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Submitted to the Department of Physics
on May 11, 2012, in partial fulfillment of the

requirements for the degree of
Master of Science in Physics

Abstract

This thesis describes the construction of a versatile apparatus to study ultracold quan-
tum mixtures capable of simultaneously cooling fermionic 6Li and 40K, as well as the
bosonic 41K. The main features of the experimental setup are presented, in particular
the addition of a new species 23Na, which has enabled the study of the Bose-Fermi
mixture 23Na-40K.

Three main experimental benchmarks are outlined: first, the production of a
Bose-Einstein Condensate of 41K is discussed and an evaluation of its properties as a
coolant are analysed. Secondly, the creation of a triply degenerate Bose-Fermi-Fermi
gas of 41K-40K-6Li is presented. Simultaneous observation of Pauli Pressure and Bose
Condensation in the triply degenerate gas is reported. In addition, interspecies Fes-
hbach resonances between 41K-40K and 6Li-41K are observed, opening the way to the
study of a strongly interacting isotopic Bose-Fermi mixture of 41K-40K, which have
similar mass. Thirdly, the creation of a quantum degenerate Bose-Fermi mixture of
23Na-40K is discussed and over thirty Feshbach resonances are identified.

Finally, a degenerate 23Na-40K Bose-Fermi mixture opens the way to creating
fermionic NaK ground state molecules, which are known to be chemically stable and
have a larger permanent electric dipole than KRb. This thesis concludes with a review
of the molecular properties of NaK and explores the possibilities of bringing Feshbach
molecules of NaK into the singlet rovibrational ground state.

Thesis Supervisor: Prof. Martin W. Zwierlein
Title: Associate Professor
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gero Amari,

gero nire arrebari,

ta azkenian, bihotz-bihotzez,
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Thanks! Eskerrik Asko!

Rega as tuas plantas,

Ama as tuas rosas.

O resto é a sombra

De árvores alheias.

-Fernando Pessoa

This work is dedicated to my family: my Aita Josu, my Ama Amalia and my

sister Jone. Fruit of their love, unconditional support and encouragement is what

follows in this thesis. I have incredible parents, they are my constant reference and

to them goes my deepest Eskerrik Asko; which is the strange, long word we use in

Basque to say thank you. In the loving memory of my grandfather aitxitxe Valen, the

“tinkerer”, I know he would have been proud to see how such a complex apparatus

like Fermi 1 was built and produced so much science.

I would like to thank my advisor Martin Zwierlein for giving me the opportunity

to work in his group and participate in building two new labs: Fermi 1 and Fermi

2. I also thank him for reading this thesis. Martin’s enthusiasm for what he does is

contagious and you can see that throughout the CUA hallway when someone shouts

the Eureka analogue of Martin: dyeahh! Martin’s commitment to excellence is a value

I share and that I take with me anywhere I go. To him, Danke schön!

My warmest Mamnoon, thanks go to our postdoc Peyman Ahmadi, heart and

soul and chief director of Fermi 1. I thank him for being a great mentor and friend.

Peyman taught me most of what I know of experimental atomic physics. He took the

patience to teach me about vacuum, optics and electronics. When problems would

be overwhelming, he would divide it into pieces and follow the cartesian method. I

have fond memories of building chambers with him, solving electronics puzzles and

above all, discussing science and enjoying the beauty of it. Peyman managed to be a

superposition of Peymans in many labs. You would open the door of a lab and project

the Peyman wavefunction, and you would see him there helping someone. Everybody

would ask for him, to the extent that the popular phrase “Is Peyman around?” became
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a favourite sentence, along with our lab greeting Salaam!. I remember that when oven

changes or vacuum catastrophes happened, having Peyman next to us was always a

relief, because he knew what the right thing to do was.

Many Eskerrik Asko to my senior graduate student Chen-Hsun Wu for being a

partner in the journey of Fermi 1. He once compared the machine to an aeroplane;

definitely Cheng not only is an amazing plane engineer but a fantastic pilot as well.

He designed and took the lead in building the machine and his endless source of energy

and intuition, allowed him to bring the Fermi 1 plane to unexplored scientific islands.

And continues so. I cannot but follow the tradition and comment on the witty and

refined sense of humour of Mr. Cheng, only accessible to few in very unexpected

moments! We have spent together with Peyman many long nights in the initial runs

of the machine. It was a pleasure building pieces of Fermi 1 together with him and

sharing many exciting discoveries. I remember the adventures of silver-soldering with

a torch, playing with alkalis and water (dangerous) and other memorable moments.

He taught me how to build lasers and in times of rush and speed, he always took the

time to answer questions of any kind. Cheng is a brilliant scientist and more than

that, he is also a good friend.

I am also very grateful to the other fantastic of ”the fantastic four”, Jee Woo

(Peter) Park. I remember the shy person that became the lion of Fermi 1. We first

worked together in vacuum experiments for many months. We learnt a lot from each

other and collaborated in some jobs both in Fermi 1 and Fermi 2. Peyman liked to

call us Pat and Mat, referring to the interesting, sometime funny, solutions we came

up with. When we started the sodium project, Peter ran the machine and learnt to

use it in no time. I thank him for his friendship, kind and calm character and for

teaching me so many things.

I would like to thank Wolfgang Ketterle for his inspiring lessons. It was a pleasure

to be his teaching assistant and his lectures were always a gift to listen to. Only a

superb experimenter like him could give insightful suggestions as to how to approach

an experimental problem with our machine. When we had vacuum problems, Wolf-

gang cared to teach us with his experience. Many thanks to Vladan Vuletic for his
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advice in necessary moments.

I thank David Pritchard for his advice and fun Fermi-like problems at PI-student

lunches. When I first met him he recited the Gallic Wars opening lines to me: Gallia

est omnis divisa in partes tres...; to which I can reply, paraphrasing Caesar, ...Horum

omnium fortissimi sunt Vascones. It was a privilege for me to have met and learnt

from such great teachers. To them Eskerrik Asko.

There is a long list of people who I have interacted with in the CUA hallway, who

I would like to acknowledge. Most importantly, our fellow mates in the BEC exper-

iments and the new Fermi 2. Ariel Sommer is always a source of inspiration for the

great work he does, only comparable to the meticulous and kind Mark Ku. Lawrence

Cheuk is a man capable of talking brilliant science while smiling; it’s something not

commonly seen at MIT. The 3 Musketeers Wasseem Bakr, Tarik Yefsah and Sebas-

tian Will have revolutionized all 3 experiments in very short time. To Tarik, I say

merci for his kind words at the right moment and for inviting me to his house-parties.

I thank Tout Wang for always interesting discussions and his movie suggestions. I

am glad to have become acquainted with Hirokazu Miyake and Marko Cetina; they

always gave me good insight and I could borrow some tools from their labs. Many

thanks also go to the Cold Atom Walmart BEC 2; in times of lack of Thorlabs stock,

BEC 2 would provide us with all necessary waveplates to fill the entire experiment.

Late night philosophers Christian Sanner, Wujei Huang, Aviv Keshet and early morn-

ing hard working bird Jon Gillen have been of invaluable help in the success story

of Fermi 1. I also want to thank BEC 5 members Yvanna and Niklas for helping us

with oven changes and other critical moments in Fermi 1. Special thanks go to Sara

Campbell and Thomas Gersdorf. It was a lot of fun to work together and I learnt

many things from both of you. I am also grateful to Joanna Keeseberg for making

everything work.

Outside the CUA, I would like to thank Prof. Jeff Gore, Prof. Mark Bathe and

Prof. Jarillo-Herrero for their encouragement, help and advise. They have always

had their office open and talking to them was very enriching for me. I would also

like to thank Prof. Krishna Rajagopal and Cathy Modica for their guidance. A big
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hug goes to Crystal Nurazura, the best asset of the department; going into her office

always brings a big smile to one’s face.

Last but not the least, all this would not have been possible without my friends

Mona Khazaban, Shamim Nemati, Roberto Galván, Andrew Camacho and Igor Bra-

gado. They are a constant reminder that one should indulge one’s passion for science

but also remain human. I thank them for getting me out of the lab to enjoy their

conversation and I also thank them for their understanding when that did not happen

and for all those many moments we have shared together. Eskerrik Asko guztioi!
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Chapter 1

Overview

...In that Empire, the Art of Cartography attained such Perfection that

the map of a single Province occupied the entirety of a City, and the map

of the Empire, the entirety of a Province. In time, those Unconscionable

Maps no longer satisfied, and the Cartographers Guilds struck a Map of

the Empire whose size was that of the Empire, and which coincided point

for point with it. The following Generations, who were not so fond of the

Study of Cartography as their Forebears had been, saw that that vast Map

was Useless...

-Jorge Luis Borges, “Del rigor en la ciencia” (On Exactitude in Science)

1.1 Ultracold quantum mixtures as idealized mod-

els of Many-Body Physics

Predicting the evolution of a multicomponent system might seem more daunting than

the geographer’s task in Borges’ fable. The solutions at hand are either computational

calculation or simulation. In the case of an assembly of particles, the computational

power required to describe the system increases exponentially with the number of its

constituents. A numerical description is thus not an accurate representation of sys-

tems with large number of particles and may prevent obtaining the desired accuracy
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to explain and understand important phenomena such as high-Tc superconductivity.

Due to the complexity of real materials, an important goal in the study of complex

systems, like electrons in solids, is the search for the simplest models that nonetheless

describe the physics of interest. Our limited understanding of strongly-correlated

electronic systems hinders the development of new materials or even understanding

present ones, like high Tc superconductors. Even simple models that try to capture the

underlying physics cannot be solved analytically or numerically, and approximations

need to be made. Let us take the simplest pure quantum system we know, N spin-1/2

particles; we would need 2N coefficients to describe this system and for N≥50 this

task becomes practically impossible. Quantum simulators -which use one controllable

quantum system to investigate the behaviour and properties of another, less accessible

one - hold the promise of tackling problems like the latter, which are too demanding

for numerical computation [1]. This idea was first introduced by Richard Feynman

in 1981 [2] and tremendous advances in isolating and manipulating such simpler

quantum systems have been made in the past decades. Most of this progress has

been facilitated by the creation of ultracold atoms and quantum gases.

The study of ultracold atoms is a relatively new field that began with the first

experimental realization of a Bose-Einstein Condensate (BEC) in 1995 [3], later fol-

lowed by the creation of the first quantum degenerate fermi gas [4]. Because in cold

quantum gases formed by neutral atoms there are no effects of electric charge and

crystal impurities, these systems enable the observation of the pure quantum nature

of particles and allow realizing fundamental models of condensed matter physics in

a fully controllable environment, testing them with the precision of atomic physics.

Strong interactions in experiments with cold quantum gases can be created by con-

fining the atoms tightly in optical lattices or by tuning the interaction with so-called

Feshbach resonances. Feshbach resonances occur when a bound state within a two-

body potential is resonant with the energy of a pair of unbound atoms. If the magnetic

moment of the bound state and the unbound pair differ, they can be brought into

resonance by tuning a magnetic field. The scattering length a, which is a measure

for the interaction strength between atoms, diverges at resonance and it changes the
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sign. With Feshbach resonances and optical lattices, the experimenter has at hand

tools that facilitate the manipulation of interactions, dimensionality and disorder. By

changing these parameters unexplored phases of matter can be realized and studied.

For a long time, the work on ultracold fermionic gases has been limited to homonu-

clear systems. The addition of a different second fermionic element to create a

fermionic heteronuclear system or a bosonic element to create a Bose-Fermi mix-

ture tremendously enriches the system and adds more degrees of tunability. This

thesis aims in the direction of constructing an apparatus that will enable the required

versatility to undertake such experiments. Finally, another prospect for this kind of

systems is to create ground state molecules. Depending on the chosen species, these

molecules will be bosonic or fermionic, they can be chemically stable in their ground

state and they can exhibit a large dipole-moment enabling more analogies with con-

densed matter systems, such as artificial crystals, which could be created by applying

optical lattice potentials selective to each species. All these examples illustrate the

vast possibilities that ultracold mixtures of quantum gases exhibit. Proof of that is

the growing number of laboratories that are investigating these nature given gifts.

1.1.1 This thesis

Two experimental apparatuses have taken life in our group during my time at the

CUA and I had the privilege to be involved in the construction of both of them. Dur-

ing my first year we built the Fermi 1’s LiNaK machine and our first Bose-Einstein

Condensate of 41K saw light (literally) in a record time of one year after. A sec-

ond project started in parallel after this and it was coined as Fermi 2, in order to

study 6Li-40K mixtures using a 2D MOT. Together with Jee Woo Park, Sara Camp-

bell and Vinay Rameshesh we built a machine that was later replaced by the Fermi

2 microscope project. In Fermi1 the ability to use naturally abundant isotopes of

potassium, as well as lithium allowed us to study diverse combinations of Bose-Fermi

or Fermi-Fermi mixtures. Shortly after our first BEC, we were able to use it as a

fridge for our fermionic species and formed a triply degenerate gas. We observed

multiple heteronuclear Feshbach resonances, in particular a wide s-wave resonance
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for the combination 41K-40K. We also characterized the efficiency of 41K as a coolant

and provided evidence for Pauli pressure as we cooled the fermionic species 40K and

6Li.

After the big success of obtaining a triply degenerate quantum mixture in Fermi 1,

I undertook the stimulating job of adding sodium to our LiNaK machine and setting

up the Na optical table; with the invaluable help of my co-workers. One month after

the setup was completed, we obtained the Na MOT and shortly after, our Bose-

Einstein Condensate of sodium. With this, we had the best available coolant and

our next step was to study how well it could cool 40K. This triggered the discovery

of up to thirty Feshbach resonances for the new Bose-Fermi mixture and with some

broad resonances at hand, Fermi 1 has recently created NaK molecules, opening up

the possibility of generating fermionic dipolar ground state molecules, where dipolar

interactions would set the dominant energy scale.

This thesis is outlined in the following way:

• Chapter 2 introduces the atomic species that LiNaK is based on and discusses

some fundamental concepts of quantum statistics.

• Chapter 3 describes the experimental apparatus: the vacuum chamber and

general optical setup.

• Chapter 4 explains the Na optical table setup in detail.

• Chapter 5 describes the creation of a BEC of 41K, as well as its use as a

coolant. Phase-Space density is calculated and is used to measure the efficiency

of evaporation. The triply degenerate quantum gas is explained, as well as the

use of sodium as a coolant for potassium.

• Chapter 6 is an introduction to interactions and very basic scattering theory.

Feshbach resonances are explained and experimental measurements are listed.

• Chapter 7 is a primer in molecular physics in the context of the creation of

NaK ground state molecules.

18



Chapter 2

On bosons and fermions

2.1 Quantum statistics

When describing the behaviour of ultracold dilute gases, quantum mechanics takes

central stage. A feature that separates classical from quantum mechanics is that of

distinguishable particles. If two quantum mechanical particles are in the same internal

state, we say they are indistinguishable. If their wavefunctions overlap it is impossible

to determine after the time evolution of the system, which particle originated from

where. This concept of indistinguishability is what gives rise to the fundamental

difference between classical and quantum statistics.

On the basis of symmetry of the system all of the light and matter in the universe

can be divided into two categories: bosons and fermions. They are distinguished from

one another by their quantum mechanical spins. As such, quantum statistics is further

divided into the following two classes: Bose-Einstein and Fermi-Dirac statistics. This

division is based on the Pauli Principle, which extended to N number of particle states

that:

The wave function of a set of N indistinguishable particles is completely

symmetric and remains unchanged upon exchanging two arbitrary parti-

cles. In this case, these particles are classified as bosons. If the wavefunc-

tion is completely antisymmetric, it changes sign when two particles are
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exchanged. In this case the particles are named fermions

The spin-statistics theorem, derived by Wolfgang Pauli [5], relates quantum statistics

to the spin of the particles. All particles with integer spin or zero are bosons, whereas

particles with half-integer spin are fermions. Consequences of quantum statistics can

be seen in different Helium isotopes: electron structure of fermionic 3He and bosonic

4He are exactly the same, but the number of neutrons is different, which leads to

a different quantum statistics [6]. Another example is the one of fermionic 40K and

bosonic 41K, which will be discussed in this thesis.

Figure 2-1: A Bose-Einstein Condensate (Left) and a Fermi sea (right) in a harmonic
trap.

2.1.1 Bosons

The possible many-body wavefunctions of non-interacting bosons are given by sym-

metric combinations of single-particle eigenstates. The ground state is the state where

all particles occupy the same single-particle ground state |0⟩ with energy E0. A macro-

scopic occupation of a single quantum state gives rise to a new state of matter known

as Bose-Einstein condensate (BEC). It was predicted for non-interacting particles by

Albert Einstein and S.N. Bose in 1925 and was observed in dilute gases for the first

time in 1995 [3].

For finite temperature T, the occupation of the single-particle eigenstates is given

by the Bose-Einstein distribution, where ϵ is the eigenenergy.

20



N(ϵ) =
1

exp ϵ−µ
kBT

− 1
(2.1)

where µ represents the chemical potential. There exists a critical temperature

Tc below which the ground state occupation N0 becomes macroscopic. For the par-

ticular case of interest, which is that of 3D harmonic trap, under the semi-classical

approximation the condesate fraction N0/N is given by:

N0(T )

N
= 1−

(
T

Tc

)3

(2.2)

imposing a null population of the ground state N0 = 0 and solving an integral as

in [7], we obtain the BEC critical temperature:

TC =

(
N

ζ(3)

)1/3 ~ω̄
kB

(2.3)

The two relevant energy scales for such system are the thermal excitation energy

and the mean levels of separation. For our experimental apparatus the typical trap

frequency for 41K is ω̄ = 2π 380 MHz, which corresponds to a mean spacing of 18

nK, which fulfils the requirement for the semi-classical approximation kbTc >> ~ω.

The onset of Bose-Einstein Condensation is characterized by the bimodality of

the cloud in time-of-flight images (TOF): an elliptical core is the condensed atoms,

surrounded by a round homogeneous background thermal cloud.,

In our experiment we have three bosonic species: 39K, 41K and 23Na1.

2.1.2 Fermions

Fermions have half integer spin. Everything surrounding us is made of fermions,

that is, electrons, protons and neutrons. Any neutral atom with uneven number of

neutrons is a fermion. An important concept is that of a degenerate fermi gas, in which

all energy states below a critical value EF , the Fermi energy, are filled. By the Pauli

1Note that for alkalis, which have a single valence electron and hence an odd number of them; an
odd A number translates into an even number of fermions (e−, p+ and n0). Hence, neutral atoms
with odd A number are bosons, whereas even number are fermions
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principle, no quantum state can be occupied by more than one fermion with identical

properties. Thus a Fermi gas, unlike a Bose gas, is prohibited from condensing into a

Bose-Einstein condensate but instead will form a Fermi sea. The atoms will occupy

the N lowest energy states by exactly one fermion per state. Important examples are

that of the electronic structure of atoms, where because of the Pauli exclusion, not all

electrons collapse onto the 1s energy state. In the same way, conductance electrons,

because of the same principle, can give rise to insulating or metallic materials.

Non-interacting fermions in thermal equilibrium follow the Fermi-Dirac distribu-

tion, which for the single-particle eigenstate of the hamiltonian with energy ϵ is given

by:

f(ϵ) =
1

e
ϵ−µ
kBT + 1

=
1

z−1e
ϵ

kBT + 1
(2.4)

where µ is the chemical potential which controls the particle number N and z is a

the fugacity parameter. This distribution function in the limit of T = 0 becomes the

heaviside function f(ϵ) = θ(EF − ϵ)

For a 3D harmonic trap we can solve the integrals as in [8] and obtain the following

important thermodynamic variables that will be widely used in this thesis: The Fermi

temperature,

TF =
EF

kB
=

~ω̄
kB

(6N)1/3 (2.5)

and a useful relationship between the fugacity and the reduced temperature T/TF :

Li3(−z) = − 1

6(T/TF )3
(2.6)

where Li3 is the polylogarithm. More relations and the relevant integrated density

distribution are given in [8].
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2.2 Properties of Li, K, and Na

The alkali atoms we use have bosonic and fermionic isotopes. Here is a list of them

and their natural abundances:

Isotope Quantum statistics Natural abundance
6Li fermion 7.5%
39K boson 93.26%
40K fermion 0.012%
41K boson 6.73%
23Na boson 100%

Table 2.1: Used alkalis in the LiNaK machine, the quantum statistics they obey and
their natural abundance.

The underlying idea of laser cooling and trapping is to use our knowledge about

the internal structure of atoms to manipulate their external degrees of freedom. It

is therefore necessary to know these properties thoroughly. All our experiments are

done with alkali atoms, which all have an unpaired electron in the S shell. The

first excited state is of the form n2PJ and is split by spin-orbit (L⃗ · S⃗) coupling into

J=1/2 and J=3/2 states. We will be concerned only with the n2P3/2 state, which

connects to the ground state by the D2 line. The wavelength corresponding to this

transition is 671 nm for lithium, 589 nm for sodium and 767 nm for potassium.

Because these wavelengths lie in the visible, they are attractive for laser cooling and

trapping. Further splittings are due to the coupling between the electron and the

nuclear spin. At low magnetic fields, the good quantum number is F⃗ = I⃗ + J⃗ and its

projection along the quantization axis, mF . The values for the nuclear spin are I=1

in 6Li, I=3/2 in 23Na and I=4 in 40K. The hyperfine splitting of the ground state is

228 MHz in 6Li, 1.77 GHz in 23Na and 1286 MHz in 40K.

Relevant optical and magnetic properties of these alkalis can be found in the

following sources: potassium [9], sodium (Alkali D Line Data by Daniel Steck) and

lithium [10]. For the reader new to the art of laser, cooling and trapping, a nice

introduction can be found in William Phillip’s Nobel Prize lecture [11].

Below, the hyperfine structure and used transitions are depicted for lithium and
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potassium. Sodium and other potassium isotopes are discussed later in the thesis.

Figure 2-2: Hyperfine structure and transitions for 6Li.
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Figure 2-3: Hyperfine structure and transitions for 39K and 40K. This figure was
modified from [12]
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Chapter 3

The multi-species machine

In this chapter I will describe the main features of the new apparatus LiNaK (Fermi 1)

for creating quantum mixtures. Building of this apparatus was carried out by Cheng

Hsun Wu, Dr. Peyman Ahmadi and the author, later joining Jee Woo Park and

with the invaluable help of undergraduate students Sara Campbell, Caroline Figgat

and Kevin Fisher. It remains as one of the most versatile machines in the field of

ultracold atoms.

3.1 Vacuum chamber

The Fermi 1 LiNaK apparatus belongs to a new generation of ultracold atom exper-

iments at MIT. It is inspired by previous setups and incorporates the most advanta-

geous features of its predecessors.

The apparatus consists of two independent Zeeman slowers, optimized for 6Li/23Na

and all three K isotopes. The oven is designed as a source for two species and it

contains two cups where each of the source ampules are placed and heated. The

favorable mass ratio between sodium and lithium allows for simultaneous Zeeman

slowing of both species, resulting in a very bright atomic beam. We heat the K cup

up to 1900C and the Li/Na cups are run at 3000C. The vapour is sprayed out from

a nozzle in 2π solid angle into a six-way cross where we had a cold plate. The cold

plate serves to collect most of the sodium/lithium that sprayed out of the nozzle. It
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is a simple copper plate that can be externally cooled. The beam shutter is placed

immediately after the cold plate. It is a simple “flag” made out of steel with a tapped

hole in the blank. An actuator controls whether the flag is blocking the atomic beam

or not. As the atomic beam passes through the shutter it enters the Zeeman slower

where atoms are slowed down to ≈ K (30 m/s).

Figure 3-1: Two independent Zeeman slowers for lithium/sodium and potassium,
allowing us to simultaneously load large samples of each of the three atomic species
directly into a UHV chamber. Atoms are cooled, trapped and imaged in the main
chamber.

These cold atoms are then captured by the Magneto-Optical trap located in the

main vacuum chamber. The main chamber combines the robustness of a stainless

steel chamber with the excellent optical access of glass cell experiments. The main

chamber features five inserted “bucket” windows, two of them 4” in diameter and

only 0.5” away from the atoms. It provides optical access for slowing, trapping and

imaging from six sides.

Perfect thermal isolation between our atomic gases and the stainless steel walls
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surrounding them is necessary in ultracold atom experiments. Transfer of energy

from the walls to the gas sample can take place through residual gas molecules. That

is why we need to work in ultra high vacuum conditions (UHV is defined below

10−9Torr). In order to achieve pressures as low as 10−12Torr, a proper “bake-out” is

needed, whereby residual gases (H2, hydrocarbons, CO2, H2O...) are out-gassed and

pumped out of the chamber. In this process, we used three kinds of pumps: rotary

pumps, turbo pumps and ion pumps. Up to 5 ion pumps maintain the UHV in the

chamber. On top of this, titanium sublimation pumps make the chamber itself act

as a getter (mostly for H2) by adding a layer of Ti on the surfaces. Separating the

chamber from the oven there are two MDC gate-valves and one VAT manual valve

that allow complete isolation of the main chamber from the source and facilitates an

easy oven change.

Figure 3-2: Main UHV vacuum chamber (Science chamber) where Magneto-Optical
Trapping (MOT) of 40K, 41K,39K, 6Li and 23Na has been achieved.

3.2 Optics

Two laser tables address the host of different alkali atoms that are cooled and trapped

in our experiment. On one of the tables, the potassium laser systems consists of

a home-made grating-stabilized diode master laser (767 nm), 4 slave lasers and 4

tapered amplifiers. Making use of many optical and acusto-optical tools, the necessary

light to cool, trap and image all 3 isotopes of K is generated and transported via
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optical fibers to the experimental table. Next to it, the lithium setup consists of a

Toptica DL Pro (671 nm) and tapered amplifier BoosTA, as well as 2 slave diode

lasers. Both laser setups make use of doppler-free saturation spectroscopy to lock

to the absorption lines (we usually lock to the D2 crossover resonance for the most

abundant isotope in the absorption cell, i.e. 39K and 6Li).

On the second table, the sodium laser system is setup, as well as a Ti:Saph CW

Ring laser for spectroscopy. The sodium laser setup will be treated in the next chapter

separately.

Below we see fluorescence from Magneto-Optical traps that have been realized

with this apparatus.

Figure 3-3: MOTs of all 4 species
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Chapter 4

Cooling and trapping sodium

In this chapter we present a laser system which creates the slowing, trapping and

imaging light of 23Na. The natural choice for a laser source has traditionally been

a dye laser; however, for the first time for laser cooling of Na, we have adopted a

solid-state based laser that produces the necessary power (maximum of 2W) of the

yellow transition line of sodium (589nm). This setup is based on previous work in

BEC1[13]; a bit more compact and without the hassle of dye lasers. The optical setup

may be divided into three different sections: the one dedicated to spectroscopy, another

one for trapping and slowing light and the last one dedicated to imaging. We begin by

introducing the basic properties of sodium and a description of the laser source.

4.1 Essential concepts for cooling, trapping and

imaging Na

The slowing and trapping of sodium involves several laser frequencies. These are

manipulated on the optical table by means of acousto-optical modulators (AOMs),

electro-optical modulators (EOMs) and a series of optical elements. The diagram

below shows the interesting part of the energy level diagram of 23Na relevant to our

work.

A sodium atom in the ground state has a single valence electron in the 3S1/2
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Figure 4-1: Level diagram for 23Na showing the hyperfine structure for the 3S1/2

ground state and the 3P3/2 excited state. Shown is the cycling transition |F = 2⟩ →
|F ′ = 3⟩. F=1 imaging and repumping light is resonant with the |F = 1⟩ → |F ′ = 2⟩
transition and hence, blue detuned 1.71 GHz from the cycling transition. The slower
light is red-detuned (roughly 1 GHz) from the cycling transition.

configuration. With a nuclear spin of I=3/2, the two ground state hyperfine manifolds

have total spin F=1 and F=2, split by a hyperfine frequency of 1.71 GHz. The ground

state has two strong absorption lines from transitions to the excited 3P state known

as the sodium doublet. The D1 line at 589.6nm for excitation to the 3P1/2 state, and

the D2 line at 589.15 nm for the excitation to the 3P3/2 state. We lock our laser onto

the D2 line. The excited state has a natural lifetime of 16 ns (linewidth of 10 MHz)

on the |F = 2⟩ → |F ′ = 3⟩ transition, and has four hyperfine manifolds with total

spin ranging from F=0 to F=3.

In order to laser cool, a cycling transition is required, in which a Na atom returns

to the same ground state after scattering a photon. Such a transition is the 3S1/2|F =

2⟩ → 3P3/2|F ′ = 3⟩ transition. There is an additional effect one needs to consider

in laser cooling; occasionally light scattering will transfer an atom from the |F ′ = 2⟩

state to the |F = 1⟩ state. A repumping beam fixes this, by exciting atoms from the

F = 1 manifold to transfer them back. In addition, sodium atoms need to be slowed
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down along the Zeeman slower before they reach the vacuum chamber. Atoms are

exposed to red-detuned light from the cycling transition and because of the Doppler

shift, only a short range of velocities will be in resonance. This is achieved by detuning

light 1 GHz from the cycling transition to generate slowing light.

4.1.1 The light source: Solid State Laser for Na

Alkali metals like sodium have simple optical properties due to the presence of a single

valance electron. This makes alkali atoms amenable to laser cooling by providing

strong optical transitions, where lasers are available. Reaching the transition line

of Sodium at 589 nm (the well-known “sodium doublet”) typically requires a dye

laser system. Although well-mastered in the CUA and other atomic physics research

groups, dye laser systems are expensive and notoriously difficult to maintain and

operate. As a result, other alkalis such as Rubidium or Cesium, whose resonances

can be addressed using cheaper and more user-friendly laser diodes, have become

more attractive for spectroscopy or atomic physics applications. This picture has

dramatically changed with recent advances in nonlinear frequency conversion and

this has allowed our group to adopt a solid-state based 589 nm yellow light source.

The setup consists of a polarization maintaining optical amplifier for amplification

of a narrowband CW signal from an external 1178 nm grating stabilized diode laser

(TOPTICA DL Pro) with a subsequent frequency doubling of the amplified signal

in a Second Harmonic Generation (SHG) module. It consists of a Visible Raman

Fiber Amplifier Module and Fiber laser pump module (MBP Photonics) . The pump

light from the pump module is guided to the amplifier by a polarization maintaining

pump delivery optical fiber. The pump module allows monitoring of the Raman

Fiber Amplifier signals via the RFA monitor cable. It also provides an active power

stabilization of the SHG output power and temperature stabilization of the SHG

crystal. The optimal temperature may be slightly different at different pump laser

diode currents. Practically, one should optimize the SHG temperature at a certain

reference current, for example at 4 A, then keep the temperature setting for the whole

current range and record this information to avoid power drifts in the setup.
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Figure 4-2: Diagram of Raman Fiber Amplifier (MPBC VRFA-SF series) pumped by
Ytterbium Fiber Laser (MPBC YFL series). The seed laser is a 1178nm TOPTICA
DL Pro grating stabilized diode laser.
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Two principles govern this 589nm light generation: amplification and second har-

monic generation. On the one hand, the tunable grating stabilized DL Probe provides

roughly 20mW and this is further amplified in the Raman Amplifier module. Stimu-

lated Raman Scattering (SRS) takes place and the lower frequency seed induces the

inelastic scattering of a higher frequency ’pump’ photons in an optical medium in the

nonlinear regime (in this case, an optical fiber). As a consequence the pump photons

that undergo inelastic scattering with the glass molecules of the fibre core, excite vi-

brational states of the medium and create ’optical phonons’, which divert part of the

photon energy so that the pump photons are shifted to longer wavelengths, known

as the Stokes shift. After the all-optical amplification to ≈10 W of 1178 nm, in a

second step, the signal is frequency doubled after going through a Lithium Triborate

(LBO) crystal which is mounted inside a temperature controlled oven. The system

can produce up to 1.8 W of 589nm yellow light.

Raman-fiber-amplifier-based 589 nm sources were developed by Dr. Yan Feng

et al. and have attracted attention in astrophotonics as a reliable and compact

source for laser guide star. The laser beam is projected at approximately 100 km

in the mesosphere, producing laser guide stars by excitation of mesospheric sodium

atoms. Introducing this laser in the ultracold atom community is relevant, given the

importance of sodium as one of the best coolants among alkali atoms. Our laser was

developed by the MPBC 1. Further discussion on the development of this laser can

be found in the literature by Feng et al [14].

4.1.2 Tools for manipulating light: AOMs and EOMs

In addition to a light source, it is necessary to have control over power, frequency, size

and direction of the laser beam. To this end, several optical components are used,

such as: polarazing beam-splitters (splits light into beams of differing polarization),

λ/4 and λ/2 waveplates (retarders that alter the polarization state of the beam by

creating a phase shift), mirrors ( -A coated for 589nm), shutters (Uniblitz, millisecond

switching time) and all sorts of lenses to focus or collimate the light. CVI Melles Griot

1MPB Communications Inc.; Montral, Quebec
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Figure 4-3: Photograph of the Raman Fiber Amplifier, Ytterbium Fiber laser, Seed
diode laser and the Second Harmonic Generator (SHG) head.

provides a comprehensive technical guide to optical components [15].

The interaction between sound waves and light is a broad and fascinating field of

study, appropriately named Acousto-optics. This is the main physical principle that

we use in our experiment to shift the frequency of our light beams. Radiofrequency is

generated in home-built or commercially available drivers (IntraAction Inc.) and this

power is transformed into sound waves inside a Tellurium Dioxide TeO2 crystal via a

piezoelectric transducer that is attached to it. The travelling sound wave exchanges

energy and momentum with the photons traversing the crystal. This effect can be

explained as Bragg diffraction of photons from a crystal lattice . An incident laser

beam passing through the crystal will diffract the laser beam into several orders. The

first order beam has normally the highest efficiency. Its angular position is linearly

proportional to the acoustic frequency, so that the higher the frequency, the larger

the diffracted angle. In the diagrams below two common configurations of AOMs

that overcome beam steering are presented: double-pass and Tandem. There are

tricks that can speed up the optimization of an AOM; however one can always make

use of a photodiode and maximize the desired diffraction order, while rotating the

AOM and adjusting its height. A key signal is the reduction of light intensity of the
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non-diffracted zeroth order beam. A general discussion on Acusto-optical theory and

devices can be found in the book by A. Korpel [16].

Figure 4-4: Some AOM configurations used in the experiment. In a) double-passed
AOM shifts the beam frequency v in the first pass. The beam is retroreflected and
shifted again for a total shift of 2v. The output exhibits no steering of the beam.
In b) the TANDEM configuration, one AOM is driven at a frequency v+e and the
other one at v-e. Gives a total shift of 2e, allowing fast small frequency shifts without
steering the beam.

BRIMROSE 1.77GHz AOM (Repumping beam) Of particular difficulty is

the setup of the modulator required for generating the repumping and imaging lights

for the |F = 1⟩ → |F ′ = 2⟩ transition. This is done using a high-frequency acousto-

optic modulator (TEF-1700-100-589, Brimrose Corp). The BRIMROSE AOM is

placed on a translational and rotational stage that allows fine tuning for optimization

of the diffraction efficiency (≈ 25%). A f=100mm lens was necessary to focus the beam

into the transducer of the AOM (75µ m). The beam has to be linearly polarized for

maximum efficiency. The driver that powers this AOM is home-built and generates

less than 1W of 1.77 GHz.

Electro-Optic Modulators and EOM Driver As opposed to an AOM, which

changes frequency spatially by splitting the main beam into different orders, an EOM

adds frequency components in the time domain. This is the electro-optic effect, known
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Figure 4-5: Brimrose high-frequency acusto-optic modulator set on a x-y-z transla-
tional stage.

as Pockels effect, where the refractive index of a medium is modified in proportion

to the applied electric field strength. The most important materials of this type are

crystal materials such as lithium niobate (LiNbO3).

When building an EOM, the crystal is placed next to an inductor made from

about 10 loops of wire and a capacitor made from two pieces of copper solder wick on

either side of the crystal. These are wired in a series LC circuit and RF power from

an EOM driver is coupled to it through a BNC cable.

The EOM driver is designed to produce up to 5W radio frequency signal. To

generate a 1.7GHz signal, we create a x80 frequency multiplier using a phase detector

with a loop filter (PDF) out of RF Bay Inc. components. The driver box has an

attenuator to prevent damaging the amplifier since an input power of +1dBm is not

to be exceeded.

Figure 4-6: Schematics of phase detector loop filter used to drive the EOM
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RF Bay Part Number Description
PDF-100 3-300MKHz Phase Detetor with Loop Filter
FPS-80-8 0.8-8.0 GHz Divide by 80 Prescaler
VCO-2050 1950-2150MHz Voltage Controlled Oscillator
PSC-2R-42 DC-4200MHz Splitter

MiniCircuit ZHL-5W-26-S+ RF Amplifier

Table 4.1: List of necessary parts for building an EOM driver

The two inputs of the phase detector are the reference input and the feedback

from the VCO after dividing the signal by 80. The PD output controls the input

voltage to the VCO, such that the phase difference between the two inputs is held

constant, making it a negative feedback system.

4.1.3 Saturation absorption spectroscopy of Sodium vapour

We lock the laser beam 142 MHz below our primary trapping resonance (being the F

= 2, mF = 2 to F’ = 3, mF = 3 transition). For that, the laser beam goes through a

double pass AOM first and then into the spectroscopy area.

An absorption cell is used for saturation-absorption spectroscopy; the cell is kept

at a temperature of 230 0C. Coating of the cell was a major issue, and the problem

was solved by placing the cell inside a cylinder with different layers of heating bands.

The wrapping was done in such a way as to generate a temperature gradient, with

the side windows being hotter than the middle. This strategy proved not to coat the

cell as much and allowed proper absorption spectroscopy.

In an absorption spectrum of Na vapour at ≈ 2000 C, the atomic transitions are

broadened to several GHz by the Doppler effect. Saturated absorption spectroscopy,

first developed by T.Haensch and Schawlow [17], overcomes this problem by selecting

only a specific velocity class of atoms and thus providing a Doppler free signal that

has a width closer to the natural linewidth (Γ ≈ 2π10MHz). The experimental setup

consists of two overlapping counterpropagating beams, called pump and probe, which

interact with the Na atoms in the cell. The probe beam is detected on the photodiode

which measures its absorption by the vapor.
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Figure 4-7: Laser source and spectroscopy area. A Brimrose AOM is used to shift
the frequency 1.77 GHz to provide repumping and imaging light
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In order to stabilize the laser to a reference frequency an electro-optic modulator is

used to generate an error signal. The resonant frequency is 32MHz.The voltage across

the capacitor oscillates and produces an oscillating electric field inside the crystal. In

turn, the index of refraction of the light will oscillate in time. Therefore, the phase

change that the laser light acquires will also oscillate in time. We chose to modulate

the probe beam. After some signal processing we get an anti-symmetric error signal

that we will be able to lock to (see Fig. 4-8).

Figure 4-8: Absortion signal (left) and dispersion signal (right)

4.1.4 MOT, Slower and Repumping and imaging light

In the following two diagrams the generation of MOT light, repumper beams and

slower beams are depicted. Before each fiber there is a clean-up process to avoid

fluctuations in polarization, since this would compromise the fiber-coupling to a po-

larization maintaining fiber. The imaging beams are taken from the zeroth order

of the repumper beam and from the zeroth order of the MOT beam and combined

and frequency shifted to give F=1 and F=2 imaging light. These are combined in

a cube and separated into imaging-x and imaging-y, which are two different imaging

directions.

In the table below, key frequencies read on AOM drivers that change throughout

the experimental sequence are given. Other frequencies that remain always constant

are listed on the diagram.
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Imaging Optical Pumping MOT
F=1 Imaging 88.3 MHz 111.3 MHz 100 MHz

TANDEM 1st AOM 199 MHz 212.1 MHz -
TANDEM 2nd AOM 200 MHz 187.7 MHz -

Table 4.2: Key frequencies throughout experimental sequence read off AOM drivers.

Figure 4-9: MOT light, repumper and slower lights
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Figure 4-10: Imaging light diagram.
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Chapter 5

Quantum degenerate mixtures

5.1 Isotopic Bose-Fermi mixture in a Fermi sea

In this section we review the creation of a Bose-Einstein Condensate of 41K and study

its properties as a coolant. We also report on the generation of a triply degenerate

quantum gas of 41K, 40K and 6Li. Density profiles provide information about prop-

erties of the clouds and allow us to observe different quantum statistics in the case

of fermionic 6Li and 40K and bosonic 41K. We show that 41K is an efficient coolant

by measuring the phase-space-density (PSD) evolution while 41K is evaporated. Fi-

nally, we simultaneously observe Pauli pressure and Bose-Einstein Condensation for

the fermionic and bosonic species, respectively.

5.1.1 Bose Einstein Condensation of 41K

The primary motivation of producing a BEC of 41K was to establish 41K as a coolant,

enabling the production of Bose-Fermi mixtures. Potassium has another stable bosonic

isotope (39K) which is more abundant (93.3%) compared with 41K (6.7%). The choice

of 41K was motivated because of many drawbacks that 39K presents. On the one hand,

the unresolved hyperfine structure in the excited electronic state limits the effective-

ness of laser cooling methods and thus adversely affects the initial conditions for

evaporative cooling. In addition, at zero magnetic field the triplet s-wave scattering
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length is small and negative. This entails that the Ramsauer-Townsend minimum

occurs at a temperature of around 320 µK (a zero in the cross-section) [18]. This

makes it additionally difficult to achieve the high elastic collision rates needed for

evaporative cooling and ultimately prevents the creation of large Bose-Einstein con-

densates in a magnetic trap. Nevertheless, groups in Florence and Cambridge have

successfully obtained a BEC of 39K by tuning the scattering length with Feshbach

resonances and by means of sympathetic cooling with another species (87Rb)[19] [20]

.

In our experiment, we employ a standard method for producing a quantum degen-

erate gas of 41K. We use laser cooling, followed by evaporative cooling in a magnetic

trap. Laser cooling of 41K is not straightforward, since the hyperfine splitting of 4

2P3/2 between F’=3 and F’=2 is 14 MHz, which is the same order of magnitude as the

natural linewidth of the D2 line (6.2 MHz) (Fig 5-1). The F=2 → F’=3 transition is

not separated from other F’ and no longer has a close transition, because off-resonant

excitation to the other excited states can occur. We detune the cooling beam to the

red of the whole excited state hyperfine manifold, thus increasing the capture range

of the magneto-optical trap (MOT). Following [21] the same amount of laser power

is used for both cooling and repumping transitions.

The slower yields 3 · 109 atoms loaded in 2s into the MOT. To increase the initial

atom density, a 40 ms compressed MOT phase and a 6 ms optical molasses stage

follows. Figure 5.1.1 outlines the compression steps, as well as the repumper power.

After the MOT and molasses stages, the atoms are loaded onto the magnetic trap

and prepared in the stretched hyperfine states |F,m⟩ = |2, 2⟩ using optical pumping.

This is achieved by shining σ+ polarized light resonant with the |F = 2⟩ → |F ′ = 3⟩

transition. The quantization axis is defined by the magnetic field parallel to the

incoming beam.

Evaporative cooling of 41K is performed in a quadrupole magnetic trap with a

vertical magnetic field gradient of B′
z = 220G/cm and a horizontal gradient of B′

⊥ =

110 G/cm.
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Figure 5-1: The energy level diagram of 41K. Hyperfine splitting between F’=2 and
F’=3 of 42P3/2 is comparable to the natural linewidth of the D2 line (6.2 MHz).

Figure 5-2: Compression steps and repumper power before loading onto the magnetic
trap.
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Optical Plug A complication in the use of quadrupole magnetic traps arises from

the fact that an atom will be lost if it undergoes a transition into a non-trapped state

near the magnetic field zero. This loss mechanism is referred to as a Majorana flop.

In a classical picture, the atom is trapped as long as its magnetic moment can follow

the direction of the magnetic feld adiabatically, while the atom moves through the

trap. As soon as the change in the magnetic field occurs too fast, the atom can flip

non-adiabatically into a non-trapped state.

The magnetic moment of the atom precesses around the magnetic field. The

frequency of this precession is given by the Larmor frequency :

ωL =
|µ⃗F · B⃗ext|

~
=

µB|gFmF ||B⃗ext|
~

(5.1)

The atom will be confined as long as the following condition is fulfilled:

ωL ≫ |
dBext

dt

Bext

| (5.2)

For small magnetic fields the Larmor frequency reduces to zero. Therefore, near

the magnetic field zero the criterion (5.2) will not be satisfied and the atoms can

escape from the trap. The region of loss is usually referred to as the Majorana hole.

At a cold temperature in the range of microkelvins, with a gradient of 220 G/cm, the

lifetime for Na, for example, is on the order of a few seconds. For our quadrupole

traps, we make use of a repulsive potential of a blue-detuned laser beam. This strong

dipole force repels the atoms from the hole region. The trap geometry is known as the

optically plugged quadrupole trap and it was developed by Wolfgang Ketterle’s team

[3]. In our setup we use a VERDI Coherent Inc. green laser (power 15W, wavelength

532 nm) focused to a waist of 20 µm. This creates a repulsive barrier for lithium,

potassium and sodium.

The total potential is a superposition of a dipole potential Vplug and the magnetic

potential Vmagn.
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V = µB

√
(B′/2x)2 + (By0 +B′/2y)2 + (B′z)2 +

αKP
π
2
w2

exp

(
−2

y2 + z2

w2

)
(5.3)

Plotting this expression we obtain a faithful representation of the optically plugged

potential. The gradient is 110 G/cm and the previous plug parameters have been

used.

Figure 5-3: The trapping potential, essentially identical for all species, is sketched
along the three axis. The plug beam is along the x-axis. y0 represents the trap
minimum.

A well-centered plugged trap allows two trap minima. In order to obtain a single

trap minimum y0, in the final 2s of evaporation, a horizontal bias field is applied in

the y direction, perpendicular to the plug beam.

5.2 Evaporation and sympathetic cooling

Evaporative cooling consists of removing high-energetic atoms from an atomic cloud,

which will result in a cloud with lower temperature. These atoms carry away more

than the average energy of the atom gas and therefore the temperature of the remain-

ing atoms decreases. Evaporative cooling only works efficiently if the gas is able to

thermalize and repopulate the energetic states in the Maxwell-Boltzmann distribu-

tion during the cooling procedure. As atoms are withdrawn continuously, the cloud

will never reach thermal equilibrium.
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In our optically plugged magnetic traps without a zero magnetic field, evaporative

cooling is performed via radio frequency (RF) radiation. In the trap, atoms with

higher energies can reach higher magnetic field values and therefore obtain a larger

Zeeman shift. The RF frequency can be matched to the Zeeman shifted transition

frequency between a trapped and a non-trapped hyperfine state. Evaporation on 41K

is performed down to a radiofrequency of 500 kHz above the 254.0 MHz hyperfine

transition of 41K. Below, we see the bimodal signature of a Bose-Einstein Condensate

in time-of-flight absorption images. This was the first benchmark in our experiment,

creation of a BEC of 41K.

Figure 5-4: Bimodal signature of BEC by direct evaporation.

5.2.1 Efficiency of evaporation.Phase space density measure-

ment for different traps

We distinguish between two regimes in the calculation of phase space density: the

gradient trap regime and the harmonic trap regime. Our gradient trap is not perfectly

linear, considering it is plugged with 15W of repulsive 532nm light. Hence, a harmonic

approximation is appropriate to describe the bottom of the potential. These two

approaches should meet at a characteristic temperature.
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PSD for bosons in a gradient trap Let N be the total number of atoms and

n0 the maximum atom density. The gradient potential is given by V = −µBB⃗′r⃗ =

−µB

√
(B′

xx)
2 + (B′

y)
2 + (B′

z)
2. Hence, in thermal equilibrium the total number of

atoms can be written as:

N =

∫ ∞

0

n0e
−βV (r)d3r (5.4)

considering that B′
z = 2B′

x = 2B′
y = B′, and a change of variables from x → x/2,

y → y/2, we may rewrite 5.4 as:

N = 4

∫ ∞

0

n0e
−βB′r̃d3r̃ = n0

(βµB′3)

32π
(5.5)

The phase-space density, being defined as ρ = n0λDB can be calculated for a

thermal gas in a gradient trap as:

ρ = n0λ
3 = N

(βµB′)3

32π

(
h√

2πmkBT

)3

(5.6)

PSD for bosons in a harmonic trap Using the same definition as before, we need

to evaluate the maximum in-trap density n0. For a harmonic trap and considering

large times (t >> ωx,ωy,ωz), the density profile is given by:

ntof (r, t) =
1

λ3
dB

g3/2(e

(
µ−mr2

2t2

)
/kBT

) = n3D(0)g3/2(z exp (−r2/R2
th)) (5.7)

The relationship between the measured n2D and n3D can be obtained by integrat-

ing along one dimension:

n2D =

∫ ∞

−∞
n3D(r⃗dz) = n3D(0)

√
πRthg2(z exp−r2/R2

th) (5.8)

rescaling distances and time we obtain the maximum in-trap density:

n3D(0) = n2D(0)
g3/2(z)

g2(z)

1√
πRth

(ω̄t)3 (5.9)
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The deBroglie wavelength can be evaluated in the same fashion as before.

PSD for Fermions in a harmonic trap PSD is ill-defined as fermions approach

degeneracy. In principle PSD could reach infinte values as temperature decreases.

This cannot be true for fermions, since we know that they form a Fermi sea at T=0

and therefore, PSD cannot be infinity, as predicted by the nλ3
dB expression.

Hence, instead of a thermal de Broglie wavelength λdB, we introduce another de-

Broglie wavelength λv =
~

m
√
<v2>

calculated from the characteristic velocity v; which

could be the thermal velocity for thermal gases or the fermi velocity as degeneracy is

approached. Let
√
< v2 > = R/t, where R =

√
N
n2D

. Hence, the PSD yields:

nλ3
v = n

~3t3

m3R3
=

nintrap(ω̄t)
3~3t3

m3R3
(5.10)

=
n2D(ω̄~)3t6

m3R4
=

n3
2Dπ

3R6
F (ω̄t)

6

6N3
(5.11)

This quantity can be shown to be proportional to T/TF apart from some constant.

This qualifies it as a good PSD measure, since it is 0 at T=0 and 1 when T = TF .

5.2.2 PSD measurement

The necessary parameters to evaluate PSD are the following: the gradient B’, the

temperature of the gas and the number of atoms. Here we describe how to obtain

the three.

B’ gradient measurement The best way to calibrate the field is to probe the

atoms, and see what field (what current of the coils) exactly holds atoms against

gravity. As an example, we measure that a field produced by a current of 13 A is

able to hold 41K against gravity in our magnetic trap. By equating mk41g = µB′ we

obtain B′ = 1.1T/m.

Evaporative cooling of 41K is performed with a magnetic field gradient B′
z =

220G/cm along the vertical direction (B⊥ = 110G/cm along the horizontal direction).
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For the last 2 s of evaporation the trap is decompressed to B′
z = 110G/cm to suppress

three-body losses.

Thermometry: Time-of flight measurements (TOF) The common approach

to measuring the temperature of a cloud of cold atoms is the so-called time-of-flight

TOF imaging, where all trapping potentials are switched off and the cloud is let to

expand freely until it is imaged. Absorption images are obtained by illuminating

the atoms with a resonant laser beam and imaging the shadow cast by the atoms

onto a CCD camera. These images integrate through one dimension to give a two-

dimensional image, which we can evaluate to determine a Bose, Fermi or thermal

distribution. The distribution at the wings is a 2D gaussian and its width σ =√
< p2 > t2/m2 is a measure of the temperature.

kBT =
1

2
m
< σ >2

t2
(5.12)

Thermometry measurements from absorption images of clouds can be more in-

volved and Gaussian fits to the wings of the cloud might not be accurate enough. In

addition, short TOF measurements reveal the geometry of the trapping potential and

if this is asymmetric (with a certain aspect ratio), then fits to integrated 2D profiles

will not give accurate results. In many cases, we have performed fits to the wings of

azimuthally averaged profiles to determine the temperature. Case by case, the fitting

procedure will depend on the degree of degeneracy of the gas, and whether it is a

bosonic, fermionic or thermal gas.

We will refer to the reader to a thorough discussion about thermometry of Bose

and Fermi gases in the Varenna notes [22] and [7].

Measurement of atom number To obtain the atom number from absorption

images the following analysis is performed: a total of 3 pictures per cycle are taken

with our ANDOR CCD camera: 1) a picture with atoms Iatom 2) a picture with

no atoms Ino−atoms and 3) a background picture where everything is switched off

Ibackground. By substracting the background, only the atomic cloud survives:
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Iatom − Ibackground
Ino−atom − Ibackground

=
Iout
Iin

(5.13)

The atomic cloud, with a density n(x, y, z) absorbs the imaging light Iin. It

follows from Beer’s law that: dI/dz = −σ(z)n(x, y, z)I(x, y, z), where σ(z) is the on

resonance scattering cross section σ(z) = 6π λ2

(2π)2

Integrating the 3D atomic density profile n(x,y,z) along the imaging direction (let

us call it z) will yield a 2D column density n(x,y). Inserting this in Beer’s equation

and taking into account the magnification M and the pixel count A, we obtain the

number of atoms:

N = −AM2

σ
ln

Iout
Iin

(5.14)

Evaporation efficiency The evaporation process should be slow to give time for

elastic collisions to happen but it has to be faster than the lifetime of the atoms.

The latter is mostly determined by the vacuum quality, since it is a measure of the

background gas collisions that can take place. Once we had established an evaporation

path towards quantum degeneracy, we measured the efficiency of the evaporation

path. A good figure of merit is the quantity γ, defined as:

γ =
−d lnPSD

d lnN
(5.15)

which measures the slope in a logarithmic plot of phase-space density PSD against

atom number. An effective evaporation will lead us to an increase in PSD for every

atom lost; hence a positive γ > 0 is desired. At different stages of the evaporation

process we measured the PSD by releasing the trap at predetermined times.

Because of the small fermion number (≈ 105), the evaporation efficiency γ of 41K

is similar with and without the fermionic load (γ ≈ 3). Incidentally, this is close to the

result by Shin Inouye’s group [21], who report an evaporation efficiency of γ = 2.7.

The near-vertical slope in the case of fermions is a proof of efficient sympathetic

cooling by 41K.
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Figure 5-5: Evolution of phase-space density PSD with atom number N during evap-
oration of 41K, with and without 40K and 6Li. The slope γ indicates the evaporation
efficiency.

5.2.3 Triply degenerate mixture of 41K, 40K and 6Li

The first important step in producing a degenerate Fermi gas of two different species

is to load the mixture into a magneto-optical trap and simultaneously trap a bosonic

species in to open the possibility of sympathetic cooling of the two fermionic species

by the bosonic species.

Our experimental procedure consists of co-trapping 6Li and 40K while we load 41K

into the MOT. We deliberately choose to load 105 fermionic atoms , since ultimately

it is the bosonic coolant that will determine the maximum number of fermions that

can be brought down to degeneracy. In our case, 41K limits the fermion number to

about 2 · 105.

After loading the three species into the MOT, all three species undergo opti-

cal pumping and are prepared in the low-field seeking stretched hyperfine states of

|F,mF ⟩ = |2, 2⟩ for 41K, |F,mF ⟩ = |9/2, 9/2⟩ for 40K and |F,mF ⟩ = |3/2, 3/2⟩ for 6Li.

After this state preparation, evaporative cooling of 41K is performed in the magnetic
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trap, following the previously outlined procedure.

Optical pumping never results in a perfect state transfer, hence we developed a

way to “clean up” unwanted hyperfine states. Gravity assisted state selection, consists

of removing unwanted states by setting the magnetic trap to a gradient B′
z sufficient

to support only stretched states such that µB′
z = mg. For 6Li in the stretched state

|F,mF ⟩ = |3/2, 3/2⟩, we have a total magnetic moment of µ (1/2 from spin and 1/2

from orbital angular momentum). Hence, a magnetic field gradient of B′
z = 1G/cm

will suffice to hold lithium atoms against gravity. In our case, the B′
z is reduced to

15 G/cm, thus decreasing the chances that spin-exchange collisions will occur 1.

Evaporation on 41 K is performed down to a radiofrequency of 500 kHz above the

254.0 MHz hyperfine transition of 41K. After evaporation, time-of-flight absorption

images are taken to (destructively) probe the created mixture. We use an iXON CCD

camera (ANDOR) in fast kinetic mode, whereby the camera shifts to a masked area

before the next exposure is performed. The ANDOR camera is capable of shifting

CCD-lines at a rate of microseconds. Using this mode, fast consecutive images of

the three species can be taken before the slow electronic readout is performed. From

TOF images we can extract the density profile of the 3 species and extract their

temperature, atom number and relevant thermodynamic variables.

In Fig. 5-6 we see absorption images of a triply degenerate quantum gases of

41K, 40K and 6Li, images after 8.12 ms, 4.06 ms and 1ms time-of-flight, respectively.

By summing the pixels and azimuthally averaging, we obtain column densities as a

function of distance measured from the center of mass of the cloud. We perform

Gaussian fits to the wings (solid dots) to extract the temperature of the clouds and

also Gaussian fits to the entire cloud (solid black). On top of that, 41K profiles were

fitted with a Bose-Einstein bimodal distribution and the Fermi gases were fitted with

the Fermi-Dirac distribution . We can see a sharp deviation from the Gaussian fit,

which would correspond to a classical gas.

1Spin-exchange collisions are a cause of atom loss during evaporation. Spin exchanging collisions
are inelastic. Because of the Zeeman effect, different hyperfine states have different energies, which
depend on the B field. If spin-exchange happens, the energy difference between the final and initial
state can be positive or negative, giving rise to exothermic or endothermic collisions. In spin-
exchange collisions, the total spin Mtotal = mF +m′

F is conserved.
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Figure 5-6: Absorption images of triply degenerate quantum gases of 41K, 40K and
6Li, imaged after 8.12 ms, 4.06 ms and 1 ms time of flight from the magnetic trap,
respectively. Atom numbers are 1.1 x 105, 2.0 x 105 and 1.6 x 105 respectively. The
white rim indicates the Fermi radius RF
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To obtain relevant degeneracy parameters we need to know the Fermi temperature,

which for a harmonic trap is given by:

kBTF = ~ω̄(6N)1/3 (5.16)

ω̄ is the geometric mean of the trapping frequencies. We can extract this value

from the trap geometry or we can use a handy formula derived for a BEC in a

harmonic trap that relates the trapping frequency to critical temperature for onset

of BEC TC :

Tc = ~ω̄(Nc/ζ(3))
1/3 (5.17)

where ζ(x) is the Riemann zeta function: ζ(z) =
∑∞

n=1 n
−z. In addition, we can

relate the condensate fraction nc to the critical temperature Tc:

nc = 1−
(
T

Tc

)3

(5.18)

We take several TOF images before and after the onset of BEC and plot condensate

fraction nc against a new variable x = T
TC

and fit it to the function nc = max(1 −

(ω̄x3), 0). At the intercept with the nc = 0 (onset of BEC) we obtain an accurate

value for the geometric mean of the trapping frequency ω̄. For 41K we obtain ω̄ = 2π

380 Hz

Expressed in Hz, we can extrapolate the trapping frequency for the fermionic

species by mass scaling. Below, Fermi temperatures and Fermi radii are given for the

three species:

41K 40K 6Li
ω̄ 2 π 380 Hz 2 π 384 Hz 2 π 993 Hz
TF µK 1.93µK 1.79µK

T/TF 0.51 0.16
RF 116 µm 184 µm

Table 5.1: Fermi temperatures , Fermi radii and trapping frequencies for the three
species, extracted from Fig. 5-6

58



Using equilibrium thermodynamics to extract the degeneracy factor T/TF :

The coolant brings the fermions down to degeneracy by sympathetic cooling. As-

suming the three species are in thermodynamic equilibrium, once a BEC is formed,

the temperature of the three gases is Tc. Under the harmonic approximation we can

relate the critical temperature to the Fermi temperature of the fermions and obtain

the degeneracy factor T/TF :

T

TF

=
T

TC

¯ω41K

ω̄Fermion

N
1/3
41K

(6ζ(3))1/3
(5.19)

If T = TC,41K then, T = TF,40K ≈ 0.51 and T = TF,6Li ≈ 0.2; which is close to the

values obtained before by fitting the time-of-flight distributions.

5.2.4 Simultaneous observation of Pauli Pressure and Bose-

Einstein Condensation

The achievement of simultaneous Bose-Fermi degeneracy enables a direct and striking

comparison between bosons and fermions at low temperatures. Moreover, in the

case of the potassium isotopes 41K and 40K, the difference that gives rise to distinct

quantum statistics is only one neutron. The effect of quantum statistics on the sizes

and shapes of the clouds can be seen in axial and radial density profiles. For example,

bosons are characterized by a shrinking profile as it gets colder and by the formation

of a bimodal shaped profile with a large and narrow parabolic peak, representing the

BEC. On the other hand, fermions when degeneracy is reached, form a Fermi sea and

the profile does not shrink as temperature is decreased.

Inspired by the work by A. G. Truscot et al. [23] and the early BEC work [3],

we set to evaluate a quantity that would show the distinct features that appear in

absorption images for Fermions and Bosons. This quantity is the 1/e width R of

a Gaussian fitted to the fermionic or bosonic distributions. This value depends on

the time-of-flight t and mass of each species, hence, a better quantity is the release

energy defined as E = 1
2
mR2/t2. A normalized value can be obtained by dividing

it with the Fermi energy EF of each cloud (including the Bosons). This quantity is
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calculated for many evaporation steps, from hot thermal clouds down to degeneracy

and plotted against the normalized temperature of the clouds T41K . Thermometry is

done by fitting Bose functions to the wings of the 41K distribution.

Figure 5-7: Observation of Pauli pressure and Bose condensation in a triply degenerate
quantum mixture. Shown is the normalized release energy E/EF of each cloud versus
the normalized temperature T/TF . Bose condensation of 41K occurs at Tc/TF =
0.52, causing a sudden reduction in release energy below Tc. For fermions, in contrast,
the release energy saturates due to Pauli pressure. Solid circles: 6Li, open circles:
40K, solid squares: 41K. Solid lines: theory for an interacting Bose gas and a non-
interacting Fermi gas. Dashed line: Boltzman gas.

At high temperatures we expect E/kB to equal the temperature of each cloud.

This is why clouds collapse onto a straight line at hight temperatures. However, at

low temperatures, the release energy of a trapped Fermi gas saturates, due to Pauli

pressure [23]. On the other hand, E is suddenly reduced as a condensate forms.

The theoretical curves shown with the experimental data were obtained by the same

procedure with artificially generated clouds in a computer simulation.
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5.3 Quantum degenerate Bose-Fermi mixture of

23Na and 40K

Adding 23Na to our system opened up the possibility to study new mixtures. The

initial motivation was to use sodium as a more effective coolant for both 40K and

6Li in order to study Fermi-Fermi mixtures. However, the Na-K mixture itself is a

wonderful object of study, since it enables the creation chemically stable, fermionic

ground state molecules, where strong, long-range dipolar interactions take place. In

the following lines, the experimental steps leading to a Bose-Fermi mixture of 23Na

and 40K are reviewed and the formed quantum mixture is analysed.

5.3.1 Experimental sequence

The production of a Bose-Einstein Condensate of sodium is the first step towards the

formation of a Bose-Fermi mixture of Na-K. This will not be reviewed here, since

most of the experimental steps are based on previous work in the CUA [13]. Addition

of K gives a new twist to the experiment since it makes the mixture prone to new

mechanisms of atom losses; among them, spin-changing collisions in the MOT and

magnetic trap. In order to minimize losses, our group developed a method, whereby

one species (Na) is loaded into the MOT, optically pumped to the stretched state

|2, 2⟩ and captured in the magnetic trap, only supporting such a state against gravity.

This field is left on while loading of K takes place. Hence, we say that Na has been

“shelved” and this way only atoms in the stretched state are present in the optically

plugged magnetic trap before K is loaded. The final atom number can be controlled

by changing the MOT loading times for the two species.

After both species have been loaded into the magnetic trap, the mixture undergoes

RF evaporation. Hot 23Na atoms in the stretched |2, 2⟩ state are removed from the

trap by applying radiofrequency to couple the atoms to the untrapped state |1, 1⟩.

After decompression, a 5µK mixture is loaded onto a crossed optical dipole trap. The

lifetime of the mixture is increased by transferring the 23Na atoms to the hyperfine
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ground state |1, 1⟩ via a Landau-Zener sweep to obtain a longer lived (τ=20s) mixture

of 23Na |1, 1⟩+ 40Na |9/2, 9/2⟩. The gas is then further evaporatively cooled by

reducing the intensity of the dipole trap beams.

At the end of this scheme of evaporation, a degenerate Fermi gas of 40K is obtained

coexisting with a Bose-Einstein condensate of 23Na. In Fig. 5-8 two sets of absorption

images of the mixture are shown with different atom numbers.

It is important to point out the bimodal density distribution in the fermionic

cloud coexisting with the large condensate. This can be explained by considering the

strong attractive interaction between 23Na and 40K. As the condensate grows, we see

that the fermions feel the created strong mean-field potential. This phenomenon has

been studied by Ospelkaus et al. in the case of 40K87Rb, where they measured an

enhanced mean-field energy of the condensate due to mutual mean-field confinement,

predicted by a Thomas-Fermi model [24].

Figure 5-8: Simultaneous quantum degeneracy of 23Na and 40K atoms. Pairs of time
of flight (TOF) absorption images of a 23Na BEC and a 40K Fermi cloud are shown.
In e) a strong attractive interaction between the two species can be observed as a
sharp increase of the central density in the fermionic cloud in the presence of a Bose
condensate. c) and f) are the center-sliced column density of the fermionic clouds
of b) and e) respectively. The upper row contains a 50%-50% mixture, whereas the
lower row has only 8% of fermionic 40K. Degeneracy of fermions is T/TF = 0.6.
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5.3.2 Efficiency of evaporation

We studied the efficiency of 23Na as a coolant for 40K by taking absorption images

of both species during evaporation. We measured the atom number and determined

the temperature of the clouds by fitting a thermal profile to the wings of the bosonic

species 23Na. Three regimes can be distinguished: 1) the magnetic trap 2) Decom-

pressed magnetic trap and 3) ODT. Because transfers are done adiabatically, PSD is

expected to be the same at the transition points.

The cooling efficiency for sodium in the magnetic trap is γNa = 2.7. The load

on the bosons does not affect the efficiency. However, sympathetic cooling of 40K

is not as effective, because 40K is seen to be lost from the trap due to three-body

collisions. In the crossed-dipole trap we find that that by transferring 23Na to |1, 1⟩,

the atoms are less confined and efficiency of evaporation of sodium is compromised

γNa = 0.9. However, the 40K atom number does not change, therefore the efficiency

for sympathetic cooling is high.

If we use 23Na only as a coolant and evaporate all of it, a degenerate Fermi gas of

40 is obtained at T/TF = 0.35 and N40K = 3 · 105 .

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
S

D

10
5

10
6

10
7

10
8

10
9

Atom Number

ODT

Magnetic trap

Decompresed

Magnetic trap

Figure 5-9: Phase-space density (PSD) evolution vs atom number N. Blue circles: 40K,
Red squares 23Na with 40K. Green diamonds:23Na alone. Empty and solid symbols
represent the PSD in the magnetic trap and optical trap, respectively.
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Chapter 6

Interactions: Feshbach resonances

Interactions are fundamental in the study of quantum gases. Although most of the

physics described here occurs in dilute gases, atomic interactions determine the out-

come of many cold atom experiments. In fact, no quantum degeneracy could be

achieved if it not were for collisions between atoms. For example, evaporative cooling

is based on the presence of elastic collisions between atoms. Beyond the mere tech-

nique, interactions form a fundamental part of the richness of ultracold science. It is

through interactions that atoms are correlated and form a host of novel phases of mat-

ter, ranging from excitations in a weakly interacting Bose gas to strongly interacting

superfluids or insulators.

Along with laser cooling and trapping and evaporative cooling, one of the most

relevant tools in ultracold science is the the ability to freely tune the interactions by

use of Feshbach resonances [25]. By simply changing a magnetic field it is possible to

tune the interaction from strongly attractive to strongly repulsive. This tool allows the

experimenter to manipulate and probe interacting systems at will and test theoretical

predictions as a function of interaction strength. In addition, a control over interaction

can be used to produce weakly-bound molecules, also known as physicist’s molecules

or Feshbach molecules.

In the following, a brief introduction to the physics of interactions will be given,

focusing on Feshbach resonances. The observation of many heteronuclear Feshbach

resonances will also be described. These results have been published in [26] and [27].
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6.1 Long-range and short-range interactions

The strength of an interaction between two bodies primarily depends on their dis-

tance. In the case of alkali atoms we will distinguish two clear differing regimes of

interaction [28]:

On the one hand, at long-distances the electron clouds do not overlap and the

main interaction is the dipole-dipole interaction between two mutually induced dipole

moments. This is known as van der Waals interaction and it has the form of −C6/r
6,

where r is the atomic separation. The range of this potential is given by the van der

Waals length lvdW = 1
2

(
mC6

~2
)1/4

, beyond which it can be neglected. In the case of

Na-K, the C6 = 2447a.u. [29] and a range of lvdW = 54a0.

On the other hand, at short distances, electron clouds overlap and other kind of

interactions start taking place. These are dominated by a strong repulsive core due to

the overlapping clouds. Hence, the relative spin orientation of the outer valance elec-

trons acquire an important role. Although at long-range their difference is negligible,

the ground state potential of a singlet S = 0 or triplet S = 1 is very different.

In the diagram 7-4 we see an example of a Born-Oppenheimer potential, which will

be further discussed in the next chapter. Here the ground state potential between a

23Na atom and a 40K are depicted. At short distances the singlet potential X1Σ and

the triplet potential a3Σ are split. The reason for the singlet S = 0 to have deeper

minimum, relies on the fact that due to a symmetric spatial wavefunction, there will

be higher overlap and hence stronger bond will be formed, as compared to atoms with

opposite spins, for which the Pauli exclusion principle applies.

Because of the diluteness of our cold quantum gases (∼ 1014cm−1), basically bi-

nary collisions dominate. Then the theoretical treatment is greatly simplified. We

will introduce the basic two-body problem in the context of scattering theory and

provide some useful notions such as, cross section, scattering length, collision chan-

nel, Feshbach resonances and other topics relevant to understanding the experimental

work that has been done in the context of this thesis.
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6.2 Ellastic and Inellastic collisions

Interactions can give rise to elastic or inelastic collisions. Elastic collisions do not

alter the relative kinetic energy, however, they can redistribute momentum between

atoms, as it happens when an ensemble is thermalized.

Inelastic collisions on the other hand, do alter the relative kinetic energy and are

a primary cause of atom loss. The change in kinetic energy normally exceeds typical

trap depth and atoms escape from the trap.

Let us consider the collision between two distinguishable particles. Without in-

teractions the relative wavefunction can be written as: Ψ(R⃗) = eik⃗·R⃗|1, 2⟩. After an

elastic collision, the relative momentum is changed from k → k′ and the effects of

this interaction can be described by a new wavefunction:

Ψ(R⃗) ∝

(
eik⃗·R⃗ +

eik⃗·R⃗

R
f(E, k̂, k̂′)

)
|1, 2⟩ (6.1)

where f(E, k̂, k̂′) is the scattering amplitude and |f(E, k̂, k̂′)|2 describes the proba-

bility that a pair of atoms with collision energy E is scattered from relative momentum

k to k′ [30]. The cross section σ(E) is defined as the integral of |f(E, k̂, k̂′)|2 over all

possible momenta for a given E.

This problem is more tractable in spherical coordinates, this is why spherical

harmonics are normally used. For more derivations, the reader can find a through

discussion on scattering theory in a quantum mechanics textbook.

For ultracold collisions, a further simplification arises because the thermal de-

Broglie wavelength λdB is larger than the range of interaction. Considering the small

density of ultracold gases, this means that the mean distance between atoms is large

compared to the interaction range. Together, during collision the shape of the poten-

tial cannot be resolved by atoms. This is why the concept of scattering length a is

crucial when dealing with cold gases; as long as two distinct potentials generate the

same scattering length, then it can be shown that they describe the same many-body

system. The description of the system only depends on the scattering length and not

on the details of the interaction potential. Formally, the scattering length is defined
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as the following low-energy limit:

lim
k→0

k cot δ(k) = −1

a
(6.2)

where δ(k) is the s-wave phase-shift. A positive scattering length corresponds to

a repulsive effective interaction, whereas a negative value indicates attractive inter-

action. Except close to a Feshbach resonance, the scattering cross section is energy

independent and depends solely on the scattering length: σ = 4πa2

6.3 Feshbach resonances

It is possible to change the scattering length with an external magnetic fields. This

stems from the coupling between different atomic states that share the same spin

projection M = m1 +m2 but have different total magnetic moments. The difference

in energies between these states can be tuned with an external magnetic field, as the

different magnetic moments will result in different Zeeman shifts. A paradigmatic

example is the two channel model presented below:

Figure 6-1: Basic two channel model for a Feshbach resonance. It occurs when two
atoms colliding at energy E in the open channel resonantly couple to a molecular
bound state with energy Ec supported by the closed channel. If the magnetic moments
of the closed and open channels differ, Ec can be magnetically tuned. i.e. closed
channel S=1 (triplet) and open channel S=0 (singlet)
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The relative Zeeman shifts between the open and closed channels can be used to

tune the energy of the last bound state into resonance with the kinetic energy of the

incoming hyperfine state of the atoms. This is what is known as a Feshbach resonance,

and the scattering amplitude is greatly enhanced by this coupling to the molecular

state. As a matter of fact, the scattering length a diverges at the resonance:

a(B) = abg

(
1− ∆

B −B0

)
(6.3)

where abg is the background scattering length, which is directly related to the

energy of the last-bound vibrational state, ∆ the width of the resonance and B0 the

resonance position. For 23Na |1, 1⟩-40K |9/2,−5/2⟩ collisions, the scattering length

has been calculated using the Asymptotic Bound State model [31],

Figure 6-2: Scattering length from the ABM model as a function of B field

6.3.1 Feshbach spectroscopy in 23Na -40K

Once with the new degenerate Bose-Fermi mixture of 23Na and 40K at our disposal, we

searched for interspecies Feshbach resonances. We performed trap loss spectroscopy

using resonant losses as signatures of Feshbach resonances. These losses occur because

of the release of internal energy into the motion when colliding atoms end up in a

lower internal state or when a molecule is formed. The gain in kinetic energy is on

the order of the Zeeman energy, the hyperfine energy, or the molecular vibrational

energy, depending on the inelastic channel, and is generally so large that all atoms

involved in the collisions are lost. Hence, in addition to the changes in scattering

length, near a Feshbachresonance inelastic collisions are strongly enhanced [32].
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Over thirty Feshbach resonances were observed in five different spin state com-

binations of 23Na|1, 1⟩+40K|9/2,mF ⟩, from the ground spin state mF = −9/2 up to

mF = −3/2 and also for mF = +9/2. Spin states of 40K are prepared starting from

mF = +9/2 by a single Landau-Zener sweep through the intermediate mF states at

15 G. The observed resonance positions and widths are obtained by fitting a Gaussian

to loss curves. Fig.6-3 shows the experimental loss spectra that was obtained in our

experimental runs.

Figure 6-3: Experimental loss spectra of 40K in the presence of 23Na. Three s-wave
resonances and two p-wave manifolds are found, the latter resolved in one doublet
and one triplet.

The observed resonance positions for several combinations of hyperfine states in

23Na40K and widths from phenomenological Gaussian fits to loss curves are reported

in the table6.1. Many wide s-wave Feshbach resonances at low magnetic fields are

identified, the widest one positioned at 148.3 G for collisions between 23Na|1, 1⟩ +40

K|9/2,−5/2⟩, with a width of the loss feature of 37 G, see Fig. 6-3. This is an order

of magnitude wider than any other resonances found so far in a Bose-Fermi mixture

of chemically different atomic species.

It is known that p-wave Feshbach resonances split into a doublet structure [33].

The origin of this effect lies in the magnetic dipole-dipole interaction that induces an

energy difference for the ml = 0 and |ml| = 1 quantum numbers. In the NaK systems

we observed triplet features for several p-wave resonances. This structure arises from

off-diagonal terms in the dipole-dipole interaction, which couple different values of ml

while conserving total angular momentum ml +MF,K +MF,Na. Because of the low B

field nature of the NaK p-wave resonances, we were able to resolve these structures.

We used a powerful method, developed by Tiecke et al [31], to explain the s-
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Table 6.1: Observed positions of interspecies Feshbach resonances between 23Na in
|1, 1⟩ and 40K atoms in |9/2,mF ⟩. The positions and widths of the resonances, Bexp

0

and ∆Bexp, are determined by phenomenological Gaussian fits (∝ e−(B−Bexp
0 )2/∆B2

exp)
to the observed loss features. For p-wave resonances, we report positions and widths
of resolved features, i.e. doublets and multiplets. Bth

0 and ∆Bth give the theoretical
positions and widths from the ABM model.

23Na|1, 1⟩+ Bexp
0 ∆Bexp Bth

0 ∆Bth Res.
40K|9/2,mF ⟩ [G] [G] [G] [G] type

-9/2 6.35, 6.41, 6.47, 6.68 0.02 7.2 p
-9/2 19.1, 19.2, 19.3 0.02 18.3 p
-9/2 78.3 1.1 75.4 0.9 s
-9/2 88.2 4.3 86.4 7.5 s
-7/2 7.32, 7.54 0.2, 0.03 8.7 p
-7/2 23.19, 23.29 0.05, 0.05 22.1 p
-7/2 81.6 0.2 82.1 0.03 s
-7/2 89.8 1.1 87.2 0.5 s
-7/2 108.6 6.6 110.5 18.3 s
-5/2 9.23, 9.60 0.14, 0.11 11.0 p
-5/2 29.2, 29.45, 29.5 0.04 27.8 p
-5/2 96.5 0.5 97.2 0.03 s
-5/2 106.9 1.8 103.6 0.3 s
-5/2 148.3 36.5 147.7 37.4 s
-3/2 12.51, 12.68 0.16, 0.06 14.8 p
-3/2 39.39, 39.86 0.15, 0.14 37.2 p
-3/2 116.9 0.5 118.3 0.04 s
-3/2 129.5 4.6 127.0 0.24 s
-3/2 174.9 19.8 212.9 77.0 s
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Figure 6-4: Triplet structure of the p-wave resonance at 19.1 G for the
23Na|1, 1⟩+40K|9/2,−9/2⟩ spin configuration. A phenomenological triple Gaussian
fit is applied as a guide to the eyes.
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, p- and d-wave character of the resonance and predict their positions and widths.

The main idea of the asymptotic bound state model (ABM) is that the two-body

Hamiltonian:

H = Hrel +Hint =
p2

2mr

+ V +Hhf,Na +Hhf,K (6.4)

is diagonalized and the energy of the bound molecular states is varied to fit known

resonances. The input parameters are the singlet and the triplet scattering length as

and at and the C6 coefficient to describe the van der Waals tail of the interatomic

potential. A big computational advantage is that it is not necessary to solve the

radial Schrdinger equation.

The model is called asymptotic because it is assumed that the detailed behaviour of

the potential at small interatomic distances can be neglected as the main contribution

to the position of Feshbach resonances stems from the asymptotic behaviour of the

atoms. With only three input parameters a first calculation of the position of Feshbach

resonances can be done (similar to the multichannel quantum defect model [34]).

The theoretical values obtained with this model are shown in Table6.1. The ABM

approach leads to a refined triplet bound state energy of Es
t = −1654(3)MHz and

Ep
t = −1478(7)MHz, and using the long range potential from Ref. [35], we find a new

value of the triplet scattering length of at = −830(70) a0. The Feshbach resonances

we find are ten times broader than in KRb [36] and lie at low fields, making NaK a

remarkable system for Bose-Fermi mixtures.

6.3.2 Feshbach spectroscopy in 41K -40K and 6Li-41K

We also observed interspecies Feshbach resonances between 41K -40K and 6Li-41K.

These are listed in the table below. Some of the theoretical predictions and s and p

wave assignments were done using a coupled-channel calculation by Andrea Simoni

(LENS, Florence).

A wide Feshbach resonance is found in collisions of 40K in state |9/2, 9/2⟩ with

41K in state |1, 1⟩ at 543 G. This resonance opens the door to study an isotopic Bose-
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Mixture B0 [G] ∆Bexp [G] Resonance type
6Li | 1/2, 1/2⟩ 41K| 1, 1⟩ 31.9 0.2 s-wave
6Li | 1/2, 1/2⟩ 41K| 1, 1⟩ 335.8 1.1 s-wave
40K | 9/2, 9/2⟩ 41K| 1, 1⟩ 472.6 0.2 s-wav
40K | 9/2, 9/2⟩ 41K| 1, 1⟩ 432.9 2.5 p-wave
40K | 9/2, 9/2⟩ 41K| 1, 1⟩ 542.7 12 s-wave

Table 6.2: Observed interspecies Feshbach resonances between 6Li-41K and 40K-41K
atoms. The width of the resonance, ∆Bexp, is determined by a phenomenological
gaussian fit to the observed loss feature (see e.g. Fig. 6-3). For the p-wave resonance,
the width was measured at T = 8 µK.

Fermi mixture ( 40K- 41K) with essentially no gravitational sag and wide tunability.

This tunability is very exciting, as the classic example of isotopic mixtures, 3He-4He,

did not allow to access a large region of the complex phase diagram of Bose-Fermi

mixtures. It could certainly become a clean model system for strongly interacting

Bose-Femi mixtures.
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Chapter 7

NaK, testbed for ultracold

molecular physics

7.1 Molecules: Building blocks of nature

Everything surrounding us, including ourselves, is made of molecules. In nature

we find 80 different elements that correspond to stable atoms, but these atoms can

form larger entities, which we call molecules. The physical, chemical and biological

properties of matter depend on how these 80 stable atoms come together and interact

giving rise to the most relevant natural processes.

A molecule is a specific discrete grouping of atoms in a definite geometrical ar-

rangement [28]. They can be as simple as the diatomic molecules that will be discussed

in this thesis: H2, NaK, H2O or more elaborate ones, like DNA, composed of many

thousands of atoms. Almost all molecules, be they organic or inorganic, consist of

atoms of no more than half a dozen of elements. This is one of the wonders of nature,

that so much diversity can be obtained from few building blocks; in the same way

two dozen letters are enough to produce the world’s literature.

It is the quest of molecular physics and chemistry to determine the laws that hold

atoms together in a molecule, what spatial structure they form and how stable it is,

what the binding energy of atoms in the molecule is and ultimately, understand how

these properties translate into function. An illustrative example of how a single atom
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can entirely change the properties of a molecule can be found in cyanidin, which is the

pigment that makes cornflowers (Centaurea cyanus) blue and poppy red [37]. While

being the same molecule, it only differs by one hydrogen atom, due to the different

acidity in the sap of the flowers: cyanidin loses a hydrogen in an alkali environment

like cornflowers, whereas it acquires one if the sap is acidic (hydrogen rich), like in

poppy.

Figure 7-1: In the cornflower (left) the sap is alkaline, and the cyanidin molecule
loses a hydrogen ion and turns blue. In the poppy (right) the sap is acid; because the
molecule is in an environment rich in hydrogen ions, it acquires one and turns red.

With this example, we see that different molecules give rise to different colors. It

follows that the molecular structure has something to do with the energy transitions

associated with absorption of light. Indeed, an extra hydrogen H+ makes electrons

more localized in the molecule, hence more energetic light will be absorbed (blue

light) and the flower will acquire the complementary color red. On the other hand,

by removing an extra H+ electrons will be less confined and the light it absorbs will

be redder, hence the blue color of basic cornflower. 1

1As a simplified model, the ”electron in a box” provides the intuition that a confined electron in a
smaller space tends to make energy level spacings larger. A back-of-the envelope calculation readily
tells us that the energy spacing for a particle confined to a distance a is inversely proportional to a

and given by ∆E = h2

8ma∆n. A covalent bond is roughly 150pm long (e.g. diamond) and absorbs in
the ultraviolet, hence they are colorless. However, electrons that can spread over many atoms within

76



Molecules, like the ones that give color and energy to flowers, were long considered

an abstraction, but are now taken for granted in any natural science. Before delving

into the study of cold molecules it is of interest to briefly address how this came

about, almost at the same time when atomic theories were being developed.

7.1.1 The Molecular Hypothesis

The concept of molecule (Lat. molecula), which means ”small mass”, although used in

vague terms by Descartes, was first introduced in the scientific debate as a result of two

discoveries in the 19th century. The first was John Dalton’s law of Definite and Mul-

tiple Proportions, precursor of what we understand today as stoichiometry, namely,

that the ratio of the masses of elements that mix together are fixed whole numbers.

The second powerful idea that pointed towards the existence of molecules was for-

mulated in 1811 by Amedeo Avogadro when interpreting Gay-Lussac’s measurements

on gas mixtures in the framework of Dalton’s atomism, he stated his hypothesis, also

known as the the Molecular hypothesis : ”For a given volume, and under the same

pressure and temperature conditions, all gases have the same number of molecules”.

This is the familiar ideal gas law 2; however, its relevance lies in the clear distinction

he made between atoms and molecules. A quote from his 1849 article [38] reveals an

almost modern description of molecules:

It seems to me that one can think of the combination of several atoms

of different kinds only as their union into a single molecule, in which

one can no longer distinguish the parts of the volume that belong to the

individual atoms. The atmospheres of imponderable bodies 3 that surround

the atoms in the separated state, and that hold them at a certain distance

from one another, and thus determine the volume, should interpenetrate

and become combined, in such a way as to form only a single atmosphere

for the entire molecule, surrounding the individual atoms, and bringing

a molecule will absorb in the visible, if they are confined to between 600pm and 800pm according
to this simple model

2Avogadro’s law is stated mathematically as: p1·V1

T1·n1
= p2·V2

T2·n2
= const.

3replacing ”imponderable bodies” by ”electron cloud” would be the current picture of a molecule
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them rather closer together than are the resultant molecules themselves,

and thus determining the molecular volume of compounds.

The recognition by Avogadro of the distinction between atoms and molecules was

a key step in the development of modern chemistry, since it allowed for the first time

to give correct formulas to compounds and understand reactions of gaseous elements.

Avogadro deduced correctly that the elementary particles in gases such as chlorine

and hydrogen are not atoms but diatomic molecules, Cl2 and H2, and the reaction is

therefore H2 + Cl2 → 2HCl. James Clerk Maxwell in 1879 published in Nature an

article under the title Molecules, in which he gave the current definition of a molecule:

An atom is a body which cannot be cut in two; a molecule is the smallest

possible portion of a particular substance.

It took many decades until a formal demonstration of the existence of molecules

was given by Jean Babtiste Perrin in 1908. Careful experiments and quantitative

analysis of visible phenomena like Brownian motion, allowed Perrin to convince the

scientific community of what he called la réalité moleculaire. Most notably, the ex-

istence of molecules was proved indirectly by measuring Avogadro’s constant 4 NA

in different experimental settings and showing that they all coincided. The success

of the Molecular hypothesis together with the on-going quantum revolution paved

the way to a new theory of the chemical bond, coherent with quantum mechanics,

masterfully developed by Pauling, Heitler, London and others.

Perrin made use of an ultramicroscope, a tool that allowed him to observe sus-

pended jittering particles of a smaller size than the wavelength of light. He did this

by shining a convergent beam at right angles with the microscope objective. Precur-

sor of modern single-molecule techniques, this kind of light scattering experiments

allowed scientists to observe molecular agitation for the first time. It was not until

2009 that a research group in IBM was able to obtain a first close-up image of a single

4The number of molecules in 1 mole is called Avogadro’s constant NA = 6.022 · 1023. If a volume
of a gas of 22.4 litres at 1 atm pressure and at a temperature of 00C contains only one kind of
molecules; then its mass is equal to the molecular mass multiplied by 1 g. e.g. 32 g for a gas of O2

and 2 g for a gas of H2. This is a mole and it contains NA molecules.
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molecule using an atomic force microscope. Such an experimental feat, that probed

the electron cloud of a molecule (pentacene), made the atomic backbone of a single

molecule directly visible for the first time.

Figure 7-2: Brownian motion measure-
ment by Perrin. Illuminating colloidal par-
ticles from the side scatters light, making
them visible[39].

Figure 7-3: Inner structure of a pentacene
molecule imaged with an atomic force mi-
croscope

From Perrin’s ultramicroscope to AFM measurements, a multitude of experimen-

tal methods have contributed in the journey to understand molecular structure. These

include, X-ray diffraction, mass spectrometry, NMR etc. Current technology makes it

also possible to calculate the structure and the binding energies of small and medium

sized molecules by ab initio methods using fast computers. Undoubtedly, experimen-

tal input is essential for a successful determination of molecular structures and this

is where optical spectroscopy has played a major role. By making use of light-matter

interactions, spectroscopists have probed the inner structure, geometry, energy levels

and properties of molecules with high accuracy for many decades. As will be de-

scribed in subsequent sections, these tools are now being used not only to probe, but

also to manipulate molecules and bring them to desired quantum states.

7.1.2 Molecular spectroscopy: probing molecules

The investigation of molecular structure by spectroscopic techniques parallels the

study of atomic structure, in that the methods of quantum mechanics are applied

along with the information obtained from molecular spectra. By producing a sample

of a given molecule and studying its absorption or emission of light, the energies and

relative intensities of transitions can be identified.
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If a molecule absorbs or emits a photon of energy hν, it makes a transition from a

state with energy E1 to another state of energy E2. Conservation of energy dictates

that:

hν = E1 − E2 (7.1)

These states can be discrete, and therefore they will correspond to a sharp peak in

the spectrum representing a bound state. Coupling to continuum states will broaden

the spectra, as it happens with transitions from or into dissociations states of the

molecule.

Atomic energy states are essentially determined by different configurations of the

electron cloud. Molecules, on the other hand, have more internal degrees of freedom,

such as the relative motion of nuclei and their geometric arrangement. This makes

molecular spectra much more complicated but also more interesting!

A lot of information can be extracted from spectra: The line intensities are a

measure of the transition probabilities and their measurement can be used to test

calculated wavefunctions of the states between which the transitions occur. From

the linewidth, the lifetimes of the involved states can be determined and finally, the

splitting of the lines in external fields gives information on the electric and magnetic

moments of the molecule. In the following, spectroscopic notation will be used and

transition frequencies will be given in wavenumber units5 ν̃ = 1/λ.

Interactions between constituent atoms are not strong enough to constrain them

completely, if this were so, molecules would behave in the same way as atoms 6. To

5Even though they are not SI unit, wavenumbers are still widely used in the field of spectroscopy
and it is convenient in atomic and molecular physics, as they provide a measure of both wavelengths
and energy levels. Usually given in the unit of cm−1, the wavenumber ν̃ describes how many wave-
lengths fit into the length of one centimeter ν̃ = 1/λ. It has the advantage that this is proportional
to the photon energy E = hν, so that energy differences can be added and subtracted easily, as the
energy required to drive a transition will be given by the difference in wavenumbers. As frequency
is the other useful unit in atomic physics, the conversion below will come in handy:

ν = cν̃ → 1cm−1=̂29.978GHz (7.2)

ν̃ =
ν

c
→ 1GHz=̂0.03336cm−1 (7.3)

6Nuclear energies are of the order of 10 MeV, atomic energies of the order of 10 eV (UV); however,
chemical interactions, such a covalent bond, are smaller, corresponding to ≈ 5eV.
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Electronic Vibration Rotation
E(cm−1) 40000 1500 10
E(eV) 5 0.2 0.001
λ(µm) 0.3 6 1000
T(K) 60000 2000 10

Table 7.1: Energy scales in a diatomic molecule

list the main differences: first of all, molecules posses more electronic states than

atoms. The nuclei in the molecule can vibrate around their equilibrium points and in

addition, the whole molecule can rotate around axes through its center of mass.

Therefore, for each electronic molecular state, there are many vibrational and ro-

tational energy levels (sometimes called ro-vibrational). Measured molecular spectra

can be classified as follows:

• Transitions between rotational levels for the same vibrational and electronic

state lead to rotational spectra in the microwave region (λ ≈ 1mm to 1m)

• Transitions between rotational levels in different vibrational levels of the same

electronic state, lead to vibration-rotation spectra in the mid-infrared wave-

lengths (λ ≈ 2.5− 25µm)

• Transitions between two different electronic states have wavelength from the

UV to the near infrared (λ ≈ 100nm-2µm. )

7.1.3 Experimental methods in Molecular Physics

At first spectroscopists studied spectra that took the form of arrays of lines and dense

bands on photographic films. But by improving gratings and eventually using tunable

lasers, bands could be resolved into lines. In recent years, a number of experimental

techniques for the investigation of molecules have been developed and improved [40].

This includes Fourier spectroscopy, synchrotron radiation spectroscopy, electron spin

resonance spectroscopy, mass spectrometry, molecular beam techniques etc. These

techniques can be classified into three different categories: spectroscopic techniques,
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scattering experiments (study of collisions), macroscopic experiments (diffusion, vis-

cosity in molecular gases ).

To this list, it is necessary to add the recent developments in ultracold science, that

have allowed the cooling of molecules. Laser cooling and trapping, magnetic trapping

and evaporative cooling, creation of degenerate ultracold quantum gases and the

discovery of hosts of Feshbach resonances have led to a revolution in experimental

physics, ultimately leading to the formation of ultracold molecules in their lowest

possible quantum state, where rotational and vibrational motions are absent. The

experimental approach will be described in subsequent chapters, once a clear picture

of modern spectroscopic tools has been discussed.

NaK is one of the heteronuclear alkali diatomic molecules which has been most

frequently studied spectroscopically. The preferred method that has been used to

map out the molecular potentials of alkali molecules has been Fourier-transform

spectroscopy. A detailed presentation of this technique can be found in [28]. The

experiment is normally done in a heat pipe, although with the advent of cold atoms

techniques, higher accuracy can be obtained in MOTs. The development of a useful

heatpipe is not straightforward, since homonuclear molecules also form and most of

the times the alkalis at hand have very different melting temperatures. By adding ar-

gon buffer, molecule formation is localized and prevents windows from coating. Heat

pipes have been refined to be amenable to spectroscopy of diatomic molecules; one

such example is the concentric heatpipe [41] in which alkali A and alkali B are at

different temperatures, thus providing the ability to control their partial pressures.

Fourier Transform spectroscopy overcomes the limitations encountered when scan-

ning frequencies individually over a narrow range of wavelengths at a time; as it

would happen using a grating as a dispersive element. Instead, in Fourier transform

spectroscopy, a broadband light source is used and sent into the beamsplitter of a

Michelson interferometer. One of the beam hits a fixed mirror and the other one a

moving mirror, which position is recorded with an infrared laser. Then the beam is

directed into and absorption cell or a MOT and as output aninterferogram is pro-

duced, i.e. a function of intensity vs. time. This is converted into an absorption or
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emission spectrum by means of a Fourier transform, which can be readily computed

with a computer program, once a digitized signal is created.

Most of the groups who have reported on molecular potentials of NaK have made

use of a similar setup to excite NaK molecules and measure fluorescence signals.

Russier-Antoine et al. have evaluated extensively the electronic ground state X1Σ+ of

NaK. Tiemann et al. have improved these measurements and calculation by observing

more spectral lines of the triplet state.

This spectroscopic technique enables the recording of broad spectra, exhibiting

100 MHz resolution with an accuracy of 10−9 in wavenumber and 10−2 in intensity.

The performance of Fourier transform spectrometers may be drastically boosted by

using frequency-combs as an excitation source. Our group has implemented a Ti:Saph

CW ring laser for high resolution spectroscopy of NaK energy levels.

7.2 Understanding molecular potentials

When we think of molecules, simple mechanistic models of their structure come to

mind, in which we picture atoms in space with well-defined geometric shape and

symmetry. Nuclei are glued by the averaged spatial distribution of electrons (what

Avogadro called ätmospheres of imponderable bodies”) bonding the nuclei together

against repulsive forces of positive charges. This picture, which is static, corresponds

to the equilibrium structure of the nuclei, and it is a minimum of the total energy

of the molecule. To avoid any complications that arise when considering moving

reference frames, we will assume the molecule to be at rest in the laboratory frame.

We will make use of quantum mechanics for a quantitative discussion on molecular

interactions. A free molecule at rest consisting of k nuclei and n electrons in a state

with total energy E is described by the Schrödinger equation:

ĤΨ =

(
− ~2

2m

n∑
i=1

∇2
i −

~2

2Mk

k∑
k=1

∇2
k + V (r1, ...rk, R1, ...Rk)

)
Ψ = EΨ(r1, ...rk, R1, ...Rk)

(7.4)
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Even for the simplest molecule we can think of (H+), this equation cannot be

solved exactly. One can try to solve it numerically, but the accuracy will depend on

the method, computational capability and specifics of each problem. A more physical

approach is to make sensible approximations, leading to a simplified and solvable

Schrödinger equation. In this spirit, we introduce the fundamental approximation of

molecular physics: the adiabatic approximation or Born-Oppenheimer approximation.

7.2.1 The Born-Oppenheimer approximation

The first step in reducing the complexity of the task is permitted by the separation

of energy scales. The motion of the electrons in a molecule is fast enough to neglect

the motion of the molecule (electron dynamics is of the order of 100s of THz, whereas

vibrational motion of nuclei is of the order of THz). This approximation, also known

as the frozen nucleus approximation is good for cold atoms and molecules, however,

it breaks down when dealing with light atoms (for which isotopic shifts need to be

taken into account). For heavy atoms with mass number of A, the isotopic difference

in energy scales as 1
A2 and thus can be negligible. Here we give an introduction to

the Born-Oppenheimer approximation, the original derivation can be found in [42].

We write the total Hamiltonian as

H = HBO
e + Tn +

∑
i

l⃗i · s⃗i +HHFS (7.5)

where the HBO
e is the electronic part, Tn the kinetic part for the nuclear motion

and
∑

i l⃗i · s⃗i ,the spin-orbit and HHFS hyperfine parts. Tn has the form:

Tn =
p2n
2µ

+
l⃗2

2µr2
(7.6)

The eigenvalues of HBO
e give the electronic energies as a function of internuclear

separation r, which are then taken as potentials U(r) for the Hamiltonian in the
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subspace of the nuclear motion:

Hn = Tn + U(r) (7.7)

It is with these adiabatic potentials that we will deal with in the rest of the discussion.

By applying the BO approximation, we are assuming that the nuclear motion is

infinitely slow compared to the electrons. As done in every separation of variables

problem, here too, the total wavefunction will be a product form of electronic and

nuclear wavefunctions

Ψ(ri, Ri) = χ(ri)electronsΨ(Ri)nuclei (7.8)

and the total energy will result in the sum of the electronic energy Ee, vibration

Ev and rotation EJ .

The simple form of the total energy allows one to draw energy schemes like those

for atoms, but the terms become potential functions with vibrational and rotational

energy levels. One can describe a great part of molecular physics with these potential

energy diagrams. An example of a calculated potential energy curve for NaK as a

function of interatomic distance is given below. Labelling of states is done in the

following way: the ground state is labelled as X. States that have the same spin

multiplicity7 as the ground state are labelled in alphabetical order with capital letters

from the energetically lowest state (except X) to higher states. Following the Roman

letter, a Greek letter will indicate the projection of the orbital angular momentum

along the internuclear axis. Following the convention for atomic angular momentum

states, Σ, Π and ∆ correspond to L = 0, L = 1 and L = 2, respectively. The spin

multiplicity is indicated as a superscript and another letter g for gerade (symmetric)

or u for ungerade (anti-symmetric) is added after the Greek letter to indicate the

reflection symmetry along an arbitrary plane containing the internuclear axis in the

case of homonuclear molecules.

72S+1 where S is the total spin quantum number of the molecule. ie.e, S=0, singlet, S=1 triplet
etc,
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Figure 7-4: Potential energy curve of NaK. Spectroscopic constant extracted from ab
initio calculation[43]

7.2.2 Model potentials

We cannot directly measure the potential energy, the observables are only the energy

level differences of bound states in the potentials. With modern computational tools,

numerical solutions can be obtained to Schrödinger’s equation, and in an iterative

fashion fit accurate molecular potentials to experimentally measured energies. Such

an example is given in Figure 7-4 . However, it is very useful to consider model

potentials, the easiest one being the harmonic oscillator, centered at the equilibrium

internuclear separation re. The minimum potential energy and the stiffness of the

oscillator are chosen in such a way that the lowest eigenvalues accurately match

empirical data. The next step in correctly describing the potential is by introducing
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anharmonicities; with these, higher energy levels will match with the model and will

discard the possibility of infinite bound vibrational levels, something unphysical and

therefore inappropriate if we are to draw conclusions about weakly-bound ultracold

molecules.

An ideal model needs to satisfy the following requirements:

• as R → ∞, the asymptotic value should equal to the total energy of two free

atoms in a configuration that connects to a molecular state.

• the potential should become infinite as R → 0, because of the repulsion between

nuclei at small distances.

• the potential should have a minimum,

The simplest satisfactory option is the Morse potential, which is described by:

U(R) = De[1− exp−a(R−Re)]
2 (7.9)

where De represents the depth of the potential minimum 8. The Morse potential has

analytic solutions and gives accurate predictions for the first low-lying levels. When

looking up spectroscopic data, we will encounter values of the corresponding Morse

coefficient, as well more elaborate expansion coefficients. In the case of NaK, [43]

these are the listed values for the ground state:

Re (Å) ωe (cm
−1) De (cm

−1)

(1) Σ+ 3.49 124.01 5275

Fig.7.2.2 shows a comparison between the Morse potential and more accurate

model potential.

As mentioned, anharmonicities and asymptotic behaviour can be widely improved

by adding more parameters. One way to express experimentally obtained νth energy

levels is via the Dunham expansion. νth vibrational and rotational energy levels,

8Some authors correctly make the distinction between the De, potential depth, and D0, the
dissociation energy required to break apart the lowest vibrational level. They are not the same and
careful attention should be paid when using data from the literature.

87



0 2 4 6 8 10

-4000

-2000

0

2000

internuclear distanceR HÅL

en
er

gy
Hc

m
-

1
L

Figure 7-5: Morse potential energy curve of NaK from ab initio calculation [43] (blue)
and accurate potential from Tiemann [29] (red). Levels are eigenvalues of the Morse
potential up to ν = 35.
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G(ν) and B(ν), respectively, can be expressed in terms of the Dunham coefficients

Yil as:

G(ν) =
∑
l=1

Yl,0(ν + 1/2)l = ωe(ν + 1/2)− ωeχe(ν + 1/2)2 + ... (7.10)

B(ν) =
∑
l=1

Yl,1(ν + 1/2)l = Be − αeωe(ν + 1/2) + γe(ν + 1/2)2 + .... (7.11)

For the singlet and triplet ground state of NaK, the most up to date coefficients

are given in [29] and [44]. Gerdes et al. [44] have improved the triplet ground state

potential and provide the current state of the art ground state potential for NaK.

Many model potentials have been developed that include these corrections and

Dunham expansions, the most widely used one being the Rydberg-Klein-Rees method

(RKR). This method appears in the literature as a standard procedure to reproduce

spectroscopic measurements of the chemical bound region. Its basic features will be

discussed here.

There exists a large collection of computer codes for the numerical solution of

converting the measured differences in energy levels as a function of the vibrational

quantum number ν and rotational quantum number J ; i.e. E(ν, J) to the desired

potential function U(r). Under the Born-Oppenheimer approximation, the starting

point for integration is the classical action integral which we will use for the long-range

interaction analysis of the LeRoy-Bernstein approach 7.24.

ν +
1

2
=

2µ

π~

∫ R2(ν)

R1(ν)

√
E(ν)− V (r)dr (7.12)

Based on this first order semiclassical approximation and assuming ν to be con-

tinuous, two key equations from the vibrational energy levels G(v) and rotational

constants B(v) are derived. For a given eigenvalue E0:
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f =
~

(2µ)1/2

∫ ν0

−1/2

dν

(E0 − E(ν, J))1/2
=

1

2
(Rmax −Rmin) (7.13)

g =
(2µ)1/2

~

∫ ν0

−1/2

hB(ν)dν

(E0 − E(ν, J))1/2
=

1

2
(

1

Rmax

− 1

Rmin

) (7.14)

where f and g are related to the classical turning points Rmax and Rmin for a

given state at energy E0 as:

Rmin(ν) =
√
f 2 + f/g − f (7.15)

Rmax(ν) =
√
f 2 + f/g + f (7.16)

Repeating this procedure for all observed vibrational levels yields a potential energy

function against interatomic distance. Normally a table of turning points on selected

energy levels is given. For checking the validity of these potentials, one recalculates

the eigenstates by the radial Schrödinger equation using this potential point wise and

interpolating, for example, by cubic splines.

Many molecular physicists try to give an analytic function as a best representation

of the potential (see [29]), while others give a point wise RKR table. There is no

general consensus as to what approach is the best. Ultimately, both ways need to

accurately reproduce the observed spectra. Calculated potentials are a necessary

starting point that will guide experiments in cold collisions and cold molecules.

7.2.3 Angular momentum in molecules and Hund’s cases

Given these potentials, what are the good quantum numbers? Depending on the en-

ergy scale, many kinds of angular momenta are coupled with each other in molecules.

A list of angular momenta is given here: electronic orbital angular momentum, ro-

tational angular momentum, electronic spin and nuclear spin. The complexity of

molecular spectra is largely due to the coupling between these angular momenta.
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Hund’s classification is a way to understand which coupling is relevant in what case.

In this discussion, Hund’s case (a) and (c) will be elaborated, since they are the most

important for cold molecule experiments.

Hund’s case (a) is the most ubiquitous case when dealing with deeply bound

molecules. Electronic interaction He contributes primarily to the hamiltonian, while

the spin-orbit term and the rotational energy are small perturbations. Hyperfine

interaction is also neglected in this case, because it is much smaller than other angular

momenta. If we are dealing with a deeply bound molecule, such as NaK in its lowest

vibrational state, then it corresponds to Hund’s case (a). In this case, state labelling

follows the previously mentioned notation for orbital angular momentum Λ.

Figure 7-6: Hund’s case(a), free precession of L and S around the internuclear axis,
due to small spin-orbit coupling.

Hund’s case (c) is a rare case in nature but very relevant in cold atom experiments,

since it corresponds to loose, fluffy molecules in the asymptotic limit. Here the energy

of spin-orbit interaction dominates over that of electronic interaction and hyperfine

interactions. Rotation is neglected because near dissociation the size of the molecule

is large, corresponding to small rotational energy. The labelling of these states is

done by projecting the sum of orbital angular momentum and electronic spin onto

the molecular axis. This projection is named Ω. Hunds coupling case c) is valid for

internuclear distances approximately larger than 20a0, where a0 is the Bohr radius,
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beyond which the interaction is governed by the Van der Waals force.

Figure 7-7: Hund’s case(c), strong spin-orbit coupling with L⃗ +S⃗ + R⃗=J⃗a and J
precessing around the internuclear axis. R is the rotational angular momentum,
which is normally neglected for ultracold molecules.

7.2.4 Molecule-Light interactions: Molecular transitions and

selection rules

In the same way as with atoms, light manipulation of molecules requires some knowl-

edge of how light interacts with molecules. In this section, the most relevant aspects

of optical transitions in molecules will be given, focusing on electric dipole transitions,

since other transitions such as electric quadrupole or magnetic dipole transitions are

smaller.

First, let us list the selection rules for various cases. As a rule of thumb, the total

angular momentum J should satisfy:

∆J = 0,±1 (7.17)

with the exception of J = 0 → J ′ = 0 . In addition, the symmetry of the molecule

restricts transitions between + → + and − → −, only allowing transition between

+ and -. ± refers to to the symmetry of the wavefunction under spatial inversion
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(change/unchange). For homonuclear molecules this notation is changed to g (gerade)

and u (ungerade) and only transition between g and u are allowed.

Apart from these rules, we need to consider how angular momenta are coupled, as

discussed in the previous section. In Hund case (a), the quantum number Λ should

satisfy:

∆Λ = 0,±1 (7.18)

which means that transitions like Σ → Σ and Σ → Π are allowed but transitions

like Σ → ∆ are not. An additional selection rule comes from the spin component:

∆S = 0 (7.19)

which indicates that singlet-singlet and triplet-triplet transitions are allowed but

singlet-triplet transitions are forbidden. This is a relevant point when considering a

transfer of molecules to the lowest vibrational state.

For Hund’s case (c), i.e. in the long-rage limit, the restrictions apply to the angular

momentum Ω as,

∆Ω = 0,±1 (7.20)

These rules do not hold exactly in a real molecule, especially when considering

mixed states in whichsinglet and triplet states are mixed. An extended discussion on

selection rules and molecular transitions can be found in [28].

7.2.5 The Franck-Condon Principle

So far the selection rules apply to the angular components of the molecular wave-

function, in a similar way as when dealing with atoms. In molecules, however, the

nuclear wavefunctions also need to be considered. In a classical model, which gives

intuitive insight into electronic transitions, the absorption or emission of a photon

occurs within a time interval that is short compared to the vibrational period of the

molecule. The transition is so fast, that the size of the molecule does not change when

the transition happens. In a quantum mechanical language, this selection rule can be
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interpreted by requiring a significant overlap between ground and excited wavefunc-

tions for a transition to occur. This is readily confirmed by considering the matrix

element of the corresponding transition. The insensitivity of nuclei to the optical

frequencies responsible for electronic transitions lets the matrix element separate as

follows:

⟨Ψgχg|d⃗ · E⃗|Ψeχe⟩ = ⟨Ψg|d⃗ · E⃗|Ψe⟩⟨χg||χe⟩ = ~ΩR⟨Φ(ν ′)||Φ(ν)⟩S(J ′, J) (7.21)

where electronic, vibrational and rotational wavefunctions have been separated in

accordance with the Born-Oppenheimer approximation. ΩR is the Rabi frequency

and S is the Hönl-London factor (rotational strength factor) and will not be a rele-

vant factor for ultracold molecule production, because we will be dealing with s-wave

molecules in their ground state. The overlap of the initial and final nuclear wave-

functions ⟨Φ(ν ′)||Φ(ν)⟩ provides a factor which multiplies the atomic matrix element,

which is called Franck-Condon factor. The factor is close to 1 (when normalized)

for strong molecular transitions, but it can be negligible for transitions between very

different vibrational states. For a given electronic state, the Franck-Condon factors

will sum to 1 for all possible vibrational transitions.

The Franck-Condon factor can be calculated numerically starting with the known

molecular potentials. A straightforward technique makes use of turning points to

locate states of high overlap. The turning point method shown in the diagram works

because most of the amplitude of the wavefunction occurs at the turning point, where

the kinetic energy is small and the wavefunction large. Hence, two states with classical

turning points at similar internuclear distance R will have a large Franck-Condon

factor; in contrast, two states with very different turning points will not have high

overlap of their wavefunctions and consequently the Franck-Condon Factor will be

small.

In a potential diagram the electronic transitions between the two states can then

be represented by vertical arrows. This means, that the internuclear distance R is
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the same for the starting point and the final point of the transition. Below, we see

a transition from the ground state of NaK to the excited state B1Π. The strongest

overlap occurs between ν = 0 and ν ′ = 2.

B 1
P

X 1
S

rr
R

en
er

gy

Figure 7-8: NaK potentials from [44]. The largest amplitude of the ground state
wavefunction overlaps with the state indicated by the straight arrow. Units are arbi-
trary.
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7.2.6 Long-range interaction: asymptotic potential

The most important part of the potential for determining the behavior of weakly-

bound molecules is at long-range. For large separations, the interatomic interaction

is mostly due to the Van der Waals force between two atoms. We can express the

long-range protential as:

V (R) = De − Cn/R
n (7.22)

where De is the dissociation energy and n can take values n=3 and n=6, depending

on the atomic states.

Let us consider an energy range ∆ below the atomic asymptote, (i.e. the limit

where the molecule dissociates) in an interval which is small compared to the potential

depth De: ∆ << De. If we take one bound state close to dissociation and the next

higher one, both corresponding wave functions will only differ in the long range by one

additional node. However, the oscillatory behaviour in the inner part of the potential

is almost indistinguishable. Thus, the vibrational spacing of the levels close to the

asymptote is mostly determined by the long range component of the potential. This

idea is at the core of both approaches that are presented here: the analytic calculation

for the asymptotic level structure by LeRoy and Bernstein [45] and the accumulated

phase method by Verhaar [46].

Figure 7-9: Long range potential
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LeRoy-Bernstein Approximation

LeRoy and Bernstein developed an analytic expression for transitions close to the

dissociation limit. Here we will derive this relation and use it to make predictions

about the long-range behaviour of NaK.

Following LeRoy’s approach [45], the Van der Waals potential V (r) = D − Cn

Rn in

the first order WKB semiclassical approximation is considered. The energy E(ν) of

the vibrational state ν is implicitly given by the quantization condition for the phase

integral Φ(E)

Φ(E(v)) =
1

~

∫ r2

r1

p(r)dr =

(
ν +

1

2

)
π

Here p(r) is the local momentum and k(r) is the local wavevector

p(r) =
√
2µ(E(ν)− V (r)) = ~k(r) (7.23)

The inner and outer turning points of the classical motion are labelled r1 and r2:

V (r1) = V (r2) = E(ν). Following LeRoy and Bernstein,

ν +
1

2
=

2µ

π~

∫ R2(ν)

R1(ν)

√
E(ν)− V (r)dr (7.24)

Although the allowed eigenvalues correspond to integer ν, it will be treated as a

continuous variable. Differentiation with respect to E leads to:

dν

dE(ν)
=

√
µ

π~
√
2

∫ R2(ν)

R1(ν)

1√
E(ν)− V (r)

dr (7.25)

we introduce the following change of variables: y ≡ R2(ν)/R. From the turning
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points equality we know that E(ν)−D = −Cn

Rn
2
. Hence,

dν

dE(ν)
=

√
µ

π~
√
2

∫ R2/R1

1

y−2(−Rn
2/Cn)

1/2√
−1 +Rn

2/R
n
dy (7.26)

=

√
µ

π~
√
2

C
1/n
n

[D − E(ν)]1/2+1/n

∫ R2/R1

1

dy

y2
√
yn − 1

(7.27)

In the limit ofR1(ν) → 0 the integral equals
∫∞
1

y−2(yn−1)−1/2dy =
√
π Γ(1/n+1)

Γ(1/2+1/n)
n

C
1/n
n

.

This gives an analytic expression for :

dE(ν)

dν
= ~

(
2π

µ

)1/2
Γ(1 + 1/n)

Γ(1/2 + 1/n)

n

C
1/n
n

[D − E(ν)](n+2)/2n) (7.28)

= Kn[D − E(ν)](n+2)/2n) (7.29)

Hence, an integration yields the well-known LeRoy-Bernstein formula, where νD

is a constant whose integer part measures the number of levels in the potential and

Hn ≡
(
n−2
2n

)
Kn.

E(ν) = D − [(νD − ν)Hn]
2n
n−2 (7.30)

This equation describes the vibrational ladder by a simple power law in (νD − ν),

which for the van der Waals interaction has an exponent of 3 (n = 6). One can extend

this formula to include potential corrections such as rotational energy contributions.

If the hyperfine structure is to be included in the potential, such an analytic result is

not valid. The hyperfine interaction becomes important for near-dissociation states.

In the low vibrational states (like in Hund’s case (a)), the hyperfine interaction can

be neglected. The LeRoy-Bernstein formula given here can be valuable as a first

order approximation interpretation of observed spectra. We can use it for 23Na-40K

for which C6 = 2447(a.u.) [47]. The binding energy D − E(ν) will have an upper

bound value of E∗
b = H3

n=6

E∗
b =

(
~
(
2π

µ

)1/2
Γ(1 + 1/6)

Γ(1/2 + 1/6)

n

C
1/6
6

)3

= −1264MHz (7.31)
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Analytic Improvement of the LeRoy Bernstein approximation

A further improvement of this formula considers the short-range part of V (r). Usually

this is a complicated expression and it is helpful to use the previous quantization rule

and obtain the scattering length as a function of the energy En of a near-threshold

bound state. Following Gribakin and Flambaum [48], we can write the scattering

length a, as a sum of the mean scattering length ā, which only depends on the potential

tail and a further term which is a function of the whole potential via Φ(E(v)).

a = ā+
b

tan(πΦ(E))
(7.32)

both the threshold length b and ā depend on the potential tail, and hence on the

C6 coefficient. We introduce the scaling factor β6 =
(
2µC6

~2
)1/4

. Then,

b =
β6√
2

Γ(3/4)

Γ(5/4)
(7.33)

ā =
1√
2

(√
2µC6

4~

)1/2
Γ(3/4)

Γ(5/4)
(7.34)

A detailed calculation of the integrals for r−γ potentials gives an analytic expres-

sion for Φ(E) [49],where the coefficients represent integrals that have been evaluated

for γ = 6 (see7.2.6)

Φ(E) =
2bk − (dk)2

2π[1 + (Bk)4]
+

(Bk)4

1 + (Bk)4

(
−1

8
+

D

2π(kβ6)2/3
+

Γ(2/3)(kβ6)
2/3

4
√
πΓ(7/6)

)
(7.35)

Table 7.2: Parameters characterizing the potential tail. Integrals have been calculated
for γ = 6 [49].

Coefficient γ=6
b/β6 0.4779888
ā/β6 0.4779888
d/β6 0.4579521
B/β6 0.93323
D/β6 0.4089698
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7.2.7 Example with NaK from known s-wave scattering length

and C6

From the definition of the scattering length, we can solve for Φ(E(k)) mod π. On

the other hand, from [7.35 ] ΦE(k) the energy can be solved for unambiguously, if

only real solutions are considered.

For 23Na40K it is known that, asinglet = 69+1
−2a0 , atriplet = −830(70)a0 and C6 =

0.1179302 · 108cm−1Å6, solving for Φ yields:

Φs(E) = (0.39± 0.01)rad Φt(E) = (0.9741± 0.01)rad (7.36)

and the weakest bound state energy is calculated to be:

Esinglet = (−158± 10)MHz; Etriplet = (−1682± 60)MHz (7.37)

This approach can be performed backwards, i.e. the experimental measurement of

the binding energies leads to a refinement of the values for C6 and scattering lengths.

Ultimately by performing this calculation iteratively, a more accurate molecular po-

tential will be obtained.

7.2.8 Accumulated Phase method

The radial Schrödinger equation for the relative radial motion of the atoms can be

integrated numerically. Normally, knowledge of the inner part of the potential can be

incorporated if the scattering length is well known. The phase shift is simply related

to the scattering length a defined by

a = lim
k→0

[
−1

k
tan δ0(k)

]
(7.38)

where,
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E =
~2K2

2µ
(7.39)

Figure 7-10: The behavior of the wavefunction phase near the inner turning point for
three different energies.

Starting from r = ∞, one has to solve the equation:

(
~2

2µ

d2

dr2
− V (r) + E

)
f(r) = 0 (7.40)

where f(r) ∝ sin k(r − a) for r → ∞ Using this boundary condition, the wave

function at any distance can be readily obtained by inward integration. As we can

disregard the inner part of the wave function, the integration is stopped before the

actual potential V (r) diverges from its asymptotic form, having obtained the positions

of the outermost nodes. We set the inner turning point to be rin = 18ao
9, which

satisfies the conditions set in [46]. Let us first reduce (7.40) to a general form, where

lengths have been divided by the scaling factor: β6 =
(
2µC6

~2
)1/4

(
d2

dx2
+

1

x6
− k̃2

)
y(x) = 0 (7.41)

let us note that the wavenumber and scattering length have been scaled as well,

k̃ = kα and ã = a/α,

For the threshold wave function (k = 0), the boundary conditions can be approx-

9Other values around (18± 1)a0 yield similar results.
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imated to:

y(x) = −1 + x/ã (7.42)

y′(x) = 1/ã (7.43)

Using these boundary conditions as starting point at x = ∞, the radial Schrödinger

equation is integrated inwards. Then, switching the energy to a negative eigenvalue,

integration is performed outwards again, while looking for the eigenvalues that satisfy

the correct boundary condition at large r y(r → ∞) = 0. Numerical integration yields

the following result: Es = (−148± 25) MHz and Et = (−1619± 50) MHz.

Using the same approach, p-wave binding energies can be calculated as a function

of the s-wave energies by integrating the Schroedinger equation inwards, while adding

the centrifugal barrier to the potential . Only the region around the p-wave centrifugal

barrier changes the accumulated phase, the inner part of the potentials remain the

same for s- and p-wave potentials, so this region does not contribute to the shift

between energies. This method has been used to determine the free parameters for

Feshbach resonance assignment in the context of the Asymptotic Bound State Model

(ABM).
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7.3 Towards ultracold ground state molecules of

NaK

7.3.1 Production of molecules via Feshbach resonance

To make a quantum gas of polar molecules of NaK in their absolute ground state, a

two step process needs to be done. In the first step, weakly bound Feshbac molecules

need to be produced. In the vicinity of the resonance position at B0, where the two

channels are strongly coupled, the scattering length a is very large. For large positive

a, a “dressed molecular state exists with a binding energy given by:

Eb =
~2

2mra2
(7.44)

where mr is the reduced mass of the atom pair. In this limit, Eb depends quadrat-

ically on the magnetic detuning BB0. Molecules formed in this regime are extremely

weakly bound, and they are described by a wavefunction that extends far out of the

classically allowed range. These considerations show how a Feshbach resonance is

inherently connected with a weakly bound molecular state. A Feshbach molecule is

a highly excited molecule, existing near the dissociation threshold and having an ex-

tremely small binding energy as compared to the one of the vibrational ground state.

Therefore, it is not a conventional molecule and our traditional picture of molecu-

lar covalent bonding has to be changed. The experimental realization of Feshbach

molecules is commonly done by a magnetic field ramp across the resonance. More

details on alternative ways of realizing Feshbach molecules can be found in the review

by Chin et al. [25].

7.3.2 STIRAP scheme

Molecules created via Feshbach resonances can be transferred to many other states

near threshold or to much more deeply bound states. Following the techniques de-

veloped at JILA. Using a STIRAP transfer, two coherent pulses can transfer the
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Feshbach molecule to the rovibrational ground state by coupling to an intermediate

excited state. Accurate calculations can be done with what we know about NaK to

obtain an excitation scheme with high Franck-Condon coefficients, that will guaran-

tee an efficient molecular transfer. Below an estimate of the frequency ranges we

need are given. The chosen excited state is appropriate because it mixes singlet and

triplet states, hence highly excited feshbach molecules with triplet character can be

transferred to the lowest vibrational singlet ground state.

Figure 7-11: Excitation scheme for formation of NaK ground state molecules.

7.3.3 Reactivity of NaK in the ground state

Reactivity of molecules is a relevant property that can be advantageous in some cases,

when studying ultracold chemistry of molecules. Reactivity of molecules, expressed

as molecule loss from a trap, is a signature of two-body interactions and depends

strongly on applied external electric fields as demonstrated with KRb in [50]. On the
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other hand, nonreactive molecules have the advantage of being chemically stable in

their absolute ground state, thus helping reach long-lived polar molecules.

If both atomic species are in their absolute ground state, inelastic two-body col-

lisions are impossible, but there remains the possibility of reactive collisions, where

a more deeply-bound state is formed, while giving energy to a third partner. Un-

like other alkali dimers, such as KRb, collisional stability is guaranteed for NaK

because atom exchange and trimer formation reactions are endothermic. The energy

exchange ∆E of the atom exchange reaction NaK+NaK→ Na2+K2 can be calculated

from available data on the dissociation energy De.

De(cm
−1) Ref

Na2 (Σ+) 6022.0420(40) [51]
K2 (Σ+) 4450.906(50) [52]
NaK (Σ+) 5273.62(10))

∆E +74.3(3) endothermic

It may therefore be concluded that the NaK dimer is stable with respect to atom

exchange collisions in the ground rovibrational state. A more general result shows

that this is true for other heteronuclear alkali dimers commonly used in ultracold

atom experiments, with the exception of Li dimers and KRb, which have exothermic

atom exchange reactions.[53][54]. The table below shows the energy changes and their

sign (+ endothermic) and (- exothermic) for some of these alkalis.

Table 7.3: Energy change ∆E2 for the reactions 2XY→ X2 + Y2 (in cm−1). Combi-
nations in bold are energetically forbidden

Na K Rb Cs
Li -328(2) -533.9(3) -618(200) -415.38(2)
Na +74.3(3) +45.5(5) +236.75(2)
K -8.7(9) +37.81(13)
Rb +291(1.5)

On the other hand, for trimers such as Na2K or NaK2 there are no empirical values
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of their atomization energy 10. However we can take a range of different geometric

configurations for these molecules and calculate their energy using a computer simula-

tion. This was done in [53] and the table below summarizes the atomization energies

for the equilibrium structure of these molecules. The empirical dimer dissociation

energies need not be simulated, as they have been measured in many spectroscopy

experiments. The estimated error in the computer simulation that is reported is 5%

[53].

Atomization energy (cm−1) Reaction ∆E
Na2K 7795 2NaK→Na2K+K +3352 (forbidden)
K2Na 7125 2NaK→K2Na+Na +2752 (forbidden)

From this analysis, investigating the energetics of reactions involving pairs of NaK

dimers in their singlet ground electronic state, it is concluded that trimer formation is

always energetically forbidden for low-lying rovibrational states of the singlet dimers

[53]. However, this does not exclude trimer formation for low-lying rovibrational

states of heteronuclear dimers in their triplet ground state. As studied in [55], it can

be shown that contrary to the case of the singlet dimer the trimer formation of triplet

dimers is always energetically allowed.

10the energy required to form a monoatomic gaseous species
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Conclusion and outlook

With the new degenerate Bose-Fermi mixture of 23Na and 40K, and over thirty s-,

p- and wave interspecies Feshbach resonances, including several exceptionally broad

resonances, the future is bright (and ultracold) for Fermi 1. The strongly interacting

23Na-40K mixture near these Feshbach resonances should allow the study of Bose or

Fermi polarons [56], of boson mediated interactions between fermions, and possibly

of novel states of matter. Future experiments with Fermi 1 might include an optical

lattice that will discriminate one species versus the other, thus making the machine

even more versatile in the manipulation of paramaters. Of particular interest can be

to address one of the original questions that Fermi 1 set out to solve: How does adding

impurities change the behaviour of a many-body-system? The physics of disorder.

Looking forward to hearing about those results.

NaK molecules are already there and it is a matter of technical expertise to be

able to bring them to the rovibrational ground state. NaK molecules possess a large

permanent electric dipole moment and are stable against exchange collisions, all make

this molecule very attractive for research. One can thus hope to create a Fermi gas of

polar molecules with strong dipole-dipole interactions that dominate the many-body

physics of the gas.

Fermi 1 will continue to realize fundamental models of condensed matter physics

in a fully controllable environment, testing them with the precision of atomic physics

and for that it has the essential tools: a very powerful, stable and versatile machine;

the necessary great ideas and very capable people.

107



108



Bibliography

[1] Immanuel Bloch, Jean Dalibard, and Wilhelm Zwerger. Many-Body Physics with
Ultracold Gases. Reviews of Modern Physics, 80(3):885–964, 2007.

[2] Richard Feynman. Simulating physics with computers. International Journal of
Theoretical Physics, 21(6):467–488, 1982.

[3] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M.
Kurn, and W. Ketterle. Bose-Einstein Condensation in a Gas of Sodium Atoms.
Phys. Rev. Lett., 75:3969–3973, Nov 1995.

[4] B. DeMarco and D.S. Jin. Onset of Fermi degeneracy in a trapped atomic gas.
Science, 285:1703–1706, 1999.

[5] W. Pauli. The connection between spin and statistics. Phys. Rev., 58:716–722,
Oct 1940.

[6] Quantum Liquid. Oxford University Press, 2006.

[7] W. Ketterle, D.S. Durfee, and D.M. Stamper-Kurn. Making, probing and un-
derstanding Bose-Einstein condensates. In M. Inguscio, S. Stringari, and C.E.
Wieman, editors, Bose-Einstein condensation in atomic gases, Proceedings of the
International School of Physics Enrico Fermi, Course CXL, Varenna, 7-17 July
1998, pages 67–176. IOS Press, Amsterdam, 1999.

[8] W. Ketterle and M.W. Zwierlein. Making, probing and understanding ultracold
Fermi gases. In M. Inguscio, W. Ketterle, and C. Salomon, editors, Ultracold
Fermi Gases, Proceedings of the International School of Physics ”Enrico Fermi”,
Course CLXIV, Varenna, 20 - 30 June 2006. IOS Press, Amsterdam., 2008.

[9] Tobias Tiecke. Feshbach resonances in ultracold mixtures of the fermionic quan-
tum gases 6Li and 40K. PhD thesis, Amsterdam University, 2009.

[10] M.E. Gehm. Preparation of an Optically-Trapped Degenerate Fermi Gas of 6Li:
Finding the Route to Degeneracy. PhD thesis, Duke University, 2003.

[11] William Phillips. Laser cooling and trapping of neutral atoms. Nobel Lecture,
1997.

109



[12] Sara Campbell. Building an Apparatus for Ultracold Lithium-Potassium Fermi-
Fermi mixtures. PhD thesis, MIT, 2010.

[13] D. M Stamper-Kurn. Peeking and poking at a new quantum fluid: Studies of
gaseous BEC in magnetic and optical traps. PhD thesis, MIT, 1999.

[14] Yan Feng, Luke R. Taylor, and Domenico Bonaccini Calia. 25
W Raman-fiber-amplifier-based 589 nm laser for laser guide star. Opt. Express,
17(21):19021–19026, Oct 2009.

[15] CVI Technical Guide. CVI Melles Griot, 2012.

[16] Acousto-Optics. CRC Press, 1997.
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[40] Wolfgang Demtröeder. Molecular Physics: Theoretical Principles and Experi-
mental Methods. WILEY-VCH Verlag GmbH & Co. KGaA, 2005.

111



[41] V Bednarska et al. A three-section heat-pipe oven for heteronuclear alkali
molecules. Meas. Sci. Technol. 7, 1996.

[42] Oppenheimer JR. Born M. Zur quantentheorie der moleküle. Ann Phys (Leipzig),
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