);
if node=sources{func }(theta)

109 newRow(totalX+func) = -1;
end

in1 newRow(Matrix2Vector (node, node, flows , theta , func , X))

1;
ThetaGenerationA = [ThetaGenerationA; newRow]-;

113 end
end

115 end

EQConstraintA = [FlowConsConstraintA;
EQConstraintB = [FlowConsConstraintB;

TConservationA;
TConservationB;

ThetaGenerationA];
ThetaGenerationB);

%Capacity Constraints (LEQ)
CapConstraintA = zeros (length (Capacity) , tot alX+NumFunctions);
rowcount = 0;
for row = 1: rows,

for col = 1:row,
if CommNet(row, col)~= 0 && row>col

rowcount = rowcount + 1;

47

117

119

121

123

125

127 for func = 1: NumFunctions,
for theta = (1:CompEdges(func)),

129 CapConstraintA(rowcount, Matrix2Vector(row, col,
flows , theta , func , X))=1;

CapConstraintA (rowcount, Matrix2Vector (col , row,
flows , theta , func , X))=1;

131 end
end

133 end
end

135 end
CapConstraintB = Capacity;

137

%Non-negativity Constraints (GEQ)
139 NonNegConstraintA = -1* eye (tot alX+NumFunctions, tot alX+NumFunctions);

NonNegConstraintB = zeros (tot alX+NumFunctions, 1);
141

size (CapConstraintA)
143 size (CapConstraintB)

size (NonNegConstraintA)
145 size (NonNegConstraintB)

LEQConstraintA = [CapConstraintA; NonNegConstraintA];
147 LEQConstraintB = [CapConstraintB; NonNegConstraintB];

149 %Run linear program
MaxFlow = linprog(double(f), double(LEQConstraintA) , double(

LEQConstraintB) , double (EQConstraintA) , double (EQConstraintB));
151

%Generate sparse network
153 SparseNet = zeros (size (CommNet))

155 for row = 1: rows ,
for col = 1:rows,

157 if ConmNet(row,col)~= 0,
for func = 1: NumFunctions,

159 for theta = 1:CompEdges(func),
SparseNet (row, col)=SparseNet (row, col)+ MaxFlow(

Matrix2Vector (row, col , flows , theta , func , X))
161 end

end
163 end

end
165 end

167 SparseNet = SparseNet+SparseNet ';

edgeflows = SparseNet ;
169 SparseNet = SparseNet>le-5;

171 SelfFlows = [];
for i=1:rows ,

173 SelfFlows = {SelfFlows , sum(MaxFlow(find (selfflows=i)))]
end

175 end

48

code/NodeArcLPa.m

49

A.2 Embedding Edge LP code

function [embeddings ,weights] = EmbeddingEdgeLP (ConnNet, Capacity ,
FuncWeights, sources , t , CompTrees, MaxFlow)

2 %EmbeddingEdgeLP Given the Network graph , capacities , set of arrays
source nodes

%s , set of terminal nodes t , computation trees , and the linprog solution
, we generate

4 %the set of embeddings where sum(weight-i*x(B-i))=lambda
%in each iteration of the while loop , we find an embedding with a

nonzero
6 %flow and remove the corresponding edge flows to obtain another feasible

%solution with a reduced rate. We start by finding a mapping of
8 %theta-terminal .

[rows, cols]= size (CommNet);
10 weights={};

embeddings={};
12 flows = CommNet;

for row = 1: rows ,
14 for col = 1: cols

if row=--col ,
16 flows (row, col =1;

end
18 end

end
20

x=find (flows);
22 NumFunctions = length(t);

lambda = MaxFlow (length (MaxFlow)-NumFunctions+1: length (MaxFlow));
24 totalLambda=O;

X=zeros (1 ,NumFunctions);
26 for index = 1: NumFunctions,

CompEdges(index) = length(find(CompTrees{index}));
28 X(index)=CompEdges(index)*length(x);

end
30

for func=1:NumFunctions,
32 newLambda = 0;

weights { func }=[];
34 embeddings{func}={};

while abs(lambda(func) - newLambda)>1 && newLambda<lambda(func),
36 stopflag =0;

thetaT = length (find (CompTrees{ func }));
38 B{thetaT}=t (func)

Embeddingflow
40 trackpath ={};

for i = thetaT:-1:1,
42 trackpath{i }=[];

v = B{i}(length(B{i}));
44 vtried = [];

%goes into a loop, keeps trying the same nodes over and over
again.

46 while (stopflag==0),

50

zero flows =0;
48 possible = [v, GetNeighbors(v, CommNet, vtried)];

maxf = 0;
50 u = 0;

for each=1:length (possible)
52 if maxf < MaxFlow(Matrix2Vector(possible (each) ,v,

flows , i , func ,X)) ,
u = possible (each);

54 maxf = MaxFlow(Matrix2Vector(possible (each) ,v,
flows , i , func ,X))

end
56 end

if u =- 0 ,
58 stopflag = 1;

end
60 if MaxFlow(Matrix2Vector (u, v, flows , i , func , X))<=0,

index = Matrix2Vector (u, v, flows , i , func , X)
62 MaxFlow(index)= MaxFlow(index)-trackmin;

stopflag =1;
64 end

vtried [vtried , u]
66 i f u~=v 5K ~isempty (find (B{ i}==u,1)),

P=B{i }(1: find (B{ i}==u)) ;
68 if length(P)-=length(B{i }),

B{ i}=B{i }(length (P) +1: length (B{ i}))
70 else

B{ i }=[]
72 end

temp = ;
74 for nodei=1:length (P) -1,

if P(nodei) ~= P(nodei+1) && CommNet(P(nodei) ,P(
nodei+1)) ~=0,

76 temp = [temp, MaxFlow(Matrix2Vector (P(nodei) ,P

(nodei+1), flows , i , func ,X))];
end

78 end
temp = [temp, MaxFlow(Matrix2Vector (u,v, flows , i , func

80 y = min(temp)
%update the flows

82 for nodei=1:length (P)-1
current = Matrix2Vector(P(nodei) ,P(nodei+1),

flows , i , func ,X) ;
84 MaxFlow(current)=MaxFlow(current)-FuncWeights (

func) *y;
end

86 MaxFlow(Matrix2Vector (u, v, flows , i , func ,X))=MaxFlow(
Matrix2Vector (u , v, flows , i , func ,X))-FuncWeights (
func)*y;

else
88 Embeddingflow = [MaxFlow(Matrix2Vector(u,v, flows ,i

func ,X)) , Embeddingflow];
trackpath{i} = [u,v; trackpath{i}];

90 trackmin = min(Embeddingflow);

51

end
if v~=u,

B{ i }=[u,B{ i }];
V=u;

else
for eta = GetPredecessors (i

B{eta} = u;
end
break;

end

CompTrees{func }),

92

94

96

98

100

102 end

if stopflag==O,
xB- min(Embeddingflow);
FuncWeights (func) *xB
newLambda = newLambda + FuncWeights (func) *xB
%Remove x(B) amount of flow from all edges in B
Path=[];
for theta=1:thetaT ,

for i=1:length(trackpath{theta}(: ,1))
index=Matrix2Vector (trackpath{theta }(i ,1), trackpath{

theta}(i ,2) ,flows , theta , func , X) ;
MaxFlow (index)=MaxFlow (index)-FuncWeights (func) *xB;

end
end

else
xB=O;

end
check =0;
for e=1: length (embeddings{func })

check =0;
for b = 1:thetaT,

if length (embeddings{ func
if embeddings{func}{e

check= check+1;
end

end

}{e}{b})-=length(B{b})
}{b}==Bjb},

end
if check=thetaT

break;
end

end
if check=thetaT,

weights {func }(e) = weights{func }(e)+FuncWeights (func) *xB;
else

embeddings{func }{ length (embeddings{func })+11 = B;
weights {func} = [weights {func },FuncWeights (func) *xB)

end
end

end

code/EmbeddingEdgeLP1.m

52

end

Bibliography

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Network information flow.
46:1204-1216, 2000.

[2] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network flows: Theory, algorithms,
and applications, 1993.

[3] S. Deb and R. Srikant. Congestion control for fair resource allocation in networks
with multicast flows. Networking, IEEE/A CM Transactions on, 12(2):274-285,
2004.

[4] S. Feizi, A. Zhang, and M. M6dard. A network flow approach in cloud computing.
see arxiv.org, 2012.

[5] Soheil Feizi and Muriel Medard. When do only sources need to compute? on
functional compression in tree networks. In 2009 Annual Allerton Conference on
Communication, Control, and Computing, September 2009.

[6] Janos K6rner. Coding of an information source having ambiguous alphabet and
the entropy of graphs. In 6th Prague Conference on Information Theory, pages
411-425, 1973.

[7] D. Lun, N. Ratnakar, M. Medard, R. Koetter, D. Karger, T. Ho, E. Ahmed, and
F. Zhao. Minimum-cost multicast over coded packet networks. IEEE Transactions
on Information Theory, 52(6):2608-2623, 2006.

[8] V. Shah, B.K. Dey, and D. Manjunath. Network flows for functions. In Informa-
tion Theory Proceedings (ISIT), 2011 IEEE International Symposium on, pages
234-238. IEEE, 2011.

[9] F. Shahrokhi and D.W. Matula. The maximum concurrent flow problem. Journal
of the ACM (JA CM), 37(2):318-334, 1990.

53

